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Abstract 
Light supplementation can increase crop yield in greenhouses by promoting 

photosynthesis and plant growth. However, the high energy costs associated with light 
supplementation are a predominant factor that limits development and profit 
improvement of controlled environment agriculture. Light-emitting diodes (LEDs) are 
a promising technology that has tremendous potential to improve irradiance 
efficiency and to replace traditionally used horticultural lighting. Compared with 
traditional light sources (e.g., high-pressure sodium lamps and metal halide lamps) 
used in crop production, LEDs have distinct advantages, such as their small size, long 
lifetime and high photoelectric conversion efficiency. Most importantly, as a 
monochromatic light source, the spectrum of LEDs can be adjusted based on plant 
growth requirements. This project aimed to investigate energy-use efficiency, 
vegetable nutrition and photosynthesis improvement of light supplementation in a 
protected horticulture system. In the initial phase, the effects of LED light on plant 
growth and light-use efficiency for pak choi and photosynthetic performance were 
investigated. The results showed that the highest fresh and dry weight and leaf area 
were observed under red and blue LED light, with the blue light percentage at 23%. 
Compared with fluorescent lamps (FL) with photosynthetic photon flux density 
(PPFD) at 220 μmol m-2 s-1, the light-use efficiency increased by 55, 114 and 115% for 
mixed red and blue LEDs with PPFD at 100, 150 and 220 μmol m-2 s-1, respectively. 
Monochromatic red- and blue-light LEDs resulted in significant decreases in Pn of 
tomato plants, but the stomatal conductance (Gs) for monochromatic blue LEDs was 
higher than that for FL. The effect of light spectrum composition on lettuce nutrition 
quality was also studied. Continuous light with combined red, green and blue LEDs 
exhibited a remarkable decrease in nitrate. Moreover, continuous LED light for 24 h 
significantly increased phenolic compound content and free-radical scavenging 
capacity in lettuce leaf. 

Keywords: LEDs, light quality, photosynthesis, energy-use efficiency, nitrate content, 
phenolic compounds 

INTRODUCTION 
Greenhouses have been introduced into commercial crop production for several 

decades. Currently, small industries and individuals have been involved in urban farming 
with success in producing fresh food, in a sustainable way, able to deliver to the final 
consumer in an instant, without transportation costs or storage needs. Also, people that 
encounter these kinds of businesses and taste the products tend to prefer them, because 
they are healthier, fresher and last much longer than the imported equivalents. Light is one 
of the most important factors in plant growth development. Light is not only the energy for 
driving photosynthesis, but an essential signal to mediate downstream gene expression of 
substance metabolism for the plant to acclimate to environmental fluctuation (Chen et al., 
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2004). In the commercial greenhouse, light supplementation using artificial light can 
significantly increase crop yield and nutrition quality, especially in low-light-intensity 
seasons like winter and late autumn (Lu et al., 2012; Yorio et al., 2001). With the 
development of urban agriculture, artificial light has become the most important way to 
control the light conditions. For a long time, people were using fluorescent lamps, filament 
lamps and high-pressure sodium lamps (HPL), and much research was carried out to test 
their effects (Tibbitts et al., 1983). However, these kinds of light tend to consume large 
amounts of electrical energy and release a lot of heat (which will also increase the cooling 
system cost), and their spectra are not very suitable for plants, which leads to excessive 
waste of energy (Randall and Lopez, 2014). The most important element in controlling 
artificial farming costs is supplying light for photosynthesis and growth by light sources with 
high photoelectric efficiency. Light-emitting diodes (LEDs) have been proposed as 
alternative light sources in controlled agricultural environments since, compared with 
traditional horticulture light sources (e.g., HPL), LEDs have drastic advantages, such as 
superior lifetime, reduced size, cooler emitting temperature, and reduced energy 
consumption (Massa et al., 2008). An exciting potential of using LED lighting is the 
development of species-specific light recipes comprising the optimum proportion of specific 
narrow-band wavelength light that can optimize plant growth, development and other 
desirable traits (e.g., increase phytochemical content) (Bian et al., 2015, 2016), whilst 
significantly reducing the energy input compared with traditionally used horticulture light 
sources. Recently, the effect of LEDs on plant growth and development has aroused 
increasing interest. However, the results of related studies are sometimes different, and even 
contradictory (Avercheva et al., 2009; Bian et al., 2016; Hogewoning et al., 2010; 
Urbonavičiūtė et al., 2007). A hypothesis has been raised that the different application 
strategies might arouse different responses of plants to LED light treatments. We conducted 
experiments using different light spectral compositions and application strategies of LEDs to 
further reveal the disadvantages of LEDs in energy saving and plant nutrition quality 
improvement. 

MATERIALS AND METHODS 

Plant material and growth conditions 

1. Experiment I. 
Pak choi (Brassica rapa ‘Bonsai’, Chinensis group) seeds were sown in commercial 

substrate and germinated in an environment-controlled growth chambers. After 
germination, seedlings were randomly treated with red (650-670 nm; R) and blue (455-475 
nm; B) LEDs (Green power research module, Philips) with four different R/B ratios for 14 
days. The spectral compositions of light treatments are summarized in Table 1. The 
photosynthetic photon flux density (PPFD) of all light treatments for pak choi was 
maintained at 130 μmol m-2 s-1 through adjusting the distance between the light sources and 
plants. In the next step, pak choi seedlings were grown under mixed red and blue LED light, 
but with high (220 μmol m-2 s-1), medium (150 μmol m-2 s-1) and low (100 μmol m-2 s-1) light 
intensities to investigate light-use efficiency. Pak choi grow under fluorescent lamps (FL; 
Unigro, 12/6N) with a PPFD at 220 μmol m-2 s-1 were used as a control. Each treatment light 
had triple replications (four or five plants per replication). In the growth chamber, 
photoperiod, day/night temperature, relative humidity and CO2 level were set at 16 h, 
25±1/20±1°C, 65±5% and 400±20 ppm, respectively. 

2. Experiment II. 
Tomato (Solanum lycopersicum) seeds were sown in commercial substrate and grown 

under FL (Unigro, 12/6N) with a PPFD at 150 μmol m-2 s-1. Every other day, tap water was 
added from the bottom of the pots to keep the substrate wet. When plants had their second 
true leaves, they were randomly treated with monochromatic red (650-670 nm, R) LEDs, 
monochromatic blue (455-475nm; B) LEDs, or mixed red and blue LEDs (R/B=1). Plants 
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grown under FL were used as a control. Every other day, light intensity was monitored with 
a spectrometer (Skye Instruments Spectra Sense, RS 232). Light intensity for all the light 
treatments was kept at 200 μmol m-2 s-1 by adjusting the distance between the light sources 
and the top of the plants. Other environment factors were the same as in experiment I. 

Table 1. Light spectral composition details. 

Treatment Red light (%) Blue light (%) 
0% 100 0 
23% 77 23 
27% 73 27 
30% 70 30 
62% 62 38 
100% 0 100 

3. Experiment III. 
Lettuce (Lactuca sativa L.) was seeded in plastic seedling trays filled with 

peat:vermiculite (3:1, v/v) and grown in a controlled growth chamber. Fluorescent lamps 
(T5, PHILIPS) were used as light sources for seedling cultivation and light intensity was 
maintained at 100 μmol m-2 s-1. The other environmental factors were set as in experiment I. 
When seedlings had their second true leaves, they were transplanted into a hydroponic 
growth system and grown under white (400-700 nm; W), LED light and combined red (peak 
at 660 nm; R) and blue (455-475 nm; B) LED light with/without green (515-545 nm; G). The 
light intensity and photoperiod were 200 μmol m-2 s-1 and 12 h, respectively and other 
environmental factors were as described in experiment I. Before harvesting, lettuce plants 
were conducted continuous light treatment for 24 h. The light treatment details are 
summarized in Table 2. These LED light sources (VQ-G200; Vanq Technology, Shenzhen, 
China) were maintained at 20 cm above the canopies of the plants. The PPFD of the LED light 
sources was monitored daily by a quantum sensor (LI-190SA; LI-COR, Lincoln, NE, USA). 

Table 2. Light spectral details for continuous lighting. 

Treatment 
Before treatment Continuous light treatment 

Light source Spectral ratio 
(red:blue:green) Light source Spectral 

ratio 
W White LEDs 0.4:1:1 White LEDs 0.4:1:1 
RB Red and blue LEDs 4:1 Red and blue LEDs 4:1 
RBG Red and blue LEDs 4:1 Red and blue LEDs plus green 

LEDs 
4:1:1 

rb Mixed red, blue and green 
LEDs 

1:1:1 Red and blue LEDs 1:1 

Plant growth determination 
Pak choi seedlings were sampled after treatment with different light spectra for 7 days. 

Plants were cut from the hypocotyl. The shoots were weighed and then dried in an oven at 
72°C to calculate shoot dry weight. Leaf areas were monitored using Li-3001C (LI-COR, 
Lincoln, NE, USA). To investigate energy-use efficiency, all plants were harvested to 
determine plant fresh biomass after 3 weeks of growth under different light intensities. The 
light-use efficiency was calculated as average fresh weight of plant divided by light source 
power used (kW h-1). Each measurement was repeated three times with three or four plants 
per replication. 

Gas exchange and chlorophyll a fluorescent determination 
Gas exchange and chlorophyll a fluorescence were monitored according to the method 
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of Yan et al. (2012). The minimum (Fo) and maximum (Fm) Chl fluorescence levels were 
determined after the leaves had been dark adapted for 30 min. Photosynthesis, stomatal 
conductance and chlorophyll fluorescence measurements were taken after the leaf reached 
steady-state photosynthesis at 150 μmol m2 s-1 light of the same red/blue proportion as its 
growth conditions during treatment. The maximal quantum yield (Fv/Fm) and the effective 
quantum yield (ΦPSII) were calculated as Fv/Fm=(Fm-Fo)/Fm and ΦPSII=(Fm’-Fs)/Fm’, 
respectively. 

Determination of total phenolic compounds and 2,2-diphenyl-1-picrylhydrazyl (DPPH) 
free-radical scavenging capacity  

Total phenolic compound concentrations were determined spectrophotometrically 
(Ragaee et al., 2006) with slightly modifications. The free-radical-scavenging capacity of the 
lettuce leaf under continuous lighting was evaluated by the DPPH free-radical scavenging 
capacity, as described by Ragaee et al. (2006). 

Nitrate content measurements 
The method of Cataldo et al. (1975) was used to evaluate nitrate content in lettuce 

leaves treated with different continuous lighting. Briefly, 2.0 g leaf samples were ground 
with liquid nitrogen using a mortar and pestle. The sample powder was transferred into a 
tube with 10 mL, and boiled for 30 min at 100°C in a water bath. The extracted samples were 
cooled with tap water, filtered, and diluted to 25 mL with distilled water. The extract (0.1 mL) 
was further diluted with 0.4 mL 5% (w/v) salicylic acid/concentrated sulfuric acid. After 
reaction for 20 min, 9.5 mL 8% (w/v) NaOH solution was added. The absorbance monitored 
at 410 nm was used to calculate nitrate content with respect to its standard curve. 

Statistical analysis 
At the data were subjected to one-way ANOVA using SAS 9.0 software (SAS Institute, 

Cary, NC, USA). Significant differences between treatments were evaluated by Duncan’s 
multiple range test at p<0.05. 

RESULTS 

Effects of light spectral composition on pak choi growth 
Shoot fresh and dry weights and leaf areas were significantly affected by the blue light 

percentage in the light source (Figure 1A-C). The fresh and dry weight of shoots and leaf 
area were the highest under the 23% blue light treatment, followed by 27 and 100% blue 
light treatments. The lowest values of these parameters were obtained under the 
monochromatic red light (0% blue) light treatment. Furthermore, there was a significant 
linear correlation between fresh weight and leaf area of pak choi (Figure 1D). 

Light energy-use efficiency under different light intensities 
There were significant differences in plant fresh weight and light-use efficiency under 

different light intensities (Figure 2). Under the same light intensity (220 μmol m-2 s-1), the 
fresh weight of plants under red and blue LEDs was comparable to that of FL (control), but a 
decrease in light intensity of combined red and blue LEDs resulted in a significant decrease 
in shoot fresh weight (Figure 2A). There was a significant difference in light-use efficiency 
between high light intensity and medium light treatment. Compared with FL, light-use 
efficiency increased by 55, 114 and 115% for mixed red and blue LEDs with PPFD at 100, 
150 and 220 μmol m-2 s-1, respectively. 

Photosynthetic performance of tomato under different LED lights 
Tomato plants grown under the white LED light displayed significantly higher rates of 

photosynthesis than those grown under other LED light (Figure 3A). Plants grown under 
monochromatic red and mixed red and blue light exhibited similar photosynthetic rates, but 
plants grown under monochromatic blue light displayed significantly impaired rates of 
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photosynthesis compared with other spectral compositions of light. Stomatal conductance 
was highest under monochromatic blue light, followed by white, mixed red and blue, and 
finally monochromatic red light (Figure 3B). Among different LED light treatments, there 
was no significant difference in Fv/Fm. The highest and lowest ΦPSII were observed under 
white and mixed red and blue LED light, respectively. However, there was no significant 
difference between monochromatic red and blue light treatment in tomato leaf. 

 

Figure 1. Effects of light spectra on pak choi growth (A-C) and the relation between leaf 
area and fresh weight (D). 

 

Figure 2. Shoot fresh weight of pak choi and energy-use efficiency under mixed red and 
blue LED light with high (220 μmol m-2 s-1), medium (150 μmol m-2 s-1) and low 
(100 μmol m-2 s-1) light intensity. 
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Figure 3. Effects of light spectral composition on photosynthetic performance of tomato 
seedlings. 

Effects of light spectra on nitrate content, total phenolic compounds and scavenging 
capacity in lettuce under continuous lighting 

Nitrate content, total phenolic compounds and free radical scavenge capacity were 
significantly affected by light spectral composition under continuous light (Table 3). 
Continuous light (except white LED treatment) for 24 h significantly decreased nitrate 
accumulation in lettuce leaves. The nitrate content was lowest under RBG treatment, 
followed by RB, rb and finally by W treatment. Total phenolic compounds and DPPH radical 
scavenging activity were both markedly increased after 24 h continuous light treatment. 
However, these parameters did not show significant differences among W, RB and RBG 
treatments. 

Table 3. Nitrate content, total phenolic compounds and scavenging capacity in lettuce after 
24 h continuous lighting. 

Treatment Nitrate content 
(mg kg-1) 

Total phenolic compounds 
(mg g-1) 

DPPH radical scavenging activity 
(μmol g-1) 

Control 509.4±22.1a 1.34±0.06c 3.25±0.14c 
W 487.3±33.2a 1.69±0.03a 3.90±0.22a 
RB 324.7±28.7c 1.70±0.07a 4.26±0.31a 
RBG 243.5±21.6d 1.74±0.11a 4.18±0.12a 
rb 384.4±20.9b 1.53±0.06b 3.51±0.09b 

DISCUSSION 
Light is not only the driving-force for photosynthesis but also as important signal to 

regulate gene expression in plants (Chen et al., 2004). Plant growth and development 
depend on light intensity, photoperiod, light spectral composition and light direction. In the 
present study, comparable Fv/Fm of tomato plants were obtained under different light 
spectra (Figure 3), indicating that light spectral composition showed little effect on 
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photosynthetic capacity (Osmond, 1994). In plants, there are four types of photoreceptors: 
phytochromes, cryptochromes, phototropins and UV-B receptors (UVR-8). These 
photoreceptors share distinct pathway to coordinately regulate transcriptional changes in 
response to light. Cross-talk among photoreceptors via transcription factors (e.g., HY5 and 
PIFs) leads to a more complex response of plants to light spectra (Su et al., 2017). Compared 
with monochromatic red and monochromatic blue LEDs, the significantly lower ΦPSII but 
markedly higher Pn under mixed red and blue LEDs might lie in coordinated regulation 
between phytochromes and cryptochromes under combined red and blue light conditions 
(Wade et al., 2001). Similar results were also reported by Karlsson (1986), who found that 
there was red and blue light enhancement under combined red and blue light treatment. 

A suitable light spectral composition could compensate for the effect of light intensity 
on photosynthesis and alleviate limitation of low light intensity to photosynthesis (Fan et al., 
2013). A similar result was also observed in our study, when different crops were grown 
under different light intensities and different compositions of light (Figure 2). Besides crop 
yield, the nutrition and flavour of vegetables are also important for human health, which 
arouses great concern around the word (Bian et al., 2015). Moderate abiotic and/or biotic 
stresses are conducive to phytochemical biosynthesis, especially secondary metabolites (Al 
Hassan et al., 2015). Plants develop complex antioxidant systems to acclimatize to 
fluctuations in the environment. The fast responses of antioxidant enzyme activities and 
secondary metabolite accumulation are an important pathway for plants to scavenge 
reactive oxygen species produced by biotic and/or abiotic stress (Blokhina et al., 2003). 
During crop or vegetable production, artificial moderate stress using LEDs could significant 
improve plant nutrition quality (Ma et al., 2014). Before harvest, continuous lighting with 
different light spectra significantly increased lettuce secondary metabolites and 
concomitantly reduced nitrate content, which poses a threat to human health (Table 3). This 
is consistent with the study of Steindal et al. (2016), which showed that pre-harvest light 
spectral composition significant affected broccoli flavour and nutritional compounds. 

Spectral quality drastically effects growth and development. It will probably take 
several iterations of testing a wide-range of light recipes in order to identify the optimum 
light regime for growth, development and other desirable traits like flavour and nutrition of 
vegetables. LED light will make a great contribution to revealing the mechanism of light 
wavelength regulation of plant growth and substance metabolism. The many different 
phenotypes already observed between treatments offer many different avenues of 
exploration to identify the key downstream regulators that are being regulated by specific 
light signals. LEDs as monochromatic light sources can make flexible combinations based on 
plant growth requirements. This distinct advantage of LEDs not only provides great help in 
revealing the mechanism of the plant response to light spectra but also offers a new way to 
reduce the energy cost of commercial production of crops in the greenhouse. 
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