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Abstract

Objective

Passive heating (PH) has begun to gain research attention as an alternative therapy for car-

dio-metabolic diseases. Whether PH improves glycaemic control in diabetic and non-dia-

betic individuals is unknown. This study aims to review and conduct a meta-analysis of

published literature relating to PH and glycaemic control.

Methods

Electronic data sources, PubMed, Embase and Web of Science from inception to July 2018

were searched for randomised controlled trials (RCT) studying the effect of PH on glycaemic

control in diabetic or non-diabetic individuals. To measure the treatment effect, standardised

mean differences (SMD) with 95% confidence intervals (CI) were calculated.

Results

Fourteen articles were included in the meta-analysis. Following a glucose load, glucose

concentration was greater during PH in non-diabetic (SMD 0.75, 95% CI 1.02 to 0.48, P <
0.001) and diabetic individuals (SMD 0.27, 95% CI 0.52 to 0.02, P = 0.030). In non-diabetic

individuals, glycaemic control did not differ between PH and control only (SMD 0.11, 95% CI

0.44 to -0.22, P > 0.050) and a glucose challenge given within 24 hours post-heating (SMD

0.30, 95% CI 0.62 to -0.02, P > 0.050).

Conclusion

PH preceded by a glucose load results in acute glucose intolerance in non-diabetic and dia-

betic individuals. However, heating a non-diabetic individual without a glucose load appears

not to affect glycaemic control. Likewise, a glucose challenge given within 24 hours of a sin-

gle-bout of heating does not affect glucose tolerance in non-diabetic individuals. Despite the

promise PH may hold, no short-term benefit to glucose tolerance is observed in non-diabetic
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individuals. More research is needed to elucidate whether this alternative therapy benefits

diabetic individuals.

Introduction

Frequent passive heating (PH), often referred to as Waon therapy, hot-tub therapy or thermal

therapy, may provide health benefits for those who are in diseased and non-diseased states [1–

6]. Chronic use of Finnish saunas (80 ˚C– 100 ˚C air,< 20% relative humidity) is associated

with a reduced risk of dementia, stroke, respiratory disease, hypertension, fatal cardiovascular

and all-cause mortality events [7–11]. The mechanisms responsible for how PH maintains

health in those free of disease and improves health in diseased conditions are not completely

clear. Current evidence suggests PH elicits improvements in shear patterns (increase in ante-

grade shear), microvascular function (endothelial-dependent), lipid profiles, reduced arterial

stiffness and blood pressure, as well as reduced heart rate and deep body temperature during

heat stress [12–21]; responses that are also evident, albeit to a greater extent, following regular

physical activity.

The therapeutic effects of PH on those experiencing poor glycaemic control has not been

thoroughly investigated in humans. Globally, it was estimated 422 million adults aged over 18

years were living with diabetes in 2014 [22], equating to ~8.5% of the world’s population. Type

2 diabetes mellitus (T2DM), accounting for ~90% of individuals with diabetes, is associated

with high blood glucose, insulin resistance and increased insulin secretion [23,24]. Glycogen

stored in the liver can be released into the bloodstream as blood sugar (glycogenolysis), with

cells able to metabolise the glucose or store for later needs. This process maintains blood sugar

in between meals but is not as tightly regulated in those with diabetes and poor glycaemic con-

trol. In these compromised conditions, blood glucose rises due to the insulin insensitivity,

resulting in more insulin being released. T2DM is a progressive disease, with prolonged

untreated states leading to pancreatic beta-cell damage and loss of insulin secretion [24]. Life-

style interventions (e.g. diet assessment, promotion of physical activity) may attenuate or even

reverse the complications associated with T2DM [25,26]. Despite the benefits associated with

these interventions, adherence is often poor and, in some cases, not possible. Alongside life-

style interventions, drug therapy is often prescribed but may carry unwanted side effects [27].

Non-pharmaceutical interventions, such as PH, may benefit people with diabetes and those

with poor glycaemic control. Supporting this viewpoint, Hooper [6] invited eight participants

with T2DM to sit in warm water (38 ˚C– 41 ˚C) for 30 minutes a day, six days a week over

three weeks. At the end of the three weeks, fasting glucose was reduced, but more importantly,

haemoglobin A1c (HbA1c) was reduced by 1%. Changes in HbA1C of the 1% magnitude

reported are clinically important as they are associated with a 21% reduction in all-cause diabe-

tes-related deaths [28]. Notably, however, no control group was included in this study and dif-

ferences in age, sex and disease severity amongst participants potentially confound the results.

Resting in warm environments may induce hormonal changes that may influence glycae-

mic control [4,29]. While insulin concentrations may not change during PH, thyroid hor-

mone, growth hormone, noradrenaline and adrenaline concentrations may rise to elicit

greater concentrations of blood glucose [30–32]. Acutely raising blood glucose concentrations

is not of benefit but PH may elicit other changes to reduce the blood glucose concentration.

Muscle temperature and blood flow may rise if heating is sufficient, which may acutely pro-

mote muscle glucose uptake [33,34]. The mechanisms responsible for the chronic reduction in
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fasting glucose and HbA1C may be multi-factorial, but heat shock proteins (HSP) may play a

pivotal role [35]. Upon physiological stress (e.g. heat, hypoxia, cancer) there is an increase in

the amount of unfolded and misfolded proteins, causing cell damage [36–38]. The physiologi-

cal stress is accompanied by a heat shock response, which triggers the release of HSP. The

increased number of HSP available help facilitate correct folding of proteins, thus preventing

cell damage. Both human and murine diabetic models are characterised by low intracellular

(i) and high extracellular (e) HSP levels [39–45], promoting a pro-inflammatory state that

reduces insulin sensitivity [46,47]. iHSP has direct protective effects whereas high eHSP is

linked with insulin resistance [48,49]. Restoration of iHSP levels in diabetic models and subse-

quent favourable glycaemic control are mediated, in part, through reductions in inflammatory

cytokines, c-Jun N-terminal kinase and IkappaB kinase, both associated with the inhibition of

insulin signalling [50,51]. Importantly, PH has been shown to increase iHSP levels in diabetic

and obese human and murine models [39,52,53].

Considering these findings, it would seem prudent to study PH and its effect on glycaemic

control further. Indeed, reviews have highlighted how PH may benefit individuals with diabe-

tes or those who are insulin resistant [27,35,45,46,54–58], but to date, there is no systematic

search, review and meta-analysis of PH and glycaemic control in diabetic and non-diabetic

individuals. Therefore, the purpose of this study was to review and conduct a meta-analysis of

published literature relating to PH and glycaemic control.

Methods

Search strategy

An electronic literature search was conducted in July 2018 using PubMed, Embase, and Web

of Science. Searches were performed using Boolean operators and the following key terms and

their combinations: glucose, insulin, diabetes, passive heating, sauna, thermal therapy, warm
water, warm air, thermotherapy, and hot water immersion. The reference lists of all included

studies were also examined to identify potentially relevant data sets that were not found in the

original search (Fig 1).

Study inclusion and exclusion criteria

Studies were included in the review where: 1) a PH intervention, defined as any technique

designed to increase body temperature using non-exercise models, was applied; 2) the experi-

mental design included a non-heating control trial; 3) at least one primary outcome measure

(i.e. glucose or insulin) was reported; 4) participants were human adults (i.e. aged�18 years),

and 5) data were published in a peer-reviewed journal. There were no restrictions applied to

the PH mode (e.g. water or air), exposure duration, participant sex, health status or study set-

ting. Studies involving exercise in combination with PH were excluded.

Selection criteria

Titles and abstracts returned by the search strategy were screened independently by two

authors (MM, GM) to remove those that were outside of the scope of the review. Full-text of

papers that potentially met the review inclusion criteria were obtained. Disagreements between

authors regarding study inclusion were resolved by consensus or a third party (AH).

Data extraction

A customised form was used to extract relevant data on methodological design independently,

eligibility criteria, interventions, participant descriptors, comparisons and outcome measures
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by two authors (MM, AH). The outcome measures extracted included 1) blood glucose and

insulin; and 2) complications or adverse effects experienced attributable to the intervention.

The authors of original investigations were contacted via email, as required, to clarify any que-

ries relating to data or study characteristics as required. Any disagreement between the review

authors extracting data was resolved by consensus or a third party (GM).

Risk of bias assessment

Risk of bias assessment was independently conducted in accordance with the Cochrane Hand-

book for Systematic Reviews of Interventions [59] by two authors (MM, AH). Potential

sources of bias were classified as high, low or unclear in the areas of sequence generation,

allocation concealment, blinding of participants and personnel, blinding of outcome assess-

ment, incomplete outcome data, selective outcome reporting, and other bias. These outcomes

Fig 1. PRISMA flowchart.

https://doi.org/10.1371/journal.pone.0214223.g001
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were visually summarised (Fig 2), with any disagreement between the authors’ interpretation

resolved by consensus or a third party (GM).

Statistical analyses

To measure the treatment effect, standardised mean differences (SMD) with 95% confidence

intervals (CI) were calculated and analysed using a random effects model. Missing data

prompted an email request to the study authors seeking this data and/or clarification as to why

data were missing. The absence of standard deviations that could not be sourced from authors

were calculated from available statistics as per Higgins and Green [59]. Further, where neces-

sary, data were manually extracted from figures using WebPlotDigitizer [60]. Heterogeneity

between comparable trials was evaluated using the I2 statistic. Values of I2 were interpreted

using the following scale [59]: 0% to 40%, might not be important; 30% to 60%, moderate het-

erogeneity; 50% to 90%, substantial heterogeneity; and 75% to 100%, considerable

heterogeneity.

Results

The search strategy identified a total of 2038 records (Fig 1). We also found nine potentially

eligible studies from additional reference searches in these papers. Following removal of dupli-

cates (n = 988), 1059 titles and abstracts were screened which resulted in 49 full-text articles

being retrieved for eligibility. Articles were included in full-text screening if the abstract dis-

cussed PH in humans relating to either non-diabetic or diabetic individuals. After full-text

screening, another 35 articles were excluded, mostly due to no relevant primary outcome or

inappropriate control trial. Consequently, 14 articles were included in the final meta-analysis.

Study characteristics

Table 1 shows the characteristics of the included studies. The sample size varied from six

[30,61,62] to 32 [63]. In two studies, both non-diabetic and diabetic individuals were examined

[63,64], while nine studies focused on non-diabetic individuals [30,62,65–71] and three studies

focused on diabetic individuals [61,72,73]. The studies using diabetic participants described

their cohort as non-insulin-dependent [63], insulin-dependent [61,72], type 1 [73] and T2DM

Fig 2. Risk of bias summary.

https://doi.org/10.1371/journal.pone.0214223.g002
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Table 1. Characteristics of included studies.

First author,

year

Populationa Fasted? Glucose load? Insulin given? Time between

glucose/insulin and

heating (minute)

Control protocol Passive heating

protocol

Akanji 1987 22 non-diabetic

• 6l males/4 females,

normal weight, 47(13)

years of age

• 6 males/6 females,

overweight, 43(13) years

of age

Yes 960 kcal meal No 0 23 ˚C air, 120 minutes 33 ˚C air, 120 minutes

5 males/1 female non-

diabetic, normal weight,

19–57 years of age

Yes 75 g of glucose No 0 23 ˚C air, 120 minutes 33 ˚C air, 120 minutes

Akanji 1991 16 non-diabetic

• 4 male/4 female,

normal weight, 45(6)

years of age

• 4 male/4 female,

overweight, 42(6) years

of age

16 diabetic

• 4 male/4 female,

normal weight, 54(11)

years of age

• 4 male/4 female,

overweight, 56(11) years

of age

Yes 75 g of glucose No 0 23 ˚C air, 120 minutes 33 ˚C air, 120 minutes

Dumke 2015 11 males non-diabetic,

normal weight, 22(3)

years of age

Yes Glucose given

at 1.8 g�kg–1 of

body mass

No 0 22 ˚C air, 180 minutes 43 ˚C air, 180 minutes

Faure 2016 Study A: 10 males, non-

diabetic, normal weight,

21(2) years of age

Yes 62 kcal meal No Given 30 minutes

post-heating

22 ˚C for 40 minutes 31 ˚C for 40 minutes

Study B: 12 males, non-

diabetic, normal weight,

20(2) years of age

Yes 75 g of glucose No 0 22 ˚C air, 180 minutes 31 ˚C air, 180 minutes

Frayn 1989 4 males/2 females, non-

diabetic, normal weight,

20–40 years of age

Yes 75 g of glucose No 0 23 ˚C air, 120 minutes 33 ˚C air, 120 minutes

Jezova 1998 9 males, non-diabetic,

normal weight, 23–25

years of age

Yes No No NA 22–24 ˚C air, 45

minutes

53 ˚C sauna, 45

minutes

Jurcovicova

1980

Experiment 1: 6 males,

non-diabetic, normal

weight, 23–27 years of

age

Yes Glucose given

at 1 g�kg–1 of

body mass

No Given immediately

following heating

30 ˚C water to neck,

30 minutes

40 ˚C water to neck,

30 minutes

Experiment 2: 6 males,

non-diabetic, normal

weight, 23–27 years of

age

Yes 100 g of

glucose

No Given 90 minutes

post-heating

30 ˚C water to neck,

30 minutes

40 ˚C water to neck,

30 minutes

Koivisto

1980

8 males, diabetic,

normal weight, 34(11)

years of age

Yes 430 kcal meal 10 U Actrapid & 6–40

U Monotard given

immediately before

meal.

60 minutes 22 ˚C air, 60 minutes 85 ˚C sauna, 60

minutes

Koivisto

1981

6 males, diabetic,

normal weight, 29(7)

years of age

Yes 280 kcal meal 6 U Actrapid given

immediately before

meal.

0 20 ˚C air, 240 minutes 35 ˚C air, 240 minutes

(Continued)
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[64]. The participants described as non-insulin-dependent received treatment with small doses

of oral sulfonylureas [63]. The studies utilising insulin-dependent diabetics were described as

receiving between 20 U to 27 U of intermediate or intermediate plus rapid-acting insulin in

one of two injections per day [61,72], or 26 U to 56 U of long or long plus rapid-acting insulin

in one or two injections per day [73]. The T2DM participants were taking Metformin [64].

In four studies, both male and female individuals were examined [63,64,67,71], while ten

studies examined males only [30,61,62,65,66,68–70,72,73]. The mean age of the participants

varied between 19 years [73] and 56 years [63].

Regarding methodology, all participants were fasted, except one study [68]. A glucose load

(meal or glucose solution) was given before PH and control trials in seven studies using non-

diabetic individuals [62,63,65–67,69,71]. A glucose load and insulin were given before PH and

control trials in three studies using diabetic individuals [61,72,73]. No glucose or insulin was

given before PH and control in four experiments [30,66,68,70]. Three experiments included

data where a glucose load was given immediately [30], 120 minutes [30] or 24-hours post-heat-

ing [64]. Eleven studies used air (31 ˚C to 85 ˚C) to heat participants [61–63,65–67,69–73],

while two studies used water (39 ˚C– 40 ˚C) [30,64], and the other used a mix of water (43 ˚C)

and then air (44 ˚C) [68]. Heating duration varied from 30 minutes [30,62] to 240 minutes

[61].

All studies measured glucose concentration from venous blood samples. Insulin concentra-

tion was measured in five studies using non-diabetic individuals during PH and control trials

following a glucose load [62,65–67,69].

Risk of bias

Risk of bias via the Cochrane Collaboration’s tool indicated that most of the information was

from studies with low or unclear bias (Fig 2). Despite not being able to blind participants to a

Table 1. (Continued)

First author,

year

Populationa Fasted? Glucose load? Insulin given? Time between

glucose/insulin and

heating (minute)

Control protocol Passive heating

protocol

Koivisto

1983

8 males, diabetic,

normal weight, 19(8)

years of age

Yes 430 kcal meal 14 U Semilente given

immediately before

meal.

60 minutes 22 ˚C air, 60 minutes

total

85 ˚C sauna, 60

minutes total

Linnane

2004

7 males, non-diabetic,

normal weight, 27(8)

years of age

No No No NA Lay down in empty

bath for 15 minutes

then sat in 20 ˚C air

for 30 minutes

43 ˚C water to neck

for ~16 minutes, then

sat in 44 ˚C air for ~30

minutes

Moses 1997 7 males, non-diabetic,

normal weight, 24(4)

years of age

Yes 75 g of glucose No 0 25 ˚C air, 120 minutes 35 ˚C air, 120 minutes

Rivas 2016 • 2 male/7 female non-

diabetic, overweight, 41

(14) years of age

3 male/6 female diabetic,

overweight, 50(12) years

of age

Yes 75 g of glucose No Given 24-hours post-

heating

24 ˚C air, 120 minutes 39 ˚C water, 120

minutes

Tatar 1985 • 6 males, non-diabetic,

normal weight, 22–24

years of age

Yes 100 g of

glucose

No 15 minutes 23 ˚C air, 30 minutes 85 ˚C sauna for 30

minutes

aAge given in mean (SD); for missing mean (SD), the range is specified. Participants distributed by sex if data were available. Normal weight defined as a body mass

index� 25.

https://doi.org/10.1371/journal.pone.0214223.t001
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hot environment, performance bias and detection bias was low for all studies as participants

were considered unable to change their glucose concentration consciously. Other biases

included unclear or inappropriate statistical analyses and unclear handling, storage and analy-

ses of blood samples.

Meta-analysis outcome

Glucose concentration. A summary of individual studies and meta-analysis for glycaemic

control following a glucose load are shown in Figs 3 and 4. Fasting glucose concentration did

not differ between control and PH in both non-diabetic (Fig 3) and diabetic individuals (Fig

4). Compared with control, glucose concentration was greater after 20–30 minutes of PH in

non-diabetic individuals, which was a consistent observation at 40–60 minutes and 120 min-

utes of PH (Fig 3). In diabetic individuals, glycaemic control did not differ at any time point

between PH and control trials, but the pooled overall effect was statistically significant,

highlighting the potentially greater glucose concentration during PH (Fig 4).

When analysing data from experiments that did not administer a glucose load, glycaemic

control did not differ between PH and control trials (Fig 5). Similarly, glycaemic control did

not differ between PH and control trials when a glucose challenge was administered post-heat-

ing (Fig 6).

Insulin concentration. A summary of individual studies and meta-analysis of insulin con-

centration following a glucose challenge is shown in Fig 7. At each time point, insulin concen-

tration was similar between control and PH.

Discussion

The primary aim of this meta-analysis was to investigate the effect of PH on glycaemic control

in diabetic and non-diabetic individuals. Collectively, the meta-analysis showed PH resulted in

a greater glucose concentration in diabetic and non-diabetic individuals (Figs 3 and 4). In con-

trast, glycaemic control does not differ between PH and control trials without a glucose load

(Fig 5). Finally, no favourable glycaemic control was observed following a glucose challenge

within 24 hours of a single bout of PH (Fig 6).

Hormone changes may, in part, affect blood glucose concentrations during PH [4,29]. Con-

sidering glycaemic control does not differ between PH and control trials conducted without a

glucose challenge (Fig 5) and insulin concentration does not differ during PH preceded with a

glucose load (Fig 7), it is likely other factors may be at play. Arterialisation of venous blood

[67] may be another contributing factor. Arterial blood glucose is consistently greater than

venous blood glucose, but the difference between a vein in a heated hand and arterial samples

is substantially smaller [74] owing to the opening of the arterio-venous anastomoses. This phe-

nomenon presents a problem for oral glucose tolerance tests conducted in varying environ-

ments as the sampling technique may be a limiting factor. No study included in this meta-

analysis used the heated hand technique [75]. Future studies should be mindful that arterialisa-

tion of venous blood may provide a methodological limitation to venous blood glucose sam-

pling when comparing PH and thermoneutral trials. Heating the hand in both thermoneutral

and PH trials may circumvent this limitation.

In contrast to non-diabetic individuals, glycaemic control was similar in PH and control tri-

als at individual time points in diabetic individuals (Fig 4). However, the pooled overall effect

indicated PH may elicit greater glucose concentrations. It is possible the reduced glucose

extraction due to insulin resistance is partly responsible; thus arterialisation of venous blood

yields minimal difference. Nevertheless, differences in hormonal responses influencing glucose

output and uptake cannot be ruled out.
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Providing a glucose challenge post-heating may be a more appropriate research design con-

sidering hormonal changes and arterialisation of venous blood may confound outcomes dur-

ing PH. Glucose tolerance tests are also regularly conducted post-exercise, highlighting an

insulin sensitising effect improving glycaemic control that is a relatively short-lived phenome-

non (<48 hours) [76]. Limited studies were available for meta-analysis of post-heating glucose

Fig 3. Effects of control and passive heating trials on glucose concentration (mmol/L) in non-diabetic individuals following a glucose

load. ND, non-diabetic; D, diabetic; norm, normal weight; over, overweight.

https://doi.org/10.1371/journal.pone.0214223.g003
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tolerance, with PH showing no beneficial effect on glucose tolerance immediate [30], 120 min-

utes [30] and 24 hours post-heating [64] in non-diabetic individuals. Rivas et al. [64] did also

measure glucose tolerance post-heating in T2DM individuals but, again, found PH not to

influence glycaemic control. It is possible, as the author’s state [64], they may have missed the

window for improved insulin sensitivity or participant’s continued medication may have influ-

enced the glycaemic response. It is clear more work is needed with diabetic individuals to

investigate glycaemic control following a single-bout of PH.

Our systematic search of the literature found no chronic randomised control trials investi-

gating the effect of PH on glycaemic control in people with diabetes. Considering Hooper [6]

provided evidence of the benefits of PH for those with T2DM nearly 20 years ago, it is surpris-

ing to find no other chronic study has been conducted. In the meantime, pharmaceutical

agents have been developed to stimulate HSP production, replicating the response observed

during PH and exercise [27,35,38,54]. Aside from Hooper [6], only three studies have investi-

gated the effect of chronic PH in individuals with diabetes and other diseased states [15,77].

Specifically, PH (20 minutes, 3 days per week, over 3 months) improved perceived quality of

life in people with T2DM [77], while Imamura et al., [15] reported fasting glucose was reduced

with PH (45 minutes, 7 days a week, over 2 weeks) in those with coronary risk factors (e.g.

Fig 4. Effects of control and passive heating trials on glucose concentration (mmol/L) in diabetic individuals following a glucose load.

ND, non-diabetic; D, diabetic; norm, normal weight; over, overweight.

https://doi.org/10.1371/journal.pone.0214223.g004
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Fig 5. Effects of control and passive heating trials on glucose concentration (mmol/L) in non-diabetic individuals.

https://doi.org/10.1371/journal.pone.0214223.g005

Fig 6. Effects of a glucose load on glucose concentration (mmol/L) after control and passive heating trials in non-diabetic individuals.

https://doi.org/10.1371/journal.pone.0214223.g006
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obesity, diabetes, hypertension). However, Masuda [21] reported no change in fasting glucose

associated with PH (45 minutes, 7 days a week, over 2 weeks) in those with coronary risk fac-

tors. The reason for the discrepancy between the latter two studies is not clear.

Favourable glycaemic control following PH was initially attributed to an increased muscle

blood flow facilitating glucose uptake [6,15]. Given muscle blood flow may increase during PH

[78] and an increase in muscle blood flow may independently facilitate glucose uptake [34],

the mechanism is logical. However, the present data show that PH does not acutely benefit gly-

caemic control in diabetic individuals, thus not supporting the proposed mechanism. Despite

this, it is important to highlight the scarcity of data investigating PH and glycaemic control

and, in particular, the PH use in diabetic individuals. Based on the limited human data avail-

able and current animal models it could be hypothesised that as an individual continues PH

sessions over days and weeks, basal iHSP levels rise, eHSP levels fall. Alongside the increased

release of nitric oxide and glucose transporter expression, the ratio change between iHSP/

eHSP associated with PH will reduce inflammatory cytokines which may improve insulin sig-

nalling to aid glycaemic control and reduce the high insulin output [39,45,50–52,79–83].

Other factors such as improved appetite regulation (i.e. increased leptin concentration) and fat

mass loss have been shown to occur with PH [6,64] and may work synergistically to improve

glucose homeostasis.

Fig 7. Effects of control and passive heating trials on insulin concentration (μU/mL) in non-diabetic individuals following a glucose load.

https://doi.org/10.1371/journal.pone.0214223.g007
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If an increase in iHSP is necessary for improvements in glucose homeostasis in diabetic

individuals, then a sufficient heating stimulus is required. Exposure to 43 ˚C– 53 ˚C air for 60

minutes increased body temperature by�0.5 ˚C [65,70], while immersion in 39 ˚C water for

the same time increased temperature to ~38.5 ˚C (~1.6 ˚C difference versus control) [64]. A

deep body temperature rise of>0.8 ˚C has been shown to increase eHSP concentrations [84–

86], but it is unknown whether this modest rise in deep body temperature is a great enough

stimulus to increase iHSP concentrations. iHSP was increased in murine models where rectal

temperature was held at 41.5 ˚C for ~20 minutes [39,53], and where human whole-blood was

incubated for two hours at 42 ˚C [52]. However, it is not ethically acceptable to maintain rectal

temperature >39.5 ˚C in an attempt to elicit iHSP. Considering the impaired thermoregula-

tory control in individuals with diabetes [87], finding the lowest thermal stress required for

health benefits should be a focus of future work.

No adverse events were noted in the studies reported in this meta-analysis. It is possible,

however, with inappropriate PH protocols such an event may occur. For example, PH

increases absorption of exogenously delivered insulin which could increase the likelihood of

hypoglycaemic events [72,88]. Thermal sensations and thermoregulation may also be impaired

in diabetic individuals [87,89] which could lead to burns and heat-related illness.

The strength of the meta-analysis presented here is that it combined data from 14 studies to

estimate the effect of PH on glycaemic control with more accuracy than could be achieved in a

single study. The risk of bias of the included studies appears low to unclear (Fig 2). If blinding

of the participant and outcome assessment are ignored, then the risk of bias is mostly unclear.

Importantly, there was a high risk of bias in selective reporting where authors simply failed to

report variables or reported only ‘good responders’ [30]. However, the main limitation of this

meta-analysis was the methodological differences amongst studies, including participants (e.g.

duration of diabetes, age, sex), protocols (e.g. duration and modality of heating) and outcome

assessment (e.g. timing of glucose measurement). These differences increase the heterogeneity

in outcome measures. To account for heterogeneity, a random-effects model was utilised in

the present meta-analysis; with more research in this area future analyses will be more robust

and allow subgroup analyses.

In conclusion, this meta-analysis reveals an unclear picture of how PH may benefit glycae-

mic control in non-diabetic and diabetic humans. In non-diabetic individuals, glucose intoler-

ance may occur when PH follows a glucose load. Importantly, however, this work highlights

the paucity of research that has been conducted on this potentially beneficial, low-cost, inter-

vention. Future research should focus on diabetic humans, using a randomised controlled trial

design to measure glycaemic control in response to chronic PH. The benefits of PH may follow

a dose-response relationship between the temperature and duration of heating [3]. Therefore,

future work should determine the appropriate heat exposure to benefit glycaemic control in

people with diabetes. If PH is found to be beneficial, then guidelines should then be developed

with practical end-user constraints in mind.
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