
Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

1

Performance Analysis of Evolutionary Algorithms
for the Minimum Label Spanning Tree Problem

Xinsheng Lai, Yuren Zhou, Jun He, Member, IEEE, Jun Zhang, Senior Member, IEEE

Abstract—A few experimental investigations have shown that
evolutionary algorithms (EAs) are efficient for the minimum
label spanning tree (MLST) problem. However, we know little
about that in theory. In this paper, we theoretically analyze the
performances of the (1+1) EA, a simple version of EA, and a
simple multi-objective evolutionary algorithm called GSEMO on
the MLST problem. We reveal that for the MLSTb problem the
(1+1) EA and GSEMO achieve a b+1

2
-approximation ratio in

expected polynomial runtime with respect to n the number of
nodes and k the number of labels. We also find that GSEMO
achieves a (2 lnn)-approximation ratio for the MLST problem
in expected polynomial runtime with respect to n and k. At the
same time, we show that the (1+1) EA and GSEMO outperform
local search algorithms on three instances of the MLST problem.
We also construct an instance on which GSEMO outperforms the
(1+1) EA.

Index Terms—Evolutionary algorithm; runtime complexity;
approximation ratio; minimum label spanning tree; multi-
objective

I. INTRODUCTION

The minimum label spanning tree (MLST) problem is an
issue arising from practice, which seeks a spanning tree with
the minimum number of labels in a connected undirected
graph with labeled edges. This problem has many applica-
tions in real-life. For example, in communication networks, a
communication node may communicate with other nodes via
different types of channels, such as optic fiber, coaxial cable,
microwave, telephone line [1]. Given a set of communication
nodes, we want to find a spanning tree (a connected commu-
nication network) that uses the minimum possible number of
types of channels, which can reduce the construction cost and
the complexity of the network [2]. Another example is that the
MLST problem has been used in data compression to increase
compression rates [3], [4]. The MLST problem, proposed by
Chang and Leu, has been proved to be NP-hard [2].

This work was supported in part by the National Natural Science Foundation
of China (61170081, 61165003, 61300044, 61332002), in part by the EPSRC
under Grant EP/I009809/1, in part by the National High-Technology Research
and Development Program (863 Program) of China No. 2013AA01A212,
and in part by the NSFC for Distinguished Young Scholars 61125205.
(Corresponding author: Y. Zhou).

X. Lai and Y. Zhou are with the School of Computer Science and
Engineering, South China University of Technology, Guangzhou 510006,
China (e-mail: yrzhou@scut.edu.cn).

X. Lai is also with the School of Mathematics and Computer Science,
Shangrao Normal University, Shangrao 334001, China.

J. He is with the Department of Computer Science, Aberystwyth University,
Aberystwyth, SY23 3DB, U.K.

J. Zhang is with the Department of Computer Science, Sun Yat-Sen
University, Guangzhou 510275, China, with the Key Laboratory of Digital
Life, Ministry of Education, China, and also with the Key Laboratory of
Software Technology, Education Department of Guangdong Province, China.

Copyright (c) 2012 IEEE

For this problem, Chang and Leu have proposed two
heuristic algorithms. One is the edge replacement algorithm,
ERA for short, and the other is the maximum vertex covering
algorithm, MVCA for short. Their experiments showed that
ERA is not stable, and MVCA is very efficient.

The genetic algorithm, belonging to the larger class of EAs,
is a general purpose optimization algorithm [5], [6], [7] with
a strong globally searching capacity [8]. So, Xiong, Golden,
and Wasil proposed a one-parameter genetic algorithm for
the MLST problem. The experimental results on extensive in-
stances generated randomly showed that the genetic algorithm
outperforms MVCA [9]. Nummela and Julstrom also proposed
an efficient genetic algorithm for solving the MLST problem
[10].

Besides, many methods have been recently proposed for
solving this NP-hard problem. Consoli and Moreno-Pérezb
proposed a hybrid local search combining variable neigh-
borhood search and simulated annealing [11]. Chwatal and
Raidl presented exact methods including branch-and-cut and
branch-and-cut-and-price [12]. Cerulli et al. utilized several
metaheuristic methods for this problem, such as simulated
annealing, reactive tabu search, the pilot method, and variable
neighborhood search [13]. Consoli et al. proposed a greedy
randomized adaptive search procedure and a variable neigh-
borhood search for solving the MLST problem [14].

Since both ERA and MVCA are two original heuristic
algorithms for the MLST problem, the worst performance
analysis of these two algorithms, especially MVCA, is a hot
research topic in recent years. Krumke and Wirth proved that
MVCA has a logarithmic performance guarantee of 2 lnn+1,
where n is the number of nodes in the input graph, and
presented an instance to show that ERA might perform as
badly as possible [15]. Wan, Chen, and Xu further proved that
MVCA has a better performance guarantee of ln(n − 1) + 1
[16]. Xiong, Golden, and Wasil proved another bound on
the worst performance of MVCA for MLSTb problems, i.e.,
Hb =

∑b
i=1

1
i , where the subscript b denotes that each label

appears at most b times, and is also called the maximum
frequency of the labels [17].

The performance of MVCA on the MLST problem has been
deeply investigated. However, there is still no theoretical work
which focuses on the performance analysis of EAs for the
MLST problem, though a few experimental investigations have
shown that EAs are efficient for this problem.

Recently, the theoretical analysis of EAs’ performance on
combinatorial optimization problems has received much at-
tention. During the past few years, theoretical investigations
about EAs focused on the runtime for finding globally optimal

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

2

solutions of combinatorial optimization problems or their
variants. These problems include plateaus of constant fitness
[18], linear function problems [19], [20], [21], minimum cut
problems [22], satisfiability problems [23], minimum spanning
tree problems [24], Eulerian cycle problems [25], Euclidean
traveling salesperson problems [26], the maximum matching
problem [27], and so on.

Nevertheless, many combinatorial optimization problems,
including the MLST problem, are NP-hard, and it is commonly
believed that there is no polynomial time algorithm for them.
Therefore, we usually only ask satisfying solutions to such NP-
hard problems in practice. Thus, we are interested in whether
an approximation solution with a given satisfying quality can
be efficiently obtained. In fact, the approximation performance
analysis of randomized heuristics, including EAs, on NP-hard
problems receives more and more attentions.

Oliveto, He, and Yao found that for minimum vertex cover
problems the (1+1) EA may find arbitrary bad approximation
solutions on some instances, but can efficiently find the mini-
mum cover of them by using a restart strategy [28]. Friedrich et
al. proved that the (1+1) EA may find almost arbitrarily bad
approximation solution for minimum vertex cover problems
and minimum set cover problems as well [29]. Witt proved
that in the worst case the (1+1) EA and the randomized local
search algorithm need an expected runtime O(n2) to produce
a 4

3 -approximation solution to the partition problem [30].
On the approximation performance of multi-objective EAs,

Friedrich et al. revealed that the multi-objective EA efficiently
finds an lnn-approximation solution to the minimum set
cover problem [29]. Neumann and Reichel found that multi-
objective EAs can find a k-approximation solution for the
minimum multicuts problem in expected polynomial runtime
[31]. Recently, Yu, Yao, and Zhou studied the approximation
performance of SEIP, a simple evolutionary algorithm with
isolated population, on set cover problems. They found that
SEIP can efficiently obtain an Hn-approximation solution
for unbounded set cover problems, and an (Hn − k−1

8k9)-
approximation solution for k-set cover problems as well [32].

Though the MLST problem is NP-hard, and the minimum
spanning tree problem is in the complexity class P, both belong
to the problems of finding spanning trees with some measure
to be optimized. The measure of the MLST problem is the
number of labels used in the tree, whereas the measure of the
minimum spanning tree problem is the total weights of the
edges in the tree. The performance of EAs on the minimum s-
panning tree problem has been recently investigated. Neumann
and Wegener showed that the (1+1) EA solves the minimum
spanning tree problem in expected polynomial runtime [24].
They also showed that the minimum spanning tree problem
can be solved more efficiently via multi-objective optimization
[33]. Another spanning tree related problem is the multi-
objective minimum spanning tree problem, which is NP-hard.
Recently, the performance of EAs on this NP-hard problem
has also been theoretically investigated [34], [35]. However,
there is no theoretical work focusing on EAs’ performance for
the MLST problem.

In this paper, we concentrate on the performance analysis
of the (1+1) EA and GSEMO (a simple multi-objective

evolutionary algorithm with bit-wise mutation) for the MLST
problem. We analyze the approximation performances of the
(1+1) EA and GSEMO on the MLST problem. For the MLSTb

problem, We prove that the (1+1) EA and GSEMO are b+1
2 -

approximation algorithms. We also reveal that GSEMO can
efficiently achieve a (2 lnn)-approximation ratio for the MLST
problem. Though the MLST problem is NP-hard, we show
that on three instances the (1+1) EA and GSEMO efficiently
find their global optima, while local search algorithms may be
trapped in local optima. Meanwhile, we construct an additional
instance where GSEMO outperforms the (1+1) EA.

The rest of this paper is organized as follows. The next
section describes the MLST problem, and the algorithms con-
sidered in this paper. Section III analyzes the approximation
performances of the (1+1) EA and GSEMO on the MLST
problem, while Section IV investigates the performances of
the (1+1) EA and GSEMO on four instances. Finally, Section
V concludes this paper and gives possible directions for further
research.

II. THE MLST PROBLEM AND ALGORITHMS

First of all, we give the concepts of spanning subgraph, the
MLST and MLSTb problems.

Definition 1: (Spanning subgraph) Let G = (V,E) and
H = (V ′, E′) be two graphs, where V (V ′) is the set of
nodes of G (H), and E (E′) is the set of edges of G (H). If
V ′ = V and E′ ⊆ E, then H is a spanning subgraph of G.

Definition 2: (The MLST problem) Let G = (V,E, L)
be a connected undirected graph, where V , E, and L =
{1, 2, . . . , k} are respectively the sets of n nodes, m edges,
and k labels. Each edge associates with a label by a surjective
function l : E → L. The MLST problem is to seek a spanning
tree with the minimum number of labels in the input graph G.

From the definition of the MLST problem, it is easy to see
that each edge e ∈ E has a unique label l(e) ∈ L, and each
label in L has at least one edge associating with it.

Definition 3: (The MLSTb problem) For an MLST prob-
lem, if each label appears at most b times, then it is an MLSTb

problem.
Clearly, the MLSTb problem is a special case of the MLST

problem.
Our goal in this paper is to seek a connected spanning

subgraph with the minimum number of labels rather than
a spanning tree with the minimum number of labels, since
any spanning tree contained in such a spanning subgraph is
an MLST. This is an alternative formulation of the MLST
problem which has been adopted in papers [9], [10].

Since each edge has exactly one label, if a label is selected
then all edges with such a label have been selected. Therefore,
we aim to find a set of selected labels such that the edges with
these labels construct a spanning subgraph of the input graph
and the number of selected labels is minimized. Thus, a set
of selected labels is a solution.

Further, we encode a solution as a bit string X =
(x1, . . . , xk) which has been used in [9], where k = |L|
and bit xi ∈ {0, 1} corresponding to label i. If xi = 1(i =
1, 2, . . . , k), then label i is selected, otherwise it is not. Thus,

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

3

a bit string X represents a label subset, and |X| represents the
number of labels contained in X .

We consider the spanning subgraph H(X) of G, where
H(X) is a spanning subgraph restricted to edges with labels
that the corresponding bits in X are set to 1. We call a solution
X such that H(X) is a connected spanning subgraph a feasible
solution. A feasible solution with the minimum number of
labels is a globally optimal solution.

For solving the MLST problem, the (1+1) EA uses a fitness
function. The fitness function is defined as

fit(X) = (c(H(X))− 1) ∗ k2 + |X|, (1)

where c(H(X)) is the number of connected components in
H(X), k is the total number of labels in L, and |X| =∑k

i=1 xi, i.e., the number of labels contained in X .
The fitness function should be minimized. The first target

is to make sure that H(X) is a connected spanning subgraph,
and the second target is to make sure that the number of labels
in the connected spanning subgraph is minimized.

Recall that a feasible solution X satisfies that H(X) is a
connected spanning subgraph, i.e., c(H(X)) = 1. Therefore,
the fitness value of a feasible solution equals to the number
of labels contained in it.

We also define the fitness vector for GSEMO as a vector
(c(H(X), |X|), where c(H(X)) and |X| are simultaneously
minimized by GSEMO.

The following algorithms are those considered in this paper.

Algorithm 1: The (1+1) EA for the MLST problem
01: Begin
02: Initialize a solution X ∈ {0, 1}k uniformly at random;
03: While termination criterion is not fulfilled
04: Obtain an offspring Y by flipping each bit in X with

probability 1
k ;

05: If fit(Y) < fit(X) then X := Y ;
06: End while
07: End

The (1+1) EA starts with an arbitrary solution, and repeat-
edly uses mutation operator to generate an offspring solution
from the current one. If the offspring solution is strictly better
than the current one, then the (1+1) EA uses it to replace the
current solution.

Another algorithm for the MLST problem is the local search
algorithm with the 2-switch neighborhood (LS2N), which is
proposed by Brüggemanna, Monnot, and Woeginger. We now
describe some concepts about it.

We use X1−X2 to denote the set of labels that are contained
in X1 but not in X2, where X1 and X2 are two solutions. For
example, if X1 = {1, 2, 3, 4, 5} and X2 = {1, 2, 3, 6}, then
we have X1 − X2 = {4, 5} and X2 − X1 = {6}. Thus, we
have |X1 −X2| = 2 and |X2 −X1| = 1.

Definition 4: [36](h-switch neighborhood) Let h ≥ 1 be
an integer, and let X1 and X2 be two feasible solutions
for some instance of the MLST problem. We say that X2

is in h-switch neighborhood of X1, denoted by X2 ∈ h-
SWITCH(X1), if and only if

|X1 −X2| ≤ h and |X2 −X1| ≤ h. (2)

In other words, X2 ∈ h-SWITCH(X1) means that X2

can be derived from X1 by first removing at most h labels
from X1 and then adding at most h labels to it.

LS2N: in algorithm 1, if the initial solution X is an arbitrary
feasible solution, and the offspring Y is selected from the 2-
switch neighborhood of X , then it is LS2N [36].

GSEMO has been investigated on covering problems [29],
minimum spanning tree problems [33], [34], [35], and also
pseudo-Boolean functions [37], [38]. GSEMO for the MLST
problem is described as follows.

Algorithm 2: GSEMO for the MLST problem
01: Begin
02: Initialize a solution X ∈ {0, 1}k uniformly at random;
03: P ← {X};
04: While termination criterion is not fulfilled
05: Choose a solution X from P uniformly at random;
06: Obtain an offspring Y by flipping each bit in X with

probability 1
k ;

07: If Y is not dominated by ∀X ∈ P then
08: Q := {X|X ∈ P, and Y dominates X };
09: P ← P ∪ {Y } \Q;
10: End if
11: End while
12: End

In algorithm 2, P is a population used to preserve those
solutions which cannot be dominated by any other from the
population. The concept of dominance is defined as follows.

Suppose that the fitness vectors of solutions X and Y are
(c(H(X)), |X|) and (c(H(Y)), |Y |), respectively. We say that
X dominates Y , if one of the following two conditions is
satisfied:
(1) c(H(X)) < c(H(Y)) and |X| ≤ |Y |;
(2) c(H(X)) ≤ c(H(Y)) and |X| < |Y |.

For the sake of completeness, we describe another two
algorithms in the following, which are greedy algorithms.

The first one is the modified MVCA. It starts with a
solution containing no labels, and each time selects a label
such that when this label is chosen the decrease in the number
of connected components is the largest.

Algorithm 3: The modified MVCA [17]
Input: A given connected undirected graph G = (V,E,L),

L = {1, . . . , k}.
01: Let C be the set of used labels, C := ∅;
02: Repeat
03: Let H be the spanning subgraph of G restricted to

edges with labels from C;
04: For all i ∈ L \ C do
05: Determine the number of connected components

when inserting all edges labeled by i in H;
06: End for
07: Choose label i with the smallest resulting number of

connected components: C := C ∪ {i};
08: Until H is connected.
Output: H

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

4

The second is called in this paper the modified MVCA
with contraction, which has been investigated in [15].

The modified MVCA with contraction: in algorithm 3, if we
contract each connected component in H to a supernode after
step 3, then we obtain the modified MVCA with contraction.

III. APPROXIMATION PERFORMANCES OF THE (1+1) EA
AND GSEMO ON THE MLST PROBLEM

The following is the concept of approximation ratio (solu-
tion). Given a minimization problem R and an algorithm A, if
for an instance I of R, the value of the best solution obtained
in polynomial runtime by A is A(I), and maxI∈R

A(I)
OPT(I) = r,

where OPT(I) is the value of the optimal solution of I , then
we say that A achieves an r-approximation ratio (solution) for
R.

Although the MLST problem is NP-hard, we reveal that the
(1+1) EA and GSEMO guarantee to achieve an approximation
ratio for the MLSTb problem in expected polynomial runtime
with respect to n the number of nodes and k the number of
labels, and that GSEMO guarantees to obtain an approximation
ratio for the MLST problem in expected polynomial runtime
with respect to n and k.

A. The approximation guarantees of the (1+1) EA and GSE-
MO on the MLSTb problem

In this subsection, let G = (V,E, L) be an arbitrary instance
of the MLSTb problem, where |V | = n, |L| = k, and b ≥ 2,
and let OPT(G) denote the number of labels used in the global
optimum of G.

We show that the (1+1) EA and GSEMO guarantee to
achieve a b+1

2 -approximation ratio for G in expected poly-
nomial runtime with respect to n and k in two steps. Since
G is an arbitrary instance of the MLSTb problem, we reveal
that the (1+1) EA and GSEMO guarantee to achieve a b+1

2 -
approximation ratio for the MLSTb problem in expected run-
time polynomial in n and k. First, we prove that the (1+1) EA
and GSEMO starting with any initial solution find a feasible
solution for G in expected runtime polynomial in n and k,
then prove that starting with any feasible solution the (1+1)
EA and GSEMO find a b+1

2 -approximation solution for G in
expected polynomial runtime with respect to k by simulating
the result proved in [36].

We now prove that starting with any initial solution, the
(1+1) EA can efficiently find a feasible solution of G.

Lemma 1: The (1+1) EA starting with any initial solution
finds a feasible solution for G in expected runtime O(nk).

Proof: According to the fitness function (1), during the
optimization process of the (1+1) EA, the number of connected
components will never be increased.

Let X be the current solution of G. If X is not a feasible
solution, then the number of connected components of the
spanning subgraph H(X) is greater than one. Note that G is
connected. There must exist a label such that when it is added
to X the number of connected components will be decreased
by at least one. The probability of adding this label to X is
1
k (1 −

1
k)

k−1 ≥ 1
ek , which implies that in expected runtime

O(k) the number of connected components will be decreased
by at least one.

Since there are at most n connected components, a feasible
solution of G will be found by the (1+1) EA starting with any
initial solution in expected runtime O(nk).

Brüggemann, Monnot, and Woeginger have proved that L-
S2N is a b+1

2 -approximation algorithm for the MLSTb problem
[36], so we have the following lemma.

Lemma 2: LS2N can find a feasible solution for G with at
most OPT(G) · b+1

2 labels.
We partition all feasible solutions of G into two disjoint sets.

One is S1 = {X|X ∈ {0, 1}k, X is a feasible solution of G,
|X| ≤ OPT(G)· b+1

2 }, and the other is S2 = {X|X ∈ {0, 1}k,
X is a feasible solution of G, |X| > OPT(G) · b+1

2 }.
From Lemma 2, we derive a property regarding the 2-switch

neighborhood.
Corollary 1: If X is a feasible solution of G, and X ∈

S2, then there must exist a feasible solution X ′ ∈ 2-
SWITCH(X) whose fitness value is 1 or 2 less than that
of X .

Next, we will show that starting with an arbitrary fea-
sible solution, the (1+1) EA can efficiently find a b+1

2 -
approximation solution of G.

Lemma 3: For G, the (1+1) EA starting with an arbitrary
feasible solution finds a b+1

2 -approximation solution in expect-
ed runtime O(k4).

Proof: Let X be the current feasible solution of G. By
Corollary 1, if X ∈ S2, then there must exist a feasible
solution X ′ ∈ 2-SWITCH(X) whose fitness value is 1 or
2 less than that of X . So, replacing X with X ′ decreases the
fitness value by at least 1. Since a feasible solution belonging
to S2 has at most k labels, then after at most k−OPT(G)· b+1

2
such replacing steps a feasible solution belonging to S1 will
be found.

Now, we calculate the expected runtime for the (1+1) EA to
find X ′. Since X ′ ∈ 2-SWITCH(X) and |X ′| < |X|. There
exist three cases. The first is that X ′ is obtained by removing
one exact label from X . The second is that X ′ is obtained
by removing two exact labels from X . The third is that X ′

is obtained by removing two exact labels from X and adding
one exact label to it.

Obviously, the worst case is the third one, since in this case
three bits of X must be simultaneously flipped by the (1+1)
EA. In this case, the probability that the (1+1) EA finds X ′

is 1
k3 (1 − 1

k)
k−3 ≥ 1

ek3 . So, the expected runtime for the
(1+1) EA to find a feasible solution X ′ ∈ 2-SWITCH(X)
is O(k3), which means that the expected runtime for the (1+1)
EA to reduce the fitness value by at least one is O(k3).

Therefore, the expected runtime for the (1+1) EA starting
with an arbitrary feasible solution to find a b+1

2 -approximation
solution for G is O((k − OPT(G) · b+1

2)k3) = O(k4), as
OPT(G) · b+1

2 ≤ k.
Combining Lemmas 1 and 3, and noting that G is an

arbitrary instance of the MLSTb problem, we obtain the
following theorem.

Theorem 1: The (1+1) EA starting with any initial solution
finds a b+1

2 -approximation solution for the MLSTb problem
in expected runtime O(nk + k4).

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

5

As we will see below, GSEMO can also efficiently obtain
such an approximation solution for the MLSTb problem.

Theorem 2: GSEMO starting with any initial solution finds
a b+1

2 -approximation solution for the MLSTb problem in
expected runtime O(nk2 + k5).

Proof: For GSEMO, the fitness vector of any solution
X is (c(H(X)), |X|). For a given value d of |X|, there is at
most one solution in the population whose fitness vector is
(∗, d), so the population size is O(k) as |X| takes value from
{0, 1, . . . , k}, where k is the number of labels contained in
the label set.

Consider the arbitrary instance G, and let X be the solution
among the population such that c(H(X)) is the minimum. If
c(H(X)) > 1, then there exists a label l such that when it is
added the number of connected components will be reduced
by at least one, as G is connected. The probability of selecting
X from the population is Ω(1k), as the population size is O(k),
and the probability of flipping only the bit corresponding to
label l is 1

k (1 −
1
k)

k−1 = Ω(1k), so a solution X ′ such that
c(H(X ′)) is at least one less than c(H(X)) will be included
in the population in expected runtime O(k2).

Since there are at most n connected components in the
spanning subgraph induced by any solution, a feasible solution
will be included in the population in expected runtime O(nk2).

At least one feasible solution is now included in the popu-
lation. Let X be the feasible solution which has the minimum
labels among all feasible solutions in the population. If the
number of labels contained in X is greater than b+1

2 ·OPT(G),
then according to Corollary 1 there exists a feasible solution
X ′ ∈ 2-SWITCH(X) such that |X ′| is at least one less than
|X|. According to the proof of Lemma 3, the expected runtime
to generate such a solution X ′ from X is O(k3). Since the
expected runtime to select solution X from the population is
O(k), such a solution X ′ will be included in the population
in expected runtime O(k4).

Therefore, a b+1
2 -approximation solution of G will be

included in the population in expected runtime O((k − b+1
2 ·

OPT(G))k4) = O(k5) once a feasible solution is found.
Hence, GSEMO starting with any initial solution will find

a b+1
2 -approximation solution for G in expected runtime

O(nk2 + k5). Noting that G is an arbitrary instance of the
MLSTb problem, we obtain the theorem.

B. The approximation guarantee of GSEMO on the MLST
problem

In this subsection, let G′ = (V ′, E′, L′) be an arbitrary
instance of the MLST problem, where |V ′| = n and |L′| = k,
and let OPT(G′) be the number of labels used in the minimum
label spanning tree T ∗ of G′.

Now we analyze the approximation guarantee of GSEMO
on the MLST problem by simulating the modified MVCA
with contraction. Similar to Lemma 2 in [15], we have the
following lemma.

Lemma 4: For G′, if n ≥ 2, then there exists a label such
that the number of connected components of the spanning
subgraph restricted to edges with this label is not more than
⌊n(1− 1

2OPT(G′))⌋.

Proof: Note that G′ is a connected undirected graph.
Since the minimum label spanning tree T ∗ has exactly n− 1
edges, there must exist a label, say j, such that the number
of edges in T ∗ labeled by j is at least ⌈ n−1

OPT(G′)⌉. Hence,
the number of connected components of the spanning sub-
graph, restricted to edges with label j, is not more than
n−⌈ n−1

OPT(G′)⌉ = ⌊n(1−
1

OPT(G′))+
1

OPT(G′)⌋. When n ≥ 2,
we have ⌊n(1− 1

OPT(G′)) +
1

OPT(G′)⌋ ≤ ⌊n(1−
1

2OPT(G′))⌋.

Further, for a spanning subgraph H(X) of G′, we have the
following corollary.

Corollary 2: Let s be the number of connected components
of H(X). If s ≥ 2, then there is a label such that when it
is added to X the number of connected components will be
reduced to not more than ⌊s(1− 1

2OPT(G′))⌋.
Proof: Contracting each connected component of H(X)

to a supernode, then G′ is converted to G′′ with s nodes.
Suppose that the number of labels used in the minimum label
spanning tree of G′′ is OPT(G′′). According to Lemma 4,
there is a label in G′′ such that the number of connected
components of the spanning subgraph, restricted to edges with
this label, is not more than ⌊s(1 − 1

2OPT(G′′))⌋. Noting that
the number of labels used in the minimum label spanning tree
of G′ is OPT(G′), it is clear that OPT(G′′) ≤ OPT(G′).
Thus, ⌊s(1− 1

2OPT(G′′))⌋ <⌊s(1−
1

2OPT(G′))⌋. In other words,
there is a label such that when it is added to X the number of
connected components of H(X) will be reduced to not more
than ⌊s(1− 1

2OPT(G′))⌋.
Based on Corollary 2, we prove that GSEMO guarantees to

find a (2 lnn)-approximate solution for the MLST problem in
expected polynomial runtime with respect to n and k.

Theorem 3: GSEMO starting with any initial solution finds
a (2 lnn)-approximation solution for the MLST problem in
expected runtime O(k2 ln k + k3 lnn).

Proof: Consider the arbitrary instance G′ of the MLST
problem.

We first reveal that GSEMO starting with any initial so-
lution will find the all-zeros bit string for G′ in expected
runtime O(k2 ln k), then reveal that GSEMO finds a (2 lnn)-
approximation solution for G′ in expected runtime O(k3 lnn)
after the all-zeros bit string being included in the population.
Combining them, and noting that G′ is an arbitrary instance
of the MLST problem, we obtain the theorem.

We now investigate the expected runtime that GSEMO
starting with any initial solution finds the all-zeros bit string
with Pareto optimal fitness vector (n, 0). Once it is found, it
can never be removed from the population. If it is not included
in the population, then GSEMO can choose a solution X
from P which contains the minimum number of labels among
all solutions in the population with probability Ω(1k), as the
population size is O(k). The event of flipping one of |X|
bits whose value is 1 will decrease the number of labels, and
the probability of this event is

(|X|
1

)
1
k (1 −

1
k)

k−1 ≥ |X|
ek . So,

the expected runtime that GSEMO includes a solution which
contains |X|−1 labels is O(k2

|X|). Following this way, the all-
zeros bit string will be included in the population in expected
runtime O(

∑1
i=|X|

k2

i) = O(k2 ln |X|) = O(k2 ln k).

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

6

1

2

µK-1

µK-2

3

4

1

2

µK-1

µK-2

3

4

µK

µK+1

µK+1

µK+1

µK+1

µK+1

µK+1

µK+1

µK+2

µK+2

µK+2

µK+2

µK+2µK+2

µK+2

µK µK

µK+2

1

2

µK-1

µK-2

3

4

K

K

K

K

K

K

K-1

G’1 G’2 G’(1-µ)K

µK+1 µK+2 K-1

V11 V21 V(1-)k,1µ

µK

K V0

K

Fig. 1. Instance G1.

Now, the all-zeros bit string with fitness vector (n, 0) is
included in the population. It is easy to see that n ≥ 2,
otherwise G′ is trivial. According to Corollary 2, there is a
label such that when it is added to the all-zeros bit string the
number of connected components will be reduced to not more
than n(1− 1

2OPT(G′)). The probability of choosing this label
is 1

k (1−
1
k)

k−1 = Ω(1k). Since the population size is O(k), the
probability that GSEMO selects the all-zeros bit string from
P is Ω(1k). So a solution X1 with fitness vector (c1, 1), where
c1 ≤ ⌊n(1− 1

2OPT(G′))⌋ ≤ n(1− 1
2OPT(G′)) can be included

in the population in expected runtime O(k2).
If c1 ≥ 2, then there is still a label such that when it is

added to X1 the number of connected components will be
reduced to not more than n(1− 1

2OPT(G′))
2. So a solution X2

with fitness vector (c2, 2), where c2 ≤ n(1− 1
2OPT(G′))

2 can
be included in the population in expected runtime O(k2) after
X1 being included in the population.

Similarly, suppose that solution Xh−1 with fitness vector
(ch−1, h − 1), where ch−1 ≤ n(1 − 1

2OPT(G′))
h−1, has now

been included in the population. If ch−1 ≥ 2, then a solution
Xh with fitness vector (ch, h), where ch ≤ n(1− 1

2OPT(G′))
h,

will be included in the population in expected runtime O(k2)
after Xh−1 being included in the population.

Note that when h = 2 ·OPT(G′) · lnn, n(1− 1
2OPT(G′))

h ≤
1. So, a connected spanning subgraph with at most 2 ·
OPT(G′)·lnn labels will be finally included in the population
in expected runtime O(hk2) = O(2 · OPT(G′) · k2 lnn) =
O(k3 lnn) after the all-zeros bit string being included in the
population.

TABLE I
APPROXIMATION PERFORMANCES OF THE (1+1) EA AND GSEMO. ‘r’

AND ‘—’ REFER TO THE APPROXIMATION RATIO AND UNKNOWN,
RESPECTIVELY.

The (1+1) EA GSEMO
r Runtime r Runtime

MLSTb
b+1
2

O(nk + k4) b+1
2

O(nk2 + k5)

MLST — — 2 lnn O(k2 ln k + k3 lnn)

Table I summarizes the approximation performances of the
(1+1) EA and GSEMO for the minimum label spanning tree
problem. For the MLSTb problem, the (1+1) EA and GSEMO
can efficiently achieve a b+1

2 -approximation ratio. However,
the order of the upper bound on the expected runtime of

GSEMO is higher than that of the (1+1) EA. This is because
that GSEMO has to select a promising solution to mutate from
a population of size O(k). For the MLST problem, GSEMO
efficiently achieves a (2 lnn)-approximation ratio, but the
approximation performance of the (1+1) EA is unknown.

IV. PERFORMANCES OF THE (1+1) EA AND GSEMO ON
FOUR INSTANCES

In this section, we first present an instance where GSEMO
outperforms the (1+1) EA, then we show that the (1+1) EA and
GSEMO outperform local search algorithms on three instances
of the MLST problem.

A. An instance where GSEMO outperforms the (1+1) EA

In this subsection, we construct an instance G1 =
{V1, E1, L1} on which GSEMO is superior to the (1+1) EA,
where L1 = {1, . . . , k}.

Given µ(0 < µ < 1
2), we construct instance G1 as follows.

For simplicity, we assume that µk is an integer, thus (1−µ)k
is also an integer. First, we construct (1− µ)k subgraphs G′

1,
. . ., G′

(1−µ)k. G′
i(1 ≤ i ≤ (1−µ)k) contains a (µk−1)-sided

regular polygon whose edges are all labeled by the same label
µk+ i and an inner node in the center of this regular polygon.
Since the number of sides of a regular polygon is at least
3, µk − 1 ≥ 3, i.e., µk ≥ 4. From the inner node of G′

i,
(µk − 1) edges labeled by from 1 to µk − 1 connect to the
µk − 1 outer nodes vi1, vi2, . . ., vi,µk−1. Then three edges
are connected from G′

i (1 ≤ i ≤ (1 − µ)k − 1) to G′
i+1: the

first one labeled by µk + i is from the inner node of G′
i to

outer node vi+1,1 of G′
i+1, the second one labeled by µk+i is

from outer node vi1 of G′
i to outer node vi+1,1 of G′

i+1, and
the third one labeled by µk is from the inner node of G′

i to
the inner node of G′

i+1. Finally, v0 is connected to the inner
node and v(1−µ)k,1 of G′

(1−µ)k with two edges labeled by k,
and v0 is also connected to the inner node of G′

1 with an edge
labeled by µk. Figure 1 shows instance G1.

When 0 < µ < 1/2, X∗
1 = (

µk︷ ︸︸ ︷
1, . . . , 1,

(1−µ)k︷ ︸︸ ︷
0, . . . , 0) is the global

optimum of G1. X l
1 = (

µk︷ ︸︸ ︷
0, . . . , 0,

(1−µ)k︷ ︸︸ ︷
1, . . . , 1) is a local optimum

for LS2N. Since X∗
1 is the only one feasible solution that con-

tains fewer labels than X l
1. However, |X l

1−X∗
1 | = (1−µ)k and

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

7

|X∗
1 −X l

1| = µk, which implies that X∗
1 ̸∈ 2-SWITCH(X l

1)
as µk ≥ 4 and (1− µ)k > µk.

For instance G1, the expected runtime for the (1+1) EA to
jump out of X l

1 is exponential.
Theorem 4: For instance G1, starting with X l

1, the expected
runtime for the (1+1) EA to find the global optimum is
Ω(kµk).

Proof: For instance G1, when the current solution is X l
1,

the (1+1) EA only accepts the event that adds all µk labels
from {1, . . . , µk} and simultaneously removes more than µk
labels from {µk + 1, . . . , k}. So, the probability of escaping
from the local optimum is∑k−2µk

i=1

(
k−µk
µk+i

)
(1k)

2µk+i(1− 1
k)

k−2µk−i

= (1k)
µk

∑k−2µk
i=1

(
k−µk
µk+i

)
(1k)

µk+i(1− 1
k)

k−2µk−i

< (1k)
µk.

This is because
∑k−2µk

i=1

(
k−µk
µk+i

)
(1k)

µk+i(1− 1
k)

k−2µk−i

<
∑k−2µk

i=1

(
k−µk
µk+i

)
(1k)

µk+i(1− 1
k)

k−2µk−i

+
∑0

i=−µk

(
k−µk
µk+i

)
(1k)

µk+i(1− 1
k)

k−2µk−i

=
∑k−µk

i=0

(
k−µk

i

)
(1k)

i(1− 1
k)

k−µk−i = 1.
Thus, starting with X l

1, the expected runtime for the (1+1)
EA to find the global optimum of G1 is Ω(kµk).

While the (1+1) EA needs an expected exponential runtime
to jump out of X l

1, GSEMO can efficiently find the global
optimum for instance G1.

Theorem 5: For instance G1, GSEMO finds the global
optimum in expected runtime O(k2 ln k).

Proof: We first determine the expected runtime that
GSEMO starting with any initial solution finds the all-zeros
solution. Then we determine the expected runtime that starting
with the all-zeros solution GSEMO produces the whole Pareto
front.

Adding a label from L′
1 = {1, . . . , µk} to the all-zeros bit

string can reduce the number of connected components by
(1 − µ)k, while adding a label from L′′

1 = {µk + 1, . . . , k}
can reduce the number of connected components by µk. Note
that when 0 < µ < 1/2, (1 − µ)k is larger than µk. Hence,
the Pareto front contains µk+1 Pareto optimal solutions with
fitness vectors (n, 0), (n−(1−µ)k, 1), . . ., (n−(1−µ)jk, j),
. . ., (1, µk), respectively. It is clear that the population size is
O(k).

It has been proved in Theorem 3 that the expected runtime
for GSEMO starting with any initial solution to include the
all-zeros bit string in the population is O(k2 ln k).

Now we calculate the expected runtime to produce the
whole Pareto front after the all-zeros bit string being found.
The worst case is from the all-zeros bit string to produce
the whole Pareto front. Suppose that now in the population,
there is a Pareto optimal solution X with fitness vector
(n − (1 − µ)jk, j), which has the maximum number of
labels. Another Pareto optimal solution with fitness vector
(n − (1 − µ)(j + 1)k, j + 1) can be produced by adding a
label from L′

1 which is not in X . The probability of adding
this label is

(
µk−j

1

)
1
k (1 −

1
k)

k−1 ≥ µk−j
ek . This implies that

the expected runtime is O(ek2

µk−j), as the expected runtime
that GSEMO selects X from P is O(k). So, considering the
worst case of starting with the all-zeros bit string, the expected

runtime for GSEMO to produce the whole Pareto front is∑µk−1
j=0

ek2

µk−j= O(k2lnk).

B. An instance where the (1+1) EA and GSEMO outperform
ERA

ERA is a local search algorithm. It takes an arbitrary
spanning tree as input, then considers each non-tree edge and
tests whether the number of used labels can be reduced by
adding this non-tree edge and deleting a tree edge on the
induced cycle.

In this subsection, we show that the (1+1) EA and GSEMO
outperform ERA on an instance proposed by Krumke and
Wirth [15], which is denoted by G2 in this paper.

This instance can be constructed in two steps. First, a star
shaped graph is constructed by selecting one node out of n
nodes and connecting it to the other n− 1 nodes with n− 1
edges, which are labeled by n − 1 distinct labels: 1, 2, . . .,
n − 1. Second, a complete graph is constructed by adding
edges with the same label k to the star shaped graph. Thus,
we get a complete graph G2 = (V2, E2, L2), where |V2| = n,
|E2| = n(n−1)/2, and L2 = {1, 2, . . . , k} is the set of labels.
It is clear that |L2| = k and k = n. Figure 2 shows an example
with n = 5, where the dashed edges construct a spanning tree
with the minimum number of labels.

1

2 3

4

5

5

5

5

55

Fig. 2. An example of instance G2 with n = 5.

For instance G2, the global optimum X∗
2 = (x∗

21, . . . , x
∗
2k)

contains two labels: one comes from {1, . . . , k − 1} and the
other is label k, i.e., |X∗

2 | = 2,
∑k−1

i=1 x∗
2i = 1, and x∗

2k = 1.
Krumke and Wirth used instance G2 to demonstrate that

ERA might perform as badly as possible. In fact, X l
2 =

(

k−1︷ ︸︸ ︷
1, . . . , 1, 0) is a local optimum for ERA, since starting with
X l

2 the number of labels used in H(X l
2) cannot be reduced

by adding any non-tree edge and deleting a tree edge on the
induced cycle. The local optimum uses k−1 labels, while the
global optimum uses only 2 labels. However, the (1+1) EA
can efficiently solve instance G2.

Theorem 6: For instance G2, the (1+1) EA starting with
any initial solution finds a global optimum in expected runtime
O(k ln k).

Proof: For simplicity, let L′
2 denote the label set

{1, . . . , k − 1}.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

8

Let A = {X|c(H(X) = 1, xk = 1, 2 ≤ |X| ≤ k − 1},
i.e., a solution X ∈ A contains label k and at least one but at
most k− 2 labels from L′

2. Obviously, any solution X ∈ A is
feasible.

To find a global optimum, a solution X ∈ A should
be found first. Once a solution X ∈ A has been found,
the global optimum can be found by removing all |X| − 2
redundant labels from L′

2. Once such a label is removed from
X , it cannot be added anymore. According to the Coupon
Collector’s theorem [39], all redundant labels contained in X
will be removed in expected runtime O(k ln k).

In order to analyze the expected runtime to find a solution
X ∈ A, we further partition all solutions that do not belong
to A into five disjoint subsets B1, B2, B3, B4, B5:
B1 = {X|c(H(X)) = 1, |X| = k, and xk = 1};
B2 = {X|c(H(X)) = 1, |X| = k − 1, and xk = 0};
B3 = {X|c(H(X)) > 1, 1 ≤ |X| ≤ k − 2, and xk = 0};
B4 = {X|c(H(X)) > 1, |X| = 1, and xk = 1};
B5 = {X|c(H(X)) > 1, |X| = 0}.

If X ∈ B1, then X will be transformed into A by removing
one label from L′

2. The probability of this event is
(
k−1
1

)
1
k (1−

1
k)

k−1 = Ω(1), which implies that the expected runtime is
O(1).

If X ∈ B2, then X will be transformed into A by adding
label k and simultaneously removing one label from L′

2. The
probability of this event is

(
k−1
1

)
(1k)

2(1 − 1
k)

k−2 = Ω(1k),
which implies that the expected runtime is O(k).

If X ∈ B3(B4), then X will be transformed into A by
adding label k (one label from L′

2). The probability of this
event is 1

k (1−
1
k)

k−1 = Ω(1k)
((

k−1
1

)
1
k (1−

1
k)

k−1 = Ω(1)
)

,
which implies that the expected runtime is O(k).

If X ∈ B5, then X will be transformed into A by simulta-
neously adding label k and a label from L′

2. The probability is(
k−1
1

)
(1k)

2(1− 1
k)

k−2 = Ω(1k), which implies that the expected
runtime is O(k).

So, any solution will be transformed into A in expected
runtime O(k).

Combining the expected runtime to remove all redundant
labels contained in a solution belonging to A, the expected
runtime for the (1+1) EA starting with any initial solution to
find a global optimum is O(k ln k).

As shown in the following theorem, GSEMO can also
efficiently solve instance G2.

Theorem 7: For instance G2, GSEMO starting with any
initial solution finds a global optimum in expected runtime
O(k2 ln k).

Proof: Let L′
2 denote the label set {1, . . . , k − 1}. The

optimization process consists of two independent phases: the
first phase lasts until a solution with fitness vector (1, ∗), i.e., a
feasible solution, is included in the population, and the second
phase ends when a global optimum is found.

We now analyze the expected runtime of the first phase.
Let X be the solution with fitness vector (c(H(X)), |X|),
where c(H(X)) is the minimum among all solutions in the
population. If c(H(X)) > 1, then there are three cases. The
first one is that X contains no label, the second is that X
contains label k but no label from L′

2, and the third is that X

contains at least one but at most k− 2 labels from L′
2 and no

label k.
For all three cases, a solution with fitness vector (1, ∗) will

be included in expected runtime O(k2), since the probability
of selecting X from P is Ω(1k), and the probability of
transforming X into a solution with fitness vector (1, ∗) is
Ω(1k).

Once a solution with fitness vector (1, ∗) is included in
the population, we show that a global optimum will be found
in expected runtime O(k2 ln k). To this end, we partition the
second phase into two subphases: the first subphase lasts until
a solution belonging to A = {X|xk = 1, 2 ≤ |X| ≤ k − 1}
is found, i.e, such a solution contains label k and at least one
but at most k − 2 labels from L′

2, the second subphase ends
when a global optimum is found.

If a solution X with fitness vector (1, ∗) and X ̸∈ A, then
there are two cases needed to be considered: the first is that
X contains label k and all labels from L′

2, and the other is
that X contains all labels from L′

2 excluding label k.
For the first case, removing anyone of labels from L′

2

will transform X into A. The probability of this event is(
k−1
1

)
1
k (1 −

1
k)

k−1 = Ω(1), which implies that the expected
runtime is O(1). For the second case, removing one label from
L′
2 and simultaneously adding label k will transform X into A.

The probability of this event is
(
k−1
1

)
(1k)

2(1− 1
k)

k−2 = Ω(1k),
which implies that the expected runtime is O(k). Noting that
the probability of selecting X from the population is Ω(1k),
a solution belonging to A will be included in the population
in expected runtime O(k2) after a solution with fitness vector
(1, ∗) being included.

Now at least one solution belonging to A is included in
the population. Let X be the solution which has the mini-
mum number of labels among all solutions in the population
belonging to A. If X is not the global optimum of G2, then
the global optimum will be found by removing all |X| − 2
redundant labels from L′

2. Once such a label is removed from
X , it cannot be added anymore. According to the Coupon
Collector’s theorem [39], all redundant labels will be removed
in expected runtime O(k ln k), and the probability of selecting
X from P is Ω(1k), so a global optimum will be found in
expected runtime O(k2 ln k).

Altogether, GSEMO starting with any initial solution finds
a global optimum in expected runtime O(k2 ln k).

C. An instance where the (1+1) EA and GSEMO outperform
LS2N

Brüggemann, Monnot, and Woeginger proposed an instance,
denoted by G3 in this paper, to show that there exists a local
optimum with respect to LS2N [36].

As shown in Figure 3, this instance is a graph G3 =
(V3, E3, L3), where V3 = (v0, x0, x1, . . ., xk−4, y0, y1,
. . ., yk−4), L3 = (1, 2, . . ., k), |V3| = 2k−5, |E3| = 4k−12,
and |L3| = k. Figure 4 shows the minimum label spanning
tree.

In this instance, the global optimum is X∗
3 = (

k−2︷ ︸︸ ︷
0, . . . , 0, 1,

1).

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

9

v0

x0 x1 x2 xk-5 xk-41 2 k-4

k-1

k

yk-5y2y1y0 1 2

k-3

k-2

k-1 k-1 k-1

k-1

k k k

k-4

k

yk-4

Fig. 3. Instance G3.

v0

x0 x1 x2

y2y1y0

k-1

k-1 k-1 k-1 k-1

xk-5 xk-4

k kkk

k

yk-5 yk-4

Fig. 4. The MLST of instance G3.

LS2N might be trapped in the local optimum which contains
labels 1, 2, . . ., k−2. In fact, to jump out of this local optimum,
at least three labels from {1, 2, . . . , k− 2} should be removed
and simultaneously two labels k − 1 and k should be added,
but the resulting solution is not in the 2-switch neighborhood
of the local optimum. Hence, L2SN may not find the global
optimum of G3. However, the (1+1) EA is efficient for instance
G3.

Theorem 8: For instance G3, the (1+1) EA starting with any
initial solution finds the global optimum in expected runtime
O(k2).

Proof: Let L′
3 denote the label set {1, . . . , k−2}, and let

C = {X|c(H(X)) = 1, xk−1 = 1, xk = 1, 2 ≤ |X| ≤ k− 1},
i.e, a solution X ∈ C contains labels k− 1 and k and at most
k − 3 labels from L′

3.
Note that the global optimum contains only two labels k−1

and k. The optimization process consists of two independent
phases: the first phase lasts until a solution X ∈ C is
constructed from an arbitrary solution, and the second phase
ends when all |X|− 2 redundant labels from L′

3 are removed.
For analyzing the expected runtime of finding a solution

X ∈ C, we partition all solutions that do not belong to C into
seven disjoint subsets D1, D2, D3, D4, D5, D6, D7:
D1 = {X|c(H(X) = 1, xk−1 = 0, xk = 0, |X| = k − 2};
D2 = {X|c(H(X) = 1, xk−1 = 0, xk = 1, |X| = k − 2 or
|X| = k − 1};
D3 = {X|c(H(X) = 1, xk−1 = 1, xk = 0, |X| = k − 2 or
|X| = k − 1};
D4 = {X|c(H(X) = 1, xk−1 = 1, xk = 1, |X| = k};
D5 = {X|c(H(X) > 1, xk−1 = 0, xk = 0};
D6 = {X|c(H(X) > 1, xk−1 = 0, xk = 1};

D7 = {X|c(H(X) > 1, xk−1 = 1, xk = 0}.
If X ∈ D1, then X will be transformed into C by adding

labels k−1, k, and simultaneously removing three labels from
L′
3. The probability of this event is

(
k−2
3

)
(1k)

5(1 − 1
k)

k−5=
Ω(1

k2), which implies that the expected runtime is O(k2).
If X ∈ D2(D3), then X will be transformed into C by

adding label k − 1 (k) and simultaneously removing two
labels from L′

3. The probability of this event is
(
k−3
2

)
(1k)

3(1−
1
k)

k−3 = Ω(1k), which implies that the expected runtime is
O(k).

If X ∈ D4, then X will be transformed into C by removing
a label from L′

3. The probability of this event is
(
k−2
1

)
1
k (1−

1
k)

k−1 = Ω(1), which implies that the expected runtime is
O(1).

If X ∈ D5, then X will be transformed into C by
simultaneously adding labels k − 1 and k. The probability
of this event is (1k)

2(1 − 1
k)

k−2= Ω(1
k2), which implies that

the expected runtime is O(k2).
If X ∈ D6(D7), then X will be transformed into C by

adding label k− 1 (k). The probability of this event is 1
k (1−

1
k)

k−1= Ω(1k), which implies that the expected runtime is
O(k).

So, a solution belonging to C will be found in expected
runtime O(k2).

In the second phase, removing each label contained in a
solution belonging to C which is from L′

3 will reduce the
fitness value, and once it is removed it cannot be added
anymore. According to the Coupon Collectors theorem [39],
the second phase ends in expected runtime O(k ln k).

Altogether, the expected runtime for the (1+1) EA starting
with any initial solution to find the global optimum is O(k2).

GSEMO is also efficient for instance G3.
Theorem 9: For instance G3, the expected runtime for

GSEMO starting with any initial solution to find the global
optimum is O(k2 ln k).

Proof: We first analyze the runtime that the all-zeros
solution is found by GSEMO starting with an arbitrary so-
lution, then analyze the runtime that the global optimum is
found by GSEMO once the all-zeros solution is included in
the population.

It has been proved in Theorem 3 that the expected runtime
for GSEMO starting with any initial solution to find the all-
zeros bit string is O(k2 ln k).

Once the all-zeros bit string is included in the population,
the Pareto optimal solution X1 with fitness vector (k − 2, 1)
will be found by adding label k − 1 or k to the all-zeros bit
string. Since the probability that GSEMO selects the all-zeros
bit string from P is Ω(1k), and the probability of only flipping
a bit corresponding to anyone of such labels is 2

k (1−
1
k)

k−1 =
Ω(1k). So, X1 will be included in the population in expected
runtime O(k2) after the all-zeros bit string being included.
Then the global optimum X∗

3 with fitness vector (1, 2) will
be found by adding the remaining label from {k − 1, k} to
solution X1, and the expected runtime to produce solution
X∗

3 from solution X1 is also O(k2).
Therefore, the expected runtime for GSEMO starting with

any initial solution to find the global optimum is O(k2 ln k).

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

10

D. An instance where the (1+1) EA and GSEMO outperform
the modified MVCA

In this subsection, we show that the (1+1) EA and GSEMO
outperform the modified MVCA on an instance proposed by
Xiong, Golden, and Wasil [17], which is denoted by G4 in
this paper.

Given the bound of the labels’ frequency b(b ≥ 2), let n =
b · b! + 1. We construct G4 = (V4, E4, L4) as follows, where
V4 = {1, 2, . . . , n}, |V4| = n, and L4 = Ib∪Ib−1∪. . .∪I2∪I ′.

We construct b! groups from V4, each containing b+1 nodes:
V ′
1 = {1, 2, . . . , b+ 1},

V ′
2 = {b+ 1, b+ 2, . . . , 2b+ 1},
. . .

V ′
j = {(j − 1)b+ 1, (j − 1)b+ 2, . . . , jb+ 1},
. . .

V ′
b! = {(b!− 1)b+ 1, (b!− 1)b+ 2, . . . , b!b+ 1}.
In V ′

j (j = 1, 2, . . . , b!), all pairs of consecutive nodes ((j−
1)b+1, (j−1)b+2), . . ., (jb, jb+1) are connected by b edges,
and all these b edges are labeled by one label. Thus, b! labels
are needed, which constitute the label set I ′.

In each V ′
j , node (j − 1)b + 1 is connected to nodes (j −

1)b+ 3, . . ., jb+ 1. The label subset Ih (h = b, b− 1, . . . , 2)
is obtained as follows. We choose edge ((j − 1)b + 1, (j −
1)b+ 1+ h) in each V ′

j , so there are b! such edges. We label
the first h edges with one label, and the next h edges with
a second label, and so on. So, b!

h labels are needed, and they
construct Ih.

Hence, |Ih| = b!
h (h = b, b − 1, . . . , 2), |I ′| = b!, and the

total number of labels k =
∑b

j=2
b!
j + b!. The edges with b!

labels from I ′ construct the minimum label spanning tree, so in

this instance the global optimum is X∗
4 = (

∑b

j=2

b!
j︷ ︸︸ ︷

0, . . . , 0,

b!︷ ︸︸ ︷
1, . . . , 1).

Figure 5 shows an example with b = 4, where the dashed
edges construct the spanning tree with the minimum number
of labels.

Xiong, Golden, and Wasil used this instance to show that
the modified MVCA may obtain a solution using all labels
from Ib ∪ Ib−1 ∪ . . . ∪ I2 ∪ I ′, which is Hb-approximation
solution, where Hb =

∑b
i=1

1
i . However, the (1+1) EA can

efficiently find the global optimum of instance G4.
Theorem 10: For instance G4, the (1+1) EA starting with

any initial solution finds the global optimum in expected
runtime O(nk), where n = b · b! + 1, k =

∑b
j=2

b!
j + b!,

and b is the maximum frequency of the labels.
Proof: The optimization process consists of two indepen-

dent phases. The first phase ends when the (1+1) EA finds a
feasible solution, and the second phase lasts until the (1+1)
EA removes all redundant labels from {1, 2, . . . ,

∑b
j=2

b!
j }.

Let X be the current solution. Note that a feasible solution
contains all labels from I ′. If X is not a feasible solution,
then there must exist a bit xh from {xi|

∑b
j=2

b!
j + 1 ≤ i ≤∑b

j=2
b!
j +b!} whose value is 0. So, the (1+1) EA can decrease

the number of connected components by at least one with
probability 1

k (1 −
1
k)

k−1 ≥ 1
ek . This is the probability of the

event that bit xh is flipped from 0 to 1 and the other bits
keep unchanged. Hence, the expected runtime to decrease the
number of connected components from n to 1 is O(nk), i.e.,
a feasible solution will be found by the (1+1) EA in expected
runtime O(nk).

Once a feasible solution X is found, each bit from
{xi|

∑b
j=2

b!
j + 1 ≤ i ≤

∑b
j=2

b!
j + b!} takes value 1, and

the flippings of them cannot be accepted by the (1+1) EA, as
such flippings will create a disconnected spanning subgraph.
For each bit xi(1 ≤ i ≤

∑b
j=2

b!
j), if xi = 1, then it can be

flipped from 1 to 0, since this will decrease the fitness value;
otherwise, its flipping cannot be accepted by the (1+1) EA,
as this will increase the fitness value. So, when all bits have
been selected at least once to flip, the global optimum will be
found. According to the Coupon Collector’s theorem [39], the
expected runtime for this to happen is O(k ln k).

Hence, the expected runtime for the (1+1) EA starting with
any initial solution to find the global optimum is O(nk+k ln k)
= O(nk). Note that n = b · b! + 1 > k = b!(1 + 1

2 + . . .+ 1
b),

and k > ln k. So, n > ln k, and nk > k ln k.
GSEMO can solve instance G4 in expected runtime poly-

nomial in k.
Theorem 11: For instance G4, GSEMO starting with any

initial solution finds the global optimum in expected runtime
O(k3).

Proof: The optimization process consists of two phases.
The first phase lasts until GSEMO starting with any initial
solution finds a solution with fitness vector (1, ∗), and the
second phase ends when GSEMO finds the global optimum.

Note that a connected spanning subgraph contains all labels
from I ′. If X is a solution such that c(H(X)) > 1, then at
least one label from I ′ is not contained in it, and the number
of connected components can be decreased by adding such a
label.

We now analyze the expected runtime that GSEMO starting
with any initial solution finds a solution with fitness vector
(1, ∗). If such a solution has not been included in the popu-
lation, then there is a solution X from P such that c(H(X))
is the minimal, and adding some label l from I ′ to X will
reduce the number of connected components. The probability
that GSEMO chooses X from P is Ω(1k), as the population
size is O(k), and the probability of flipping only the bit
corresponding to label l is 1

k (1−
1
k)

k−1 = Ω(1k), so a solution
with a smaller number of connected components will be found
in expected runtime O(k2). After all labels from I ′ being
added, a connected spanning subgraph will be constructed.
Thus a solution with fitness vector (1, ∗) will included in
expected runtime O(b!k2) = O(k3).

Now at least one solution with fitness vector (1, ∗) is
included in the population. Let X be the solution which has
the minimum number of labels among all solutions in the
population with fitness vector (1, ∗). If X is not the global
optimum of G4, then GSEMO can finish the second phase by
removing all redundant labels from Ib ∪ Ib−1 ∪ . . .∪ I2. Since
the probability of selecting X form P is Ω(1k), and removing
all redundant labels needs an expected runtime O(k ln k), the
global optimum will be found in expected runtime O(k2 ln k).

Combining the expected runtime in two phases, we finish

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

11

1

7

15
27

27 27

27

1

2 3 4

1

7

15
28

28 28

28

9

6 7 8

1

7

16
29

29 29

29

13

10 11 12

5
1

8

16
30

30 30

30

17

14 15 16

2

17
31

31 31

31

18 19 20

2

8

17
32

32 32

32

25

22 23 24

2

9

18
33

33 33

33

29

26 27 28

21
2

9

18
34

34 34

34

33

30 31 32

8

3

9

19
35

35 35

35

33

34 35 36

3

10

19
36

36 36

36

41

38 39 40

3

10

20
37

37 37

37

45

42 43 44

37
3

10

20
38

38 38

38

49

46 47 48

4

21
39

39 39

39

50 51 52

4

11

21
40

40 40

40

57

54 55 56

4

11

22
41

41 41

41

61

58 59 60

53
4

12

22
42

42 42

42

65

62 63 64

11

5

12

23
43

43 43

43

65

66 67 68

5

12

23
44

44 44

44

73

70 71 72

5

13

24
45

45 45

45

77

74 75 76

69
5

13

24
46

46 46

46

81

78 79 80

6

25
47

47 47

47

82 83 84

6

14

25
48

48 48

48

89

86 87 88

6

14

26
49

49 49

49

93

90 91 92

85
6

14

26
50

50 50

50

97

94 95 96

13

Fig. 5. Instance G4 with b=4.

the proof.

TABLE II
UPPER BOUNDS ON THE EXPECTED RUNTIME OF THE (1+1) EA, GSEMO,
ERA, LS2N, AND THE MODIFIED MVCA TO FIND THE GLOBAL OPTIMA
ON FOUR INSTANCES. ‘—’ AND ‘INF’ MEAN UNKNOWN AND INFINITE,

RESPECTIVELY.

Instance G1 Instance G2 Instance G3 Instance G4

The (1+1) EA Ω(kµk) O(k ln k) O(k2) O(nk)
GSEMO O(k2 ln k) O(k2 ln k) O(k2 ln k) O(k3)
ERA — Inf — —
LS2N — — Inf —
The modified MVCA — — — Inf

Note: Ω(kµk) is the lower bound on the expected runtime that the (1+1) EA
starting with the given initial solution Xl

1 finds the global optimum of G1.

Table II shows that GSEMO outperforms the (1+1) EA on
G1. This is mainly because that GSEMO behaves greedily.

It also shows that ERA (LS2N, the modified MVCA) may
be trapped in the local optimum of G2 (G3, G4), thus it cannot
efficiently solve G2 (G3, G4). However, the (1+1) EA and
GSEMO can efficiently solve them.

This theoretically shows that EAs outperform local search
algorithms on some instances. The reason is that EAs are
global search algorithms as they use global mutation, while a
local search algorithm searches the neighborhood of a current
solution, thus it may be trapped in a local optimum.

Nevertheless, local search algorithms are not always worse
than EAs.

For example, the modified MVCA can efficiently solve
instance G2. Recall that the modified MVCA begins with the
all-zeros bit string, then chooses at each step a label such
that when this label is chosen the decrease in the number of
connected components is the largest. Therefore, the modified
MVCA first tests all labels and chooses label k, as when it is
chosen the decrease in the number of connected components
is the largest. Next, the modified MVCA tests the remaining
k − 1 labels: 1, 2, . . ., k − 1, and randomly chooses one of
them as the decrease in the number of connected components
is the same when each of them is chosen. Hence, a global
optimum of G2 is found by the modified MVCA in runtime
2k−1 which is superior to that of the (1+1) EA and GSEMO.

V. CONCLUSION

In this paper, we investigate the performances of the (1+1)
EA and GSEMO for the minimum label spanning tree prob-
lem. We reveal that the (1+1) EA and GSEMO can guarantee
to achieve some approximation ratios for the MLST problem.
This gives a nice example to show that EAs can guarantee
to achieve some certain approximation ratios for difficult NP-
hard problems. We also theoretically show that the (1+1) EA
and GSEMO defeat local search algorithms on some instances,
and that GSEMO outperforms the (1+1) EA on an instance.

On the MLSTb problem, the (1+1) EA and GSEMO
achieve the same approximation ratio of b+1

2 . To find a b+1
2 -

approximation solution for the MLSTb problem, the upper
bound on the expected runtime of GSEMO is larger than that
of the (1+1) EA. However, we still have no idea how to obtain
the lower bounds on their runtime for such an approximation
ratio.

As for the approximation ratio of the (1+1) EA on the
MLST problem, we still know nothing about it. Apart from
this, since the (1+1) EA and GSEMO are randomized algo-
rithms, it is natural to ask whether they can achieve better
approximate ratios than those guaranteed by some other algo-
rithms or not.

Usually, EAs in practice use a population of individuals, and
in order to retain the diversity of individuals an appropriate
population size is needed, which is different from the (1+1)
EA using only one individual. Thus, the performance analysis
of population-based EAs is an important research topic, e.g.,
[19], [40], [41], [42].

How do population-based EAs such as (µ+λ) EAs perform
on the MLST problem? Are they better than the (1+1) EA?
Crossover is usually an important operator for population-
based EAs. Several theoretical investigations have recently
proven that crossover is essential or useful on some problems,
e.g., [43], [44]. Therefore, it is interesting to investigate
the performance of the population-based EA using not only
mutation but also crossover on the MLST problem.

REFERENCES

[1] A. S. Tanenbaum, Computer Networks. Englewood Cliffs, NJ: Prentice
Hall, 1989.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

12

[2] R.-S. Chang and S.-J. Leu, “The minimum labeling spanning trees,”
Inform. Process. Lett., vol. 63, no. 5, pp. 277-282, 1997.

[3] A. Chwatal, G. Raidl, and O. Dietzel, “Compressing fingerprint tem-
plates by solving an extended minimum label spanning tree problem,” in
Proc. 7th Metaheuristics International Conference (MIC’07), Montreal,
Canada, Jun. 2007, pp. 105/1-3.

[4] A. Chwatal, G. Raidl, and K. Oberlechner, “Solving a k-node min-
imum label spanning arborescence problem to compress fingerprint
Templates,” J. Math. Mod. Algor., vol. 8, pp. 293-334, 2009.

[5] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: University of Michigan Press, 1975.

[6] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. New York, NY: Addison-Wesley, 1989.

[7] F. Herrera, M. Lozano and J. Verdegay, “Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis,” Artif. Intell.
Rev., vol. 12, no. 4, pp. 265-319, 1998.

[8] K. Gallagher and M. Sambridge, “Genetic algorithms: a powerful tool
for large-scale non-linear optimization problems,” Comput. Geosci., vol.
20, no. 7-8, pp. 1229-1236, 1994.

[9] Y. Xiong, B. Golden, and E. Wasil, “A one-parameter genetic algorithm
for the minimum labeling spanning tree problem,” IEEE Trans. Evol.
Comput., vol. 9, no. 1, pp. 55-60, 2005.

[10] J. Nummela and B. Julstrom, “An effective genetic algorithm for the
minimum-label spanning tree problem,” in Proc. Genetic Evol. Comput.
Conf. (GECCO’06), Seattle, Washington, Jul. 2006, pp. 553-558.

[11] S. Consoli and J. Moreno-Pérez, “Solving the minimum labelling
spanning tree problem using hybrid local search,” Electronic Notes in
Discrete Mathematics, vol. 39, pp. 75-82, 2012.

[12] A. Chwatal and G. Raidl, “Solving the minimum label spanning tree
problem by mathematical programming techniques,” Vienna University
of Technology, Institute of Computer Graphics and Algorithms, Tech.
Rep. TR 186-1-10-03, Jun. 2010.

[13] R. Cerulli, A. Fink, M. Gentili, and S. Voß, “Metaheuristics comparison
for the minimum labelling spanning tree problem,” in The Next Wave
on Computing, Optimization, and Decision Technologies, B. L. Golden,
S. Raghavan, E. A. Wasil, eds. New York: Springer, 2005, pp. 93-106.

[14] S. Consoli, K. Darby-Dowman, N. Mladenović, and J. Moreno-Pérez,
“Greedy randomized adaptive search and variable neighbourhood search
for the minimum labelling spanning tree problem,” Eur. J. Oper. Res.,
vol. 196, pp. 440-449, 2009.

[15] S. O. Krumke and H. Wirth, “On the minimum label spanning tree
problem,” Inform. Process. Lett., vol. 66, no. 2, pp. 81-85, 1998.

[16] Y. Wan, G. Chen, and Y. Xu, “A note on the minimum label spanning
tree,” Inform. Process. Lett., vol. 84, pp. 99-101, 2002.

[17] Y. Xiong, B. Golden, and E. Wasil, “Worst-case behavior of the MVCA
heuristic for the minimum labeling spanning tree problem,” Oper. Res.
Lett., vol. 33, pp. 77-80, 2005.

[18] S. Jansen and I. Wegener, “Evolutionary algorithms: how to cope with
plateaus of constant fitness and when to reject strings of the same
fitness,” IEEE Trans. Evol. Comput., vol. 5, no. 6, pp. 589-599, 2001.

[19] J. He and X. Yao, “Drift analysis and average time complexity of
evolutionary algorithms,” Artif. Intell., vol. 127, no. 1, pp. 57-85, 2001.

[20] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+1)
evolutionary algorithm,” Theor. Comput. Sci., vol. 276, no. 1-2, pp. 51-
81, 2002.

[21] J. He and X. Yao, “Towards an analytic framework for analysing the
computation time of evolutionary algorithms,” Artif. Intell., vol. 145, pp.
59-97, 2003.

[22] F. Neumann, J. Reichel, and M. Skutella, “Computing minimum cuts
by randomized search heuristics,” Algorithmica, vol. 59, pp. 323-342,
2011.

[23] Y. Zhou, J. He, and Q. Nie, “A comparative runtime analysis of heuristic
algorithms for satisfiability problems,” Artif. Intell., vol. 173, pp. 240-
257, 2009.

[24] F. Neumann and I. Wegener, “Randomized local search, evolutionary
algorithms, and the minimum spanning tree problem,” Theor. Comput.
Sci., vol. 378, pp. 32-40, 2007.

[25] F. Neumann, “Expected runtimes of evolutionary algorithms for the
Eulerian cycle problem,” Comput. Oper. Res., vol. 35, pp. 2750-759,
2008.

[26] A. Sutton and F. Neumann, “A parameterized runtime analysis of
evolutionary algorithms for the euclidean traveling salesperson problem,”
in Proc. 26th Conference on Artificial Intelligence (AAAI’12), 2012, pp.
1105-1111.

[27] O. Giel and I. Wegener, “Evolutionary algorithms and the maximum
matching problem,” in Proc. 20th Annu. Symp. Theor. Aspects Comput.
Sci. (STACS), LNCS vol. 2607, Berlin, Germany, 2003, pp. 415-426.

[28] P. Oliveto, J. He, and X. Yao, “Analysis of the (1+1)-EA for finding
approximate solutions to vertex cover problems,” IEEE Trans. Evol.
Comput., vol. 13, no. 5, pp. 1006-1029, 2009.

[29] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt, “Ap-
proximating covering problems by randomized search heuristics using
multi-objective models,” Evol. Comput., vol. 18, no. 4, pp. 617-633,
2010.

[30] C. Witt, “Worst-case and average-case approximations by simple ran-
domized search heuristics,” in Proc. 22nd Annu. Symp. Theor. Aspects
Comput. Sci. (STACS), LNCS vol. 3404. Stuttgart, Germany, Feb. 2005,
pp. 44-56.

[31] F. Neumann and J. Reichel, “Approximating minimum multicuts by evo-
lutionary multi-objective algorithms,” in Proc. 10th Int. Conf. Parallel
Problem Solving Nature (PPSN X), Dortmund, Germany, 2008, pp. 72-
81.

[32] Y. Yu, X. Yao, and Z. Zhou, “On the approximation ability of evolution-
ary optimization with application to minimum set cover,” Artif. Intell.,
vol. 180-181, pp. 20-33, 2012.

[33] F. Neumann and I. Wegener, “Minimum spanning trees made easier
via multi-objective optimization,” Natural Computing, vol. 5, no. 3, pp.
305-319, 2006.

[34] F. Neumann, “Expected runtimes of a simple evolutionary algorithm for
the multi-objective minimum spanning tree problem,” Eur. J. Oper. Res.,
vol. 181, pp. 1620-1629, 2007.

[35] C. Qian, Y. Yu, Z.-H. Zhou, “An analysis on recombination in multi-
objective evolutionary optimization“, Artif. Intell., vol. 204, pp. 99-119,
2013.

[36] T. Brüggemann, J. Monnot, and G. Woeginger, “Local search for the
minimum label spanning tree problem with bounded color classes,”
Oper. Res. Lett., vol. 31, pp. 195-201, 2003.

[37] O. Giel, “Expected runtimes of a simple multi-objective evolutionary
algorithm,” in Proc. IEEE Congr. Evol. Comput., 2003, pp. 1918-1925.

[38] M. Laumanns, L. Thiele, and E. Zitzler, “Running time analysis of
multiobjective evolutionary algorithms on pseudo-boolean functions,”
IEEE Trans. Evol. Comput., vol. 8, no. 2, pp. 170-182, 2004.

[39] M. Mitzenmacher and E. Upfal, Propability and Computing. Cambridge:
Cambridge University Press, 2005.

[40] T. Jansen, K. A. D. Jong, and I. Wegener, “On the choice of the offspring
population size in evolutionary algorithms,” Evol. Comput., vol. 13, no.
4, pp. 413-440, 2005.

[41] T. Chen, J. He, G. Sun, G. Chen, and X. Yao, “A new approach to
analyzing average time complexity of population-based evolutionary
algorithms on unimodal problems,” IEEE Trans. Syst., Man, Cybern.,
B Cybern., vol. 39, no. 5, pp. 1092-1106, 2009.

[42] T. Chen, K. Tang, G. Chen, and X. Yao, “A large population size can
be unhelpful in evolutionary algorithms,” Theor. Comput. Sci., vol. 436,
no. 8, pp. 54-70, 2012.

[43] T. Jansen and I. Wegener, “Real royal road functions—where crossover
provably is essential,” Discrete Appl. Math., vol. 149, pp. 111-125, 2005.

[44] B. Doerr, E. Happ, C. Klein, “Crossover can provably be useful in
evolutionary computation,” Theor. Comput. Sci., vol. 425, pp. 17-33,
2012.

Xinsheng Lai received the M.Sc. degree in Com-
puter Applied Technology from Guizhou University,
Guiyang, China, in 2004, and he is now working to-
wards the Ph.D. degree at South China University of
Technology, Guangzhou, China. His main research
interests include evolutionary computation, neural
computation, and their applications in real world.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TEVC.2013.2291790, IEEE Transactions on Evolutionary Computation

13

Yuren Zhou received the B. Sc. degree in the Math-
ematics from Peking University, Beijing, China, in
1988, the M. Sc. degree in the Mathematics from
Wuhan University, Wuhan, China, in 1991, and the
Ph. D. in Computer Science from Wuhan University
in 2003. He is currently a professor in School of
Computer Science and Engineering, South China
University of Technology, Guangzhou, China. His
current research interests are focused on design and
analysis of algorithms, evolutionary computation and
data mining.

Jun He (M’06) received the B.S., M.Sc. degrees
in mathematics and the Ph.D. degree in computer
science all from Wuhan University, Wuhan, China,
in 1989, 1992 and 1995, respectively.

He is currently a Senior Lecturer at Aberystwyth
University, United Kingdom. His major research
interests include evolutionary computation, global
optimization and network security. He has published
over 80 papers in these areas.

Jun Zhang (M’02-SM’08) received the Ph.D. de-
gree in Electrical Engineering from the City Uni-
versity of Hong Kong, Kowloon, Hong Kong, in
2002. From 2003 to 2004, he was a Brain Korean
21 Post-Doctoral Fellow with the Department of
Electrical Engineering and Computer Science, Ko-
rea Advanced Institute of Science and Technology,
Daejeon, Korea. Since 2004, he has been with Sun
Yat-Sen University, Guangzhou, China, where he
is currently a Cheung Kong Professor with the
School of Advanced Computing. He has authored

seven research books and book chapters, and over 100 technical papers
in his research areas. His current research interests include computational
intelligence, cloud computing, high performance computing, data mining,
wireless sensor networks, operations research, and power electronic circuits.

Dr. Zhang was a recipient of the China National Funds for Distinguished
Young Scientists from the National Natural Science Foundation of China
in 2011 and the First-Grade Award in Natural Science Research from the
Ministry of Education, China, in 2009. He is currently an Associate Editor of
the IEEE Transactions on Evolutionary Computation, the IEEE Transactions
on Industrial Electronics, the IEEE Transactions on Cybernetics, and the IEEE
Computational Intelligence Magazine. He is the Founding and Current Chair
of the IEEE Guangzhou Subsection and IEEE Beijing (Guangzhou) Section
Computational Intelligence Society Chapters. He is the Founding and Current
Chair of the ACM Guangzhou Chapter.

