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Visual Speech Benefit in Clear and
Degraded Speech Depends on the
Auditory Intelligibility of the Talker
and the Number of Background Talkers

Catherine L. Blackburn1 , Pádraig T. Kitterick2,3 , Gary Jones1,
Christian J. Sumner1,4, and Paula C. Stacey1

Abstract

Perceiving speech in background noise presents a significant challenge to listeners. Intelligibility can be improved by seeing the

face of a talker. This is of particular value to hearing impaired people and users of cochlear implants. It is well known that

auditory-only speech understanding depends on factors beyond audibility. How these factors impact on the audio-visual

integration of speech is poorly understood. We investigated audio-visual integration when either the interfering background

speech (Experiment 1) or intelligibility of the target talkers (Experiment 2) was manipulated. Clear speech was also con-

trasted with sine-wave vocoded speech to mimic the loss of temporal fine structure with a cochlear implant. Experiment 1

showed that for clear speech, the visual speech benefit was unaffected by the number of background talkers. For vocoded

speech, a larger benefit was found when there was only one background talker. Experiment 2 showed that visual speech

benefit depended upon the audio intelligibility of the talker and increased as intelligibility decreased. Degrading the speech by

vocoding resulted in even greater benefit from visual speech information. A single ‘‘independent noise’’ signal detection

theory model predicted the overall visual speech benefit in some conditions but could not predict the different levels of

benefit across variations in the background or target talkers. This suggests that, similar to audio-only speech intelligibility, the

integration of audio-visual speech cues may be functionally dependent on factors other than audibility and task difficulty, and

that clinicians and researchers should carefully consider the characteristics of their stimuli when assessing audio-visual

integration.
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Introduction

‘‘Visual speech’’ information is defined as being able to
see the movements of the talker’s mouth, including the
lips, tongue, and teeth (Peelle & Sommers, 2015). It pro-
vides phonetic and temporal cues that aid the perception
of speech and is particularly beneficial to communication
in noisy environments (Miller, 1947). The benefits of
seeing a talker’s face can be quantified in terms of the
difference in the amount of noise that can be tolerated
while maintaining high levels of speech understanding
with and without access to visual speech information
(Calvert, 2001; Grant & Walden, 1996; Lusk &
Mitchell, 2016). For example, Middelweerd and Plomp

(1987) found that when people were presented with audi-
tory and visual speech information, the average signal-
to-noise ratio (SNR) at which young adults could report
50% of words correctly (the speech reception threshold,
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SRT50) was �14 dB compared with �9 dB when only
auditory information was available.

Visual speech information is especially important to
individuals with hearing impairments (Erber, 1975;
Kaiser, Kirk, Lachs, & Pisoni, 2003), for whom difficul-
ties with listening in noisy environments can make every
day social interactions more demanding, and ultimately
has detrimental effects on their quality of life
(Hawthorne et al., 2004; Hilly et al., 2016; Saki et al.,
2017). Those fitted with cochlear implants (CI) find lis-
tening in noisy environments particularly demanding
(Turner, Gantz, Vidal, Behrens, & Henry, 2004). The
loss of fine spectral and temporal information limits
their ability to segregate speech from background noise
and benefit from glimpses in speech (Bhargava,
Gaudrain, & Başkent, 2016), and to differentiate between
talkers due to the loss of pitch cues (Qin & Oxenham,
2003). As CI users report that most speech encounters
occur when both visual and auditory information is
available (Dorman et al., 2016), their ability to benefit
from access to visual speech information is likely to
play a key role in their capacity to communicate in every-
day life.

Stacey, Kitterick, Morris, and Sumner (2016) investi-
gated the potential benefits of visual speech information
available to CI users by assessing the performance of
normal hearing listeners when listening to clear speech
and speech sine-wave vocoded to simulate the informa-
tion provided by a CI. This was assessed for a single
background noise type: multitalker babble. They identi-
fied a modest (�2 dB) but consistent increase in the size
of visual speech benefit when participants listened to
vocoded speech compared with when they listened
to unprocessed speech. The finding that the value of
visual information increases when the acoustic signal is
degraded, in this case by removing informative temporal
fine structure (TFS), is compatible with the principle of
inverse effectiveness (PoIE; Sumby & Pollack, 1954).
According to the PoIE, as unimodal performance
declines multisensory integration is improved (Meredith
& Stein, 1986). By extension, where audio input is most
degraded the visual gain is at its greatest (Callan, Callan,
Kroos, & Vatikiotis-Bateson, 2001). This principle is also
supported by neurophysiological evidence as brain activ-
ity in response to visual speech information is enhanced
in the presence of background noise (Callan et al., 2003).

The extent to which auditory-alone speech perception
is degraded in everyday environments itself depends on
numerous factors, including the nature of the back-
ground ‘‘noise.’’ Rosen, Souza, Ekelund, and Majeed
(2013) found that speech perception in normal-hearing
individuals dropped off markedly as the number of back-
ground talkers was increased from one to two, likely due
to an inability to disentangle similar streams of informa-
tion (Durlach et al., 2003), but was relatively stable as

the number of talkers increased thereafter. The intelligi-
bility of the target talker also affects auditory-only
speech perception. Different talkers have different levels
of intelligibility (Brungart, 2001; Gagne, Masterson,
Munhall, Bilida, & Querengesser, 1994; Lander &
Davies, 2008). As such, the choice of target talker may
change the task demands by placing greater reliance on
linguistic knowledge, contextual information about a
topic of conversation, or familiarity with the talker.
Different listeners also respond differently to different
talkers, a finding that is consistent with the idea that
high-level cognitive functions also influence speech per-
ception abilities (Conrey & Gold, 2006).

Since the nature of target talker, the background
‘‘noise,’’ and any signal processing or degradation
imposed by a hearing instrument can all influence
speech understanding based on auditory information
alone, an outstanding question is whether the benefits
of visual speech information interact with these multiple
factors. It is necessary to address this question in order
to understand how to maximize the benefit of visual
speech and the real-world value of auditory prostheses
to hearing impaired listeners (e.g., by guiding rehabilita-
tion strategies).

A testable formulation of this question is as follows:
Do people integrate audio and visual sources of sensory
information in the same way under all circumstances?
There are different ways of combining information
from two senses that would plausibly lead to different
patterns of benefit from visual speech. For example,
seeing the face of a talker could provide additional infor-
mation about the identity of words being spoken, even in
the absence of any background sounds. Alternatively, in
the presence of background noise or a competing talker,
the visual information might be used to help the listener
segregate the target speech from the background speech
by indicating when in time the target speaker is talking
and audible. In this study, we assessed multisensory per-
formance against the null-hypothesis of signal detection
theory (SDT) models (Micheyl & Oxenham, 2012; Stacey
et al., 2016), which assume that information is integrated
in a fixed way. Our premise is that if a single SDT model
can account for data across a range of experimental con-
ditions, then the results are compatible with the idea that
the process of sensory integration is fixed.

According to SDT models, audio-visual speech per-
formance is a result of combining the information from
the underlying unisensory ‘‘representations’’ in the brain
to form an integrated multisensory representation of the
speech to be recognized. A decision is then made about
the words (from memory) which are most likely to give
rise to this combined audio-visual representation. The
model makes several simple assumptions, including:
that information is integrated before any decisions are
made about the words spoken; that audio and visual
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streams contribute statistically independent sources of
information; and that information is combined in an
optimal way, maximizing multisensory performance by
weighting the individual sources according to their reli-
ability. Thus, using SDT, it is possible compare the
observed data against the predictions of an ‘‘ideal obser-
ver’’ which optimally integrates sensory information
(Micheyl & Oxenham, 2012).

Despite the relative simplicity of the model, it can
influence how experimental results are interpreted. For
example, while Stacey et al. (2016) found that visual
speech benefit was greater when speech was vocoded
than when it was natural, a single SDT model accounted
for the data under both listening conditions, implying
that there was no change in the underlying processing.
In the current study, SDT was again employed to
provide a basis for assessing whether integration of
audio-visual information was optimal and unchanging
across the experimental manipulations. Conversely, if a
single model cannot account for the data, it implies that
audio-visual integration changes across experimental
conditions.

The specific aim of the current study was to evaluate
the effects of manipulating the number of background
talkers (Experiment 1) and the auditory intelligibility of
the target talker (Experiment 2) on the ability of listeners
to benefit from access to visual speech information. The
effects of these manipulations were assessed using both
clear and vocoded speech. Vocoding allowed us to exam-
ine the interaction between informative TFS information
and visual speech benefit which may give us insight into
the visual speech benefits obtained by people with CIs.
Following the PoIE principle, whereby multisensory
integration is improved as unimodal performance
declines, it was expected that the beneficial effect of
having access to visual speech information would
increase as the number of background talkers increased
and would be greater for target talkers with poorer levels
of auditory intelligibility.

Material and Methods

Design

A within-participants design was used for both experi-
ments. For Experiment 1, 12 conditions were created
from the factorial combination of the factors speech
type (whether speech was clear or vocoded), modality
(whether stimuli were audio visual or audio only), and
background talkers (1, 2, or 16 talkers in the back-
ground). An additional condition was also included
that measured performance in a visual-only task. For
Experiment 2, 16 conditions were created from the fac-
torial combination of the factors speech type (clear or
vocoded), modality (whether stimuli were audio visual or

audio only), and talker identity (four talkers with vary-
ing levels of intelligibility). Visual-only performance for
each of the four target talkers used in Experiment 2 was
measured in a supplementary experiment.

Participants

Twenty-four participants took part in each experiment
(Experiment 1: age 19–47 years, mean age 29, 7 males;
Experiment 2: age 18–33 years, mean age 22, 2 males;
Experiment 2 supplementary: age 19–31 years, mean age
21.5, 7 males). Participants were recruited from the stu-
dent and staff population at Nottingham Trent
University. Students were rewarded with research cred-
its. Consent was obtained from each participant as
agreed by the Nottingham Trent University Research
Ethics Committee. Participants also confirmed normal
hearing and normal or corrected-to-normal vision and
had English as their first language.

Materials

Equipment. The experiments were conducted in a multi-
person IAC Acoustics 40 a-5 audiology booth. Sound
levels were calibrated by presenting the stimuli over
headphones attached to an artificial ear (G.R.A.S.
43AA) and measured using a microphone (ACO
7052E) connected to a sound level meter (SVAN 977).
Audio was played over HD280pro headphones
(Sennheiser, Wedemark, Germany) via a custom-built
digital-to-analogue converter. Visual stimuli were pre-
sented on a computer monitor with a screen measuring
41 cm� 26 cm. Stimulus presentation was controlled
using E-Prime software (Version 2.0 Psychology
Software Tools Inc., Sharpsburg, United States) and
using the MATLAB programming environment
(Mathworks, Nantick, United States).

Target stimuli. Sentences were selected from the IEEE
corpus that comprises 720 short sentences grouped into
phonetically balanced lists of 10 sentences (Rothauser
et al., 1969). Examples of the sentences are (with key
words are underlined) ‘‘Cars and buses were stuck in
snow drifts’’ and ‘‘Use a pencil to write the first draft.’’
For Experiment 1, audio-visual recordings were made of
three hundred sentences spoken by a single male talker.

For Experiment 2, 11 different talkers were recorded
articulating the same 30 IEEE sentences, creating a
corpus of 330 sentences. The relative auditory intelligi-
bility of these talkers was assessed by conducting a pilot
study with six participants who were asked to identify
key words in all 330 sentences presented in a random
order at an SNR of �8 dB. The order of the sentences
was randomized for each participant to minimize the
influence of order effects if present. The percentage of

Blackburn et al. 3



key words correctly identified was recorded for each of
the 11 talkers. Results showed a large variation between
the auditory intelligibility of the talkers, with overall
mean correct scores ranging from 45% to 88% (see
Supplementary Table 1). Four talkers were selected for
use in the main experiment; the two talkers with the
highest ranked auditory intelligibility (one male, average
score 88%; and one female, average score 82%) and the
two talkers with the lowest ranked intelligibility (one
male, average score 54%; and one female, average
score 45%). Each sentence lasted approximately 3 sec-
onds. The audio and video recordings were processed
using Adobe Premiere Pro CC (v9.2).

Background stimuli. Background noise stimuli for use in
both experiments were created using an existing database
of speech materials (Markham & Hazan, 2002) and were
informed by the procedures outlined in Rosen et al.
(2013). Each recording in the database is a 30-second
narrative of the talker describing in free-form language
the scene they had witnessed in a video. The free-form
nature of the description ensured that talkers were not
repeating the same set text and therefore avoided obvi-
ous repetition. Silences of more than 100ms were
removed from each recording, and all filler expressions
(e.g., erm, eh) removed. Recordings from 16 male talkers
within the database were chosen on the basis that they
sounded most similar to the male talker used to create
the target stimuli for Experiment 1 and were used to
create the 1-talker, 2-talker, and 16-talker background
noises. On each trial, 3-second segments were extracted
from the continuous narratives spoken by each back-
ground talkers and started from different points within
each 30-second recording to avoid repetition of informa-
tion and words within the resulting background noise
between trials. A 16-talker background noise was used
in Experiment 2. This was created in the same way as for
Experiment 1, but as the target talkers were both male
and female it consisted of eight male and eight female
talkers.

Speech processing. Audio-visual sentence materials were
processed using the MATLAB programming environ-
ment. The desired SNR was achieved by attenuating
the target talker (for negative SNRs) or the background
noise (for positive SNRs) before summing the two sig-
nals and normalizing the root mean square of the com-
posite signal. The composite signal was then band-pass
filtered into eight adjacent frequency bands spaced
equally on an equivalent rectangular bandwidth fre-
quency scale between 100 Hz and 8 kHz (Glasberg &
Moore, 1990) using finite impulse response filters. In
clear speech conditions, the auditory stimuli were con-
structed by summing the output of the eight band-pass
filters. In vocoded conditions, the temporal envelope of

each filter output was extracted using the Hilbert trans-
form and used to modulate a sine wave at the center
frequency of the filter and with alternating phase. The
eight sine waves were then summed to form an auditory
stimulus with uninformative TFS. This processing
method ensured that the temporal envelopes were similar
across clear and vocoded conditions (Eaves et al., 2011).

Procedure

The audio stimuli were presented at 70 to 73 dB SPL.
Each video was displayed as an image 17 cm� 30 cm in
the center of the screen. Participants were seated at
approximately 0.5m from the display monitor with the
display at head height, meaning that the image sub-
tended a horizontal visual angle of 19� and a vertical
visual angle of 33�. They were instructed to watch the
video and listen to the audio stimuli (AV conditions) or
listen to the audio only (AO conditions) and repeat out
loud any words they were able to understand at the end
of each sentence. Stimuli were presented diotically but to
help avoid floor effects a 0.001-second delay applied ran-
domly to the copy of the target stimulus in the left or
right ear. The result was that the target stimulus was
perceived to originate toward the left or right ear and
therefore from a different location to the background
noise (London, Bishop, & Miller, 2012).

Participants first undertook a practice session in order
to gain familiarity with the task in which five IEEE sen-
tences were presented for each of four conditions: audio-
only clear speech, audio-only vocoded speech, audio-
visual clear speech, and audio-visual vocoded speech.
In the audio-only and audio-visual conditions of the
main experiments, an initial sentence was presented at
an SNR of �16 dB and repeated at increasing SNRs in
4-dB steps until at least three out of the five key words
were identified correctly. Once the key words were iden-
tified correctly, a different sentence was then presented
on each subsequent trial, and the SNR was varied adap-
tively in 4-dB steps until two reversals were made and
then in 2-dB steps for the remaining sentences in each
condition. Twenty different sentences were presented in
each condition. The SNRs for the final 10 sentences were
averaged to produce a SRT50 for each participant,
which represented the SNR measured in dB at which
participants could report the key words within 50% of
sentences correctly. In the visual-only conditions of both
experiments, participants were asked to repeat any words
they thought they could understand out loud at the end
of each sentence and performance was scored in terms of
percentage key words reported correctly.

In Experiment 1, the practice stimuli were presented
at SNRs ranging from �8 dB to 8 dB in each type
of background noise (1 -, 2 -, or 16-talker noise).
During the practice sessions, SRTs were not estimated.
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For the main experiment, 13 conditions were presented
in random order: speech type (clear or vocoded), modal-
ity (audio visual or audio only), number of background
talkers (1, 2, or 16), and a visual-only condition. Each
condition was assigned a different list of 20 sentences
from 260 IEEE sentences, and each list was presented
in a random order. Therefore, each participant had dif-
ferent sentences for each condition and in a different
presentation order.

In Experiment 2, practice stimuli were presented at an
initial SNR of �8 dB, and the SNR was then reduced in
4-dB steps if three out of the five key words were cor-
rectly identified or otherwise increased in 4-dB steps. In
the supplemental experiment that assessed visual-only
performance, each participant was presented with 20 sen-
tences from each of the four talkers. A different 20 sen-
tences were presented for each talker. The 20 sentences
for each talker were presented in a random order, and
the order of the talkers was counterbalanced for each
participant.

SDT Modeling

The modeling methods closely followed previous studies
(Micheyl & Oxenham, 2012; Stacey et al., 2016). SDT
(Green & Swets, 1966) posits that the participant’s abil-
ity to discriminate sensory inputs depends on the differ-
ences in some internal representation between different
signals, and the trial-to-trial variability of the represen-
tation (or ‘‘noise’’): If the difference in the representation
of two different stimuli is large relative to the variability
associated with those representations, then it is easy to
correctly identify the physical stimulus. SDT assumes
that the noise associated with representations is normally
distributed, and that the variance is the same for all pos-
sible stimuli. This means a participant’s performance is
determined by the number of standard deviations separ-
ating the variables’ means. This is basis of the d’ meas-
urement in SDT (for a more detailed treatment of this,
the reader is referred to Chapters 1 and 2 of Macmillan
& Creelman, 1991). Here, we will illustrate how the
model works and its extension to multisensory stimuli.

Consider first the simplest case, where a participant is
required to identify a particular sensory input as belong-
ing to one of two spoken words (referred to here by dif-
ferent numbers, i.e., stimulus i¼ 1 or i¼ 2). The
incoming sensory stimulus is ‘‘represented’’ (somewhere
in the brain) by a number, ai, the mean value of which
depends on the word that is spoken. In addition, even for
the same word, this number is variable from trial to trial.
This reflects both unknown variability in the external
stimulus (e.g., variability inherent in real speech) and
the stochastic nature of processing by the nervous
system. Figure 1(a) shows the distributions of internal
representations which might arise from two different

spoken words. The distributions shown here are not
completely smooth as they are the result of Monte
Carlo simulations, to emphasize that these are sampling
distributions as if derived from perceiving the words to
have been heard thousands of times each.

If the listener has learned these distributions, as would
be assumed for typical adults, then they could use this
information to decide the most likely word being spoken
on any given trial. For two overlapping distributions,
one simply divides the possible range of values from
the combined distributions in two based on where
those distributions cross, and response selection is which-
ever side of the line the current value of ai falls (see ver-
tical dashed line in Figure 1(a)). The less these
distributions overlap, the more likely a response is to
be correct.

To create Figure 1(a), we performed a Monte Carlo
simulation using two random variables with means of 0
and 1.5, both having a standard deviation of 1. This
yields a d0 of 1.5, which corresponds to getting� 77%
of trials correct. In Figure 1(b), we show a similar simu-
lation with a d0 of 1. The distributions are closer
together, and therefore the participant’s performance
will be lower (�69%). For each different stimulus
(here, different words) that must be distinguished and
each circumstance (here, difference in background
sound), there will be a distribution with a different
mean value.

Now consider that these two examples are independ-
ent, auditory and visual sources of information about the
same two possible words (Auditory: Figure 1(a) and
Visual: Figure 1(b)), thus two noisy variables, ai and vi.
We assume that multisensory integration is a process of
combining these variables to form another number: our
audio-visual representation. There are an infinite number
of ways of combining these, but arguably the simplest is
to add them. This gives a new multimodal, noisy internal
variable:

avi ¼ waai þ wvvi ð1Þ

where wa and wv are weights that reflect the relative influ-
ence of each modality. Figure 1(c) shows a Monte Carlo
simulation of adding the audio only (ai) and visual only
(vi), for the two different possible words (i¼ 1, blue; i¼ 2,
red). For example in Figure 1(a) and (b), the difference in
avi is larger than either input individually. However, the
variance of the new distribution, avi, will be larger,
reflecting the combined variability of both inputs.

Furthermore, these resulting distributions and the
ability to discriminate stimuli are also going to depend
on the weights. In Figure 1(c), the weights have been
chosen to maximize the number of standard deviations
separating the two words after integration (wa/wb¼ .414;
recall that both the means and the standard deviation of
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avi are affected by this). This yields two new distributions
separated by� 1.8 standard deviations, that is, a d0 of
1.8. This corresponds to a �82% chance of answering
correctly. No other weighting can improve on this per-
formance: It is the optimal linear sum. This optimal
weighting will depend on the relative discriminability of
the unisensory inputs. The intuitive reason for this is if
one source of information were much more informative

than the other, it would make sense to weight this more
strongly, and in the extreme case to completely ignore
one modality if it is of no use in the decision.

It is possible to compute this d0 using many Monte
Carlo simulations, to optimize the weights. However,
SDT elegantly provides a shortcut to the same answer
(Micheyl & Oxenham, 2012). The combined d0 can be
calculated as:

d0av ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0a
� �2
þ d0v
� �2q

ð2Þ

This equation yields (1þ 1.52)0.5 ¼1.8, just like our
simulation. Thus, given d0A and d0V measured in the uni-
modal conditions, the d0 calculation predicts the optimal
multisensory performance, assuming that statistically
independent, noisy information from two modalities
are combined with a simple weighted sum.

The above description considers that the only sources
of noise in the internal representation arise purely from
the unimodal sources. Any processing that occurs after
the integration is perfect, every time. We call this the
independent noise condition. It is also possible that
noise could instead arise after the integration of infor-
mation. Examples of this might be noise due to inatten-
tion, decision processes, or perhaps other cognitive
sources of noise such as ambiguous lexical information
in a speech task. This is called the late noise model
(Micheyl & Oxenham, 2012).

Figure 1(d) shows a Monte Carlo simulation where
the noise is late, and of the same variance as the previous
independent noise examples. In the unimodal conditions,
discrimination is identical to the independent noise
model. However, in the audio-visual condition, the vari-
ance does not increase from the unimodal conditions,
since it occurs after the integration. Thus, the simulation
delivers a separation of 2.5 standard deviations (SDs)
between the two multimodal distributions (or �89%
correct).

The implication of this assumption of purely late
noise is that d0av now becomes a simple addition of the
individual d0 values:

d 0av ¼ d 0a þ d 0v ð3Þ

Equations 2 and 3 provide a simple but powerful pair
of models to aid the interpretation of the observed pat-
tern of performance data in multisensory experiments,
with no free parameters. Given the unisensory perform-
ance (as d0) in both modalities, we can predict two
extremes of optimal discrimination performance in the
multisensory case, d0av, under two extreme assumptions
about the source of noise in the processing. Importantly,
for each model, the only change in the underlying pro-
cessing between audio and visual conditions is the

Figure 1. Monte Carlo simulations of noisy variables represent-

ing audio, visual, and audio-visual stimuli, representing a simple

example of how SDT can be applied to audiovisual integration.

(a) A simulation of the expected range of values of some internal

representation of two possible audio stimuli. Each is represented

as a normally distributed random variable with SD of 1 and means

of 0 and 1.5, respectively. The vertical dashed line indicates the

best possible criterion (or decision boundary) for deciding

whether the Stimulus 1 or 2 is present. (b) An example similar to

(a), except d0 ¼ 1, which is here representing the two stimuli in the

visual modality. (c) The outcome of adding the visual and auditory

noisy-variables together (independent noise), optimally weighted

to achieve the maximum possible performance. (d) The outcome

of adding the two variables optimally if the source of noise in the

representation arises not from the processing in each modality

separately but from a later process postintegration (late noise).

SDT¼ signal detection theory.
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optimal reweighting of the evidence, which SDT assumes
us to be very good at.

When there are more than two stimulus categories,
such as is typically the case for speech, the relationship
between d0 (which is assumed not to be influenced by the
number of categories) and the proportion of correct
trials that a participant will achieve becomes more com-
plex. However, when presented with stimuli in a single
modality, it can be expressed as a function of the overall
discriminability, d0, of the m different stimulus categories:

P ¼

Z þ1
�1

� z� d0
� �

�m zð Þdz ð4Þ

where �(.) is the standard normal probability density
function, and �(.) is the cumulative standard normal
function. This can also be easily extended to the audio-
visual case, by inserting the corresponding equations
above in place of d0. If it is assumed that the variability
arises purely from the independent representations of the
audio and visual stimuli before they are integrated (i.e.,
independent noise), then the proportion of correct trials
is given by:

P ¼

Z þ1
�1

� z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd0AÞ

2
þ ðd0VÞ

2
q� �

�m zð Þdz ð5Þ

Alternatively, if the variability could arise solely due
to processes occurring after integration, the proportion
of correct trials is given by:

P ¼

Z þ1
�1

� z� ðd0A þ d0VÞ
� �

�m zð Þdz ð6Þ

Following previous studies that have suggested that
open set speech perception is best modeled as dependent
on vocabulary size (Müsch & Buus, 2001), the value of m
was set to 8,000.

It is worth noting that both these formulations assume
that auditory and visual information is independent.
It seems counter-intuitive that this could be true of infor-
mation from lip movements and the overall speech enve-
lope. If the information were significantly correlated then
the value of using both sources of information would be
less than if it were independent, and the models would
overestimate audio-visual performance. However, as we
shall see, audio-visual performance always equals or
exceeds the independent noise model. Thus, there is
little indication that correlations across the modalities
are affecting our results very much.

From these equations, given the audio-only and visual-
only performance observed in the present study, it was pos-
sible to calculate a value of d0A and d0V and use them to
predict performance for the AV conditions. These calcula-
tions were performed on the percentage correct at each

SNR in each condition (reconstructed from the adaptive
tracks), averaged across participants, for both
Experiments 1 and 2, and compared with the observed data.

Thresholds were calculated from the model output by
fitting a logistic function to the predicted AV psychomet-
ric functions, and the SRT was calculated as the 50%
point on this function. Due to the nature of the adaptive
track, psychometric functions were poorly sampled much
below each participant’s threshold. Therefore, fitting was
limited to SNRs where model performance was 30% or
greater. Confidence intervals were estimated for model
SRTs by bootstrapping, simulating variability in per-
formance at each SNR according to binomial statistics.
Psychometric functions were each generated 1,000 times,
assuming 300 trials for each SNR (consistent with the
data across all participants), logistic functions were
fitted, and SRTs were calculated for each iteration.

Results

Experiment 1

Panel A of Figure 2 shows the SRT50s for the audio-only
condition for clear and vocoded speech, and Panel B
shows the audio-visual SRT50s. A repeated-measures
analysis of variance (ANOVA) indicated that SRTs
were affected by the number of background talkers,
F(2, 44)¼ 161.01, p< .001, �2p¼ 0.88, and that this
effect was mediated by whether speech was clear or
vocoded, F(2, 44)¼ 84.11, p< .001, �2p¼ 0.79. The inter-
action appeared to arise because performance with clear
speech was affected to a greater degree by the number of
background talkers, F(2, 44)¼ 221.05, p< .001,
�2p¼ 0.91, than performance in vocoded speech,
F(2, 44)¼ 3.34, p¼ .045, �2p¼ 0.13, as indicated by the
difference in the observed effect sizes. As expected,
SRTs were lower for clear speech (mean: �11.6 dB,
SD: 6.6) than for vocoded speech (5.2 dB, SD: 4.6; F(1,
22)¼ 881.14, p< .001, �2p¼ 0.98).

Average SRTs were lower (better) in audio-visual con-
ditions than in audio-only conditions, F(1, 22)¼ 184.70,
p< .001, �2p¼ 0.89. The benefit received from the visual
information was calculated by measuring difference in
SRT50s between audio-visual and audio-only condi-
tions. Figure 3 shows the average visual speech benefit
for clear and vocoded speech, when there were 1, 2, or 16
background talkers. There was a significant effect of the
number of background talkers on visual benefit,
F(2, 44)¼ 4.17, p< .05, �2p¼ 0.16. There was no overall
significant difference between the level of visual speech
benefit between clear and vocoded speech,
F(1, 22)¼ 0.34, p¼ .57, �2p¼ 0.02, and the interaction
between these two main effects did not reach significance,
F(2, 44)¼ 1.17, p¼ .32, �2p¼ 0.051. The average visual-
only score (not shown) was 1.56% correct (SD: 2.17).
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Figure 4 shows the predicted performance of two dif-
ferent SDT models (see Methods section) plotted over
the raw percentage correct data, reconstructed from the
adaptive tracks. The independent noise model, which
assumes that each sensory modality provides a separate
‘‘noisy’’ source of information about the identity of the
speech, closely approximated the data. The late noise
model, in contrast, assumes that the information con-
tained in each modality is noiseless (i.e., perfect), and
that the limiting factor on performance occurs some-
where in the brain after the audio-visual integration.
The late model predicted that audio-visual performance
would be far higher than observed. The late noise model
actually overpredicted performance to the extent that
estimating SRTs from it was problematic (predicted
AV performance was> 50%), so it was not considered
further. The data appeared consistent with the expect-
ations of SDT and a fairly optimal integration of infor-
mation where the variabilities are independent unimodal
sources. SDT predicts that the visual speech benefit cor-
responds to a minimum gain in performance of

approximately 10% at many SNRs, even though visual
performance alone is� 1.6%.

Figures 2 and 3 also show the audio-visual SRTs pre-
dicted by the independent noise model, and the model
results in terms of the visual speech benefit. In all but two
of the conditions, the model predictions for SRT50s lay
within the interquartile ranges of the data, and in one
case, they were only marginally outside. The independent
noise model predicted the visual speech benefit from 2
and 16 background talkers, with the predictions falling
within the 95% confidence intervals for the data.
However, it underpredicted the larger visual speech bene-
fit received for vocoded speech with a single background
talker by a substantial margin (3.5 dB). This would imply
that there is some change in the way that audio and
visual information is integrated in this condition.

Experiment 2

Inspection of each participant’s responses identified that
seven participants found the auditory intelligibility of
Talker 4 so poor that the adaptive tracks failed to con-
verge on the 50% point in the audio-only vocoded con-
dition. This clearly indicated that we had identified
talkers with a range of intelligibility. However, it was
problematic for statistical analysis. To maximize statis-
tical power, but also to exclude thresholds from tracks
that did not converge, we analyzed clear and vocoded
speech separately. For clear speech, the analysis included
all participants for all talkers, whereas the analysis of the
vocoded conditions necessarily excluded data from

Figure 2. Audio-only (Panel A) and audio-visual (Panel B) speech

reception thresholds for clear and vocoded speech. The rect-

angular boxes show the lower (25%) and upper (75%) quartiles of

the data, with the solid line showing the median. The whiskers

show the 10% to 90% range, and the black dots show outlier data

which fall outside that range. Diamonds show the audio-visual

thresholds predicted by the independent noise model.

Figure 3. Mean visual speech benefit for each condition. Error

bars denote 95% confidence intervals. Diamonds indicate audio-

visual performance predicted from the independent noise model.
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Talker 4. A subsequent comparison of clear and vocoded
performance was conducted by excluding Talker 4 from
all conditions. A separate analysis of the SRTs from
Talker 4, which excludes participants who had failed
tracks, is presented as Supplementary Material.

The clear speech performance for each talker is shown
in Figure 5 Panel A, and the vocoded speech perform-
ance is shown in Panel B. An ANOVA for the clear
speech SRTs revealed a significant main effect of
talker, F(3, 69)¼ 251.77, p< .001, �2p¼ 0.92. In line
with the results from the pilot study, audio-only per-
formance was best with Talker 1 (mean
SRT50¼�14.7 dB, SD: 2.0), and much more favorable
SNRs were needed to understand Talker 4 (mean
SRT50¼ 0.3 dB, SD: 5.2). A significant main effect of
modality was observed, F(1, 23)¼ 167.28, p< .001,
�2p¼ 0.88, such that performance was better in audio-
visual than audio-only conditions. There was also a sig-
nificant interaction between modality and talker, F(3,
69)¼ 11.17, p< .001, �2p¼ 0.33.

A similar pattern of results was found when the
vocoded SRTs were subjected to a repeated-measures
ANOVA. Performance levels varied according to the
talker, F(2, 46)¼ 117.88, p< .001, �2p¼ 0.84:
Performance was better with Talker 1 (mean
SRT50¼�3.31 dB, SD¼ 3.37), and Talker 3 (mean
SRT50¼�3.73 dB, SD¼ 3.84) than with Talker 2

(mean SRT50¼ 1.95, SD¼ 3.76). Performance was also
better in audio-visual than audio-only conditions, F(1,
23)¼ 152.41, p< .001, �2p¼ 0.87, but unlike clear speech
conditions, the interaction between modality and talker
was not significant.

The amount of visual speech benefit for each talker is
shown in Figure 6. There was a significantly larger visual
speech benefit when speech was vocoded (mean¼ 4.68,
SD: 3.28) than when speech was clear (mean¼ 3.74, SD:
2.67; F(1, 23)¼ 5.58, p< .05, �2p¼ 0.20). As intended,
there was a significant main effect of talker,
F(3, 69)¼ 10.55, p< .001, �2p¼ 0.32, but no significant
interaction between talker and speech type,
F(3, 69)¼ 0.84, p¼ .44, ¼ 0.04.

For clear speech conditions only, a significant main
effect of talker was found, F(3, 69)¼ 11.17, p< .001,
�2p¼ 0.33. Post hoc t tests with a Bonferroni correction
revealed that significantly more benefit was obtained
from Talker 2 than Talker 1, t(23)¼ 5.40, p< .001 or
Talker 3, t(23)¼ 3.49, p< .05, and more benefit was
obtained from Talker 4 than from Talker 1,
t(23)¼ 3.85, p< .01, or Talker 3, t(23)¼ 3.19, p< .05.
An analysis on vocoded speech SRTs revealed that
the main effect of talker failed to reach significance,
F(2, 46)¼ 2.21, p¼ .12, �2p¼ 0.09.

Visual-only performance levels were generally low,
with some variability between the four talkers. Average

Figure 4. Bubble plots showing the proportion of key words correctly identified according to signal-to-noise ratio, collapsed across all

participants. The larger the bubble, the more trials were presented at that particular SNR. Predicted audio-visual performance according to

independent noise model is shown as diamonds, and predictions from the late noise model are shown as triangles.
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performance using visual speech information alone
varied from 2.0% for Talker 1 (SD: 2.7), 1.8% for
Talker 2 (SD: 2.6), 1.4% for Talker 3 (SD: 2.1), and
0.6% for Talker 4 (SD: 1.1).

The predicted SRTs and visual benefit for the inde-
pendent noise model are shown in Figures 5 and 6,
respectively. As with Experiment 1, the late noise
model generously overpredicted performance and so its
predictions are not shown. The independent noise model
again captured a qualitative benefit of visual speech
across the conditions (Figure 4), but as before showed
a tendency to underpredict the benefit. Predicted per-
formance was within confidence intervals for Talker 1
in both conditions. However, the additive model under-
predicted performance for the other three talkers, with
nonoverlapping confidence intervals in at least one of the
audio-processing conditions.

Discussion

The aim of the current experiments was to establish how
the benefit that listeners receive from seeing a talking
face varies in response to two manipulations that alter
the nature of the task demands. It was hypothesized that
degrading the speech signal by increasing the number of
background talkers and selecting target talkers of
decreasing auditory intelligibility would increase the
benefit obtained from access to visual speech informa-
tion, in line with the PoIE. Overall, the data present a
mixed picture suggesting that audio-visual integration is

Figure 5. Audio-only and audio-visual speech reception thresholds for clear (Panel A) and vocoded (Panel B) speech for the four

different talkers. Talkers have been ordered according to their intelligibility in the audio-only condition for clear speech. Diamonds indicate

audio-visual performance predicted from the independent noise model. Three talkers are shown for vocoded speech due to the failure of

the adaptive tracks for Talker 4 in the vocoded speech condition.

Figure 6. Levels of visual-speech benefit for each talker. Talkers

have been ordered by their audio-only intelligibility for clear

speech—Talker 1 was the most intelligible, and Talker 4 was the

least intelligible. Diamonds indicate audio-visual performance pre-

dicted from the independent noise model.
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dependent on several factors rather than following this
simple principle.

In Experiment 1, for vocoded speech, there was sig-
nificantly more visual speech benefit in the 1-talker back-
ground noise than the 16-talker noise. This was the only
condition in which the SDT model, which assumed uni-
modal sources of internal noise, could not account for
audio-visual performance. Overall, the visual benefit in
vocoded conditions decreased as the number of talkers
increased, which was also not predicted by the SDT
model. This effect was not driven by any apparent
change in task difficulty related to the choice of back-
ground ‘‘noise’’ as thresholds were similar regardless of
the number of background talkers. In contrast, no dif-
ference was observed in the visual speech benefit for the
clear speech stimuli as the number of background talkers
was increased and those conditions were reasonably well
accounted for by the same SDT model. This result was
observed despite the fact that for clear speech, audio-
only thresholds were affected strongly by the nature of
the background noise in line with previous results (Rosen
et al., 2013). Taken together, the data and model results
suggest that the background noise and stimulus process-
ing altered the demands of the task in such a way as to
drive a change in the way audio and visual information is
integrated, but not in the way predicted by the PoIE.

Although no benefit was found for having visual
information in vocoded speech over clear speech for
the target talker in Experiment 1, this was not the case
for Experiment 2, where participants received greater
visual speech benefit when speech was vocoded com-
pared with when speech was clear. The results from
Experiment 2 are consistent with the results from
Stacey et al. (2016) who also found larger benefits for
vocoded over clear speech. It is possible that the particu-
lar characteristics of the talker used in Experiment 1
meant that no effect was found. It is also possible that
different talkers offer differing levels of visual speech
benefit depending on whether speech is vocoded or not.
For example, in Experiment 2, there was a difference of
1.8 dB between levels of visual speech benefit in clear
speech for Talkers 2 and 3, but in vocoded speech, the
amount of visual speech benefit differed between the
same talkers by only 0.47 dB.

Experiment 2 demonstrated that the value of visual
speech depends on the auditory intelligibility of the
target talker: The most intelligible talker provided the
least amount of visual speech benefit for both clear and
vocoded speech and the least intelligible the greatest
amount of benefit. These results were more in line with
the predictions of the PoIE than those of Experiment 1,
since poorer intelligibility was associated with greater
visual benefit. As in Experiment 1, the independent
noise SDT model could not predict this pattern of benefit
and underpredicted performance overall.

The underprediction itself does not represent a funda-
mental failure of the models. Recall that the late noise
model in both experiments predicted much higher levels
of performance. Participants’ performance was therefore
overall intermediate between the two model extremes.
The simplest interpretation of the data is therefore that
subjects’ performance was limited by a mix of independ-
ent and late-noise sources (although the data are closer
to the independent case). This suggests that a model
incorporating both independent and late-noise would
account for the data slightly better, which was also the
case in our previous study (Stacey et al., 2016).
Unfortunately, as far as we are aware that there is no
formulation for such an intermediate model.

In any case, the lack of any systematic difference in
the independent noise model across conditions suggests
that no single SDT model, with any particular mix of
independent and late noise, could account for the pattern
of results observed in Experiment 2. A mixed-noise
model would increase the overall predicted visual
speech benefit. The only way to model the present data
is if the relative proportions of late and independent
noise were to be different in different conditions.
Therefore, the logical interpretation is that audio-visual
integration is operating somewhat differently depending
on the target talker.

The auditory intelligibility of the target talker may not
have been the only contributory factor to the level of
speech benefit received in Experiment 2. It is also pos-
sible the amount of visual information provided by each
target talker varied (see Conrey & Gold, 2006) and
would therefore contribute to variation in the level of
visual benefit received. While participants tend to focus
on the mouth area when trying to understand visual-only
information (Lansing & McConkie, 2003), Conrey and
Gold (2006) argue that it may be more useful to attend to
other areas of the face to increase understanding of some
target talkers. Therefore, the perceptual strategy of each
participant for each talker may have affected the level of
visual speech benefit they received. This idea is supported
by the fact that visual-only intelligibility also varied
across the target talkers. An additional benefit of evalu-
ating the results in the light of the SDT model is that it
takes account of these differences in visual performance.
Accordingly, the pattern of visual benefit predicted by
the model in clear listening conditions follows the differ-
ences in performance with only visual information avail-
able (Figure 6 cf. VO performance described in
Experiment 2). This pattern is quite different to that of
the visual benefits and suggests that differences in intel-
ligibility based on visual information alone are unlikely
to underlie the effects of talker observed under audio-
visual conditions.

The results of Experiments 1 and 2 suggest that there
are limitations to applying the PoIE to speech perception.
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The principle did not apply equally across all experimen-
tal conditions, for the types of background noise used,
and whether speech was clear or degraded by the use of
vocoding. However, this observation may have resulted in
part due to the use of adaptive procedures that equalized
performance across conditions at 50%. Inspection of per-
formance as a function of SNR (Figure 4) suggested that
the benefit of visual information was maximal at negative
SNRs where audio-only performance was poor (�10%).
Thus, a robust PoIE-compatible effect of varying task
difficulty on visual speech benefit was observed and was
also largely accounted for by simple SDT models. Further
studies using nonadaptive procedures such as the method
of constant stimuli could help to confirm these
observations.

Overall, visual speech benefit is robustly dependent on
intelligibility of the auditory stimulus, is maximal when
performance is low (but not negligible), and a large part
of this is consistent with a simple, optimal integration of
information. However, if intelligibility is kept constant
by measuring at a fixed performance level, some auditory
conditions can still influence integration, and in a way
that implies that the integration process is changing. We
speculate that, consistent with the concepts of unimodal
independent and later multimodal and potentially higher
level sources of internal noise (Micheyl & Oxenham,
2012), this could reflect changes in the task demands
between relying on low-level sensory or high level more
cognitive or linguistic information.

Given the large variation in CI users’ outcomes (Pisoni,
Kronenberger, Chandramouli, & Conway, 2016) and the
importance of implants for these patients’ long-term
health outcomes (Hilly et al., 2016; Vermeire et al.,
2005) and quality of life (e.g., Hawthorne et al., 2004), it
is important to ensure that performance is measured
accurately and consistently in the presence of background
noise and when visual information is available. An
important implication of the results is that careful atten-
tion should be paid to the selection of stimuli to be used in
research. This applies to the type of background noise and
the intelligibility of the target talker. Replication of results
across studies and comparison of performance across con-
ditions within studies appear problematic if these factors
are not controlled for. This concern may apply equally to
assessments of CI users if it can be assumed that the pat-
tern of results obtained using vocoding in these experi-
ments approximates their performance.

Vocoder studies provide a valuable first step in under-
standing the benefits of visual speech information that
might be obtained in a range of circumstances by users of
implants. However, limitations of the vocoding tech-
nique used here should be acknowledged, as the tech-
nique simply simulates the consequences of removing
TFS from the signal and filtering it into a number of
discrete frequency bands. Other difficulties faced by CI

users, such as spiral ganglion excitability (Horne,
Sumner, & Seeber, 2016), among others, are not simu-
lated. In addition, the tone vocoding used in the present
study did not limit the range of modulations extracted
from each channel, meaning that there will be F0 related
modulations in the extracted envelopes. These stimuli
will therefore have provided more information about
F0 than would be accessible to typical CI users (Souza
& Rosen, 2009). Future studies could remove these F0
cues by low-pass filtering the envelopes at 30Hz, or by
using a noise-excited vocoder to make these cues less
salient.

Conclusions

The current experiments have shown that the amount of
visual speech benefit gained varies according to the task
demands. Specifically, the number of talkers in the back-
ground noise and the auditory intelligibility of the target
talker have an impact on the extent to which people
benefit from seeing a talking face. These effects were
not predicted fully by a simple SDT model and suggest
that the nature of audio-visual integration differs as task
demands are varied. Overall, the results highlight the
complexity of assessing and interpreting audio-visual
speech perception abilities. Clinicians and researchers
should consider the characteristics of their stimuli care-
fully when assessing audio-visual speech perception abil-
ities. Further study of influencing factors and
mechanisms of integration is required if we are to maxi-
mize the benefit of access to auditory and visual infor-
mation in hearing-impaired people.
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