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Introduction	(150	words)	=	148	

We	identified	rare	coding	variants	associated	with	Alzheimer’s	disease	

(AD)	in	a	3-stage	case-control	study	of	85,133	subjects.	In	stage	1,	34,174	

samples	were	genotyped	using	a	whole-exome	microarray.	In	stage	2,	we	

tested	associated	variants	(P<1x10-4)	in	35,962	independent	samples	using	de	

novo	genotyping	and	imputed	genotypes.	In	stage	3,	we	used	in	silico	analysis	

to	test	the	most	significant	stage	2	associations	(P<5x10-8)	in	a	further	14,997	

samples.	We	observed	3	novel	genome-wide	significant	(GWS)	AD	associated	

coding	variants;	a	protective	variant	in	PLCG2	(rs72824905/p.P522R,	

P=5.38x10-10,	OR=0.68,	MAFcases=0.0059,	MAFcontrols=0.0093),	a	risk	variant	in	

ABI3	(rs616338/p.S209F,	P=4.56x10-10,	OR=1.43,	MAFcases=0.011,	

MAFcontrols=0.008),	and	a	novel	GWS	variant	in	TREM2	(rs143332484/p.R62H,	

P=1.55x10-14,	OR=1.67,	MAFcases=0.0143,	MAFcontrols=0.0089).	These	protein-

coding	changes	are	in	genes	highly	expressed	in	microglia	and	highlight	an	

immune-related	protein-protein	interaction	network	enriched	for	previously	

identified	AD	risk	genes.	Thus,	the	microglia-mediated	innate	immune	

response	contributes	directly	to	AD	development.	
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Text	(1500	words)	=	1500	

Late-onset	AD	(LOAD)	has	a	significant	genetic	component	(h2=58-79%1).	

Nearly	30	common	LOAD	susceptibility	loci2–12	are	known,	and	risk	is	

significantly	polygenic13.	However,	these	loci	explain	only	a	proportion	of	

disease	heritability.	Rare	variants	also	contribute	to	disease	risk14–17.	Recent	

sequencing	studies	identified	a	number	of	genes	with	rare	AD	associated,	and	

candidate	susceptibility	variants	9–11,18–24.	Our	approach	to	rare-variant	

discovery	is	to	use	powerful	samples	and	genome-wide	micro-arrays	targeting	

known	exome	variants,	a	cost-effective	alternative	to	de	novo	sequencing	with	

proven	utility25–29.	

We	applied	a	3-stage	design	(SFigure1)	using	subjects	from	the	

International	Genomics	of	Alzheimer’s	Project	(IGAP)(Table1,	STables1&2).	In	

stage	1,	16,097	LOAD	cases	and	18,077	cognitively	normal	elderly	controls	

were	genotyped	using	the	Illumina	HumanExome	microarray.	Data	from	

multiple	consortia	were	combined	in	a	single	variant	meta-analysis	

(Supplement)	assuming	an	additive	model.	In	total,	241,551	variants	passed	

quality-control	(STable3).	Of	these	203,902	were	polymorphic,	26,947	were	

common	(minor	allele	frequency	(MAF)≥5%),	and	176,955	were	low	frequency	

or	rare	(MAF<5%).	We	analyzed	common	variants	using	a	logistic	regression	

model	in	each	sample	cohort	and	combined	data	using	METAL30.	Rare	and	low	

frequency	variants	were	analyzed	using	the	score	test	and	data	combined	with	

SeqMeta31	(SFigure2).	

We	reviewed	cluster	plots	for	variants	showing	association	(P<1x10-4)	

and	identified	43	candidate	variants	(STable4)	exclusive	of	known	risk	loci	

(STable5).	Stage	2	tested	these	for	association	in	14,041	LOAD	cases	and	
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21,921	controls,	using	de	novo	and	imputation	derived	genotypes	

(Supplement).	We	carried	forward	single	nucleotide	variants	(SNVs)	with	GWS	

associations	and	consistent	directions	of	effect	to	stage	3	where	genotypes	for	

6,652	independent	cases	and	8,345	controls	were	determined	using	the	

Haplotype	Reference	Consortium	resource32,33	(Supplement).	

We	identified	four	rare	coding	variants	with	GWS	association	signals	

with	LOAD	(P<5x10-8)(Table2,	STables6&7).	The	first	with	missense	variant	

p.P522R	(P=5.38x10-10,	OR=0.68)	in	Phospholipase	C	Gamma	2	(PLCG2)(Table2,	

Figure1a,	STable8,	SFigure3).	This	variant	is	associated	with	decreased	risk	of	

LOAD,	showing	a	MAF	of	0.0059	in	cases	and	0.0093	in	controls.	The	reference	

allele	(p.P522)	is	conserved	across	several	species	(SFigure4).	Gene-wide	

analysis	showed	nominal	evidence	for	association	at	P=1.52x10-4	(STables9&10)	

and	we	found	no	other	independent	association	at	this	gene	(SFigure5).	

The	second	novel	association	is	missense	change	p.S209F	(P=4.56x10-10,	

OR=1.43)	in	B3	domain-containing	transcription	factor	ABI3	(ABI3).	The	p.F209	

variant	shows	consistent	evidence	for	increasing	LOAD	risk	across	all	stages,	

with	a	MAF	of	0.011	in	cases	and	0.008	in	controls	(Table2,	Figure1b,	STable11,	

SFigure6).	The	reference	allele	is	conserved	across	multiple	species	(SFigure7).	

Gene-wide	analysis	showed	nominal	evidence	of	association	(P=5.22x10-

5)(STables9&10).	The	B4GALNT2	gene,	adjacent	to	ABI3,	contained	an	

independent	suggestive	association	(SFigure8),	but	this	failed	to	replicate	in	

subsequent	stages	(Pcombined=1.68x10-4)(STable6).	

Following	reports	of	suggestive	association	with	LOAD34,	we	report	the	

first	evidence	for	GWS	association	at	TREM2	coding	variant	p.R62H	(P=1.55x10-

14,	OR=1.67),	with	a	MAF	of	0.0143	in	cases	and	0.0089	in	controls	(Table2,	

Figure1c,	STable12,	SFigures9&10).	We	also	observed	evidence	for	the	
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previously	reported9,11	TREM2	rare	variant	p.R47H	(Table2).	These	variants	are	

not	in	linkage	disequilibrium	(STable13)	and	conditional	analyses	confirmed	

that	p.R62H	and	p.R47H	are	independent	risk	variants	(SFigure11).	Gene-wide	

analysis	showed	a	GWS	association	(PSKAT=1.42x10-15)(STables9&10).	Removal	

of	p.R47H	and	p.R62H	variants	from	the	analysis	diminished	the	gene-wide	

association	but	the	signal	remains	interesting	(PSKAT-O=6.3x10-3,	PBurden=4.1x10-

3).	No	single	SNV	was	responsible	for	the	remaining	gene-wide	association	

(STable12,	SFigure11)	suggesting	that	there	are	additional	risk	variants	in	

TREM2.		We	previously	reported	a	common	variant	LOAD	association	near	

TREM2,	in	a	GWAS	of	cerebrospinal	fluid	tau	and	P-tau35.	We	have	also	

observed	a	different	suggestive	common	variant	signal	in	another	LOAD	case-

control	study	(P=6.3x10-7)2.		

We	undertook	a	pathway	analysis	of	the	eight	gene	clusters	previously	

identified	as	enriched	for	common	variants36	(Supplement,	STable14).	Here	we	

considered	only	rare	variants	(MAF<1%)	and	used	Fisher’s	method	to	combine	

gene-wide	p-values	for	all	genes	in	each	cluster.	After	correction,	we	observed	

enrichment	for	immune	response	(P=8.64x10-3),	cholesterol	transport	

(P=3.84x10-5),	hemostasis	(P=2.10x10-3),	Clathrin/AP2	adaptor	complex	

(P=9.20x10-4)	and	protein	folding	(P=0.02).		

Previous	analysis	of	normal	brain	co-expression	networks	identified	4	

gene	modules	that	are	enriched	for	common	variants	associated	with	LOAD	

risk2,36.	These	4	modules	are	enriched	for	immune	response	genes.	There	are	

151	genes	present	in	2	or	more	of	these	4	modules	that	show	strong	

enrichment	(P=4.0x10-6)	for	LOAD-associated	common	variants2.	Gene-set	

analysis	of	these	151	genes	showed	significant	association	with	rare	variants	

(MAF<1%)(STable14,	P=1.17x10-6).	From	these,	we	identified	a	subset	of	56	
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genes,	including	PLCG2,	ABI3	and	TREM2,	connected	by	high-quality	protein-

protein	interactions37	(Figure2a)(Supplement).	This	subset	is	strongly	enriched	

for	association	signals	from	both	the	previous	common	variant	analysis	

(P=5.0x10-6,	STable15)	and	this	rare	variant	gene-set	analysis	(P=1.08x10-7,	

STable14).	The	remaining	95	genes	do	not	show	enrichment	for	association	in	

this	study	or	in	the	previous	study	(STables14&15),	suggesting	that	the	56-gene	

(STable16)	network	is	driving	the	enrichment	observed	in	the	common-variant	

GWAS.	

TREM2,	ABI3	and	PLCG2	have	a	common	expression	pattern	in	human	

brain	cortex,	with	high	expression	in	microglia	cells	and	limited	expression	in	

neurons,	oligodendrocytes,	astrocytes	and	endothelial	cells	(Figure2b,	

SFigure12)38.	Other	known	LOAD	loci	with	the	same	expression	pattern	include	

SORL1,	the	MS4A	gene	cluster,	and	HLA-DRB1.	PLCG2,	ABI3,	and	TREM2	are	

up-regulated	in	LOAD	human	cortex	and	in	two	APP	mouse	models.	However,	

when	corrected	for	levels	of	other	microglia	genes,	these	changes	in	

expression	appear	to	be	related	to	microgliosis	(STables17&18).		

PLCG2	(SFigure13)	encodes	a	transmembrane	signaling	enzyme	(PLCɣ2)	

that	hydrolyses	the	membrane	phospholipid	PIP2	(1-phosphatidyl-1D-myo-

inositol	4,5-bisphosphate)	to	secondary	messengers	IP3	(myo-inositol	1,4,5-

trisphosphate)	and	DAG	(diacylglycerol).	IP3	is	released	into	the	cytosol	and	

acts	at	the	endoplasmic	reticulum	where	it	binds	to	ligand-gated	ion	channels	

to	increase	cytoplasmic	Ca2+.	DAG	remains	bound	to	the	plasma	membrane	

where	it	activates	two	major	signaling	molecules,	protein	kinase	C	(PKC)	and	

Ras	guanyl	nucleotide-releasing	proteins	(RasGRPs),	which	initiate	the	NF-κB	

and	mitogen-activated	protein	kinase	(MAPK)	pathways.	While	the	

IP3/DAG/Ca+2	signaling	pathway	is	active	in	many	cells	and	tissues,	in	brain,	
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PLCG2	is	primarily	expressed	in	microglial	cells.		PLCG2	variants	also	cause	

Antibody	Deficiency	and	Immune	Dysregulation	(PLAID)	and	Autoinflammation	

and	PLAID	(APLAID)39.	Genomic	deletions	(PLAID)	and	missense	mutations	

(NPLAID)	affect	the	cSH2	autoinhibitory	regulatory	region.	The	result	is	a	

complex	mix	of	loss	and	gain	of	function	in	cellular	signalling39.		

Functional	annotation	(STable19)	suggests	ABI3	(SFigure14)	plays	a	role	

in	the	innate	immune	response	via	interferon-mediated	signaling40.	ABI3	is	co-

expressed	with	INPP5D	(P=2.2x10-10),	a	gene	previously	implicated	in	LOAD	

risk2.	ABI3	plays	a	significant	role	in	actin	cytoskeleton	organization	through	

participation	in	the	WAVE2	complex41,	a	complex	that	regulates	multiple	

pathways	leading	to	T-cell	activation42.	

TREM2	encodes	a	transmembrane	receptor	present	in	the	plasma	

membrane	of	brain	microglia	(SFigure15).	TREM2	protein	forms	an	immune-

receptor-signaling	complex	with	DAP12.	Receptor	activation	results	in	

activation	of	Syk	and	ZAP70	signaling	which	in	turn	activates	PI3K	activity	and	

influences	PLCɣ2	activity43.		In	microglia,	TREM2-DAP12	induces	an	M2-like	

activation44	and	participates	in	recognition	of	membrane	debris	and	amyloid	

deposits	resulting	in	microglial	activation	and	proliferation45–47.		When	TREM2	

knockout	(KO)	or	TREM2	heterozygous	KO	mice	are	crossed	with	APP-

transgenics	that	develop	plaques,	the	size	and	number	of	microglia	associated	

with	plaques	are	markedly	reduced46,47.	TREM2	risk	variants	are	located	within	

exon	2,	which	is	predicted	to	encode	the	conserved	ligand	binding	extracellular	

region	of	the	protein.	Any	disruption	in	this	region	may	attenuate	or	abolish	

TREM2	signaling,	resulting	in	the	loss	or	decrease	in	TREM2	function47.	

This	56-gene	interaction	network	identified	here	is	enriched	in	immune	

response	genes	and	includes	TREM2,	PLCG2,	ABI3,	SPI1,	INPP5D,	CSF1R,	SYK	
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and	TYROBP	(Figure2a).	SPI1	is	a	central	transcription	factor	in	microglial	

activation	state	that	has	a	significant	gene-wide	association	with	AD5	and	is	in	

the	proximity	of	GWS	signals	identified	by	IGAP2.	Loss-of	function	mutations	in	

CSF1R	cause	hereditary	diffuse	leukoencephalopathy	with	spheroids,	a	white	

matter	disease	related	to	microglial	dysfunction48.	Activated	microglial	cells	

surround	plaques49,50,	a	finding	consistently	observed	in	AD	brain	and	AD	

transgenic	mouse	models51.	In	AD	mouse	model	brain,	synaptic	pruning	

associates	with	activated	microglial	signalling52.	Pharmacological	targeting	of	

CSF1R	inhibits	microglial	proliferation	and	shifts	the	microglial	inflammatory	

profile	to	an	anti-inflammatory	phenotype	in	murine	models53.	SYK	regulates	

Aβ	production	and	tau	hyperphosphorylation54,	is	affected	by	the	

INPP5D/CD2AP	complex55	encoded	by	two	LOAD	associated	genes2,	and	

mediates	phosphorylation	of	PLCG256.	Notably,	the	anti-hypertensive	drug	

Nilvadipine,	currently	in	a	phase	III	AD	clinical	trial,	targets	SYK	as	well	as	

TYROBP,	a	hub	gene	in	an	AD-related	brain	expression	network38,that	encodes	

the	TREM2	complex	protein	DAP12.	

	 We	identified	three	rare	coding	variants	in	PLCG2,	ABI3	and	TREM2	with	

GWS	associations	with	LOAD	that	are	part	of	a	common	innate	immune	

response.		Our	network	analysis	also	suggests	that	the	adaptive	immune	

system	may	be	involved	in	AD	pathogenesis,	but	further	work	is	needed	to	

strengthen	this	conclusion.	Our	findings	show	that	the	microglial	response	in	

LOAD	is	directly	part	of	a	causal	pathway	leading	to	disease	and	is	not	simply	a	

downstream	consequence	of	neurodegeneration46,47,57,58.		PLCɣG2,	as	an	

enzyme,	represents	the	first	classically	drug-able	target	to	emerge	from	LOAD	

genetic	studies.	
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