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Abstract 

Purpose – The purpose of this paper is to examine how and why outsiders, rather than 

incumbents, are able to take advantage of technological discontinuities. 

Design/ methodology/approach – The paper employs a case study of a single 

innovation that transformed the technology of Formula 1 motor racing. 

Findings – The findings show how social capital made up of ‘weak ties’ in the form 

of informal personal networks, enabled an outsider to successfully make the leap to a 

new technological regime. 

Practical implications – The findings show that where new product development 

involves a shift to new technologies, social capital can have an important part to play. 

Originality/value – It is widely accepted that radical innovations are often 

competence destroying, making it difficult for incumbents to make the transition to a 

new technology. The findings show how the social capital of outsiders can place them 

at a particular advantage in utilizing new technologies. 
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1. Introduction 

Studies of a number of industry sectors (Christensen, 1997) have shown that radical 

innovations are significantly more likely to originate with firms that are outsiders 

rather than industry incumbents, especially if the innovations involve competence 

destroying rather than competence enhancing technological discontinuities. However 

research into this phenomenon has tended to focus on the failings of incumbents 

rather than the strengths of outsiders. 

This study attempts a reassessment by focusing on the role of outsiders. It presents a 

case study drawn from the world of Formula 1 motor racing described by Jenkins and 

Floyd (2001: 949) as the, ‘pinnacle of automotive technology’. The focus of the study 

is a single radical innovation, the introduction of the moulded carbon fibre chassis 

during the 1980s. It aims to analyse the attributes of outsiders that make them well 

placed, or certainly better placed than their counterparts in incumbent firms, to 

capitalise on the introduction of path-breaking new technologies. The particular 

attribute that forms the focus of the study is the social or relational capital of the 

designers and engineers responsible for the development of Formula 1 racing cars and 

the circumstances under which this can help them to access external knowledge and 

expertise that can provide the basis of a new or emerging technological regime. 

The study offers the prospect not only of enhancing our understanding of why 

outsiders are often the ones responsible for bringing about technological 

discontinuities, it also sheds light on the value of relational capital in connection with 

innovation and new product development. In the process it highlights the nature of 

the problems created by technological discontinuities. 

The paper is structured in seven sections. Following this introduction, section two 

outlines the literature on technological discontinuities and social capital, while the 

third section outlines the methodology employed. Section four reviews earlier 

technological discontinuities in Formula 1. Section five presents the case study which 

examines a single radical innovation and the part played by outsiders in bringing it 

about. Section six analyses the part played by social capital in the innovation process, 

while the final section outlines the contribution of this case study to our knowledge of 

competence destroying technological discontinuities. 
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2. Literature Review 

Much technological change is actually incremental, involving relatively modest 

advances that build on existing practice (Nelson and Winter, 1982). As such it is 

evolutionary rather than revolutionary. However the process of continuous evolution 

is punctuated from time to time by discontinuous change (Romanelli and Tushman, 

1994) in the form of major technological advances and breakthroughs. These 

advances and breakthroughs form ‘technological discontinuities’ (Foster, 1986: 35), 

that represent a step change as one technology is replaced by another. The result is 

typically the emergence of entirely new products or substitutes for existing products. 

Technological discontinuities disrupt (Christensen, 1997) and set in train a new 

direction for what Christensen and Rosenbloom (1995: 234) term the ‘performance 

trajectory’. As an existing technology reaches the limits of its S-curve (i.e. the 

relationship between performance and engineering effort), so a switch to a new S-

curve with a new performance trajectory (Foster, 1986) starts to take place (see figure 

1). According to Foster (1986) it is this gap between S-curves that constitutes a 

technological discontinuity. So significant is the technological change associated 

with the advances and breakthroughs involved that, as Tushman and Anderson (1986: 

44) note, ‘no increase in scale, efficiency or design can make older technologies 

competitive with the new technology’. The result is a dramatic improvement in cost, 

performance or quality over existing products (Anderson and Tushman, 1990). 

However such breakthroughs occur relatively rarely and are watershed events. Often 

such is the impact of technological discontinuities on the competitive landscape that 

they have disruptive effects on the structure of the industry (Ehrnberg, 1995; Mensch, 

1979). 

*********** 

Insert Figure 1 

*********** 

Technological discontinuities are not homogeneous. Tushman and Anderson (1986) 

distinguish between those technological discontinuities that are ‘competence 

destroying’ and those that are ‘competence enhancing’. Competence destroying 
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technological discontinuities involve the introduction of technologies that are so 

fundamentally different from existing ones that they draw on a different technology 

base, demanding new techniques and know-how and the development of qualitatively 

new technological capabilities within the innovating firm (Christensen, 1997; 

Rosenbloom and Christensen, 1994). Thus much of the accumulated expertise 

associated with a technology that has been built up over many years rapidly becomes 

obsolete. Competence enhancing discontinuities on the other hand involve 

technologies which, while they may lead to significant improvements in performance, 

tend to build on existing know-how and an established knowledge base rather than 

overturning it. Competence enhancing technological discontinuities may therefore be 

seen as taking place within what Van De Poel (2000: 384) terms an existing 

‘technological regime’, that is to say existing techniques, know-how and capabilities. 

While competence-enhancing technological discontinuities tend to originate with 

incumbent (i.e. existing) firms, a body of research (Hill and Rothaermel, 2003) points 

to competence-destroying technological discontinuities being attributable to outsiders 

rather than incumbents. In industries as diverse as disk drives (Christensen, 1997), 

mechanical excavators (Christensen, 1997), personal computers (Campbell-Kelly, 

2004), jet engines (Constant, 1980), VCRs (Rosenbloom and Cusumano, 1987) and 

digital imaging (Tripsas and Gavetti, 2000), the lead in developing radical innovations 

was taken by outsiders, that is new entrants who were not established players in the 

industry. A study by Tushman and Anderson (1986) found that seven out of 11 

competence destroying discontinuities they studied originated from new firms and in 

a similar study by Utterback (1994) the proportion was 26 out of 31. In contrast both 

studies found that competence enhancing discontinuities were dominated by 

incumbent firms. 

Outsiders are defined by Van de Poel (2000) as being individuals or firms outside an 

existing system of interaction (i.e. network) within which technological development 

takes place. As such they typically do not share the guiding principles about the 

design and development of the technology concerned. The guiding principles 

represent an existing technological regime associated with a particular product and the 

technology that lies at its heart. Very often these guiding principles are implicit and 

followed by actors on the basis of habit or tacit knowledge. No matter how they are 
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formed, outsiders will tend to be people or organisations that in some way, perhaps by 

virtue of their prior experience, do not entirely share the guiding principles associated 

with a particular technology. 

A variety of explanations have been offered to explain why it is that competence 

destroying technological discontinuities tend to be pioneered by outsiders. In general 

these explanations have focused on incumbent firms and the difficulties they 

encounter when faced with a new and radically different technology. Among the most 

widely cited explanations for incumbents failure to innovate are organisational inertia 

that may constrain the actions of incumbents, economic incentives that lead 

incumbents to favour incremental rather than radical innovation, and the tendency for 

incumbents to focus on meeting the needs of existing customers rather than exploring 

new applications (Hill and Rothaermel, 2003). The factors identified as leading 

outsiders to pioneer radical innovations tend to be the converse of those that constrain 

incumbents. Hence the absence of internal inertia and the freedom to focus on new 

market niches without worrying about existing customers, are cited as advantages that 

outsiders possess (Hill and Rothaermel, 2003), as is the incentive to invest in 

unproven technologies as a means of getting round barriers to entry. One of the few 

studies to take a different line is that by Van de Poel (2000: 389) who suggests that 

outsiders benefit from not knowing the rules or conventions of an established 

technological regime, and are thus not likely to be constrained by them. Linked to this 

factor is the possibility that because they are not part of an existing technological 

regime outsiders may possess social or relational capital, frequently cited as an 

important factor in innovation (Conway, 1997), that is more diverse than that of 

incumbents. 

Social, or relational capital, is defined by Nahapiet and Ghoshal (1998) as the 

potential resources that are available through the network of relationships that an 

individual possesses. These resources comprise both people and knowledge/ 

information. Hence social capital comprises two key dimensions (Schiuma, et al., 

2008), a structural element – knowing the right people (Burt, 2005) and a content 

element – knowing people with the right knowledge/ information (Adler and Kwon, 

2002). The structural element of social capital derives from the way individuals can 

benefit from having more diverse contacts by virtue of the range of different networks 
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(i.e. groups) with which they are associated. Individuals whose contacts span a 

number of different groups or networks will tend to possess greater social capital in 

terms of the breadth of knowledge to which they potentially have access, compared to 

those whose networks are confined to just one or a small number of groups. Burt 

(2005) suggests that having contacts that span several different networks or groups 

provides scope for what he terms ‘brokerage’, that is facilitating the transfer of 

knowledge between groups. The significance of this for innovation is illustrated by 

the example that Burt (2005: 73) cites of Eugene Stoner, who was able to combine 

contacts from his experience as an ordnance technician in the US Marines with 

contacts from his time at the aerospace contractor Fairchild, in the development of a 

revolutionary new ultra-light assault rifle, the M-16. 

There is considerable debate about the nature of the linkages associated with social 

capital, in particular over the relative benefits of strong and ‘weak ties’. The latter 

comprise informal links that are not well established, with infrequent contact and little 

or no emotional commitment. Though one might intuitively expect such links to be of 

limited value because of their informal nature, in fact Granovetter (1973) has shown 

that the diversity associated with weak ties can be an invaluable source of knowledge. 

Similarly Hayton (2005:149) notes that the greater the diversity of an individual’s 

experience, the more diverse the sources of social capital, which can provide ‘access 

to a broader range of social and professional networks from which new ideas can be 

acquired’. Studies of the biotechnology industry (Rickne, 2006; Shan et al., 1994; 

Powell et al., 1996) have shown how in science-based businesses in particular, the 

quality of social capital in the form of well developed networks, is often linked to 

firms’ performance in terms of innovation. 

Thus those placed outside or at least on the periphery of an industry or sector, may 

actually be well placed in terms of social capital when it comes to innovation. With 

more diverse experience, more diverse links/contacts, albeit weak ones, when 

competence destroying discontinuities occur they may be better placed than those 

within a well established technological regime, because their social capital may 

provide the means of accessing external knowledge and expertise that may provide 

the basis of a new or emerging technological regime. 
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3. Methodology 

The study presented here is based on a single case, a research approach that has been 

used extensively in the analysis of decision making processes (Allison, 1971; 

Vaughan, 1996). The unit of analysis is a radical innovation that formed a competence 

destroying technological discontinuity, something that is comparatively rare even in a 

technology-led sector like Formula 1. The innovation in question was one of a small 

number of radical innovations to have transformed Formula 1 in the last 60 years. As 

such it represented a major technological discontinuity which had far reaching 

consequences. 

The case study was derived from documentary sources, located in the public domain. 

This did not prove problematic since as Lazonick and Prencipe (2005: 502) note, ‘in 

the age of the internet one can go quite far in doing company level research…by 

relying on publicly available information’. Furthermore the sporting nature of the 

sector means that, as earlier researchers (Henry and Pinch, 2000; Jenkins and Floyd, 

2001; Jenkins, 2010) have noted, large quantities of high quality data are available. 

A range of documentary sources were used. As others (Henry and Pinch, 2000) have 

noted specialist periodicals in this field offer a wealth of material that can provide a 

valuable ‘behind the scenes’ perspective on Formula 1. Consequently the first and 

most extensively used source was the searchable digital archive of the specialist 

periodical, Motor Sport, covering a 40 year period from 1960 – 1999. This archive 

includes detailed reports on every Formula 1 race over this period, as well as articles 

on particular constructors, technical analysis and in-depth interviews of key 

individuals such as designers, team principals and technical staff. Using this, data 

about the development of Formula 1 chassis technology was extracted. This was 

supplemented by further data, much of it technical in nature, gathered from specialist 

technical publications such as Racecar Engineering, Professional Engineering and 

Engineering Failure Analysis, which had in turn been identified from online databases 

including Business Source Complete and ScienceDirect. In addition a number of other 

specialist periodicals such as F1 Racing and Classic Cars, as well as specialist 

websites such as F1complete.com, were also consulted. 
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The data gathered in this way was supplemented by corroborative material gathered 

from specialist texts documenting various aspects of Formula 1. These fell into one of 

two broad categories, those that were essentially of a technical nature examining 

aspects of Formula 1 technology (Henry, 1988; Wright, 2001) and historical studies. 

The latter comprised biographies of designers (Crombac, 1996; Ludvigsen, 2010), 

corporate histories of Formula 1 teams/constructors and suppliers (Nye, 1984: Robson, 

1999) and studies of the motor sport industry in the UK (Aston and Williams, 1996; 

Beck-Burridge and Walton, 2000). In general the data gathered from these sources 

was used to cross-reference that gathered earlier, although it also provided a 

substantial amount of contextual detail, which helped to place the development of 

carbon fibre applications in a broader context. 

Having amassed a substantial body of data in this way it was then subjected to 

content analysis (Bryman and Bell, 2007) using a simple manual coding system based 

on critical incidents, key actors, and inter-personal links in relation to the 

development of chassis technology. From this a timeline tracing the historical path 

around the focal event – the introduction of the first moulded carbon fibre chassis in 

Formula 1 was produced which in turn formed the basis of the narrative for the 

detailed in-depth case study. 

Documentary sources like other forms of data have their limitations. Two key issues 

in terms of the quality of evidence provided by such sources are, as Scott (1990: 6) 

notes, authenticity, and credibility. Authenticity is a matter of ensuring that the 

evidence is genuine and actually is what it purports to be, while credibility is a matter 

of ensuring that the events described are believable and can be taken at face value. 

The use of a number of different types of document ensures the quality of the 

evidence used. The various types of document used were written by specialist 

technical authors and journalists, many of whom have previously worked in the sport 

often in a technical role. As a result they know and have worked with many of the 

individuals and teams they write about. This close contact and engagement helps to 

ensure they provide an authentic (i.e. genuine) account of events. Similarly because 

the audience for these documents is made up largely of followers of the sport, with 
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detailed knowledge of technical issues and personalities and a propensity for detailed 

scrutiny, credibility is not an issue either. 

A particular benefit of the multiplicity of different documentary sources used is that it 

allows the events described to be placed in the longer term context of the development 

of Formula 1 chassis technology, and in the process provides insights into the long 

term dynamics of the technological discontinuities themselves. 

4. Technological discontinuities in Formula 1 chassis technology 

The chassis represents a key part of a racing car, since it is the central load bearing 

structure (Gilchrist and Curley, 1999). Until the 1940s virtually all racing cars 

employed a twin beam structure (see table 1) comprising two longitudinal steel beams 

or tubes linked by cross members (Tipler, 2001). This was the same design used by 

road cars at the time and by trucks even today. Though strong, this type of structure 

was heavy and prone to flexing when cornering at speed. Although this detracted from 

the car’s handling, pre-war racing was primarily about engine power (Jenkins, 2010) . 

*********** 

Insert Table 1 

*********** 

The late 1940s saw the first technological discontinuity in chassis design with the first 

series produced racing car, the Italian Cisitalia D46 designed by Giovanni Savonuzzi 

(Ludvigsen, 2010), utilizing a tubular steel spaceframe chassis. This radical 

innovation dispensed with the two longitudinal members in favour of a multi-tubular 

welded structure comprising small diameter steel tubes. The spaceframe retained the 

requirement for a separate body, but it was light, strong and cheap and easy to 

construct and rapidly became the norm in Formula 1 during the 1950s. 

Throughout the 1950s and early 1960s the tubular steel spaceframe reigned supreme 

(Tipler, 2002). But a shift to less powerful engines in 1961, forced designers to place 

greater emphasis on chassis technology (Jenkins, 2010). Innovation came not from 

established teams like Ferrari but a relative newcomer, Lotus. Developed in great 

secrecy (Crombac, 1996), on the 18th May 1962 (Tipler, 2002: 28) the team’s young 
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designer Colin Chapman unveiled the Lotus 25, a car with an entirely new kind of 

chassis, employing a riveted monocoque structure (Jenkinson, 1962), in which the 

aluminium skin itself was made to carry the structural load. Chassis and body formed 

a single integrated structure as on an aircraft (Constant, 1980). Not only was the Lotus 

25 chassis radically different in structural terms from the tubular steel spaceframes 

then in use, utilizing a different material, aluminium sheet, and fabricated using 

aircraft style riveting (Ludvigsen, 2010), it provided greater rigidity for less weight 

(Jenkinson, 1962). 

It soon became apparent that Chapman had ‘stolen a march on his rivals’ (Tipler, 

2002: 28). The riveted monocoque structure was not only lighter than a conventional 

tubular steel spaceframe, it also possessed exceptional torsional rigidity (Tipler, 2002), 

which in turn made the tyres work more efficiently thereby significantly improving 

the car’s handling. In its first season the Lotus 25 suffered with minor technical 

problems, but the following year Jim Clark won seven out of ten Formula 1 world 

championship races, giving Lotus its first constructor’s title (see table 2). Such was 

the car’s dominance that over four seasons from 1962 to 1965 Lotus won 19 of the 39 

world championship races (Crombac, 1996: 119). Where Chapman led the Formula 1 

community quickly followed (Aird, 2010). 

*********** 

Insert Table 2 

*********** 

The introduction of powerful turbocharged engines in the 1970s formed the precursor 

to a third technological discontinuity. Teams reliant on the conventionally aspirated 

Cosworth DFV V8 engine found themselves under pressure (Henry, 1988), leading 

them to look to technical ingenuity in chassis design to remain competitive. Thus was 

born the era of ‘ground effects’, where designers used the shape of the underside of 

the car to create downforce that would improve a car’s cornering ability. In the 

process designers made the chassis ever narrower, but this weakened the car’s 

torsional rigidity and thus its handling. To overcome this, designers were forced to 

consider new materials and one of the materials they looked to was carbon fibre. As 
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with previous technological discontinuities, the development of the carbon fibre 

moulded chassis was a radical innovation pioneered by an outsider. 

5. The case of the McLaren MP4/1 

4.1 The introduction of carbon fibre into Formula 1 

Among the first applications of carbon fibre was in 1968, when Rolls-Royce 

announced that its RB-211 engine being developed for the Lockheed L1011 Tristar 

airliner would use lightweight carbon fibre fan blades. Unfortunately the carbon fibre 

fan blades proved unable to meet the required simulated ‘bird strike’ tests and 

eventually had to be abandoned (Spinardi, 2002: 385) in favour of conventional 

titanium fan blades. However despite this setback during the 1970s carbon fibre 

gradually became more widely available. Roger Sloman, who had set up the 

Advanced Composites Group (ACG) at Derby in 1972, became a strong advocate of 

the potential of carbon fibre for motor sport applications and during the course of the 

decade several teams experimented with carbon fibre, but always as a reinforcement 

rather than a structural element of a racing car chassis. 

Radical innovation finally appeared on the 6th March 1981 (Nye, 1984: 221), when 

the world’s first racing car with a complete carbon fibre chassis was unveiled to the 

press at a rain soaked Silverstone circuit in Northamptonshire. That car was the 

Marlboro McLaren MP4/1 and it had taken almost two years to develop. This 

revolutionary car was the product of the new McLaren International Formula 1 team 

formed in September 1980 from a merger of Ron Dennis’s Project 4 Racing Formula 

2 team and the McLaren Formula 1 team (Cooper, 1999). No longer was carbon fibre 

used to support and reinforce an aluminium monocoque structure, this time the 

structure was entirely moulded carbon fibre. 

The carbon fibre McLaren MP4/1 was followed within a week by the unveiling of 

another carbon fibre Formula 1 car, the new Lotus 88 (Ludvigsen, 2010: 189) 

designed by Colin Chapman. However although the chassis was of carbon fibre it 

relied on fabrication techniques that borrowed heavily from existing methods used for 

aluminium monocoque structures. While the McLaren MP4/1’s moulded carbon fibre 
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structure rapidly became the dominant design for Formula 1 chassis and McLaren in 

turn became the most successful constructor of the 1980s and 1990s (see table 3), 

Lotus’s rather less ambitious construction methods proved to be a ‘technological cul-

de-sac’ (Savage, 2010: 106), and the team never again won the constructors’ title 

finally exiting the sport in 1994. 

*********** 

Insert Table 3 

*********** 

4.2 John Barnard 

The architect of this technological discontinuity was McLaren’s young chief designer, 

John Barnard. Born in 1946, Barnard gained an engineering diploma from Watford 

College of Technology and then worked as an industrial designer for the UK based 

electrical company, GEC, where he designed machines for making light bulbs. 

In 1968 at the age of 22, Barnard joined Lola Cars as a junior designer (see table 4), 

working alongside Patrick Head, who would go on to design Formula 1 cars for the 

Williams team (Taylor, 2012). Lola, founded by Eric Broadley in 1958 was not a 

Formula 1 team, instead it was a racing car constructor building cars for a variety of 

types of racing. One of the fields in which Lola was prominent at the time was sports 

and GT cars, and among Broadley’s designs were the Le Mans winning Ford GT40, 

designed in partnership with the Ford Motor Company, and the Lola T70 (Scorah, 

2010: 62). By the late 1960s when Barnard joined Lola, Broadley was heavily into 

racing in the US (Scorah, 2010), Lola designs having won both the Indianapolis 500 

and the new CanAm sports car series in 1966. The latter was one of the most 

innovative forms of racing at the time, and among the developments it produced were 

the first cars with wings and the first engines to utilize turbocharging. 

*********** 

Insert Table 4 
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In 1972 Barnard broke into Formula 1 when he moved to McLaren and for the next 

three years worked with chief designer Gordon Coppuck on the design of the Formula 

1 World Championship-winning McLaren M23. However Barnard’s efforts were not 

confined to Formula 1. While at McLaren he continued his involvement with racing in 

the United States, though this time with open wheel racing in the form of Indycars. He 

was closely involved in the design of McLaren’s M16 car, which with its pioneering 

wedge shape and side radiators derived from the Lotus 72 Formula 1 car, proved very 

stable at high speed on oval tracks in the US, winning the Indianapolis 500 in 1972, 

1974 and 1976. 

Barnard’s success in Indycars led to him being hired in 1975 as a designer for the 

California based Vels Parnelli Jones Racing Team (Kirby, 2010). The Barnard 

designed VPJ6B, was a trail-blazing design that instead of being powered by the 

venerable Meyer & Drake Offenhauser engine which had dominated open wheel 

racing in the United States since the 1930s (Robson, 1999), used the new Cosworth 

DFX engine (Kirby, 2010), a re-engineered version of the British Cosworth DFV 

engine (Robson, 2007) that dominated Formula 1 at the time. De-stroked to 2.65 litres 

and turbocharged, the Cosworth DFX proved highly successful, rapidly rendering the 

Offenhauser engines obsolete. In the hands of Al Unser and Danny Ongais, the 

VPJ6B dominated Indycar racing between1976 and 1978 (Kirby, 2010). 

Barnard thus rapidly built himself a reputation in Indycar design, leading to an 

approach in 1978 from Jim Hall to join his Chaparral team based in Midland, Texas. 

Hall had been a dominant force in US sports car racing during the 1960s as a driver, 

designer and team owner. His Chaparral cars had even enjoyed considerable success 

in endurance racing in Europe. Returning to racing in 1978, Hall switched from sports 

cars to Indycars and recruited Barnard to design a new car for him. This was to be yet 

another in a long line of innovative Chaparral cars. The Barnard designed Chaparral 

2K, like its predecessors heralded the introduction of new technology, being the first 

car to introduce ‘ground effects’ to Indycar racing (Couldwell, 2003: p140) and the 

success of the Chaparral 2K marked Barnard out as a ‘revolutionary designer’ 

(Fearnley, 2011: 65). 
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4.3 The MP4/1 carbon fibre chassis 

The success of the Chaparral 2K in the US drew Barnard to the attention of Ron 

Dennis of the Project 4 Racing team which ran March chassis in Formula 2 and 3. 

Though his Project 4 Racing Team was enjoying considerable success in Formula 2, 

Dennis was keen to compete in Formula 1 as his next step. Thus during the latter part 

of 1979 Dennis approached Barnard about a potential Formula 1 project. Barnard for 

his part had what Henry (1988: 23) describes as, ‘his own pet theories about 

manufacturing an all carbon fibre composite chassis’. So it was that Barnard returned 

to the European racing scene at the start of 1980 (Cooper, 1999). 

In order to optimise ground effects, Barnard reasoned that his design needed to 

employ the narrowest possible chassis cross section. As he explained, ‘I wanted to get 

the bottom of my chassis down to not much bigger than the driver’s bum’ (Cooper, 

1999: 306). However a narrower chassis meant a potentially less rigid chassis because 

a narrow section aluminium monocoque would be inclined to flex. Retaining torsional 

stiffness presented the designer with little option but to use a material other than 

aluminium. Thin gauge steel was the logical choice but it implied a weight penalty. 

Barnard however was keen to try carbon fibre. Barnard was attracted to carbon fibre, 

which at that time was used almost exclusively in aerospace applications (Savage, 

2007), postulating that it could offer a huge step forward both in chassis stiffness and 

weight reduction. While several Formula 1 designers, as noted earlier had used carbon 

fibre in their designs, no one had ever used it other than as a reinforcement for another 

material. There were many within Formula 1 who were sceptical of the scope for 

using carbon fibre for structural applications in a racing car. In the late 1970s the 

material had a poor reputation in terms of its ability to withstand impact, the result of 

highly publicised problems with aero engine applications at Rolls-Royce, and the in-

service failure of early race components (Savage, 2010). Barnard’s detractors initially 

at least dismissed the idea of using such a brittle material in race car construction. 

Hence building a chassis comprised entirely of carbon fibre was at the time a very 

bold step. As Cooper (1999: 307) suggests perhaps only a person like John Barnard 

with limited experience of Formula 1 ‘was cocky enough to take such a gamble’. 
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Convinced that it was possible to produce a chassis from carbon fibre, Barnard was 

faced with the problem of how to get it built, since the team clearly had no 

manufacturing capability where carbon fibre composite was concerned. What made 

the situation more difficult was that Barnard didn’t just want to build a chassis from 

carbon fibre, he wanted to create a complete moulded monocoque, but in order to do 

so, a dramatic shift in the current approach to manufacturing composite materials was 

required (Jenkins, 2010). Other designers in Formula 1 had experimented with carbon 

fibre, using flat carbon panels for instance in place of flat aluminium panels (Fearnley, 

2011). But this amounted to no more than using carbon fibre to reinforce an existing 

aluminium monocoque structure. Barnard’s approach was radically different. He 

planned to make the entire chassis from carbon fibre and to produce it as a single 

moulding. This was an entirely different design principle compared to earlier attempts 

at using the material. The potential advantage of moulding was that it would provide 

a more complete composite structure that would be stronger and therefore could be of 

lighter construction. To achieve this Barnard proposed to construct the new chassis 

using layers of pre-impregnated carbon fibre moulded around a large cast and 

machined aluminium mandrel. The structure would then be cured under pressure in a 

large autoclave (Wright, 2001). Finally the mandrel would be dismantled and 

removed via the cockpit aperture. At the time it was unusual to fabricate a relatively 

large structure from carbon fibre composite in this way. Lacking this capability and 

the resources to acquire it, sub-contracting chassis manufacture was the only option. 

Despite leading-edge work being undertaken in the UK aerospace industry, there was 

no interest in this kind of project from established UK companies. According to 

Barnard, ‘Over here they either said it was too much for them, or that we were, in fact, 

mad’ (Cooper, 1999: 307). Thus fabrication of the new moulded carbon fibre 

composite chassis presented a major obstacle. Barnard had to look further afield 

(Jenkins, 2010) and help came from one of his contacts from his earlier involvement 

in Indycar racing in America (see table 4), Steve Nichols, who pointed Barnard 

towards Hercules Aerospace in Salt Lake City, Utah. 

Hercules was a chemical company that moved into carbon fibre when it took out a 

licence for a carbon fibre manufacturing process from the British company Courtaulds 

in 1969 (Dyer and Sicilia, 1990). The Hercules Aerospace division participated in 

several missile programmes during the 1970s including Trident, MX and Pershing II, 
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providing lightweight carbon composite casings which housed the missile’s propellant. 

By the later 1970s it had moved into aircraft components and structures that used 

significant amounts of carbon fibre. Major applications for Hercules Aerospace 

included the F-18 fighter where 10 per cent of the airframe was carbon fibre and the 

AV8B vertical takeoff aircraft where 28 per cent of the airframe was made of carbon 

fibre (Dyer and Sicilia, 1990: 412). In 1978 Hercules severed its relationship with 

Courtaulds and instead entered a joint venture with the Japanese firm Sumitomo. 

Having acquired the ability to make the raw material for carbon fibre production, 

Hercules was by 1980 the world’s only fully integrated carbon fibre producer. As an 

integrated producer Hercules Aerospace was able to develop a capability to fabricate 

specialist low volume aerospace structures, and it had an R & D section set up to 

carry out one-off odd jobs. One high profile example was the experimental Voyager 

aircraft made almost entirely of carbon fibre, in which pilots Dick Rhutan and Jeanna 

Yeager made the first flight around the world without stopping or refuelling. 

As a leading aerospace carbon fibre composite manufacturer, Hercules Aerospace 

had access to the most advanced manufacturing techniques available for producing 

large moulded structures (Wright, 2001), so Barnard was soon on a plane to the US 

complete with a one third size wind tunnel model and the drawings for the new 

chassis (Cooper, 1999). Hercules agreed to take the job, effectively becoming a sub-

contractor for monocoque construction. The one piece moulded design proved so 

successful that it remained virtually unchanged for six racing seasons (Gilchrist and 

Curley, 1999). 

The fact that McLaren had developed the first moulded monocoque gave it a major 

technological advantage. Barnard’s design had double the torsional stiffness and a 

substantially increased ground effects area, while at the same time being lighter 

(Fearnley, 2011). This contributed to its winning the 1984 and 1985 World 

Championships (see table 3). Despite the reservations of many of their competitors, 

the McLaren MP4/1 design proved so successful that it was copied in one form or 

another by every other Formula One team (Savage, 2010). In fact Barnard’s concept, 

which many had doubted in the early days, in time became the industry standard. 

6. Analysis: The role of Social Capital 
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The Project 4 team that John Barnard joined in 1980 was effectively an outsider as 

far as the close-knit Formula 1 community was concerned, the team being described 

by one commentator as, ‘a fledgling team whose budget was far from secure’ (Cooper, 

1999: 309). If the team was an outsider, so too was its team owner Ron Dennis and its 

chief designer John Barnard. Although he had been a mechanic with the Cooper and 

Brabham teams in the late 1960s, for almost a decade Dennis had been out of 

Formula 1 running cars in Formula 2 and 3, first with Rondel racing and latterly with 

his own Project 4 team (Collings, 2002). Similarly Barnard’s career had effectively 

involved just one stint in Formula 1. Almost from the start the main focus of 

Barnard’s work had been the racing scene in the US (see figure 2). Even when 

working for British teams and constructors like Lola and McLaren, Barnard’s focus 

had largely been on US-based race series like CanAm and Indycars, and latterly he 

had been working for American teams based in the US. Consequently his reputation 

as a designer up to this point, was very much based on successful Indycar projects. 

Another factor that made the Project 4 team an outsider was its youth. Both Dennis 

and Barnard were in their early 30s. This, plus the fact that it was a newcomer, placed 

Project 4 very much on the periphery of the ‘small world’ (Henry and Pinch, 2000: 

200) of Formula 1. A world in which as Cooper, (1997: 60) notes ‘every one knows 

every one and most have worked with each other too’. Dennis and Barnard in contrast, 

were unusual in that much of their prior experience had been in other forms of racing. 

*********** 

Insert Figure 2 

*********** 

As an outsider, the structure of Barnard’s social capital was uncharacteristic of 

Formula 1 designers of the period. In structural terms his network of personal contacts 

was more diverse than was normally the case. Not only that, it also extended to 

groups well beyond the normal confines of the Formula 1 community, to cover other 

categories of racing particularly in the US. These categories of racing represented 

different groups or networks of racing personnel located geographically and 

technologically at a distance from Formula 1. 
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Figure 2 shows that Barnard’s personal network included a number of the leading 

designers and team owners of the period. From Formula 1 there were designers like 

Gordon Coppuck of McLaren and March and Maurice Philippe of Lotus and Tyrell, 

as well as Patrick Head of Williams, with whom Barnard had worked at Lola. 

However it included a much more eclectic mix of people than just those from Formula 

1. There was Eric Broadley of Lola, one of the most influential racing car designers of 

the period, responsible for a wide range of cars spanning almost all categories of 

racing in Europe and the US. Significantly Broadley’s company Lola Cars was not a 

racing team but a constructor producing cars for sale to a wide range of customer 

teams. Unlike other leading designers of the period, like Colin Chapman of Lotus and 

Tony Rudd of BRM, Broadley had strong connections with the US racing scene. 

From his years working in the US, Barnard’s network also included a number of 

leading figures from the American racing scene. Jim Hall of Chaparral was not only a 

team owner and former driver, but one of the most innovative racing car designers of 

the 1960s, with significant innovations to his credit including glass fibre chassis 

construction and the semi-automatic gearbox. He was also the first designer to make 

serious use of aerodynamics. Hall’s Chaparral 2F ‘wing’ car of the 1960s was 

instrumental in bringing aerodynamics to Formula 1 (Buijs, 1988). Also included in 

Barnard’s network was Parnelli Jones a leading Indycar driver and owner of one of 

the most successful teams of the 1970s and 1980s. 

Nor was Barnard’s network of contacts confined to leading designers and team 

owners, for having worked in the US for several years he was able to draw on a 

wealth of contacts at all levels of the sport. Hence it would be fair to say that in 

structural terms Barnard’s network was much more diverse than that of his 

contemporaries in Formula 1 (see figure 2). It extended to all three of the principal 

branches of motor sport, namely Formula 1, Indycars and sports/GT cars. Hence in 

Burt’s (2005: 17) terminology Barnard’s social capital provided a ‘bridge’ between 

different groups or networks. This potentially provided Barnard with a greater breadth 

of knowledge than most of his fellow designers. It placed him in a position where in 

structural terms he could engage in ‘brokerage’ (Burt, 2005:73), that is moving 
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knowledge familiar in one group to a second group unaware of it, such as between the 

Indycar racing community in the US and the Formula 1 community in Europe. 

Barnard’s social capital was not merely structural in terms of a wide and eclectic mix 

of people. In terms of content his diverse range of contacts represented valuable 

sources of knowledge not just in relation to Formula 1 technology but other classes of 

racing and other technologies as well. His time at Lola had provided Barnard with a 

breadth of knowledge about all aspects of racing that he himself acknowledged saying 

of his time at Lola, ‘those years were irreplaceable for the experience and knowledge 

I gained in all aspects of racing car design and operation’ (Couldwell, 2003: 139). It 

was significant that Barnard joined Broadley’s company at a time when it was 

becoming much more involved in racing in the US. When Barnard moved to the US 

in the mid-1970s he brought about some of the most significant innovations in 

Indycar racing. His VPJ6 car brought about a major change in Indycar racing being 

the first to use a British Cosworth DFX engine instead of the ubiquitous home-

produced Offenhauser unit that had been used sine the 1930s, thereby starting a trend 

that all other teams quickly followed. Similarly Barnard’s Chaparral 2K was not only 

highly successful, it was also the first Indycar design to make effective use of ‘ground 

effects’, an achievement that led to Barnard being awarded the prestigious Louis 

Schnitzer design award in 1979. 

All of the individuals identified so far were leading designers or team owners with 

whom Barnard had worked and from whom he had acquired specialised knowledge. 

However there were many other individuals from diverse backgrounds with whom 

Barnard was acquainted through his work. These individuals represented what 

Granovetter (1973) terms ‘weak ties’, being more informal and casual acquaintances. 

They included people like Patrick Head whom Barnard had worked with as a junior 

designer at Lola. It was through Head that Barnard heard that Ron Dennis was 

looking for a designer for his Project 4 team and that he was planning to move up to 

Formula 1 (Cooper, 1999). In addition Head was by this time a leading designer 

himself, recognised as the most successful proponent of ‘ground effects’ through his 

Williams FW07 design, a car described by Peter Wright of Lotus as, ‘ the definitive 

ground effects car’ (Wright, 2001: 307). 
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Two other individuals with whom Barnard had ‘weak ties’, proved particularly 

important in enabling him to access knowledge and expertise about carbon fibre. The 

first was a contact that Barnard had at British Aerospace. British Aerospace were 

using carbon fibre to manufacture nacelles that housed Rolls-Royce jet engines 

(Cooper, 1999), and it was through visiting the company’s Weybridge site that 

Barnard learnt about the properties of carbon fibre. The second individual was Steve 

Nichols, the shock absorber engineer whom Barnard knew from his Indycar days 

(Cooper, 1999: 307). Nichols was from Utah (Hilton, 1989: 209) and had spent the 

first four years of his career after graduating from university, working for Hercules 

Aerospace in Salt Lake City. Given Hercules’ expertise in carbon fibre noted earlier, 

Nichols not only had a high level of knowledge and expertise about the properties of 

carbon fibre, he was also knowledgeable about manufacturing techniques and well 

aware of Hercules Aerospace’s capabilities, particularly when it came to producing 

large moulded structures in carbon fibre (Cooper, 1999). Hence Nichols proved a vital 

link both in enabling Barnard to acquire knowledge of carbon fibre, and, given the 

difficulties the team encountered in finding a company to produce a large carbon fibre 

moulding in the UK, in locating a company willing and able to fabricate Barnard’s 

new chassis design. 

Thus ‘weak ties’ within his network of colleagues, former colleagues and 

acquaintances, proved absolutely vital in enabling Barnard to bridge the gap between 

existing chassis technology and the requirements of carbon fibre construction. 

Significantly the other team to make the leap to a carbon fibre chassis at this time 

was Lotus who were very much an insider within Formula 1. They used a quite 

different construction technique that relied on ‘cut and fold’ methods borrowed 

directly from the existing aluminium chassis technology. This approach, which 

retained the construction methods used by the existing technological regime though 

with new materials, proved less satisfactory and ultimately proved to be a 

‘technological cul-de-sac’ (Savage, 2010: 106), since as Lotus’s Peter Wright later 

acknowledged 20 years later in a major study of Formula 1 technology, ‘the 

techniques used by McLaren showed the future’ (Wright, 2001: 317). 

7. Discussion and Conclusion 
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Technological discontinuities loom large in the innovation literature (Christensen, 

1997; Foster, 1986) and considerable attention has focused on technological 

discontinuities that are competence destroying. However much of the research effort 

has gone into analysing why incumbents fail to pioneer discontinuities, rather than 

why outsiders succeed. It is no coincidence that the subtitle of Christensen’s (1997) 

definitive study of competence destroying technological discontinuities is entitled, 

‘When New Technologies Cause Great Firms to Fail’. The literature tends to portray 

the success of outsiders in pioneering radical innovations in terms of the failings of 

incumbent firms, rather than a function of the attributes and actions of outsiders. This 

study attempts a re-appraisal. It does so by looking not at the negative features of 

incumbents but rather at the positive features of outsiders. It focuses on the attributes 

of outsiders, in particular their social capital and how this can be used to provide them 

with what Foster (1986) terms ‘the attacker’s advantage’ in the management of 

innovation and the development of new technology.. 

The study focuses on a major technological discontinuity in the high technology 

world of Formula 1, namely the introduction of carbon fibre composite and the 

development of the world’s first racing car to employ a moulded carbon fibre chassis. 

In this instance, while several established and successful teams in Formula 1 had 

made limited use of this new material, the leap to using carbon fibre involving 

completely different construction techniques that bore no resemblance to the methods 

employed in the industry at the time, was pioneered by an outsider, a team new to 

Formula 1 (certainly in terms of personnel if not name). 

In making this leap the case study clearly shows how social capital was a decisive 

factor. Social capital provided the means to make the required technological leap. The 

contrast between McLaren and Lotus, is stark. Lotus, an incumbent team, which until 

this point had been highly successful, also pioneered the use of carbon fibre in chassis 

construction but relied on knowledge and construction methods that borrowed heavily 

from existing technology, leading to what ultimately proved a technological cul-de-

sac. Barnard at McLaren on the other hand, through the use of his more diverse social 

capital was able to bridge the gap between existing practice in the Formula 1 

community and specialist aerospace applications where carbon fibre mouldings were 

being used. What was particularly important was the capacity that social capital 

21 

Po
stp

rin
t



provided for ‘bridging’ between these two knowledge communities, thereby allowing 

Barnard to benefit from weak ties. 

Previous research has highlighted the importance of social capital in sectors such as 

science based industries where access to knowledge is critical. This study suggests 

that social capital is in fact more widely applicable. Its particular contribution is in 

relation to research into competence destroying technological discontinuities, where it 

provides a badly needed change of focus, away from incumbents and their failings, 

and towards outsiders and the factors that make them well placed to pioneer radical 

innovations. The study points to outsiders’ social capital being a particularly valuable 

asset by virtue of its structural characteristics and the diverse contacts it embraces. 

It would clearly be inappropriate to generalize from a single case and one could argue 

that the highly competitive, technology laden world of Formula 1 is unusual and 

untypical of industry practice in other less glamorous sectors. However these potential 

limitations are more than offset by the in-depth nature of the case study which 

provides a valuable insight into why and how outsiders are often well placed when it 

comes to the application and implementation of new technologies, something that has 

infrequently been demonstrated in the past . 

This clearly has important implications for future research and points to the need for 

further in-depth studies in other sectors focused not just on the role of outsiders but in 

particular on the nature of their social capital and how they use it. Similarly it also has 

implications for managerial practice surrounding the management of technology, 

highlighting as it does the potential value of social capital based on diversity of 

experience, in circumstances where managers find themselves faced with 

technological discontinuities and need to find ways of bridging old and new 

technological regimes. 

22 

Po
stp

rin
t



References 

Adler. P. and Kwon, S. (2002) “Social Capital : Proposals for a New Concept”, 
Academy of Management Journal, Vol. 27 No. 1, pp. 17-40. 

Aird, F. (2010) “Lotus blossoms”, Racecar Engineering, September 2010, Vol. 20 No. 
9, pp. 55-60. 

Allison. G.T. (1971) The essence of a decision – explaining the Cuban missile crisis, 
Little Brown and Company, Boston, MA. 

Anderson, P. and Tushman, M.L. (1990) “Technological Discontinuities and 
Dominant Designs: A Cyclical Model of Technological Change”, Administrative 
Science Quarterly, Vol. 35, pp. 604-633. 

Aston, B. and Williams, M. (1996) Playing to Win: Success of UK Motorsport 
Engineering, Institute of Public Policy Research, London.. 

Beck-Burridge, M. and Walton, J. (2000) Britain’s Winning Formula, Macmillan, 
Basingstoke. 

Bryman, A. and Bell, E. (2007) Business Research Methods, Oxford: Oxford 
University Press. 

Buijs, J. (1988) “Innovation and Vision”, in D. Colemont, P. Groholt, T. Rickards and 
H. Smeekes (eds.) Creativity and Innovation: Towards a European Network, New 
York: Springer, pp. 57-62. 

Burt, R. (2005) Brokerage and Closure: An Introduction to Social Capital, Oxford 
University Press, Oxford . 

Butler, R. (2004) ‘Stiff Competition’, Professional Engineering, December 2004, pp. 
22-24. 

Campbell-Kelly, M. (2004) From Airline Reservations to Sonic the Hedgehog, MIT 
Press, Cambridge, MA. 

Christensen, C. M. (1997) The Innovator’s Dilemma: When New Technologies Cause 
Great Firms to Fail, Harvard Business School Press, Boston, MA. 

Christensen, C. M. and Rosenbloom, R.S. (1995) ‘Explaining the attacker’s advantage: 
technological paradigms, organizational dynamics and the value chain’, Research 
Policy, Vol. 24, pp. 233-257. 

Collings, T. (2001) The Piranha Club: Power and Influence in Formula One, Virgin 
Books, London. 

Constant, E. W. (1980) The Origins of the Turbojet Revolution, John Hopkins 
University Press, Baltimore, MD. 

23 

Po
stp

rin
t



Cooper, A. (1997) “It pays to be well connected” F1 Racing, April 1997, pp. 60-61. 

Cooper, A. (1999) “The Material Advantage”, Motor Sport, Vol. 75 No. 3, pp. 32-37 

Couldwell, C. (2003) Formula One: Made in Britain – The British Influence in 
Formula One, Virgin Books, London. 

Crombac, G. (1996) Colin Chapman: The Man and his Cars, 2nd edition, Haynes 
Publishing, Sparkford. 

Dosi, G. (1982) “Technological paradigms and technological trajectories: A suggested 
interpretation of the determinants and directions of technical change”, Research 
Policy, Vol. 11, pp. 147-162. 

Dyer, D. and Sicilia, D.B. (1990) Labors of a Modern Hercules: The Evolution of a 
Chemical Company, Harvard Business School Press, Cambridge, MA. 

Ehrnberg, E. (1995) “On the definition and measurement of technological 
discontinuities”, Technovation, Vol. 15 No. 7, pp. 437-452. 

Falconer, R and Nye, D. (1992) Chaparral, Motorbooks International, Osceola, WI. 

Fearnley, P. (2003) “The White Stuff”, Motor Sport, Vol. 79 No. 11, pp. 37-42. 

Fearnley, P. (2011) “Golden era of the black art”, Motor Sport, Vol. 87 No. 2, pp. 59-
66. 

Foster, R.N. (1986) Innovation: The Attacker’s Advantage, Pan Books: London. 

Foxall, G.R. and Johnston, B.R. (1991) “Innovation in Grand Prix motor racing: The 
evolution of technology, organization and strategy”, Technovation Vol. 11 No. 7, pp. 
387-402. 

F1complete (2011) [online] (cited 20 December 2011) Available from 
<URL:http//www.f1complete.com/archive> 

Granovetter, M.S. (1973) “The Strength of Weak Ties”, American Journal of 
Sociology, Vol. 78 No. 6, pp. 1360-1388. 

Gilchrist, M.D. and Curley, L. (2002) “Manufacturing and ultimate mechanical 
performance of carbon fibre-reinforced epoxy composite suspension push-rods 
components for Formula 1 racing car”, Fatigue and Fracture of Engineering 
Materials & Structures Vol. 22 No. 1, pp. 25-32. 

Hayton, J.C. (2005) “Competing in the new economy: the effect of intellectual capital 
on corporate entrepreneurship in high technology new ventures”, R & D Management 
Vol. 35 No. 2, pp. 137-155. 

24 

Po
stp

rin
t

http://www.f1complete.com/archive


Henderson, R. M and Clark, K.B. (1990) “Architectural Innovation; The 
Reconfiguration of Existing Product Technologies and the Failure of Established 
Firms”, Administrative Science Quarterly, Vol. 35, pp. 9-30. 

Henry, A. (1988) Grand Prix Car Design & Technology in the 1980s, Hazleton 
Publishing, Richmond. 

Henry, N. and Pinch, S., (2000) “Spatialising knowledge: placing the knowledge 
community of Motor Sport Valley”, Geoforum, Vol. 31, pp. 191-208. 

Hill, C.W.L. and Rothaermel, F.T. (2003) “The Performance of Incumbent Firms in 
the Face of Radical Innovation”, Academy of Management Review, Vol. 28 No. 2, pp. 
257-274. 

Hilton, C. (1989) The Conquest of Formula 1:The inside story of the men who took 
Honda to victory, Patrick Stephens Limited, Sparkford. 

Jenkins, M. (2010) “Technological Discontinuities and Competitive Advantage: A 
Historical Perspective on Formula 1 Motor Racing 1950-2006”, Journal of 
Management Studies, Vol. 47 No. 5, pp. 884-910. 

Jenkins, M. and Floyd, S. (2001) “Trajectories in the evolution of technology: a multi-
level study of competition in formula one racing”, Organization Studies, Vol. 22 No. 
6, pp. 945-96. 

Jenkinson, D.S. (1962) ‘The Dutch Grand Prix’, Motor Sport, Vol. 38, No. 6, pp. 402-
405. 

Kirby, G. (2010) ‘The real Indiana Jones’, Motor Sport, Vol. 86, No. 3, pp. 105-108. 

Lawrence, M. (2002) Colin Chapman: Wayward Genius, Breedon Books, Derby. 

Lazonick, W. and Prencipe, A. (2005) ‘Dynamic capabilities and sustained 
innovation: strategic control and financial commitment at Rolls-Royce plc’, Industrial 
and Corporate Change, Vol. 14, No.3, pp. 502-542. 

Lerner, P. (2003a) “Flying on the Ground”, Motor Sport, Vol. 79, No. 11, pp. 1458-
1459. 

Lerner, P. (2003b) “Milestones and Millstones”, Motor Sport, Vol. 79, No. 11, pp. 
1460-1462. 

Ludvigsen, K. (2010) Colin Chapman: Inside the Innovator, Haynes Publishing, 
Sparkford. 

Lyons, P. (1972) Cars in Profile No.4: The Chapparal 2, 2D and 2F, Profile 
Publications Ltd, Windsor. 

Mensch, G. (1979) Stalemate in Technology: Innovations Overcome the Depression, 
Ballinger, New York, NY. 

25 

Po
stp

rin
t



Nahapiet, J. and Ghoshal, S. (1998) “Social capital, intellectual capital and 
organizational advantage” Academy of Management Review, Vol. 23, pp. 241-166. 

Nelson, R.R. and Winter, S. G. (1982) An Evolutionary Theory of Change, Harvard 
University Press, Boston, MA. 

Nye, D. (1984) McLaren: The Grand Prix, Canam and Indycars, Hazleton Publishing, 
Richmond. 

Pinch, S. and Henry, N. (1999) “Discursive aspects of technological innovation: the 
case of the British motor-sport industry”, Environment and Planning A, Vol. 31, pp. 
665-682. 

Powell, W., Koput, K. and Smith-Doerr, L. (1996) “Interorganizational Collaboration 
and the Locus of Innovation: Networks of Learning in Biotechnology”, 
Administrative Science Quarterly, Vol. 41 No. 1, pp. 116-145. 

Rickne, A. (2006) “Connectivity and Performance of Science-based Firms”, Small 
Business Economics, Vol. 26 No. 4, pp. 393-407. 

Robson, G. (1999) Cosworth: The Search for Power’, 4th edition, Haynes Publishing, 
Sparkford. 

Robson, G. (2007) “Horses for Courses”, Motor Sport, Vol. 83 No. 7, pp. 44-48. 

Romanelli, E. and Tushman, M.L. (1994) “Organizational transformation as 
punctuated equilibrium: an empirical test”, Academy of Management Journal, Vol. 37 
No. 5, pp. 1141-1166. 

Rosenbloom, R.S. and Christensen, CM. (1994) “Technological Discontinuities, 
Organizational Capabilities and Strategic Commitments”, Industrial and Corporate 
Change, Vol. 3, pp. 655-685. 

Savage, G. (2007) “Sub-critical Crack Growth in Highly Stressed Formula 1 Race Car 
Suspension Components”, Proc. Anales de la Mec nica de Fractura, Vol. 1, pp. 221-
228. 

Savage, G. (2010) “Formula 1 Composites Engineering”, Engineering Failure 
Analysis, Vol. 17, pp. 92-115. 

Schiuma, G, Lerro, A. and Sanitate, D. (2008) “The Intellectual Dimension of 
Ducatti’s Turnaround: Exploring Knowledge Assets Grounding a Change 
Management Program”, International Journal of Innovation Management, Vol. 12 No. 
2, pp. 161-193. 

Scorah, R. (2010) “The Quiet Man” Classic Cars, Issue 445, pp. 60-62. 

Scott, J. (1990) A Matter of Record, Polity Press, Cambridge. 

26 

Po
stp

rin
t



Shan, W., Walker, G. and Kogut, B. (1994) “Interfirm Cooperation and Startup 
Innovation in the Biotechnology Industry”, Strategic Management Journal, Vol. 15 
No. 5, pp. 387-394. 

Spinardi, G. (2002) “Industrial Exploitation of Carbon Fibre in the UK, USA and 
Japan”, Technology Analysis and Strategic Management, Vol. 14 No. 4, pp. 381-398. 

Taylor, S. (2012) “Lunch with Patrick Head”, Motor Sport, Vol. 88, No. 3, pp. 51-77. 

Tipler, J. (2001) Lotus 25 & 33, Sutton Publishing, Stroud. 

Tipler, J. (2002) “A New Frame of Reference”, Motor Sport, Vol. 78 No. 5, pp. 26-35. 

Tripsas, M. and Gavetti, G. (2000) “Capabilities, cognition and inertia: evidence from 
digital imaging”, Strategic Management Journal, Vol. 21, pp. 1147-1161. 

Tushman, M.L. and Anderson, P. (1986) “Technological discontinuities and 
organizational environments”, Administrative Science Quarterly, Vol. 31, pp. 439-465. 

Utterback, J. (1994) Mastering the Dynamics of Innovation: How Companies Can 
Seize Opportunities in the Face of Technological Change, Harvard Business School 
Press, Boston, MA. 

Van de Poel, I. (2000) “On the Role of Outsiders in Technical Development” 
Technology Analysis and Strategic Management, Vol. 12 No. 3, pp. 838-397. 

Vaughan, D. (1996) The Challenger launch decision: Risky technology, culture and 
deviance at NASA, University of Chicago Press, Chicago, IL. 

Wright, P. (2001) Formula 1 Technology, Society of Automotive Engineers 
International, Warrendale, PA. 

MP4 paper_v1.5/03.03.2012 

27 

Po
stp

rin
t



Table 1 
Technological discontinuities in Formula One chassis design 

Manufacturer/ 
Designer 
traditional 

Cisitalia 
(Savonuzzi) 
Lotus 
(Chapman) 
McLaren 
(Barnard) 

Technological 
Discontinuity 
n/a 

Competence 
enhancing 
Competence 
enhancing 
Competence 
destroying 

Table 2 
Formula One Constructors Championship 1961-1980 

Year 

1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

Winning 
Constructor 
Ferrari 
BRM 
Lotus 
Ferrari 
Lotus 
Brabham 
Brabham 
Lotus 
Matra 
Lotus 
Tyrell 
Lotus 
Lotus 
McLaren 
Ferrari 
Ferrari 
Ferrari 
Lotus 
Ferrari 
Williams 

Lotus 
Position 

2nd 
2nd 
1st 
3rd 
1st 
5th 
2nd 
1st 
3rd 
1st 
5th 
1st 
1st 
4th 
7th 
4th 
2nd 
1st 
4th 
5th 

Lotus 
points 

32 
37 
58 
40 
56 
21 
50 
62 
47 
59 
21 
62 
92 
42 
9 

29 
62 
86 
39 
14 

Source: Ludvigsen (2010) 
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Date 

1900s-1940s 

1950s-1960s 

1960s-1980s 

1980s-
present 

Chassis type 

Twin beam 

Tubular space 
frame 
Stressed skin 
monocoque 
Moulded 
monocoque 

Material 

Steel 

Steel 

Aluminium 

Carbon 
fibre 

Construction 

Bolted 

Welded 

Riveted 

Autoclave 
(baked) 
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Table 3 
Formula One Constructors Championship 1981-90 

Year 

1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 

Winning 
Constructor 
Williams 
Ferrari 
Ferrari 
McLaren 
McLaren 
Williams 
Williams 
McLaren 
McLaren 
McLaren 

McLaren 
Position 

6th 
2nd 
5th 
1st 
1st 
2nd 
2nd 
1st 
1st 
1st 

McLaren 
points 

28 
69 
34 

143.4 
90 
96 
76 
199 
141 
121 

Source: F1complete (2011) 

Table 4 
John Barnard’s design career 1968-86 

Team/ Team Principal Date Race Series Car 
Constructor 
Lola Cars 

McLaren 

Parnelli 

Chaparral 

Project 
4/McLaren Int. 

Eric Broadley 

Teddy Mayer 

Parnelli Jones 

Jim Hall 

Ron Dennis 

1968-72 

1972-75 

1975-78 

1978-79 

1980-86 

Can-Am 
Formula 5000 
Formula 1 
Formula 5000 
Indycar 
Indycar 

Indycar 

Formula 2 
Formula 1 

T260 
T330 
M23 
M25 
M16 
VPJ6B 

2K 

Superseded 
MP4/1 
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Figure 1 
S-curves and Technological Discontinuities 

Figure 2 
John Barnard’s Personal Network (1980) 
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