
Evolving neural networks to follow trajectories of arbitrary
complexity

Benjamin Inden1 & Jürgen Jost2,3

1Department of Computing and Technology,
Nottingham Trent University, United Kingdom

2Max Planck Institute for Mathematics in the
Sciences, Leipzig Germany

3Santa Fe Institute, Santa Fe, New Mexico, USA

Abstract
Many experiments have been performed that use evo-
lutionary algorithms for learning the topology and
connection weights of a neural network that controls
a robot or virtual agent. These experiments are not
only performed to better understand basic biological
principles, but also with the hope that with further
progress of the methods, they will become competi-
tive for automatically creating robot behaviors of in-
terest. However, current methods are limited with
respect to the (Kolmogorov) complexity of evolved
behavior. Using the evolution of robot trajectories
as an example, we show that by adding four features,
namely (1) freezing of previously evolved structure,
(2) temporal scaffolding, (3) a homogeneous trans-
fer function for output nodes, and (4) mutations that
create new pathways to outputs, to standard methods
for the evolution of neural networks, we can achieve
an approximately linear growth of the complexity
of behavior over thousands of generations. Overall,
evolved complexity is up to two orders of magnitude
over that achieved by standard methods in the ex-
periments reported here, with the major limiting fac-
tor for further growth being the available run time.
Thus, the set of methods proposed here promises to
be a useful addition to various current neuroevolution

methods.
This is the authors’ version of the accepted

manuscript, the final and definite version
can be found at https://doi.org/10.1016/j.
neunet.2019.04.013. This version is available
subject to a Creative Commons 4.0 CC-BY-
NC-ND license.

1 Introduction

Evolutionary algorithms have been used successfully
to solve various optimization problems including for
scheduling, symbolic regression in astronomy, opti-
mizing antenna designs and shapes of car parts, find-
ing electronic circuits that perform a given function,
and game playing (Poli et al., 2008; Eiben and Smith,
2015). Similarly, neural networks have many impor-
tant applications, including recognition of speech and
handwritten digits, and robot control (Schmidhuber,
2015). Topologies and connection weights of neu-
ral networks can be optimized by evolutionary algo-
rithms (Floreano et al., 2008), and the resulting net-
works can be used to control robots, as has been done
for some decades in the field of evolutionary robotics
(Nolfi and Floreano, 2000). Nevertheless, there are
still very few real world applications of evolutionary
robotics, and progress towards more complex behav-
iors of interest seems to be slow (Doncieux et al.,
2015; Pugh et al., 2016).

For many of the earliest evolutionary robotics ex-
periments, neural networks with a fixed topology, i.e.,
a fixed number of nodes and connections, were used
(Nolfi and Floreano, 2000). That way, the achievable
complexity of behavior is obviously limited. Later,
methods were introduced that could increase these
numbers. Perhaps the most well known of these is

1

ar
X

iv
:1

90
5.

08
88

5v
1 

 [
cs

.N
E

] 
 2

1 
M

ay
 2

01
9

https://doi.org/10.1016/j.neunet.2019.04.013
https://doi.org/10.1016/j.neunet.2019.04.013


the method called NEAT (Stanley and Miikkulainen,
2002). This neuroevolution method starts evolution
using networks without any hidden nodes and sub-
sequently adds neurons and connections by carefully
designed mutation operators. It has been shown that
complexification during evolution does indeed occur
when using NEAT, and can create neural networks
with in the order of up to a few dozens of neurons
(Stanley and Miikkulainen, 2004). NEAT has sub-
sequently been widely used for various evolutionary
robotics experiments. A more recent achievement is
the development of methods that can produce large
neural networks from comparatively small genomes.
Some methods such as HyperNEAT (Stanley et al.,
2009) and Compressed Network Complexity Search
(Koutník et al., 2010; Gomez et al., 2012) achieve
this by evolving a process that constructs the neu-
ral network instead of evolving the neural network
directly. Other methods still evolve parts of the net-
work directly, but make use of user-specified con-
straints (e.g., ICONE, Rempis and Pasemann (2012))
or design patterns with evolvable parameters (e.g.,
NEATfields, Inden et al. (2012)) to create larger net-
works from those parts. While evolution can pro-
duce comparatively complex networks with hundreds
of neurons using these methods, the complexity of
the behavior that can be produced by evolution (as
opposed to behavior that emerges from the coupling
to a complex environment) is still limited, with the
increase of both complexity and fitness typically con-
verging towards zero after several hundred or thou-
sand generations.

We have previously argued (Inden and Jost, 2013)
that this is unavoidable with the way artificial evolu-
tion is typically set up: A genome of fixed length
can only produce a limited number of behaviors
(and therefore there is an upper bound to complex-
ity). A growing genome, on the other hand, cannot
grow indefinitely because either mutations will over-
power selection (in the case of fixed per-gene mu-
tation rates, as discovered by Eigen (1971)) or the
waiting times for mutations on individual genes grow
without bound (in the case of fixed per-genome mu-
tation rates). However, evolution can in principle get
around this problem by changing the genetic archi-
tecture such that mutations will with a higher than

uniform probability occur where they are needed. It
has actually been found that different regions in ani-
mal genomes are subject to different mutation rates,
and that this is under genetic control (Martincorena
et al., 2012). Evolution would be optimally adaptive
if previously evolved useful features of an organism
were conserved by a reduction of the local mutation
rates, whereas features under adaptive evolution had
increased local mutation rates. The starting point
for this paper is a previously proposed method to
guide mutations towards features under active evo-
lution, and away from previously evolved adaptive
features (Inden and Jost, 2013). The basic idea is
that only those parts of a neural network that were
created by mutations most recently can be mutated.
Older structures are frozen and cannot be mutated
any more.

The idea of freezing evolved structure is not new,
but has been explored a number of times, typically
in connection with modular neural networks (Hülse
et al., 2004; Togelius, 2004). Incrementality has also
been a part of traditional neural network architec-
tures trained by supervised learning such as Cascade-
Correlation networks (Fahlman and Lebiere, 1990).
It has also played a key role within the evolving
spiking neural network models that were developed
within a framework termed evolving connectionist
systems. In those models, the learning procedure
typically adds new neurons for new items of data to
be learned without affecting existing neurons much.
The neural networks considered in that framework
are feed-forward networks (in some cases with addi-
tional structures such as evolving feature selectors,
or dynamic reservoirs) used for classification tasks
(Schliebs and Kasabov, 2013). Recently, approaches
that use evolution to learn a suitable architecture for
a deep neural network (typically a convolutional neu-
ral network) that is trained by supervised methods
have also become quite popular (Real et al., 2017;
Miikkulainen et al., 2019; Liu et al., 2018). This re-
search has shown that evolved architectures can solve
difficult pattern recognition tasks with many inputs,
classes, and samples, and are often superior in that
regard to hand-designed architectures. However, as
the architecture grows in size during evolution, two
effects can be expected: For one, the same conver-

2



gence as described above because the genome size
increases. In addition, variance will increase for the
supervised learning tasks, which in turn increases the
time required for training the weights (Geman et al.,
1992). Convolutional neural networks use techniques
such as weight sharing to mitigate the latter problem.
Recently, freezing of structure has also been explored
within this context. Rusu et al. (2016) train columns
of a deep neural network on different tasks one by one.
The connection weights in earlier evolved columns are
frozen, but lateral connections to newer columns are
trained to allow for transfer of skills between differ-
ent tasks. Similarly, Terekhov et al. (2015) train a
series of blocks of neural networks on a series of re-
lated tasks, where the weights in earlier blocks are
frozen. Both approaches use neural networks that
are feed-forward and have a fixed topology, whereas
evolutionary approaches can go beyond that.

If we want a sustained linear growth of complexity
during evolution, we must ensure that the properties
of the environment in which evolution takes place, in-
cluding the population structure and the properties
of the neural networks that are relevant to the applied
mutation operators, remain constant on average over
evolutionary time. We might call this the stationar-
ity property. Freezing old network structures is one
method that helps in achieving it. But as the investi-
gations presented here will show, it is not sufficient on
its own and not even the major contributor towards
achieving that goal.

We study a task here where in its most basic ver-
sion an agent must follow a predefined trajectory on
an infinite 2D plane for as long as possible. This is
not a difficult task as such: For holonomic robots,
the motion in each dimension can be directly calcu-
lated given a goal point since it is independent from
the motion in other dimensions. For nonholonomic
robots, there are also traditional methods to solve
the problem, or to calculate an approximate solution
(Laumond et al., 1998). Of course, the controller
itself, a neural network, causes nonlinearities, and
might also cause dependencies between the signals
produced for different outputs. Newer research on
trajectory learning features prominently in the litera-
ture on robot programming by demonstration, where
one challenge is to calculate joint angles for a com-

plex actuator based on an observed trajectory. Hid-
den Markov models and other related techniques are
often used to tackle that challenge (Vakanski et al.,
2012; Field et al., 2016).

In our version of trajectory following, the agent
does not get any information through its sensors on
where it should be, but it dies if it is too far from the
trajectory, so evolution can adapt the agents to follow
that trajectory using open loop control. An early ex-
periment on robots without sensors was reported in
Nolfi and Floreano (2000, section 5.4), although there
was only a discrete choice between a fixed number of
spatial regions there. The task studied in Inden and
Jost (2013) required navigation on a plane, but there
were only two goal areas to navigate between. Gen-
eral trajectory following is much more difficult for
evolution. We found (as discussed below) that the
method introduced in Inden and Jost (2013), which
was basically a NEAT algorithm with two new fea-
tures, was not sufficient to solve the task. In section
2, we describe an improved method that is. In section
3, we present results for trajectory following in 2D
and 3D space, and study the contribution of individ-
ual features of the method to its overall performance.
Finally, we discuss connections to the larger context
of evolutionary robotics research, and make sugges-
tions on how to use our method on a larger range of
tasks, in section 4.

2 Methods

2.1 The trajectory following task

A random trajectory starts at position (0, 0) and is
generated as follows: There are 16 possible directions
with angles to the positive x axis of between π

8 and
2π. Every 30 time steps, the trajectory randomly
takes one of these directions. The distance covered in
a single step is 0.1. A number of random segments is
generated before evolution starts, but as individuals
manage to follow the trajectory for most of its length,
new segments are added to it at the end. Besides this
elongation, the trajectory does not change over the
course of evolution.

The agent has no ordinary inputs besides a fixed

3



bias input. It starts at position (0, 0) and can move
with a maximum speed of 0.2. It has a holonomic
drive (i.e., movement in both dimensions is controlled
independently). For each dimension, there are two
outputs controlling movement, if the first is above
0.0 and the second is not, then the first output spec-
ifies the speed of movement in the positive direction,
whereas if the second output is above 0.0 and the
first is not, then the second output determines the
movement in the negative direction. If both outputs
are positive, they block each other and no movement
occurs, the latter also happens if both outputs are
negative. If the agent is within a radius of 1.0 from
the current trajectory point, it accumulates a fitness
of 1.0 minus its current distance. Otherwise, its life is
terminated. Therefore, the agent is required to follow
the trajectory closely over space and time.

2.2 Three-dimensional extensions of
the task

The trajectory for the three-dimensional version is
generated in the same way as for the two-dimensional
version except that there are now 14 possible direc-
tions which correspond to the 8 corners of a cube and
the centers of its six surfaces. The agent starts at po-
sition (0, 0, 0) and can move with a maximum speed
of 0.3. The holonomic drive now needs six network
outputs and works analogous to its 2D counterpart.
However, there is also a nonholonomic version of the
task where the first pair of outputs determines the
movement speed along the current orientation of the
agent, whereas the second and third pair of outputs
control the orientation by rotation about the z- and
y-axis respectively. The angles of rotation can be
changed by at most ±π4 in a single step. The fitness
function is the same as in the two-dimensional version
of the task.

2.3 Neural networks
The method presented here is partly based on the
well known NEAT (NeuroEvolution of Augment-
ing Topologies) method (Stanley and Miikkulainen,
2002), which has influenced some design choices and
parameters mentioned below.

The activation ai(t) =
∑
j∈J wijoj(t− 1) of an in-

dividual neuron i at time t is based on a weighted
sum of the outputs of the neurons j ∈ J to which
they are connected. The output of a neuron is cal-
culated by applying a sigmoid function on the acti-
vation: oi(t) = tanh(ai(t)). We also compare this
with a variant where the activation is calculated as
ai(t) = τ(

∑
j∈J wijoj(t−1)) + (1− τ)ai(t−1). τ is a

constant between 0 and 1 that is genetically specified
for each neuron individually. If τ = 1, the activation
is wholly determined by the current input and there
is no difference to the standard method, whereas for
smaller τ values, the activation is also dependent on
past input and changes more slowly. This is a simple
implementation of a continuous time recurrent neu-
ral network. These kinds of networks have been used
successfully in a number of evolutionary robotics ex-
periments (Beer and Gallagher, 1992; Beer, 2006),
and one might think that they are better suited for
the trajectory following task because they can more
easily generate temporal dynamics at different time
scales.

Connection weights are constrained to a range of
[−3, 3] as is common in previous work with NEAT.
The rationale behind constraining weights is that
connection weights with a very large absolute value
would often lead to saturation of neurons with a sig-
moid transfer function, which in turn would limit the
variety of output of the neural network. The thresh-
old value for all neurons is 0.0, but a constant bias
input is available in all networks.

All connections from neurons to network outputs
have a weight of 1. The value of that output is then
calculated by applying a sine function sinπx on the
sum of all contributions. By virtue of its periodic na-
ture, the sine function is what we call a homogeneous
output function (one of the major contributions of
this paper): No matter what the current value of
the output as determined by all current connections
from neurons is, a new connection can always change
it to become any value in its whole range [−1, 1]. We
compare this against applying the tanh function on
the input (this function is not a homogeneous out-
put function as input from existing connections could
have brought the value so far into one of its satura-
tion areas already that a single new connection could

4



not change much), and against the approach used in
some NEAT implementations of just taking the mean
value of all contributions (this is also not a homoge-
neous output function, and has the additional disad-
vantage that adding a new connection to an output
can change the output value even if the new connec-
tion does not convey any signal (i.e., has a value of
0.0).

2.4 Experimental setup and selection

For each configuration, 20 runs with different ran-
dom seeds are performed. Each run lasts for 3500
generations and has a population size of 300. Trun-
cation selection is used for the majority of configura-
tions, where the best 5% are selected for reproduction
with mutation, although one copy of each is kept un-
changed (elitism).

In one experiment, we compare this simple method
with a version of the more elaborate speciation selec-
tion that NEAT uses by default. Speciation selection
protects innovation that may arise during evolution
against competition from fitter individuals that are
already in the population. As a prerequisite, globally
unique reference numbers are assigned to each con-
nection gene once it arises by mutation, and are used
to calculate a distance measure between two neural
networks. The dissimilarity between two networks is
calculated as d = crrc + cw

∑
∆w, where rc is the

number of connections present in just one of these
networks, ∆w are the connection weight differences
(summed over pairs of connections that are present
in both networks), and the c variables are weighting
constants with cr = 1.0, cw = 1.0 by default.

Using this dissimilarity measure, the population is
partitioned into species by working through the list of
individuals. An individual is compared to represen-
tative individuals of all species until the dissimilarity
between it and a representative is below a certain
threshold. It is then assigned to this species. If no
compatible species is found, a new species is created
and the individual becomes its representative.

The number of offspring assigned to a species is
proportional to its mean fitness. This rather weak
selection pressure prevents a slightly superior species
from taking over the whole population, and enables

innovative yet currently inferior solutions to survive.
In contrast, the selection pressure between members
of the same species is much stronger: the worst
60% of the individuals belonging to that species are
deleted, after which the other individuals are selected
randomly. Species that have at least five individuals
in the next generation also take the best individual
into the next generation without mutations. If the
maximum fitness of a species has not increased for
more than 200 generations and it is not the species
containing the best network, its mean fitness is mul-
tiplied by 0.01, which usually results in its extinc-
tion. Also, in order to keep the number of species
in a specified range, the dissimilarity threshold is ad-
justed in every generation if necessary. This thresh-
old adjustment mechanism is a slight difference from
the original NEAT speciation technique, and was in-
troduced by Green (2006). It seems to work well
together with full elitism, which the original specia-
tion method did not use, but otherwise yields very
similar results. Here, the initial speciation threshold
is 4.0, and the target number of species is between 10
and 20. The numerical parameters for speciation se-
lection have been set based on previous experiments
with other tasks (Inden et al., 2012).

2.5 Genetic representation and oper-
ators

NEAT is a method for simultaneously evolving the
topology and the connection weights of neural net-
works. It starts evolution with one of the simplest
possible network topologies and proceeds by com-
plexification of that topology. More specifically, the
common ancestor of the whole population has one
neuron for each output, each of which is connected
to all inputs. There are no hidden neurons. Here,
we start with even smaller networks: Each output
has one neuron, and each of this neurons is initially
connected to 50% of the inputs on average. It has
been shown previously that having evolution select
inputs for the neural network can result in superior
performance as compared to starting with a fully con-
nected network if the input space is large (Whiteson
et al., 2005). During the course of evolution, further
neurons and connections can be added.

5



Our neuroevolution method mostly uses mutation
operators that are very similar to those of the origi-
nal NEAT implementation for evolving the contents
of the field elements. Numerical parameters are set to
values used in previous experiments (Stanley and Mi-
ikkulainen, 2002; Inden et al., 2012; Inden and Jost,
2013). The most common operation is to choose
a fraction of connection weights and either perturb
them using a normal distribution with standard de-
viation 0.18, or (with a probability of 0.15) set them
to a new value. The application probability of this
weight changing operator is set to 1.0 minus the prob-
abilities of all structural mutation operators, which
amounts to 0.929 in most experiments. A structural
mutation operator to connect previously unconnected
neurons is used with probability 0.02, another to con-
nect a neuron to an input or output is also used with
probability 0.02, while an operator to insert neurons
is used with probability 0.001. The latter inserts a
new neuron between two connected neurons. The
weight of the incoming connection to the new neuron
is set to 1.0, while the weight of the outgoing connec-
tion keeps the original value. The idea behind this
approach is to change the properties of the former
connection as little as possible to minimize disruption
of existing functional structures. The former connec-
tion is deactivated but retained in the genome where
it might be reactivated by further mutations. There
are two operators that can achieve this: one toggles
the active flag of a connection and the other sets the
flag to 1. They are used with probability 0.01 each.

With a probability of 0.01, another mutation op-
erator is used, the addition of which to the set of
operators constitutes another main contribution of
this paper. This operator creates a new neuron, and
connects it to one of the outputs. This neuron does
not have any inputs initially, therefore it does not
change the network output. However, it provides a
starting point for evolution to create a new module.
Of course, there is the possibility that this neuron
does not attract any meaningful connectivity, ending
up as redundant structure (bloat). But as the exper-
iments will show, that is a reasonable price to pay
given the vast increase in fitness.

For those experiments that use continuous time re-
current neural networks, another operator, applied

with a probability of 0.05, perturbs the neurons’ τ
values using a normal distribution with standard de-
viation 0.08.

Once a new gene arises by mutation, it receives
a globally unique reference number. This number is
generated by a global counter that is incremented ev-
ery time a new gene arises. The innovation numbers
are originally used by NEAT to align two genomes
during the process of recombination (although in
the experiments reported here, no recombination is
used). Here, they are important for the method de-
scribed in the next section, and also for speciation
selection in the experiment that uses that selection
method.

2.6 Freezing of previously evolved
structure

Usually, mutations are applied on all genes with uni-
form probability. In contrast, the method introduced
in Inden and Jost (2013), which constitutes another
major contribution of our approach, allows mutations
only on the cm newest genes. Here we refine the
previously used method by considering neuron genes
and connection genes separately, and allowing muta-
tions on the cm newest genes of either group. (This
is done to prevent problems in networks that have ei-
ther very many new connections, or unusually many
new neurons. In such networks, it would not be pos-
sible any more to mutate neurons, or connections, if
their ages were not considered separately.) The rela-
tive age of all genes is known because their innovation
numbers are ordered by the time of their creation, so
the smallest innovation numbers where mutations are
still allowed can be calculated at the beginning of the
mutation procedure from lists of all neuron / connec-
tion genes in the genome. cm should obviously be
greater than the number of neurons or connections
in the common ancestors. Based on this criterion,
cm is set to 25 here. We found in preliminary exper-
iments that the method is robust to some variation
in this parameter.

All mutations are forbidden on older genes, in-
cluding perturbations of the connection weights and
changes of τ values. However, connections from neu-
rons that are positioned between 2cm and cm on the

6



age sorted list to new neurons are allowed. This
makes it possible to connect newly evolved structures
with older structures. In our previous work (Inden
and Jost, 2013), we allowed connections from all old
neurons regardless of age to new neurons, but we
have changed that as with growing number of neu-
rons there would be an ever growing number of neu-
rons from which to choose, which could introduce the
very issues of non-stationarity that we want to avoid.

2.7 Temporal scaffolding

For the task considered here, the agent needs to move
in different directions at different times, therefore it
needs to possess some information that is correlated
to the elapsed time. Given that neural networks can
generate internal dynamics, they could be expected
to track time entirely internally. However, this did
not work very well in our previous experiments (Inden
and Jost, 2013). The method introduced back then,
in a modified form, constitutes another major compo-
nent of our approach. We provide a scaffolding input
for each period of time that has a value of 1.0 during
its respective period, and 0.0 at other times. Other
methods of providing this temporal information, like
providing the current round as a binary number on
several inputs, or providing some periodic inputs with
different periods, were far less effective in preliminary
experiments (Inden and Jost, 2013). Providing time
as a single analog input would also not be expected
to work well as it would lead to saturation in neu-
rons with sigmoid transfer function, and because of
the restricted range of connection weights. In the ex-
periments reported here, a period of activation for a
given scaffolding input corresponds to 20 time steps.
The overall number of scaffolding inputs is poten-
tially unlimited, and it is growing linearly with the
time that organisms are able to survive. Obviously,
these inputs need to be presented to the evolutionary
process in a sequential order instead of all at once.

The mutation operators are the key components of
the algorithm that need to be provided with informa-
tion on the input and output geometry of the task to
be evolved. In our implementation, this information
is just a list of network inputs and a list of network
outputs. Each input and output has a unique iden-

tification number. This number is stored as a refer-
ence in the newly created connection gene whenever
a connection from input or to output is established.
The neural networks of the common ancestors are
provided with 5 scaffolding inputs (active during the
first five periods of life time, and corresponding to
input IDs 1000 to 1004). Whenever a network lives
longer than the time covered by the currently avail-
able scaffolding inputs, 5 more scaffolding inputs for
later periods (with consecutive input IDs 1005, 1006,
etc.) are made available to the respective mutation
operators. Whenever a mutation is to be performed,
the mutation operators check for the newest scaffold-
ing input to which the given neural network is ac-
tually connected (i.e., the one with the highest ID
iidsup), and will only create new connections from
scaffolding inputs whose IDs are larger than or equal
to iidsup − 5 — in other words, inputs no more than
5 positions before the highest current one.

Next to scaffolding inputs, the neural networks can
also have a limited number of normal inputs. In our
implementation, all inputs whose ID is below 1000 are
treated as a normal input. Connections from these
can be established at any time. For the tasks pre-
sented here, the only normal input is a bias input
that is set to a fixed value of 1.0.

3 Results and discussion

3.1 Performance of the proposed
method on trajectory following

When the full set of methods described in the previ-
ous section is applied to the 2D trajectory following
task, a linear growth of the length of the learned tra-
jectory over evolutionary time can typically be ob-
served over the full 3500 generations. From Fig. 1, it
is apparent that the mean growth of trajectory length
is approximately linear although in one run evolution
switches to a lower speed at some point. The fitness
increase achieved within 50 generations is 168 ± 13
at generation 1000 (where the second number is the
standard error, or uncertainty of the mean), 173±13
at generation 2000, and 188± 16 at generation 3000.
There are no significant pairwise differences between

7



Figure 1: Performance of the standard configuration
on 2D trajectory following.

Figure 2: Performance of the standard configuration
on 2D trajectory following with unequal lengths of
segments.

Figure 3: Performance of the standard configuration
on 3D trajectory following.

Figure 4: Performance of the standard configuration
(population size 1000) on 3D trajectory following.

8



Figure 5: Performance of the standard configuration
on nonholonomic 3D trajectory following.

these values when using a Wilcoxon rank sum test,
so no significant deviation from linear growth can be
found. Overall, a trajectory length of 11604 ± 286
time steps is reached on average, which corresponds
to having adapted to about 387 segments, or 386 po-
tential direction changes.

The fact that all path segments have a length of 30
time steps might seem to simplify the task somewhat.
If segment lengths are drawn from a uniform distri-
bution between 10 and 50, average trajectory length
reaches 11154±292 (Fig. 2). This is not significantly
different (p = 0.31, Wilcoxon rank sum test).

For the 3D trajectory following task, a performance
of 2259± 97 is reached, which corresponds to 75 seg-
ments on average. It can be seen from Fig. 3 that
the mean growth of trajectory length is still approxi-
mately linear, but individual runs undergo periods of
stagnation, from which they recover sooner or later.
By increasing the population size to 1000 (Fig. 4),
periods of stagnation become shorter and the perfor-
mance increases to 3858 ± 147. When tackling the
nonholonomic 3D trajectory following task using a
population size of 1000, a performance of 2051± 137

is reached (Fig. 5).

These experiments make it plausible to assume
that using the methods presented here, it is indeed
possible to evolve trajectories of arbitrary length —
or at least very long length — in linear generation
time. The observed periods of stagnation do not seem
to take away from the linearity as their frequency and
duration do not change in an obvious way over the
observed number of generations. Furthermore, it is
possible to decrease stagnation by increasing the pop-
ulation size. Further experiments (results not shown)
using the 2D task and smaller population sizes con-
firm this as the frequency and duration of stagnation
periods increases in a similar way to the way they
change between Figs. 4 and 3.

Because trajectory length grows approximately lin-
early, it makes sense to calculate the speed at which
evolution injects information about the trajectory
into the population as done previously (Inden and
Jost, 2015). As mentioned above, there are on aver-
age 386 decisions about the direction learned within
3500 generations, and for each of them, there are 16
possible directions. So we have log2 16 · 386

3500 ≈ 0.44
bit / generation. According to Kimura (1961) and
Worden (1995), the maximally attainable speed for a
selection of 5% should be log2

1
0.05 ≈ 4.3 bit / gener-

ation. Furthermore, that theory predicts that speed
grows logarithmically with selection strength, but is
not correlated to population size. We found in further
experiments that a trajectory length of 9340± 251 is
reached for a selection of 10%, and 6432 ± 183 for a
selection of 20%. Taking the logarithms of the speed
ratios for the 5% vs. 10% and 10% vs. 20% configura-
tions, we get 0.31 and 0.54, respectively, which means
that the speed grows less than logarithmically with
selection strength. From the experiments with differ-
ent population sizes mentioned above, it follows that
there is also a correlation between population size
and speed. These observations all indicate that the
speed of evolution is limited by the availability of suit-
able mutations rather than by selection in these ex-
periments. Increasing the population size obviously
increases the number of mutated offspring that a se-
lected individual will have and therefore has a direct
influence on the speed limiting factor.

9



Figure 6: Growth of trajectory length over evolu-
tionary time. Mean and uncertainty of the mean are
shown for a standard configuration (black), a config-
uration without freezing of previously evolved struc-
ture (blue), a configuration without temporal scaf-
folding (green), and a configuration without muta-
tions that create new connections to outputs (red).

3.2 The contribution of individual fea-
tures to performance

As argued in the introduction to this paper, freezing
of previously evolved structure should be an impor-
tant factor enabling sustained complexification. As
shown in Fig. 6, performance indeed becomes sig-
nificantly worse without this technique (p < 0.001,
Wilcoxon rank sum test), but it is still at 81% of the
original performance. Without mutations that create
new pathways to output, performance goes down to
53%. Without temporal scaffolding, there is barely
any complexification at all.

Fig. 7 shows the importance of choosing a homoge-
neous transfer function for the outputs. When using
a hyperbolic tangent function instead of a sine func-
tion, average performance goes down to 44%. If the
mean function is used, average performance drops to
7%. If evolution can use the sine transfer function
for hidden nodes in addition to for outputs, there
is no significant difference to the standard method
(p = 0.81, Wilcoxon rank sum test). This supports

Figure 7: Growth of trajectory length over evolu-
tionary time. Mean and uncertainty of the mean are
shown for a standard configuration (black, mostly be-
hind green), a configuration with tanh output func-
tion (blue), a configuration with mean output func-
tion (red), and a standard configuration with the ad-
ditional possibility to have hidden nodes with sine
transfer function (green).

10



Figure 8: Growth of trajectory length over evolu-
tionary time. Mean and uncertainty of the mean
are shown for a standard configuration (black), a
CTRNN configuration (blue), a standard configura-
tion without temporal scaffolding (green, barely visi-
ble behind red), and a CTRNN configuration without
temporal scaffolding (red).

Figure 9: Growth of trajectory length over evolu-
tionary time. Mean and uncertainty of the mean
are shown for a standard configuration (black), a
NEAT configuration with truncation selection (blue),
and a NEAT configuration with speciation selection
(green).

the idea that the advantage of using the sine function
is really in avoiding output saturation and not in any
increased evolvability conferred by using the function
as such.

Fig. 8 shows results on methods to generate the
temporal dynamics necessary for trajectory following
in the neural networks. For this task and with the
technical details as specified in this paper, no advan-
tages can be found for using continuous-time recur-
rent neural network, i.e., networks where the individ-
ual neurons change their states slowly as determined
by evolved time constants. When used with tempo-
ral scaffolding, adding this feature leads to a drop
in average performance to 52%, while without tem-
poral scaffolding, both normal and continuous-time
networks perform badly with no significant difference
(p = 0.63).

Fig. 9 shows how the method proposed here com-
pares to standard NEAT and a variant thereof that
uses the same strong truncation selection as the stan-
dard configuration. These reach performances of
111±6 and 120±7, respectively. This means that us-
ing all the methods presented here increases the per-
formance on the trajectory following task by a factor
of 105 as compared to standard NEAT within 3500
generations. Because NEAT leads to stagnation, this
factor can be assumed to increase if evolution lasts
for more generations.

Finally, as shown in Figs. 10 – 13, similar conclu-
sions regarding the contribution of individual features
of the method can be drawn if the experiments are
repeated for the 3D trajectory following task and a
population size of 1000.

3.3 Structure and function of an
evolved neural network

The trajectory of an evolved individual from the best
run can be seen in Fig. 14. With the way the fitness
function is designed, the individual can get off the
original trajectory as long as it is not too far. If a
higher accuracy than that is desired, it is possible to
scale the whole task, i.e., decrease both the survival
radius and the speed with which the individuals and
the target point can move. That way, higher accuracy
would be achieved at the expense of speed. If only

11



Figure 10: Growth of trajectory length for the 3D
task over evolutionary time. Mean and uncertainty
of the mean are shown for a standard configuration
(black), a configuration without freezing of previ-
ously evolved structure (blue), a configuration with-
out temporal scaffolding (green), and a configuration
without mutations that create new connections to
outputs (red).

Figure 11: Growth of trajectory length for the 3D
task over evolutionary time. Mean and uncertainty
of the mean are shown for a standard configuration
(black, mostly behind green), a configuration with
tanh output function (blue), a configuration with
mean output function (red), and a standard configu-
ration with the additional possibility to have hidden
nodes with sine transfer function (green).

12



Figure 12: Growth of trajectory length for the 3D
task over evolutionary time. Mean and uncertainty
of the mean are shown for a standard configuration
(black), a CTRNN configuration (blue), a standard
configuration without temporal scaffolding (green),
and a CTRNN configuration without temporal scaf-
folding (red).

Figure 13: Growth of trajectory length for the 3D
task over evolutionary time. Mean and uncertainty
of the mean are shown for a standard configuration
(black), a NEAT configuration with truncation selec-
tion (blue), and a NEAT configuration with specia-
tion selection (green).

the survival radius is decreased, the task will get more
difficult. We expect that this could be compensated
for by a larger population size.

The network of the best individual consists of 676
network inputs (675 of which are scaffolding inputs),
733 neurons, 4 outputs, 1301 connections from input
to neurons, 710 connections between neurons, and
816 connections to output. Given that this particular
neural network has been adapted to follow 449 seg-
ments of the trajectory, it follows that on average 1.6
neurons are used per segment. The low connection
to neuron ratio suggests that the network consists of
relatively independent modules. Indeed, if network
inputs and outputs are removed, the remaining net-
work has 139 connected components, with 5.3 neu-
rons per component on average. This is due to the
rareness of medium range connections and absence of
long range connections between neurons, which can
be easily seen in Figs. 15 and 16. Fig. 17 confirms
the visual impression by providing the distribution
of internal connections within the network. Also,
given that a scaffolding input is active for 20 time
steps and a segment for 30 time steps, we would ex-
pect

⌈
449 · 3020

⌉
= 674 scaffolding inputs to be present,

with a slightly higher number being possible because
5 scaffolding inputs are added to the system in one
step whenever necessary as described above. The
evolved network conforms to this expectation.

Fig. 18 shows that the number of connections to
outputs does not change with the evolutionary age of
a neuron except for the very oldest and very youngest
neurons. The former exception might be related to
the slower speed of evolution in the first few hundred
generations (Fig. 1), whereas the latter is because
those parts of the network are still under active evolu-
tion. In summary, the network structure shows that
our methods have achieved the desired stationarity
property to a high degree.

4 Conclusions and future work

One conclusion following from the experiments is that
the types of neural networks that are often used in
evolutionary robotics experiments are not very evolv-
able. Adding a new kind of mutation and chang-

13



Figure 14: Trajectory of the highest performing individual from the best run. Green: optimal trajectory;
blue: actual trajectory. Both start at (0, 0).

14



Figure 15: The topology of the highest performing individual. Inner ring: inputs; outer ring: hidden neurons.
Outputs are shown at the bottom. Connections to outputs are shown in red, while all other connections
are drawn in gray. A spoke-like pattern between inputs and hidden neurons and an absence of long range
connections are the dominant visible features at that scale. Image created using Cytoscape (Shannon et al.,
2003). 15



Figure 16: Magnification of a part in the lower right section of the network from Fig. 15, starting with the
first hidden neuron and then proceeding anticlockwise. Some recurrent connections as well as medium range
connections between neurons are visible at this scale.

16



Figure 17: Number of connections in the highest per-
forming individual that go from a neuron to another
neuron, where the neuron numbers are assigned ac-
cording to historical order (i.e., when they arose by
mutation).

Figure 18: The average number of connections going
from neurons (sorted in historical order and averages
taken over groups of 10 neurons each) to outputs for
the highest performing individual.

ing the transfer functions of outputs brings some
improvement, but the greatest improvement occurs
when scaffolding is used. It seems that standard neu-
ral networks are not good at producing varied behav-
ior over time — at least not in a way that is eas-
ily accessible for evolution. That raises the question
whether there might be any sets of building blocks
that are more evolvable than neural networks and at
the same time reasonable abstractions of biological
building blocks. Previous work has used spiking neu-
ral networks, compositional pattern producing net-
works, and finite state automata among others as
alternative models (DiPaolo, 2002; Floreano et al.,
2005; Florian, 2006; Stanley, 2007; Riano and McGin-
nity, 2012). As was demonstrated here, using neural
networks augmented by scaffolding might be another
option. One could argue that various external and in-
ternal processes could provide scaffolds for evolution
in natural environments, which are typically much
richer than artificial environments (Banzhaf et al.,
2006).

The evolutionary process achieved here is one of
sustained rapid complexification without any branch-
ing. This can be very useful for technical applica-
tions, but we would not argue that this is the normal
mode of evolution. Indeed, various authors have ar-
gued that there is no general driven trend towards
more complexity during evolution (McShea, 1996;
Miconi, 2008). If anything, one might think that such
a dynamics could arise locally for a limited time. Ob-
viously, total freezing of previously evolved structure
is also not a biologically plausible assumption. It
might be interesting to try to find possible biologi-
cally more plausible mechanisms that could approxi-
mate the dynamics studied here for some evolution-
ary time using a task similar to the one described
here as a benchmark.

As argued in Inden (2012), the evolutionary pro-
cess set up here can be argued to be an instance of
open-ended evolution according to the formal defini-
tion given by Bedau et al. (1998). However, since
that early work, the scientific debate on open-ended
evolution has moved on. Many authors now consider
the emergence of new evolutionary units and levels,
and/or the continuing presence of highly diverse so-
lution candidates, as hallmarks of open-ended evolu-

17



tion (Taylor et al., 2016; Banzhaf et al., 2016). We
have not addressed those issues here, which is why we
would describe the observed dynamics as sustained
complexification instead.

The paths to be learned here are essentially random
sequences, therefore evolution proceeds towards be-
haviors with higher algorithmic or Kolmogorov com-
plexity (Li and Vitányi, 1997). Many researchers are
more concerned with whether the complexity con-
cerned with structural regularities can increase dur-
ing evolution (Ay et al., 2011). We do not address this
question here. The growth of algorithmic complexity
of the genotype and phenotype seems to be a neces-
sary, but not sufficient, condition for the evolution of
interesting complex behaviors. The point here is not
to argue that any task of interest might require that
the complexity of solutions grows forever. It is rather
that many problems of interest seem to require solu-
tions of an algorithmic complexity that is unknown
in advance, but most likely higher than what can be
achieved with current methods. For these problems,
techniques that can achieve a sustained growth of
complexity should be useful.

A related concern is that learning normally entails
the ability to solve previously unseen tasks that are
similar to tasks seen during training. Our evolved
solutions do not have this ability in general. For ex-
ample, imagine a new path where only the direction
of a single segment would be changed. This could be
sufficient to increase the distance between the indi-
vidual and its path so much that it would die, ren-
dering all skills for subsequent path segments use-
less. Furthermore, because the structure bringing
about the movement at this time would likely already
be frozen, evolution would not be able to re-adapt
the individual within a few generations. Therefore,
it is probably more accurate to say that evolution
adapts individuals towards following the path instead
of saying that the path has been learned. That said,
it seems that much of the generalization ability, or
ability to perform well despite slight environmental
change, in natural organisms results either from de-
velopmental processes that are dependent on the en-
vironment (Sultan, 2007), or from learning mecha-
nisms within their neural networks (Downing, 2007).
Therefore, we suggest that the proper role of artifi-

cial evolution in creating robot controllers might be
to build structures that are capable of both perform-
ing some rather fixed action patterns (of which the
tasks studied here provide abstract instances) and
learning more advanced and flexible behavior based
on these skills during their lifetime. Unsurprisingly,
the evolution of plastic neural networks is an active
research area (Floreano et al., 2008; Soltoggio et al.,
2008; Tonelli and Mouret, 2013). The concept of a
fixed action pattern was introduced in Lorenz (1935;
1981). It refers to a complex spatio-temporal pattern
of behavior that arises as an instinctive response to a
stimulus. Once elicited, it typically lasts much longer
than the stimulus and executes independently of fur-
ther external input. Examples include various escape
behaviors, courtship and aggression signals, and ecd-
ysis related behavior in insects. Although the concept
has been criticized in later research with respect to
the assumed full independence from external stim-
uli in some of the mentioned examples, it continues
to be a useful concept in both biology and robotics
(Lawrence and Watson, 2002; Watt and Joss, 2003;
Borst, 2014; Kim et al., 2015; Prescott et al., 2006).
Our methods can create fixed action patterns of high
complexity. If the scaffolding inputs are made depen-
dent on the environment, these action patterns can
even become flexible to a degree.

From a technical perspective, one might be most
interested in the question of how well the method
can be used on other tasks. The tasks studied in this
article represent tasks that require a complex fixed
pattern of movement to be executed. This would
also include trajectories in non-physical spaces, for
example the generation of complex sound patterns,
or the execution of a developmental program by a
simple model of a genetic regulatory network in or-
der to create a complex phenotype (Hinman et al.,
2003; Stanley and Miikkulainen, 2003; Doursat et al.,
2013). One possible criticism regarding limitations of
the method would be to think of a robotics-related
version of a trap fitness function, where following a
certain path is required, but once a certain point has
been reached, the path to be followed earlier in order
to achieve the highest fitness changes. These kinds of
tasks could not be solved by our method in its pure
form. However, one needs to consider three points:

18



(1) It is an open question whether any of these tasks
would actually correspond to any useful instinctive
behavior that can be observed in natural organisms,
or would be useful for artificial organisms. Evolution
cannot solve all kinds of problems anyway (Barton
and Partridge, 2000), and incrementality — build-
ing new function on top of old function instead of
changing the old function — is a key feature of many
evolved solutions. (2) Some kinds of these problems
might be successfully tackled by using diversity pre-
serving selection mechanisms, perhaps together with
recombination, and developing these is an orthogo-
nal research direction in evolutionary robotics (Pugh
et al., 2016). The resulting methods could possibly
be combined with the methods presented here. (3)
While we freeze all but the most recently evolved
structure here, an experimenter with some prior un-
derstanding of the task to be solved could inject that
knowledge into the evolutionary process by freezing
different parts of the structure at different evolution-
ary times.

The tasks studied here, and the task studied in In-
den and Jost (2013), are all tasks that require certain
behavior at certain points in time. Other tasks might
require certain behaviors in certain situations, where
situations might occur repeatedly and be determined
by various factors in the environment. In that case,
one could still use the same methods, including the
incremental provision of inputs, but just use inputs
that indicate the situation instead of the time. This
input could come from sensors or even from subnet-
works that have previously been evolved to recognize
certain situations.

The experiments on trajectory following in higher
dimensional spaces seem to indicate that performance
goes down as the number of outputs increases. This is
another limitation of the presented method. It is un-
derstandable given the large increase in local search
space that the addition of only one output incurs (in
principle, all neurons could be connected to that out-
put). If there are more than just a few outputs, then
perhaps one can use incremental provision of outputs
in a similar fashion to the way inputs are provided
incrementally if the task allows to learn their behav-
ior separately. Of course, tasks with many outputs
have been previously solved using methods that ex-

ploit the geometric regularities of the tasks (Stanley
et al., 2009; Inden et al., 2012) — another orthogo-
nal research direction whose results could be easily
combined with the methods presented here. For ex-
ample, large and regular HyperNEAT networks are
generated by an underlying network — one could ap-
ply the methods discussed here onto that underly-
ing network. In NEATfields, applying our methods
would also be straightforward; the main task would
be to specify how those additional mutation opera-
tors that change the parameters of the design pat-
terns interact with the freezing of previously evolved
structure.

Another limitation of the approach presented here
is that while the number of necessary generations de-
pends linearly on the trajectory length, the run time
of the algorithm is at least quadratic. That is be-
cause the maximum and average lengths of trajecto-
ries achieved before individuals die also grow linearly
over the generations. (An even higher computational
complexity is expected because the size of the neural
networks also increases over time.) With our imple-
mentation and available hardware, run times of up to
two weeks were typical for standard configurations.
That said, speedups could be achieved by paralleliz-
ing fitness evaluation. It would also be possible to
divide a longer trajectory into several shorter ones,
evolve trajectory following for each one separately,
and then evolve or hand design a mechanism that
ensures that the right subnetworks are active at each
time step. If the length of the individual pieces of the
trajectory remained constant and ignoring any effort
for the arbitration mechanisms, that would result in
a linear run time.

Based on these thoughts and the results of the ex-
periments presented, we conclude that the methods
presented here — freezing of previously evolved struc-
ture, temporal scaffolding, a homogeneous transfer
function for output nodes, and mutations that create
new pathways to outputs — might become essential
ingredients of future methods that are used to evolve
neural networks for robot control and other tasks.

Declarations of interest: none. This research
did not receive any specific grant from funding agen-

19



cies in the public, commercial, or not-for-profit sec-
tors.

References

Ay, N., Olbrich, E., Bertschinger, N., and Jost,
J. (2011). A geometric approach to complexity.
Chaos, 21:037103.

Banzhaf, W., Baumgaertner, B., Beslon, G., Doursat,
R., Foster, J. A., McMullin, B., de Melo, V. V.,
Miconi, T., Spector, L., Stepney, S., and White,
R. (2016). Defining and simulating open-ended
novelty: requirements, guidelines, and challenges.
Theory in Biosciences, 135:131–161.

Banzhaf, W., Beslon, G., Christensen, S., Foster,
J. A., Képès, F., Lefort, V., Miller, J. F., Radman,
M., and Ramsden, J. J. (2006). From artificial
evolution to computational evolution: a research
agenda. Nature Reviews Genetics, 7:729–735.

Barton, N. and Partridge, L. (2000). Limits to natu-
ral selection. BioEssays, 22:1075–1084.

Bedau, M. A., Snyder, E., and Packard, N. H. (1998).
A classification of long-term evolutionary dynam-
ics. In et al., C. A., editor, Artificial Life VI.

Beer, R. (2006). Parameter space structure of
continuous-time neural networks. Neural Compu-
tation, 18:3009–3051.

Beer, R. D. and Gallagher, J. C. (1992). Evolving
dynamical neural networks for adaptive behavior.
Adaptive Behavior, 1:91–122.

Borst, A. (2014). Fly visual course control: be-
haviour, algorithms and circuits. Nature Reviews
Neuroscience, 14:590 – 599.

DiPaolo, E. (2002). Spike timing dependent plasticity
for evolved robots. Adaptive Behavior, 10:243–263.

Doncieux, S., Bredeche, N., Mouret, J.-B., and
Eiben, A. E. (2015). Evolutionary robotics: what,
why, and where to. Frontiers in Robotics and AI.

Doursat, R., Sayama, H., and Michel, O. (2013).
A review of morphogenetic engineering. Natural
Computing, 12:517–535.

Downing, K. L. (2007). Neuroscientific implications
for embodied and situated artificial intelligence.
Connection Science, 19(1):75–104.

Eiben, A. E. and Smith, J. E., editors (2015). In-
troduction to Evolutionary Computing. Springer-
Verlag.

Eigen, M. (1971). Selforganization of matter and
evolution of biological macromolecules. Naturwis-
senschaften, 58:465–523.

Fahlman, S. E. and Lebiere, C. (1990). The cascade-
correlation learning architecture. In Touretzky,
D. S., editor, Advances in Neural Information Pro-
cessing Systems, volume 2, pages 524–532. Morgan
Kaufman.

Field, M., Stirling, D., Pan, Z., and Naghdy, F.
(2016). Learning trajectories for robot program-
ing by demonstration using a coordinated mixture
of factor analyzers. IEEE Transactions on Cyber-
netics, 46(3):706 – 717.

Floreano, D., Dürr, P., and Mattiussi, C. (2008).
Neuroevolution: from architectures to learning.
Evolutionary Intelligence, 1:47–62.

Floreano, D., Zufferey, J. C., and Nicoud, J.-D.
(2005). From wheels to wings with evolutionary
spiking circuits. Artificial Life, 11:121–138.

Florian, R. V. (2006). Spiking neural controllers for
pushing objects around. In International Confer-
ence on Simulation of Adaptive Behavior, pages
570–581. Springer.

Geman, S., Bienenstock, E., and Doursat, R. (1992).
Neural networks and the bias/variance dilemma.
Neural Computation, 4:1 – 58.

Gomez, F., Koutník, J., and Schmidhuber, J. (2012).
Compressed network complexity search. In Pro-
ceedings of the 12th International Conference on
Parallel Problem Solving from Nature.

20



Green, C. (2006). SharpNEAT.
http://sharpneat.sourceforge.net.

Hinman, V. F., Nguyen, A. T., Cameron, R. A., and
Davidson, E. H. (2003). Developmental gene regu-
latory network architecture across 500 million years
of echinoderm evolution. Proceedings of the Na-
tional Academy of Sciences, 100(23):13356 – 13361.

Hülse, M., Wischmann, S., and Pasemann, F.
(2004). Structure and function of evolved neuro-
controllers for autonomous robots. Connection Sci-
ence, 6(4):249–266.

Inden, B. (2012). Open-ended coevolution and the
emergence of complex irreducible functional units
in iterated number sequence games. In Proceed-
ings of the 14th annual conference on genetic and
evolutionary computation.

Inden, B., Jin, Y., Haschke, R., and Ritter, H. (2012).
Evolving neural fields for problems with large input
and output spaces. Neural Networks, 28:24–39.

Inden, B. and Jost, J. (2013). Neural agents can
evolve to reproduce sequences of arbitrary length.
In Proceedings of the European Conference on Ar-
tificial Life.

Inden, B. and Jost, J. (2015). Effects of several bioin-
spired methods on the stability of coevolutionary
complexification. In Proceedings of the 2015 IEEE
Symposium Series on Computational Intelligence.

Kim, D.-H., Han, M.-R., Lee, G., Lee, S. S., Kim,
Y.-J., and Adams, M. E. (2015). Rescheduling be-
havioral subunits of a fixed action pattern by ge-
netic manipulation of peptidergic signaling. PLoS
Genetics, 11(9):e1005513.

Kimura, M. (1961). Natural selection as the pro-
cess of accumulating genetic information in adap-
tive evolution. Genetical Research, 2(1):127–140.

Koutník, J., Gomez, F., and Schmidhuber, J. (2010).
Evolving neural networks in compressed weight
space. In Proceedings of the Genetic and Evolu-
tionary Computation Conference.

Laumond, J. P., Sekhavat, S. S., and Lamiraux, F.
(1998). Guidelines in nonholonomic motion plan-
ning. In Laumond, J., editor, Robot motion plan-
ning and control, Lecture Notes in Control and In-
formation Sciences. Springer.

Lawrence, K. A. and Watson, W. H. (2002). Swim-
ming behavior of the Nudibranch Melibe leonina.
The Biological Bulletin, 203(2):144–151.

Li, M. and Vitányi, P. (1997). An introduction to Kol-
mogorov complexity and its applications. Springer.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C.,
and Kavukcuoglu, K. (2018). Hierarchical repre-
sentations for efficient architecture search. In Pro-
ceedings of the Sixth International Conference on
Learning Representations.

Lorenz, K. (1935). Der Kumpan in der Umwelt des
Vogels. Journal of Ornithology, 83:289 – 413.

Lorenz, K. (1981). The foundations of ethology.
Springer-Verlag.

Martincorena, I., Seshasayee, A. S. N., and Lus-
combe, N. M. (2012). Evidence of non-random
mutation rates suggests an evolutionary risk man-
agement strategy. Nature, 485:95–98.

McShea, D. W. (1996). Metazoan complexity and
evolution: Is there a trend? Evolution, 50(2):477–
496.

Miconi, T. (2008). Evolution and complexity: The
double-edged sword. Artificial Life, 14:325–344.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal,
A., Fink, D., Francon, O., Raju, B., Shahrzad, H.,
Navruzyan, A., Duffy, N., and Hodjat, B. (2019).
Evolving deep neural networks. In Kozma, R.,
Alippi, C., Choe, Y., and Morabito, F. C., ed-
itors, Artificial Intelligence in the Age of Neural
Networks and Brain Computing, pages 293 – 312.
Academic Press.

Nolfi, S. and Floreano, D. (2000). Evolutionary
Robotics — The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. MIT Press.

21



Poli, R., Langdon, W. B., and McPhee, N. F. (2008).
A Field Guide to Genetic Programming. Published
via http://lulu.com.

Prescott, T. J., González, F. M. M., Gurney, K.,
Humphries, M. D., and Redgrave, P. (2006). A
robot model of the basal ganglia: Behavior and
intrinsic processing. Neural Networks, 19:31 – 61.

Pugh, J. K., Soros, L. B., and Stanley, K. O. (2016).
Quality diversity: A new frontier for evolutionary
computation. Frontiers in Robotics and AI.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu,
Y. L., Tan, J., Le, Q. V., and Kurakin, A. (2017).
Large-scale evolution of image classifiers. In Pro-
ceedings of the 34th International Conference on
Machine Learning.

Rempis, C. W. and Pasemann, F. (2012). Evolving
variants of neuro-control using constraint masks.
In SAB, pages 187–197. Springer.

Riano, L. and McGinnity, M. T. (2012). Auto-
matically composing and parameterizing skills by
evolving finite state automata. Robotics and Au-
tonomous Systems, 60:639–650.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G.,
Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pas-
canu, R., and Hadsell, R. (2016). Progressive neu-
ral networks. CoRR, abs/1606.04671.

Schliebs, S. and Kasabov, N. (2013). Evolving spik-
ing neural network — a survey. Evolving Systems,
4(2):87 – 98.

Schmidhuber, J. (2015). Deep learning in neural net-
works: An overview. Neural Networks, 61:85–117.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S.,
Wang, J. T., Ramage, D., Amin, N., Schwikowski,
B., and Ideker, T. (2003). Cytoscape: a software
environment for integrated models of biomolec-
ular interaction networks. Genome research,
13(11):2498–2504.

Soltoggio, A., Bullinaria, J., Mattiussi, C., Dürr, P.,
and Floreano, D. (2008). Evolutionary advantages

of neuromodulated plasticity in dynamic, reward-
based scenarios. In Proceedings of the 11th Inter-
national Conference on Artificial Life.

Stanley, K. (2007). Compositional pattern producing
networks: A novel abstraction of development. Ge-
netic Programming and Evolvable Machines, pages
131–162.

Stanley, K. and Miikkulainen, R. (2002). Evolving
neural networks through augmenting topologies.
Evolutionary Computation, 10:99–127.

Stanley, K. and Miikkulainen, R. (2003). A taxonomy
for artificial embryogeny. Artificial Life, 9:93–130.

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J.
(2009). A hypercube-based encoding for evolving
large-scale neural networks. Artificial Life, 15:185–
212.

Stanley, K. O. and Miikkulainen, R. (2004). Compet-
itive coevolution through coevolutionary complexi-
fication. Journal of Artificial Intelligence Research,
21:63–100.

Sultan, S. E. (2007). Development in context: the
timely emergence of eco-devo. TRENDS in Ecology
and Evolution, 22:575–582.

Taylor, T., Bedau, M., Channon, A., Ackley, D.,
Banzhaf, W., Beslon, G., Dolson, E., Froese, T.,
Hickinbotham, S., Ikegami, T., McMullin, B.,
Packard, N., Rasmussen, S., Virgo, N., Agmon, E.,
Clark, E., McGregor, S., Ofria, C., Ropella, G.,
Spector, L., Stanley, K. O., Stanton, A., Timper-
ley, C., Vostinar, A., and Wiser, M. (2016). Open-
ended evolution: Perspectives from the OEE work-
shop in York. Artificial Life, 22:408–423.

Terekhov, A. V., Montone, G., and O’Regan, J. K.
(2015). Knowledge transfer in deep block-modular
neural networks. In Conference on Biomimetic and
Biohybrid Systems, pages 268–279. Springer.

Togelius, J. (2004). Evolution of a subsumption ar-
chitecture neurocontroller. Journal of Intelligent
and Fuzzy Systems, 15:15–20.

22



Tonelli, P. and Mouret, J.-B. (2013). On the rela-
tionships between generative encodings, regularity,
and learning abilities when evolving plastic artifi-
cial neural networks. PLoS ONE, 8(11):e79138.

Vakanski, A., Mantegh, I., Irish, A., and Janabi-
Sharifi, F. (2012). Trajectory learning for
robot programming by demonstration using hidden
Markov model and dynamic time warping. IEEE
Transactions on Systems, Man, and Cybernetics —
Part B: Cybernetics, 42(4):1039 – 1052.

Watt, M. and Joss, J. (2003). Structure and function
of visual displays produced by male jacky drag-
ons, Amphibolurus muricatus, during social inter-
actions. Brain, Behaviour and Evolution, 61(4):172
– 183.

Whiteson, S., Stone, P., Stanley, K. O., Miikkulainen,
R., and Kohl, N. (2005). Automatic feature selec-
tion in neuroevolution. In Proceedings of the Ge-
netic and Evolutionary Computation Conference.

Worden, R. P. (1995). A speed limit for evolution.
Journal of Theoretical Biology, 176:137–152.

23


	1 Introduction
	2 Methods
	2.1 The trajectory following task
	2.2 Three-dimensional extensions of the task
	2.3 Neural networks
	2.4 Experimental setup and selection
	2.5 Genetic representation and operators
	2.6 Freezing of previously evolved structure
	2.7 Temporal scaffolding

	3 Results and discussion
	3.1 Performance of the proposed method on trajectory following
	3.2 The contribution of individual features to performance
	3.3 Structure and function of an evolved neural network

	4 Conclusions and future work

