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Abstract–Virtual citizen science platforms allow nonscientists to take part in scientific
research across a range of disciplines, including planetary science. What is required of the
volunteer can vary considerably in terms of task type, variety, judgment required, and
autonomy—even when the overall goal is unchanged. Through analysis of our live
Zooniverse Planet Four: Craters citizen science platform, the effects of task workflow design
factors including volunteer autonomy, task variety, task type, and judgment required on
volunteer engagement and crater marking performance were investigated. Website analytics
showed volunteers using the Full interface (most autonomy and variety) were more likely to
return to the platform, although the amount of time spent per visit was unaffected by the
interface used. However, analysis of performance suggested that how this time was used did
differ. The interface involving the least complex task resulted in the greatest amount of data
and rate of collection, although this also coincided with a greater number of false positives
when compared with the expert. Performance in terms of agreement, both between
participants and with the expert judgment, was significantly improved when using the
Stepped interface for crater position and the Ramped (Mark) when measuring diameter—
interfaces that both directly measured the metric with a specific, delineated task. The
implications for planetary scientists considering the citizen science route is that there is a
balancing act to perform, weighing the importance of volunteer engagement with scientists’
data needs and the resources that can be committed to data validation.

INTRODUCTION

Citizen science, or “public participation in scientific
research” (Hand 2010), can be described as research
conducted, in whole or in part, by amateur or
nonprofessional participants often through crowd-
sourcing techniques. It increasingly utilizes virtual
citizen science (VCS) platforms (Reed et al. 2012) that
gather scientific analysis from remotely sensed imagery,
both of the Earth and other solar system bodies,
through a website interface. Due to the abundance of
data, planetary science is a prime candidate for, and
adaptor of, citizen science and more specifically VCS
platforms. One of the prime planetary science VCS use-
cases is that of crater marking, predominantly used as a

technique for age estimation (McGill 1977). Relying on
both crater identification and measurements of
diameter, it is a highly repetitive process and despite a
small number of studies suggesting the contrary
(Kirchoff et al. 2011; Hiesinger et al. 2012) has been
deemed suitable to be undertaken by an untrained
audience. As such, a number of VCS platforms have
been developed allowing volunteers to mark craters on
solar system bodies (moonzoo.org, cosmoquest.org,
nasaclickerworkers.com), the outcomes of which have
been comparable to the expert equivalent (Robbins
et al. 2014).

Despite this apparent success, problems have been
identified concerning the use of nonexperts to perform
crater marking tasks. Data can be contaminated in a
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number of ways, such as false-positive identifications,
missing identifications (Tar and Thacker 2015), and
issues regarding the measurement of smaller craters
(Robbins et al. 2014), all of which contribute to reduce
the usefulness of citizen science data sets to the scientific
community. In order to combat this problem, a number
of retrospective techniques have been proposed to
“clean up” the data set, including data filtering
(Bugiolacchi et al. 2016), modeling error rates (Tar
et al. 2016), and expert comparison (Marshall et al.
2015). It could be argued that such approaches are
ironic, creating extra work for the scientist involved
within a system predominantly designed to reduce their
workload.

Current VCS platforms tend to require the
volunteer to carry out tasks in a very repetitious
manner, their design arguably driven more by the needs
of the scientific problem rather than consideration given
to the experience of the citizen scientist (Cox et al.
2015). This could be considered incongruous as the
effectiveness of a citizen science platform can be related
to its ability to attract and retain volunteers, both in
order to analyze the quantity of data required and to
ensure its quality (Prather et al. 2013). This study
makes a first step in considering how crater marking
VCS platforms can be designed to better meet the needs
of the volunteer, by exploring whether manipulating
task design and presentation can affect their
engagement and ultimately the data produced, in order
to reduce the retrospective workload required correcting
for errors.

First, the background section reviews the relevant
literature on the interplay between engagement,
performance, and task design in the domains of citizen
science, work design, and human–computer interaction.
Planet Four: Craters is then introduced—a Zooniverse
crater marking citizen science platform consisting of
three differing interfaces that vary in task workflow
design (TWD) for annotating the surface of Mars.
Finally, the results of a live study are presented that
directly compares volunteers’ engagement and
performance across the three interfaces. The impact of
TWD on volunteer engagement and crater marking
performance, and future implications for planetary
science VCS platforms are discussed.

BACKGROUND

Virtual citizen science platforms, including crater
marking examples, involve mechanisms and
methodologies that have historically been used within
similar systems, and as such there exists a wealth of
research regarding their design and implementation. For
example, volunteers are generally asked to carry out a

task from a discrete set of different task types
recognizable from typologies of visual tasks (Pelli and
Farell 2010): detection (is stimulus present/identifiable?),
discrimination (is the stimulus a crater?), and matching
(adjusting an attribute of two stimuli until they are equal
—for instance, drawing a line from the center to the rim
of a crater). Such tasks subsequently force the volunteer
to make a corresponding judgment (Farell and Pelli 1999)
that can include: yes/no (is a crater present or not), forced
choice (what type of crater is it?), and rating scales
(assessing the magnitude of an attribute based on a given
scale—for example, deciding on the correct size bin a
crater belongs to). Research regarding such task types in
the realm of image analysis has shown an effect on the
performance and experience of the human actor. For
example, Hutt et al. (2013) compared the generation of
image annotations. Three forms of response were
contrasted: classifications, scoring, and ranking, against a
ground truth estimate derived from expert annotation.
Ranking was found to be the most accurate data versus
expert annotation, and also the most reliable in terms of
inter-participant agreement, with classification type tasks
showing the lowest level of agreement. It was also found
that participants produced data comparable with that of
experts in terms of overall quality.

There is also the question of how tasks are
configured and presented to the volunteer via the
platform interface. Current VCS platforms often require
volunteers to do the same task(s) repeatedly over a large
number of images, in an almost “data entry” like
manner for no financial recompense. Arguably, this
scenario is analogous to that of the Fordist production
line and the fractionation of tasks. Researching this
phenomenon, Hackman and Oldham (1975) introduced
the “Job Diagnostic Survey” in order to derive an
understanding of this type of work and how it could be
redesigned to improve engagement and productivity.
Design elements including task variety, complexity, and
autonomy were identified as important factors, all of
which can be influenced by designers of the work.
Extending these findings, subsequent research has found
a positive correlation between engagement and
autonomy (Dubinsky and Skinner 1984; Chung-Yan
2010), task variety (Dubinsky and Skinner 1984; Ghani
and Deshpande 1994), and task complexity (Gerhart
1987; Chung-Yan 2010). Although such research
predominantly concerns pay for work over extended
periods of time, which might not be true of planetary
citizen science volunteers (Eveleigh et al. 2014), it acts
as the inspiration for this study informing design
directions that could be applied to planetary science and
other VCS cases.

With these ideas in mind we now introduce the
concept of task workflow design as the core construct of
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this work. Workflow can be defined as a series of tasks
that comprise an overall process that need to be
completed in order to take the work from initiation to
completion. Its design can involve considerations such as
the type of tasks involved, their interaction, and the
sequence in which they need to be completed (i.e.,
sequential or parallel). These considerations can be
directly related to the factors described by Hackman and
Oldham (1975), and as such could influence engagement
and performance. Originally a concept is associated with
the manufacturing and business industries (Schmidt 1998;
Huang 2002); the notion has been extended to forms of
crowd-sourced work due to the analogy that can be made
between them. Principally this research has considered
TWD in an overarching manner, investigating how
complex processes can be deconstructed into tasks that
are achievable by untrained participants (Kulkarni et al.
2011, 2012) and how their deconstruction influences
performance and engagement (Cheng et al. 2015); other
research has considered how certain TWD elements
(Dow et al. 2012; Allahbakhsh et al. 2013) and the way
tasks are ordered (Cai et al. 2016) can affect overall
performance. Existing research regarding the TWD of
virtual citizen science platforms has tended toward a
retrospective approach, studying the design of existing
platforms and their performance in terms of volunteer
engagement and data collection (Hutt et al. 2013;
Eveleigh et al. 2014; Tinati et al. 2015) and making
recommendations and design conclusions based on the
findings. In this paper, we introduce the Zooniverse site
Planet Four: Craters as the research context within which
we can directly manipulate TWD to explore how task
variety, complexity, and autonomy affect the user
engagement and crater marking performance when using
VCS platforms.

PLANET FOUR: CRATERS

Developed in 2013, Planet Four: Craters was
created to address two separate goals, i.e., (1) to
contribute to scientific efforts to date the surface of
Mars and (2) to directly experiment with interface
design by controlling for its effects with a single science
case. Participants’ primary task was to mark the
position and size of craters found on remotely sensed
imagery of the planet. This section will briefly describe
the different tools and interfaces that have been
developed for participants to mark craters, and the
types of task and judgment they involve.

Crater Marking Tools

Crater Present tool: This is a simple “on/off”
button, with which the participant indicates if any

craters are present on the image shown (the circle
turning red to indicate “yes,” see Fig. 1). In essence,
this tool facilitates a detection task through making a
forced choice (yes/no) judgment.

Crater Position tool: This tool allows users to mark
the center of each crater in the image with a simple
click of the mouse. It involves both a detection task (is
a crater present?) with a matching task (aligning the
position mark with the center of the crater) through
making a matching judgment.

Crater tool: This tool allows users to mark a circle
around the edge of each crater, by clicking in the center
and dragging the cursor to the edge. The user can resize
the circle to “fine tune” its final position. This also
involves a detection task and two matching tasks for
each crater (the center and edge) by means of matching
judgments.

Interface Design

The three different classification interfaces were
distinct in their presentation of some or all of the tools
outlined, in order to vary the task type, judgment, task
variety, and autonomy. Figure 1 shows the three
variations of the interface—Full, Ramped, and Stepped.

Full: The full interface presents all of the tools
described to the participant, and allows the participant
to use them in any order or way they deem appropriate.
Participants even had to decide how many of the tools
to use for each image; for instance, if an image contains
a large number of craters, the participant may
deliberately choose to just press the “craters present”
button and move on, without physically marking any of
them with the other tools provided.

Stepped: The stepped interface makes all of the
tools available to the user but in a very controlled,
predefined order. The participant uses each tool and
performs each task in turn on each image, and moves
on to the next once they have indicated they have
finished (through pressing a “next task” button). The
tools increase in complexity over each step in terms of
the number of tasks and judgments they require.

Ramped: The ramped interface is the simplest of the
three, with the participant only using one tool per
image. After completing a set number of images (10 in
the case of Planet Four: Craters), the tool changes, i.e.,
the participant presses/depresses the “craters present”
button for each image in turn, then marks the center of
the craters with the “crater position” tool on each
image, before finally marking a circle around the edge
of each crater on each image. Each tool change
represents a step up in complexity. The images
presented for each tool are not the same as those seen
previously, i.e., the 10 images analyzed using the
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“craters present” tool are not the same as the 10
analyzed using the “crater position” tool and so on.
This is an important distinction, as although the tools
are presented in the same order as with the Stepped
interface, a volunteer would need to classify over 20
images to unlock the crater marking tool—a number
that many volunteers did not reach.

METHODS

This study aimed to investigate the effect of
manipulating the TWD on volunteer engagement and
performance when carrying out the task of marking
craters on the Planet Four: Craters citizen science
platform. Inspired by the related Human Factors work
summarized in the background section, testable
hypotheses were formulated for a mix of dependant
measures relating to volunteer behavior, engagement,
and performance:
� H1: Volunteers performing a less “involved” task
and judgment (i.e., Position marking–Ramped
interface) produce greater data coverage.

� H2: The type of task performed and judgment made
by the volunteer influences volunteer agreement (in
terms of the data produced).

� H3: Volunteers using an interface involving greater
autonomy, task variety, and complexity (Full) are
more likely to return to the platform.

� H4: Volunteers using an interface involving greater
task variety (Full and Stepped) will spend less time
classifying per platform visit.

Experimental Design

The study took place in a “real world” online
scenario where participation was unrestricted both
temporally and geographically. Therefore, a between-
subjects design has been used, where the task workflow
design factors, autonomy, variety, task type, and
volunteer judgment were manipulated. Three separate
classification interfaces that varied in relation to these
factors were employed, created in collaboration with the
Zooniverse development team to run online through the
Planet Four: Craters landing page. The University of
Nottingham Engineering faculty’s ethical committee
approved the study aims, methods, and procedures,
including in terms of guaranteeing the anonymization of
data and prior informed consent of the participants.
Additionally, contributors to the site agreed to the
Zooniverse user agreement and privacy policy
(zooniverse.org/privacy) that states: “Data from these
projects are used to study online community design and
theory, interface design, and other topics.”

The four TWD factors (independent variables 1–4)
were experimentally manipulated through the design of
the three Planet Four: Craters interfaces as described in

Fig. 1. Planet Four: Craters interface designs. Left to right—Full interface where all tools are available, Stepped interface where
tools are used in turn activated by the “Next Task” button, and Ramped interface where only one tool is used for each image.
The tool interface appeared to the left of the image being analyzed, as shown in the full screenshot (far right). (Color figure can
be viewed at wileyonlinelibrary.com.)
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Table 1, and the impact of this manipulation was
measured through participants’ behavior regarding
platform engagement (Dependent Variable 1, or DV1),
and by measuring performance through participant-
expert marking comparison (DV2), the number of
markings made (DV3), and the time spent classifying
each image (DV4).

As can be seen in Table 1, over time participants
will perform each task type and make each user
judgment use each of the interfaces. However, it is still
possible to separate out these factors (in order to
consider H1 and H2) through data collected using the
Ramped interface, as each task/judgment is performed
on a different set of images. Therefore, we can consider
this marking data separately, as explained in the Results
and Analysis section following. It is also worth noting
that there are three experimental conditions represented
by the interfaces described, but four main constructs
under consideration. This is explained by the interplay
that exists between different task workflow design
factors (Dodd and Ganster 1996), meaning that
realistically one cannot be manipulated without
influencing another. For instance, if an interface is
designed to maximize autonomy (the Full interface),
this also means there must be greater variety so that the
participant has the freedom to choose the type of task
to complete. Likewise, if a detection task type is
required to be completed, this in turn forces the
participant to make a “yes/no” judgment—can they
detect the crater or not?

Materials

For the study, participants analyzed two images
taken by the Context camera on NASA’s Mars
Reconnaissance Orbiter (G05_020119_1895_XN_
09N198W and G23_027332_1907_XN_10N202W). They
were chosen because they contain a variety of

landscapes common to the Martian surface; scientists at
the University of Bristol also provided data from their
existing analysis of the first image that was used for
ground-truthing so that comparisons could be made
between citizen scientist results and those measured by
planetary science experts—in order to gauge
performance. Before being uploaded to the platform,
the images were “sliced” into a number of smaller
images that can be more easily handled. Although not
as large as high-resolution, push broom type imagery
(HiRISE data sets for instance can be gigabytes in size),
context camera imagery can often be many megabytes
in size (34.6 and 93.8 MB, respectively, for the two
images used in this study), making it time-consuming to
render to a web browser. A total of 200 smaller image
“slices” were created, measuring 840 9 648 pixels with
an included overlap of 100 pixels to ensure features on
the edges were adequately displayed.

Participants

The Planet Four: Craters site (www.craters.planet
four.org) went live on March 26, 2015. From this time
until June 26, 2015, 606 registered Zooniverse
volunteers (those who have provided a username and
password) visited the site and classified at least one
image, contributing a total of 13,136 classifications. A
further 13,242 classifications (~50.2%) were made by
unregistered volunteers. Due to the nature of studying
an online community in an unrestricted environment,
this work has an intrinsic, unestimated uncertainty as
the same (unregistered) volunteer could, unknown to
the investigator, use the website multiple times on
different machines, on different browsers, or with
cookies turned off.

Although it is not possible to know exactly how
many unregistered volunteers contributed, the
Zooniverse system assigns a unique ID to each

Table 1. Task workflow design configuration of each interface.

Interface Autonomy Variety Tasks Task type(s) Judgments

Stepped Set order
(Less autonomy)

All tasks per image
(Most variety)

Do in order:
Is crater present

Mark position
Mark size

Detection
Detection & Matching

Detection & 2x Matching

Yes/no
Matching

Matching

Ramped Single task

(Least autonomy)

Single task per image

(Least variety)

Either:

Is crater present
Mark position or
Mark size

Detection

Detection & Matching
Detection & 2x Matching

Yes/no

Matching
Matching

Full Any order
(Most autonomy)

All tasks per image
(Most variety)

Pick from:
Is crater present
Mark position
Mark size

Detection
Detection & Matching
Detection & 2x Matching

Yes/no
Matching
Matching
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unregistered user that remains persistent across each
visit—and although some users might have their session
expired or use other devices, this is assumed to be in the
minority (for instance, existing reports regarding
disabling cookies [Winnicki 2016; Priebe 2009] put the
rate at between 1% and 5%). Additionally, as the
interfaces were presented to each participant at random
for each visit, it is assumed that any occurrences of
session expiry or disabled cookies should be equally
likely for each interface design. If a volunteer was to
classify craters while unregistered, then decided to
register, and continued to classify, the previous
(unregistered) ID would be linked to a username and all
classifications (before and after registration) would be
assigned to the same participant. In addition to the
registered volunteers, an extra 974 unregistered session
IDs were recorded, resulting in an estimated total of
1580 volunteers that took part in the study. This is in
agreement with previous analysis carried out in other
Zooniverse sites (Swanson et al. 2015), suggesting that
unregistered volunteers can make up as much as two-
thirds of the total.

Procedure

When visiting the Planet Four: Craters homepage
and selecting the “classify” link, participants were taken
to one of the three classifying interfaces (Full, Stepped,
or Ramped—Fig. 1) on which the image slices were
presented and the tools for marking craters made
available. The interface displayed was selected at
random, in a nonweighted way so that the probability
of seeing each was equal. Once presented, the
classification interface remained the same (Full,
Stepped, or Ramped) for the duration of the visit and
for each classification (although the tools available
changed every 10 images with the Ramped interface, as
explained in the Interface Design section), until the
participant closed down the “classify” page. If the
participant subsequently chose to return to the platform
to make further classifications, the process was
repeated, with a random interface being presented
independent of whether the participant had used it
previously or not.

If the participant was an unregistered volunteer, or
registered but had not used the particular interface
before, they were first guided through a tutorial learning
how to use the interface and associated tools, marking
craters on a separate example image. The marking and
behavioral data collected regarding the example image
was separated from the data analysis discussed later in
this work. The order in which image slices were
displayed to the participant was randomized, again in
an unweighted way such that each slice was seen a

similar number of times during the study. This was to
account for bias caused by learning the system, tasks,
and each interface. The order in which image slices were
displayed to each participant was also randomized, to
prevent bias being caused by image content (images
with little or no craters appearing in the same interface
each time, etc.), learning effects, and fatigue which
could, if unaccounted for, influence the data collected.

RESULTS AND ANALYSIS

Dependent variable measures were recorded
through participant behavior, both through crater
marking performance and platform engagement. The
following section presents the results and analysis for
each method in terms of their relation to the
independent variables regarding TWD.

Website Analytics

Through the study of website analytics associated
with the Planet Four: Craters site, measures of
participant engagement have been derived in terms of
the amount of time they spent on the site, how much
analysis they carried out, and how often they returned.
When considering the average amount of time spent on
the platform by participants, a one-way analysis of
variance (ANOVA) (Field 2009) showed no significant
difference (F(2,670) = 0.551, p = 0.577), with the Full,
Stepped, and Ramped interfaces having mean times of
20 m 40 s � 3 m 14 s, 20 m 48 s � 3 m 50 s, and 17 m
11 s � 1 m 41 s, respectively (Fig. 2). However, when
considering the number of images classified per visit, a
difference can be seen. For each interface, the number
of images classified followed a lognormal, long-tailed
distribution. Therefore, the nonparametric Kruskal–
Wallis test (Field 2009) was performed and showed that
there was a statistically significant difference between
each interface (v2(2) = 81.75, p = 0.001). A Bonferroni
post hoc test revealed that the number of images
classified when participants used the Ramped interface
(25 � 2 standard error) was significantly greater than
when using the Full and Stepped interface (18 � 2,
p = 0.001 and 10 � 1, p = 0.001, respectively). The
number of images classified using the Full interface was
also significantly greater than when using the stepped
(p = 0.001).

Finally, although the interface that each volunteer
was presented with was random for each visit (i.e., they
did not by design have the ability to favor and use the
same interface every time they visited the platform), it is
possible to evaluate each interface in terms of the rate
that volunteers returned to the platform for a second
visit. Table 2 shows the number of participants that
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were presented with each interface on their first visit,
how many returned to the platform on a second
separate occasion, and how many did not return beyond
their first visit.

Participants who were presented with the Full
interface on their first visit were more likely to return to
the site, with 24% returning for a second visit and 76%
not returning to the site. In comparison, only 15% and
12% of participants returned to the site when presented
with either the Stepped or Ramped interface on their
first visit, respectively.

Crater Marking Behavior

Participant crater marking behavior has been
compared across each interface in terms of percentage
of participants who marked craters per image, number
of markings made per image, and the time spent on
each image. As the Ramped interface requires
participants to use each tool individually over a number
of images before moving on to the next, the heading
“Ramped (position)” represents data where participants
only mark the center of craters and “Ramped (mark)”
represents results where participants mark the shape.
Large values of standard deviation similarly exist, and
are again explained by image variation (with some
images being comparatively featureless, and others
having many to mark).

When considering the percentage of participants
that marked at least one crater per image, this again
followed a long-tailed, lognormal distribution for each
interface due to the influence of images with no craters
present. As such, a nonparametric Friedman test (Field

2009) was performed and showed a significant difference
between each interface (v2(3) = 64.56, p = 0.001). Post
hoc analysis using Wilcoxon signed-rank tests with a
Bonferroni correction applied revealed that participants
were more likely to identify that an image featured at
least one crater to mark using the Full interface
(44.47 � 1.64%) compared to the Ramped (mark) and
Stepped (36.25 � 1.88%, Z = 7.068, p = 0.001 and
39.98 � 1.49%, Z = 3.679, p = 0.001, respectively).
Participants were also more likely to mark at least one
crater when using the Ramped (position) interface
compared again to the Ramped (mark) and stepped
(44.63 � 1.78%, Z = 6.429, p = 0.001 and Z = 3.04,
p = 0.014, respectively).

In terms of the number of crater markings per
image, a repeated measures ANOVA (Field 2009)
showed a statistically significant difference between each

Fig. 2. Time spent on site and number of images classified (with standard error shown) per interface. (Color figure can be
viewed at wileyonlinelibrary.com.)

Table 2. Number of returners (volunteers who came
back to the platform for a second visit) per first
interface used.

First interface
Number of
volunteers

Number of
returners

Number of
non-returners

Full 516 125 (24%) 391 (76%)
Registered 201 50 (25%) 151 (75%)
Unregistered 315 75 (24%) 240 (76%)

Stepped 524 76 (15%) 448 (85%)
Registered 199 27 (14%) 172 (86%)
Unregistered 325 49 (15%) 276 (85%)
Ramped 540 65 (12%) 475 (88%)

Registered 206 27 (13%) 179 (87%)
Unregistered 334 38 (11%) 296 (89%)
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interface (F(1.895, 377.146) = 44.944, p = 0.001). Post
hoc tests using the Bonferroni correction revealed that
the Ramped (position) interface resulted in a greater
number of markings (9.92 � 0.92) compared to the
Stepped (7.19 � 0.62, p = 0.001), Full (4.86 � 0.37,
p = 0.001), and Ramped (mark) interfaces (3.26 �
0.33, p = 0.001). Similarly, the Stepped interface also
resulted in a greater number of markings compared to
both the Full and Ramped (mark) interfaces
(p = 0.001). Finally, when considering the amount of
time participants spent on each image, a statistically
significant difference again exists across interfaces (F
(1.924, 382.843) = 32.390, p = 0.001). Participants
spent more time per image using the Stepped interface
compared to the Ramped interfaces (99 � 6.36 s versus
33 � 4.03 s and 55 � 4.81 s, p = 0.001) and more time
compared to the Full (50 � 2.76 s, p = 0.001).
Participants significantly spent the least amount of time
per image using the Ramped (mark) interface compared
to the other three. Figure 3 shows the average number
of crater markings and the average time spent on each
image using each interface.

Participant Agreement

In order to assess participant agreement in terms of
crater marking, multiple markings of the same crater
(or same perceived crater) by different volunteers have
to be assessed. To achieve this, an estimation of which
markings relate to the same circular feature has to be
made, which is by no means a trivial task. A
combination of the lack of formal experience of the
participants, along with the limited training provided
can produce large variations in crater diameter and
positional estimations. To assist with this task, ArcMap

GIS software was used, specifically its Grouping Analysis
function (Esri 2014). The function takes a nearest
neighbor clustering approach, performed using x and y
position values with diameter. The maximum linking
length (i.e., the furthest apart two markings can be
considered to be a part of the same cluster) was set as
the diameter field to ensure markings belonging to the
same cluster at least have some overlap. After
performing the function on each interface data set, the
clustering results were reviewed by the author in order
to check for any obvious omissions or incorrectly
amalgamated results. While this type of validation
approach obviously introduces a subjective aspect, no
clustering algorithm is perfect and makes assumptions
based on the constraints it is given (Halkidi et al. 2001),
and often inspection by eye is the best solution.

Table 3 shows the crater marking results for each
interface, in terms of the number of crater clusters
identified (craters marked by more than one
participant), the average standard deviation of the
cluster center position, and the average standard
deviation of the cluster crater diameter in terms of
screen pixels (i.e., the level of agreement between
participants). By only considering craters marked by at
least two participants, any issues regarding malicious
annotations or user “mis-clicks” (for instance, double-
clicking by mistake) that can exist with crowd-sourced
data are considerably less likely to occur, as it is highly
improbable that two participants will make this type of
error in a similar position on the same image. However,
other systematic errors, made due to common
misconceptions, image, or crater variability, will be
included making it possible to evaluate interface and
task design in terms of mitigating their influence (as we
have a known, expert solution for comparison).

Fig. 3. Crater marking results (with standard error shown). (Color figure can be viewed at wileyonlinelibrary.com.)
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Additionally, in the absence of an absolute ground
truth, many existing citizen science projects use this type
of participant agreement as a measure of probability
that the feature has been correctly identified (Swanson
et al. 2015); its strength increases with the number of
participants that have contributed to the marking
cluster (this relationship is further explored later in the
Results section).

Various approaches have been taken, from setting
the minimum number of annotations per cluster based
on a comparison with the size-frequency distribution of
expert markings (Robbins et al. 2014) to performing a
prefilter, removing any markings from volunteers
without the requisite experience (Bugiolacchi et al.
2016). Such processes often have the benefit of
hindsight, with any filtering and weighting being
conducted after the data have been collected and
reviewed. As the focus of this paper was to consider
task flow and interface factors at the design stage, all of
the volunteer data will be included (save those removed
for potential malicious reasons as previously
mentioned). This allows each interface design to be
compared across the data at differing filter levels (2-
annotation clusters up to a 20+), as well as the amount
of markings being “thrown away” is considered. This is
potentially a very important measure considering that
volunteers’ time and effort is being given for free
(Sprinks et al. 2015).

By far the most crater clusters were identified by
participants using the Ramped (Position) interface, and by
far the least using the Ramped (Mark) interface (~a
fivefold difference). These results tally well with the
average number of markings per image data described in
the previous section. The order regarding the Stepped and
Full interface however is reversed, suggesting that
although on average participants using the Stepped
interface made more markings per image, the fact
that significantly fewer images were classified per
participant on average has resulted in fewer clusters being
identified overall.

Of the total number of crater clusters marked, 57
were identified across all four interfaces, and so can be
compared like-for-like in terms of participant agreement
(labeled as comparison sample in Table 3). At first
glance, it could be construed that by not including all
craters that have been identified, this sample could be a
misrepresentation. For instance, in Table 3, the
Ramped (Position) interface goes from being the
interface with the greatest agreement in terms of
position to having one of the least. However, this
demonstrates the importance of creating it. By
comparing only the same craters identified on the same
image, it is possible to separate out any effect on
agreement caused by crater and image variability.
Crater position on screen, size, contrast, lighting, and
degradation can vary and all can have an influence on
agreement and marking accuracy (Robbins et al. 2014)
—which could hide or amplify any effect caused by
interface design. While such factors are an important
consideration when deciding whether to take the citizen
science approach, the focus of this paper is regarding
interface and task design—a factor more readily
effectible at the design stage of a project. At this point,
the performance and agreement of participants are only
compared between interfaces, and not with the expert
(this is done later in the paper in the Participant–Expert
Comparison section). This is in order to evaluate the
influence of interface and task design factors at an
earlier stage of the process (for instance at the filtering
stage where clusters with fewer contributions are
removed), before expert comparison is sought or in the
case that it is not available.

A Friedman test showed a significant difference
between each interface (v2(3) = 15.042, p = 0.002) when
considering agreement in crater position. Post hoc
analysis using Wilcoxon signed-rank tests with a
Bonferroni correction applied revealed that crater
position markings made using the Stepped interface
varied significantly less (therefore greater agreement)
than those made using the Full (standard deviation

Table 3. The crater marking participant agreement for each interface (with interquartile range shown). The
comparison sample refers to the 57 craters marked using each of the interfaces—and therefore can be directly
compared.

Full interface Stepped interface Ramped (Mark) Ramped (Position)

No. of crater clusters 379 212 83 496
S.D. of position (in pixels)
All clusters 1.77 (2.30–1.33) 1.97 (2.16–1.23) 1.99 (2.41–1.97) 1.47 (1.85–1.11)
Comparison sample 2.17 (2.85–1.87) 1.62 (2.09–1.20) 1.92 (2.63–1.26) 1.97 (2.42–1.59)
S.D. of diameter (in pixels)
All clusters 5.83 (8.12–4.29) 3.19 (4.96–1.64) 4.24 (6.41–2.38) No data

Comparison sample 6.69 (8.51–5.57) 3.41 (4.51–2.22) 4.00 (6.24–2.18) No data
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median of 1.62 pixels [interquartile range 2.09–1.20]
versus 2.17 [2.85–1.87], p = 0.001). This is also true
when compared to markings made using the Ramped
(Mark) and Ramped (Position) interfaces, although the
difference is not significant (1.92 [2.63–1.26] and 1.97
pixels [2.42–1.59], respectively). Regarding participant
marking agreement in terms of crater diameter, again a
Friedman test revealed a significant difference between
each interface (v2(2) = 44.947, p = 0.001). Post hoc
analysis using the Wilcoxon signed-rank test with a
Bonferroni correction applied showed that the diameter
of markings made using the Full interface was
significantly less in agreement than those made using
the Stepped and Ramped (Mark) interfaces (6.69 pixels
[interquartile range 8.51–5.57] versus 3.41 [4.51–2.22],
p = 0.001 and 4.00 [6.24–2.18], p = 0.001,
respectively). Figure 4 shows participant agreement in
terms of position and size across each interface.

Breaking down participant agreement in terms of
crater identification further, Fig. 5 shows the number
of crater clusters marked versus the minimum number
of participants that marked them. As can be seen, the
pattern of a greater number of crater clusters identified
using the Ramped (Position) and Full interfaces
compared to the Stepped and Ramped (Mark)
continues independently of how many participants have
contributed to the cluster.

Participants using the Ramped (Position) and Full
position also showed better agreement on an individual
crater level, with the maximum number of participants
marking any crater being 33 and 51, respectively,
compared to 11 when using the Ramped (Mark) and
Stepped.

Participant–Expert Comparison

Crater clusters identified by participants using each
interface have been compared to those identified by
experts from the University of Bristol. Through their
research in estimating the seismic activity of Mars’s
Cerberus Fossae region (Taylor et al. 2013), a crater
survey discovered a total of 365 craters across the
sample area presented to Planet Four: Craters
volunteers. Table 4 compares this expert benchmark
with the crater marking clusters made using each
interface in terms of crater identification.

Breaking down the crater clusters identified using
the Full interface, 268 of clusters were confirmed as a
crater by the expert giving a precision of 71%, with 111
misidentified as false positives (a false discovery rate of
~29%). Regarding the expert crater markings, 97 (false-
negative rate ~27%) were missed and not marked as a
cluster by participants. Although participants using the
Stepped interface identified fewer crater clusters, a
greater proportion was confirmed as a crater by the
expert (166, precision ~78%), with 46 (false discovery
rate ~22%) misidentified as false positives. Due to the
reduced number of clusters identified, more of the
markings made by the expert have been missed (199,
false-negative rate ~55%). Continuing this trend, the
fewest number of crater clusters identified by
participants using the Ramped (Mark) interface has
resulted in the greatest percentage being confirmed as a
crater by the expert (73, precision ~88%), with 10 false
positives (false discovery rate ~12%). Likewise, the
reduced number of clusters identified overall has
resulted in the most expert crater markings being missed

Fig. 4. Comparison of marking participant agreement per interface (median and interquartile range shown). (Color figure can be
viewed at wileyonlinelibrary.com.)
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by participants (292, false-negative rate 80%). Finally,
although the Ramped (Position) interface resulted in the
greatest total number of clusters that were confirmed by
the expert (303), proportionally more clusters were
misidentified as craters (193, ~39% of the total). The
greater number of clusters made, however, has resulted
in fewer of the expert markings being missed by
participants (62, false-negative rate ~17%).

Continuing the comparison with the expert
markings, out of the 365 identified, 54 were
subsequently correctly identified as a crater cluster by
participants using all four of the different interfaces,
and therefore can be directly compared in terms of their
variation from the expert equivalent. Figure 6 shows a
“slice” of the study image, with the average markings
made using each interface along with those made by the
expert. When considering the average difference
between participant crater central position and expert
crater position, this has been analyzed as a ratio of the
size of the crater. A single pixel difference when
considering a 200 pixel diameter crater is clearly less
significant than when considering a 10 pixel diameter

crater and so a percentage difference has been
compared. A Friedman test showed a significant
difference between each interface (v2(3) = 11.196,
p = 0.011). Post hoc analysis using Wilcoxon signed-
rank tests with a Bonferroni correction applied revealed
that the position of markings made using the Ramped
(Mark) interface was significantly farther away from the
expert equivalent than those made using the Full and
Stepped (average median ratio difference of 0.18;
interquartile range [0.27–0.11] versus 0.13 [0.23–0.07],
p = 0.007 and versus 0.11 [0.20–0.07], p = 0.003,
respectively). Markings made using the Ramped
(Position) interface (0.16 [0.20–0.11]) were also further
away position-wise from the expert than the Stepped
(p = 0.05).

Regarding the average difference between
participant crater diameter and the expert equivalent,
this has also been analyzed as a ratio of the size of
crater. A Friedman test showed that there was a
significant difference between each interface
(v2(2) = 5.778, p = 0.05). Post hoc analysis using
Wilcoxon signed-rank tests with a Bonferroni correction

Fig. 5. Participant crater identification agreement. (Color figure can be viewed at wileyonlinelibrary.com.)

Table 4. Crater identification compared to expert.

Interface
No. of craters
marked True positives False positives False negatives Precision (%) Sensitivity (%)

Full 379 268 111 97 71 73
Stepped 212 166 46 199 78 45

Ramped (Mark) 83 73 10 292 88 20
Ramped (Position) 496 303 193 62 61 83
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applied revealed that the diameter of markings made
using the Ramped (Mark) interface were significantly
more in agreement with the expert than those made
using the Full and Stepped interface (median ratio
difference of 0.23 [interquartile range 0.50–0.10] versus
0.50 [0.83–0.14], p = 0.001 and 0.34 [0.73–0.12],
p = 0.03, respectively). Figure 7 shows the average
difference in position and diameter between the expert
markings and those made by participants using each
interface.

Breaking down crater identification further, the
clusters identified using each interface are compared
with the expert data in terms of their size and
frequency. Figure 8 shows the cumulative crater
frequency plots for each interface compared to the
expert as a function of crater diameter, and the relative
deviation from the expert per size bin.

In terms of general crater identification, the Full
interface distribution follows most closely to that of the
expert, with the higher frequencies seen perhaps

Fig. 6. Sample image of expert and participant average crater markings for each interface. The top, large image shows the expert
markings in black, and the average participant marking using each interface (blue = Full, yellow = Ramped, and red = Stepped)
calculated using the clustering algorithm described in the Participant Agreement section. The bottom of the image shows four
example craters (labeled A to D), in order of size as denoted by the expert. Captioned below each image is the diameter of the
expert marking in pixels (px). (Color figure can be viewed at wileyonlinelibrary.com.)
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expected when considering the high number of false
positives marked as shown in Table 4. Considering the
curve of the Stepped and Ramped (Mark) interfaces,
the frequencies at smaller crater diameters are
significantly less than that of the expert, while at larger
diameters, they are greater. This pattern is shown when
considering the relative deviation of each size bin from
the expert (right side of Fig. 8), with the four crater
bins smaller than 10 pixels in diameter making up to
24% less of the total crater count and the three larger
than 10 pixels making up to 35% more (however, the
large error due to the small count must be borne in
mind) when compared to the expert. Additionally, the
relative deviation shown in Fig. 8 also reveals that this
pattern regarding smaller and larger crater diameters is
also true for the Full interface—a pattern lost in the
cumulative frequency plot due to the overall large
number of craters marked.

It is also worth noting that the deviation from the
expert, both negatively in terms of smaller crater
diameters and positively in terms of larger diameters, is
greater than can be explained by the numbers of false
positives and false negatives shown in Table 4 for each
interface. This suggests that a number of the true
positive marking clusters, although confirmed as a
crater by the expert, have been marked at a larger
diameter than the expert and therefore have fallen into
an incorrect size bin. This issue can be visualized in
Fig. 6 that shows an image slice with markings, where
the black expert markings are consistently smaller than
those made by volunteers on each of the interfaces.
Perhaps this highlights a limitation of the imagery and
the annotation tools supplied that interface or task
design cannot overcome, with volunteers able to identify
smaller craters but unable to mark them accurately.
This is an issue that has been highlighted in previous
work, where even the accuracy or experts can degrade
when considering craters <10 pixels in size (Robbins
et al. 2014). If craters of this size are key to the science
being addressed, a solution could be to provide “zoom”
tools or present the imagery in a “zoomed in” state so
that volunteers can more easily mark them.

Finally, Fig. 9 considers the number of participants
that contributed to a cluster versus the proportion that
are true positive, compared to the expert. Taking the
expert data as a ground truth, it can be seen as the
number of participant contributions required before a
cluster can be seen to definitely represent a crater.

Clusters identified by participants using the Ramped
(Mark) interface required the least amount of markings,
with all clusters made up of five or more participant
contributions also recognized as a crater by the expert.
This was followed closely by those made on the Stepped
interface, where six or more participant markings were

needed. The figure is somewhat higher for clusters made
on the Full interface, with those made up of nine or
more participant contributions all recognized by the
expert as a crater. The Ramped (Position) interface
required the highest number of participant markings, as
only clusters made up of 13 or more resulted in a 100%
expert agreement, over twice as many as was required
using either the Stepped or Ramped (Mark) interfaces.
This apparent difference in performance in terms of
participant–expert agreement also holds true when
considering clusters made up of fewer contributions.
For example, of those clusters made up of only two
participant markings, those made using the Stepped and
Ramped (Mark) interfaces coincide with an expert
equivalent more often than those made using the Full
and Ramped (Position) interfaces (0.66 and 0.83 versus
0.41 and 0.21, respectively).

Quality versus Quantity: Modeling Crater Marking Rates

Through synthesizing the crater marking results
previously discussed, it is possible to model the crater
marking rates of the project over time for different
performance criteria. While performance in terms of
crater position and diameter accuracy has already been
discussed, Fig. 10 shows the crater identification rate
(number of craters marked) over time for three different
minimum precision levels for each interface. By
considering precision, it is not only possible to
consider the amount of usable marking data collected
over time on each interface but also the amount of
data effectively “thrown away”—equating to wasted
volunteer effort. In order to calculate the total number
of craters identified on a given day since launch for
each of the precision rates described, the following
formula was used:

Craters identified ¼ ðVn þ VnRÞIM
Mc

where Vn is the number of new volunteers (calculated
from website visitor behavior, Table 2), R is the return
rate of new visitors (calculated from website visitor
behavior, Table 2), I is the number of images classified
by each volunteer per visit (see Fig. 2), M is the number
of markings made per image (see Fig. 3), and Mc is the
number of markings required per cluster to achieve the
precision (see Fig. 5).

For all three precision levels, and with each
interface, the number of craters identified plateaus over
time. This is due to participant visit behavior following
a long-tail distribution, with the number of new
volunteers falling heavily each day further from launch.
This is in common with the majority of existing online
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citizen science projects where most volunteers only visit
once and perform a few tasks (Nov et al. 2011).

If a 100% precision rate is required (i.e., all of the
crater clusters identified by participants have been
confirmed as craters by the expert), then over 30 days the
Stepped interface results in the greatest number of craters
being identified, due to the lower number of participant
markings required per cluster (six) combined with the
high average number of markings made per image (7.19).
Although for the first 5 days the Full interface results in
the fewest number of craters identified, over time the
higher participant return rate becomes a factor, and after
30 days more craters will be identified using this interface
than both the Ramped versions.

Considering the 75% precision rate, in this
condition, the Ramped (Mark) interface results in the
greatest number of crater identifications over 30 days
since the launch of the project. This is due to the
reduced number of markings required per cluster (two,

down from five for 100% precision) overcoming the
relatively small average number of markings made per
image (3.26). Conversely, the number of markings
required per cluster using the Full interface remains
relatively high (six), meaning that any positive effect
due to the higher participant return rate is dampened
resulting in the fewest number of crater identifications
over the 30-day period.

The picture regarding the 50% precision condition
is similar to that for 100% precision, with the Stepped
interface returning the greatest number of crater
identifications over 30 days since launch. This is again
due to a reduction of the number of participant
markings required per cluster (two, down from five
required for 75% precision)—a reduction that is not
seen with the Ramped (Mark) interface. The Full
interface results in a low number of crater
identifications to begin with, but again the higher
participant return rate becomes a factor over time,

Fig. 8. Cumulative crater frequency plots for each interface compared to the expert (left), and the relative deviation from the
expert for each diameter size bin (right). (Color figure can be viewed at wileyonlinelibrary.com.)

Fig. 7. Top: Position and diameter difference of participant markings compared to expert (median and interquartile range
shown). The large variations of average diameter difference from the expert are due to variations in crater size, which perhaps
hides any differences between each interface. Middle: As the interfaces have been compared on a crater by crater basis, it is
possible to show the percentage of craters for which each interface is most thorough to least accurate when compared with the
expert. This graph shows the percentage of craters versus the interfaces’ accuracy ranking in terms of crater position. For
instance, the Ramped (Mark) interface is the most accurate for only 18.9% of craters, but least accurate for 47.2% when
compared to the expert position. Bottom: Similarly, this graph shows the percentage of craters versus the interfaces’ accuracy
ranking in terms of crater diameter. For instance, the Ramped (Mark) interface is the most accurate for 46.3% of craters and
least accurate for 16.7% when compared to the expert diameter. (Color figure can be viewed at wileyonlinelibrary.com.)
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bringing the total of number of crater identifications
almost in line with the Ramped (Position) interface over
the full 30-day period.

For all three precision conditions, the Ramped
(Position) interface represents a “middle ground” in
terms of the number of crater identifications made over

time. This is due to any positive effect regarding the
high number of crater markings made per image, and
therefore the high number of clusters identified, being
canceled out by the low participant return rate, and
high number of participant markings required per
cluster (13 for 100% precision).

Fig. 10. Number of craters identified over time using each TWD interface at differing minimum precision rates. (Color figure
can be viewed at wileyonlinelibrary.com.)

Fig. 9. Participant cluster contribution versus fraction of true positives when compared to expert. (Color figure can be viewed at
wileyonlinelibrary.com.)
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The model described in Fig. 10 also reveals an
interplay between the number of unwanted false
positives collected and number of true positives
identified. This relationship is strongest when
considering the Stepped interface. For instance, at 50%
precision over 30 days, the number of craters identified
would plateau at ~10,000 according to the model. This
has the caveat however of also resulting in an equal
amount of false positives to deal with compared with
true positives, ~5,000 of each. Increasing the number of
markings per cluster to achieve 100% precision (the far
left graph of Fig. 10) would remove all false positives.
However, while there are no false positives to filter out,
the amount of true positives collected over the 30 days
plateaus at ~3400 craters. This means that ~1600 fewer
true positive craters have been discovered in order to
remove the noise of false-positive crater identifications.
Adversely, in the Ramped (Mark) interface, only ~400
fewer true positive craters are discovered in order to
achieve 100% precision (no false positives) compared to
50% precision (one false positive for each true positive
crater identified). However, even at the lower 50%
precision, the total amount of true positive craters
identified plateaus at ~2000 craters, ~3000 fewer than
with the Stepped interface.

Finally, while Fig. 10 considers the number of
craters marked over time at arbitrary cutoff precisions,
it is also possible to look at the relationship between
quantity and quality directly. Through analyzing the
number of craters marked and their expert comparison
at different cluster sizes (as described in Fig. 9), the
relationship between precision and sensitivity can be
described. Figure 11 shows this relationship for each of
the interfaces.

As expected, with each interface there is a negative
correlation between precision and sensitivity, meaning
that to remove false positives (increasing precision) some
true positive identifications will also be lost (reducing
sensitivity). Figure 11 also reveals issues that are not
apparent when considering precision alone, as in Fig. 10.
For instance, although at 100% precision (all craters
marked are true positive) the Stepped interface results in
the most crater markings over 30 days (~3400), the
sensitivity achieved is only ~6%. This means ~50,000
true positives have not been identified (false negatives).
Alternatively, the Full interface results in ~2000 crater
markings (1000 less than the Stepped) but at a sensitivity
of ~28%, meaning ~5000 false negatives (10 times less
than the Stepped interface).

The difference in maximum sensitivity that is
achievable on each TWD interface is also highlighted.
As alluded to previously, the Stepped interface performs
poorly in this respect with a maximum sensitivity of
53% (achieved at 71% precision) when all clusters

from ≥2 participant markings are included. The
Ramped (Mark) interface threshold is even lower, with
a maximum sensitivity of 20% (achieved at 87%
precision). The remaining interfaces’ maximum
sensitivity rates are higher, at 73% (achieved at 71%
precision) for the Full and 83% (achieved at 61%
precision) for the Ramped (Position). Therefore, if
sensitivity (marking the highest proportion of craters
that are present) is a key objective, the Full or Ramped
(Position) interfaces would be more appropriate despite
the lower precision and fewer amount of craters
identified over time (see Fig. 10).

Finally, if a balance of both sensitivity and
precision is required, again the Full and Ramped
(Position) interfaces perform the best. Volunteers using
the Full interface could achieve a precision of ~72%
while maintaining a sensitivity at the same rate.
Considering the Ramped (Position) interface, the figure
rises further, with volunteers able to achieve a precision
of ~74% while maintaining a similar sensitivity level.

DISCUSSION

Summary and Hypotheses

� H1 (simpler task = greater data coverage) is
supported by the finding that more crater clusters
were identified and marked using the Ramped
(Position) interface—as shown in Table 3.

� H2 (task type and judgment influences participant
agreement) is supported by the finding that the Full
and Ramped (Position) interfaces resulted in greater
participant agreement in terms of identification
(markings per cluster)—as shown in Fig. 5.
Furthermore, this suggests that the type of task and
judgment has a greater effect on agreement compared
to variety and autonomy (which varies from greatest
to least between the Full and Ramped interfaces).
Considering a different measure, crater position and
diameter markings made by the Stepped interface
(where tasks are separated out and completed in a
procedural manner) were significantly more in
agreement than those made using the Full interface
where tasks are combined (see Fig. 4)—revealing the
complex influence of task type and judgment
depending on how agreement is considered.

� H3 (task variety and autonomy = more return
visits) is supported by the finding that participants
who were presented with the Full (most variety and
autonomy) interface on their first visit returned at a
greater rate compared to the other interfaces
(Ramped and Stepped)—as shown in Table 2.

� H4 (task variety = less time per visit) is not
supported by the findings, with no statistically
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significant difference in time per visit existing
between each of the interfaces (see Fig. 2).
In summary, the hypotheses related to task type and

judgments were supported by the analyses, whereas the
hypotheses related to autonomy and variety were only
supported in part. In the following section, this disparity
is unpacked through discussing the behavioral findings
of this study. Measures of website behavior, participant
agreement, and performance compared to the expert are
used to paint a broader picture of how task workflow
design factors can affect a VCS platform’s output and
the engagement of its community.

Using Volunteers’ Time Wisely

Website analyses regarding participant behavior
indicated that varying the task workflow design factors
of autonomy, variety, task type, and judgment did not
influence how long participants spent on the platform
per visit, around 20 minutes across each interface. This
suggests that other influences are at play, perhaps
external environmental factors. However, through the
manipulation of TWD factors, how best to use this
time can be controlled at the design stage of the
platform.

For instance, one approach could be to utilize an
interface involving a simpler task akin to the Ramped
(Position) interface (one detection, one matching—one
mouse click), resulting in more participants marking at
least one crater per image, more crater clusters identified,
and more images classified per visit (H1; Eveleigh et al.
2014). However, although this greater quantity of
volunteer analysis results in fewer craters being missed
(false negatives), it also increases the false-positive rate
(crater markings that do not represent an actual crater)
that will have to be dealt with. Additionally, the results
collected from a simpler task are less detailed, returning
only position and crater numbers rather than other metrics
such as diameter (required for the age estimation of a
surface). While such data might have a use in a citizen
science context, for instance to filter out images with no
craters before using participants’ time on more in-depth
analysis, it has little scientific use. Alternatively, a more
prescribed interface could be used, forcing volunteers to
complete a number of different tasks but in a set order (the
Stepped interface). Although this ultimately results in
volunteers taking more time per image, and therefore
classifying fewer images during the 20-minute visit,
arguably it results in a more thorough assessment.
Volunteers’ markings show both a greater agreement with

Fig. 11. Rate of precision versus rate of sensitivity for each TWD interface. (Color figure can be viewed at wileyonlinelibrary.com.)
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each other (H2) and with the expert judgment, although
the total number of true positive clusters identified is lower.

The issue with both these approaches is that they
either restrict the volunteers’ autonomy or the variety of
tasks available to undertake. Both these factors
influence volunteer engagement (H3), a finding
supported by participant behavior in terms of their
return rate to the platform. It could be possible to find
other ways to improve volunteer retention in such cases,
for instance through gamification. The gamification
approach has been used by VCS platforms that often
involve simple, repetitive tasks in order to make them
more enjoyable and therefore motivating and sustaining
participation (Eveleigh et al. 2013). However, while this
can help sustain the engagement of some volunteers,
others can be put off by the competitive aspects,
slowing their contribution and in some cases leaving the
platform altogether (Iacovides et al. 2013). In a worst-
case scenario, some of the most committed “hard-core”
volunteers to a project could be lost, eschewing game-
like aspects that belittle the importance of the science
being addressed in favor of more “serious” interface
designs (Bowser et al. 2013). Balancing gamification
mechanics can also be a challenge, with consideration of
the framing of tasks (i.e., the communication of their
contribution) needed to ensure that accuracy and
precision is not forfeited in favor of task completion
totals (Mekler et al. 2013).

A different approach could be to use an interface
that allows volunteers access to all the tools and lets
them have the freedom to attempt tasks in any order, as
with the Full interface. Although this represents a
“middle ground” in terms of data quantity, volunteer
agreement, and performance, it does provide a greater
intrinsic motivation for volunteers to take part.
Although the time spent per visit is not significantly
longer, the maximum number of return visits by
volunteers using such an interface design does increase.

The Right Tools for the Right Job

Analysis of crater markings in terms of inter-
participant agreement supports H2, showing that the type
of task presented and judgment required of the
participant can affect marking agreement (Hutt et al.
2013). This effect has also been shown to extend in part
when comparing markings to the expert equivalent.
Expanding further, the results reinforce the importance of
being “direct with your volunteers,” in terms of providing
them with tools that are purposely designed to complete
the specific task and harvest the specific data required.

For instance, participant markings of crater position
made using the Stepped interface showed a statistically
significantly greater inter-participant agreement, an

interface where a separate tool is provided to specifically
mark the central position. This agreement was reduced
with markings made using the Full interface, where
position is calculated from the markings of size
rather than directly measured. On a similar theme,
measures of crater diameter showed significantly greater
interparticipant agreement when using the Stepped and
Ramped (Mark) interfaces compared to the Full—where
marking the crater size is explicitly communicated to the
participant as a separate task with a separate tool to use.
Diameter measurements made using the Ramped (Mark)
interface also showed significantly greater agreement
when compared to the expert judgment than those made
by participants using the Full interface.

Task Workflow Design and its Influence on Participant

Behavior

Beyond the hypotheses addressed through this study
as stipulated in the method, analyses of both the crater
marking data and website engagement has given rise to
other notable patterns in participant behavior. In terms of
participant–expert comparison, participants using the
Stepped and Ramped (Mark) interfaces showed greater
agreement with the expert judgment than the other
interfaces in terms of crater position and crater diameter,
respectively. This result adds credence to previous
research showing that volunteers spending longer on the
task perform better (Prather et al. 2013), either by
spending more time on each image (Stepped) or analyzing
more images (Ramped [Mark] interface). However, the
reduction in crater clusters marked does result in fewer
true positives identified and more false negatives missed—
meaning that the overall size-frequency distribution using
each shows little agreement with the expert plot compared
with the Full interface. Although participants using the
Ramped (Mark) and Stepped interfaces identified fewer
crater clusters and fewer participants contributed to each
cluster, those that were marked required fewer participant
contributions before the fraction of true positives reached
100% (all clusters of 5 and 6 participant markings
compared to 9 and 13 when using the Full and Ramped
(Position) interfaces, respectively). This ultimately means
much fewer false positives to filter out during analysis.

These direct findings in conjunction with the
derived relationships regarding crater identification over
time and quantity versus quality presented in Figs. 10
and 11, suggest that it is possible to use TWD to
influence participant behavior toward a specific need
with regard to the data collected. For example, if the
science case requires a sample of craters for further
study, and therefore is less concerned about the number
of false negatives, then 100% precision would be the
goal (Fig. 11). The most suitable interface to use would
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therefore depend on whether the size of the sample was
of greater importance (Stepped, Fig. 10), or the
accuracy of crater size within the sample (Ramped
[Mark], Fig. 7). Alternatively, a science case could
already include an existing data set, maybe compiled by
an expert user-group, or identified as being gold
standard (Freitag et al. 2016). Therefore, sensitivity
could be deemed the more important performance
indicator rather than precision (as false positives can be
filtered out more easily), meaning the Full or Ramped
(Position) interfaces would be the best design approach
(Fig. 11). These two interfaces would also be the most
suitable if a balance of precision (fewer false positives)
and sensitivity (fewer false negatives) were required, as
previously explained. It is worth noting that all such
approaches could be improved through recognizing and
addressing issues of image presentation (systematic
across all the interface designs). As shown in Fig. 8, in
agreement with previous research (Robbins et al. 2014),
there is a limitation regarding smaller craters (<8 pixels
in diameter), where volunteers either fail to mark them
or mark them at a larger size. This could be solved
through providing zoom-like tools, which would
improve performance across each TWD approach.

The practical outcomes of these findings suggest that
when considering utilizing a VCS platform the science
team involved would have to balance the advantages of
either greater precision, sensitivity, or data quantity with
the disadvantages of having to “clean” out a greater
number of false positives, or miss out on a number of
potential markings (false negatives). A second balancing
act would also be required when considering the volunteer
community. One approach might be to build an interface
that focuses on providing the user with as much task
variety and freedom to complete them as possible,
increasing volunteer engagement, and hence their intrinsic
motivation to return to the site. Alternatively, an interface
could be developed that restricts these factors, either by
forcing volunteers to step through each task sequentially
or by only making more involved tasks available when a
set number of images have been completed. Although this
could result in a certain amount of frustration on the part
of the volunteer, and therefore a smaller community with
fewer return visits, those that do remain might well return
more accurate data. In considering such decisions, the level
of detail required (i.e., crater existence, position, size,
distribution, etc.), the number of images that need to be
analyzed, and the potential size of the volunteer
community taking part will all need to be considered.

CONCLUSION

Through the implementation of a “live” VCS
platform study to test the effect of manipulating task

workflow design factors, it was found that autonomy,
variety, task type, and the volunteer judgment required
had an effect on volunteers’ behavior in terms of site
usage and the data they produced.

Participant behavior in terms of interaction with the
platform showed that although there is no significant
difference in terms of visit duration between each interface
(~20 minutes), participants who used the interface with the
greatest variety and autonomy (Full) returned to the site
more often. How participants’ behaved during a visit did
however vary, with participants using the Stepped interface
(least autonomy) spending significantly more time on each
image, and therefore analyzing less images in total.

When considering crater marking behavior, analysis
has indicated that by manipulating task workflow design
factors through different interface designs, performance
can be influenced in differing ways depending on the type
of measure considered. The interface involving a simpler
task, less variety, and less autonomy (Ramped Position)
resulted in more data being collected (Eveleigh et al.
2014) and at a faster rate in terms of image analysis time
per volunteer (J€akel and Wichmann 2006). The Full
interface, featuring greater variety and autonomy, also
resulted in more data being collected than those with
greater restriction (Stepped and Ramped Mark).
Although at first glance this supports H1 (greater
autonomy = greater data volume), there is a caveat.
Although a greater amount of data resulted in more true
positive identifications when compared to the expert, it
also increased the false discovery rate. This in turn
resulted in more participants required to contribute
(seeing the image and detecting the crater) before a crater
cluster could definitely be considered a crater.

Performance in terms of crater measurement
agreement, both between participants and with the
expert judgment, was significantly improved when using
the Stepped interface for crater position and the
Ramped (Mark) interface for crater diameter. One
conclusion to make from this finding is in support of
the previous study, suggesting that performance is
improved when participants completed a task that
directly measured the required metric, and that the
definition of the task is clearly separated from others
(Hutt et al. 2013). A second reasoning has been
revealed by the “live” nature of the study. It could be
argued that this improvement in agreement could be a
result of constraining the user in terms of their time and
experience, being forced to spend more time on an
image using the Stepped, or having to analyze a set
number of images to “unlock” tasks with the Ramped
(Prather et al. 2013). Although this approach is
detrimental to user experience, and thus reduces the
number of return visits, those volunteers that do remain
perform better compared to the expert judgment.
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Overall, the results of this study support the
findings of previous related human factors research
when considering volunteer engagement, with preference
given to greater autonomy and variety suggesting that
interfaces that incorporate these factors can provide an
intrinsic motivation to take part. In terms of volunteer
performance, again the influence of task workflow
design factors differs depending on the performance
measure concerned. The live nature of this study has
additionally revealed the delicate balance between
volunteer engagement and performance—reinforcing the
importance that VCS developers and science teams
consider the analysis required, the amount needed, and
the prospective size of their volunteer community when
considering a citizen science approach. While previous
research has shown that citizen science overall is a valid
method to use for crater counting and comparable to
the expert equivalent (Robbins et al. 2014; Bugiolacchi
et al. 2016), this study demonstrates the importance of
considering how the task is designed and presented to
the volunteer and its potential impact on the success of
a project. It also reveals the advantages that can be
realized through experimenting with different TWD
configurations, both in order to manipulate volunteer
behavior toward the data needs of the project, and to
uncover limitations regarding the imagery presented.
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