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Abstract —Dynamics of power outages remain an unpredictable hazard in spite of expensive
consequences. While the operations of the components of power grids are well understood, the
emergent complexity due to their interconnections give rise to intermittent outages, and power-law
statistics. Here we demonstrate that there are additional patterns in the outage size distributions
that indicate the proximity of a grid to a catastrophic failure point. Specifically, analysis of the
data for the U.S. between 2002-2017 shows a significant anti-correlation between the exponent
value of the power-law outage size distribution and the load carried by the grid. The observa-
tion is surprisingly similar to dependencies noted for failure dynamics in other multi-component
complex systems such as sheared granulates and earthquake statistics, albeit under much different
physical conditions. This inspires a generic threshold-activated model, simulated in realistic net-
work topologies, which could successfully reproduce the exponent variation in similar range. Given
sufficient data, the methods proposed here can be used to indicate proximity to failure points and
forecast probabilities of major blackouts with a non-intrusive measurement of intermittent grid

outages.

Introduction. — A secure supply of electrical power is
a vital component of a prosperous society, and any inter-
ruptions or outages can have catastrophic consequences,
as witnessed on many occasions [1]. Characterisations of
power grid instabilities and outages, therefore, have been
active topics of research for decades in both the physics
and engineering communities (see e.g. [2-8]). An operat-
ing power grid, particularly near its permissible level of
capacity, can suffer from large outages triggered by small
initial fluctuations or disturbances [9]. For example, a
software failure in an early warning management system
[10], a tree falling on a line [11] or overloading by users [12]
caused blackouts affecting, respectively, about 55, 56 and
620 million people. Such an amplified response to a small-
scale perturbation is a prominent signature of the system-
wide correlations which develop near a critical point.

Another clear example of correlated response in power
grids is the distribution function of outage sizes, as mea-
sured, for example, by the number of customers left un-
served during an outage. While random and independent
failure events would result in an exponentially decaying

distribution of outage sizes, in reality the probability p(S)
of an outage of size S has a power law tail, p(S) ~ S~
reflecting the relatively higher probabilities of large out-
ages [14] due to causally connected cascades of outage
events. A rank-plot of event sizes is often used to char-
acterise such a power-law distribution [2,13], due to its
relationship with the cumulative probability distribution
(see Egs. (1-3)). Statistical analyses of grid outages, par-
ticularly those demonstrating the universality of the ex-
ponent value, «, across different countries [14], has led
to the recognition of the dynamics of power outages as a
case of self-organised criticality (SOC) [15,16]. Indeed, a
connected set of objects (e.g. high-voltage power lines)
having finite failure thresholds, coupled with a drive (cus-
tomer demand) and dissipation (load unserved) is suit-
able for showing emergent collective behaviour and a self-
organised critical state. As such, outage statistics are
reminiscent of the Gutenberg-Richter-like law that de-
scribes the event (or avalanche) size distributions of earth-
quake statistics [17], acoustic emissions in stressed brittle
solids [18], sheared granular media [19], creep rupture in
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disordered material [20] and so on.

While generally such avalanche statistics may have a
scale-free size distribution, their exponent is also com-
monly seen to vary with the ‘load” borne by a system.
The nature of this load depends on the relevant drive, e.g.
tectonic stress for earthquakes, or compressive stress for
laboratory fracture. Specifically, if only the events occur-
ring at a higher load are sampled, the magnitude of the
exponent « is frequently smaller than what is obtained
for events occurring at a lower load. Such behaviour was
first noticed in sheared rocks [21], where « decreases lin-
early with differential stress. Subsequently, it has been ob-
served for the acoustic emissions preceding cliff failure [22],
for earthquakes [23-25] and sheared granulates [19]. For
example, although the magnitudes of earthquakes world-
wide follow a universal scaling, in some places or times «
tends to be lower, signalling a higher risk of large earth-
quakes [26]. Recently, much advantage has been made of
this insight, to generate risk-maps of earthquake activity,
and to identify potential danger spots in areas like Suma-
tra [27] or California [28].

Here we show that there is a lowering of the size distribu-
tion exponent with increased load, i.e. customer demand,
for power outage statistics. Using the publicly available
data (see [29]) for outages in the U.S. between 2002-2017,
we found significant differences in the size distributions of
events occurring in the night or day, over which time the
total power usage changes by about a third. Indeed, there
is a systematic anti-correlation of the exponent value with
the load on the grid, as measured for different hours of
the day and different months of the year. Such changes
are also observed for smaller regions, where they may be
indicative of the relative risks of outages.

The similarities of these observations with other driven
dissipative systems also encourages us to explore them
through a generic threshold-activated model, without the
operational complexities of the power grids but preserving
a realistic network topologies. We find that such a mini-
mal model is capable of reproducing the load-dependence
features of power outage statistics, suggesting that it is,
indeed, a robust feature of the near-critical dynamics of
power grids.

Outages in the U.S. grid. — The size distribution
of power outages in the U.S. has been studied, both in
terms of the power left unserved and the number of cus-
tomers affected [2,9,13,30]. In fact, these quantities vary
almost co-linearly, except in a few instances involving load
shed affecting e.g. one customer, such as may be the case
for a large industrial facility. The two metrics also show
power-law size distributions, with exponent values that are
identical to within the relevant error bars [30]. For exam-
ple, the cumulative distribution function for the number
of customers affected during blackouts is reported to fol-
low a power law, with exponents variously estimated in
the range from 0.8 to 1.3 [2,13,30]. Similar studies for
outages in Sweden [31], Norway [32], New Zealand [33]
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Fig. 1: The sizes of large-scale outages in the U.S. follow a
power-law distribution, whose exponent changes with the load
on the grid at the time of outage. (a) We demonstrate this
by dividing the 1193 publicly reported outages from 2002-2017
into those occurring during the day and night, or the summer
and off-peak/winter periods. The lower load cases (night and
winter) show steeper power-law distributions than the higher
load cases (day and summer). Events below size 50,000 are
not required to be publicly reported, and are distinguished as
open circles. The seasonal plots are also shifted 10x up the y-
axis, to aid visibility. The inset shows the national electricity
consumption at different times and months, for 2016. This
robust anti-correlation between the load and exponent can be
seen if the data are further subdivided according to (b) month
(3-month rolling average) or (c) time of day (3-hour rolling
average).

and China [34] also reveal scale-free size distributions of
power outages. Outage events have also been fit with non-
power law scalings [30]. While the lower end of the data
can be well-fit with other distributions, the tail of extreme
events is usually found to be well-approximated by a power
law [2,13,30-34], and we follow this procedure here. We
will show that the exponent value of such a distribution
depends on the load carried by the power grid, at the time
of failure.

Data are collected from the U.S. Energy Informa-
tion Administration website (see [29]), which lists outage
events affecting more than 50,000 consumers, or resulting
in a load shedding of more than 300 MW, as well as the
hourly electricity demand. There are 1193 reported out-
ages in the period 2002-2017 (inclusive) affecting known,
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non-zero numbers of customers, which we consider. Out-
age times are recorded in the local time zone. The load
values used are for 2016, and reported nationally using
the Pacific time zone as a reference. Hourly load data
was taken from the 1st and 15th of every month, avoid-
ing weekends and holidays (specifically, using January
4th/15th; May 2nd/13th; and October 3rd/14th), when
load patterns are different. Daily average loads were col-
lected throughout the year. Load averages and standard
deviations were calculated from these data for each win-
dow of hours or months used.

For fitting the outage size distributions, we use rank
plots. The events S can be arranged in the descending
order of their sizes:

S1>85>8535...>8,. (1)
The k' ranked element has size S;. For events with a
probability distribution p(S), the number of events having
size greater than or equal to Sy is

/  (8)dS = k. @)
S

k

If p(S) ~ S™°, then

N S (3)
The ranked data was fit in two ways. First, a maximum
likelihood estimator (MLE) method [13] was used to mea-
sure the exponent B, and an event size cutoff. Second, we
applied least-squares fits to the data. The least squares
fits were performed for both the raw data, and data binned
to have equal widths (a factor of 2) on a log-scale. For this
an a priori cutoff is required. This is taken as 50,000 (the
requirement for reporting) or above when there are other
signatures of under-reporting (e.g. kink at 100,000 con-
sumers in Fig. 2(b)). Error estimates for least squares fits
were checked by repeating fits on randomly subsampled
data sets (100 trials on half-sampled data); the resulting
spread in exponents is consistent with the stated fit errors.
While the precise exponent values depend on the method
of fitting used, they show same trends with load. Com-
plete sets of fits for both methods are given in the online
supplementary material; least-squares fits for the binned
data are used in the manuscript and manuscript figures.

In Fig. 1(a) the rank plots, or cumulative size dis-
tributions, are given for the subsets of power outages
occurring respectively during the day (08:00-20:00, lo-
cal times), night (22:00-04:00), summer (July-August), or
winter (October-May). These periods were chosen to cor-
respond with times of peak and off-peak loads, as mea-
sured by the national electricity demand during 2016, and
shown in the inset to Fig. 1(a).

A power law fit of the whole data set gives an exponent
B = 1.30+£0.02, which is consistent with previous reports
[2,13,30]. However, following a day/night division these
outages split into a shallower daytime distribution with

B =1.154+0.03 and a steeper nighttime distribution with
B = 1.78 4 0.02. While it is known that there are fewer
outages at night, than in the day [30], our result shows
that those outages that do occur at night are generally also
much less severe. Similarly, if the data are split seasonally,
we find an exponent of B = 1.22 4+ 0.04 in the months of
peak summer usage, but an exponent of B = 1.74 + 0.04
during the off-peak winter months.

To further demonstrate the significant relationship be-
tween the load on the grid and the exponent value of the
outage size distribution, we have considered outages in
rolling three-hour time windows. Fig. 1(b) shows the vari-
ations of the exponent B and the load for different hours
of the day. Similarly, Fig. 1(c) shows the loads and expo-
nents for different months of the year, using a three-month
rolling window. The fits for all windows used are provided
in the online supplementary aterial. For both cases an
anti-correlation between the load and the fitted exponent
value can be seen. Both the Student’s t-test and Spear-
man’s rank-order correlation reject the null hypothesis of
no correlation, at more than 99% confidence. Thus, like
a variety of other driven disordered systems [19,21-24],
we find that a higher load is associated with a smaller B
value, and hence a more extreme distribution of events.

So far we have demonstrated a temporal variation of
the outage size distribution exponent over the entire U.S.
power grid. However, in order to show the potential for
identifying any vulnerable areas or dangerous hot-spots on
a grid, it is important to consider such load dependence
on different spatial scales, as well. The U.S. grid is di-
vided between regional reliability councils, or RRC’s (see
Ref. [29] for source of maps). We chose the three regions
with the greatest number of recorded outages and fit the
outage size distributions of events from the day and night,
in each region. The results, shown in Fig. 2, show that
load-dependent variations can be established on smaller
regions of a grid. In the online supplementary material we
also analyse the whole data set from each RRC, and show
that there are significant variations in exponent across the
U.S., ranging from B = 1.67 in RFC (Northeast), to 0.70
in FRCC (Florida). In order to probe to even finer scales,
such as is done with B-value maps of earthquake risks, one
would need access to a larger volume of fine-grained data.
In practice, this would mean records substantially below
the required thresholds of public reporting, in the U.S.

Modeling outages. — We explore the load-
dependence of power grids further via a network model,
with different topologies and loading conditions. There
are many approaches to modelling power grid dynam-
ics, including examples of networks obeying circuit laws
[6, 35-37], sometimes incorporating phase information
[3,38-40] leading to the examination of the transient be-
haviour during the outage (e.g. propagation of desynchro-
nisation), as well as more abstract models [41,42], along-
side a large literature on failures in complex networks in
general (see e.g. [43-46]). Here we use a model of the
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Fig. 2: Day-night variations in outage size distributions are also seen regionally. Outages in the U.S. are divided according to
their governing Regional Reliability Council (RRC). Shown are the rank size distributions for the three RRC’s with the most
reported events, (a) WECC (149 events), (b) RFC (315 events) and (c) SERC (182 events), divided between day (10:00 - 20:00,
local time) and night (00:00-06:00). In each case the nighttime outage distribution is steeper (B = 1.39,1.48, and 2.39, for
(a)-(c), respectively) than the day-time distribution (B = 1.23,0.97, and 1.52), indicating that outage events are generally more

severe at higher-load times.

power grid similar to that studied in Refs. [47-50] where
we assume a wide separation of time scales between in-
ternal relaxation of the system and external drive. The
model demonstrates how the observed U.S. outage data
match generic features of the load-dependence of outage
statistics.

Specifically, we consider a set of elements, or nodes, hav-
ing finite failure thresholds. The elements are either con-
nected to each other in a topology simulating the Western
Interconnection of the U.S. grid [51], or by a regular lat-
tice. The thresholds O‘Zh and loads ali of the i*" element
are related by

(4)

We assign a random load o} to each element, from a uni-
form distribution between zero and one. The second term
on the right hand side provides a buffer or redundancy
for the elements, with s quantifying their typical level of
redundancy. This ensures that the capacity of an element
ol is always higher than its initial load. The random
variables ¢; are also chosen from a uniform distribution on
[0, 1]. Therefore, on average, the network carries a fraction
of load 1/(14 s), measured relative to its average capacity.
The values of 1/(1 + s) studied are given in the legend to
Fig. 3.

The dynamics of the model follow from randomly choos-
ing an element and dropping its threshold to zero, thereby
triggering a failure event. This could happen due to ex-
ternal causes (a storm, vandalism, etc.) on a grid or be
caused by a sudden surge in demand among customers. In
the model this causes a node to overload, rather than its
connections or links, which instead inform how the fail-
ing load spreads. The load carried by the overloaded ele-
ment is now redistributed amongst the surviving elements.
That may, in turn, cause some of those elements to over-

oip = 07 + €.

load their thresholds and break, triggering an extended
avalanche. We assume that there is a separation of time
scales between the spread of an event through the system,
and the triggers of successive events. Indeed, while the
spreading of an event takes a few seconds [39], successive
triggering events could be days, weeks or further apart.
Therefore, the full load of a failed element is redistributed
across its neighbours, which are then tested for stability.
If a completely isolated node fails (i.e. it has no remaining
unbroken neighbours), its load is not redistributed, but is
instead lost; this would represent an area of the grid for
which there remains no possible route to deliver power.
An outage is thus modelled as the redistribution of load
in successive steps following a breakdown. The size of an
avalanche is then the number of elements which break, be-
fore a stable configuration is reached. After the avalanche
has finished, any broken elements are restored, all ele-
ments on the network are assigned new randomly selected
thresholds and loads, and the whole process is repeated.

First, we consider this failure model on the topology
of the Western Interconnection, as described in Ref. [51],
and containing 4941 nodes connected by 6594 links. The
load sharing in this case is confined to connected neigh-
bours, such that an avalanche can only cascade along adja-
cent links. Specifically, all surviving neighbours are given
an equal share of the load of a failed node. The result-
ing avalanches are recorded over time and rank-plots are
shown in Fig. 3(a) for different values of the relative stress,
or excess capacity. A power-law scaling is seen in all cases,
with deviations only near the system size. The exponent
shows a load-dependence, decreasing from B = 1.40 to
0.41, as the average load increases from 40% to 53% of
the average capacity.

Due to the long-range nature of the correlations de-
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veloped in a real grid, a failure at one point can start
an avalanche or cascade failure at a far away location
[52]. Therefore, a second version of our model allows
a local disturbance to trigger a remote event directly.
For this, we consider 8100 elements on a two-dimensional
square lattice. Following a local failure, the load car-
ried by the broken element is now redistributed to the
entire remaining network. The fraction of load accom-
modated by each other point depends with its distance
from the failure point, Az, scaling as 1/(Azx)Y. We take
v = 2, in keeping with the dependence of current flow
in the random fuse model [53] (e.g. around an isolated
flaw in a conductive plane), but note that v could be var-
ied, allowing for a transition from local to mean-field be-
haviour [54]. The total load is kept constant in this case
as well, although for long range redistribution this ignores
any dissipation from transmission loss which could occur.
The resulting avalanches are recorded and rank-plots are
shown in Fig. 3(b) for selected values of the relative stress.
Again, the rank-plot exponent varies significantly within
the range of loads studied; increasing the relative load
from 50% of capacity, to 63%, reduces B from 2.19 to 0.89.
The range of power-law behaviour in this model is more
limited, however. One possible reason for this is that the
system is unrealistically resilient, due to its long-range in-
teraction. Nevertheless, this result, from a generally con-
structed network, covers most of the observed temporal
range of B values for the U.S. grid, as well as the spatial
variations seen in its different regions, and corresponds
to a similar relative change in electricity demand to that
occurring nationally from the day, to the night.

Discussion. — The intermittent dynamics of power
grid outages have been associated with self-organised crit-
icality for almost twenty years [13,15]. Characteristic sig-
natures of this, including a scale-free size distribution of
the outage sizes, are seen for outages in many different
countries [30-34]. This connection of power grids with
self-organised criticality enables comparisons with other
similar systems, such as earthquakes [13].

Here we have shown that, as for a variety of other driven
disordered systems [19,21-24], power grids have a signifi-
cant load-dependence in their failure statistics. When out-
ages are ranked by the number of people affected, their sta-
tistical distribution is a power law whose exponent is anti-
correlated with electrical demand. This anti-correlation
was measured for data taken from the publicly reported
U.S. power outages, using various rolling 3-hour or 3-
month windows, and comparing to the average demand in
those windows (Figs. 1 and S1-S4). The results are sum-
marised in Fig. 4(a), and show that as the load increases
from 400 GW to 550 GW (a 37% increase), the exponent
B drops from about 2 to 1. As with earthquakes [21], this
dependence with load is approximately linear. Expressed
in terms of probabilities, this means that for peak load, an
outage affecting a million customers is about 1% as likely
as that of one affecting a hundred thousand customers,
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Fig. 3: Rank plots of model events demonstrate the generic na-
ture of the load-dependence of power outage statistics. Results
are shown for models with various ratios of the average load
to capacity (i.e. values of 1/(1 + s)) and either (a) nearest-
neighbour redistribution of load across a realistic topology of
the Western Interconnection of the North American power grid
[51] (4941 nodes), or (b) distributed load sharing on a grid with
regularly spaced elements (90 x 90 = 8100 nodes). In all cases,
the fitted exponents are shown in Fig. 4, and compare well to
the range of exponents observed in the real U.S. grid.

while for low loading conditions, it is only about 0.1% as
likely. These statistics are independent of the absolute
number of outages, but are only strengthened by noting
that there are fewer outages at night, than day [30].

By analysing different sub-regions of the U.S. grid, cor-
responding to the regional reliability councils, we have also
shown (Figs. 2 and S5) that variations in B can be mea-
sured locally, and display the same day/night variation as
the national grid. This demonstrates the practicality of
mapping variations of B as an estimator of outage risk, as
is now becoming routine for earthquake risk [26-28].

Given the universal nature of the anti-correlation be-
tween load and avalanche size distribution exponent,
this effect should be manifested in a generic threshold-
activated process without having to consider the details of
the specific system. The underlying topologies are a rel-
evant parameter in determining universality and should,
of course, influence the exact exponent values, but nev-
ertheless preserve the anti-correlation qualitatively. This
expectation was confirmed by exploring the load depen-
dence of power grid outages in a minimal model that con-
siders a grid as a collection of fragile nodes, which pass
their demand on to other elements if they fail. Models
were considered with nearest-neighbour interactions on a
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Fig. 4: Comparison of power outage statistics and load-
dependence, showing the measured exponent, B, for outage
size distributions in various situations. (a) For the U.S. grid,
at different times of the day, and different months of the year,
the data (from Fig. 1) demonstrate the anti-correlation of B
and load. Representative error bars are shown on the monthly
data, and also show the standard deviation in the load during
that time. (b) Modelled outage statistics, in various situations,
show similar results, and explore a similar range of exponents
as the load is varied.

topology following the Western Interconnection [51] in the
U.S., and with long-range redistributions on a regular lat-
tice. The nearest-neighbour model is particularly weak,
as one point failing will have a high chance of taking its
neighbour with it, and so on. The long-range model is,
in contrast, overly strong, with a long-distance spreading
of load, and hence less chance of concentrating it on a
weak element. Nonetheless, as summarised in Fig. 4(b),
both models showed load-dependencies, and a substantial
overlap in the observed B values of the real U.S. grid, for
comparable changes in relative loading. A further rele-
vant parameter in determining the exponent values could
be a correlation in the drive. In the present context, non-
Gaussian deviations in the transmission frequencies could
provide such a correlated drive, as it relates to the load
imbalance in the system [55]. This could be an interesting
future direction of the present study.

Conclusions. — We have demonstrated that the dis-
tribution of outage sizes in power grids depends on the
load on the grid at the time of outage. Specifically, there
is an almost linear decay of the exponent value B of the

outage size distribution with the load on the grid, a re-
sult similar to that found in earthquake size distributions.
Therefore, if outage data were available with sufficient
completeness, i.e. good spatial resolution and including
smaller events, then a statistically significant map could
be drawn for the exponent value of the size distribution of
outage events in different places (as is becoming increas-
ingly common for earthquake risk [26-28]. The spatial
variation of the exponent values would then signify the
relative risks of the major outages, mirroring the health of
the grid. Such a risk-map would then allow for the imple-
mentation of more effective risk management and mitiga-
tion strategies to support a resilient and robust long-term
power grid design.
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