
 

Heterogeneous Multiscale Methods for modelling surface topography in EHL line contacts 
43rd Leeds-Lyon Symposium on Tribology, 6th-9th September 2016, Leeds, UK 
Tribology International 
 
de Boer G Na*, Gao Lb, Hewson R Wb, Thompson H Ma 
 
a School of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. 
b Department of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK. 
* Corresponding author. Email: G.N.deBoer@leeds.ac.uk; Tel: +44(0) 113 343 2220. 
 
ABSTRACT 
  A multiscale method for the Elastohydrodynamic Lubrication (EHL) of line contacts is derived based on the 
Heterogeneous Multiscale Methods. Periodicity applies to the topographical features and lubricant flow, data is 
homogenised over a range of variables at a micro-scale and coupled into a macro-scale model. This is achieved 
using flow factors as calculated from metamodels, which themselves evolve with the solution procedure. Results 
are given for an idealised topography and illustrate significant deviations from smooth surface assumptions as 
quantified by the flow factors. Improvements in the accuracy and efficiency with previous work and large 
fluctuations due to micro-EHL are also presented. Validation of the multiscale method with a deterministic 
topography is provided demonstrating good accuracy and efficiency. 
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1. INTRODUCTION 
 The Elastohydrodynamic Lubrication (EHL) of line contacts generates high pressures which result in the 
bounding surfaces being separated by a thin lubricant film [1]. Surface topography can be of a similar scale to the 
film thickness and therefore has an effect on the performance of the tribological system [2]. For example Etsion 
et al. [3] showed that surface features can reduce the contacting friction of an EHL contact and Greenwood and 
Johnson [4] demonstrated that transverse waviness caused ripples in EHL pressure distributions. Reconciling the 
disparity in scales between surface topography and the contact region is a challenging computational problem for 
which many authors have sought solutions. Waviness in EHL has been modelled for example by Hooke [5] and 
Venner and Lubrecht [6] who investigated the amplitude reduction effect, but no such general method for 
describing the influence of surface topography in EHL as yet exists. The level of discretisation necessary to 
successfully solve fully deterministic problems, where both the contact region and surface topography are 
modelled simultaneously, has led to the development of homogenisation based models [7]. In such models 
information pertaining to the EHL of a topographical feature is characterised over a range of variables and 
subsequently coupled into a model for the EHL of the contact region. Periodicity in the lubricant flow and 
topographical features ensure that homogenisation of the solutions obtained at the smaller scale produces data 
which represents the behaviour of the larger scale [8, 9]. Solutions to the EHL problem which are deterministic 
by nature also remain the subject of a significant amount of recent research [10-17]. 
 Patir and Cheng [18] first developed a two-scale model to include the effects of surface topography in 
hydrodynamic lubrication known as the flow factors method. In this approach the terms of the Reynolds equation, 
which describes the lubricant flow in the contact under smooth surface assumptions [19], were multiplied by flow 
factors which include the homogenised effects of surface topography. Sahlin, et al. [20] used flow factors to 
develop a homogenisation method for analysing hydrodynamic bearings with periodic roughness which was then 
extended to mixed lubrication [21], however Fluid-Structure Interaction (FSI) was not considered. de Kraker, et 
al. [22] developed a model based on flow factors to investigate more complex descriptions of lubricant flow than 
the conventional Reynolds equation such as the Navier-Stokes equations, FSI was only considered for the 
contacting region and was not examined at the scale of the topographical features. There are a number of recently 
published papers investigating other homogenisation techniques for EHL which span a range of applications 
including examining the constitutive equations of lubricant flow [23], cavitation [24], non-conformal contact [25], 
and soft contact [26].  
 The Heterogeneous Multiscale Methods (HMM) [27] are a set of general techniques which allows a problem 
to be described over multiple scales, the approach is applicable when the difference in scales is greater than an 
order of magnitude and periodicity applies to the geometric and flow features of the smaller scale. Gao and 
Hewson [28] first developed a framework for EHL and micro-EHL based on the HMM, a pressure gradient – 
mass flux relationship was derived based on the homogenisation of periodic micro-EHL simulations which was 
subsequently used to solve the larger scale EHL problem. de Boer, et al. [29] applied the HMM to the EHL of 
tilted-pad bearings where three-dimensional topography and the Navier-Stokes equations were examined but the 
pressures generated did not exceed 8 MPa. This approach coupled the scales of the problem using Response 
Surface Methods (RSM), with periodicity in the topographical features and corresponding lubricant flow 



 

facilitating the assumptions of the HMM. de Boer, et al. [30] furthered the application of RSM to the method and 
went on to optimise the surface topography to minimise friction in the contacting region, and Gao, et al. [31] 
investigated the role of micro-cavitation using the method. The HMM have also recently been used to examine 
real roughness in the pressure-driven flow through two surfaces [32] and in which the uncertainty of the results 
due to the random nature of topography is investigated.  
 This work develops the HMM approach for EHL [28-31] in application to line contacts, which have not as yet 
been investigated using the approach, nonlinearities introduced by piezoviscosity, compressibility, and contact 
mechanics are accounted for in the model representing a significant numerical challenge. Results are presented 
for line contacts in which the Hertzian contact pressures reach up to 0.36 GPa, with the development solution 
procedure using RSM to couple the scale of the problem becoming the focal point of the work. The EHL problem 
is formulated into an equation including flow factors to describe the influence of surface topography in the contact 
(micro-EHL), and from which the deviation from smooth surface assumptions is quantified. These flow factors 
are calculated as the solution procedure converges using a curvilinear discretisation method for selecting the 
experiments required. 
 
2. THEORY 
2.1 Macro-Scale Model 
 The macro-scale model considers the EHL of a line contact in which pressure generated in the lubricant causes 
deformation of the bounding surfaces, this interaction is fully-coupled to reach a prescribed load carrying capacity. 
In this paper the lower surface of the contact is modelled as smooth and flat, the upper surface is modelled with 
topography and curvature, the material of the lower surface is much stiffer than the upper such that only elastic 
deformation of the latter is included. For the current model isothermal operating conditions are specified and the 
fluid film is assumed to carry the full load imposed such that no asperity contact or mixed lubrication occurs. A 
diagram of the macro-scale model for the line contact region is given in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
Fig. 1 – Diagram of the macro-scale EHL model. 
 
2.1.1 Macro-Scale Fluid Flow 
 The macro-scale fluid flow is based on the Reynolds equation for the description of lubricant transport, flow 
factors are included which are used to tune the response to fit data as determined via homogenisation of the micro-
scale model. Eq. (1) is the equation for mass flux Q in the direction of motion X which including the continuity 
equation dQ/dX = 0 becomes Eq. (2), the equivalent Reynolds equation for the macro-scale model [33], 
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where φ*, φ4 are flow factors, P is the macro-scale pressure, ρ is the lubricant density, η is the lubricant viscosity, 
H1 is the macro-scale film thickness, U is the entrainment velocity for which U = U* + U4 2 where U*, U4 are 
the velocities of the lower and upper surfaces respectively. Eq. (2) is solved according to the boundary conditions: 
P −∞ = P ∞ = dP/dX ∞ = 0. In the outlet region of the contact the lubricant will cavitate as pressure 
sharply reduces to absolute zero, a further constraint is applied to model this effect: P < 0, dP/dX = 0. The vapour 
phase of the lubricant is not considered, for further work investigating cavitation and application of the HMM for 
EHL see Gao, et al [31].  
 
2.1.2 Macro-Scale Film Thickness 
 Eq. (3) describes the film thickness relationship for the macro-scale EHL as the sum of two terms, 
 

Lubricant H1  

X 0 

R, E, ν, U 

P, ρ, η 

W/L Upper Surface 

Lower Surface 



 

H1 = H +
P∗

k
 

(3) 
 
 

the first H represents the film thickness in the contact as calculated from the baseline geometry and macro-scale 
deformation and the second P∗/k represents the micro-scale deformation where P∗ is the load per unit area and k 
is the stiffness per unit area. The film thickness H is calculated for the line contact from Eq. (4) in which Hertzian 
contact mechanics describes the macro-scale deformation of the elastic body [33], 
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where H@ is the separation, and R is the radius of curvature. E′ is the reduced modulus as determined from the 
Young’s modulus E and Poisson’s ratio ν of the solid contacting body: 1 E′ = (1 − ν4)/E. The term P∗/k equals 
the amount of deformation equivalent to that experienced by a spring of stiffness per unit area k under load per 
unit area P∗. This deformation is comparable to that modelled at the micro-scale (see Section 2.2), the term H1 
thus represents the total film thickness of the macro-scale problem. 
 
2.1.3 Load Per Unit Area 
 The load per unit area P∗ differs from pressure P as a result of the multiscale approach, P∗ is used at the macro-
scale to determine deformation and load, whereas P is used at the macro-scale to solve the fluid flow problem. A 
further flow factor φ2 is introduced to relate these variables as given by Eq. (5), 
 

P∗ = φ2P (5) 
 
for a given speed and lubricant the flow factors φ*, φ4, φ2 are homogenised functions of the variables dP/dX, P, H 
as given from the micro-scale, see Section 2.2 and Section 2.3. When φ*, φ4, φ2 = 1 the multiscale problem 
reduces to the case where no topography is considered and smooth surface assumptions apply. 
 
2.1.4 Lubricant Properties 
 Lubricant compressibility is modelled using the barotropic Dowson and Higginson equation, as given by Eq. 
(6) [34], 
 

ρ P = ρ@
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where ρ@ is the ambient density, and D@, D* are constants. The lubricant viscosity is modelled using the Roelands 
equation, the piezoviscous response is described by Eq. (7) [35], 
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where η@ is the ambient viscosity, ηN is the reference viscosity, pN is the reference pressure, and Z is the 
piezoviscous index. Eqs. (6) and (7) were fitted for particular lubricants and have been chosen here to demonstrate 
the performance of the multiscale method with regard to the effects of compressibility and piezoviscosity in EHL 
line contacts.  
 
2.1.5 Load Capacity 
 Solving Eq.(2) for pressure and Eq. (4) for film thickness produces the solution to the macro-scale EHL 
problem, a load W per unit depth L is required for the contact as described by Eq. (8), 
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this is achieved by varying the separation H@ of the contact until the required load is met.  
 
2.1.6 Non-Dimensionalisation 



 

 Macro-scale variables are non-dimensionalised as is conventional for EHL line contact problems using the 
half-width of the Hertzian contact a = 8WR E′L and the Hertzian contact pressure pS = 2W/πaL [33]. The 
macro-scale variables are scaled according to Eq. (9), a full description of the non-dimensional form of the 
governing equations is given in Appendix A.  
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2.2 Micro-Scale Model 
 The micro-scale model considers the EHL of a subdomain independent of the contact region, a homogenised 
pressure gradient dP/dX, pressure P, and film thickness H from the macro-scale determine the parameters of the 
micro-scale model. There is no constraint on the dimension of smaller scale model using HMM so long as periodic 
conditions apply across all parameters and dimensions [27], a 3D micro-scale model is considered here as shown 
in Fig.2. The micro-scale model employed is 3D in order to demonstrate how the number of degrees of freedom 
can be increased from the 2D macro-scale model by the HMM, and as such is developed toward representing 
surface roughness data obtained experimentally in 3D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 – Diagram of the micro-scale EHL model. 
 
 The dimensions of the subdomain lT, lU, lV for the coordinate directions x, y, z depend on the separation of 
scales in the problem: (i) lT and lU are required to be at least an order of magnitude or more smaller than the macro-
scale contact region; (ii) the micro-scale thickness t is required to be at least an order of magnitude or more larger 
than lT, lU. Case (i) defines the size of the micro- and macro-scales, and Case (ii) defines a solid thickness for the 
micro-scale which represents the stiffness properties required at the macro-scale.  
 The choice of the length scale representing the macro-scale contact region in Case (i) is an important 
consideration because this determines the size of applicable micro-scale domains and thus topographies which 
can be investigated. The full length of the contact includes regions where surface topography will have little 
influence on the lubrication flow, i.e. toward inlet/outlet where the film thickness is much larger than the size of 
topography. Therefore it is applicable to use an argument based on the region surrounding the minimum film 
thickness to represent the region where surface topography will have a significant influence. Here we assume the 
Hertzian contact region 2a to represent the length of the macro-scale contact region and from which the feasible 
size of the micro-scale lT can be determined, 𝒪 lT < 𝒪 2a − 1. This separation in scales is similar to that used 
in deriving Reynolds equation, in which the near-parallel assumption of the contacting surfaces leads to the 
negation of derivatives across the fluid film. The out-of-plane depth at the micro-scale is constrained to be an 
order of magnitude or more less than the macro-scale depth, 𝒪 lU < 𝒪 L − 1. By definition of a line contact 
the macro-scale depth is considered to be much larger than the length of the contacting region, leading to the 
negation of derivatives in this direction. Due to periodicity at the boundaries in the micro-scale as the size of the 
surface topography is reduced to zero then we arrive at the exact value as described by the Reynolds equation for 
a line contact, and conversely if the size of the surface topography is increased then we move further from the 
assumption of two near-parallel surfaces in contact. 

hZ  

0 
lT  lU  

H 

t 

l[  

z 
y 

x 

Ω* 
Ω4  

Ω2  

Ω]  

Ω@  

Ω^  
Ω_  

Ω`  

Ω*@  

Ωa 

Ωb  



 

 The thickness of the micro-scale domain t represents a column of solid material which deforms by an amount 
equal to that given by a stiffness per unit area k under a load per unit area P∗. By constraining the geometry such 
that t is greater than lT, lU by at least an order of magnitude, 𝒪 t > 𝒪 lT, lU + 1, the column of material can be 
assumed to act in the z direction as an equivalent spring of stiffness k. The thickness t is subsequently derived 
from the material properties of the solid column in the longitudinal direction as described in Section 2.2.3. 
 
2.2.1 Micro-Scale Fluid Flow 
 The micro-scale fluid flow is described by Reynolds equation on the lower surface of the subdomain Ω@ where 
0 ≤ x ≤ lT, 0 ≤ y ≤ lU, z = 0. The governing equations and lubricant properties of the micro-scale model can 
take different forms which differ in assumptions from the macro-scale model, such as the Navier-Stokes equations 
and shear-thinning behaviour, as investigated by de Boer, et al. [29]. In this work we have chosen to keep the 
assumptions the same as the macro-scale model, with the lubricant density and viscosity described by Eqs. (6) 
and (7) respectively. Eq. (10) is the Reynolds equation for lubricant transport in the micro-scale model, 
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where p is the micro-scale pressure, and h is the micro-scale film thickness. Eq. (10) includes the additional 
leakage term in which gradients in the out-of-plane direction y must be considered to account for mass 
conservation at this scale, this is not modelled in the macro-scale by definition of the line contact and instead the 
solution is based on the mass conservation of homogenised solutions provided by the micro-scale. The solution 
to Eq. (10) is achieved by specifying boundary conditions for the micro-scale pressure at the extents of the 
subdomain. In the direction of motion a quasi-periodic condition is imposed phi =  phj + ∆p and in the cross-
flow direction a standard periodic condition is used phl =  phm . The variable ∆p is the pressure difference over 
the subdomain in the direction of motion and is determined from the homogenised pressure gradient using Eq. 
(11), 
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the pressure profile for each set of opposing boundaries will be equal, in the direction of motion the magnitude is 
shifted by ∆p. These periodic boundary conditions combined with a point constraint in the subdomain for the 
pressure, p 0,0 = P + sgn ∆p ∙ |∆p|/2, satisfy the necessary conditions for the HMM. The following constraints 
are also applied to model the effect of lubricant cavitation in the micro-scale subdomain: p < 0, 𝜕p/ ∂x, ∂p/ ∂y =
0. In the case where P + sgn ∆p ∙ |∆p|/2 < 0, the constraint pressure is set to zero. From the periodicity and 
constraints specified, if the dimensions of the micro-scale fluid domain lT, lU are reduced to zero the solution 
becomes the exact corresponding solution of Reynolds equation for the values of dP/dX, P, H specified.  
 
2.2.2 Micro-Scale Film Thickness 
 Film thickness in the micro-scale model is described by Eq. (12), 
 

h = H + hZ + w (12) 
 
where hZ is the function describing surface topography, and w is the micro-scale deformation in the z direction. 
The function describing surface topography must be periodic at the extents of the subdomain in both the x and y 
coordinate directions, such that: hZ,hj = hZ,hi , hZ,hl = hZ,hm . In this work hZ is chosen such that the mean value 
must be zero, this condition ensures that for the inclusion of any periodic description of surface topography the 
change in volume over the subdomain is zero. 
 
2.2.3 Micro-Scale Equivalent Spring 
  Deformation in the micro-scale model is determined from the structural analysis of a column of solid material 
representing a spring with stiffness per unit area k. The amount of deformation which this equivalent spring 
produces is that required by the macro-scale model P∗/k. It is assumed that the solid column thickness t is an 
order of magnitude larger than the remaining dimensions and as such the longitudinal properties of the solid 
material can be used to represent the thickness of material required in 3D to give a spring of stiffness k. The 
thickness t is derived according to Eq. (13), 
 



 

t =
M
k
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where M = E(1 − ν)/(1 + ν)(1 − 2ν) is the longitudinal modulus of the solid material.  
 
2.2.4 Micro-Scale Structural Mechanics 
 A 3D linear elastic model is used to determine the deformation of the equivalent spring, the solid domain is 
defined by 0 ≤ x ≤ lT, 0 ≤ y ≤ lU, H + hZ ≤ z ≤ lV such that the topography forms the lower surface of the solid. 
The inclusion of topography does not change the volume of the solid domain meaning that the magnitude of 
deformation of the equivalent spring will be consistent with the assumptions of the HMM. The deformation vector 
𝐮 = u, v, w  is determined by the solution to Eqs. (14) - (16) [36], 
 

∇ ∙ 𝛔 = 0 (14) 
𝛔 = 2µ𝛆 + λ tr 𝛆  (15) 

𝛆 =
1
2
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where 𝛔 is the stress tensor, 𝛆 is the strain tensor, and µ = E/2(1 + ν) and λ = Eν/(1 + ν)(1 − 2ν) are the shear 
modulus and Lamé’s first parameter of the solid material respectively. The boundary conditions required to solve 
the micro-scale structural problem are defined by the following, where 𝐧 is the normal vector to the surface: 𝛔h� ∙
𝐧h� = −ph� 𝐧h� ; uh� = uh� = vh� = vh� = 0; uh� = uh� = vh� = vh� = 0; 𝐮hj� = 0. These constraints load 
the solid from the lower surface, the sides are all constrained to zero accept for in the z direction, and the upper 
surface is fully constrained. As such the material moves as a spring under load, of which the stiffness per unit area 
is k. The pressure used to load the surface representing topography is determined from the micro-scale fluid flow 
at the lower surface of the subdomain. The deformation w used to calculate the film thickness in Eq. (12) relates 
to the z component on the surface representing topography, the surface deformations under load are mapped to 
the stationary coordinates of the lower surface to provide deformation over the area of the micro-scale fluid flow 
domain.  

Due to fluctuations in pressure in the fluid domain the deformation w will not be uniformly distributed and as 
such the film thickness also varies at the micro-scale, this results in the solution moving away from the periodic 
assumptions used in defining the micro-scale geometry (see Section 2.2.2). The variation in w over the micro-
scale solid domain can be assumed small enough in comparison to the spring column deformation P∗/k such that 
the resulting deviation from a periodic film thickness is an order of magnitude or more smaller than the total film 
thickness. This assumption holds so long as the separation in scales associated with defining the thickness of the 
solid column of material such that it is an order of magnitude larger than the domain length is maintained (see 
Section 2.2.3). Therefore the solid column thickness t must be an order of magnitude larger than lT such that the 
deformed film thickness is as close to periodic as possible and that the deformation does not effect the boundary 
conditions of the micro-scale model. For a given definition of surface topography the value of the stiffness per 
unit area k is chosen in order to satisfy this criteria alone. 
 
2.2.5 Homogenisation 
 The micro-scale EHL problem is solved by coupling the solution to pressure from Eq. (10) with the 
deformation from Eqs. (14) - (16), a quasi-static approach is taken such that pressure and deformation are solved 
iteratively. In order to couple the micro-scale model with the macro-scale, information is homogenised for the 
micro-scale subdomain and mapped to the solution at the macro-scale. The homogenised micro-scale mass flux 
Q′ and load per unit area P∗′ are determined in the micro-scale fluid domain from Eqs. (17) and (18) respectively, 
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and are functions of the variables used to characterise the micro-scale dP/dX, P, H. The line x = 0 is chosen to 
determine the homogenised mass flux arbitrarily from x = lT. The micro-scale variables Q′ and P∗′ are 
approximated at the macro-scale to give Q and P∗ by calculating the flow factors φ*, φ4, φ2 in Eqs. (1) and (5) 
respectively. Studying Eqs. (17) and (18) reveals that the multiscale method introduces fluctuations in the mass 



 

flux and load per unit area in the macro-scale model which are functions of the variables solved for at this scale. 
These fluctuations are caused by the homogenised micro-EHL effect of the micro-scale model in which 3D 
topography has been introduced.  
 Further variables are introduced into the model: P1�� is the minimum pressure; P1�T is the maximum pressure; 
H∗ is the volume per unit area; H1�� is the minimum film thickness; and H1�T is the maximum film thickness. 
Each of these variables are given by Eqs. (19)-(23) respectively, where the variables followed by dashes are 
assessed in the micro-scale domain and are subsequently calculated in the macro-scale using the flow factors 
φ]G`. When 𝛗 = φ*, … , φ` = 1 smooth surface assumptions apply, and when 𝛗 ≠ 1 deviations from the 
smooth surface assumptions due to the effects introduced at the micro-scale are modelled. It is also possible to 
derive variables investigating the fluctuation in other parameters at the micro-scale and assess them at the macro-
scale, such as viscosity or density. Here we do not look individually at these effects and so they have not be 
defined, but it is of note that they can be investigated using the multiscale method. 
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2.3 Flow Factors 
 To couple the micro- and macro-scale models flow factors were calculated using RSM in a similar approach 
to that derived by de Boer, et al. [30]. The Moving Least Squares (MLS) method is used to create a 
multidimensional metamodel of the macro-scale variables 𝐱 = dP/dX, P, H  for each of the flow factors 𝛗. 
Underlying the calculation of flow factors described here was that the micro-scale model can only be assessed 
over a range of predetermined experiments for the variables, 𝐱, and the corresponding responses of the micro-
scale model constructed. This is the metamodel building stage in which a Design of Experiments (DOE) is used 
to choose the set of micro-scale models to include over the range of variables and the data subsequently collected.  
 
2.3.1 Moving Least Squares 
 Eqs. (1), (3), (19)-(23) show that for each output variable the flow factors are each written as the coefficients 
terms in a series summation, where the terms on the right-hand-side in the equations are only functions of the 
variables 𝐱 multiplied by the corresponding flow factors 𝛗. It follows that after the metamodel building stage 𝛗 
can be obtained by a regression type analysis of the known experiments and corresponding output data using these 
equations as basis functions.  
 MLS is a form of least squares regression where the coefficients of the series summation do not remain 
constant but are instead functions of the space in which the output is assessed, 𝛗 = 𝛗 𝐱 . In MLS a decay function 
is assigned to weight the influence of terms in the regression analysis, associated with the weighting is a parameter 
θ known as the closeness of fit. Typically a Gaussian decay function based on the Euclidean distance between 
known experiments and the assessment location is used for the weights ψ as described by Eq. (24),  
 

ψ� 𝐱 = exp −θr�
4 , i = 1, … , N (24) 

 
where r�

4 is the squared normalised Euclidean distance between the i’th known experiment and assessment 
location 𝐱, and N is the number of known experiments. The normalised Euclidean distance is obtained from Eq. 
(25), 
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where D = 3 is the number of dimensions of 𝐱, x� is the normalised j’th component dimension of 𝐱, and x�,� is the 
normalised j’th component dimension of 𝐱 for the i’th known experiment. The normalisation for each of the 
component dimensions of 𝐱 is calculated by: x�,�, x� = x�,�, x� − min
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 The MLS metamodel for the mass flux Q to give the flow factors φ* and φ4 in Eq. (1) is determined by Eqs. 
(26) – (29), 
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where 𝐀 is the weighted matrix of terms, 𝐛 is the weighted vector of responses, and 𝛄 is the vector of MLS 
coefficients. Eq. (26) is solved by minimising the sum of squared errors in the over-determined system of 
equations, this leads to the value of the MLS coefficients 𝛄 whose components are the flow factors in Eq. (1), 
namely φ* and φ4. The remaining flow factors can be calculated by generating MLS based metamodels for Eqs. 
(5), (19) - (23) using the same formulation of Eqs. (26) – (29) for Eq. (1) as described in this subsection. 
 
2.3.2 Closeness of Fit 
 The closeness of fit parameter θ controls the rate of decay of the weights in the MLS metamodels, θ therefore 
provides a method for calibrating the metamodel to reduce the error between the prediction and known 
experiments [37]. When θ = 0 all weights are unity and MLS reduces to the least squares problem, in this case 
the coefficients do not change as functions of the variables 𝐱. As θ → ∞ the influence of known experiments 
reduces to zero and the metamodel does not provide a response anywhere in the domain of 𝐱. 
 The value of θ must be determined for the metamodel, this is calibrated to produce the lowest error at known 
experiments when they are and are not included in the building phase. Various approaches for this procedure such 
as k-fold or leave-one-out cross-validation, see Loweth et al. [37]. For the calibrated value of θ the MLS 
metamodel provides the minimum error between the approximation and known experiments. Once this is known 
the coefficients for each metamodel can be determined as functions of the input variables, 𝛗 = 𝛗 dP/dX, P, H , 
thus providing the method of flow factors for the multiscale approach. 
 
2.3.3 Design of Experiments 
 The flow factors 𝛗 = 𝛗 dP/dX, P, H  are calculated from MLS metamodels of homogenised micro-scale data 
which are updated as the macro-scale solution procedure progresses (see Section 3.1), each time a pressure 
distribution is obtained an additional check is made to the DOE. This check determines whether more experiments 
are needed within the known set in order to accurately describe the flow factors in the current region of interest.  
 At any given time in the solution procedure the distributions of the homogenised variables 𝐱 = dP/dX, P, H  
describe a curve within the design space of the components of 𝐱, if this curve is far enough away from the set of 
known experiments then the additional experiments are added to the DOE and the corresponding micro-scale 
models assessed. In the case of the first check when no values exist in the DOE, the entire curve is added. The 
curve is described by Eq. (30), 
 

∂s 4 = ∂x�
4

���

��*

 (30) 

 
where s is the curve length. The curve is divided into 50 discrete points which are evenly spaced along s and the 
normalised distance to all known experiments determined, if this distance is greater than 1 % then the requirement 
for adding experiments is satisfied. The DOE used therefore evolves with the solution based on a curvilinear 
discretisation method.  
 
2.3.4 Metamodel Calibration 
 After adding experiments to the DOE the MLS metamodels must be calibrated based on the newly obtained 
micro-scale data, if no values are added then no further calibration is required. Leave-one-out Cross Validation 
[37] was used in order to determine the closeness of fit θ for each of the metamodels, in this method a range of θ 
is chosen and the minimum error between the metamodel prediction and known experiments found over this range. 
The error is given by removing each set of values in the DOE in turn and building the metamodel based on the 



 

reduced sets. The difference between the metamodel prediction and known value at the removed set are averaged 
over all sets. A range of 0 ≤ θ ≤ 2000 was found to be sufficient to find a minimum value of the error for all 
metamodels investigated. Once θ is calibrated for all metamodels the flow factors are determined as functions of 
the homogenised variables 𝛗 = 𝛗 𝐱  and used in the macro-scale solution procedure, the calibration for the 
metamodel of P∗ is undertaken first because this parameter is used in the definition of some of the other 
metamodels.  
 
3. METHODS AND MATERIALS 
3.1 Macro-Scale EHL Solution Procedure 
3.1.1 Smooth Surface Assumptions 
 In order to obtain solutions to the macro-scale problem under smooth surface assumptions, hZ = 0, an 
operating load per unit depth W/L was specified and the flow factors set to 𝛗 = 1. The load per unit depth was 
obtained by solving Eqs. (2) and (4) together for the pressure and film thickness at a given value of the separation 
H@ and subsequently incrementing this parameter until the required value of W/L was reached (Eq. (8)). At each 
increment an initial value for the pressure distribution was needed which takes the solution from the previous step, 
for the first step a separation of H@ = 0.5 µm was chosen and the initial values for the pressure distribution take 
the Hertz distribution P@ over the domain, see Eq. (31). The size of the increment of H@ was chosen as ∆H@ =
−0.05 µm, once the load reached was greater than W/L a method of bisectors was used to achieve the required 
separation. The EHL line contact was specified from the half-width of the Herztian contact as −4a ≤ X ≤ 2a 
which was chosen to represent a large enough space for the contacting region. Solutions for the macro-scale 
pressure and film thickness from Eqs. (2) and (4) were obtained using Finite Elements, the contact region was 
divided into a number of elements and the equations discretised over them. The solutions to the macro-scale EHL 
problem were calculated using the software Comsol Multiphysics [38] in the non-dimensional form as described 
in Appendix A. The CPU used for this and all remaining calculations had a 4-core 3.3 GHz processor with 16 GB 
RAM. 
 

P@ = pS 1 −
X4

a4             − a ≤ X ≤ a

0                        X ≤ −a      X ≥ a

 (31) 

 
3.1.2 Micro-Scale Effects 
 To obtain solutions inclusive of micro-EHL effects the same solution procedure for achieving W/L as 
described in Section 3.1.1 was used, the initial separation and pressure are given from smooth surface assumptions 
at the same W/L or a previously investigated W/L inclusive of micro-EHL effects. In Eqs. (2) and (4) the flow 
factors became functions of the variables solved for 𝛗 = 𝛗 dP/dX, P, H . Two additional steps were required as 
a result of the latter: (i) Convergence of load per unit area and film thickness; and (ii) Convergence of pressure 
with metamodel building. In (i) there is a circular dependency of the film thickness H in Eq. (4) with the load per 
unit area P∗ as defined in Eq. (5). Therefore an iterative approach was taken for the value of P∗ used when solving 
Eqs. (2) and (4) together, on each increment the solution to P∗ was relaxed by a factor of 0.5 until convergence of 
the film thickness H was reached. In (ii) the metamodels used to determine the flow factors 𝛗 are generated as the 
macro-scale solution progresses which means that the pressure distribution obtained from the solution of Eqs. (2) 
and (4) in the contact region depends upon the metamodel building phase. If additional experiments were added 
to the set of known experiments in the DOE then the metamodels will produce different results and therefore the 
solution procedure must be repeated, using the previous solution as the initial values. The macro-scale EHL 
problem inclusive of micro-scale effects was also calculated using Comsol Multiphysics [38] by application of 
Finite Elements in conjunction with Matlab [39] to give the flow factors. A flow chart of the macro-scale EHL 
solver including flow factors is given in Appendix B. 
 
3.2 Micro-Scale EHL Solution Procedure 
 Micro-scale EHL solutions were parameterised by the variables of the macro-scale model dP/dX, P, H such 
that for any combination of these variables and definition of topography hZ values of variables Q′, P∗′, P1��′, P1�T′, 
H∗′, H1��′, and H1�T′ were given. In order to solve the micro-scale EHL model Eqs. (8) and (10) for the pressure 
and film thickness respectively were fully coupled with the deformation as calculated from Eqs. (14) – (16) using 
a quasi-static approach. Pressure calculated in the fluid domain was mapped to the solid domain, and deformation 
in the solid domain was mapped to the stationary coordinates of the fluid domain by linear interpolation. Each of 
the fluid and solid problems were solved sequentially until convergence in the pressure distribution was achieved. 
The initial value for pressure was set to p = P and the problem was solved by application of Finite Elements to 



 

each of the fluid and solid problem respectively. Comsol Multiphysics [38] was used to calculate the solutions for 
the micro-scale EHL problem.  
 
3.3 Geometry and Operating Conditions 
3.3.1 Macro-Scale Conditions 
 The parameters listed in Table 1 define the operating conditions and lubricant properties of the macro-scale 
models investigated. Three values of the load capacity W/L = 100, 125, 150 kN/m were selected to demonstrate 
the response over a range of conditions, these loads represent a lightly loaded contact in which good convergence 
was achieved. For high loads a more stable solution procedure than that used here would be suitable, such Habchi 
et al. [40] or Ahmed et al. [41], these methods would need to be combined with flow factors introduced here in 
order to incorporate micro-EHL effects. 
 

Parameter Value Unit 
D@ 0.59 GPa 
D* 1.34 1 
E 100 GPa 
k 1.333 GPa/µm 
pN 0.198 GPa 
R 20 mm 
U 1 m/s 
Z 0.4486 1 
ηN 6.31x10-5 Pa.s 
η@ 1 Pa.s 
ν 0.3 1 
ρ@ 850 kg/m3 

W/L 100, 125, 150 kN/m 
a 0.215, 0.241, 0.264  mm 
pS 0.296, 0.331, 0.362 GPa 

 
Table 1 – Macro-scale EHL operating conditions and lubricant properties. 
 
 The number of finite elements chosen to discretise the macro-scale domain was 1000, these were evenly-
spaced and were found to produce grid independent results as shown in Section 4.2.1. The elements used in the 
macro-scale solution procedure were assigned 2nd order shape functions. The solver tolerances were set to 10-3 
and computed until this level of convergence was satisfied. 
 
3.3.2 Micro-Scale Conditions 
 The micro-scale operating conditions and lubricant properties originate from the macro-scale, however there 
are additional definitions required which results from the scale separation, surface topography and stiffness 
properties.  
 The micro-scale model represents a periodically repeating surface topography which is considered to be 
constant over the length of the macro-scale contact region, further parameterisation of the homogenised variables 
with those which control the definition of topography is needed to investigate cases where the periodic topography 
changes along the length of the contact region. An idealised surface topography is considered as described by Eq. 
(32),  
 

hZ =
α
4

cos
2πx

lT
+ cos

2πy
lU

 (32) 

where α is the topography amplitude. The values defining the size of the micro-scale subdomain and topography 
are listed in Table 2, which show that the scale separation requirements needed to satisfy the assumptions of the 
HMM are met (See Section 2.2). The micro-scale subdomain size is an order of magnitude or more smaller than 
the macro-scale contact region, and the stiffness per unit area k is chosen from the separation of scales. When α 
= 0 µm the topography is zero and smooth surface assumptions apply. It is important to note that any given 
definition of the shape and size of topography can be used in place of the idealised topography investigated so 
long as the definition is periodic. For real surfaces the function hZ would be generated from the Fourier analysis 
of rough surface data, an idealised surface topography has been used in this study to demonstrate the performance 
multiscale method developed. 
 



 

Parameter Value Dimension 
lT 10 µm 
lU 10 µm 
t 100 µm 
α 0.1 µm 

 
Table 2 – Micro-scale model parameters. 
 
A 2D grid of 500 x 50 (25000 total) evenly-spaced quadrilateral elements were used for the fluid computational 
domain and a 3D grid of 50 x 10 x 10 (5000 total) evenly-spaced quadrahedral elements were used for the solid 
computational domain, these resolutions were found to produce grid independent results as demonstrated in 
Section 4.1.1. For both fluid and solid simulations the solver tolerances were set to 10-3 and the elements assigned 
2nd order shape functions. The micro-EHL solver reached convergence when a difference of 10-3 was observed in 
the pressure distributions obtained from the last two iterations. 
  
4. RESULTS AND DISCUSSIONS 
4.1 Micro-Scale EHL Simulations 
 Micro-scale EHL results are presented to demonstrate: (i) a study of the mesh resolution; and (ii) an example 
of the micro-EHL solutions calculated as part of the macro-scale solutions.  
 
4.1.1 Mesh Resolution 
 In order to determine the level of discretisation required in the micro-scale simulations a grid convergence test 
was performed, in this test the number of elements used for the fluid and solid domains was varied parametrically 
according to Table 3 and the mass flux Q′ produced for a specific set of conditions recorded. The result is given 
for the case where dP/dX = -32.14 GPa/mm; P = 0.5317 GPa; H = 1.726 µm in Fig. 3 and demonstrates that as 
the number of elements was increased the value of Q′ converged to a value of 1.139 g/(m.s) at the highest 
resolution. This resolution was subsequently selected for all micro-scale simulations. The values of dP/dX, P, H 
chosen represent the conditions at the macro-scale for W/L = 125 kN/m at the location where P1�T is the maximum 
value, see Section 4.2.3. 
 

Mesh Resolution Number of Fluid Elements Number of Solid Elements 
1 100x10 = 1000 30x6x6 = 1080 
2 200x20 = 4000 35x7x7 = 1715 
3 300x30 = 9000 40x8x8 = 2560 
4 400x40 = 16000 45x9x9 = 3645 
5 500x50 = 25000 50x10x10 = 5000 

 
Table 3 – Mesh resolution of the micro-scale domain. 

 
 
Fig. 3 – Mesh resolution study for the micro-scale simulations. 
 
4.1.2 Micro-EHL 



 

 Micro-scale distributions of pressure p, film thickness h, and the deformation w are presented in Figs. 4 – 6 
respectively. These distributions correspond to the macro-scale solution for W/L = 125 kN/m at which P1�T is the 
maximum value (see Section 4.2), where dP/dX = -32.14 GPa/mm; P = 0.5317 GPa; H = 1.726 µm. These values 
were chosen to demonstrate an example micro-EHL solution used at the macro-scale. 

 
Fig. 4 – Contours of micro-scale pressure p in GPa at dP/dX = -32.14 GPa/mm; P = 0.5317 GPa; H = 1.726 µm. 

 
Fig. 5 – Contours of micro-scale film thickness h in µm at dP/dX = -32.14 GPa/mm; P = 0.5317 GPa; H = 1.726 
µm. 

 
Fig. 6 – Contours of micro-scale deformation w in µm at dP/dX = -32.14 GPa/mm; P = 0.5317 GPa; H = 1.726 
µm. 
 



 

 Fig. 4 shows an example of how pressure varies in the micro-scale subdomain. Periodicity of pressure on 
opposing boundaries can be observed, with a constant shift in magnitude enforced between the boundaries at x =
0 and x = lT. Within the micro-scale domain pressure fluctuates due to the presence of topography in the definition 
of film thickness, such that for this case P∗ = 0.6661 GPa which is significantly different to the constraint pressure 
P = 0.5317 GPa. Inspecting Figs. 4 and 5 it is shown that as the fluid is driven from the inlet through the 
constriction where the minimum film thickness is present, there is a corresponding build up in pressure before 
sharply reducing at the outlet. The variation in pressure in the micro-scale domain is represented in the macro-
scale in various ways using flow factors. For example φ2 quantifies by how much load per unit area deviates from 
the macro-scale pressure as assumed under smooth surface assumptions.  
 Fluctuation in pressure in the micro-scale causes deformation to vary as presented in Fig. 6, this variation 
(±0.01 µm) represents a small proportion of the total deformation magnitude (0.49 µm) which is consistent with 
the assumptions required by the HMM. The variation in deformation is such that the shape of topography is not 
significantly altered by the presence of topography under the conditions investigated, the variable H∗ = 2.230 µm 
for this case which is almost identical to the value of H1 = 2.235 µm indicating a very small difference between 
the smooth surface assumptions and that inclusive of topography. In terms of flow factors this means that φ^ is 
very close to 1 and the presence of topography does not significantly change the macro-scale film thickness. In 
the case of higher loads than those considered in this work surface topography may be flattened-up, this is not 
observed here but the method is also not constrained to this and as such H∗ and H1 will differ. So long as the 
variation in deformation over the domain is smaller than the total deformation by an order of magnitude any 
amount of localised deformation at the micro-scale can be modelled. Plastic deformation of the surface topography 
may also be exhibited under higher loads, the model does not currently consider this since the separation in scales 
is based on the materials having linear elastic behaviour. Further development of how plastic deformation can be 
considered in the micro-scale model is therefore a requirement for future work. 
 
4.2 Macro-Scale EHL Simulations 
 Macro-scale EHL simulation results are presented in three categories: (i) a mesh resolution study; (ii) 
comparing smooth surface assumptions with results including topography; and (iii) investigating homogenised 
micro-scale data at the macro-scale. 
 
4.2.1 Mesh Resolution 
 A grid convergence study was undertaken to determine the number of elements required in the macro-scale 
simulations to produce accurate results. The non-dimensional mass flux Q was calculated by parametrically 
varying the number of elements used in an example simulation where W/L = 125 kN/m and the effects of micro-
EHL were included. The dimensioned response of mass flux Q is presented in Fig. 7 and demonstrates that the 
value converges to 1.139 g/(m.s) when 1000 elements were used. This number of elements was therefore used for 
all macro-scale simulations as it was shown to give results independent of the level of discretisation. The size of 
elements required by the macro-scale is larger than that presented for the micro-scale (see Section 4.1.1). In the 
micro-scale topography is present and to capture the effects of the geometry many elements were required, 
whereas in the macro-scale the solution is homogenised and the geometry does not need the same level of 
discretisation. The value of the mass flux calculated at the macro-scale is the same as the micro-scale result shown 
in Fig. 3 for the same example simulation, this confirms that the two scales are accurately coupled using 
metamodelling, see Section 4.3.2. 

 
 



 

Fig. 7 – Mesh resolution study for the macro-scale simulations. 
 
4.2.2 Effect of Surface Topography 
 Figs. 8 – 10 illustrate the non-dimensional macro-scale pressure P and load per unit area P∗ distributions for 
line contacts with and without topography, each of the figures shows this relationship for W/L = 100, 125, 150 
kN/m respectively.  

 
Fig. 8 – Non-dimensional macro-scale pressure and load per unit area distributions with and without topography, 
W/L = 100 kN/m. 

 
Fig. 9 – Non-dimensional macro-scale pressure and load per unit area distributions with and without topography, 
W/L= 125 kN/m. 



 

 
Fig. 10 – Non-dimensional macro-scale pressure and load per unit area distributions with and without topography, 
W/L= 150 kN/m. 
 
 Under smooth surface assumptions, when α = 0 µm and all flow factors are 1, pressure P and load per unit 
area P∗ are identical whereas in Figs. 8 – 10 it is shown that when topography is included these parameters differ 
significantly. This effect can be attributed to the distribution of pressure in the micro-scale models used to 
determine the macro-scale solutions, see Section 4.1. At the micro-scale large fluctuations in pressure are observed 
as the lubricant flows over the surface topography, thus deviating from smooth surface assumptions. Higher 
pressures are generated at the macro-scale with increasing W/L, this causes larger fluctuations in the micro-scale 
pressure due to presence of surface topography and therefore increases the deviation from smooth surface 
assumptions. The load per unit area generated with topography is very similar to that generated under smooth 
surface assumptions, indicating that in this case the effect of topography does not significantly change the 
behaviour of the macro-scale solution.  
 Corresponding to the pressure and load per unit area distributions shown in Figs. 8 – 10 non-dimensional 
macro-scale film thickness H1 distributions are presented in Figs. 11 – 13 for the same values of W/L with and 
without topography. 

 
Fig. 11 – Non-dimensional macro-scale film thickness distributions with and without topography, W/L = 100 
kN/m. 



 

 
Fig. 12 – Non-dimensional macro-scale film thickness distributions with and without topography, W/L = 125 
kN/m. 

 
Fig. 13 – Non-dimensional macro-scale film thickness distributions with and without topography, W/L = 150 
kN/m. 
 
 Figs. 11 – 13 show that film thickness H1 in the contact is not significantly different when topography is and 
is not modelled. This correlates to the similarity in load per unit area observed with and without topography in 
Figs. 8 – 10. It is also shown that an increase in W/L leads to a decrease in the macro-scale film thickness which 
is expected based on the known attributes of line contact problems (increasing load with decreasing separation). 
Overall the macro-scale solution is not significantly changed due to surface topography in comparison to smooth 
surface assumptions under the conditions investigated however because the multiscale solution is homogenised 
from the micro-scale, the method allows further investigation of micro-EHL effects which cannot be obtained 
from smooth surface assumptions alone (see Section 4.2.3). 
 
4.2.3 Micro-EHL 
 Distributions of the non-dimensional variables for pressure P, load per unit area P∗, minimum pressure P1��, 
and maximum pressure P1�T are shown in Figs. 14 – 16 when topography is included, these show the micro-EHL 
effect in the macro-scale EHL solutions over the range of load per unit depths W/L = 100, 125, 150 kN/m 
respectively. 



 

 
Fig. 14 – Non-dimensional macro-scale pressure, load per unit area, maximum and minimum pressure 
distributions at W/L = 100 kN/m. 

 
Fig. 15 – Non-dimensional macro-scale pressure, load per unit area, maximum and minimum pressure 
distributions at W/L = 125 kN/m. 

 
Fig. 16 – Non-dimensional macro-scale pressure, load per unit area, maximum and minimum pressure 
distributions at W/L = 150 kN/m. 
 
 In Figs. 14 – 16 the homogenised effect of micro-scale pressure is shown for a range of macro-scale solutions, 
and for each of the values of W/L investigated a significant difference between the variables is observed which is 



 

attributed the variation of pressure in the micro-scale model. As W/L is increased the differences between the 
maximum and minimum pressure is increased, in regions where the pressure and pressure gradient have large 
magnitudes a larger difference is observed. In the case where W/L = 150 kN/m P1�� and P are shown to differ by 
up to ~0.5 pS, and P1�T and P differ by up to ~1.5 pS. The results shown in Figs. 14 – 16 are of significant 
importance when considering the micro-EHL effect in the contact, the micro-scale variation of pressure represents 
a large proportion of the corresponding macro-scale contacting pressure.  
 Figs. 17 – 19 present non-dimensional macro-scale distributions for film thickness H1, and the homogenised 
variables of volume per unit area H∗, minimum film thickness H1��, and maximum film thickness H1�T. Each 
figure represents the same values of W/L investigated in Figs. 14 – 16. 

 
Fig. 17 – Non-dimensional macro-scale film thickness, volume per unit area, maximum and minimum film 
thickness distributions at W/L = 100 kN/m. 

 
Fig. 18 – Non-dimensional macro-scale film thickness, volume per unit area, maximum and minimum film 
thickness distributions at W/L = 125 kN/m. 



 

 
Fig. 19 – Non-dimensional macro-scale film thickness, volume per unit area, maximum and minimum film 
thickness distributions at W/L = 150 kN/m. 
  
 Figs. 17 – 19 show that for all values of W/L that there is no significant difference between the macro-scale 
distributions of film thickness H1 and volume per unit area H∗, this implies that the average film thickness of the 
micro-scale model is equivalent to that at the macro-scale. It is also shown that the minimum film thickness 
H1�� and maximum film thickness H1�T distributions follow trends similar to that of the macro-scale film 
thickness but where the magnitudes are shifted by constant values. These distributions represent the bounds of the 
film thickness which includes the definition of surface topography modelled at the micro-scale and are of 
±αR/2a4 in value respectively. These results combined indicate that the shape of topography in the micro-scale 
model is not significantly changed under load and that the stiffness represented by the micro-scale is equal to that 
represented at the macro-scale. This effect relates to the micro-scale deformation distribution shown for an 
example case in Fig. 6, where the variation in deformation over the micro-scale domain is significantly smaller 
than the total deformation magnitude. Under higher loads than observed here, significant deviation of the film 
thickness at the micro-scale will cause deviation of H∗ with H1 whereby the surface topography may be flattened. 
Note that this is not a limitation on the method so long as the separation in scales associated with the material 
properties of the spring column are maintained.  
 
4.3 Metamodelling 
 Results relating to metamodelling are divided into: (i) performance of the DOE and MLS metamodels; (ii) 
comparison of macro-scale and micro-scale data; and (iii) an analysis of flow factors in the macro-scale EHL 
solutions. 
 
4.3.1 DOE and MLS 
 For each of the values of W/L investigated at the macro-scale the size and number of points added to the DOE 
used in calculating the flow factors are given in Table 4, also shown are the closeness of fit parameters θ for the 
MLS metamodels of Q and P∗. 
 

𝐖/𝐋 
[kN/m] 

Final 
DOE size 

Previous 
DOE size 

Points added 
to DOE 

𝛉 for 𝐐 MLS 
metamodel 

𝛉 for 𝐏∗ MLS 
metamodel 

100 202 50 152 366 1001 
125 299 202 97 555 1588 
150 430 299 131 1074 1714 

 
Table 4 – DOE and MLS metamodel parameters. 
 
 Table 4 shows that in order to provide macro-scale solutions at a given W/L a number of micro-scale 
experiments are required, this number is determined during the solution procedure based on the curvilinear 
discretisation method. Where the macro-scale solution deviates further from the initial values used more DOE 
points are needed, for example 152 DOE points are added to the initial 50 in order to relate the smooth surface 
solution to that inclusive of topography at W/L = 100 kN/m, whereas only 97 relate to the W/L = 100 kN/m to 



 

the W/L = 125 kN/m case because the pressure distributions are initially closer together. The evolution of the 
closeness of fit calibration parameter for the MLS metamodels of Q and P∗ shows that as more values are added 
to the DOE a larger value of θ is produced. A larger θ will lead to more local data fitting of the MLS metamodels, 
implying that as more values are added to the DOE the metamodel prediction deviates further from the least 
squares approximation. This deviation represents a change in the behaviour of the parameters from the underlying 
basis functions of the MLS metamodels, which themselves describe the behaviour under smooth surface 
assumptions. 
 The curvilinear DOE approach which was generated as the macro-scale solution procedure progressed is the 
main difference between this method and that of de Boer et al. [29], which required 200 micro-scale simulations 
to be calculated before the macro-scale simulation could be started. This caused complexity in determining which 
experiments to choose and where to place them in the design space such that the results generated were as accurate 
as possible, the optimum Latin hypercube employed satisfied this argument over the entire design space. This 
space contained many micro-scale simulations which were far from the values used during the macro-scale 
solution procedure, these experiments were therefore never used due to the local data fitting nature of MLS, i.e. 
influence diminishing with distance from assessment location. In contrast the curvilinear DOE used in this work 
only adds micro-scale experiments which are close to the current macro-scale solution and as such all have an 
influence via the metamodel. The DOE building presented in this work is therefore a more efficient procedure 
than that of de Boer et al. [29] since only useful experiments are added without increasing the size beyond 200 by 
a large margin (up to 430 in the last case with 131 added from the initial solution), this also corresponds to an 
increase in the metamodel accuracy (see Section 4.3.2). 
 
4.3.2 Metamodel Performance 
 A comparison of the dimensioned variables calculated using flow factors at the macro-scale (Q, P∗, etc.) with 
the exact corresponding micro-scale solutions (Q′, P∗′, etc.) is presented in Table 5. Three locations along the 
length of the contact region are chosen for the case where W/L = 125 kN/m. These locations correspond to: (i) 
the centre of the contact; (ii) the maximum location of P1�T in the contact; and (iii) the location of the minimum 
film thickness H1 in the contact. 
 

dP/dX 
[GPa/mm] 

P 
[GPa] 

H 
[µm]   Q 

[g/(m*s)] 
P* 
[GPa] 

Pmin  
[GPa] 

Pmax  
[GPa] 

H* 
[µm] 

Hmin 

[µm] 
Hmax 

[µm] 

1.26 0.4701 1.945 macro-
scale 1.139 0.4739 0.4587 0.4984 2.301 2.255 2.352 

      
% error 
micro-
scale 

0.092 0.056 0.1034 -0.109 0.005 -0.030 -0.004 

-32.14 0.5317 1.726 macro-
scale 1.139 0.6661 0.3815 0.9461 2.230 2.184 2.281 

      
% error 
micro-
scale 

0.110 -0.021 0.066 -0.107 0.007 -0.052 0.087 

-1.49 0.0574 1.944 macro-
scale 1.139 0.0591 0.0526 0.0663 1.988 1.933 2.039 

      
% error 
micro-
scale 

-0.055 0.031 -0.108 0.097 -0.015 0.040 -0.022 

 
Table 5 – Comparison of variables calculated at the macro- and micro-scales. 
 
 The errors shown in Table 5 indicate that the MLS metamodel predictions are very accurate over the length of 
the contact region, with the maximum discrepancy in the variables across all cases at 0.11 %. Table 5 therefore 
shows that the homogenised macro-scale results truly represent the micro-scale variables and that the DOE used 
effectively chooses the micro-scale models needed for the MLS metamodels. The level of accuracy shown in 
Table 3 means that the results are an order of magnitude more accurate than those generated by de Boer et al. [29] 
who showed errors of up to 1% between the metamodel prediction and exact corresponding micro-scale solutions.  
 
4.3.3 Flow Factors 
 Distributions of the flow factors φ*, φ4, φ2 used in determining the macro-scale parameters Q and P∗ are 
presented in Figs. 20 – 22 for the case where topography is considered, these relate to a value of W/L = 125 kN/m 
which is chosen to demonstrate how the flow factors vary in the contact region. 



 

 
Fig. 20 – Flow factor φ* distribution, W/L= 125 kN/m. 

 
Fig. 21 – Flow factor φ4 distribution, W/L= 125 kN/m. 

 
Fig. 22 – Flow factor φ2 distribution, W/L= 125 kN/m. 
 
 Figs. 20 – 22 show that in both the inlet and outlet regions of the contact that there is no significant difference 
between smooth surface assumptions and those inclusive of topography because the flow factors are 
approximately equal to 1. This is attributed to large values of H in these regions when compared to the size of 
topography such that the variations introduced by the micro-scale are almost negligible under these conditions. 
Within the region of the contact where significant differences between smooth surface solutions and those 
inclusive of topography are seen, the flow factors quantify the deviation of the terms of the constitutive equations. 



 

Fig. 20 shows that the pressure gradient term of Eq. (1) deviates by up to 4.3 times that of the smooth surface 
solution, whereas Fig. 21 shows that the shear driven term of Eq. (1) deviates up to only 1.02 times from that of 
the smooth surface solution. Fig. 22 shows that load per unit area can be up to 1.25 times pressure and as low as 
0.87 times pressure, which shows the significance of the difference between the two parameters. The deviations 
from the smooth surface solutions exhibited in Figs. 20 – 22 are nonlinear functions of the variables dP/dX, P, H, 
these distributions are non-trivial such that in order to produce them the multiscale method and subsequent 
metamodel approach described are required. The shape of the flow factor distributions are complex and 
significantly change in the region of the contact where the film thickness H is near the minimum value, at which 
pressure reaches the maximum value and then rapidly decreases to zero. This corresponds to large negative values 
of dP/dX which subsequently cause large variations of pressure p in the micro-scale, thus further deviating from 
the smooth surface assumptions. 
 
4.4 Model Validation 
 Model validation results are separated into two subsections: (i) a study illustrating the separation in scales of 
the multiscale method and that of a deterministic topography: and (ii) an analysis of a deterministic solution 
comparable with that produced using the multiscale method. 
 
4.4.1 Separation of Scales 
 The size of the multiscale topography investigated in this work satisfied the separation of scales required by 
the HMM, 𝒪 lT, lU < 𝒪 2a − 1. Deterministic topography which is not constrained by this difference can be 
modelled by assuming a macro-scale waviness in the film thickness, see for example Venner and Lubrecht [6]. 
Using the methodology described in this paper for the macro-scale solution procedure the EHL problem was 
solved with a deterministic roughness similar to that of Venner and Lubrecht [6] under steady-state conditions, a 
range wavelengths were investigated which decreased to the same separation in scales as demonstrated for the 
multiscale method in Sections 4.1-4.3. The deterministic topography is defined in the macro-scale problem by 
assuming all flow factors are 1 and including the additional term hZ in the film thickness equation, where hZ is 
given in this case by Eq. (33). 
 

hZ =
α
2

cos
2πX

lT
 (33) 

The micro-scale length lT becomes the macro-scale wavelength and this is given values of lT = 100, 50, 10 µm, 
for which only the latter can be modelled by the multiscale method due to the required separation of scales. Figs. 
23 and 24 show the macro-scale pressure and film thickness distributions obtained for the deterministic 
topographies, all operating conditions remained the same as specified and W/L = 100 kN/m. Table 6 collates the 
number of elements, time to compute, and memory requirements for each of the cases investigated. 

 
Fig. 23 – Non-dimensional macro-scale pressure distributions at W/L = 100 kN/m calculated for a range 
deterministic topographies with decreasing wavelengths. 



 

 
Fig. 24 – Non-dimensional macro-scale film thickness distributions at W/L = 100 kN/m calculated for a range 
deterministic topographies with decreasing wavelengths. 
 

Wavelength lT Number of elements Time to compute Memory requirements 
100 µm 2500 3 hr 56 mins 3.4 GB RAM 
50 µm 5000 7 hr 17 mins 6.6 GB RAM 
10 µm 8000 12 hrs 3 mins 10.3 GB RAM 

 
Table 6 – Number of elements, time to compute and memory requirements for a range of deterministic 
topographies decreasing wavelengths. 
 
 Fig. 23 illustrates that a waviness in the macro-scale definition of the film thickness causes ripples in the 
pressure distribution. This correlates well with the observations made by Greenwood and Johnson [4] who 
observed such effects when investigating transverse waviness in point contacts. The shape of the film thicknesses 
presented in Fig. 24 show that under the conditions investigated topography is not significantly changed with the 
waviness remaining an oscillating function along the length of the contact. As the wavelength is reduced the 
frequency of the pressure ripples is increased, this corresponds to the solution tending toward a mean value as the 
wavelength tends to zero and the smooth surface approximation is obtained. This is the same principle upon which 
the multiscale method is based whereby the separation in scales and periodicity of the micro-scale model allow 
the variables to be homogenised and coupled into the macro-scale.  
 Table 6 shows that as the wavelength is decreased the number of elements, time to compute and memory 
requirements needed to solve the problem all increase. For the case where lT = 10 µm this is comparative to the 
separation in scales associated with the multiscale method. The deterministic solution at this wavelength is 
computationally challenging to achieve and approaching the hardware limit, this shows where the multiscale 
method can be useful in investigating the micro-scale effects without the associated level of discretisation. 
 
4.4.2 Deterministic and Multiscale Topography 
 Using Eq. (33) as the micro-scale topography definition and lT, lU = 10 µm the results obtained from the 
multiscale method were also calculated. The micro-scale out-of-plane length was arbitrarily specified as lU =
10 µm, since there is no change in film thickness with y in Eq. (33) there will be no variation in pressure or film 
thickness in the micro-scale. Therefore the choice of lU does not change the solution for the multiscale problem 
under this definition of topography, as such the choice of lU = 10 µm is identical to that where lU → ∞ which is 
the case for the deterministic solution. The current micro-scale model has been developed for when lU can be 
given a physical value and therefore the results presented consider a more complex geometry than the 
deterministic counterpart in this regard. Figs. 25 and 26 respectively show the pressure and film thickness 
distributions obtained from the multiscale method and for the deterministic topography at lT = 10 µm. Additionally 
the multiscale variables P1�T and P1�� have been included in Fig. 25 and H1�T and H1�� included in Fig. 26. The 
number of elements, time to compute, and memory requirements for each stage of the multiscale solution 
procedure are presented in Table 7.  



 

 
Fig. 25 – Comparison of non-dimensional macro-scale pressure distributions given by multiscale and deterministic 
topographies at W/L = 100 kN/m. 

 
Fig. 26 – Comparison of non-dimensional macro-scale film thickness distributions given by multiscale and 
deterministic topographies at W/L = 100 kN/m. 
 

Stage Number of elements Time to compute Memory requirements 
Macro-scale 1000 1 hr 1 mins 2.1 GB RAM 
Micro-scale 30000 9 hr 43 mins 3.7 GB RAM 
Metamodelling ~ 0 hrs 13 mins 1.9 GB RAM 

 
Table 7 – Number of elements, time to compute and memory requirements for each stage of the multiscale solution 
procedure 
 
 Comparing the multiscale and deterministic topography pressure distributions in Fig. 25 shows that the 
multiscale solution does not exhibit ripples as observed for the deterministic solution. The solution obtained from 
the multiscale method does not fluctuate in the same way as the deterministic solution because pressure is 
homogenised at the micro-scale. Instead the variance in pressure is quantified by P1�T and P1�� which are seen to 
closely follow the bounds of the deterministic solution. That is when the deterministic solution fluctuates in the 
contact the peaks and troughs follow P1�T and P1�� respectively. This implies that the multiscale method is 
accurately capturing the macro-scale variation in pressure due to the micro-scale effect of surface topography. 
Corresponding to this Fig. 26 shows that the variables H1�T and H1�� form the bounds of the deterministic 
topography and the multiscale film thickness provides the mean value from which the deterministic topography 
oscillates. The multiscale method therefore accurately represents the macro-scale variation in film thickness due 
to the addition of surface topography at the micro-scale.  
 Table 7 shows that the total runtime was 10 hrs 57 mins for the multiscale solution, which compares to 12 hrs 
3 mins for the deterministic solution and represents a decrease in the time to compute. Only 1000 elements were 



 

required for the multiscale solution compared to 8000 in the deterministic solution, this relates to fact that the 
micro-scale effects are homogenised and the surface topography does not require discretisation at the macro-scale. 
The largest amount of time spent for the multiscale method was running micro-scale simulations, these required 
30000 elements at 3.7 GB RAM and a total of 187 were run for the solution presented. The micro-scale solutions 
were calculated quickly with less memory when compared to the macro-scale solution but many of them were 
needed. The memory used in the multiscale solution was significantly less than the comparative deterministic 
value of 10.3 GB RAM and demonstrates another advantage of the multiscale method in modelling surface 
topography. It is of note that the geometry investigated in the micro-scale is more complex than the deterministic 
solution given the physical value assigned to the out-of-plane length scale lU, in the case where lU → ∞ the micro-
scale solution can be reduced by a dimension and would therefore further decrease the time to compute and 
memory requirements of the multiscale solution. 
 The deterministic topography investigated in this section remains an idealised function in terms of Eq. (33) 
and compares well with the multiscale solution under the same conditions, thus providing a validation for the 
multiscale method. Real surface roughness data will change the behaviour of the responses generated by this 
method and require significantly more computational resource for the micro-scale simulations. By Fourier analysis 
of rough surface data a periodic function would be obtained from which comparisons with experimental data could 
be provided. It is of note that the multiscale approach is capable of modelling more complex surface topography 
than can be investigated deterministically at the macro-scale (full 3D effects) and is achieved without the 
associated additional computational cost, the multiscale method can also facilitate different constituent governing 
equations or material properties at the micro-scale such as the Navier-Stokes equations or shear-thinning lubricant 
behaviour. 
 
5. CONCLUSION 
 This paper develops a multiscale method for solving the EHL of line contacts inclusive of surface topography 
based on the HMM where data is homogenised across the disparate scales of the contact. Flow factors are 
introduced to represent micro-EHL effects in the contacting region, which is similar in approach to the methods 
developed by Patir and Cheng [18] for modelling surface topography in EHL. These flow factors are calculated 
using MLS metamodels based on a curvillinear discretisation method for DOE building.  
 Results generated using this method showed a significant increase in accuracy when compared to other papers 
published using the HMM for EHL. The discrepancy in the MLS metamodel predictions were up typically 0.1% 
which was an order of magnitude greater than that produced by de Boer, et al. [29] who showed errors of 1% 
using a similar method. In order to achieve this accuracy the DOE used in this work selected experiments which 
were close to the values assessed during the solution procedure.  
 Under the conditions investigated simulations comparing smooth surface assumptions to those inclusive of 
topography demonstrated that there is a significant deviation when the latter is modelled, where under the 
conditions investigated including topography tended to reduce pressure (which differs from load per unit area due 
to the multiscale approach) and maintain the film thickness. The presence of surface topography in the micro-
EHL model caused fluctuations of pressure and film thickness at this scale, these effects were mapped into the 
macro-scale solution and showed that there was a significant variation in pressure due to micro-EHL with ~ 2pS 
spanning the range of values observed. Film thickness was shown not to significantly change due to micro-EHL 
such that the shape of topography was maintained under load. However under high loads this may not be the case 
and the surface topography may deviate significantly, the multiscale method is not constrained in this way and 
deformation of the surface feature is permitted so long as the separation in scales of the problem is maintained. 
 The flow factors calculated when topography was included demonstrated that there was a significant deviation 
in the pressure driven term of the mass flux relationship when compared to smooth surface assumptions, whereas 
there was a smaller change in the shear driven term. The pressure driven term was up to 4.3 times that of the 
smooth case whereas the shear driven term was only 1.02 times that of the smooth case. Load per unit area deviated 
within the range of 1.25 to 0.87 times pressure, showing the importance of defining the different terms when 
modelling micro-EHL effects with this method.  
 A study was performed comparing a deterministic topography, similar to that of Venner and Lubrecht [6], to 
a multiscale topography under the same conditions. The deterministic topography caused fluctuations in the 
pressure and film thickness similar to that observed by Greenwood and Johnson [4], whereas the multiscale 
topography did not due to the homogenisation of variables across the scales. The pressure ripples and surface 
topography modelled under deterministic conditions were shown to be accurately described by the variables 
spanning the bounds of the micro-scale variations in pressure and film thickness using the multiscale method. 
 Further development of the HMM method for EHL will include developing the micro-scale to model real 
roughness by decomposing experimental data into a periodic form via Fourier analysis, and by including more 
complex rheology and descriptions of lubricant flow such as shear-thinning and thermal transport. The macro-
scale model will be developed to include a method for achieving higher load capacities such as that derived by 



 

Habchi et al. [40] or Ahmed et al. [41], the HMM method will also be furthered to include out-of-plane lubricant 
flow in the macro-scale and to model the interaction of two rough deformable surfaces in contact. 
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NOMENCLATURE 

𝐀 MLS weighted matrix of terms 
a Half-width of Hertzian contact 
𝐛 MLS weighted vector of responses 
D Number of dimensions 
D@, D* Dowson-Higginson compressibility parameters 
E Young’s modulus 
E′ Reduced modulus 
H, H Macro-scale film thickness, non-dimensional  
H∗, H∗ Volume per unit area, non-dimensional 

H1�T, H1�T Maximum film thickness, non-dimensional 

H1��, H1�� Minimum film thickness, non-dimensional 

H@, H@ Separation, non-dimensional 
h Micro-scale film thickness 
hZ Surface topography 
k Stiffness per unit area 
lT, lU, lV Micro-scale coordinate lengths 
M Longitudinal modulus 
N Number of known experiments 
𝐧 Normal surface vector 
P, P Macro-scale pressure, non-dimensional 
P∗, P∗ Load per unit area, non-dimensional 

P1�T, P1�T Maximum pressure, non-dimensional 

P1��, P1�� Minimum pressure, non-dimensional 

dP/dX, dP/dX Macro-scale pressure gradient, non-dimensional 
P@ Initial macro-scale pressure, non-dimensional 
p Micro-scale pressure 
pS Hertzian contact pressure 
pN Reference pressure 



 

Q, Q Macro-scale mass flux, non-dimensional 
R Radius of curvature 
r Normalised Euclidean distance 
t Equivalent thickness 
s Curve length 
U Entrainment velocity 
U*, U4 Velocity of lower and upper surfaces 
𝐮 Micro-scale deformation vector 
u, v, w Micro-scale coordinate deformations 
W/L Load per unit depth 
X, X Macro-scale coordinate direction, non-dimensional 
𝐱 Vector of macro-scale variables 
𝐱 Vector of normalised macro-scale variables 
x, y, z Micro-scale coordinate directions 
Z Piezoviscous index 
α Topography amplitude 
𝛄 Vector of MLS coefficients 
∆p Pressure difference 
𝛆 Micro-scale strain tensor 
ϵ Scaling variable 
ζ Scaling parameter 
η, η Lubricant viscosity, non-dimensional 
ηN Reference viscosity 
η@ Ambient viscosity 
θ Closeness of fit parameter 
κ Scaling parameter 
λ Lamé’s first parameter 
µ Shear modulus 
ν Poisson’s ratio 
ρ, ρ Lubricant density, non-dimensional 
ρ@ Ambient density 
𝛔 Micro-scale stress tensor 
𝛗 Vector of flow factors 
φ*, … , φ` Flow factors 
ψ MLS weights 

 
ABBREVIATIONS 

DOE Design of Experiments 
EHL Elastohydrodynamic Lubrication 
FSI Fluid-Structure Interaction 
MLS Moving Least Squares 
RSM Response Surface Methods 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

APPENDIX A 
 Eq. (A1) gives the scaling parameters defined at the macro-scale, 
 

a =
8WR
πE′L

     pS =
2W
πaL

      
1
E′

=
1 − ν4

E
 (A1) 

 
these are used for the non-dimensionalisation of the macro-scale variables as described by Eqs. (A2)-(A4), 
 

P, P∗, P1¯�, P1�T =
P, P∗, P1��, P1�T

pS
 

 
(A2) 

H, H∗, H1¯�, H1�T, H1, H@ =
H, H∗, H1��, H1�T, H1, H@ R

a4  

 
(A3) 

X =
X
a

     Q =
QR

ρ@Ua4     ρ =
ρ

ρ@
     η =

η
η@

 

 
(A4) 

By substituting these expressions into the macro-scale governing equations Eqs. (A5)-(A7) are derived for the 
mass flux, 
 

Q = −φ*ϵ
dP
dX

+ φ4ρH1 

 
(A5) 

ϵ =
ρH1

2

ηκ
     κ =

12η@UR4

pSa2  

 
(A6) 

d
dX

φ*ϵ
dP
dX

=
d

dX
φ4ρH1  

 
(A7) 

with the boundary conditions and cavitation constraints written as Eqs. (A8) and (A9), 
 

P −∞ = P ∞ =
dP
dX

∞ = 0 (A8) 

P < 0,
dP
dX

= 0 (A9) 

 
The non-dimensional density and viscosity are given by Eqs. (A10)-(A11), 
 

ρ =
D@/pS + D*P

D@/pS + P
 

 
(A10) 

η = exp ln
η@

ηN
1 +

pS

pN
P

O
− 1  (A11) 

 
The load per unit area and film thickness are non-dimensionalised according to Eqs. (A12)-(A14), 
 

P∗ = φ2P 
 

(A12) 

H1 = H + φ2ζP        ζ =
pSR
ka4  

 
(A13) 

H = H@ +
X

4

2
−

1
π

φ2P
C

ln X − X′ dX′

F

GF

− φ2ζP 

 

(A14) 



 

The load capacity becomes Eq. (A15), 
 

φ2P dX

F

GF

=
π
2

 

 

(A15) 

and the remaining macro-scale parameters are given by Eqs. (A16)-(A17), 
 

P1¯� = φ]P       P1�T = φbP 
 (A16) 

H∗ = φ^H1        H1¯� = φ_H1       H1�T = φ`H1 (A17) 
 
Note that the flow factors φ*G` are not changed during non-dimensionalisation from such that the relationships 
given exhibit the same scaling as their dimensional counterparts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

APPENDIX B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. B1 – Flow chart of the macro-scale EHL solver including flow factors 
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