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Abstract

Traffic and transportation have a wide-ranging impact on the daily
lives of the human population and society. Activity-based travel de-
mand generation models and traffic simulators are tools that have
been developed to investigate traffic and transport problems and as-

sist in developing solutions.

The closer modelling of human behaviour, the emergence of new tech-
nologies and the availability of more detailed datasets is leading to
greater modelling complexity. The robustness of conclusions in inves-
tigations is supported by comparison of multiple techniques and mod-
els yet variations in the platform, data requirements and dataset avail-
ability present barriers to their breadth. This thesis investigates the
development of a Semantic Web framework for activity-based travel

demand generation.

It is proposed that the application of a knowledge-based approach
and development of an orchestrating framework will enable a loosely
coupled modular architecture. This approach will reduce the bur-
den in preparing and accessing datasets through the construction of
a platform-independent knowledge-base and facilitate switching be-

tween modules and datasets.

The principal contributions of this work are the application of a
knowledge-based approach to travel demand generation; the devel-
opment of a Semantic-based framework to control the configuration
of the process and the design; and demonstration of the Semantic-
based framework through the implementation and evaluation of the
modular travel demand generation process, including integration with

two third-party traffic simulators.



The investigation found that the proposed approach can be success-
fully applied to model and control the travel demand generation pro-
cess. Multiple configurations were explored, including utilising net-
work communications, and found that this had a noticeable impact
on execution duration but also the potential for mitigation through

distributed computing.

This presents the opportunity for an online infrastructure of datasets
and module implementations for travel demand generation that users
can select and access through the framework. This infrastructure
would remove the need for ad hoc interfaces; data format conversion
or platform dependence to facilitate the process of traffic modelling

becoming quicker and more robust.
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Chapter 1
Introduction

This thesis proposes a core data model for travel demand modelling and defines a
framework to support the selection of alternative techniques and data sources. It
is proposed that the core data model for activity-based models and traffic simu-
lations will improve the interoperability of data sources and modelling techniques
through a common knowledge-base. The supporting framework will enable users
to configure and control the knowledge-base and the applied techniques through
a consistent mechanism. It is intended that these improvements will reduce the
time and resources required to assemble a real-world traffic simulation and facil-
itate greater comparison and validation between models and implementations.
In this chapter, there will be a discussion of the motivational context for
this work along with the primary features of the traffic and transport modelling
domain and Semantic Web technologies. There will then be an outline of the
problem and proposed solution before considering the research questions and

contributions described in the remainder of the thesis.

1.1 Motivation

The consequences of traffic and transportation are directly and indirectly experi-
enced by the human population every day. This experience can have consequences
in terms of travel time or financial cost but can also have an impact upon an in-

dividual’s health, environment and economic opportunity [1]. Therefore, it is



important to develop high-quality solutions to the problems faced. The under-
standing of traveller behaviour is seen as crucial to managing and developing
transport infrastructure and the adaptation to emerging technologies [2]. One
tool in developing solutions to these problems are travel demand models and
traffic simulations, which seek to create representations of human travel within
the physical environment to evaluate the likely outcome of transport policy de-
cisions. These systems also provide input into other domains for modelling and
informing policy decisions and so have a wide-ranging utilisation and impact [3].

To address these matters there has been a multi-decade research into the
modelling and simulation of travel and transport. The complexity of the travel
experience, the wide range of contexts, the involvement of human behaviour and
the emergence of new technology has led to the development of numerous models,
techniques and implementations. The stages of the process have often been ad-
dressed on an individual basis requiring additional efforts to integrate together or
have been developed as proprietary closed solutions that are not widely available
[4].

At each stage of the process there are numerous design and implementation
decisions, which can produce diverse, but valid, outcomes that are best under-
stood through the consideration of multiple scenarios, repetitions and implemen-
tations. Each stage has diverse implementation decisions, technologies and de-
signs that make comparison and utilisation difficult. The systems produced have
a complexity and cost in time and resources that hinders the comparison between
approaches, adoption of best practice, development of new techniques.

Moreover, the conceptual and practical need exists for all models to be imper-
fect simplifications of the physical environment and social behaviour they target
[5]. The need for verification and comparison between these systems and their
models will remain regardless of their increasing complexity and the computa-
tional resources available to solve them. This need will likely increase as greater
complexity leads to greater challenges in the explanation of outcomes [6].

This lack of integration and comparison exists despite the fundamental simi-
larity between models and techniques. Therefore, the practical integration should
be achievable with several examples performed on a one-to-one basis. Yet, this

has not resolved the ongoing issue of integrating many models, switching between



these models and the models being available for further re-use. Achieving an
integration requires overcoming a host of practical implementation issues includ-
ing converting between data formats and managing multiple operating systems,
database platforms and programming languages.

The proposal and introduction of overarching interfaces that satisfies all the
potential variations that exist is complex, difficult to maintain and highly unlikely
to be sustainable. Instead a solution is needed that orientates the different models
to the fundamental concepts of the domain and then allows the flexibility to adjust
for variations between models without them conflicting.

It is proposed that Semantic Web technologies can be used to develop a frame-
work that will assist in integrating datasets together into a coherent knowledge-
base. Upon this knowledge-base can then be applied the modular components
required to generate and simulate travel demand. The extensible nature of the
Semantic Web will enable modules with different design assumptions and data
requirements to operate alongside each other upon the common knowledge-base.
Therefore, reducing the burden for comparison between implementations.

The Semantic Web is designed upon principles of open, structured and re-
usable data to facilitate machine to machine interactions. These principles will
enable the publication of high-quality input datasets for direct consumption and
utilisation as part of the local knowledge-base, rather than the current reliance
on human-driven sourcing, cleaning and conversion. Datasets can be published
at a national level with users able to select subsets based upon their interest area.

Further, the online design of Semantic Web technologies will enable module
components to operate upon remotely held data, such that the knowledge-base
need no longer be a single physical entity. This would enable the modular com-
ponents of the process to be remote services that are directed to the data to act
upon by the user, rather than being locally installed and configured instances.
This would alleviate the technical and resource burden from users, facilitate re-
producible results and allow domain-experts to develop best practice techniques.
Removing these burdens, raising the quality of data and encouraging compari-
son between techniques will allow greater focus upon effective solutions and help
alleviate the risk of error in outcomes.

The diversity of datasets, design choices and modelling approaches means



that a single unified data model and set of component interfaces is a complex
objective to achieve and likely to be unsustainable as new data sources and con-
ceptual models emerge. Therefore, a more flexible approach would be suggested
that enables users to adapt data and modules to their knowledge-base as they
investigate alternative scenarios and techniques.

This work proposes a Semantic Web-based framework that identifies data
structures for fundamental components of activity-based travel demand models.
It is proposed that the semantic modelling of these concepts into a structured
knowledge-base will allow the development of modular components that can be
more easily interchanged, while still allowing users control over the organisation
and structure of their experimental scenarios.

It is intended that the modelling process can become less burdensome and
more flexible for incorporating new concepts and approaches based upon the
knowledge-base. Further, it is proposed that a Semantic Web basis will enable
the assembly of models and simulations from both local and online sources to
enable quicker modelling, knowledge inferencing and improved comparability of
results.

In other words, a knowledge model of the travel demand problem domain will
allow models to be aligned around their similarities. Each model can then expand
this knowledge model for their own purposes and focus. Users may still have to
align models, but by mediating knowledge concepts rather than implementation
details. The introduction of more flexible integration can then allow the multiple
stages of the process to be further decomposed from a few large monolithic steps
to many smaller steps. This can then allow greater comparison of the alternative

design choices between models.

1.2 Traffic and Transport Modelling Domain

Traffic and transport planning is a wide-ranging field that impacts on the daily
lives of most members of society through transport congestion, infrastructure
investment, safety, pollution etc. |1, 3] The understanding of traveller behaviour is
seen as crucial to managing and developing transport infrastructure and adapting

to emerging technologies. The Traffic and Transport Modelling domain seek to



support this by modelling the complexity of the physical environment and human
behaviour.

This section provides further detail relating to activity-based demand models.
It outlines how human travel can be defined and described; some of the general
terminology used for travel demand models; the general considerations of activity-
based demand models; and the main approaches to developing activity-based

demand models.

1.2.1 Representation of Journeys

The conceptual evolution of Travel Demand Modelling from trips to activities can
be seen in Figure[L.] based upon [7]. In trip-based models, the focus has been on
the travel portion of a person’s day as they commuted to and from employment or
education, with other activities a secondary consideration. A broader perspective
of the journey is provided by considering the continuous time period of a tour,
encompassing both travel and activity. In an activity-based model, the travel and
activity are considered separately with timing constraints imposed by the type of

activity being undertaken.

This image has been removed by the author for copyright reasons.

Figure 1.1: Diagram of journey representations indicating the level of detail re-
quired in their construction. (Based upon [7].)



The three representations can be further described as follows:

e Trip Based: A trip is a sequence of one or more stages, continuous movement
using one mode of transport or vehicle, between two activities that are in
different locations. The simplest representation and easiest to model but

lacking the depth and nuance of human activities.

e Tour Based: A tour is a sequence of trips starting and ending at the same
location. A trip chain may also be modelled which ends at a different
location to the start. This approach captures the reliance of trips upon
each other and that there may be sub-trips which take place beyond the

initial activity, such as travel for lunch at work.

e Activity Based: An activity is a continuous interaction with the physical
environment, service or person by an individual. A schedule is developed
for individuals, grouped into households, that takes into consideration the
time and location constraints of household members and negotiates the con-
flicting journey demands. A fuller representation of the process for journey

planning and scheduling.

This focus on activities, termed Activity Based Modelling, introduces a need
for a broader range of information about the potential activities and their loca-
tions. Further there is a need to consider human behaviour in selecting and
scheduling activities that can be limited by fixed or flexible constraints, e.g.
shop opening hours or contracted employment hours, as well as the negotiation
amongst individuals within households for the use of resources, e.g. vehicle avail-
ability, and skills, e.g. adult drivers to transport adult non-drivers and children.
It should also be considered that once a plan has been established it is not fixed
but subject to change due to travel delays and other factors which means there
is feedback and review of the plan as it progresses over a day.

The advantages of activity-based models include developing behavioural real-
ism, integrity between components, greater spatial and temporal resolutions, and
supporting dis-aggregate traffic micro-simulators. However, due to the complex-

ity of the domain and ongoing research to identify definitive approaches, these



objectives have been met to varying degrees through a number of different im-
plementations |8, 9]. It has also been commented that the modelling of human
behaviour is lacking in most transport models [4]. The main design approaches
for activity-based models are discussed further in Section after discussion of

modelling terminology and considerations in the following sections.

1.2.2 Terminology of Travel Demand Models

The modelling of traffic and transport has developed over several decades with
the terminology used to describe its components also developing. This section
outlines the concepts and terms related to describing travel and activity as used

in general for travel demand models |7, |10].

e Activity: a continuous interaction with the physical environment, service or
person for a time interval. This includes any idle/non-travel waiting before

or during the activity.

e Stage: a continuous movement with one mode of transport, and one vehicle
(if used). It includes any idle waiting immediately before or during the

movement.
e Trip: a continuous sequence of stages between two activities.
e Tour: a sequence of trips starting and ending at the same location.

e Journey: a sequence of trips starting and ending at the reference location

of the person.

e Reference Location: the location from which a person starts and ends their
journey. Typically the person’s main residence, but could be multiple lo-
cations for holiday home owners, stop-over commuters, away from home

students or children of separated parents.

Figure [1.2] illustrates these terms when considering a typical routine for a
person in employment followed by a leisure activity. The person’s commute to

and from work is undertaken by transitioning from one mode to another, e.g.



walking to a bus stop and catching a bus. In this figure, there is no consideration

of the modes or timings of the journeys or activities.

Home Ll - Emplayment Term Examplg
h — Activity: Employment
Stage: 15
32 Trip: 1a+ 1b
Tour: la+1b+ 2a+2hb
U Journey: la+1b+2a+2b+3 +4
Leisure

Figure 1.2: Diagram of a daily commute followed by leisure activity to illustrate
travel terminology.

1.2.3 Modelling Considerations of Activity-Based Demand
Models

The consideration of activities as the source of travel demand presents several
modelling aspects |7, 9, |[10]. The general term activity can encompass the whole
scope of human undertakings. Therefore, activities are not all equal in priority,
performed by all people or executed in the same order. The characteristics of
activities will vary in duration, proximity, occurrence, capacity and financial cost.
Certain activities are undertaken in isolation for short-term needs while others
form part of long-term projects to satisfy personal objectives. Activities can
be performed solo or coordinated within a group of individuals, e.g. familial
households or commercial organisations. The ordering of activities can also be
influenced by group dynamics with one member being required to escort another
member to an activity prior to undertaking their own activity, e.g. parents taking
children to school.

These different aspects of activities introduce multiple considerations. It is
impractical to itemise and define all potential activities and therefore groupings
of the most important are required. A criticism of previous travel demand mod-
els has been a focus upon commuter activities [11, [12]. This focus is despite

recent research for trip purposes and distance travelled showing commuting shar-



ing an equivalent proportion with other activities, as shown in Table [1.1] and
that approximately 5% of the UK population work from home [13], so will not
be commuting but still undertake other activities. These broad categories could

also include more specific activity types that a user may wish to explore.

Trip Purpose Trips (%) | Distance (%)
Leisure inc. entertainment, holidays, sport and day trips 17 21
Commuting 15 20
Visit Friends 15 19
Personal business and other escort 18 14
Shopping 19 11
Personal trips in course of work 3 10
Education inc. escort 12 )

Table 1.1: Table of trip purpose by proportion of average number of trips and
distance travelled.

Broadening the range of activities under consideration also has an impact on
the time periods of modelling. The primary focus upon commuter, freight and
school journeys places an emphasis on the weekday morning and afternoon peak
periods [11], [12]. Yet research into sources of travel demand shows the breadth of
activities taking place over the day , as illustrated in Figure and Figure

Index: average hour = 100
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Figure 1.3: Graph of trips in progress by start time and purpose, Monday to

Friday.

Both figures show trip survey data for the United Kingdom and clearly follow
the classic M-shaped curve of travel demand [16]. This M-shaped curve exists



during the working week when there is low demand during the morning, midday,
evening and night, but peaks and troughs around the two rush-hour periods in
the morning and afternoon. Figure also shows the weekend days with the
peak occurring around midday and so producing a different travel demand.

It should be noted that these distributions have been indexed against the
average volume of trips and so do not show the absolute volumes between weekday
and weekend, i.e. many more trips could be taking place during the weekdays
than the weekend. It is also worth noting that Figure has a large number of
trips attributed to the education activity, which is a seasonal activity. During
holiday periods, e.g. summer and New Year, those in education will engage in
other activities with different location and timings. These factors highlight that
more sophisticated travel models must represent a range of activities over a wide

proportion of the day with intra-day, inter-day and inter-week variations.
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Figure 1.4: Graph of trips in progress by time of data and day of week.

These factors are further complemented by other decision making influences.
Many activities can only take place at a location when it is open or during certain
periods of the day, e.g. daylight hours. These physical locations will also have
a finite capacity and may have an associated financial cost which affects their
popularity. The popularity of a location may also have less quantifiable factors
that can draw individuals to it regardless of closer options that would be more

expedient, e.g. service quality or reputation. Therefore, there are practical limits

10



to the modelling realism.

1.2.4 Types of Activity-Based Demand Models

The development of activity-based demand models represents a paradigm shift in
the approach to modelling travel demand. The developed approaches to imple-
menting this paradigm are diverse as there are a range of design considerations
to model, as described in Section [1.2.3

The process of traffic modelling of real-world scenarios requires a number of
stages that can generally be categorised as data collection, population synthesis,
demand modelling and traffic simulation as illustrated in Figure [I.5] At each
stage, a range of options and techniques are available to the modeller, e.g. data
formats, data granularity and modelling parameters, that require adaptation to
integrate.

The burden of adapting and aligning between the stages limits innovation and
quality improvements despite fundamental components of the domain existing
[17]. The specific data requirements vary between implementation and design
approaches, but the general requirements are regarded as being similar across
activity-based and trip-based models |9]. Broadly these requirements are travel
diaries, population and household census, land-use parcel data and transport
network infrastructure, i.e. roads and public transit connections.

In an ideal scenario, every individual is able to complete all trips with maxi-
mum efficiency, i.e. shortest travel time, and minimal inconvenience, i.e. depart-
ing at the time and using the mode of their choice. However, the finite capacity
of the road network and public transit services means that this is not always
possible. Therefore, an individual must make a behavioural response in order to
compensate or adjust to select an alternative trip. These responses have been
identified as [18]:

e Ignore: continue the trip as planned.
e Negation: abandon the trip.

e Modal: switch from current mode to an alternative.

11



e Spatial: select an alternative route.

e Temporal: change the departure time.

Travel demand models seek to incorporate these behavioural responses through
the features and design principles that they implement. Below are brief outlines
of the predominant approaches for activity-based travel demand models although
implemented models may incorporate multiple approaches |8, |19).

The unifying basis of these different modelling approaches are the activities
that a human is undertaking in their daily lives. It is proposed that a common
knowledge-base could support the data requirements of multiple demand model
implementations to enable common concepts, e.g. population, road network, and

locations, to be re-used while also providing implementation specific data.

This image has been removed by the author for copyright reasons.

Figure 1.5: Basic integrated activity-based micro-simulation components. (Based
upon [9].)

1.2.4.1 Constraints Based

A schedule is developed and checked for its feasibility according to travel and
time constraints. Space-time prisms examine the feasibility of travelling between

two locations in the specified time-frame according to maximum speed. A set of

12



activities are provided with timings, duration and tolerances. All combinations
of route, mode and locations between the activities are found as a sequence of
travel. A sequence that does not violate the constraints of the activities and

travel times is then selected.

1.2.4.2 Discrete Choice/Econometric

A person is assumed to be an entirely rational entity that chooses from a finite
set of probability weighted choices. Typically, the probabilities are calculated to
maximise utility using attributes related to the choice and person. Taking the case
of a single choice as in Equation (1), an individual (J) has multiple influencing
attributes (z). The fitted model’s observed coefficients (47) are multiplied by the
attributes and summed to derive the observed value (V). Negative coefficients

are applied when a smaller attribute value is preferred e.g. cost, time or distance.

Ury=Bx;+e;=Vy+e (1)

= Zj o

This observed value (V) and the unknown error term of unobserved variables

P (2)

(€) form the choice utility (U). The probability of selecting a choice (i) is found
from the sum of the choice set for an individual (j) as in Equation (2)), where
in a multinomial logit model the closed form probability does not require the
error terms and follows a logit probability |9]. A single choice probability is
the exponential of its observed value normalised across the sum of exponential

observed values of all choices in the set.

1.2.4.3 Computational Process Model (CPM)

Computational Process Models, also known as rules-based approaches, were in-
troduced as an alternative to the unrealistic behavioural assumption of utility
maximisation. The basis for decision making is derived from heuristic responses
so that behaviour is more similar to habitual rather than self-optimising. The

rules are activated by contextual variables through an if. .. then... structure.
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A ruleset is considered complete if a rule activates for all variable cases and
consistent if a single rule activates in each case [20]. Semantic Web rules en-
gines and reasoners support the description and processing of rules in a range of
languages. This approach allows exploration of how a decision maker formulates
and executes the schedules by capturing the explicit scheduling constraints. They
are able to model interdependent decisions as well as behavioural principles. The
modelling focus tends to be on activity scheduling rather than activity generation.

They have further been categorised into weak and strong CPMs [21].

e Weak CPM: Apply heuristics consisting of a sequential or partially sequen-
tial decision making process. There is assumption of utility maximisation,
or other rational method, at the level of individual decision steps, e.g. [22-
24].

e Strong CPM: Employ a production system, or other rule-based approach,
at the level of individual decision steps, e.g. |20} 25-28]. The production
systems are often modelled based upon decision trees [20] or heuristic rules
[25, [28].

1.2.4.4 Agent-Based

An extension to activity-based models is incorporating agent-based design to
further explicitly model individuals as entities which interact and respond to the
dynamic environment to produce emergent behaviour [19]. This is in contrast
to the passive continuation of the predetermined plan of earlier approaches. In
principle, this re-planning process could be achieved in other approaches but is not
highlighted in the examined literature. The agent-based design has been explored
to address shortcomings in activity-based models through improved modelling
of emergent phenomena, population heterogeneity and complex behaviour and
learning [19).

The agent paradigm seeks to model autonomous individuals in the domain
of interest. The state and behaviour of these individuals flexibly change based
on previous experience and the contextual environment. Humans display agency

and conceptual models have applied terms such as mind and body to encapsulate
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behaviour, actions, sensors and effectors [29]. These agents are partitioned into
regions that forms the environment within which they communicate and inter-
act with other agents. In a holonic agent-system the agents can themselves be
composed of other agents whose actions fulfil their own goals and those of the
over-arching agents [30]. This, therefore, defines abstract entities as agents e.g.
commercial organisations are agents composed of their employees. By defining
discrete individuals and regions these systems can be organised and executed as
distributed systems with agents transferring from region to region. The focus on
individual entities in the environment aligns with the micro-simulation paradigm.

The advantages of agent-based modelling have been found in situations where
complex interactions are taking place between agents; there is an important
spatial component; the agent population has heterogeneous characteristics and
agents exhibit complex behaviours involving learning and adaptation. Therefore,
the approach has been applied to the traffic and transport domain. However, chal-
lenges are presented in the computational complexity of modelling large systems;
the outcome patterns of interactions are unpredictable; and predicting overall
system behaviour is extremely difficult due to the strong likelihood of emergent
behaviour. [19]

The definition of agent-based systems in traffic and transport has been imple-
mented in a variety of different manners. However, the following general charac-
teristics have been identified |19, |31]:

e Self-Contained: identifiable and discrete with a set of characteristics and

behaviour rules.

e Autonomous: exhibit control over their own actions and are able to make

decisions.
e Proactive: react to external events to achieve their goals.

e Social: interact and communicate with other agents to accomplish their

task and achieve the complete goal of the system.

e Flexible: ability to learn and adapt its behaviour based on experience.
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In practice, a range of approaches have been applied to modelling the activity
and travel of people as software agents. This includes executing a travel plan but
making no changes until a review at the end of the day to select an alternative plan
[32]. In other cases a more detailed approach is applied with agents responding
to the changing environment during simulation, termed the nanoscopic level,
through adjustments to driver behaviour while following a plan of travel for the

day, termed the microscopic level [33].

1.3 Utilising Semantic Web Technologies

The Semantic Web is not a single technology but a hierarchical collection of for-
mal standards and recommendations with supporting tool implementations. Its
objective is to enable the structuring of data for automated interpretation and
facilitate exchange between applications |34} |35]. Further developments include
extending these standards to produce complete Semantic Web applications. The
components of the Semantic Web are platform and programming language inde-
pendent for transferability between implementing tool-sets.

The basis of Semantic Web technologies is the modelling of data to develop
a knowledge model. The development of a knowledge model enables the identi-
fication and expression of common concepts and their relationships. Contextual
facts can be asserted to construct a knowledge-base. Semantic modelling upon
a knowledge-base using the relations, and their defined meanings, enables the
inferencing of additional implied facts or the identification of inconsistencies.

Knowledge-bases can then be shared and utilised as the basis to develop appli-
cations and task solving models. Sharing and reuse of the commonly defined con-
cepts and relations is achieved through vocabularies, also termed ontologies [36].
These concepts and relations can be applied to provide consistent understanding
and structure giving interoperability between knowledge-bases. Numerous vo-
cabularies have been developed including spatial (GeoSPARQL [37]), temporal
(OWL Time [38]) and also for specific domains (transport domain topics include
traffic disruption [39], automotive [40], infrastructure [41], and buildings [42]).

This enables the incorporation of facts from multiple knowledge-bases to ex-

tend a dataset and for knowledge-bases to adhere to a published structure. These
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relations can then be used as the basis for additional concepts, either in depth
of detail or breadth of coverage. The expected shape of the data can also be ex-
pressed as part of the vocabulary to form a schema that ensures the frequency of
relations, the content of instance data and the inter-relationship of concepts are
as intended. The structure and shape of the knowledge-base can be automatically
interpreted to ensure data quality compliance, logical consistency and derive new
statements. The Semantic Web uses these modelling benefits to retrieve, join and
transform data for the user’s application.

The primary objectives of this work are to provide a data-focused, modular
approach that can be explored and adapted by the user. An immediate benefit of
a Semantic Web approach is the storage and organisation of the diverse datasets
required by the travel demand generation process. The extensible graph structure
of a graph database combined with an engineered schema forms a knowledge-base,
which can be partitioned into multiple logical graphs. Semantic Web technologies
can be applied to the structured data of the knowledge-base to obtain inferences
or apply rules to describe conditions and outcomes. By allowing the practitioner
to specify their own vocabulary and rules the demand model can be expanded
and customised to incorporate new behaviours and effects. This could incorporate
the activities of interest, parameters of individuals or the behaviour and decision-
making process.

The use of rules in activity-based demand models forms the basis of Com-
putational Process Models and therefore potential exists for designing modules
utilising Semantic Web rules languages. The focus during this investigation has
been upon SPARQL based querying with RDFS inferencing as the combination
provides flexibility and control without certain complexities introduced by OWL
schemas or rules-based extensions, e.g. modelling restrictions [38], Open World
Assumption and computational complexity. However, overlap exists such that
certain outcomes could be achieved using several alternative Semantic Web tech-
nologies each with their own advantages. Key components of the Semantic Web
are briefly outlined in the following sections to provide context of the terminology

and further describe their application.
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1.3.1 Resource Description Framework (RDF)

This fundamental data structure of the Semantic Web uses a directed labelled
graph approach based upon subject-predicate-object triples [39]. This allows an
extensible and adaptable structure to represent concepts, data and relationships
as a metadata standard. New concepts can be incorporated by modifying the
structural schema without needing to alter the underlying data. Each part of
the triple is either a unique resource, described by a Unique Resource Identifier
(URI), or a literal data value and type, such as a string or integer. The resources
can represent real objects or abstract concepts and are cross-referenced with other
resources to form a graph structure.

The triples of the knowledge-base can be persistently stored in a graph database,
more specifically a triplestore or quadstore, as one or more URI named graphs
to allow data partitioning. Queries can be performed on a single, collection or
all graphs in the database. This means that sets of triples can be conveniently
accessed, exported or deleted. This provides a mechanism to isolate different
scenarios, multiple instances of the same scenario and to keep invariant data,
e.g. population characteristics and road network, separate from generated variant
data, e.g. a household’s travel plans. Graph databases represent an alternative to
traditional relational databases and are capable of storing and searching billions of
triples. Data and schema can also be expressed separately so that the same data
can be used to derive alternative inferences or structure for a knowledge-base.

The subject-predicate-object triples of the graph database aligns to the column
and row structure of the tables within a relational database. Each unique predi-
cate expresses a different column and each subject forms a new row of the primary
key column. Each class of the subject is a separate table. The combination of
subject-predicate corresponds to a row/column cell within the table and the object
as the cell’s content. However, the graph structure allows the dataset to contain
an unlimited number of triples for a particular subject varying in either predicate
or object, following the AAA principle discussed further in Section [£.2] Thus the
graph database can support describing relations in an arbitrary manner for an
arbitrary number of classes.

In relational databases, the structure is fixed according to the tables of the
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schema and can only incorporate additional predicates/columns through program-
matic intervention on the database. Therefore, a relational database is reliant
upon the schema being fixed during the design process while a graph database
can accept any additional relations provided by the user or other sources. The
schema of the knowledge-base is also expressed as triples in a graph database and
so forms part of the data content. This schema can be used to apply structure
and shape by expressing constraints to identify violations, e.g. cardinality, class

membership or datatype.

1.3.2 SPARQL Protocol and RDF Query
Language (SPARQL)

The SPARQL query language provides a mechanism to explore, retrieve and
modify RDF data as well as derive additional information, such as arithmetic or
aggregation operations found in the relational database Structured Query Lan-
guage (SQL). SPARQL endpoints can be deployed on to graph databases to
process queries and return data for local or remote usage. The triple pattern of
RDF provides a consistent graph matching structure to queries, while the syntax
is standardised and platform independent.

The protocol permits the direct use of remote SPARQL endpoints through
Federated Queries over the Hypertext Transfer Protocol (HTTP) [43]. This means
a single query could access an authoritative external data source, such as road
network data from a Transport Authority, and apply it to locally stored data.
Alternatively, computational processing can be split into stages or partitioned
among discrete hardware, e.g. spatial queries for different regions held on separate
hardware. Data can be dynamically retrieved when required for processing so
that the latest version is used rather than relying on periodic static releases with
obsolete data.

The query protocol allows the underlying graph database to contain addi-
tional data not required in the current context but relevant for alternative uses.
Therefore, a single coherent knowledge-base can be maintained rather than sep-
arate sets of data sources for multiple models. Extensions can be implemented

as property and filter functions to increase the functionality of queries on the
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graph database. This allows the triggering of complex data processing and data

generation using standard query syntax.

1.3.3 Schema Languages

Inference reasoners apply schemas onto datasets to automatically verify logical
consistency and infer knowledge, such as class membership and relationships.
The schemas follow a standard vocabulary to describe relationships and infer-
ences. The Resource Description Framework Schema (RDFS) is a data modelling
vocabulary to extend RDF by describing groups of related resources and the re-
lationships between them and provides many fundamental inferences [40]. The
Web Ontology Language (OWL) language is a collection of logic based semantics
to describe knowledge and relationships with greater expressiveness than RDFS
[41]. The Shapes Constraints Language (SHACL) provides conditions for vali-
dating RDF data and describing rules and functions in SPARQL to ensure the
graph data is structured correctly [42]. The practical considerations relating to
these schema languages is discussed later in further detail (Section .

1.3.4 Rule Languages

Semantic Web Rule Language (SWRL), and other rule languages, allow the defi-
nition of rules to complement schema languages and express additional relation-
ships within the schema using if...then... structured statements. The specified
rules syntax may provide specific functions that the interpreting engine can exe-
cute but there is limited or no control over rule execution.

The SPARQL Inference Notation (SPIN) framework is a standards submission
that utilises SPARQL syntax for the execution of queries as rules [43]. Rules can
be formed into templates or functions for reuse in other rules while execution
order and frequency can be controlled. Several schema and rule languages can
be embedded and shared as part of the schema. This allows data structure and

processing to be examined, shared and executed together across platforms.
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1.4 Problem Statement

There are several challenges presented by the development and utilisation of travel
demand models and traffic simulators. There is a diverse array of data, techniques
and solutions within the domain while the design and modelling decisions applied
to implementations have evolved as research has progressed. This presents chal-
lenges to users in selecting the appropriate approach and ensuring verification of
outcomes across multiple implementations and models.

There is limited integration between implementations of models and traffic
simulators so that users must employ ad hoc techniques to obtain and exchange
data. Further, data may not be published in a format supported by an imple-
mentation or aligned to its schema and so must be converted by a third-party
tool or an ad hoc technique. The development of these ad hoc techniques requires
a thorough understanding of both the data and implementation with the risk of
introducing error but also reducing investigative resources.

The data requirements of implementations are set to further increase. Future
developments will see more complex modelling of human behaviour; the diversifi-
cation of datasets; and the incorporation of new technologies into policy-making.
This will further complicate the selection process of implementations and the
verification of their outcomes.

Finally, the increasing behavioural complexity and data requirements will
likely lead to further computational requirements. The development and im-
plementation of activity-based models have already been hindered by their com-

putational demands as more tractable solutions were explored.

1.5 Proposed Solution

The modelling of traffic and transport is a wide-ranging domain that has a direct
impact on people’s lives, through investment, policy decisions and the environ-
ment, as well as influencing other domains of research. It encompasses a wide
breadth and depth of information that is only likely to increase and produce
greater burdens on the development and utilisation of models. Therefore, a sys-

tematic approach is required in the organisation and access of this data so that
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quality outcomes of reduced error, model comparison and reproducible results can
be achieved. It is proposed that following a knowledge-based approach will allow
the orientation of the modelling process upon the data rather than the system
interfaces and boundaries between tools and models.

This will produce a constructed knowledge-base using a schema, which de-
scribes the relationships between fundamental concepts, and the investigative
data. The functionality of the modelling process would be defined as loosely
coupled inter-operable modules, which are configured through external module
parameters also stored in the knowledge-base. The schema will encompass a core
schema extended to include additional concepts required by the modules. The
core schema would allow publishers to produce data in directly consumable for-
mats with minimal transformation, while its extension will enable modules to
achieve more diverse functionality. The use of a metadata standard for the core
schema will assist in the proper use and interpretation of the data and linkages
to other datasets and schemas. This would promote re-use of data, assist com-
parison of techniques and reduce the burden of solution assembly upon users to
achieve quicker, more comparable and less error-prone investigative analysis.

The proposed modules can be implemented as innovative approaches or wrap
existing tools to incorporate state of the art research. These modules encompass
a broad range of tasks that operate upon the data of the knowledge-base and
so may, in turn, be decomposed into sub-modules. Enabling users to select and
switch between modules, sub-modules and data sources will encourage wider ver-
ification of models, implementations and scenario outcomes through alternative
configurations. By defining a common mechanism to mediate this process the
burden of selecting, transforming and processing data will be reduced. A frame-
work will be developed that will allow users to specify how data is selected; the
modules to process the data; the location of data sources and module services;

and the validity of the user configuration.

1.6 Research Questions

It has been proposed in the previous section that an underpinning knowledge-base

can provide the basis for undertaking traffic and transport demand modelling in-
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corporating a range of models and data. Therefore, this thesis is based on the

following hypothesis:

“The application of a knowledge-based approach and orchestrating framework
will enable a loosely coupled modular architecture for activity-based travel de-

mand generation and traffic simulation.”

Consideration of the above hypothesis provides a set of research questions to
direct the focus of the investigation. The selected research questions for further

exploration are:

RQ1 How can a loosely coupled modular Semantic Web knowledge-base be ap-

plied to travel demand modelling and traffic simulation?

RQ2 What data concepts are required to construct a knowledge-base for travel

demand modelling and traffic simulation?

RQ3 How can alternative techniques and data be selected using a Semantic Web

knowledge-base?

RQ4 Can a Semantic Web framework be implemented for the generation of travel

demand?

1.7 Thesis Contributions to Knowledge
The principal contributions of this work can be summarised as:

e Applying a knowledge-based approach to the process of travel demand gen-

eration.
e Development of a Semantic-based framework for travel demand generation.

e Design and demonstration of a Semantic-based travel demand generation

framework.
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1.8 Research Methodology

The research methodology adopted for this project is based on a building a soft-
ware artefact to demonstrate the application of Semantic Web technologies to
Activity-Based Travel Demand Generation. The following research activities were

undertaken during the course of the project:

Literature Review

The research involved an extensive literature review into the fields of Activity-
Based Travel Demand, Traffic Simulation, Population Synthesis and Semantic
Web. This review was carried out to develop a foundation based on existing
approaches and incorporate current research progress. There was further review
undertaken into published datasets, tools, ontologies and other relevant mate-
rial, including population census, travel surveys, and transport infrastructure,
to support the design and construction of the schema, prototype and evaluation

scenarios.

Analysis and Design

The outputs from the review of existing literature, tools and datasets were anal-
ysed as part of the design process. This process established the necessary re-
quirements, features and organisation of the schema, framework and prototype.
The outputs of the review were also used to identify the research questions for
investigation. The design process also included the comparison and selection of
tools and programming languages, such as Semantic Web library, traffic simula-
tors, and software project management tools, that would be utilised during the

prototype implementation.

Iterative Development

The implementation of the prototype was undertaken following an iterative ap-
proach. The discrete modules were developed in a series of phases to develop and

refine functionality. The design and limitations of these modules were reviewed
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and developed during each iteration.

The prototype was implemented using the Java programming language, which
was selected due to its maturity and performance, as a Gradle multi-part project.
The selection of Gradle allowed the development of each module as a discrete soft-
ware artefact and a build management environment to manage software library
dependencies. These libraries were selected to assist the pace and robustness of
development and included the Semantic Web library Apache Jena, which was se-
lected due to its standards compliance and wide usage in Semantic Web research
and applications, along with the SUMO and MATSim traffic simulators which
feature prominently in Traffic and Transport research.

A test-driven development approach was applied through unit testing to de-
velop the functionality of the modules and mitigate against error and regression
during development. This was supported by version control software to manage
the evolving source code and documentation. These software project manage-
ment processes were applied to raise the quality of the development and assist in
the later publication of source code and re-use. Developments from this phase
also lead to contributions and feedback to open source projects and standards

(see Appendix A).

Evaluation

The evaluation of the prototype was performed in two phases. The first phase
considers the application of a knowledge-modelling and modular approach by
considering the travel demand and traffic simulation output from a constructed
scenario. The second phase considers the performance of the framework in ful-
filling travel demand generation in alternative configurations. Consideration was
also given to the significant challenges and issues encountered during the devel-
opment process. Testing and evaluation of discrete pieces of functionality were

applied during the iterative development through unit testing.

1.9 Thesis Structure

The remaining chapters of this thesis are organised as follows:
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Chapter [2 discusses the identified related work in the context of travel

demand modelling, traffic simulation and Semantic Web.

Chapter |3| describes the proposed framework and how a Semantic Web
knowledge-base can be applied to travel demand modelling and traffic sim-

ulation.

Chapter [4] presents the developed common schema of data concepts, the

basis of its development and organisation into relevant domains.

Chapter 5| provides the design of the orchestrating framework, necessary

processes and discusses the alternative configurations it supports.

Chapter [0] describes the implemented prototype for travel demand genera-

tion using a Semantic Web framework.

Chapter [7] evaluates the implemented prototype for the generation of travel
demand with two third-party traffic simulators and compares the perfor-

mance of the prototype in alternative configurations.

Chapter |8 concludes the research, summarises the main outcomes and out-

lines suggestions for further work.
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Chapter 2

Related Works

2.1 Introduction

This chapter discusses the identified related work by examining the overall con-
text of travel demand modelling. There is consideration of the development of
these models, integration with traffic simulators and identification of future re-
quirements. Examination is also undertaken of existing applications of Semantic
Web technologies to transport domain. This is then followed by discussion of the

challenges presented by existing travel demand models.

2.2 Context of Travel Demand Modelling

The impact of transport upon the human population is wide ranging and influ-
ential with a daily impact on the lives of most members of society. This can be
experienced directly through traffic congestion and infrastructure investment but
also indirectly through travel safety and pollution [1]. Traveller behaviour both
influences and is influenced by the economic development and land-use of their
environment. The development of transport policy is supported by travel demand
modelling and traffic simulation to manage and develop transport infrastructure
and adapt to emerging technologies [3].

This requires the construction of complex systems that combine multiple con-

cepts, datasets and techniques resulting in the reconciliation of data from multiple
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sources and tools to enable their integration. However, the fundamental concepts
and environment being modelled are consistent suggesting a common data model
is achievable. The generation of travel demand is one stage in the process of
constructing traffic simulations to investigate transport planning problems by
modelling the movement of residents, non-residents and freight [11]. The process
of model assembly for an integrated activity-based micro-simulation encompasses
several stages: population synthesis, activity-based demand model and traffic
simulation [9].

The process of population synthesis is the generation of individuals, and their
relevant characteristics, to reside in the geography of the examined scenario. The
purpose of the demand model is to produce planned journeys undertaken by
these individuals through the geography. These journeys utilise different modes
of transport at different times of the day or as part of the movement of goods
between locations [7]. Traffic simulation explores the capability of the road and
transport infrastructure to supply capacity to meet the demand for travel and
transport. For each of these factors the focus, scope and complexity of models
and tools can vary considerable.

The representation of traffic demand has moved from a trip based approach,
which emphasises transport utilisation, to an activity based approach, which fo-
cuses upon the individual. This has seen a transition in transport research from
the 4-step model (trip generation, trip distribution, mode choice and route as-
signment) of the 1970s, with a focus upon trips and journeys, to modern activity-
based approaches [7], with consideration of human activities and travel. This
transition is a recognition that the demand for travel originates from the need to
move people and goods between daily activities rather than being inherent within
the transport network [11].

These more recent activity-based approaches more closely capture human be-
haviour, decision making and planning. However, the resulting increase in data
requirements and computational complexity has limited their significant progress
until the last two decades [44]. The increase in computing power over recent
decades has enabled this transition from macro-level simulation, based on math-
ematical equations applied to aggregate distributions, to micro-level simulation,

focused upon individual entities. The micro-level simulation provides closer mod-
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elling of the physical environment and incorporation of supplementary data into
the models and simulators but with a corresponding increase in data complexity
[45].

There have been a limited number of practical examples of activity-based
models outside of key large North American cities, which use proprietary or in-
house implementations 9, |21]. This lack of adoption of activity-based models has
partly been attributed to perceptions of additional data requirements and imple-
mentation burden, despite identified alignments with traditional models [9], and
the computational complexity of activity-based models [44]. These models and
tools have been developed as proprietary closed source developments, which lim-
its their accessibility and cannot be easily extended, or represent fresh academic
efforts with a specific research focus that have not been concerned, or designed,
for sharing or re-use [4].

There has also been limited general availability of traffic demand data sources
for research with a reliance upon unpublished local datasets or stochastic gen-
eration [46, 47]. This has in part been attributed to the conflicting priorities
of maintaining individuals’ data-privacy and the need for spatial granularity in
activity-based micro-simulation.

The development of travel demand models involves tuning parameters for their
specific geographic scenario. This has led to research into their transferability to
another geographic context |21} 47-49], but not necessarily producing a generic
or readily transferable environment for wider research to take place. Investiga-
tions have found some components to be transferable while other components
may require parameter re-calibration [21]. However, in some cases specific ge-
ographic related design assumptions have been incorporated which limit their
transferability [47].

There have also been investigations into direct integrations between more
general travel demand models and traffic simulators [50-52]. These demonstrated
that integration is achievable, but highlighted that developing interfaces between
modules was the most time consuming task and identified designing interfaces for
modules in different programming languages and platforms as an area of future
work. Ideally a model should be readily accessible for re-use in a number of

different scenarios, such as geographical locations, with only adjustment to the
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input data.

The accessibility and transferability of travel demand models and traffic sim-
ulators is of importance during investigations. Simulation software should be
readily able to be verified and validated [53] against alternative implementations
of the same or different models so that their relative merits can be explored.
This includes the need to check different implementations have replicated the
same model through reproduction of results or the alignment of alternative mod-
els exploring the same target phenomenon. Given that all models and simulations
are incomplete representations of the physical world, it is good practice for com-
parison of results to be applied across different implementations.

This is particularly the case in activity-based models that are often reliant
upon population sampling to reduce data gathering and computational complex-
ity but at the risk of introducing greater uncertainty [8]. A range of model
designs are also employed for determining variables such as mode, destination
and scheduling time period [9]. Therefore, users should expect to be able to re-
peatedly perform their investigations across multiple frameworks with minimum
investment of time and resources.

Setting up multiple travel demand and traffic simulators can require repeated
data conversion that consumes user time and also a thorough understanding of
each implementation. Adaptation may be required to each stage’s schema and file
format. The analysis of framework output also requires conversion of the results
multiple times to the desired analytical format. The time and resources required
to prepare and deploy such complex systems, whether 4-step or activity-based,
limits validation and verification between alternative models.

These factors have meant that the utilisation of a traffic model and simulator
is a significant commitment requiring long term investment in time and resources
to deploy and then acquire, clean and appropriately format the input datasets for
its specific requirements. Undertaking this for a single simulator can be difficult
to achieve and maintain with meaningful verification, multiple test scenarios and
constantly evolving data. Therefore, multiple models and simulators are often
not readily available to provide direct comparable results during research.

The development away from the macro-simulation 4-step models to micro-

simulation activity-based models has placed greater attention upon human be-
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haviour in travel. The primary focus of transport modelling and taffic simulation
has been upon car and freight transportation to evaluate traffic flow and the im-
pact of traffic control measures [11]. This focus on car transportation is viewed as
untenable due to its environmental, economic and health impacts with alternative
healthier and safer modes needing to be modelled and investigated [1].

The emphasis on vehicles and traffic control has meant that the modelling
of human behaviour is lacking in most transport simulators [4]. The continued
human involvement in transport and traffic decisions will necessitate micro-level
simulation yet the verification of human behaviour at micro-level is considered
difficult on a purely empirical basis [54].

There are also further limitations in the scope of activities and travel patterns
modelled compared to those which travel research has shown are exhibited by
individuals. There has been a primary focus upon commuter and freight trans-
portation simulation, as previously mentioned, which along with school journeys
places an emphasis on weekday morning and afternoon peak activities and travel
(11, [12].

This is despite research into sources of travel demand showing a broader range
of activities and time periods being undertaken by individuals [14] and increasing
complexity in activity patterns |[44]. Therefore, transport models must develop to
encompass a greater variety and volume of data in order to capture and express
the increased breadth of activities and time periods.

The time-frame of scheduling and planning has generally focused on the short
term, i.e. days, weeks or months, of traffic simulation and its use for exploring
traffic congestion and travel patterns. The long term view would incorporate
changes to land use, e.g. new roads and facilities, resources, e.g. car purchases,
and demographics, e.g. births, marriages, ageing, and deaths, and their impact
on travel demand [9]. This has led to the proposal of more complex modelling and
simulations where social and economic decisions are closely modelled to produce
a simulated artifical society [55].

The activity choices and time periods form part of the human behavioural
responses, which have been noted as lacking in traffic demand and simulation [4].
These behavioural responses include route choice which has been modelled from

the perspective of rational self-optimisation [8]. Inconsistencies between modelled

31



and human behaviour have been attributed to varying perception of an optimal
route, reduced information and the penalising effects of congestion [7].

Yet research has shown that humans are imperfect decision makers [56] and
apply procedure rather than substantive rationality [6]. This has led to wide range
of modelling approaches which can incorporate multiple paradigms for human
behaviour [8]. Alternative approaches have sought to use rules-based responses
to the input stimulus [20] or to incorporate agent-based systems which display
autonomy, pro-activity and communication to meet their goals [19]. Therefore,
there is a breadth of modelling approaches to capturing the complexity of human
behaviour and decision making.

Conversely, there are a variety of implementation and design choices within
each class of modelling approach. Further, the feedback loop of data for travel
experience, as opposed to travel planning, from traffic simulation to activity based
models is often absent [9]. This additional data would enable and sustain human
based behaviour, e.g. habits and learning, and enable new observations to emerge
over repeated cycles.

The need for wider consideration in modes of transport is also reflected in
new technological developments that will influence human travel and policy mak-
ing. These technological developments, e.g. automated driving; vehicle to vehicle
communication; and vehicle to infrastructure communication, present new oppor-
tunities for co-ordination between participants in the transport environment, but
also introduce challenges in their deployment that traffic and travel modelling
and simulation can assist in addressing [4, [12].

Developments in web-based social networking applications and platforms also
offer new and wider access to transport methods, such as car-pooling and car/lift-
sharing services, that could help alleviate road congestion but require more diverse
modelling [57]. Therefore, the data and modelling requirements being sought by
users will further increase complexity.

These technologies also provide new sources of data that can complement
travel demand models, e.g. GPS traces [58]. These can provide greater coverage of
traffic flow data than provided by traditional static traffic sensors, e.g. induction
loops and cameras, or surveys by not being fixed to specific points in the road

network. However, data privacy concerns can limit scope and publication of
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datasets |59, [60].

The data produced by these types of sensors concerns traffic volume, but not
the travel purpose, i.e. origin and destination activities. This reduces the appli-
cability and sensitivity for modelling policy, infrastructure and land-use changes
[9]. Therefore, they do not represent a complete replacement of activity-demand
modelling, but can provide complimentary data.

This wide variety of techniques and data requirements illustrates the need for a
knowledge model of the domain. The development of a knowledge model for travel
demand requires the identification of the problem domain’s common concepts and
their relationships. Research has been undertaken to develop standardised and
consistent definitions for transport modelling of movement and activity |[10]. This
is further supported by the publication of transportation and land use related
ontologies [39, 61}, 62].

The EC INSPIRE project [63] seeks to provide a standardised spatial infras-
tructure data format across the EU, including transport networks, with work in
progress to develop RDF vocabularies [41]. Other research efforts investigated the
additional data requirements to incorporate transport models into the CityGML
format [17], the alignment of CityGML with ontology based approaches [42] and
the conversion of the GML format to RDF [64]. To the best of our knowledge,
there are no published works focusing on traffic demand modelling.

The Semantic Web has been developed to transition the World Wide Web
(WWW) from a distributed network of web-pages and documents focused around
presentation of information to openly accessible data repositories focused upon
structured information [36]. This will enable the development of more sophis-
ticated computer to computer interactions and computer support for decision-
making [34} 35].

The development of the Semantic Web is based on a hierarchical collection of
formal standards and tools that support and extend the functionality offered to
achieve the proposed vision. The components of the Semantic Web are platform
and programming language independent for transferability between implementing
tool-sets with new and revised standards being developed as the need is identified.

These interoperable tool-sets remove the need for systems to develop their

own interfaces between technological components. Therefore, alternative imple-
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mentations can be utilised consistently across operating system and programming
language platforms. The Resource Description Format (RDF) provides a common
data format for the representation of data and schema concepts using a graph
structure. This RDF data can be serialised in file formats or persistently stored
in graphstores that can be extended in schema without modifying the database
structure, unlike in traditional relational databases. The SPARQL query lan-
guage allows graph structured data to be queried and retrieved in closed offline
and open online contexts, unlike Structured Query Language (SQL) used with
relational databases which was developed for offline usage.

The design of the Semantic Web is based on structured data, machine to
machine processing and open data exchange between applications [65] so that
data can be reused and flexibly adapted. Technologies have also been developed
to facilitate the processing of existing data sources in flat files [66], structured
files [67] and relational databases [68] into Semantic Web formats. Semantic Web
standards support the retrieval of data from local and remote online sources [43].

The use of a Semantic Web approach also enables the incorporation and link-
ing with facts from other data sources as part of the data model. It is further en-
visaged that autonomous agents will be able to interpret ontologically structured
data and make reasoned decisions [65], which is in keeping with micro-simulation
and activity-based modelling’s focus upon individuals.

This is achieved through ontologies expressing a vocabulary enabling commu-
nication between agents, even if they do not share a global theory, as a com-
mitment to the vocabulary means it will be used coherently and consistently
[69]. This use of ontologies has been applied to develop web service descriptions
of Semantic Web Services by describing the semantics of data and behaviour of
services so assisting interoperability and ultimately leading to their automated
discovery, negotiation, composition and invocation [70].

There has been development of frameworks to support these web services
for biomedical datasets. These have been based on retrieval of single triples
[71] thereby lacking the flexibility to retrieve additional data or the execution
of SPARQL queries. Other efforts have extended this approach to provide a
SPARQL query mechanism to retrieve grounded facts, but with the user being

unaware and unable to control the origin and provenance of the data and ser-
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vices [72]. In the travel demand generation process a user would be specifically
targeting datasets and techniques relevant to their investigative interest. The
approach also does not use the standardised SPARQL mechanisms for retrieving
remote data and instead reformulates queries into requests for individual triples,
incurring additional network overhead and limiting query expressivity.

Research has been taking place into transferring existing data sources and
datasets to the Semantic Web. This includes publishing demographic census and
similar data that form inputs to traffic demand modelling |73, [74]. A key aspect
of Semantic Web technologies is an extendible data model and the ability to share
information for reuse in a flexible and convenient manner [75].

The application of the Semantic Web in the transport domain has seen the
development of several traffic prediction and routing systems [76-80]. These were
able to utilise diverse information sources to improve prediction accuracy by ex-
ploiting the underlying semantics of the data. A number of issues were highlighted
including data quality, data assimilation, scalability and time reasoning within
macroscopic simulations and the need for developing generalised approaches and
tools.

Initiatives such as the UK’s data.gov.uk [81] are making a broader range of
data sources easily accessible but the incorporation into traffic models continues
to be an ad hoc process. The recent trends of Big Data, Open Linked Data [82]
and volunteer initiatives, such as Open Street Map [83], has seen the increased
gathering, processing and availability of large detailed datasets. This presents an
opportunity for traffic demand models to incorporate a greater range of informa-
tion and modelling processes. Travel demand models have also been identified as
having contributions to domains outside of transportation, e.g. environment and
health [§]. This leads to greater associated complexity in the breadth and depth
of data.

2.3 Challenges of Travel Demand Modelling

Several challenges are presented to users when selecting and utilising travel de-
mand model and traffic simulator frameworks. These frameworks are generally

developed as collections of tools and models that fulfil the distinct functions of
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the modelling process [8]. Due to development focus, one tool in the collection
may provide advanced features or design while another is more limited, e.g. sup-
ported transport modes, activity model, routing algorithms or human behaviour
model. Therefore, a user must evaluate between frameworks and compromise on
certain features to utilise others.

An alternative approach is for frameworks to be designed as modular software
applications [4, 32]. These define interfaces and objects that are extended by new
modules as part of the application. This requires a high quality approach to the
development of the software archiecture and interfaces to ensure that variations in
modelling paradigm and scale are accomodated [4]. Later developments of modu-
lar interfaces can require modules to be redeveloped to enable compatibility with
newer features and functionality. This places an ongoing maintenance respon-
sibility upon the developers and can prevent users from utilising unmaintained
modules, or require multiple versions of the core software.

The file formats supported by a framework may also force its selection. Geospa-
tial and road network data are provided in a wide range of standard file formats
with each framework supporting a subset and potentially its own bespoke format.
A user may not have the technical skills or resources to convert their own data
file format into one of the supported formats. Other input data will rely on the
framework’s generation tools or need conversion to each framework’s schema as
no common standard exists.

Given that all models and simulations are incomplete representations of the
physical world, it is good practice for comparison of results to be applied across
different implementations [53]. This is particularly the case in activity-based
models that are often reliant upon population sampling to reduce data gathering
and computational complexity but introduces greater uncertainty [8].

A range of model designs are also employed for determining variables such
as mode, destination and scheduling time period [9]. Therefore, users should ex-
pect to be able to perform their investigations multiple times and across multiple
frameworks with minimum investment of time and resources. Setting up multi-
ple configurations can require repeated data conversion that consumes user time
and a thorough understanding of each implementation. The analysis of frame-

work output also requires conversion of the results multiple times to the desired
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analytical format.

There is potential to convert the output of one framework’s tool for reuse in
another framework as a one-to-one integration [47, 51, |52], although that may not
be their intended design. However, the user would again need to have a thorough
understanding of both tools’ configurations to avoid error and reconcile design or
data differences.

Frameworks are also developed in a variety of programming languages and
platforms. The transference of data between tools or utilising domain libraries
may require the user performing manual processes unsuitable for large numbers
of investigative cases and risking introducing error. In each of these cases there
is a required level of user technical skill and resources that may not be available
and diminishes the investigative portion of a project.

The process of selecting obtaining and preparing input data for these frame-
works also places a burden upon the user. The MatSIM traffic simulator [32] does
not provide tools for the generation of activity-based travel demand, while the
SUMO traffic simulator [46] provides a limited tool based upon even distribution
of aggregate population statistics, a subset of activities and single mode journeys.
Geographic, road network and population data are external to the framework and
their tools. Each required dataset is typically published by a different agency or
organisation.

A user will need to identify the required data for their target area, source
from the multiple providers, clean, combine and reformulate to then use in their
model and selected framework. The data requirements between users are likely to
be very similar with only relatively specific enhancements for their interest area.
Yet no unified datasets or combining mechanisms have been identified.

Each of these identified challenges requires investing additional resources and
potentially developing ad hoc solutions which could compromise the investigation
by not accurately deploying the appropriate travel demand models and traffic
simulators. Users also face the barrier that completing these activities for a single
framework does not automatically allow many frameworks to be utilised in an
investigation. Traffic demand modelling has also relied on close relationships with
transport authorities to produce specific local demand models or generate random

traffic flows from the limited public data [46], which limits the reproduction of
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previous research and the progress or quality of new research.

The development of travel demand models also requires several further fea-
tures. There has been a primary focus upon week day commuter car and freight
transportation to evaluate the impact of traffic control [11] yet changing working
patterns and business hours are emerging [12] with commuting only representing
15% of trips and 20% of distance travelled [14]. Technological developments are
also presenting alternatives for coordination and planning [4, 57|, such as car-
pooling, car-sharing, automated vehicles and vehicle communication, which need
to be modelled.

There is an identified need for models to be further developed to cover mul-
tiple days, improve cooperation between household members, incorporate social
network relationships and develop non-utilitarian human behaviour and decision
making [8]. Human behaviour modelling has tended to apply a single or a few
approaches to all individuals and not consider all the contextual information that
could be utilised [9]. Further, human behaviour itself can exhibit irrational and
subjective choices that vary in context and experience [6, [56]. These present
problems in the prediction and validation of transport systems [19]. These design
goals further increase the breadth and depth of data requiring management and

increase computational complexity resulting in longer model run times [19].

2.4 Conclusion

The previous discussion has highlighted that the development of travel demand
models and traffic simulations are expected to lead to increased complexity and
corresponding increases in data requirements. This is driven by the need for
greater modelling of human behaviour and providing more diverse behavioural
responses for the different transport participants. This in turn will assist in sup-
porting the need to explore wider policy making to support alternative modes of
transport from the traditional car and freight; the impact of emerging technolo-
gies; and the increased complexity of human activity patterns. Therefore, there is
a need for modelling technologies and solutions that can support the organisation
of this diverse data and the access to emerging solutions.

It has also been identified that the complexity and approaches of the transport
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domain and modelling human behaviour are best explored when comparison is
made across multiple models and implementations. This enables the identification
of relative modelling strengths and weaknesses to support robust conclusions.
However, the current burden of data preparation and integration between stages
inhibits investigations. This is despite models and simulators being successfully
integrated on typically one-to-one basis.

The Semantic Web technology has been identified as a solution for supporting
the resolution of such issues. The technology provides a knowledge modelling
approach to assist in the description and sharing of data. This enables common
concepts to be re-used between modelling components and simulators, while also
allowing variations and extension to these concepts. There have already been
successful efforts to apply Semantic Web technologies in other transport related
solutions. Vocabularies and datasets for the transport domain have also been
published online and these provide the potential for quicker access to data and
the aligning of concepts, so that interoperation of models and simulators becomes
more widespread.

The service orientated architecture provides for accessing this data and also
the basis for separating the modelling components into discrete services, so that
data and processing can be distributed and redirected. This provides the poten-
tial for decomposing the numerous modelling choices and alternatives of travel
demand modelling into discrete services. This will mean that users can select
and assemble the models for their investigations rather than being reliant upon
the traditional single monolithic implementation. Therefore, Semantic Web tech-
nologies can provide a basis for achieving the proposed knowledge-based approach

and is the technology of choice for further investigation in this thesis.
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Chapter 3

Architecture of the Proposed
Semantic-based Travel Demand

Generation Framework

3.1 Introduction

This chapter seeks to establish the overall design of the framework to address the
challenge of applying a loosely coupled modular Semantic Web knowledge-base
to demand modelling and traffic simulation as stated in research question RQI]
It provides an overview of both Semantic Web technologies and travel demand
modelling and then considers the implications for the framework. Current travel
demand models cover a broad range of design decisions and concepts that it is im-
practical to exhaustively explore and discuss. Therefore, general components are
identified with specific reference to aspects of activity-based models, but potential
exists to apply the framework more generally. Future developments to transport
models will likely increase data complexity that an extendible knowledge-base
can assist in managing.

The many tools and implementations currently provided by travel demand
models and traffic simulator would each conceptually form modules of the frame-
work. These modules would then interact through a core extendible schema to

facilitate interoperability and minimise user intervention (Chapter . The pur-
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pose of the framework is to enable users to retrieve, transform and re-use their
data across multiple travel demand, traffic simulator and supporting modules
for their investigations (Chapter [5)), while also incorporating their own data and
techniques.

The following sections of this chapter provide a motivating scenario and gen-
eral overview to establish the context of the proposed framework. This is fol-
lowed by examination of the proposed framework by considering in more detail
the stages of the travel demand generation process; potential modules for travel
demand generation; and the alternative configurations to which the framework
can be applied. It is intended that this will highlight the breadth and scope of

the proposed framework and how it will address the problem.

3.2 Design of Framework for Travel Demand

Generation

The core stages of an integrated travel demand model are the sequence of popu-
lation synthesis, travel demand generation and traffic simulation [9] as previously
illustrated in Figure [I.5] Data from each discrete stage is passed to the next
stage with iterative feedback sometimes occurring from traffic simulation back
into travel demand model. Each stage is also reliant upon a variety of input
datasets, such as demographics, network supply, travel diaries and land use. The
proposed framework introduces a semantic modelling layer between the stages as
shown in Figure |3.1}

The introduction of this framework layer would enable conversion of the input
and output of each stage into the common RDF format and the formation of
an underpinning knowledge-base. The common format and knowledge-base will
enable different implementations of the stages to be interchanged more easily as
shown in Figure [3.2l The user is able to select different modules of functionality
from a menu of modules for each stage. This will allow a broader range of
techniques to be evaluated and analysed during an investigation on the same
knowledge-base, rather than utilising a single set of integrated components or

multiple discrete instances.
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Framework
Layers

Traffic Simulation

Figure 3.1: Diagram of Travel Demand model sequence showing Framework lay-
ers.

The developers of modules are no longer required to select a modelling frame-
work and adhere to its platform, interface and design decisions. Instead they
can design their module based on the RDF data inputs and outputs from the
knowledge-base. A module implemented in one programming language can in-
teract, or be replaced, by another in a different programming language. Existing
implementations can potentially be incorporated by wrapping with an RDF in-
terface to convert between the knowledge-base and the module. These interfaces
provide an Extract Transform Load (ETL) process that can utilise existing tools
to convert to RDF through Data Materialisation or provide virtual triples of a
dataset stored in a relational database through On-Demand Mapping [6§]. A
single set of interfaces to the platform-agnostic knowledge-base would need to be
maintained.

The use of a common knowledge-base also provides for the primary stages to
be decomposed further into sub-modules. The main stages in Figure [3.2) represent
complex processes which draw upon ancillary data of the knowledge-base. This
presents opportunity for different combinations of sub-techniques to be evaluated
during an investigation, e.g. replacing a search strategy or choice model. Investi-

gation and implementation of new ideas could also focus upon specific elements
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of the larger set of components.

These sub-modules would interact with existing implementations through the
knowledge-base data model rather than reimplementing entire stages of the pro-
cess or extending an existing implementation. This should facilitate exploring new
techniques and identifying best practice. The storage of data in the knowledge-
base also allows the sharing of both scenario and results data for sharing, re-use

and comparison.
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Figure 3.2: Diagram of selecting alternative implementations during the stages
of the modelling process.

The main components and flow of the travel demand modelling framework
are shown in Figure |[3.3, The framework incorporates the construction of the
knowledge-base from input datasets and techniques, e.g. population synthesis
and activity pattern generation. The constructed knowledge-base is then used to
inform the travel demand model to generate trips and journeys for the scenario.

These journeys are simulated for their physical interactions with each other and
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the road transport environment by a traffic simulator.

The control and manipulation of the knowledge-base and the module stages
is facilitated through SPARQL queries to retrieve and transform the required
data. As illustrated in Figure [3.2] the modules could represent one or more
implementations, e.g. network routing could have different implementations for
different modes to provide diversity within a scenario or two implementations

which cover multiple modes that are compared during an investigation.

e . Travel Demand Model

Travel Diaries _________
------------------------------------------------------------- = v v I
. i K Activity Pattern | | Scheduling, Trip Planning Feedback &
: Demographics : Pnpu'“'“" Synthesu | Generation & Network Routing Leamning
L R : Y Y
_——— _———— -
Knowledge Base | Traffic
i : Construction | Simulator
: : —————[————‘ Interface
—_— _______________!E___IL__!F__
~
[ Knowledge-Base |
D

Figure 3.3: Diagram of main stages for Travel Demand modelling framework.

An immediate benefit of this approach is providing the storage of the diverse
data required to satisfy the different stages in the extensible graph structure of a
graph database. The combination of this data with an engineered schema forms
the knowledge-base. This knowledge-base provides the structure for interactions
between different modules and data concepts, e.g. the Trip Planning module
requesting an estimated travel time from the Network Routing module.

The input and output data from each stage, scenario or execution can be par-
titioned into different named graphs within the graph database of the knowledge-
base for reuse or extraction through SPARQL queries. This can assist with man-
aging data disposal and alternative datasets, such as repeated scenarios, alter-
native time periods, different geographic areas, design implementations and user
requests. A single knowledge-base containing multiple graphs can be constructed
rather than multiple sets of input files or databases.

Users can convert existing datasets or the output from external tools into RDF
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and import into the graph database. The extendible nature also allows additional
data for topics of specific research interest, e.g. vehicle characteristics or social
network relationships, to be linked and stored in the same graph database without
interference to the execution of the travel demand modules.

This means that implementations can extend the core knowledge-base but still
operate on the same graph database. Therefore, modules with alternative design
principles or providing new functionality, e.g. environmental or communication
models for vehicles, can be applied to the same set of underlying data. The
structure of input data can be transformed using SPARQL queries or linked to
existing concepts by extending the core schema.

Execution of modules is achieved in SPARQL queries using property functions
for each module. Therefore, the SPARQL query can control the data selected and
its processing. This allows the user to change between modules by simply modi-
fying the query. Modules can also be selected according to the characteristics of
the data through class membership, data properties or inter-relationships (Sec-
tion . This can address the identified limitation of travel demand models
applying a single behavioural approach to all participants (Section .

An example of this is shown in Listing|3.1| where the modules are implemented
as property functions and can be identified by the mod namespace prefix. In the
example, two sets of persons are selected from the population, one based on
their membership of an income quartile class and the other based upon being an
employee with an income greater than the stated threshold. Each set of persons
has a different routing approach selected to generate travel demand based on
their contextual data, which has been a criticism of many travel demand models.
Therefore, different behaviours can be described for subsets within a population
but as part of the same query. Modules can interact based on the data provided
rather than how that data is sourced.

Another advantage of SPARQL is that it supports federated queries that
can retrieve data in both local and remote online graph databases. External
knowledge-bases set up as SPARQL endpoints, e.g. LinkedGeoData for land use
and network infrastructure data [61], can be queried to retrieve relevant RDF

triples and accelerate knowledge-base construction.
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PREFIX mod: <http://example.org/module#>
PREFIX ex: <http://example.org/local#>

SELECT 7person 7route
WHERE{
{
?person a ex:Quartile4Income .
?route mod:routingMethodA (7person ?start 7end).
JUNION{
?person a ex:Employee .
?person ex:income 7income .
FILTER(?income > 50000)

?route mod:routingMethodB (7person ?start 7end).

+

Listing 3.1: Example SPARQL query for selecting alternative routing modules

based on characteristics.

A step further is remote services providing property functions that perform
the functional stages of travel demand modelling based on input parameters.
Therefore, a user focused upon only the simulation stage output could write
a query to target remote services of data and modules providing configuration
parameters then only store the configuration and results locally.

The execution of queries can be separated into multiple stages to allow re-
trieval and manipulation of partial data in the knowledge-base or to use alterna-
tive sub-modules. Partial data can be supplied as URI references accompanied by
the URL reference of the remote service. Modules can query against the service
URL to retrieve the data associated with the parameter URI and then perform
their task.

The overall approach of using remote services would require data retention
policies as generated data could be stored by the remote service. Potentially only

a small proportion of URI references for the generated data would be transferred
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between services. A user wishing to retain a complete record in perpetuity may
need to request the relevant data from the services, which would be simplified by
storing each user request in its own named graph.

The alignment of these remote services would require an understanding of their
data requirements and behaviour. Service and data descriptions form part of the
SPARQL standard as part of the Semantic Web’s open network design. Remote
services could also provide RDF responses to document their functionality and
design assumptions to assist users. The description of data semantics and service
behaviour through ontologies and annotations has been developed in standards,
such as SAWSDL, to enable the machine interpretation and ultimately lead to
automated discovery, negotiation, composition and invocation of these services
[70]. Therefore, mechanisms exist and are being developed that could support
this approach.

National, or international, knowledge-bases would allow re-use of quality and
consistent datasets while remote modules can provide best-practice implemen-
tations. Currently users construct a local dataset and model for their specific
problem or geographic area by establishing their own infrastructure and sourc-
ing, processing and transforming data files for the selected tools. The proposed
approach would reduce these requirements as the data and interfaces are already
designed around the same data paradigm of RDF'. Users would be able to select
a local, remote or hybrid execution of the travel demand generation based upon
their need and focus.

To conclude, the knowledge-based approach to integrating the population syn-
thesis, travel demand and traffic simulation processes results in a novel framework
that improves the integration between independently developed implementations;
assists users to manage and structure local data; allows users flexibility to com-
pare alternative implementations; and provide the basis for accessing standardised

datasets, scenarios and tools as on-line internet services.
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3.3 Application of Framework for Generation of
Travel Demand

This section provides more detail on the general components identified in Figure
3.3l These components are further decomposed into key stages as shown in Fig-
ure to provide more detail on the processes taking place. These component

modules could incorporate multiple sub-stages in their implementation.

Travel Demand Model
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Travel Diaries - Activity Pattern
B Leamning
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Knowledge Base Construction

: Land Use —
: : Spatial Allocation
Traffic Simulator
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o| Individual Classification & |
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Network Su
PRy Land Use Relations
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( Knowledge-Base ]

Figure 3.4: Diagram of modular stages for Travel Demand modelling framework.

3.3.1 Population Synthesis

This stage provides the conversion of aggregate demographic data into a dis-
aggregated set of persons grouped into households. Each person and household
are described by a set of characteristic variables. The synthesised population and
additional data sources may require further reorganisation and cross-reference
prior to use by the travel demand model (Section . In some existing travel
demand models, an integrated synthesiser is available, but the user is then limited
to the chosen algorithm and implementation choices in this active field of research.

In the proposed approach, any population synthesiser can be utilised once

its output is serialised into RDF and published locally into the knowledge-base
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or retrieved from a remote SPARQL endpoint. The population’s characteristic
variables can be reformulated to a user’s chosen schema as part of constructing

the knowledge-base.

3.3.2 Knowledge-Base Construction

The purpose of this stage is to bring together the synthetic population, activity
patterns, land use, network infrastructure and local modelling of the problem
domain. The user can develop a formal schema that extends the core schema
(Chapter 4} using inference languages and apply a reasoner to the data to per-
form inferencing. The use of the inference languages has successfully resolved
reconciliation between heterogeneous information sources, allowed sourcing of
structured data from public datasets, e.g. Linked Open Data, and produce new
and interesting facts as inferences |76, |77]. These inferences can be asserted into
the knowledge-base to persist or form virtual triples, i.e. triples that are removed
when the reasoner is removed.

The inferencing process can automatically allocate instances to classes, cre-
ate data properties, infer relationships and identify contradictory data in the
knowledge-base, e.g. a child who possesses a driving licence. Class membership
can be assigned based upon relationships and data e.g. vehicle ownership, age or
income. Alternatively, SPARQL queries, or a rules language engine, can perform
these tasks with varying flexibility and restrictions. SPARQL queries can also
permanently transform, remove or add data to the knowledge-base.

SPARQL queries can be stored as text files and can be applied manually to the
knowledge-base or applied programmatically. Therefore, the queries can be easily
distributed to share best practice and users can implement local modifications
before applying to the knowledge-base.

Traffic and transport, particularly in micro-simulation, heavily utilise spa-
tial relationships between objects. Graph databases can be extended to natively
support these spatial relationships, as in some relational databases. These ex-
tensions, such as those complying with the GeoSPARQL standard [37], allow
the knowledge-base to be searched for data based on the spatial relationships

using SPARQL queries without the need for external spatial processing (Section
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4.4.1). Three general stages of knowledge-base construction have been identified

as shown in Figure |3.4]

3.3.2.1 Spatial Allocation

The synthesised population must be aligned with the land use data for the zones
and regions of interest. The generated households are produced for an entire
zone but must be allocated to the individual physical locations of homes within
the zone. The allocation process between households and homes can be achieved
through user defined SPARQL queries, a library of best practice approaches or
implemented modules for more sophisticated techniques. This step is described
in literature as one of the final steps in population synthesis but there is limited
reporting of techniques and theoretical results [84].

The decoupling of the Spatial Allocation task from the Population Synthesis
process allows the user to adapt the allocation process to their chosen schema,
available data and selected approach, rather than that implemented by the se-
lected Population Synthesis tool. For example, an allocation based upon house
prices and number of bedrooms would produce a different knowledge-base in-
stance to another allocation approach that utilises household composition. In
this way numerous alternatives can be explored with consideration of the varying

impact on the traffic simulation results.

3.3.2.2 Individual Classification and Linking

In existing activity-based models, the functionality is typically based upon hard-
coded characteristic values, such as specific household compositions or types of
locations, or a fixed set of configurable parameters, such as school and retirement
age. This functionality includes decision making processes with a criticism that
existing models apply a single or a few approaches to all individuals [9], i.e. all
employees make travels decisions in an identical manner or that the factors in a
commuter’s and tourist’s decision making are identical.

It is proposed that these shortcomings can be overcome through local user
control and generic module design. The user’s control, over the local schema and

in manipulating the knowledge-base data, provides choice in the characteristic
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values and their inter-relationships that are present in the user’s scenarios. For
instance, a core schema would define location and activity, but it is the user’s local
schema that extends these to define the specific types of locations and activities.
Therefore, it is the user that determines the design of the local schema and data
rather than fitting the data to a modules’ design assumptions.

Modules should be designed against generic concepts, rather than specific
instances, so that the user has as much flexibility as possible. For example, a
routing module would not specify the modes of transport supported but instead
the data parameters required to perform routing for any mode and its design
assumptions. The user would then select modules based on available data and
investigation design, e.g. one user may consider it adequate that car and bicycles
use the same routing approach while another would select a dedicated module
for each. Certain cases may require a module to extend the breadth of the core
schema, but should be minimised, e.g. vehicle routing module that considers
road conditions, such as low bridges, requires additional vehicle characteristics
not required by a generic router.

In the Semantic Web, classes are sets of individuals and can be sub-classed to
any hierarchical depth [85]. A person, household or activity are all examples of
individuals in this context. An individual can belong to multiple classes that can
be asserted or inferred using a reasoner, SPARQL query or rules engine. Classifi-
cation can be based on context using the individual’s existing class membership
and the values, cardinality and inter-connecting properties. Illustrative examples

are:

1. A person with access to a car and possessing a driving licence belongs to

the Car Driver class.

2. A person aged between 5 and 11 belongs to the Primary School Student

class.

3. Retail location selling luxury items and open after 6 pm assigned Affluent

Evening Retail activity type.

4. Leisure activities sub-classed into Exercise, Sport or Culture classes but

also Indoor or Outdoor.
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5. People working at the same location are inferred to be colleagues of each

other.

The hierarchy depth of classification and properties becomes a user choice
to an arbitrary level of detail based on data sources, design assumptions and
implementation context. e.g. the core class and property triple ” Person hasAc-
tivityAt Location” is sub-typed as ”Employee hasEmplyomentAt Workplace” and
”Student hasEducationAt School”. The user asserts the data according to the
sub-types, but generic modules can still access the core concepts through inferred
memberships.

Filtering according to temporal, e.g. opening hours, or spatial, e.g. activity
location, or any other characteristic allows different contexts to exist within the
same knowledge-base. Locations modelled with an area of effect, e.g. school
catchment or retail operational area, enable partitioning and selection rather
than assuming a pervasive effect as in many existing models.

The allocation of an individual to a class, or their existing relationships to
other individuals, can be used to apply default values or create new relation-
ships, e.g. a person belonging to a household is inferred to be resident at the
household’s location. The creation of new relationships can also be constrained
by applying filtering. Persons could be associated or limited to activities in a
certain geographic area or specific types.

Different derived schema and data will produce alternative knowledge-bases
that still function with the generic modules. Modules that extend the core schema
would operate on the same knowledge-base without interference to generic mod-

ules.

3.3.2.3 Network Conversion and Land Use Relations

This stage consists of two parts: the conversion and addition of road network,
and other transport infrastructure, data into RDF format and the linking of land
use data to the road network. This process can involve conversion of location ad-
dresses and post-codes to spatial coordinates in the selected coordinate reference
system. Formats for road network information typically follow a node (junction)

and edge (road) graph structure but there is a need for a standardised RDF
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vocabulary for transport networks and supporting infrastructure.

The INSPIRE project [63] includes a transport infrastructure theme. Work
is in progress to develop RDF vocabularies for INSPIRE [41], but no vocabulary
yet encompasses the whole transport domain for simulation purposes. Other
research has investigated additional data requirements of transport models for
CityGML [17] and the conversion of GML to RDF [64]. A standardised schema
and tools would allow routing operations and interpreting of road semantics to be
performed on the knowledge-base without the current dependency on a specific
traffic simulator or GIS system.

Once the network infrastructure has been stored in the knowledge-base then
geospatial relationships are identified between infrastructure and land use loca-
tions. This primarily consists of identifying the proximity of roads, buildings and

public transport access points to each other.

3.3.3 Travel Demand Model

A variety of travel demand models have been developed based upon several dif-
ferent techniques, such as the Four Step Model, Activity Based and Agent Based.
The focus in this work is on constructing activity and travel schedules based on
template activity patterns. The generation of activity pattern templates takes
place prior to the knowledge-base construction as they serve as an input to that
stage. However, since travel demand models exist that do not require activity

patterns it is discussed at this stage.

3.3.3.1 Activity Pattern Generation

The activity pattern is a typical data structure of agent-based models and provide
a template, or skeleton [19, 20|, from which a person’s activity and travel schedule
are assembled according to the context, see Figure 3.5 The generic templates
are populated with contextual instance data to form a schedule. In the example,
assumptions are made that the initial and final activities are extended to fill the
entire scenario time-period, but alternative implementations may make different
assumptions. The locations and travel choices will create varying travel durations

between activities. Waiting times are included in the activity or travel stage [10]
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to remove empty periods, but time gap filling approaches vary, e.g. extend activity

duration; allow travel time contingency or plan extra activities.

Scenario Tuesday Scenario
Start Timeyso,  ggo0 o700  0e00 0200  10:00 1100 1200 1300 1400 1500 1600 1700  18:00 190 End Time
Travel . ~ Travel
From: Home From: Employment
Travel Survey To: Employment ___To:Home _
Stage: Car : Stage: Car

Employee : #Personl Activity - . Activity :
Activity Pattern ‘ Activity : Employment I :

Activity & Travel Activity : Home Travel T Activity : Employment " Travel __ TActivity : Home
Schedule @ #locationA __Car__ Walk| @ #LocationB Walk I _ Car @ HlocationA

LR L .

Figure 3.5: Diagram of time-line representation of a travel survey as the basis for
an Activity Pattern template.

The patterns available may be fixed [§] or derived from travel diaries of a
sample population using classification algorithms |20, 86]. The travel diaries
may be used to derive the activity choices, durations, indicative start and end
times, journey mode and household co-operation. Sets of activity patterns can
be associated with households and individuals in the synthetic population based
upon the corresponding characteristics. Any activity generator could be utilised
once its output is serialised to RDF and then aligned with the knowledge-base

schema.

3.3.3.2 Scheduling

The activity patterns are applied to a context, i.e. population, geography, and sce-
nario, different from that in which they were derived to form a schedule. Adapting
to an alternative context requires consideration of preserving minimum activity
duration; tolerance for timing slippage; and extending or including additional
activities to fill time gaps. The scheduling process typically covers a single day,
but future developments include multi-day scheduling; improved co-operation
between household members; and the incorporation of social network data [§].
Schedulers also need to ensure that consistent travel takes place for tours that
return to same location and journeys that return to an individual’s reference

location [10].
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Activity prioritisation is used in some scheduling approaches to allow co-
operation between household members’ schedules. Mandatory activities, e.g. ed-
ucation and employment, are determined first with invariant start and finish tim-
ings. Maintenance, e.g. food shopping, and discretionary, e.g. leisure, activities
are then assigned with flexible strategies for duration and inclusion [9]. Schedule
coordination, such as adults escorting school children and shared vehicle usage,
is modelled by mandatory activities being scheduled on an individual basis and
then reviewed for cooperative travel across the household before allocating lower

priority activities.

3.3.3.3 Trip Planning

This stage is a key distinction between travel demand models with travel decisions
typically consisting of activity location; trip mode and activity time frame [87].
The scheduling stage determines the short term planning over a day or week,
while this stage considers the near term planning of individual trips within the
day. Design decisions are influenced by choice type and resolution order due to
their interdependence and impact on later decisions [9, 20, [88]. Route choice is
a further development in activity-based models [8, 9], but already a feature in
some agent-based models [19]. These decision-making and trip planning processes

represent a range of design approaches (Section [1.2)).

3.3.3.4 Network Routing

The topology of the transport network has an influence on the travel decisions
taken by persons and the connectivity between locations, infrastructure and ser-
vices. Many transport simulators provide tools to perform routing using a variety
of algorithms, e.g. A-star and Dijkstra. This module interprets the network sup-
ply information in the knowledge-base to inform the travel demand models and
removes dependency on transport simulator tools. The removal of this depen-
dency will enable alternative algorithms to be considered that are developed for
large road network datasets [89,|90] or satellite navigation systems [91] and which
may be the focus or requirement of an investigation.

This module can be executed either prior or dynamically during demand mod-
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elling, with generated routes stored in the knowledge-base for re-use or reference.
However, the prior option requires an exhaustive set of all route combinations
which becomes very large as the number of points of interest increases.

An area for future work is consideration of semantics present in road network
datasets, such as temporal context, trip purpose and physical characteristics.
These features are lacking in the examined routing tools such that routes ignore
private or resident only access, road closures at specific time periods, weather
events, traffic signalling, previous travel experience, and tall vehicles under low
height bridges etc. These are characteristics that affect routing and can be ac-
commodated in the proposed knowledge-base. Alternative services could also be
modelled, such as taxi services, car sharing, lift sharing and autonomous vehicles.
Therefore, this module presents a wide set of complex factors that would benefit
from being developed separately to traffic simulators so that greater comparison
can be made between implementations and better inform the demand modelling

stages.

3.3.3.5 Feedback and Learning

The process of feedback and learning is based upon the relative success of the
proposed travel plan. The outcome of the simulation process is fed back into the
travel demand model to inform the decision-making process. Generally learning
and adjustment to schedule and trips is performed following a batch simulation
of a whole schedule [32]. However, iterative schedule adjustment due to travel
delays during simulation have been developed [8; [19].

The whole knowledge-base can be made available for interface with simulator
APIs [92] or as part of an artificial transport framework [33]. Therefore, the
simulation stage can be performed as an iterative step-wise process with travel
demand being adapted as simulation conditions change. This would facilitate

both the iterative inter-simulation and reactive intra-simulation rescheduling.

3.3.4 Travel Simulator Interface

The outcome of a travel demand model is a person’s activity and travel schedule.

Interfacing directly with traffic simulators, or aggregation of travel demand into
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Origin/Destination matrices, can be achieved through knowledge-base query and
data conversion into the required format. The information required by a specific
traffic simulator may not require the complete schedule with requirements vary-
ing. For example, MATSim [32] as a minimum requires people to be identified
with a plan of activity type, end time, travel mode and location in XML format.
SUMO [46] requires both person schedules and vehicle routing with start and
stop locations and departure times in XML format. TRANSIMS [86] requires
person and vehicle information including the household, person, purpose, mode,
vehicle, start and end locations with departure and arrival times in CSV format.

Network supply information is an additional input that is already required in
the knowledge-base for travel demand generation. Simulators typically support
their own bespoke file format for configuration parameters and network supply,
but some standard network topology formats are supported. Therefore, interfac-
ing to a simulator will require specific interfacing modules, but some topology

serialisations would be re-usable.

3.4 Design of Framework Software Application

and Configuration

The previous sections have discussed the framework by considering the module
components that are required for generation of travel demand. In this section
there will be examination of the organisation and execution of the framework
by considering the design of the framework as a software application and the
potential physical configurations. These alternative configurations offer flexibility
to the user in how data is obtained and modules are utilised to undertake the

travel demand generation process.

3.4.1 Design of Framework Software Application

This section identifies the software components that are required for the frame-
work. These software components are the building blocks of the framework and

the travel demand generation process and therefore it is important to provide
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clarification of their role. The three primary software components are the User

Application, Semantic Web library and the Graphstore as shown in Figure |3.6

User Application

Figure 3.6: Diagram of the software components of a user application.

e User Application: represents the entry point for executing the travel de-
mand generation process. The User Application could provide a Graphical
User Interface (GUI) or Command Line Interface (CLI) but may be pro-
gramming code custom written by the user. The User Application will load
any local knowledge-base with dataset or configuration data required for

execution.

e Semantic Web Library: provides an Application Programming Interface
(API) that complies with the published standards, e.g. RDF and SPARQL.
The User Application utilises this library to access Semantic Web technolo-
gies. The library is dependent upon a specific platform and programming
language. However, the Semantic Web data formats are interoperable so
that the output of one Semantic Web library can be utilised by a different
library.

e Graphstore: the storage provider for one or more RDF graphs. The graph
data may be held in-memory or persistently on disk depending on the de-
sign. Implementations are specific to each Semantic Web library but the
contents can be serialised to an interoperable Semantic Web format. The
knowledge-base, the collection of knowledge and data, is manifested by the

data held in one or more Graphstores.
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The interoperability of the Semantic Web standards decouples applications
located on the same or different physical machines. They can each have differ-
ent standards compliant Semantic Web libraries and Graphstores as illustrated
in Figure 3.7 Each software component can be developed in a discrete manner.
Therefore, developers can make their own contributions without concern for com-
pliance with specific interfaces or using a single platform. Following a common
schema, as discussed in Chapter [4] simplifies the exchange of data between dis-
crete components. However, compliance to the data schema is not mandated as
discussed further in Chapter [f

Component A

Figure 3.7: Diagram of the alternative component configurations using different
Semantic Web libraries.

Applying the discrete component design allows the functionality of the differ-
ent process stages to be separated from the user application, termed in this work
a module. Similarly, the data that forms the knowledge-base in the Graphstore
can be separated from the User Application. The knowledge-base can be further
separated across multiple physical Graphstores. The arrangement of these two
components are shown in Figure |3.8|

The Semantic Web is designed for on-line interoperability using the HTTP
communication protocol. Therefore, Semantic Web libraries provide functionality
for sending and receiving HTTP requests as part of the HTTP servers. The
HTTP server provides a service for accepting SPARQL queries and responding

with the results from those queries. This functionality can be used by both these
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components to make them remotely accessible. Similarly, a User Application, as
shown in Figure 3.6, would have access to using the HT'TP server and constructing

HTTP requests and responses.

Module Knowledge Base
| _SemanticWeblLibrary || || __SemanticWeblibrary |
TP server | | |41 e serer |
__________________ e
i Graphstore ! :
|
.
|

Figure 3.8: Diagram of the software components of a module and knowledge-base.

The three components of User Application, Module and Remote knowledge-
base can therefore be arranged in a variety of configurations. These configurations
influence the physical arrangement of computers that can be used to execute the

framework and will be discussed further in the next section.

3.4.2 Configuration of Framework Components

The previous section identified three software components that are utilised within
the framework: User Application, Module and Remote knowledge-base. This sec-
tions will discuss how these components can be configured to provide alternative
physical arrangements. These arrangements provide choice to the user in where
they obtain the data and functionality to execute the travel demand generation
process. The wider the choice and the less burdensome the access process then
the greater potential for robust investigations. There will be consideration across
four main configuration examples although further variations, e.g. mixes of local

and remote knowledge-base, could be applied.

3.4.2.1 Local Knowledge-Base and Local Modules Configuration

The first configuration to be considered, and most straightforward, is where the

User Application, Modules and knowledge-base are all located on a single physical
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computer. This represents a conventional set-up where an application is supplied
with configuration and data files to be executed in a local environment and is

illustrated in Figure [3.9

[ computera —i
|

| User Application Module I
| |
| Knowledge Base Meodule i
[ o R _

|| pata D Confie | [ yodule |
I_ ___________________ —

Figure 3.9: Diagram of the local configuration using a single computer.

A graphstore is able to store multiple graphs of data. Similarly, multiple
Modules may be present to be executed. Therefore, a configuration needs to be
expressed by the user to select the correct graphs, functionality, and queries to
be used in a specific execution. This configuration is described by a RDF data
structure, termed Framework Configuration, called Config in the diagram. The
further details of the Framework Configuration are discussed in more detail in
Section [5.3] However, in this context it provides a directory to locate data and
queries to be used. The User Application can access all the required data and

modules locally using the provided configuration.

3.4.2.2 Remote Knowledge-Base and Local Modules Configuration

The next configuration considers where data is located on remote computers as
published RDF datasets. The term remotely accessible or remote are applied for
any service that is available outside of the application. Therefore, it is remote
to the application rather than remote to the physical computer. The use of the
term Computer in these diagrams is a simplification for clarity.

The data is accessible through SPARQL endpoints provide by HTTP servers
and can be retrieved using Federated Queries. The RDF graph structure permits
some or all of the data to be located remotely and combined with local data and

modules. This is illustrated in Figure [3.10] where part of the knowledge-base has
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been located on a separate computer and is accessed over a HT'TP connection.

| Computera i
|

|
User Application Medule |
|

|
| Knowledge Base Module [
| |
|| b corfe | [ wodue | |
L —_——————— —_—

HTTP Connection

Figure 3.10: Diagram of a remote configuration with data held on a remote
computer.

The knowledge-base in Computer B contains two graphs of data. These could
be different sets of data with each being used during execution. Alternatively
they could be different versions of the same data with each being used in sep-
arate Framework Configurations. Each dataset is referenced in the Framework
Configuration by their Unique Resource Identifier (URI).

3.4.2.3 Local Knowledge-Base and Remote Modules Configuration

The positioning of components is not limited to the data of the knowledge-base.
The Modules in Figure are positioned locally and accessing remote data.
Therefore, the inverse would also hold with the Modules positioned and executed

remotely on data held locally, as illustrated in Figure [3.11].
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Computer A

User Application Module

Knowledge Base

HTTP Connection

—_—y
Computer B |

Figure 3.11: Diagram of a remote configuration with module held on a remote
computer.

The Framework Configuration supplies the information required to access the
graphs of data in a generic Semantic Web-based approach. This enables develop-
ers to implement their models and functionality in their own environment. They
do not have to publish across multiple platforms or provide documentation on
how to deploy the module. Instead resources can focus on explaining the design,
data requirements and implementation of the module to inform users and obtain
feedback for future developments.

The user does not have to deploy the module locally avoiding the time and
resources required to address configuration or environment issues. There can
instead be a focus on preparing the data relevant to their investigative scenarios.
The utilisation of a new version or alternative module requires only adjustment

of the URI referring to the module and its hosting service.
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3.4.2.4 Remote Knowledge-Base and Remote Modules

Configuration

The final configuration is when both data and modules are positioned remotely.
Since both the data and modules can be configured to be remotely retrieved

then it is not required that either are local. In this case only the Framework

Configuration is held locally by the user.

The User Application retrieves any data it requires from the remote knowledge-
base, e.g. households in an area, to initiate or fulfil the data requirements of the
initial remote Modules. However, once begun these Modules may also make direct
data requests of the remote knowledge-base. This is achieved by referring back
to the Framework Configuration. The local knowledge-base could then be the

recipient of the final results of the travel demand generation process or retrieve

them from where they are remotely held once completed.

HTTP Connection

i

I{ Computer B

| Module

I

| Module

|

! Module

L

Figure 3.12: Diagram of a remote configuration with data and module held on

remote computers.
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3.4.2.5 Implications of Remote Configurations

These remote configurations can be scaled across as many computers or services
as required to perform the process, e.g. modules and datasets could be stored on
the same computer or each hosted by a different computer. By defining Modules
and knowledge-bases as services the functionality and data can be sub-divided
as an implementation requires with the user able to supply the Framework Con-
figuration required to satisfy it. For example, Module A is implemented with
three sub-modules: Module B, Module C and Module D. The user constructs a
configuration that redirects Module A to use Module C1. The Module C1 has
two sub-modules and the user redirects one of these to their own implementation
of the functionality while continuing to use the other default sub-module.

The HTTP request is sent using a URL that could be responded to by an
on-line service or by a local service on the same physical computer. Similarly,
requests sent to different URLs could be serviced by a single physical computer.
Alternatively, requests to a single URL could be serviced by a cluster of com-
puters with requests being allocated to balance workload across the cluster. The
transmitter of the request does not know, or need to know, where the response is
actually coming from or how it has been handled, although there is the need to
ensure the response is trusted (Section [5.5)).

This means that the physical location and configuration of a service can be
changed without any impact upon the requesting application and so decoupling
requester from responder. These general benefits of a service orientated archi-
tecture mean that the framework can be re-organised and up-scaled. Therefore,
development of complex and computational demanding functionality, such as hu-
man behaviour models, can be developed and then executed upon clusters of
distributed computers.

The potential to host multiple configurations provides benefits beyond con-
ventional set-ups for the travel demand generation process. It does not restrict a
user to pre-specified set-ups and allows easier access to data sources and module
implementations. This in turn reduces the burden of setting up and executing the
travel demand generation process, e.g. by removing the extract transform load
(ETL) process (Section [5.2)), so that investigation can be undertaken quicker.
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The control of these configurations and enabling switching between them
without breaking the execution process is vitally important. There is also a
computational cost in preparing and transmitting HTTP requests that can im-
pact execution times. The developed approach, the Framework Configuration,

for addressing these matters are discussed further in Section [5.3]

3.5 Chapter Summary

This chapter has introduced the design of the framework components to address
Research Question by identifying the knowledge-base as the underlying data
repository for the travel demand modelling process. The main stages of the travel
demand process have been further described as a set of module components.
These modules interact through the common data concepts that have been mod-
elled in the knowledge-base.

It has been identified that the existing three stage process of Population Syn-
thesis, Travel Demand Model and Traffic Simulation needs to complimented by a
Knowledge-Base Construction stage. In this stage the input datasets are aligned
to the common schema and with each other. This can include the spatial alloca-
tion of households to residences; classification of concepts into the user’s schema
based on properties and characteristics; and the reconciliation of land use with
road network infrastructure.

The development of a common schema will facilitate interoperability between
modules and reduce the need for user intervention in transforming concepts con-
tained in the datasets. In Chapter [4] there is discussion of the developed common
schema of data concepts to investigate Research Question while Chapter
will consider how adaptations can be made when modules do not follow the same
schema.

The Travel Demand Model stage was further decomposed into five modules to
develop an activity-based approach. These modules were identified as examples
of functionality to which alternative techniques could be applied. The inclusion
of alternative and existing travel demand models would substitute some or all of
these modules by ensuring that data concepts at the boundary of the module or

stage are satisfied. Chapter [0 discusses in further detail the implementation of
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the Scheduler, Trip Planning, Network Routing, and Traffic Simulator Interface
modules in the development of the prototype.

There was also discussion of the application design and physical configura-
tion of the framework which proposed both local and remote configurations. An
objective of the framework is to provide users with greater control over the se-
lection of modules and the sources of data. Therefore, accessing remote sources
supports this objective but also introduces the potential for user error in access
and integration. Chapter [5|investigates ensuring data and query quality provided
by none expert users and also discusses Research Question for the selection

of these alternative sources.
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Chapter 4

Semantic Modelling of Travel

Demand Generation Data

4.1 Introduction

The previous chapter discussed the components for travel demand generation
with focus on activity-based models and how a knowledge-based and Semantic
Web approach can be applied. This chapter discusses the knowledge modelling
of the data concepts identified for the framework’s components (see Figure [3.3).
These data concepts form a schema describing the framework’s main concepts
and their interaction as the basis for addressing research question This
schema forms the basis of the implemented modular prototype design discussed
in Chapters [6] and [7]

The chapter begins with discussion of general principles and design patterns
for semantic web schema design. The top-level data concepts for travel demand
modelling are then described before more detailed examination of the fundamen-
tal data concepts which are widely re-used before focusing upon the identified data
concepts. The data concepts have been split into those travel demand concepts
that should be generally recognisable from real-world experience and those that
are specifically related to the travel demand modelling and simulation process.

Throughout illustrative examples are provided to demonstrate how the schema

can be extended by a user for their investigative scenario. There is then con-
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sideration of the utilisation of the schema through detailed examination of its
application to key classes and the inter-relationships between concepts. Finally,
there is discussion of the graph organisation of the knowledge-base and how it

can be applied to organise data into distinct datasets for operational use.

Notation of Schema Diagrams

This chapter and later chapters use graph diagrams of the schema and supporting
examples to show class, instance and property relations as illustrated in Figure
The notation shows classes as nodes (boxes) linked by edges (lines) of object
property or sub-class relations. Object property relationships are shown primarily
through edges but secondary object and data properties are listed below the class
names with corresponding class or datatype.

Property cardinalities are also shown to indicate the schema shape and enable
data validation. Only namespaces from public vocabularies are shown in the
diagrams to assist their identification. Classes are shown by a circle and properties
by a rectangle. The illustrative example diagrams show individuals, or instances,

of classes using the rdf:type property and indicated by a diamond symbol.

B Object Property : Class
mm Data Property : Datatype

Class

required Property

’ Individual

-------- = optional Property
[0..1]: Zero to One relation  [0..*¥]: Zero to Many relation

[1..1]: One to One relation  [1..*]: One to Many relation

Figure 4.1: Diagram of notation used in schema diagrams.

4.2 Semantic Web Schema Design

The main technologies of the Semantic Web have previously been discussed with
regards to their functionality (Chapter [3) and their general application (Section
1.3). In this section there will be discussion of the principles upon which the
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Semantic Web has been developed in relation to data modelling. It will also
outline the particular design considerations and published public vocabularies
that have been applied during the development of the framework schema which

is described later (Section [4.5).

4.2.1 Semantic Web Principles

The core technology of the Semantic Web is the Resource Description Framework
(RDF) from which a variety of technologies have been developed to fulfil specific
purposes. Therefore, the selection of Semantic Web technologies is dependent
upon the purpose. If an application does not require querying of data then it
does not require SPARQL. If an application does not require Description Logic
inferencing then it does not require OWL.

The choice to not utilise a technology, e.g. OWL, does not preclude the
use of another technology, e.g. graphstore data storage and SPARQL data re-
trieval. There is also overlap between technologies where the same outcome can
be achieved using different technologies, e.g. OWL, SPARQL, SHACL and SPIN
can all be used to infer data and determine class membership.

The premise of the Semantic Web is based upon the design principles of mod-
elling for re-use and on-line access to data. Basing the framework upon the
Semantic Web enables sharing of data and schemas in an inter-operable manner
while allowing the users and module developers choice in the technologies they
apply. In this section there will be an outline of three principle areas of the
Semantic Web to highlight the impact that they have on the development and

usage of the schema and framework.

Anyone can say Anything about Any topic (AAA)

The premise of the World Wide Web is that the publication of information is
controlled by the information producer. This means that there is not a central
authority determining the accuracy or appropriateness of information and it is
instead a consideration of the consumer. This does not mean that information
cannot be produced and attributed to authoritative sources, but that any in-

formation can be produced by any provider. This principle has been termed as
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Anyone can say Anything about Any topic and means in practice that information
from different sources can be contradictory, inaccurate, deceptive or out dated
[36].

Designing to the underlying AAA principle leads to the notions of alternative
models to represent the same concepts and producing models that can be re-used
and extended. The support of alternative data models can be seen in the design of
the Resource Description Framework where properties can be asserted for classes
without constraint or contradiction until a perspective of the context is applied
through a schema or language, e.g. RDFS or OWL.

The re-use and extension of data models allows sharing of best practices and
consistent structuring of data, while enabling its application for new purposes.
An anti-pattern of the sharing for re-use modelling process is creeping conceptu-
alisation where the developed schema exhaustively anticipates all applications of
the model [36]. It has been sought to avoid this anti-pattern with the proposed
schema by limiting it to the essential classes and properties.

In the following explanation of the schema a distinction is made between those
elements which are deemed necessary for the proposed framework and providing
illustrative examples intended to give context or understanding. Indeed it is
intended that one of the benefits of applying a Semantic Web approach to the
traffic and transport simulation domain is to allow flexibility in the data model so
that a wide variety of implemented models and tools can be utilised by allowing

alternative properties and additional classes to exist alongside each other.

Non-unique Naming Assumption (NNA)

The AAA principle discussed previously introduces another aspect of the Se-
mantic Web which has implications for inferencing. The decentralised approach
allows publishers to describe concepts and models in the manner of their own
choosing. Therefore, two publishers may select different names (URIs) to iden-
tify identical resources. Both identifiers are correct in their own context so it
cannot be assumed that different identifiers refer to different resources, unless it
is established that the two resources are not the same. This is different to other

modelling approaches where it is assumed that resources are not the same, unless

72



it is established that they are the same.

Open World Assumption (OWA) and Closed World Assumption (CWA)

The Semantic Web is designed upon a principle of a distributed network. In such
an environment, information can be separated and split over the numerous partic-
ipants of the network. Each participant may only hold partial information about
any resource or a participant may not be accessible to provide their information.

This has lead to the development of the principle Open World Assumption
(OWA) and is applied in some schema languages, e.g. OWL [93]. The application
of these schema languages allows the inferring of additional facts not present in
the data but implied by the structure and content. The OWA principle means
that conclusions cannot be made about a resource if it relies on the assumption
that complete information is available. Contradictory information may be held
on another part of the network which would invalidate the previous conclusion.

This has implications for inferencing such as the absence of a statement in a
dataset does not mean the negative of the statement can be assumed, e.g. the
absence of a visitor record for a location does not mean that there has never been
any visitors. Applying this assumption reduces the inferences, i.e. conclusions,
that may be found when applying a schema to a dataset but it does ensure
that those conclusions will never be contradicted. There can also be further
complications introduced that increase the complexity and place restrictions on
modelling achieved by the schema language [94].

This is quiet different to Object-Orientated Languages where a Closed World
Assumption (CWA) is applied [85] and has also been adopted for some Seman-
tic Web technologies [95, |96]. Following this principle, it is assumed that the
information available is complete for the resource. In CWA it is accepted that
contradictory information may arise later but arriving at the conclusions at the
current time is more important. This means that more definite inferences can be
made, e.g. no visitor records for a location means that the location has had no
visitors. It is commented that in many pratical applications OWA does not make

a difference or can be ignored in favour of CWA [36].
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4.2.2 N-ary Relationships

The fundamental structure used in RDF and other schema language is the triple
[97]. These triples express statements of the form subject, predicate and object.
These form a binary relation between the subject and the object. For example,
Peter owns X123 is a statement that identifies the owns(predicate) relation be-
tween Peter (subject) and X123 (object). Additional statements can be created

that expresses Peter’s ownership of multiple cars as shown in Figure [£.2]

’ Peter —owns—> ’ Y345

4 x123

Figure 4.2: Diagram of schema multiple relations of same property.

Difficulty arises when additional information is expressed about the relation-
ship between Peter and his cars. For example, the date that the car was purchased
by Peter. The n-ary relation has been proposed as a design pattern to resolve
this issue [98]. There are two forms to the pattern based on creating a class and
introducing a list. The latter is proposed for certain specific cases of n-ary rela-
tions and is not considered further as the selected approach in the core schema
relating to lists is to use the Ordered List vocabulary (Section due to its
benefits with SPARQL queries.

In the class-creation approach a connecting class is created to form a bridging
relation between the related individuals. There are two approaches proposed
based upon whether there is a distinguished participant as shown in Figure 4.3|
The selection of either is reliant upon modelling context with both approaches
being applied in the schema.

In the distinguished participant approach it can be seen that Peter is the
subject at the root of the graph, while in the no distinguished participant the
emphasis is placed upon the created Car Purchase class as the subject with both
expressing the same information. It can also be seen in this example that for

both approaches that there is no direct relation between Peter and the cars,
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_—>| I 2018-05-07

hasDate

7 4 CarPurchasel
haCarPurchase hasCarH & Y345

4 Peter

hasCarPurchase
~ hascar_._._--—%' ’ X123
4 CarPurchase2 <

hasDate

W 2018-01-01

ﬂ i 2018-05-07

hasDate

4 CarPurchasel hasCar < Y345
purchaser

3{’ Peter
purchaser

4 cCarPurchase2 hasCar 4 xi23
hasDate

| 2018-01-01

Figure 4.3: Diagram of example N-ary patterns for distinguished participant (top)
and no distinguished participant (bottom).

which would have to be asserted or inferred if required.

It is noted that adopting the class-creation approach for n-ary relationships
increases the complexity of expressing class restrictions in OWL. However, the
desired constructs can still be achieved and usage of OWL with the framework
and schema is an optional user choice.

An alternative approach to n-ary relations is the use of reification which was
included in the original RDF specification, but discontinued in the later version
. The reification approach was intended to provide additional information
about a specific statement, e.g. the origin of a statement, rather than additional

statements in the knowledge-base. The reification design pattern was found to
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cause issues for inferencing with reasoners and distrupted the graph structure
leading to its discontinuation [99]. Therefore, it has not been applied as a design

pattern in the core schema.

4.2.3 Ordered Lists

This section discusses the approach that has been applied for organising items in
an ordered list. A common data structure is the need to group together items
that have a related purpose, generally termed a collection. The RDF [100] and
RDFS [101] vocabulary provide several different types of collections which vary
in semantics according to whether repetitions are permitted and the items are
ordered.

The use of lists, which provide an ordered sequence, occurs frequently in the
core schema to assist in organising items, e.g. the time intervals of a schedule. In
some cases these items could be grouped as an unordered collection and sorted
by characteristics when retrieved. However, this introduces additional processing
that could be avoided when the collection is created by applying a list structure.

The RDF and RDFS collections relating to lists are minimalist approaches
which define the list as a chain pointing from element to element. Each prop-
erty of the chain is defined according to its position in the chain. This makes
these structures inefficient to retrieve in SPARQL, which can resolved through
implementation specific extensions, but are not part of the SPARQL standard.

The Ordered List Ontology [102] defines a vocabulary, illustrated in Figure
based upon a root resource to the list that has a series of slots. This root
resource can be further extended by other classes and properties. These slots have
properties relating to their stored item, i.e. the contents of the list, its integer
index position in the list and consistent properties to form a chain structure with
other slots, in the same manner as the general RDF list structure. The number
of slots in the list, and therefore items, is also a property of the root resource.

The SPARQL protocol provides syntax for ordering by property values so that
query results are returned in an ordered manner. This means that data following
the Ordered List Ontology structure can be returned in order of index or specific

items can be retrieved based on the index of their slot. A single item can also be
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olo:OrderedList

B oloslot : solo:Slot [0..1]
mm olo:length : nonNegativelnteger [1..1]

olo:ordered list

olo:slot

olo:Slot

B olozitem [1..1]

B olo:next : olo:Slot [0..1]

m olo:previous : olo:Slot [0..1]

mm olo:ordered_list : olo:OrderedList [0..1]
mm oloindex : positivelnteger [1..1]

Figure 4.4: Schema for published Ordered List Ontology vocabulary. [102]

referred to in multiple lists. Therefore, applying this vocabulary provides simpli-
fication to SPARQL querying without relying upon implementation extensions

for a commonly applied data structure.

4.2.4 Value Set Design Pattern

This section discuses a design approach that has been applied repeatedly in the
core schema. It outlines the basis for this approach in the context of Semantic
Web language restrictions and assisting with usability of the schema.

The Semantic Web defines several languages that provide rules and condi-
tions to structure RDF data and form the basis for inferencing, including Re-
source Description Framework Schema (RDFS)[101] and Web Ontology Language
(OWL)[103]. There are three profiles of the OWL language: Full, Description
Logic (DL) and Lite. Each offer different restrictions and features which can
influence computational completeness and decidability. The Description Logic
profile is the basis of the OWL2 language [93] which superseded OWL. Both the
OWL and RDFS languages are based on the Resource Description Framework
(RDF).

RDF provides a structure to data based upon triple statement of subject,
property, object. The subject and property must be resources while the object

can be a resource or a literal. Resources are represented by Unique Resource
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Identifiers (URI) while literals are strings with corresponding datatype.

Classes, which form sets to group items together, are themselves a type of
resource. Instances of these classes are termed individuals. In designing a schema
two common features are referring to a group of individuals, i.e. a class, and
defining common characteristics for the group. An example of this would be the
following statements:

Example Statements:

Peter is qualified to drive cars and vans.
Peter owns the car X123.

These statements identify a specific car that Peter owns and the class of
vehicles that he is qualified to drive. These could be represented by the schema
illustrated in Figure [4.5

4 Peter —qualifiedToDrive Van

owWns

|
< x123

rdf:type Car

Figure 4.5: Diagram of schema for example statements complying with RDF
standard.

A triple of the form Peter qualified ToDrive Car is permitted in OWL Full and
RDFS but is not permitted in OWL DL, OWL Lite or OWL2 [104]. In these latter
languages there are restriction that separate classes, properties, individuals and
data values. This means that classes cannot be the subject of properties except
for specific exceptions, such as rdf:type. Applying a reasoner based upon these
languages would result in failure and many Semantic Web tools are developed
based upon the restrictions of OWL DL or OWL2 [103]|. Adopting this approach
in the core schema would therefore preclude usage of these languages and many
tools by users.

To comply with these restrictions a Value Set, or Enumeration, design pattern

[104, 105] has been applied. In this design pattern the classes of interest are
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asserted as individuals as illustrated in Figure 4.6, The asserted individuals
would themselves be used as the object of statements about the general group.
These individuals often represent sibling classes and so themselves could form
a class. In addition to complying with all the language restrictions this approach
does not prevent the user from applying their own classes to group individuals,
e.g. Person for Peter and Car for X123. To avoid confusion between the class

and individual the term type has been used in the core schema.

4 Peter[—qualifiedToDrive & vanType [rdf:type>] VehicleType

| —
’ X123 —hasVehicleType—= ‘ CarType

Figure 4.6: Diagram of schema for example statements applying the value set
design pattern to comply with OWL DL/OWL2.

The second identified modelling feature is defining common characteristics for
a group. This assists in maintaining consistency if values are modified and reduces
repetition in the data. The properties available for a user to define the relations
between the subject and object of a triple are object and datatype properties.

In OWL DL, OWL Lite and OWL2, these properties are restricted to being
between individuals and not classes. This presents the previous issue in using
these properties on classes. This can be resolved by using the type individuals
asserted to represent classes to also be the subject of the properties for the com-
mon characteristics of the group members. In conclusion, the use of the Value Set
design pattern ensures language compliance for the user; permits the classifica-
tion of individuals into the user’s own classes; and allows the defining of common

characteristics.

4.3 General Data Concepts for Travel Demand

The previous chapter discussed the identified modules of the framework for travel

demand and described their purposes. These module components are intended
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to interact through the data present in the knowledge-base to support the overall
objective of travel demand modelling. The data requirements of the modelling
process incorporate a wide range of physical and abstract entities.

This section will provide general description of these entities and their or-
ganisation into separate domains. These domains are broader than the specific
concepts of the core schema which are described in the following sections. Addi-
tional data and concepts are intended to align under these general concepts, but
are not required to operate the core schema with the module components, e.g.
vehicle emissions data.

A summary list of examples and key terms is provided, but is not intended
to be exhaustive. Figure [4.7]illustrates the top level domain concepts that have
been identified. Interconnections exist between these domains, particularly for

all domains to the geospatial and temporal, but these are not shown for clarity.

Organisations

Figure 4.7: Diagram of schema concept domains.

Travel demand is based upon the movement of people and goods from one
location to another. The purpose of movement for people can broadly be cate-
gorised as people accessing goods or services provided by organisations; fulfilling

or accessing occupations with organisations; and social interactions with other
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people. The purpose of movement of goods is for delivery to people or to organ-
isations where they may be consumed or further transported at a later time.
Fulfilling these activities requires travel through a geospatial environment
from place to place. This travel utilises transport vehicles and infrastructure
with the available options and duration varying temporally.
The following statements have been used as a conceptual basis for the identi-

fied groupings:
e People have demographic characteristics.
e People form relationships with other people.
e People have access to transport choices.
e People make activity choices influenced by demographic characteristics.
e People reside in places as household groupings.
e People travel to places for activity choices.
e Organisation provide activity choices and goods at places.
e People and organisations require goods.

e People and organisations utilise vehicles for transport and movement of

goods.
e Vehicles operate within transport infrastructure.

e Environments vary geospatially and temporally.

Geospatial and Temporal

These concepts are incorporated into all the other top level concepts and rep-
resent that traffic demand modelling and simulation takes place over a spatial
environment with varying time component. The spatial environment requires the
capturing of specific points and more complex line-string and polygon shapes.

The interaction of these shapes through their spatial relationships, e.g. shapes
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overlapping or containing each other, enables relevant selections and interactions
to be made.

The representation of time variation requires the capturing of both specific
points in time such as an event/instant or the interval in time when a condition
may or may not be available. The tracking of temporal factors has an impact
both within a scenario and between scenarios. This can include the selection of
activities to undertake, availability of transport infrastructure or comparing the

performance between simulated and planned trips.

e Point

Linestring

Polygon

Instant

Interval

People

This concept represents both the specific details about an individual, e.g. age,
household composition and occupation, along with the aggregated population de-
mographics for an area from which individuals are derived during the Population
Synthesis component. It is the key concept with interconnections to all other
concepts as the selection choices and composition of the environment are derived
from people. People individually, or in groups, form households that are used
as a common collection in demographics and simulations as it can determine the

resources and decision making requirements that an individual faces.
o Age
e Gender
e Employment

e Household composition
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Vehicle ownership

Occupation type

Driving licence coverage

Inter-personal relationships

Spatial

This concept captures the physical locations which people travel between and
spend their time. It could include buildings providing services, such as retail,
entertainment and leisure, or occupation, such as employment, education and
volunteering, or the home residence, such as a houses and apartments. Residing
in these places represents that the person no longer needs to travel for a period
of time while an activity is undertaken. However, the capacity to supply an
activity is finite. The availability of activities is also time variant depending
upon the opening hours of the place. It should also be noted that a place can
fulfil multiple activities or services, both in terms of the organisations present

and the purpose of the individual, i.e. a retail place is also an employment place.
e Buildings
e Land use
e Education
e Employment
e Leisure
e Retail
e Housing

e Administrative organisational areas
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Activities

The undertaking of activities by humans is the source of travel demand. The
nature of activities can encompass the full range of human enterprise. These
activities take place in different locations, are available at different times of the
day and occur upon different days. The choice of activity selected by an individ-
ual varies according to their circumstances and preferences. The structure of a

schedule may be derived from a template of activities.

e Type

Location

Availability

Duration

Templates

Network Infrastructure

This concept captures the transportation infrastructure necessary for people to
undertake travel, such as road network, railway stations, bus stops and car park-
ing, along with supporting information, such as road semantics and traffic sig-

nalling.

e Road, cycle and pedestrian networks

Train station and railways

Tram lines and stops

Bus stations and stops

Ferry and airport terminals

Public transport routing and scheduling

Car parking facilities
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e Petrol stations
e Traffic signals and sequencing

e Access permissions and restrictions

Vehicles

This concept represents the physical mode of transport utilised by people or goods
and their characteristics. In some case this is tightly bound to the infrastructure
available, such as rail or ferry travel, while in others it is dependent upon the
choices and resources available to a person. An output of traffic simulation is
the economic and environmental impact of travel caused by vehicles, e.g. emis-
sions and fuel efficiency. Given the increasing automation and diversifying energy
sources of motorised vehicles it is likely that this concept will need to extend be-

yond the purely motorised aspect to incorporate communication and autonomy.

e Physical characteristics
e Performance characteristics

e FEconomic characteristics

Goods

This concept represents the physical products that people and organisations con-
sume and are moved between locations by organisations. The movement of goods
creates demand for travel according to the places that supply and demand them.
Organisations organise logistics to seek to optimise the speed of movement and
reduce costs. This domain is not a particular focus of this work and is incorpo-
rated in the abstract sense of freight vehicles moving between locations without
consideration of the drivers and inputs for that behaviour. Its inclusion is to

recognise its place in the overall process.
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Organisations

Organisations represent collections of individuals that are unified under a common
purpose. Individuals may belong to multiple organisations and fulfil different roles
within them. Organisations can be broadly categorised into the public, private
and voluntary sector according to their purpose and configuration. These sectors
would satisfy the employment, education, retail or leisure activities that people
seek to undertake, but also include the households into which individuals are
grouped. An organisation may consume or supply services from one or more
places while a place may support one or more organisations.

In turn the organisation will potentially produce, consume and transport many
goods and potentially provide employment or services to many people. Organisa-
tions may also be in direct control of the movements of their vehicles or elements
of the transport infrastructure. Therefore, the organisation is a unifying concept

that draws together and interacts with all the different concepts identified.
e Public sector
e Private sector

e Voluntary sector

Demand Modelling and Simulation

The process of travel demand generation and simulation incorporates a number
of abstract data concepts. These abstract concepts can include the rules or pa-
rameters for decision making; the activity and travel schedule; or the potential

routes for travel through a transport network.
e Scenario parameters

Routes

Schedules

Mode costs

Behaviour rules
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e Scheduling rules

e Simulation results

The following three sections will examine these general concepts in greater
detail and demonstrate how they have been modelled in the schema. The sections
have been organised to discuss the fundamental geospatial and temporal concepts;
the grounded concepts drawn from the physical world; and finally the abstract

concepts derived for travel demand modelling and simulation.

4.4 The Temporal and Geospatial Modelling of
Travel Demand

The overall purpose of travel demand models is the modelling of the real world
that is experienced within a spatial environment that varies through time. There-
fore, these two concepts and how they are represented is a fundamental and recur-
ring theme. The handling of these concepts will have an effect on the accuracy,
consistency, versatility and re-usability of the schema. This section discusses
these two fundamental concepts and outlines the adopted approaches taken in

the schema.

4.4.1 Geospatial

The examination of travel demand generation is inextricably linked to considera-
tion of geospatial data. Activities and travel performed by people takes place in
the physical environment with positioning and interactions having an influence
upon outcomes. This influence can be found in all stages of the process, in-
cluding the preparation of the knowledge-base, generation of the travel demand,
executing traffic simulation and the analysis of the modelling results.

The representation of geospatial data covers a wide range of factors and nu-
merous standards have been developed. In many cases there is a distinction
between the abstract notion of an object (feature) and the physical description of

its geospatial shape (geometry). This enables different geometry representations
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of the feature to exist, which may vary in the level of detail, coordinate reference
system or data format.

The GeoSPARQL standard [37] has been developed to provide an RDF data
model that is compatible with the SPARQL protocol. This is shown in Figure
by the two related classes of Feature and Geometry. The Geometry class has
further meta-data properties for the serialisation of its geometry shape. These fea-
tures and geometries can be compared for their spatial relationships, e.g. points
within a polygon, which are much broader than tests of distance or equivalence.

These spatial relations have usage in tasks relating to preparing the knowledge-
base as discussed previously (Section . However, there are other forms of
functionality that are outside the standard, such as determining which side of a
line a point is positioned or the distance a point is positioned along a line, that

are needed for accurate micro-simulation and need to be provided by modules.

geo:Feature

geo:hasDefaultGeometry

/

geohasGeometry

N

geo:Geometry
geo:asGML geo:asWKT
/ geo:hasSerialisation
W
Bm geo:gmliliteral B rdfs:Literal B geo:wktLiteral

Figure 4.8: Schema for Feature and Geometry for published GeoSPARQL vocab-
ulary. [37]

Implementations of the standard extend the SPARQL functionality to pro-
duce more sophisticated query results and reduce complexity. This functionality
can include characteristics about a geometry and its spatial relation to other ge-

ometries. There exist numerous formats, or serialisations, for geometries which
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provide alternative representations of the same information. Similarly, coordinate
reference systems can describe geometries for use in different contexts. There-
fore, implementations can provide handling of these additional requirements, but
following the same data model.

The GeoSPARQL standard is influenced by the Simple Features standard
[106]. This details spatial functions for use in SQL relational databases with
geometry shapes represented in Well Known Text (WKT) and Well Known Binary
(WKB) formats. A key feature of the Simple Features standard, and by extension
GeoSPARQL, is that all geometries are treated as being in a two-dimensional
plane. This provides a simplification for interpretation of spatial relations and
calculation. The calculation of distance between geometries can be achieved using
Fuclidean distance derived from Pythagorean theorem.

However, this assumption is not always the case with many popular coordinate
reference systems used for global positioning, e.g. WGS84, being geodetic. In a
geodetic system the points are positioned on the surface of a sphere, which closely
approximates the earth’s surface. Applying Euclidean distance to these points
does not measure the surface distance across the sphere but the chord. Instead the
computationally more expensive great-circle , or orthodomic, distance is required
for an accurate distance.

The error introduced by this assumption is accepted in the Simple Features
and GeoSPARQL standards as it is offset by the computational simplification,
being less significant at small scales and only applying for certain datasets. Co-
ordinate reference systems for two-dimensional plane, i.e. Cartesian coordinates,
have been developed which are highly accurate at the national level. These co-
ordinate reference system place points relative to an origin in the plane and are
only suitable for relatively small geographic areas. However, these geographic ar-
eas can cover whole countries, e.g. the United Kingdom has the single Cartesian
coordinate reference system OSGB36.

The geographic area of interest in travel demand generation is typically at city
or smaller scale. Therefore, the national coordinate reference systems are suit-
able. Datasets that are provided in a geodectic coordinate reference system can
be converted to an appropriate Cartesian system using published mathematical

transformations and tools.
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In Figure [4.9| are shown the geometry classes of the Simple Feature standard
in RDF with the primary interest being Point, LineString and Polygon along
with their collections MultiPoint, MultiLineString and MultiPolygon. However,

other representations of geometry classes could be utilised if the user chose.

geo:Geometry

sf:Point sf:Curve sf:Surface
vertex [f‘ ?
sf:LineString sf:Polygon

Figure 4.9: Schema for Simple Features geometries aligned to GeoSPARQL. [37]

An alternative vocabulary to GeoSPARQL in RDF is the Basic Geo Vocabu-
lary [107]. This describes the WGS84 latitude and longitude coordinates as two
properties of a subject and is a much simpler and directly accessible represen-
tation. However, its usage forces datasets to use a single coordinate reference
system, i.e. WGS84, and would require conversion of datasets prior to adding
to the knowledge-base. This is a popular global coordinate reference system for
datasets, but not universal with national agencies often preferring Cartesian sys-
tems, e.g. road networks. The vocabulary can also only express one shape, i.e.
points, does not describe spatial relations and there is no standardisation in the
calculation of distance units of measure or method.

In conclusion, adopting the GeoSPARQL data structures provides a consistent
representation of geospatial data with potential for data being readily available
in this RDF format. It also allows modules and users to leverage implementa-
tions that can handle variations in format and context as well as providing more
sophisticated querying. Investigation was undertaken into implementing the full
GeoSPARQL standard as an extension to the Apache Jena library as the existing
support for spatial query did not conform with the GeoSPARQL standard, or

meet the needs of the project, and no existing alternative implementation was
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identified that provided full support.

The developed implementation included features such as Semantic Web stan-
dards compliance, minimal configuration and a short initialisation period along
with automatic switching between coordinate reference systems and units of mea-
sure. There was also an additionally developed novel feature of caching invariant
geospatial literals and other data that is repeatedly re-used in spatial queries to
produce a performance improvement of up to 20%. An extendible benchmarking
framework was also implemented to enable comparison with two existing partial
implementations using a published geospatial benchmark.

This benchmarking demonstrated that the developed implementation achieved
comparable or faster query responses, while also providing much faster data load-
ing and initialisation durations. This benchmarking framework is planned to be
extended in future work into a conformance framework to provide an automated
tool for demonstrating compliance of the developed implementation, and other
GeoSPARQL implementations, with the GeoSPARQL standard. Further discus-

sion of this investigation can be found in Appendix B.

4.4.2 Temporal

The representation and tracking of time is an important aspect of travel demand
modelling. Human travel and activity occur over time durations and at different
time points which causes variation in volume, behaviour and location. The time
of day, day and season have already been discussed as having a varying influence
on activity and travel (Section [1.2.3)). Travel time itself is also regarded as a
key metric in transport planning [108, 109] making it an important part of the
analysis process. The temporal domain is therefore important in the modelling,
execution and analysis of transport and travel models.

The public Time Ontology in OWL (OWL Time) vocabulary [38] defines tem-
poral concepts, properties and their topological relations. The focus is upon de-
scribing resources in the world and Web pages. The representation of time con-
cepts is achieved through literals or RDF properties. The string literal approach
uses XSD  dateTimeStamp|110] which consists of a calendar date, wall clock time
and time-zone offset, e.g. 72000-01-01T09:00:004-0:00” " "xsd:dateTimeStamp. In
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RDF, a subject will have properties representing each part of year, month, day,
hour, minute and second. The recording of time is through instants representing
a specific point in time and intervals representing a duration of time, which are
formed from two instants: start and end. This robust representation of time is
shown in Figure [4.10

I time:Interval @e :hasBeginning [1..1]—> time:lnstant
time:hasEnd [1..1] B inXSDDateTime : xsd:dateTimeStamp

time:hasDuration [1..1]

time:hasDurationDescription [1..1] ‘ time:Duration ‘

time:unitType [0..1]
time:numericDuration [0..1] ‘

time:DurationDescription time:TemporalUnit }

mm time:hasTRS: TRS [1..1] K _
mm time:days : xsd:decimal [0..1] ‘ B time:Number ‘ 4 time:unitSecond
mm time:hours : xsd:decimal [0..1]

m time:minutes : xsd:decimal [0..1]
m time:months : xsd:decimal [[Oul]1 - xsd:double ‘ df:
- time:secol?ds :)&sc{iﬁ:decirr:a[l O“]l rdt:type
mm time:weeks : xsd:decimal [0..1 . time:unitHour
B time:years : xsd:decimal [0..1] - xsd:float ‘ ‘

4 time:unitMinute

r 1
- xsd:decimal ‘ I————:’ Other Temporal Units!

Figure 4.10: Schema for Interval, Instants and Duration from published Time
Ontology in OWL (OWL Time) vocabulary. [3§]

In the context of travel demand modelling this introduces a level of com-
plexity that can be considered unnecessary, given that current travel demand
models focus upon a single day period. The models are typically executed with-
out consideration of a specific reference date. Instead time is considered from
the abstract basis of a time during the day, i.e. 9am rather than 9am on 21st
March 2001. While a base date (e.g. 01/01/1900) could be provided and the
time component extracted this presents extra complexity during execution. It
also introduces data which does not have relevance or correctness and could be
misunderstood or misused.

The use of RDF properties, while having use for logical reasoning, presents
additional complexity when storing, extracting and sharing data. A complete
time value requires three triples, i.e. properties for hours, minutes, and seconds,
compared to a single triple for the literal approach. The representation of an
interval of time requires eight triples compared to two triples for the literal ap-
proach. Logical reasoning between different time values can also be performed by

parsing the string literals with an appropriate library so the functionality is still
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available to modules that require it. Therefore, limited or no benefit is provided

by the full OWL Time vocabulary but with an increase in complexity.

08:00 10:00 11:00 1200 13:00 14:00 15:00 16:00

Interval

L] .
SaEn End
Instant Instant

Figure 4.11: Diagram of Time Instants and Interval.

The adopted approach has been to use literals in the XSD forms of time, e.g.
709:00” " "xsd:time for 9am, and duration, e.g. "PT10M” " "xsd:duration for 10
manutes. These are used together with OWL Time Day of Week to consistently
represent the seven days of the week. If a module is designed to consider specific
dates, e.g. seasonal factors such as weather conditions, then the XSD date can
be incorporated as an additional property without interference to existing data
and affect upon modules which do not require it.

The time interval represents a period of time from a start to an end, as
illustrated in Figure and occurs frequently in travel demand modelling.
Items may have a validity period when they are eligible for selection or utilisation.
Alternatively, it could represent when an event or activity is taking place. Figure
[4.12] shows the Time Interval class that is defined in the schema.

The class provides a simple representation of the points in time when the
interval starts and ends along with the duration, i.e. the difference between
the start and end times. This class can be sub-classed for those items which
are themselves intervals, e.g. parts of a schedule, or referred to through the
hasTimelnterval property when multiple or optional intervals apply, e.g. opening
hours of a location. Differentiation of days is through the has Day property to
the OWL Time class Days of Week, shown here with its set of instances.
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Timelnterval

Bl startTime : xsd:time [1..1]
B endTime : xsd:time [1..1]
B duration : xsd:duration [1..1]

hasTimelnterval [0..¥]

rdfs:Class

— P Monday

hasDay [0..*] — @ Tuesday

— 4p Wednesday

time:DayOfWeek ’erdf;type 4  Thursday
— @ Friday
— & Saturday

— & Sunday

Figure 4.12: Schema for Time Interval and Days of Week.

4.5 Concepts from the Physical World

In this section there will be discussion of the specific data concepts that have
been identified to allow the general components of the framework to consistently
interact, as previously discussed (Section. Figure shows the transmission
of these data concepts between the general module components.

It is not intended that the described concepts are definitive and instead will
be extended or supplemented in the knowledge-base according to the needs of the
user and the selected modules, as supported by the AAA principle (Section |4.2.1]).
Throughout this section there are illustrative examples of how these concepts
can be extended, but have not been included in the core schema. Many of these

illustrative examples have been applied in the prototype scenario design discussed
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in Chapter [7]

Travel Demand Model

A 4

Travel Diaries Activity Pattern Feedback &
L UL LTI LTI Generzation

Leaming

Route
Demographics —b{ Population Synthesis 3 [ F'y

Knowledge-Base Construction

Location
Scheduling Trip Planning Mode

Network Routing

Spatial Allocation

Traffic Simulater
Interface

Individual Classification &
Linking

Network Conversion &
Land Use Relations

Network Supply

Knowledge-Base 1

- I
Road Network L RDF SPARQL SPIN Extensions & Reasoners ’J
: sy [ RDF Data |
Key: batz Import Data | Module Graphstore/s) | 21
Concgr 1 TP T N0 L scheme |

Figure 4.13: Diagram of main components and schema data concepts related to
the physical world.

4.5.1 Person

The purpose of transportation is the movement of people and goods [11]. Cur-
rently all transportation of goods by freight and movement of people by vehicle
or personal locomotion requires human oversight and control. Therefore, both
the demand and supply of transportation are generated by people.

In an activity-based modelling perspective, people generate transportation
demand as a consequence of undertaking activities at spatially separate locations.
Activities undertaken at the same location do not require movement, or at least
not a meaningful quantity to model, and therefore do not generate demand.

The transportation supply required to satisfy this demand, either through
personal means or accessing a service, produces the physical manifestation of
transport, i.e. traffic. Maximising the efficiency of transport supply is the primary
focus of policy decisions and interventions, but are downstream actions of activity-

based modelling. Therefore, the primary focus is upon the individual person as
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the originator of the transportation demand.

TravelGroup

hasMember [1..*]

i

Person

Figure 4.14: Schema of Person and Travel Group.

Figure shows the class of Person and its formation into groups through
the Travel Group. This has been placed in the People domain (Figure . Each
person has a set of characteristics which describe them and would typically be
modelled as data properties. However, there are no required characteristics in
the schema and instead these are incorporated by the user extending the schema
according to the data available and selected modules.

In a transport modelling context, a Person can be defined by a wide variety
of characteristics, including age, sex, income, possession of driving licence and
vehicle ownership [111-113], and are typically drawn from census information
[114]. The census data must be converted for use in activity-based models and
traffic simulators through a Population Synthesis process to convert aggregate
data into a disaggregate set of persons.

The characteristics themselves can also be aggregate or disaggregate values.
Figure [4.15|shows alternative representations of the same characteristics with use
of aggregate groups using object properties (left) and disaggregate values using
a mix of object and data properties (right). The disaggregate values could be
represented using only data properties, but in some cases this would present a
poor modelling approach that is prone to error, e.g. using string data values
rather than individuals.

The selected modelling of the characteristics will be dependent on available
data, techniques and models. This highlights a practical difficulty in defining a
definitive schema, which itemises all object and data properties, for the travel
demand and transport simulation domain. In one model an assumption that all

Persons have only a single employment would be valid, but this is not the case
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Person Person
B ageRange : AgeRange [1..1] mm age : xsdinteger [1..1]
B drivinglicence : DrivinglicenceStatus [1..1] B drivingLicence : xsd:boolean [1..1]
mm distanceTravelledToWork : DistanceRange [1..1] i distanceTravelledToWork : xsd:decimal [1..1]
mm gender : Gender [1..1]  gender: Gender [1..1]
B highestQualification : HighQualification [1..1] m levelOfHighe stQualification : xsd:integer [1..1]
B incomeBand : IncomeBand [1..1] W income : xsd:decimal [1..1]
B livingArrangements : LivingArrangements [1..1] B livingArrangements : LivingArrangements [1..1]
mm methodOfTravelToWork : Mode [1..1] mm methodOfTravelToWork : Mode [1..1]
m ownedOfCarsAndVans : CarsAndVanRange [1..1] m numberOfCarsAndVans : xsd:integer [1..1]
mm relationshipToHousehol dReferencePerson : RelationHRP [1..1] mm relationshipToHouseholdReferencePerson : RelationHRP [1..1]

Figure 4.15: Diagram of example extension to the Person class showing alternative
representations of the same characteristics.

in real-world data and so not all potential models.

Certain person data characteristics, e.g. vehicle ownership, home size and
employment type, must be transformed and aligned with other contextual infor-
mation to provide relations through object properties to other individuals and
concepts, e.g. ownership of a car requires instantiating a car individual in the
knowledge-base, typically during the Knowledge-Base Construction stage (Sec-
tion . These individuals and concepts will in turn have their own character-
istics and relations.

The significance and relevance of characteristics and relations will vary based
upon the context and design of implemented models. For example, in the context
of network routing the age of a person as a passenger in a car is not relevant.
When considering driving a car then age is relevant as children should not be
driving. In another context, other characteristics, e.g. holding a vehicle driving
licence, can imply that a person has an appropriate age and therefore the age
characteristic may not be required. When modelling using public transport the
age can be relevant as pricing policies can be age based. The C'O, emissions of a
vehicle may not be relevant when examining the pricing structure of a toll bridge.

As outlined previously, seeking to stipulate the precise characteristics of per-
sons in the schema as data and object properties is not practical. Therefore, ex-
plicit characteristics are not asserted in the schema and instead can be determined
by the user and the particular implemented modules they are using. However,
applying the proposed approach to construct a Semantic Web knowledge-base al-
lows this wide range of data to be modelled and available for general use through
SPARQL queries. The required data can be selectively retrieved according to the

context and removing the need to define fixed interfaces that pass data between
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stages. The concept of the Person can be extended with further characteristics,
e.g. familial relationships, by additional domain vocabularies [115, [116] or the

user’s own schema.

4.5.2 Travel Group

Humans are social animals who live in organised groups to cooperate, share re-
sources and coordinate their activities. This is captured broadly in Figure by
the Organisations domain. The typical organisational unit of persons in popula-
tion and transport modelling are households |84} [114]. Scheduling of activities are
coordinated between persons in the household to ensure that they can be under-
taken together or that each person can undertake their activity when resources
are limited [9], e.g. a parent escorting a child to an activity or families that own
a single car. The notion of a household is not limited to a family, but applied
more broadly to the sharing of facilities inside a home [117].

In a wider context, people organise into groups for other activities. This can
include commercial organisations, but within these organisations there may be
multiple sub-groups based on geographic or organisational constraints. Mem-
bers of car-sharing or bike hire schemes when people can hire vehicles for short
term periods are also organisations. Each of these groups will have different
behavioural dynamics to influence scheduling; ranging from the tightly coupled
relationship between parent and young child to a loose association of common
interest. Therefore, there is a need to group persons together, but there is a
diversity in how the groups will behave.

This is modelled in the schema by the Travel Group which forms a base
class, from which the user can create sub-classes as required, and has members of
individual Persons. The concept of the Travel Group can be enriched with further
information, e.g. roles, organisational units or associated locations, by additional
domain vocabularies [118, [119]. However, these concepts are not essential to

travel demand modelling and so have not been included.
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4.5.3 Mode

A person can travel between places using a variety of modes of transport and a
single trip could incorporate switching between modes for different stages. These
modes can include privately owned vehicles or the use of public transit, e.g.
buses and trains. A set of modes not yet found frequently in travel demand
modelling and traffic simulation literature are the service modes of taxi and pick-
up services, which are gaining increasing prevalence with smart-phone apps able
to conveniently request and pay for usage, along with car-sharing and lift-sharing
schemes [57]. This concept of alternative travel methods positions Mode within
the Network Infrastructure domain in Figure [£.7 The usage of a mode has

implications for its availability, accessibility and utility. For example:

e Public transit only being available at a certain frequency and periods of the

day.

e Public transit is accessible only at the location of connections to the service,

i.e. bus stops and train stations.

e (Cars accessibility is determined by its location, e.g. at home when at work,

destination parking or usage by other members of the group.

e The utility of a mode can be influenced by the speed of travel, route re-

quirements, financial cost and the weather, e.g. raining while cycling.

The mode of transport incorporates a range of factors and concepts which can
be defined as data properties. In the traffic simulation stage the mode of vehicles
is used to restrict access along edges and apply turning restrictions at junctions.
It is also used to impose the legal speed limit that the general class of vehicles
should not exceed, which is distinct from the speed an individual vehicle can
achieve and is a feature of some simulators [46]. This legal speed limit informs
the estimation of the best-case travel times for routes discussed later (Section
4.6.4]).

It has been discussed previously (Section that the OWL2 language re-

quires that the subject of a triple must be an individual and object of a triple
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must be an individual or a literal, except for the key rdf:type property. There-
fore, a class of Mode is defined for which the user’s choice of modes of transport
is instantiated as individuals. These individuals can then have property relations
with individuals from other classes to ensure consistency and re-use. The alterna-
tive design would be to define mode as the classes into which vehicles and people
are placed, which would prevent the additional attribute properties being utilised
and confusingly suggest a person is a mode of transport rather than a person has
a mode of transport.

The additional properties provide an additional consideration during the mod-
elling process. A user may wish to explore different characteristic values to in-
vestigate their impact and influence across different investigations. These Mode
values would either need replacing for each investigation, have multiple variant
properties with the current version selected or have the whole knowledge-base
replicated.

The adopted approach is to define a Mode Definition concept to form an N-
ary relation (Section for the mode’s characteristic values as illustrated in
Figure[4.16] This definition can be associated with one or more scenarios (Section
and so re-used as required. Therefore, only the Travel Scenario needs to
be selected to obtain the relevant parameters for the whole scenario. Multiple
scenarios can be present in the knowledge-base simultaneously allowing them to
be retained as a record of their defined values and also re-used.

The UK Census 2011 [13] identifies more detailed modes of transport for
travelling to work by commuters as well as highlighting that 5% of the working
population are based at home. These are detailed below to illustrate the breath

of modes that a travel model and traffic simulator may seek to model:

Driving a car or van

Passenger in a car or van

On foot (walk)

e Bus, minibus or coach

Train (rail)
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TravelScenario

hasModeDefinition [0..¥]

l

ModeDefinition

B maxSpeed : xsd:decimal [1..1]
mm fixedCost : xsd:decimal [1..1]
mm variableCost : xsd:decimal [1..1]

mode [1..1]

Mode

Figure 4.16: Schema for Mode and Mode Definition.

Underground, metro, light rail or tram (rail)

Bicycle

Work mainly at or from home

e Taxi

Motorcycle, scooter or moped

Other method of travel to work

In Figure 4.17| an example Mode class hierarchy is shown with individual
instances to show a possible organisation of the concepts discussed previously. A
special individual of AnyMode is defined for convenience to allow access for all
the defined modes when determining access through network infrastructure, e.g.

generating routes or during traffic simulation.

Personal Mode

A further area of consideration is the personal locomotion of an individual. It has
previously been discussed (Section |1.2]) that travel demand and traffic simulation

has focused upon vehicle modes with neglect of pedestrian modes e.g. MATSim
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‘ Carshare
1 ‘ Bus
’ Taxi
. ServiceMode FE—rdf:type— ] ’ Tram
. Liftshare
— 0 Train
‘ Autonomousvehicle
&
— PublicMode rdf type
Mode — ’ Car
1\ ’7
| t PrivateMode rdftyp ’Motn:rc',.rcle
|
rdf:L:\,'pE L
| ‘ Bicycle
|____l____|
|’ Any Mode |
| v I

__________ ’ Walking
— PersonalMode %rdf;t\,lp?—[
’ WheelChair

— . LightG oodsWehicle

Loy FreightMode p——rdftype—

— ’ HeavyGoodsVehicle

Figure 4.17: Diagram of example Mode class hierarchy with individuals.

simulator does not model bidirectional routing of pedestrians and instead
relies upon teleportation between places. This is also illustrated in the SUMO
simulator [46] where pedestrians are treated as a type of Vehicle, an inconsistency
with the definition of vehicles in the following section (Section [£.5.4). In both
simulators the Mode determines the access through the transport network.

In the same way as vehicles from different manufacturers have varying char-
acteristics so does the mobility of individual people. This mobility includes the
speed at which the person travels but also the routes which are accessible. A
modelling perspective will require some aggregation yet there are identifiable
sub-groups that may require specific modelling. Elderly and disabled people may
not be able to access flights of stairs or may use mobility aides, e.g. wheelchairs
or mobility scooters, which cannot handle inclines. Therefore, modelling the
pedestrian phase of a Person can lead to distinctions between personal modes.

In addition, not all modelled Persons may be required to undertake pedestrian
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stages, e.g. a freight delivery driver will not walk between delivery activities, but
would instead be expected to move the vehicle.

It should be noted that explicit modelling for the use of mobility aides and
their restricted access is not present in the SUMO [46] and MATSim [32] traffic
simulators. Instead only a generic pedestrian class is defined. This shortcoming
has been notified to the SUMO developers and has been adopted as a future

enhancement (see Appendix A).

4.5.4 Vehicle

Persons can reduce travel times and improve efficiency of moving goods by util-
ising vehicles. The definition of a vehicle is a machine which transports people
or cargo. Therefore, it includes cars, trucks, buses, trains and ferries and also
bicycles [120]. Therefore, a vehicle is a broad definition that encompasses road
and non-road usages that can be motorised and non-motorised. This is presented
in Figure [£.7 by the domain of Vehicles.

Accessibility of vehicles can also vary with privately owned cars, car-sharing,
car-hire or utilisation of taxi services, while public transit vehicles are only avail-
able at fixed geographic locations. Therefore, numerous sub-classes can be used
to distinguish between different types of vehicles. This continues when consid-
ering the manufacturer, design and performance of a vehicle leading to further
sub-classifications and distinctions.

The availability, accessibility and performance of a vehicle are influential in
the modelling and simulation of the transport environment. An individual ve-
hicle could therefore belong to multiple classes and be described by a range of
characteristics, including physical dimensions, seating capacity, speed and C' O,
emissions. A further key characteristic is the mode to which the vehicle be-
longs and there is a strong relationship between mode and vehicle. The physical
construction of a Vehicle is separate to any autonomous software or emerging
technology that may control it (Section .

Following the approach described previously (Section |4.5.3|) a Vehicle Defini-
tion is associated with the scenario and relevant individual Vehicles through a

Vehicle Type as shown in Figure [4.18] This has the benefit of removing repeti-
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tion of common characteristics and allowing multiple scenarios with their varying
values to exist alongside each other in the knowledge-base.

These characteristics can include simulation specific parameters, e.g. vehicle
max speed, acceleration and deceleration, which may be varied for different road
conditions. This use of Vehicle Type is in keeping with the modelling approaches

of SUMO and MATSim simulators where common values are re-used.

TravelScenario

hasVehicleDefinition [0..¥]

!

VehicleDefinition

mm width : xsd:decimal [1..1]

m length : xsd:decimal [1..1]

B passengerCapacity : xsd:integer [1..1]
mm vehicleMaxSpeed : xsd:decimal [0..1]
m acceleration : xsd:decimal [0..1]

mm deceleration : xsd:decimal [0..1]

vehicleType [1..1]

Vehicle ——hasVehicleType [1..1]— VehicleType

W initialLocation : Location [1..1]

_ providesMode [1..1]
hasMode [1..1]

Figure 4.18: Schema for Vehicle and Vehicle Definition.

There is the potential that an input dataset has individual vehicles, number-
ing in the thousands or more, with each having their own characteristics. This
presents an issue as there is a mismatch between the individual approach of
the dataset and the schema’s Vehicle Definition just described. Transformation,
back and forth, between the characteristics being defined on individual vehicles
and gathered together in the Vehicle Definition can be achieved using SPARQL
queries.

An example Vehicle class hierarchy is shown in Figure[d.19 which distinguishes

between cars and motorcycles. The Car Vehicle class has been further sub-classed
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to distinguish between large and small vehicles, which each have individuals.
These individuals would have their own Vehicle Type property, which in turn has

a Vehicle Definition for the scenario.

Vehicle
|
CarVehicle MotorcycleVehicle
[ |
SmallCarVehicle LargeCarVehicle
’[‘ T rdf:type
rdf:type rdf:type
— I

4 carA 4 carB 4 carC 4) Motorcycle A

Figure 4.19: Diagram of example Vehicle class hierarchy with individuals.

Vehicle Route

The output of the travel demand stage is a schedule of activities and the travel
stages required to travel between them. The traffic simulation stage requires
routing information for each of the travel stages to identify where a person, and
potentially their vehicle, will travel. In the case of the SUMO simulator [40]
a listing needs to be provided of each vehicle’s complete route, i.e. excluding
any pedestrian stages. This information is also required for vehicle’s operating
upon public transit lines and may also be useful for analysis of vehicle travel in
a scenario, e.g. planned versus actual route.

Therefore, a Vehicle Route concept has been incorporated as shown in Figure
[4.20]so that this information can be included in the knowledge-base during sched-
ule construction or produced once scheduling is complete. The Vehicle Route is
attached to the Activity & Travel Schedule for which it has been generated (Sec-
tion 1.6.3l Tt identifies the vehicle with its start and end location and access
points. The detail about the route is provided as a delimited string of Road Link

and Road Node URIs. This provides a compact form of expressing an ordered list
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that can be split when required and used for searching additional details. This
removes the need to create and search the additional triples of the Ordered List
for information that may only be required by certain modules and simplifies the

process of passing the list of information between modules.

VehicleRoute

m usingVehide : Vehicle [1..1]

W startlLocation : Location [1..1]
B endLocation : Location [1..1]
I startPoint : AccessPoint [1..1]
mm endPoint : AccessPoint [1..1]
I viaRoadLinks : xsd:string [1..1]
mm viaRoadNodes : xsd:string [1..1]

Figure 4.20: Schema for Vehicle Route.

4.5.5 Transit Line

The Vehicle concept encompasses a wide range of purposes and uses. A distinct
purpose is the provision of public transit, also know as public transport, to trans-
port passengers according to a published route and timetable. These transit lines
are fulfilled by individual vehicles travelling along the route utilising the road
network or dedicated infrastructure, e.g. bus lanes or railway lines. The route
consists of a series of planned transfer locations, which may be on road, dedicated
waiting areas or within stations, for passengers to board or alight. Adherence to
the timings of the timetable, to compensate for traffic and other delays, will in-
crease and decrease the period of waiting at each transfer point to ensure that
the vehicle departs each transfer at the correct time.

Each transit line provides a specific mode of public transit and one or more
transit lines may exist for a mode. This positions Transit Line within the Network
Infrastructure domain in Figure [£.7] as it does not relate to the actual vehicles
but the infrastructure provided. Availability of transit lines can vary by time
periods and days with some services not being available in evenings or weekends.
Variation in frequency according to time and day can be captured by multiple
transit lines. The transit lines are provided by transit operators, which provide

one or more transit lines potentially across multiple modes of transport, and
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can be private or public sector organisations. Therefore, there is close linkages
between Transit Line and the Vehicles and Organisations domains.

Figure shows the schema developed for Transit Lines grouped by Transit
Operators. Each Transit Line is described in more detail by a Transit Line
Timetable and Transit Line Route with each being ordered lists to preserve their
organisation. The Transit Line Timetable captures the timetabling information
published for the public to plan their journeys by describing the transfer points
by their spatial Location and departure time. The Transit Line Route contains
the information required during travel demand generation and traffic simulation
by using the stage between transfers to estimate route and travel time. This
information is derived by applying the general timetable to specific road network
infrastructure. The simulation of these transit lines with vehicles can be abstract
or instantiated. Therefore, the transit vehicle property to create a relation to

specific vehicles is optional.

TransitOperator

providesTransitLine [1..¥]

!

TransitLine —transitVehicle [0..*]
mm hasTimelnterval : Timelnterval [1..#] ]
B hasDay : time:DayOfWeek [1..%] Vehicle
[
transitMode [1..1]
hasTimetable [1..1] i hasRoute [1..1]
Mode

TransitLineTimetabIe-—E% olo:OrderedList <+—— TransitLineRoute
[ I

olo:slot [0..%] olo:slot [0..%]
i W
olo:Slot olo:Slot
[ I
olozitem [1..1] olozitem [1..1]
W i
TransitLineTransfer StageEstimate

B transferDepartureTime : xsd:time [1..1]
mm transferLocation : Location [1..1]
mm transferAccessPoint : AccessPoint [1..1]

Figure 4.21: Schema for Transit Line.
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In an abstract approach the point of access offers an entry and exit point
into the environment without consideration of the vehicle, i.e. the vehicle always
arrives as timetabled at the airport, light rail, train or ferry terminal. Persons
arriving at the point of access no longer travel in the simulation and have con-
cluded their travel while those departing from the point of access can only do so
at the timings permitted by the timetable.

Alternatively, the instantiated approach has individual vehicles fulfilling the
transit line by moving through the simulation and interacting with other vehicles
and persons, e.g. a bus driving on the road or a train travelling through railway
crossings. This can be applied to all the modes described previously and is a
feature of the traffic simulator. Therefore, the detail associated with a transit line
varies between the travel demand stage (concerned with the transit line timetable)
and the traffic simulation stage (concerned with vehicle’s physical interactions)

which can be reliant upon mode, network infrastructure and simulation design.

4.5.6 Activity

Every activity undertaken by a person is a unique occurrence that is described by
temporal and geospatial characteristics. These characteristics give the activity
a time, place and duration. Here the term for an Activity has been applied
to the more general notion of the potential to perform an activity at a specific
location and during specific time periods. All activities cannot be performed
at all locations and at all times and therefore differentiation is required. Fach
Activity belongs to an aggregating Activity Type.

The unique planned event of a Person is expressed in the Activity Interval
of the Activity & Travel Schedule discussed later in Section The Activity,
Activity Type and Activity Priority are positioned within the Activities domain
in Figure [4.7]

In Figure [4.22| each Activity is defined by one or more effective time periods
and effective days. These could define narrow or wide ranging time periods, such
as opening hours when a shopper can shop in a store; a student can attend a
library to study; or the daylight hours when a jogger can exercise in a park. The

effective times can be split into morning and afternoon time periods, or any other
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Activity —effectiveArea [0..¥]— GeographicArea

B hasTimelnterval : Timelnterval [1..%]
mm hasDay : time:DayOfWeek [1..%]

hasActivityType [1..1]

ActivityType hasActivityPriority [1..1]—— ActivityPriority

Figure 4.22: Schema of Activity, Activity Type and Activity Priority.

arbitrary division, to reflect the availability as required e.g. lunchtime closures.
In the case of variation between days in effective times, e.g. weekend and weekday
opening hours, then different activities would need to be created.

This allows scenarios to variate temporally and select alternative Activities
for different outcomes. Exploration of seasonal factors, e.g. months or holiday
periods, would require extension with additional properties. The spatial location
of an Activity is defined by its relationship to Locations and is discussed later
(Section [4.5.7).

The effectiveness of an Activity can also vary spatially. Attendance of children
at a school may be limited by its catchment area. Large retail shopping centres
have an influence on a greater area than small shops. This can be modelled in
the knowledge-base by an optional relation with an abstract Geographic Area,
discussed later in Section 5.8

It has previously been discussed (Section that human activity covers a
wide range of undertakings that require broad classification. The specification of
the entire classification is impractical for the core schema. Instead it is anticipated
that users will be able to define their own categories and related characteristics
through parameters and relations in the knowledge-base. However, the activities
still have general groupings that need to be recognised.

The application of a class hierarchy when those classes may themselves have
additional properties or used objects in triple statements can be incompatible with
certain schema languages (Section . Therefore, the composition approach
is applied to the Activity concept, in keeping with other concepts, where each

instance has a property to an Activity Type that allows identification of related
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instances.

This Activity Type is used as a generic reference to identify Activities as part
of Activity Patterns discussed later (Section . Otherwise Activity Patterns
would have to identify all the relevant Activity instances, which would be burden-
some to create and manage. An extending schema could apply a class hierarchy
to assist in organisation but it would not be generally suitable. Figure pro-
vides illustrative examples of Activity Types that a user or model may use to

extend the core schema.

At Home
Activity Type
Employment
Activity Type

Education
Activity Type

Leisure
Activity Type
Personal Business
Activity Type
Retail
Activity Type

Activity Type =—rdf:type

L 21K 21K 21K 21K 21K 4

Figure 4.23: Diagram of example Activity Types.

The process of constructing a schedule reflects a series of trade off decisions.
The intended activity start time, end time or both could be impacted by pre-
vious and following activities, longer travel times between activities or delays
during travel. When scheduling within a household, or other travel group, the
co-ordination of activities has to reconcile satisfying the activities and travel of
other members. This has been modelled in travel demand models through as-
signing priorities to activities [9].

Those activities with high priorities may be considered inviolate while lower
priority activities can be abandoned or curtailed. Activities with high priority
may be placed in the schedule first with lower priority activities fitted into avail-
able gaps. The approach adopted depends upon the scheduling strategy with

parameters being specified for minimum duration or tolerance for changes. This
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general concept of activity priority is reflected in the Figure |4.22| schema by each
Activity Type having an Activity Priority.

This places the modelling assumption that all activities of the same type have
the same priority, e.g. all education is mandatory. Variation of this assumption
could be achieved on an individual activity or person basis within a knowledge-
base and would reflect greater individualisation in choices, but it represents a
level of modelling complexity beyond current examples. The specific parameters
for a particular investigative scenario or model are captured as part of the Travel
Scenario discussed in Section Therefore, data about priority parameters
would also be modelled there to allow comparison between different values. Figure
shows example instances of the Activity Priority found in existing models
[9].

4 MandatoryPriority

ActivtyPriority <—rdf:type ‘DiscretionarvPrioritv

‘MaintenancePrinritv

‘ AtHomePriority

Figure 4.24: Diagram of example Activity Priorities.

The three associated classes of Activity, Activity Type and Activity Priority are
designed to allow multiple instances to be present at the same physical Location.
Figure [4.25|shows an example of the data within a knowledge-base for a shopping
location that provides both retail and employment activities. These activities
have different types and effective time periods. The scheduling of two Persons
with interest in the different Activity Types would draw upon the different sets

of data relating to the location to produce differing scheduling outcomes.
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4 Retail Activity Type }—hasActivityPrioritya{ 4 Discretionary Priority ‘

hasDay | 4 Monday
hasDay >-|] 4@ Tuesday

Shop A |__ .
<& Retail Activity hasTimelnterval—> <€

hasActivityType

Shop A Retall
Activity Morning Time Interval
W startTime : “09:00" Mxsd:time

mm endTime : “12:00” Mxsd:time
mm duration : “PT3H"Mxsd:duration

provideActivity <& Shop A Retail

Activity Afternoon Time Interval
B startTime : “13:00"Mysd :time
~—hasTimelnterval— mm endTime : “17:00"Axsd:time

4 Shop A Locati }7 B duration : “PT4H"Mxsd:duration
op A Location

provideActivity hasDay @ Vonday
hasDay % 4 Tuesday

3 Shop A |——hasTimeInter\.raI——“- <P . .ShODA E.mplgyme nt

Employment Activity ‘
B startTime : “08:30" Mysd:time
mm endTime : “12:00" Mxsd:time
B duration : “PT3H30M"” " xsd:duration

’ Shop A Employment
Activity Afternoon Time Interval
W startTime : “13:00"Mysd :time
~—hasTimelnterval— mm endTime : “17:30" A xsd:time
B duration : “PT4H30M"”*xsd:duration

hasActivity Type

4 Employment Activity Type |—hasActivityPrion'tye{ 4 Mandatory Priority

Figure 4.25: Diagram of example data model for a shop providing retail and
employment activities.

4.5.7 Location

The activities undertaken by people take place at different physical locations.
The necessity to travel between these locations is the source of travel demand.
These locations can be where services are provided to undertake the types of
activity, e.g. education or retail, or where an type of activity is executed by the
person, e.g. employment or exercise. Therefore, locations represent any point
of interest in the physical environment. This can include buildings, transport
infrastructure, e.g. bus stops and motorway links, and outdoor spaces. This is

represented by the Location concept being positioned within the Spatial domain
in Figure [4.7]
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These Locations can provide multiple activities and type of activities, e.g. a
school provides education and employment. Figure [4.26| shows the schema for
Location classes and their relationship to Activity and Activity Type. The rela-
tionship to Activity Type provides a direct relationship for convenience in retriev-
ing data based on what can be inferred by following the relation to the Activity
taking place at the Location. Therefore, the Spatial and Activities domains are
connected in Figure [4.7]

geo:Feature
A
Location —
providesActivityType [0..%]
providesActivity [0..%] ActivityType
hasActivityType [1..1]
Activity —

Figure 4.26: Schema for Location.

Further usage of the Location concept can be seen through the term reference
location used in travel demand models and which has been defined previously
(Section as the location from which a person starts and ends their journey
[10]. The Location concept is also necessary for indicating where a Vehicle is
located at the start, during and end of the travel demand process to ensure
consistency such as returning a vehicle for future use, e.g. at the reference location
or hire facility, or picking-up a vehicle after performing a sub-tour by a different
mode, e.g. driving to work, walking to shopping and driving home. Figure
shows an example of how a user can sub-class the general Location class to
organise the buildings and places in the knowledge-base.

The physical dimensions of a location can vary depending upon the application
context, e.g. property house prices can be referenced using Global Positioning
System (GPS) coordinates, but land ownership requires highly detailed survey of
the boundary. Therefore, there can be multiple descriptions of a location, which

are accurate and precise in the appropriate context. This means that there is
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o Factory
House
— Freight Depot
- Residential
Apartment
= Office
= Commercial = Retail
Lesiure
Location < Municipal
Education | Car Park
Health Care — Train Station
- Transport = Motorway Link
— Park & Ride
- Freight Delivery
— Bus Depot
— Taxi Rank

Figure 4.27: Diagram of example Location class hierarchy.

close, but distinct relationship between the Spatial and Geospatial domains in
Figure [£.7

To represent the varying application contexts, geospatial standards
have developed the concept of a Feature which can be represented by multiple
Geometry. These Geometry can vary in level of detail, coordinate reference sys-
tem or serialisation etc. The modelling of geospatial concepts were discussed in
further detail previously (Section {4.4.1)).

Different stages of the modelling process may require different levels of detail
about a Location, e.g. when constructing a schedule the general proximity of a
location is required using straight line distance, but determining routing between
locations needs consideration of the relative positioning of a Location to the
transport infrastructure. It should also be noted that only during the traffic
simulator stage, when the physical interaction of persons and vehicles is being
simulated, is it required to have high fidelity tracking of spatial coordinates, e.g.

second or sub-second detail.
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In the general context of travel demand the focus is upon the points of access
between a location and the transport network. Fine grained representation of
the internal layout of a building and an individual’s movements inside during an
activity are not required to be modelled. The Person is simply deemed to be at
or within the Location for the period of the Activity. However, the representation

of the building’s external shape may be useful for visualisation purposes.

Location

|
hasAccessPoint : sf:Point [1..%]
J/ accessMode [0..%]

Mode

AccessPoint

accessTransitLine [0..¥]

sf:Point TransitLine

;

geo:Geometry

Figure 4.28: Schema for Access Point.

The points of access to enter the location, termed Access Point in the schema,
provide a restriction on the general shape for identifying when the Person has
arrived at the Location, see Figure|4.28, This permits more specific determination
about the closest street or pathway when generating routes than provided by the
general polygon boundary of a location. This also allows some consideration of
physical barriers, e.g. fencing and walls, without having to explicitly model them.

Figure[4.29[shows an example residential area of houses. Each house is defined
by an external boundary with road access. A person (black circle) travelling along
the road is seeking to reach the farthest house via the shortest possible path.
When only the boundary of the target location is considered (dotted line) then
the path follows the shortest distance possible along the road before exiting to
travel through the boundary of another house.

When an access point is provided the path follows the road to the entrance
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a7 |

Figure 4.29: Diagram of alternative routes to reach a house location following
roads with (dashed line) and without (dotted line) considering an access point
(black square).

of the house and only travels a short distance outside of the road network and
without crossing any other boundaries. In both cases the travel time upon exiting
the road network is likely not to be modelled by a traffic simulator, but the latter
case provides a more faithful representation of the desired behaviour and reduces
errors.

There may be multiple access points to a location at different coordinates
around, within or near its exterior boundary, e.g. shopping centres can have
multiple entrances or points of access. These access points may vary in the
accessibility available for different modes of transport. This variation could be
one way streets for cars, which are bidirectional for pedestrians, or pedestrian
only zones in city centres or residential pathways between houses. There may
also be issues related to the presence of stairs or steep inclines which render the
entrance inaccessible to wheelchair users. Further properties or sub-classing of
the Access Point would allow differentiating between public and private access
points to restrict the Person or Vehicle based on its characteristics, e.g. residents
of a local area or employees of an organisation.

Figure[4.30]shows an example residential area of houses which have road access

and are separated by a footpath between the houses. An entrance is present at the
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front (black square) of the house for cars and pedestrians but the rear entrance
(grey square) is pedestrian only. A person (black circle) travelling along the road

is seeking to reach the farthest house via the shortest possible path.

—— — — — — — — — —a} |

A
|

4

Figure 4.30: Diagram of alternative routes to reach a house location following
roads and pathways using car (dashed line) and pedestrian (dotted line) modes
via general (black square) and pedestrian only (grey square) access points.

When travelling by car the route must follow the road to the front of the house
(dashed line), but when travelling as a pedestrian there is a shorter route along
the pathway to reach the rear of the house (dotted line). The accessibility of
an access point can therefore influence the selected route and mode of transport
chosen by the person. The presence of multiple access points can also increase
the number of potential routes to reach a destination.

This incorporation of the mode of transport also permits transfer points to be
defined and identified where facilities, e.g. car parking or on-street parking, are
provided for changing between modes. In urban scenarios, stopping at a location
can be restricted, due to narrow streets or to prevent congestion, resulting in
the unavailability of parking for vehicles even though the road network outside
the location is accessible. Not explicitly modelling this access can result in cars
being routed directly to the location, making the car a favourable choice, when
in reality a person would have to park a distance away and travel back to the

location, potentially making a nearby bus stop more favourable.
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The final concept of access is the specific public transit lines that can be
accessed by any person through the access point. Since mode of transport in-
corporates the general concept of public transit, e.g. bus, train etc., there is a
need to give an indication of the specific transit service accessible at the location.
Otherwise all locations accessed by a bus mode would provide a service to all
other locations with a bus mode.

The physical dimensions and accessibility are not the only characteristics re-
lated to locations in the real-world, but are among the most relevant to travel
demand modelling. Additional characteristics applied by a user or model could
include the capacity, opening times or postal address as described by public vo-
cabularies [122] or detailed physical building descriptions [64].

The capacity of a location to provide an activity to an individual and its
attractiveness or popularity in providing those activities have also been considered
in location choice models [32]. The popularity and utilisation of a location vary
temporally by day and time during the day while the capacity would typically be
a global value that is consistent. Figure shows the schema for representing
these factors as ordered lists for the different time slots through a day or days

with an arbitrary frequency or number of slots.

Location

I capacity : xsd:nonNegativelnteger [1..1]

T
hasPopularity
L'

LocationPopularity olo:slot olo:Slot
T * I
B hasDay : time:DayOfWeek [1..%] olositem
A

LocationPopularitySlot ‘
olo:OrderedList

mm utilisation : xsd:nonNegativelnteger [1..1]
B attraction : xsd:decimal [1..1]

Timelnterval‘

Figure 4.31: Schema for Location Popularity.
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4.5.8 Geographic Area

A distinction has been made between Locations, which are physically manifest in
the environment, and abstract geographic areas that are used to group locations
or define geographic concepts. These Geographic Areas, see Figure [£.32] can
include administrative concepts, e.g. local government areas, neighbourhoods,
postal delivery areas, electoral wards, school catchment areas and census zones,
or modelling concepts, e.g. retail attraction area, travel time boundaries, fare
pricing zones.

In all cases these are polygon areas that encompass an area of geography
rather than Locations which can be defined by points and polygons depending
upon the context. These areas of geography can also vary in level of detail,
coordinate reference systems and serialisation, so multiple cases may be defined.

The Geographic Area concept is positioned within the Spatial domain in Figure

%]

geo:Feature Activity
A
GeographicArea =—effectiveArea [0..%]

hasBoundary [0..¥]

‘ sf:Polygon

L

‘ geo:Geometry

Figure 4.32: Schema for Geographic Area.

4.5.9 Network Infrastructure

A vitally important aspect of traffic and travel demand modelling is the network

infrastructure. This defines the roadways, public transport routes and other in-
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frastructure, e.g. traffic lights, that people can use to travel between activities.
This is represented in Figure by the domain of Network Infrastructure. Road
network topology has typically been represented following a node (junction) and
edge (road/link) graph structure [32, |46, (63| [83], [123]. This graph structure forms
the basis for the RDF representation in Figure based upon INSPIRE con-
cepts [63], SUMO and MATSim simulator formats and the GeoSPARQL

standard [37].

RoadLinkType
RoadConnection W nationalSpeedLimit : xsd:decimal [1..1]
B fromlane : xsd:integer [1..1] m matsimFreespeedMultiplier : xsd:decimal [0..1] |
W tolane : xsd:integer [1..1] 1= matsimFlowCapacity : xsd:decimal [0..1] __ !

. dLink [1..1]
hasRoadConnection [0..%] toRoa .
| fromRoadLink [1..1] hasRoadUn‘kType [0.1]

RoadNetwork ‘
RoadLink

= hasCRS : CoordinateReferenceSystem [1..1] . :
m isleftHandDrive : xsd:boolean [1..1] L hasRoadLlink [1..*]->] B geo:hasGeometry : sf:LineString [1..¥]
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Figure 4.33: Schema for road network described as a graph structure of
links/edges and nodes.

The nodes are given spatial coordinates for their placement, while the edges
specify the connections between these nodes. The spatial structure is simplified
with nodes only being placed when features exist, e.g. edges joining at a junction
or changes in road condition. Therefore, the edge/node graph structure is an
abstract representation formed from Road Nodes and Road Links.

Detailed curvature of roads used for visualisation are represented as addi-
tional geometry properties through series of segments in line strings. Further
detail about the actual physical dimensions of a Road Link can be included, but
modelling and simulation is more focused upon the number of lanes to indicate
capacity than actual physical dimensions, with visualisations often applying fixed
lane widths.

To support this abstract representation the length of a Road Link is stated
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rather than being calculated as the straight line distance between nodes. The
edges themselves represent the centre line of a road way, but can vary in format
between being unidirectional or bidirectional. In unidirectional formats, the road
extends to one side of the centre line depending upon which side of the road
vehicles travel, i.e. left-hand or right-hand drive.

This means that a two-way road would be represented by two edges with
reversed start and end nodes. In bidirectional formats, the road extends on both
side of the centre line with a special property used to state that a road is one-
way. The unidirectional approach has been adopted here as it provides a directed
graph utilised in routing algorithms, e.g. Dijkstra, A-star.

Additional properties of the road link are the modes that are permitted or
not permitted from travelling along the road. General characteristics applicable
across Road Links are described in Road Link Types, following the design points
discussed in Section [4.2.4 This can include national speed limits and other
parameters, e.g. simulator specific values, that are invariant across scenarios.
Values that are varying between scenarios would be placed as Scenario Definitions
and selected for the required modules (Chapter |5)). Further definition, not
shown here, would be lane mode restrictions, e.g. bus, cycle or pedestrian only.

The connectivity through the network can also vary with turning restric-
tions from certain lanes not being permitted, e.g. no left turns or bus only left
turns. These are captured through explicit road connections between the lanes
of roads as Road Connections. These Road Node, Road Link and Road Con-
nection form the collection described by the Road Network. This Road Network
also describes the meta-data of the geospatial coordinate reference system, the
geographic bounds and the side of the road vehicles drive upon, i.e. left or right
hand drive.

Further detail is also available in source datasets to describe restrictions on
height, width, resident access, time period access and payload etc. However, the
utilised micro-simulators, where routing functionality currently typically reside,
do not incorporate this level of detail in their route planning (Section .
Therefore, there are additional concepts and detail that could be considered in
traffic modelling and micro-simulation, but are not currently being utilised.

Although the source datasets are highly detailed in describing the roadways
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there are certain gaps. The positioning of traffic lights are not publicly avail-
able and instead modellers have relied upon partnering local transport network
managers to provide this data. The corresponding phasing of these traffic lights
is also not widely published for public use. Therefore, micro-simulators, such as
SUMO, have provided heuristic algorithms to guess the location and phasing of
traffic lights. This represents a noticeable source of error and disconnect between
the simulated environment and real world conditions.

Traffic light phasing between and along priority and non-priority routes are
designed to have an impact on travel times and traffic congestion, which would not
be accurately represented. It would be straight forward to extend the schema to
incorporate the physical traffic light systems and phasing as part of the knowledge-
base using spatial concepts and the approach described for location popularity
(Section [4.5.7)).

Similarly, road signage for directing road users to key routes and locations is
not described in the datasets or included in routing algorithms. Instead metrics
for minimising cost, whether distance or travel time, are utilised. These signs can
influence the routing decisions of individuals during route planning and driving.

An additional gap in the datasets is the lack of local speed limits for specific
roads. Instead national speed limits must be applied based upon the type of road.
However, there can be substantial variation between the type of roads and the
permitted speed limits as determined by local authorities. Large multi-lane roads
in urban areas can have lower speed limits than small single-lane roads in rural
areas.

This again is a noticeable source of error as speed limits can double or triple in
value, with consequent reduction in travel times, depending upon road conditions
and local policies. Manual identification and correction of these anomalies be-
comes impractical in large scale scenarios; wastes user resources; and risks error.
Therefore, the proposed schema has potential to be expanded with more detailed

concepts, but there are practical issues in obtaining data to support the concepts.
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4.5.10 Goods

The demand for travel does not solely originate from the need to transport people,
but also the movement of goods (Section and is included in Figure by
the Goods domain. These goods are moved through complex supply chains from
point of manufacture or imported to commercial and retail customers. These
supply chains consist of multiple participants seeking to optimise the logistics of
transportation to ensure that deliveries and stock levels satisfy consumer demand.
The Artificial Societies class of travel demand modelling (Chapter [2)) seeks to
achieve highly detailed modelling of the real-world, which could incorporate these
demand and supply characteristics.

This level of detail is out of the scope for this work and therefore goods are not
specifically captured by the schema. Instead the approach has been to treat the
freight vehicles with their drivers and the freight companies at an abstract level
of being Persons and Travel Groups, which have their own behaviour character-
istics, but still seek to generate and follow schedules and routes like any other
transport user. The extensible nature of the knowledge-base (Section and
the proposed flexibility for selecting modules (Chapter [5) means that the more
detailed description of goods and their modelling could be developed for inclusion

in future work.

4.6 Concepts for Travel Demand Modelling

and Traffic Simulation

This section discusses those concepts that have been identified as necessary for the
transfer of data between modules and as part of the modelling process. These
are intended to be extended by modules as required by their own modelling
assumptions and design. These concepts are all placed in the Demand Modelling
& Simulation domain of Figure 4.7 The interaction of the principle concepts

between modules can be seen in Figure [4.34]
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Figure 4.34: Diagram of main components and schema data concepts for module
interactions.

4.6.1 Travel Scenario

A key objective of adopting the proposed framework is to allow greater compari-
son between alternative implementations and the exploration of variation within
those implementations. There are a range of parameters used by each imple-
mentation, which influence the resulting outcomes, e.g. discrete-choice model
coefficients. Similarly, there are parameters that vary between scenarios being
explored, e.g. start time, end time and day.

In contrast, there are concepts in the knowledge-base that are invariant over
the typical modelling time-frame of one-day, e.g. road network infrastructure and
population demographics. Therefore, there is a distinction between the temporary
data being applied for a particular scenario and the persistent data present for all
scenarios using that knowledge-base. Handling of changes over the longer term or
significant variations to the persistent data could be represented by the creation
of multiple knowledge-bases, e.g. multi-year development of land usage.

Figure presents the schema for the Travel Scenario, which is the central

concept for capturing the instance data of a scenario. It requires the day and

124



TravelScenario

B hasDay : time:DayOfWeek [1..1] | ; *
mm rdfs:subClassOf : Timelnterval [1..1] hasSce narloEvle nt [0..]

|

hasScenarioDefinition [1..%]

L Yoo

ScenarioDefinition : ScenarioEvent |

Figure 4.35: Schema for Travel Scenario.

time-period for the execution of the scenario as the focus is scheduling in the
short term time-frame of a day (Section [3.3)). It is then expected to be extended
by additional definitions utilised by the modules of the framework for which two
types have been identified.

Firstly, the Scenario Definition concept applies to those parameters which
apply throughout the scenario. Secondly, the Scenario Event describes parame-
ters that may influence behaviour or traffic dynamics for a specific time interval
or geographic area of the scenario, e.g. inclement weather, sport and cultural
events, road closures. Examples of these additional scenario parameters is shown
in Figure for several concepts that have been outlined previously. The main
definition of interest is modes and the parameters for maximum speed, often
utilised for routing, and costs, as part of trip choice selection. Other example
definitions include vehicle types, activity types, activity priorities and weather
events.

There is no constraint placed on the user as to the number and definition
of Modes through the Mode Definitions. These can distinguish between distinct
vehicle or travel types, but also variation within the types. For example, a user
can define multiple personal modes, e.g. walking and wheelchair, with different
characteristics to reflect varying speeds between age groups.

An example of three Travel Scenarios is shown in Figure [£.37 Each Travel
Scenario is defined with varying day and time interval properties along with three
Mode Definitions. One Travel Scenario utilises a different Mode Definition to
the other two Travel Scenarios for one Mode. This demonstrates the flexibility of

providing alternative parameters as data in the knowledge-base and then re-using
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Figure 4.36: Diagram of extended Travel Scenario definitions.

them for multiple scenarios.

Consistency between scenarios can be maintained as parameters can be ad-
justed in a definition and then applied across multiple Travel Scenarios. SPARQL
queries can be written with reference to retrieving Travel Scenarios and their pa-
rameters are then consistently selected without needing to modify any hard-coded
values.

The Travel Scenario itself provides a convenient unique reference through
its URI to describe the scenario. This allows placing the generated data and
results of executing the framework with the knowledge-base into a named graph.
This named graph can then be stored in the knowledge-base for later extraction,
removal or re-use without interference with the persistent data or parameters.
Therefore, the Travel Scenario provides both a reference to the configuration of
the scenario and the retention of results in the knowledge-base.

However, this approach would require repeated iterations of the same param-
eters to have multiple instances of a Travel Scenario, i.e. copies of the same data.

Alternatively, a different named graph for the results of each iteration can be
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s TravelScenarioA
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Figure 4.37: Diagram of example Travel Scenarios with Mode Definitions.

provided for the same Travel Scenario. This latter approach has been applied
using the Framework Configuration discussed in Chapter

The definition of Travel Scenarios enables multiple scenarios to be executed
upon the same knowledge-base, whether with repeating or varying parameters,
without interference. Repeated iterations, using the same Travel Scenario pa-
rameters, can also be utilised as part of learning in a feedback process.

The absence of parameters can also be used to control the scenario configura-
tion. For example, a Person may have a specified Mode in the knowledge-base,
but if the current Travel Scenario does not have the corresponding definition then
the Mode would not be utilised.

4.6.2 Activity Pattern

In an activity pattern approach, travel diary data is used to derive context-less
templates that describe a series of general activity types with non-continuous time
durations, see Figure [3.5] This is modelled by an Activity Pattern that consists

of a time ordered list of items to represent a whole day of activities, as illustrated
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in Figure [4.38

appliesToPersonCharacteristics [1..1]
Vi
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Figure 4.38: Schema for activity pattern templates.

The specific activity episodes of the template are described by an Activity
Pattern Item, which identifies an Activity Type, applicable time interval and min-
imum and maximum travel distance. The Activity Type provides a relation to the
Activity discussed earlier in Section [4.5.6] so that the skeleton Activity Pattern
can be aligned with the contextual data of the investigative scenario.

The minimum and maximum travel distance specifies the lower and upper
bounds that should be travelled to reach the activity. This can be used either
during knowledge-base Construction to only assert relations with Locations and
Activities that a Person visits or by a Scheduler module to identify potential
Locations based on the current context. Therefore, activities which are located
too close and too far away can be removed from the choice set. However, a
Scheduler module could relax these bounds if no candidates are present to ensure
that an activity is always selected.

The Activity Patterns are grouped into an Activity Pattern Set, so that consis-
tent planning and cooperation for joint activities or escort travel can take place
across Activity Patterns with aligned activity episodes. The Activity Pattern
Set also identifies the applicable days of the week, e.g. to distinguish between

weekday and weekend activity patterns.
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Each Travel Group can be associated with one or more Activity Pattern Sets
according to their matching characteristics, as determined by the user in the
knowledge-base Construction stage. In turn, each Person within the Travel Group
is also matched with an Activity Pattern from the corresponding Activity Pattern
Set.  Otherwise there would be incoherence in the activities assigned to each
Person, e.g. a child assigned employment activities and an adult assigned school
education.

Multiple Activity Pattern Sets for Travel Group provides the opportunity for
diversity in the daily pattern between different investigative scenarios. An op-
tional weight characteristic could be applied to control the likelihood in a stochas-
tic process for selecting one pattern over others. The characteristics of the Activity
Pattern and Activity Pattern Set provide a number of modelling assumptions that
a Scheduler module may choose to employ, ignore or enhance. This highlights an
advantage of a knowledge-based approach such that different Schedulers can be

applied to the same knowledge-base to produce different outcomes.

4.6.3 Activity and Travel Schedule

The key output of a travel demand model for use in traffic simulators is each
person’s schedule of activities and travel, see Figure 3.5, This schedule, shown in
Figure is derived from a Person’s selected Activity Pattern based upon their
own and the scenario’s contextual information and then according to the selected
modules of the framework. These schedules are each associated with a single
Person and Travel Scenario so that they are unique for each scenario instance.

The Activity Travel Schedule is itself a time ordered list of sequential Travel
Stages and Activity Intervals. The Activity Interval describes the time interval,
the spatial Location and the type of activity taking place. The one or more Travel
Stages between each Activity Interval form a trip as discussed previously (Section
1.2.2).

These Travel Stages provide the routing detail for moving between the spatial
Locations of the scenario. Each Travel Stage uses a single Mode with multi-
mode trips consisting of separate consecutive Travel Stages. The Mode and other

routing data are described in detail by the Stage Estimate, which the Travel Stage
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ActivityTravelSchedule

B forTravelScenario : TravelScenario [1..1]
mm forPerson : Person [1..1]

mm rdfs:subClassOf : olo:OrderedList [1..1]
mm rdfs:subClassOf : olo:Timelnterval [1..1]

| hasVehicleRoute : VehicleRoute [0..1] |
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B hasParticipant : Person [1..1]
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T

mm location : Location [1..1] B usingStageEstimate : StageFstimate [1..1]
B activityType : ActivityType [1..1] "B usingVehicle ; Vehicle [0..1]

| usingTransitLine : TransitLine [0..1]
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- ]

Activitylnterval TravelStage

Figure 4.39: Schema for Activity & Travel Schedule.

extends with contextual information.

This re-use of the Stage Estimate, discussed in Section |4.6.4] reduces repe-
tition of data in the knowledge-base. The contextual information of the Travel
Stage is its time interval, any accompanying passengers and any private Vehi-
cle (Section or public Transit Line (Section selected for travel to
allow tracking of their utilisation. This tracking supports inclusion of more so-
phisticated scheduling and travel planning decisions in the travel demand model,
such as return tours on public transport or additional stages to collect a vehicle
following a sub-tour and return it to its start location [10].

There may also be zero or more associated Vehicle Routes for each schedule,
which further describes the movement of vehicles due to the schedule, see Section
454 This describes the movement of the vehicle over the whole schedule and is
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necessary input into some simulators [46].

4.6.4 Stage Estimate

There have been several adopted processes to decision making in activity-based
models (Section [.2.4)). In constraints-based models an accurate estimate of the
time required to undertake a trip is required. Discrete-choice models rely upon
choosing from different trips based on their metrics. Computational process mod-
els use heuristic rules to make trip choices. These models vary in whether the
route itself is an output of the decision making process. The routes themselves
are split into stages as transitions are made between modes (Section .

In some traffic simulators the input data can consist of only the origin and
destination of a trip, or its stages, with routes determined using the simulator’s
own solution. Alternatively, a detailed route can or must be specified. The
former approach may be undesirable to the user as implementation differences
when comparing multiple traffic simulators could introduce variation into results
that would need to be considered in the analysis, i.e. variation being caused by
routing solutions rather than simulated traffic dynamics.

It also limits the opportunity to incorporate and compare new routing ap-
proaches,; e.g. adapting from previous experience, additional network semantics,
or environment changing events. Therefore, the framework takes the routing
process out of the traffic simulator stage and defines the Network Routing mod-
ule (Section , which produces Stage Estimates. These Stage Fstimate, as
shown in Figure [4.40, provide the detailed routing between two Locations with
additional metrics that may or may not be utilised by decision-making modules.

Each Stage Estimate is determined between an access point for a start location
to an access point of an end location utilising a specific mode. They each contain
the detailed route undertaken through the network infrastructure, typically de-
scribing roads, but can represent railway lines, footpaths or cyclepaths etc. The
reciprocal journey starting at the destination to the origin would form a different
Stage Estimate as the route may not be an exact reverse, due to one-way streets
or turning restrictions etc. Similarly, a variation in Mode would also require a

new Stage Estimate as vehicle access can be restricted along certain roads or
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StageEstimate

B mode : Mode [1..1]

B startlocation : Location &l..l]
B endlocation : Location [1..1
B startPoint : AccessPoint [1..1]
B endPoint : AccessPoint [[l..l]]
B viaPoints : sf:LineString [1..1
I viaRoadLinks : xsd:string [1..1]
B viaRoadNodes : xsd:string [1..1]
B cost : xsd:decimal [l..lﬂ

I distance : xsd:decimal l..ll
mm duration : xsd:duration [1..1]

B transitLine : TransitLine [0..1] !

|
. S |

Figure 4.40: Schema for Stage Estimate.

the routing method may be distinctly different, e.g. public transit compared to
private vehicles.

The terms start location and end location have been used instead of origin
and destination to be analogous with the start point and end point and provide
clarity as to what each describes: the general location and a specific point of
access. A distinction is made between stage and trip levels of detail. At trip
level the start location is the origin and the end location is the destination and
the sub-stages within the trip use start location and end location. Therefore, the
ortgin and first stage start location will be identical as too will be the destination
and final stage end location.

To accompany the start and end locations are specific Access Points to enable
consistency between Travel Stages when a Location has more than one for a
specific Mode (Section . Otherwise a person or vehicle could enter a location
through an access point on one side and immediately reappear a distance away
on the other side. This can cause problems in traffic simulation as the positioning
of a vehicle is disrupted. However, a trip planning model could deem that it is
accurate for a person or vehicle to exit from an access point different to the one
they entered using internal pathways at the location. This fine-level detail is an
implementation detail, but both use cases of continuous and discontinuous access
points can be represented.

In general, the Stage Estimates will be the best-case information derived us-
ing the shortest path through the graph structure of the network (Section .
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These have the potential to be re-used when the Mode and Access Point pa-
rameters are identical, unless consideration is being given to temporal variations,
e.g. a public transit route may not be available during the weekends or previous
experience demonstrates to avoid a junction or road at a particular time of day.
This re-use reduces computational time when executing the framework.

The impact of computational time becomes very important given that Stage
Estimates will generally need to be generated as required during execution rather
than the whole set being precomputed and stored in the knowledge-base. This
is due to the number of routes scaling by mn(n — 1), where n is the number of
Locations, m is the number of Modes and assuming a path exists between each
location for each mode (Section[6.4.3)). If a scenario does not exhaust the full set
of travel between all Locations then resources have been wasted in calculating a
route and the knowledge-base unnecessarily expanded.

The route used by a Stage Estimate would typically be generated using short-
est path algorithms, e.g. A-star or Dijkstra, which can use distance or travel time
as the path metric. These algorithms produce invariant results unless conditions
in the network change. However, alternative routes can be derived with modifica-
tions to these algorithms, e.g. by preferring major roads over minor, and stored
as separate Stage Estimates which can then be drawn from based on criteria other
than shortest path. The details of the route are stored as via coordinates for map
plotting and road edges and nodes for usage by different traffic simulators (see
Section .

The Stage Estimate could be defined using only the Access Points and without
the Locations as it is the Access Points and Mode which uniquely define them.
However, the retention of the Locations with the Stage Estimate permits simpler
searching and cross-referencing by giving a complete definition. The impact of
this is multiple Stage FEstimates for each case when multiple Locations share
an Access Point, e.g. two shops located at the same premises using the same
entrance.

The retention and re-use to avoid repeated shortest path computation can still
be applied by identifying the matching Access Point and Mode characteristics and
replicating the routing information, provided the storage also uses the Locations

as identifiers. The impact on the size of the knowledge-base is no different than
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if the shared premises were not co-located and therefore only optimal efficiency
is being lost rather than an additional burden being created.

In addition, three metrics have been identified as being generally relevant to
traffic models, i.e. distance, cost and travel time |124]. The distance of a route
is the base metric that informs the other two and storing its value removes the
need for repeated calculation and allows comparison between Stage FEstimates.
However, cost and travel time are likely more informative.

It has been highlighted that travel time provides a metric that is easily un-
derstood and communicated between travel model users, e.g. transportation en-
gineers, planners, administrators and consumers [125]. Research has found that
cost has an influence on travel policy and behaviour with travellers willing to pay
for faster and more reliable travel [2].

The Mode associated with travel is important in determining these metrics.
A Mode that is able to travel at higher speeds can cover a distance quicker than
one which is constrained to lower speeds. Similarly, the cost of a route, whether
the financial cost, e.g. bus fare, or a more general penalty measure, e.g. hilliness
when cycling, may discourage a route being selected. In cases where a public
transit Mode is being applied then the Stage Estimate will identify the specific
Transit Line that needs to be utilised.

The Stage Estimate may be suited to additional metrics. Measures of quality
for travel times have been developed, e.g. Misery Index; the distance between
the mean travel time and the mean travel time of the 20% most unfortunate
travellers; and travel time reliability at certain times of day [108]/109]. It has been
shown that people prefer routes with higher mean travel time and small variability
over a route with lower mean travel time but higher travel time variability [108|
109]. Therefore, a user schema and modules could include these metrics or other
measures of learning or feedback for routes.

These metrics can be included as properties on Stage Estimates. In addition,
alternative route choices between two locations could be generated to provide
a greater selection of choices for travel through the network. These additional
characteristics are dependant upon the modules selected for the framework rather

than the core Stage Estimate data structure defined here.
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4.6.5 Trip Context, Stage Request and Trip Plan

The objective of the travel demand process is to generate a schedule of Activity
Intervals with connecting Travel Stages (Section . These Travel Stages are
composed of contextual information and routing detail. This routing detail is
provided by the re-usable Stage Estimate (Section |4.6.4]).

This section describes how the data necessary to produce the Travel Stages
and Stage Estimates are passed between the three component modules of Schedul-
ing, Trip Planning and Network Routing as outlined in Figure 4.341 The schedul-
ing process operates at different levels with decisions being made over the short
term (Scheduling) and near term (Trip Planning) based on predicted routing
information (Network Routing) as discussed in Section [3.3|

It has also previously been discussed (Section that a trip is composed
of one or more stages while a wide variety of options can be applied to derive a
trip: mode, route, intermediate stops, duration. Therefore, the trip generation
process must define the context of the necessary trip; decompose this into multiple
potential trips of multiple stages; determine the route, value and viability of these
stages; and select one of these trip and its constituent stages as the result. Three
concepts are defined for these different stages of the process: Trip Context, Stage
Request and Trip Plan.

These data concepts and the Stage Estimate concept (Section 4.6.4)) are passed
between the modules of the framework, as shown in Figure[4.41] starting from the
high level process of Scheduling to the low level Network Routing before returning
back to the Scheduling. For each step between Scheduling and Trip Planning there
may occur multiple instances between the Trip Planning and Network Routing
modules. Multiple alternative Trip Plans may be produced before one is chosen
to be returned as the response to the original Trip Context. The whole process
may be repeated many times during schedule construction as travel takes place
between activities.

The associated properties of these data concepts vary in the scope of options
provided, as shown in Figure and tend from the general to the specific.
The Trip Context is designed to express multiple alternative options that can

then be explored to find the optimal response, or rather the most appropriate
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Scheduling

A

Trip Planning
A

Stage Request

Metwork Routing

Figure 4.41: Diagram of trip generation process showing data passed between
modules.

for the applied conceptual model as human behaviour is not always optimal.
Therefore, multiple destinations, modes, access points, vehicles and transit lines
can be included with each increasing the diversity of possible trips, stages and
routes. These properties could also be asserted in the singular or excluded if a
very specific outcome is required such as needing a return journey using a specific
mode.

The Stage Request is more specific in explicitly stating the start and end of the
stage. Diversity is achieved by multiple alternative Stage Requests. There is no
Trip Vehicle information as it would be overseen by the Trip Planning module as
to whether the stage is valid to use the vehicle before creating the Stage Request.
An invalid stage could occur due to the vehicle not being able to access the end
location through an Access Point for that Mode. This would require finding a
transfer location to change Mode, discussed further in Section [6.4.2] Facilitating
this change at the transfer location would require two connecting Stage Requests.
When valid the vehicle’s Mode is used to inform the Stage Request.

Usage of a public Transit Line and corresponding time-frame is of concern
to Network Routing modules that support public transit. The generated Stage
FEstimate would be dependant on the available timetable of the Transit Line (Sec-
tion . The time-frame could also be utilised by Network Routing modules
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which consider changing traffic dynamics, e.g. scenario events such as road clo-
sures or weather, or utilise traffic congestion forecasts to produce varying routing
solutions for the same start and end locations.

The Trip Plan concept represents the planned travel of an individual and
therefore it is composed of an ordered list of Travel Stages which are directly
added to the Activity & Travel Schedule (Section [4.6.3)), but includes the overall
origin and destination for ease of reference. These Travel Stages are formed from
a reference to the underpinning Stage Estimate and the contextual information
associated with the request, e.g. vehicle, transit line or passengers. In principle a
Trip Plan could describe two Locations that are co-located and so do not require

travel to move between with an empty list of Travel Stages.

TripContext

B travelScenario : TravelScenario [1..1]
I origin : Location [1..1]

I destination : Location [1..¥]

B mode : Mode [1..%]

B person : Person [1..1]

mm rdfs:subClassOf : Timelnterval [1..1]

B startPoint : AccessPoint BO..l]
= endPoint :Ac::.essPomtJ F]

B passenger : Person [0..

B transitLine : TransitLine [0..¥]

I tripVehicleOption : TripVehicle [0..%]

StageRequest

B travelScenario : TravelScenario [1..1]
I startlocation : Location [1..1]

B endLocation : Location [1..1]

B mode : Mode [1..1] |

B startPoint : AccessPoint [1..1]

B _endPoint : AccessPoint [1..1]

| B hasTimelnterval : Timelnterval [0..1] |
| B transitLine : TransitLine [0..1] !

TripPlan

B origin: Location [1..1]

B destination : Location [1..1]

mm rdfs:subClassOf : Timelnterval [1..1]
B rdfs:subClassOf : olo:OrderedList [1..1]

Figure 4.42: Schema for Trip Context, Stage Request and Trip Plan.
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These concepts represent an inter-relationship at the data level that is illus-
trated in Figure Certain properties are not necessary for the generation pro-
cess to function, i.e. based on, requested for and determined for, but demonstrate
the inter-relationship. However, their usage and storage in the knowledge-base
does provide a mechanism for examining and auditing the generation process. In
this view the Stage Request, Stage Estimate, Trip Plan and Travel Stage can be

seen to be subordinate to the Trip Context, which triggers the process.

StageRequest —————: basedOn [0..¥]- — — — — = TripContext

0 1
|

[

: determinedFor [0..1]
| i
[
[
[

l
TripPlan

| T
requestedFor [0..1] olozslot [0..%]

[ I
i

olo:Slot

olo:item [1..1]

!

StageEstimate | =——usingStageEstimate [1..1]— TravelStage

Figure 4.43: Schema for interactions between Trip Context, Stage Request and
Trip Plan.

4.6.6 Trip Vehicle

The purpose of vehicles is to reduce the burden and travel times of transporting
people and goods. These vehicles must be accessed at a spatial location that
may not coincide with a person’s current location over the course of the schedule
or may need to be positioned at a transfer location to access a destination or
other modes. Therefore, the Trip Context needs to provide information about
the vehicle options available to the Trip Planning process and their current state.

This is achieved using the Trip Vehicle concept as shown in Figure [£.44] which
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consists of current location and optional access point. Households and individuals
may have access to multiple vehicles, e.g. car and bicycles at the home for the

start of the day, and therefore these vehicles are specified as an N-ary relation

(Section {4.2.2)) to allow mutliple cases to be described.

TripVehicle

B vehideOption : Vehicle [1..1]
B currentlocation : Location [1..1]

B mode : Mode [1..1]
| B requiredlocation : Location éo..l] |
| @ currentPoint : AccessPoint [0..1]

Figure 4.44: Schema for Trip Vehicle.

The Mode property is included to fully describe the Trip Vehicle for the
Trip Planning process. These properties describe the current state of the vehicle
within the Scheduling process. There can be situations where the use of a vehicle
is mandated, e.g. completing a return journey with a car to the home, so that
vehicles are not positioned inconsistently when the scenario completes.

The required location is used to specify that a Trip Plan is only valid for the
Trip Context if it results in the vehicle being located in that position. This allows
for potential chaining of vehicles during travel. For example, driving a car to a
car park, walking to a cycle hire point and then cycling to the destination. This
would require the process to be reversed on the return journey rather than taking

a bus home and abandoning the bicycle and car.

4.6.7 Activity and Travel Result

It has been discussed earlier that the travel demand generation process produces
the intended activity and travel timings for a person during the scenario as con-
tained in the Activity & Travel Schedule (Section [4.6.3). The outcome of the
Traffic Simulation stage is the activity intervals and travel stages of the schedule
following experience of the simulated environment and the travel plans of the
other participants.

This information can then be used for analysis or incorporated into future

scheduling actions, such as influencing Stage Estimates, as feedback for learning.
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These simulator outputs of activity and travel time intervals are captured in the
Activity € Travel Result, which follows a similar structure to the Activity ¢ Travel
Schedule.

The Activity € Travel Result illustrated in Figure [4.45]identifies the resulting
activity and travel stages. It also has properties for the contextual information of
the relevant Person, Traffic Simulator, Travel Scenario and the proposed Activity

& Travel Schedule to facilitate cross-reference and analysis.

ActivityTravelResult

mm fromTravelScenario : TravelScenario [1..1]
mm fromPerson : Person [1..1]
mm fromSchedule : ActivityTravelSchedule [1..1]
mm usingTrafficSimulator : TrafficSimulator [1..1]
mm rdfs:subClassOf : olo:OrderedList [1..1]
 rdfs:subClassOf : olo:Timelnterval [1..1]

|

olo:slot [0..%]

i

olo:Slot

olo:item [1..1]
)

PlanSlot

i rdfs:subClassOf : olo:Timelnterval [1..1]

ActivityResult T TravelResult

B activityType : ActivityType [1..1] mm usingMode : Mode [1..1]
;B usingVehicle : Vehicle [0..1] [
#m usingTransitline : TransitLine [0..1] |

|
L

Figure 4.45: Schema for Activity & Travel Result.

4.7 Extension of the Person and Travel Group
Concepts

In this section it will be discussed how the Person and Travel Group concepts can

be extended to provide more specific modelling. These two classes are the primary
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area of interest for activity-based travel demand models. They also have great
potential diversity in how they are extended through sub-classes, sub-properties
and additional properties. This extension approach can be applied to the other
defined classes to assist in organising and contextualising the knowledge-base.

A person forms part of a population which can be sub-divided into smaller
populations. The division of a population can be performed in a variety of man-
ners, e.g. characteristic, geography and behaviour, leading to a wide, arguably
infinite, set of possible sub-classes. In a Semantic Web approach these can in turn
be sub-classified arbitrarily with individuals able to belong to multiple classes
(Section [L.3.1).

These sub-classes were utilised in the implemented prototype (Chapter [7))
and will be discussed further to illustrate alternative perspectives as shown in
Figure While the modelled behaviour can be differentiated based on the
sub-class, i.e. adult behaviour being different to child, the implemented modules
of the prototype instead were driven by the data characteristics of the individual
person. This was to constrain the design and tractability of the prototype scenario

rather than a limitation of the framework.

| l

il

| PrivateVehicle ]\ m

usesPrivateVehicle [0..%]

hasPrivateVFhicle [0..%] Resident
H hold hasResident [1..* B usesPersonalMode : Mode [1..1]
‘ ouseho asResident [1..%] mm usesPublicTransit : Mode £O..*]
mm incomeBand : IncomeBand [1..1] B ageRange : AgeRange [1..1]
mm residenceType : ResidenceType [1..1] i gender : Gender [1..1]

%

residentAt [1..1] hasResidenceAt [1..1]

ResidentialLocation

hasEducationAt [1..1]

r .
| W resi

__________________________

Y
EducationLocation ‘

Figure 4.46: Diagram of example extension of the core concepts of Person, Travel
Group, Vehicle and Location.
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Adult and Child

A clear distinction in society is made between adults and children. This differ-
entiation influences the behaviour, activities and resources available to each. For
example, adults are more likely to travel at any time of day and have greater mon-
etary resources for travel and activities while children will be engaged primarily
in education activities rather than employment. The legal distinction between
adult and children varies between nations, but is distinctly defined. Further sub-
class distinctions can be made based partly upon age including different stages

of education, e.g. school and university, and employment, e.g. retirement age.

Resident and Non-Resident

The defined scenario for examination in modelling and simulation must be con-
strained to a geographic area. The population in this geographic area can be
sub-divided into the residents who live within the geographic area and the non-
residents. The residents begin their normal day at home and will travel to places
of activity, e.g. work, education or leisure, or exit the area. At the end of the
day the residents will return to their homes.

In contrast the non-residents will begin outside the geographic area and will
arrive and depart over the course of the day at specific locations. These specific
locations are the road links at the edge of the geographic area, motorway junc-
tions and public transport connections, e.g. train stations, bus stops and coach
depots. In Figure4.46|characteristic values are assigned to individual Persons and
Households. An alternative approach would be to use N-ary relations to reduce
repetition and allow easier modification (Section and applied in Section
The approach of placing characteristics against each individual persons is
based upon two reasons.

Firstly, the potential diversity of characteristic values is much greater for
persons than vehicles, both in permutations of values and number of character-
istics. Vehicles are machines manufactured to a design and specification to fulfil
a transport purpose. People are diverse individuals whose resources, behaviours
and characteristics are influenced by society, economy and genetics etc.

Most cars have capacity for four passengers and have dimensions constrained
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by the physical shape of road lanes, with occasional outlier ignored or tolerated
for tractability. A person’s, and potentially household’s, characteristics can be
much more diverse in the possible permutations. Therefore, applying the type-
based approach to Persons, and by extension their Household Travel Group, could
result in a large number of Person Types and a few Persons instances with each
type.

Secondly, the definition of an agent for agent-based modelling (Section
includes each agent having their own set of characteristics. These characteristics
could potentially be modified during modelling. However, a mix of personal and
type properties could also be modelled for transient and permanent characteris-
tics.

Transformation of the data in the knowledge-based between each approach can
be performed to incorporate a new module using SPARQL queries. Also, these
approaches can coherently co-exist in a knowledge-base with the only difficulty
being potential confusion or error when selecting characteristics, e.g. selecting

the type’s characteristic rather than an instance’s.

Freight Driver

In the previous section a distinction was made between people who live in the
area of interest and those who do not. Another distinction that can be made is
those who regularly travel while fulfilling their employment as opposed to those
who travel to reach their employment. An office worker that has arrived at work
may not leave their location until the end of the working day. A freight driver will
arrive at their employment and then continuously transport goods from location
to location performing pick-up and drop-off activities.

This can be modelled as a Freight Driver class of Person to distinguish from
Resident or Non-Resident person. This classification approach is based upon
employment activity and so could be extended to include other transport services,
e.g. taxi, train and bus drivers, or those routinely moving between locations
during their employment, e.g. domestic plumbers. Therefore, the Freight Driver
could be modelled as one of several sub-classes of Employment Traveller who

undertake employment related travel.
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A freight driver is an employment activity and so the individual will have
travelled from their residence to place of employment. Therefore, they could
also be classified as a Resident and Non-Resident with multi class membership
permitted in the Semantic Web. However, the behaviour of these two classes
could be considered quite distinctly different. Once at the place of employment
a switch in behaviour would be needed.

This would represent a close modelling of the real world in the knowledge-
base. However, the practical limits of modelling this complexity do need to be
considered and whether such fine detail is of benefit, although this would fit
the vision for Artificial Transportation systems [55, [126]. For example, it is
questionable in the general case if there is a benefit in modelling a city-wide
transport network that is reliant upon correctly simulating all its bus drivers
arriving at their workplace on-time. One delayed start would have a knock-on
impact to the rest of the model that would require close examination to identify.
There is also an assumption that data is available to reliably produce such a
fine-grained data model.

Instead a modelling simplification would be for two entities to exist in the
knowledge-base for a single person. The first entity is a person that starts and
ends their existence at their place of employment and exhibits the travel em-
ployment behaviour. The second entity represents the more conventional person
who travels to employment and other activities but does not travel during their
employment.

This approach allows the consistency of always focusing upon modelling a
person with their activities and travel behaviours. Other approaches to generating
travel demand for freight have applied an entirely separate modelling approach
to that of other travellers [8} [32].

Autonomous Vehicles

Travel demand has been defined as being satisfied by a countervailing travel
supply [32] capable of moving goods or person between locations and encompasses
public transit, taxi services, private vehicles or personal locomotion.

An emergent technology is the development of autonomous vehicles capable of
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all driving activities [127], including communication and co-ordination with other
vehicles and perceiving and influencing their environment. The characteristics of
agency have been discussed previously (Section and are exhibited by
both humans and appropriately designed software agents, including controllers of
autonomous vehicles.

Once accomplished it is envisioned that freight and personal transportation
by autonomous vehicle will be another service, which people can summon to
their location. This is analogous with existing taxi and courier services and
therefore from a modelling perspective would no different from these existing

supply methods.

Agent

VehicleAgent ‘ Person

Figure 4.47: Schema of Agent, Person and Vehicle Agent.

From a travel demand perspective autonomous vehicles would still be fulfilling
and travelling between activities, i.e. pick-up, drop-off, waiting and maintenance.
This would follow a similar behaviour to other travel employment behaviour, e.g.
freight or taxi driver, as discussed previously. Therefore, modelling of autonomous
vehicles would require a separate classification from people as they form a separate
population, but can be incorporated in modelling alongside existing concepts.

The incorporation of autonomous vehicles in the schema would be through
inclusion of an Agent base class from which would be formed the Vehicle Agent
and Person sub-classes. This follows the existing approach of the FOAF vocabu-
lary [115] with Agent and Person classes. Figure [4.47shows the extension of the
schema to incorporate the distinction between persons and vehicle agents.

This extension to the schema can be incorporated without invalidating the
existing schema (Section . The Vehicle Agent would be synonymous with
the physical vehicle that provides the physical transport and could be sub-classed

into freight and personal transport etc, but would be conceptually distinct.
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4.8 Utilisation of the Schema

In the previous section there has been detailed description of the numerous con-
cepts developed for the core schema. These have been identified with the intention
of incorporating the minimum concepts and inter-relationships. Illustrative ex-
amples have been provided, but these are not mandated concepts. Instead the
schema would be extended and enriched by the framework user’s own schema or
public vocabularies to reflect the specific models and problem under investigation.
This section provides a general summary of the schema, connections between the
separate concepts and how they can be utilised.

The core concept of traffic demand models is the Person and their relation-
ships to Locations and Activities, illustrated in Figure [£.48] A Person represents
any individual who travels in the scenario, so could be sub-classified by the user.
Each Person can be a member of a grouping for organisational and travel pur-
poses, e.g. households. Concepts can be expanded by users through sub-class
and sub-property relationships to enrich the data, but retain schema validity.

A multi-dimensional relationship can be formed between Person, Activity and
Location. In a single instance a Person could be linked to a single Location
for certain Activities, e.g. employment, education and residence, and multiple
Locations for other Activities, e.g. retail and leisure. However, it is a modelling
assumption, i.e. the user’s schema and selected modules, that all Persons have a
single Location for certain activities and not a requirement of the core schema.

Each Location can also provide zero or more Activities. For example, a school
can provide both primary and secondary education which have different effective
time periods and eligible school ages. A school is also a place of employment for
teaching and administrative staff. Similarly, homes are the residence of individu-
als but also a place to visit for social interactions between friends and relatives.

The Activity itself may be modelled as unique to a Location or shared be-
tween multiple Locations. Each Activity has an effective time and days to reflect
availability, such as morning and afternoon opening times. Therefore, a Location
can have multiple Activities with different characteristics but the same Activity
Type. The Activities can be sub-classed according to their characteristics while

retaining a grouping through the enumerating of Activity Types.
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The value set of Activity Types ensures OWL 2 compliance as Object Prop-
erty relationships must be between individuals and not classes [93] as previously
discussed (Section . This approach means that a single Activity Type can
form a relationship that links many Activities to Activity Patterns. Each compo-
nent Activity and Activity Pattern item identifies a single Activity Type, which
together forms a multiplicitous relationship, e.g. employment would be an Activ-
ity Type while employment at a specific office would be an Activity. Otherwise
a user would have to identify and link every relevant individual Activity to an
Activity Pattern and so impose a modelling burden.

A similar approach is taken to express a Person’s travel modes as defined by
the Mode class. These are either the personal or public transport modes a Person
uses or those of their Vehicles. Locations can also identify Modes which have
access and in turn those that do not. For example, city centre locations with
no parking facilities would not be the direct destination for people using a car.
Similarly, locations without wheelchair access would not be selected as viable for
those people with that mode.

The relationships can be formed using the class, characteristics (data prop-
erties), geographic relation or arbitrarily asserted. An example SPARQL query
is shown in Listing to both classify Persons as school age and link them to
their local school according to its geographic catchment or effective area. The
OPTIONAL clause ensures that all are classified, even when not in a school catch-
ment area. Given a Location may provide multiple Activities then effective areas
are applied according to Activity rather than Location. Extending properties for
the Locations would be to apply comparative weighting for popularity based on
the time and day of the week.

Further detail in terms of sub classes, relationships and characteristics can be
included in the knowledge-base by the user as required. For example, a highly
detailed set of land use data could distinguish between several types of build-
ings, their occupants and the types of activities they provide in a hierarchy and

structure required by the user.
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PREFIX ex: <http://example.org/myKnowledgeBase#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>

INSERT{
?person a ex:PrimarySchoolChild .

?person ex:hasEducationAt 7school .

}WHERE{
?person a ex:Person ; ex:age 7age.
FILTER( 5 <= 7age && 7age <= 11)

OPTIONAL{
?person ex:hasResidenceAt 7house .
?school a ex:PrimarySchool ; ex:providesActivity .
7education a ex:PrimaryEducation ; ex:effectiveArea
— 7catchmentArea .

7house geo:sfWithin 7catchmentArea .

Listing 4.1: Example SPARQL query to classify Persons.

4.9 Organisation of the Knowledge-Base

The data of the knowledge-base can be organised into logically distinct compo-
nents, termed graphs. These graphs can be referenced in SPARQL queries either
individually by its own URI or as a composite union of graphs. The union graph
represents a merging of the triples so that different query responses would be
produced according to the graphs forming the union. Therefore, no structural
changes would be needed to a query except for the graph references to form the
unton graph. This allows for the combining of different experimental data and

parameters simply by introducing a new graph and merging it with a base graph
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or graphs.

Several domain concepts have been previously described (Section . These
domains can be applied to assist in the organisation of the knowledge-base as
distinct graphs, e.g. all person data contained in a person graph and all vehicle
data in a vehicle graph. However, the inter-relationship between these domains
can present problems to inferencing.

The boundary between concepts may not be clear cut or convenient for fre-
quent query operations. Inferences that rely on data which spread between graphs
would have to be performed on the merged graph. Retaining any inferred triples
would require extraction and asserted in an appropriate graph, if trying to retain
a purist organisational approach, which would be complicated if a schema had
been applied to numerous merged graphs or a wide range of inferences were made.

Similarly, queries that use data from multiple graphs would need to have
the references to all the constituent graphs for that query or be performed on
the merged graph. In some cases, the contents of a particular graph may be
very small, e.g. only having a single vehicle type, so provides limited benefit to
separation. In contrast having additional data in a single graph for the whole
knowledge-base does not interfere with its operations.

Operations upon a single graph knowledge-base would be simpler to apply
in all cases. However, large scale graphs may be slow to query due to size or
sub-optimal queries. Datasets that are selectively organised into small graphs
of key information would be quick to search. This can have implications if a
knowledge-base is being used in a parallel environment where a prolonged search
by one execution can block the search or writing progress of other executions.

The division of the knowledge-base does present an advantage given the vary-
ing permanence of the different data concepts. Certain data may persist across
all executions, e.g. person characteristics and road network infrastructure, while
other data may be re-used multiple times, e.g. scenario parameters and activity
templates, or only be required for the duration of execution, e.g. intermediate
data generated by modules.

The time-frame of the scheduling and planning processes are typically focused
on the short term, i.e. days, weeks or months. A longer term view across years

would incorporate changes to land use, resources and demographics and is a
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feature of some models [9} [55]. Therefore, the notion of persistent or permanence
depends upon the context.

Finally, adopting separate graphs would allow the addition and removal of
datasets in their entirety. This would allow quick disposal of incorrectly con-
figured or no longer required executions and the inclusion of new parameters.
Also, alternative versions of parameters, data and results can reside alongside
each other in separate graphs. Therefore, the results of different scenarios or
the outcome of repeated executions could exist in the same knowledge-base as a
comparable set.

The division of the knowledge-base into graphs can provide benefits, but can
introduce complications to its usage. Figure|4.49/shows the named graphs used in
the prototype implementation (Chapter @ and is provided for illustration. The
People, Organisation and Vehicle concepts have been brought together due to
their close inter-relationship and placed into the Travel Group graph. The Frame-
work Configuration graph provides the information for locating datasets within
the knowledge-base and modifying the execution of the framework (Chapter |5)).
The Demand Modelling & Simulation concept has been split into Scenario and
Results so that the execution output can be easily modified and removed without

impacting the scenario set-up.

- e

Framework
Configuration

Figure 4.49: Diagram of named graphs applied to the prototype knowledge-base.

There is no requirement by the framework for a user to adopt this approach.

A single graph could be used for all the data in the knowledge-base and referenced

151



in the configuration of the framework. Adjustments can be made according to the
user’s choices and to meet the requirements of the selected modules. The utilisa-

tion of the separate graphs and the configuration of the framework is discussed

further in Chapter [5]

4.10 Chapter Summary

This chapter has discussed the main data concepts of the core schema for the
framework for travel demand generation. It has outlined the design principles
which have been applied to the schema to enable interoperability with Semantic
Web technologies. There has been identification and use of public vocabular-
ies to integrate fundamental concepts so that links with other datasets can be
established and to facilitate re-use.

The extendible approach of the Semantic Web enables additional connections
to vocabularies and new concepts to be incorporated into the schema by the user.
This has been discussed through alternative examples to extending the Person
and Travel Group concepts, which is applied further in Chapter [7]

The top-level concepts of the schema have been identified and then applied as
the basis for more detailed consideration of data concepts. These have generally
been identified as concepts relating to the physical world and those relating specif-
ically to travel demand generation processes. The described concepts have sought
to be a minimum representation with the user and module implementations able
to determine more specific definitions as they require.

The investigation of these concepts has led to the identification of several gaps
in road network semantics and datasets, specifically relating to traffic signalling;
implemented routing algorithms; and local speed limits, that have an influence
on the modelling behaviour and outcomes. The incorporation of these concepts
can be accommodated in the proposed knowledge-base approach, but are not
currently supported by published datasets. Further development of routing algo-
rithms can be supported by data concepts being added to the knowledge-base in
the People, Vehicles and Network Infrastructure domain. In addition, applying
the modular design for Network Routing discussed in Chapter [3| would remove

dependency on traffic simulator implementations.
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The varying permanence of certain properties within the knowledge-base has
also been identified. The objective of comparing modules and scenarios can lead
to different versions of parameters and content that would be problematic to man-
age and retrieve if directly associated with an entity. This has been resolved by the
Travel Scenario and associated Scenario Definitions to provide N-ary relations
that describe the set of parameters to be used in an execution instance. These are
associated but distance from the permanent data concepts of the knowledge-base.

There has also been discussion of the logical organisation of the knowledge-
base around named graphs in an arrangement to suit the user and their investiga-
tive scenario. This arrangement can align with the top-level concepts, but also
take into consideration the permanence of the data so that transient data gener-
ated during execution can be easily removed from the knowledge-base. This also
provides the opportunity for users to select and switch between different datasets
and sources of data within the same knowledge-base and is one of the objectives
of the framework. The proposed mechanism to support this is discussed further
in Chapter [f
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Chapter 5

Framework Configuration for the
Selection of Alternative

Behaviour, Techniques and Data

5.1 Introduction

In this chapter there will be exploration of the framework’s design to deliver the
objectives of easing the burden on users in assembling, controlling and compar-
ing their investigative scenarios with multiple implementations of travel demand
generation models and traffic simulators. The previous chapters identified the
different considerations in the design of the proposed framework (Chapter [3]) and
discussed the data concepts necessary for the core schema (Chapter . This core
schema provides a basis for modules and the knowledge-base to be aligned to
minimise data transformation. However, it may be necessary for the user to have
facility to specify modifications and transformations of data between modules.
A user may investigate multiple alternative versions of modules and datasets,
representing different modelling assumptions, parameter values, implementation
detail or scope. Therefore, investigations need to be able to compare across
multiple configurations of the travel demand modelling process. The framework
seeks to provide an environment to assist the user in managing and configuring

the differences between these alternative choices. These differences in approach

155



may be inconvenient when setting up one configuration and then become highly
burdensome or inhibitive when applied to multiple configurations.

This chapter will seek to address research question It will discuss how
the knowledge-base can be constructed from local and remote data sources. There
is also examination of the mechanisms available and developed to specify modules;
transform data; select alternative modules based on the data; and control the
execution of the framework. There will also be inclusion of optimisation options
to reduce execution run-times through using local file system knowledge-bases
and modules caching invariant data. The facility for users to transform data
and make selections introduces potential for integration errors. Therefore, there
is discussion of validation steps to ensure that errors are identified early and

communicated to the user for correction.

5.2 Constructing the Knowledge-Base of the

Framework

The previous discussion of the proposed framework in Chapter [3| outlined that
current demand modelling is a multi-stage process. The conventional process is
reliant upon file conversion between the data sources and the main stages of the
travel demand process to present and obtain data in the correct formats. This is
illustrated in Figure [5.1| where multiple file conversion processes are required to
align the available files of data with the module interface.

Each of these conversion processes may require format conversion, e.g. CSV
to XML, or reformulation, e.g. different XML schemas. These conversion pro-
cesses may form an input or output option for a stage implementation to target
another stage implementation, i.e. activity-demand model X produces output in
traffic simulator Y’s format. However, if this is not the case then the user must
implement their own process.

These conversion processes can also require alignment of the data for later
stages, e.g. land use indicating relevant zones or population allocated to group-
ings. In this example, the activity pattern generation process is incorporated into

the demand model as it is a tightly integrated component of the overall demand
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Figure 5.1: Diagram of construction process for conventional activity-based travel
demand process.

model. Therefore, only the implemented approach can be utilised and alternative
forms of activity patterns or methods for their generation cannot be incorporated
into the model.

The first stage of the framework process is constructing a knowledge-base.
The required datasets are prepared and added to the knowledge-base. However,
datasets are typically published by different authorities and therefore require
reconciliation to align. This section outlines the different options that are possible
with the framework to construct the knowledge-base and how misaligned data can

be transformed or utilised.

5.2.1 Constructing a Local Knowledge-Base from Local

Sources

The adoption of a knowledge based approach provides a central repository for the
data of the travel demand process. The separate input, output and configuration

files for the different stages of the process can be stored in the knowledge-base us-
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ing a single format: RDF (Section [1.3.1)). Therefore, the operation of the process
can be reconfigured as shown in Figure [5.2] which is an alternative representation
of Figure [3.3]

| l

________ e T T\ Comversion [ %, ActiVity Pattern Generation | I

_______ L

Demographics I ROF I Population Synthesi ) I

— ———»

______________ opulation Synthesis ]

................................ [ — 1 |

Land Use RDF_ : =! |

................................ | Conversien | . ,
=

I 7 "RDF T | 3 |

—» |

....... L Conversion | = |
l oy

_________________ . 1 ‘o |

| Knowledge Base Construction ! .l m |

—————————————————— 1 o |

Activity-Based Travel Demand d—l !

1 |

Traffic Simulator | |

o

Simulstion Output  ———————————— I

.............................. : o

Figure 5.2: Diagram of construction process for knowledge based activity-based
travel demand model.

The RDF conversion process is still required to take the published datasets,
typically XML or CSV but not exclusively, and prepare them for the knowledge-
base. However, published datasets have also included several RDF serialisations
(e.g. RDF/XML, json-1d, Turtle etc.) which could be directly added to the
knowledge-base. When conversion is required the benefit is that rather than many
different file format conversions processes, as illustrated in Figure [5.1], there is the
single target format of RDF.

The Activity Pattern Generation and Population Synthesis stages shown in
the diagram take the input data and generate new data for the knowledge-base.
This new data could be a disaggregate representation or result of a statistical
process. The Activity Pattern Generation module is shown as distinct from the

Travel Demand Model to indicate its potential for replacement and to feed into
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the Knowledge-Base Construction process.

Overall, this approach has potential to reduce the number of interfaces re-
quired between modules. Any conversion to wrap an existing implementation is
between the knowledge-base RDF and the modules desired input format on a
one-to-one basis, where previously it was directly between each module in the
process. Therefore, modules are now more interchangeable once they adhere to
the knowledge-base format. The benefit of this increases as more alternative
modules are considered at each stage.

However, conversion is still required to obtain datasets as RDF or to align
existing RDF with the knowledge-base schema. This alignment process is in-
corporated into the Knowledge-Base Construction stage where the separate data
concepts of the proceeding stages and datasets are brought together. Similar
steps were required in the previously described process (Figure , but would

take place as part of file conversion or manual adjustment.

5.2.2 Constructing a Local Knowledge-Base from Remote

Sources

The online design of the Semantic Web is intended to facilitate the sharing and re-
use of data. A mechanism for achieving this in the SPARQL protocol is Federated
Queries [43]. This allows RDF graphstores to be made accessible for SPARQL
querying by specifying a URL address. The relevant part of a query is executed on
the graphstore with results returned to the originator. The retrieved data can be
utilised within the query to interact with local or other remote data. Graphstores
made accessible in this manner are termed SPARQL endpoints.

This enables pre-prepared datasets to be made available without needing to
process local files as shown in Figure 5.3} The file and RDF cleaning and conver-
sion processes are removed as the data is already readily available in RDF. This
approach has been applied by a growing number of dataset publishers as part of
the Linked Data initiative [61, |73} 74].

The data being retrieved can be filtered and selected using standard SPARQL
syntax without needing to remove it from input files or during knowledge-base

construction, e.g. a retrieval query only selects data relating to a specific ge-
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ographic area or time period. The data sources described can be intermixed
so that a knowledge-base is constructed from both SPARQL endpoints and file
datasets on the basis of data availability or user preference, e.g. the user has a

more detailed dataset or has generated a dataset for a specific topic of interest.
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Figure 5.3: Diagram of construction process for knowledge-based activity-based
travel demand model using SPARQL endpoints.

An example process of retrieving data from a remote endpoint is shown in
Listing [5.1, The geographic area is identified using the GeoSPARQL vocabulary
(Section , which could be described using a geospatial shape, to find only
locations of interest. These locations are then used to find the households and

persons along with their related triples.
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PREFIX popData: <http://example.org/populationData#>
PREFIX trav: <http://example.org/travelDemandSchema#>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>

CONSTRUCTH{
7household 7householdProp 7householdObj
?person 7personProp 7personObj

}WHERE{

#Choose an area to target.

BIND (popData:AreaA AS 7targetArea)

SERVICE popData:Service {
#Find locations in the area.

?location geo:sfWithin 7targetArea .

#Households at the locations.
?household locatedAt 7location .
7household a trav:Household .
7household 7householdProp 7householdObj

#Person at the locations.
?person hasActivityAt 7location .
?person a trav:Person .

?person 7personProp 7person(bj

by

Listing 5.1: Example SPARQL query to retrieve household and person data based

on geographic area from a remote endpoint.
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An area of technical difficulty with this approach is the retrieval of the nec-
essary graph relating to a URIL. In the example listing, the related triples where
the households and persons are the subject are retrieved. However, there is no
additional data about the properties or objects of those triples. If a module later
tries to discover the property of an object, there would be no data in the local
knowledge-base. There is no inherent mechanism to record where supporting data
can be looked up. It may be that the URI of the resource contains a hostname
or domain component that refers to the service, but there is not a requirement
for this. Therefore, one of several options would be required.

Firstly, the retrieval query would need to extract the triples to the depth
required by the executing modules. This could be an arbitrary number of layers
and there is no explicit SPARQL syntax to express retrieval from all sub-branches
of the graph. A user would need to be aware of the depth of data available in
the endpoint or required by the module. This would require either publication of
information about the graph and module structure or investigative effort by the
user.

Secondly, the query could retrieve the entire graph into the local knowledge-
base. Ideally the endpoint would have an organised structure so that only relevant
data is contained in each graph, e.g. one graph per geographic area. Therefore,
this may require performing a filtering process to exclude data not of interest,
e.g. households outside of the target area, and may leave some orphaned data
in the knowledge-base that would need to be ignored during execution or risk
disrupting execution.

Finally, modules could be provided with the URL so that they can query the
remote endpoint for the supplemental data as required. The local knowledge-base
would only contain the URI to initiate the module, i.e. household URI but no
composition or member data. This would provide a versatile approach whereby
the user would only need to specify the minimum information.

The final scenario to consider in this process is when datasets have been pre-
pared that align in schema and context, i.e. structure and frame of reference. This
situation is illustrated in by the removal of the Knowledge-Base Construction
stage, as transformation and reconciliation of the data is no longer required.

These aligned endpoints could represent national or canonical scenario datasets
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that have been prepared for large geographic areas or across multiple time-frames.
Users would be able to select and retrieve a subset, e.g. by geography, administra-
tive area or time-frame, through the SPARQL query mechanism for local usage.
Transformation could also be applied during this retrieval process, see [5.2.3] to

satisfy any investigative or usage requirements.
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Figure 5.4: Diagram of construction process for knowledge-based activity-based
travel demand model using schema and context aligned SPARQL endpoints.

Publication of aligned datasets as flat files is achievable without using Se-
mantic Web technologies. The likely lack of such publications are a reflection of
the fragmented approach to travel demand modelling as exhibited by the diverse
range of implementations, lack of a overarching schema and no authoritative or
centralising organisation. Therefore, certain barriers to this approach are not
technical in nature.

An RDF approach would allow the core concepts to be published in an accessi-
ble and structured format along with additional characteristics and relations that
may only be relevant to specific modules. The outputs of alternative modules,
e.g. population synthesis or activity generation, could also be published across
multiple endpoints with interchange between them only requiring a change in
URL address. The benefit of this approach is that data retrieval can be under-

taken quickly and accurately allowing focus to be placed upon the investigative
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stage.

The hosting of these remote endpoints does not have to be in a full online en-
vironment but can also take place across an internal network. This would allow
large scale or computationally intensive investigations to be distributed across
multiple computers. One set of resources could host the data endpoints, while
another set undertakes the execution of different experimental scenarios. The
computers executing the scenarios can retrieve the required data to construct
new knowledge-base instances facilitating the potential for automating experi-

mentation across numerous scenarios.

5.2.3 Retrieving and Transforming Data for the Local
Knowledge-Base

The process of constructing a local knowledge-base requires the importing of
RDF datasets or their retrieval from remote online sources. These datasets may
then require transformation to align them with the user’s or module’s schema.
The testing of this alignment can be performed automatically on RDF datasets
using the schema (Section . The greater the alignment of the schema in
the knowledge-base(s) the less need for modification during the execution phase
as discussed later (Section [5.3.9). This section will briefly outlines the use of
SPARQL to retrieve and transform datasets.

The first identified use case was obtaining data from local file sources (Section
. These local files may contain data that is not required or must be trans-
formed to the schema. In Listing a source file has been loaded into a graph,
but has mislabelled properties and changing datatypes (in this case a string to

an integer). These are deleted and replaced with the correct values.
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PREFIX sch: <http://example.org/schema#>
PREFIX src: <http://example.org/source#>

WITH <http://example/final-graph>
DELETE{
?subj src:prop 7obj
?subj src:value "18"
}INSERT{
?subj sch:prop 7obj
?subj sch:value 18 .
}WHERE{
?subj src:prop 7obj
?subj src:value "18"

by

Listing 5.2: Example SPARQL query to select and transform data within a graph.

When the source files contain a lot of extraneous data then triples can be
selectively extracted. The files can be loaded into a graph of the knowledge-base
and then the cleaned data transferred to a new graph, which will actually be used
in the framework.

This is shown in Listing where a temporary graph is searched for the
required data. This data is transformed, in this case using the schema’s properties
and classes, and then inserted into the final graph. Once completed the entire

temporary graph can be dropped from the knowledge-base.
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PREFIX sch: <http://example.org/schema#>
PREFIX src: <http://example.org/source#>

INSERT{
GRAPH <http://example/final-graph>{
?subj sch:prop 7obj
?subj a sch:CorrectClass .
+
YWHERE{
GRAPH <http://example/temp-graph>{
?subj src:prop 7obj

7?subj a src:WrongClass .

by

Listing 5.3: Example SPARQL query to select and transform data between

graphs.

The second use case is obtaining data from remote SPARQL endpoints (Sec-
tion [5.2.2). The endpoint services are queried over HTTP using the Federated
Query mechanism. The results can then be inserted into the local knowledge-
base. This is shown in Listing by the inclusion of a service URI to signify the

remote SPARQL endpoint.
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PREFIX sch: <http://example.org/schema#>
PREFIX src: <http://example.org/source#>

INSERT{
GRAPH <http://example/final-graph>{
?subj sch:prop 7obj
?subj a sch:CorrectClass .
}
}WHERE{
SERVICE <http://example/remote-endpoint>{
GRAPH <http://example/temp-graph>{
?subj src:prop 7obj

7?subj a src:WrongClass .

}

Listing 5.4: Example SPARQL query to select and transform remotely held data

from a service.

In conclusion, datasets retrieved or loaded into the local knowledge-base can
be transformed using SPARQL queries. This allows the preparation of the dataset
in advance of execution and so enables usage of a common schema by modules
(Chapter [4)). These SPARQL queries can be distributed for re-use to support the
transformation of published datasets into a schema, e.g a module developer could
publish the transformations required to prepare a well-known dataset for their
module.

It has previously been identified that a configuration of the framework is to
use only remote data sources without a local knowledge-base. Since the schema of
modules and data sources could vary there needs to be a method for transforming
or reconciling the data. The proposed solution to this is discussed in the next

section.
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5.3 Controlling and Executing the Modules of

the Framework

An objective of the framework is to allow the platform-independent interchange of
modules. The framework has been designed to fulfil this objective without requir-
ing that the modules all adhere to a strict interface, but instead interact through
the data of the knowledge-base. Further, the modules can be implemented in
different programming languages, e.g. Java and Python, and executed on differ-
ent computing platforms or physical computers. Therefore, it is intended that a
diverse range of modules can be utilised with minimal barriers to implementation
and access.

The framework achieves these features through an RDF structure and lever-
aging the SPARQL protocol [43]. The RDF structure, termed the Framework
Configuration, provides a directory of services, graphs, modules and queries. This
structure identifies where the modules can retrieve data for their execution and
replacement queries supplied by the user. Therefore, multiple versions of the
Framework Configuration can re-use the same set-up of parameters for multiple
iterations. Alternatively, the same scenario parameters can be applied to dif-
ferent knowledge-bases of the contextual data, e.g. geography, demography and
infrastructure, as the user chooses.

The SPARQL query protocol is used to allow the user to retrieve data using
standard querying syntax or modify the execution of modules. The Federated
Query [43] component of the protocol provides access to remote and local datasets
over HT'TP using standardised syntax. Therefore, the framework does not variate
the SPARQL standard, but extends it through a small set of requirements for
modules to implement.

The conceptual structure of the framework is shown in Figure 5.5 This ab-
stract view does not take into consideration the physical configurations that the
framework facilitates as discussed previously (Section . The Framework Con-
figuration interacts with the modules that provide the functionality of the travel
demand process. It provides the modules with the Service Definitions, Module
Definitions and Query Definitions that are used to locate data sources, select

data and call other modules to perform discrete functionality.

168



"""" Framework Configuration > Module [* > Data
________ 1 prm—rm—m i

I QueryDef | | ServiceDef | \

_________ 4 [P ——
L pmmrm—— [T T 1. » Module [* s
© | QueryDef | | ServiceDef | , 4— Data
N 1 —— e — J -
A 1o ! h 4

| ModuleDef | | ServiceDef | FRRREREREED :
L _. 1 L _. 1 » Module 4———» Data

Figure 5.5: Diagram of the framework structure using the RDF data model of
the Framework Configuration to exchange information with modules and data
graph.

This section describes the Framework Configuration by examining the data
structures and processes required to support it. The premise of the Framework
Configuration is providing the user with control over the configuration by allow-
ing them to select modules and mediating any schema misalignments that may
occur between modules. This creates the prospect of users providing incorrect
information through badly formed queries. Therefore, there is also consideration
of the selected mechanisms for ensuring the validity of data and queries which

are passed between modules at the direction of the user.

5.3.1 Framework Configuration

The Framework Configuration schema is shown in Figure |5.6, Each instance is
described by properties to the Service Definition, Query Definition and Module
Definition. This configuration information can be stored in the knowledge-base
as a separate graph or kept in a single graph together with the other parameter
data for the Travel Scenario and the execution results (Sections and [1.9).

In addition to controlling the configuration during execution, this information
may be of use in post-execution analysis or the reconstruction of the investigation
by other users, e.g. as part of reproduction studies. The Framework Configuration
also provides a central reference for associating any global data that a particular
module may require, e.g. additional configuration data for a traffic simulator.
An optional Framework Service property allows the URL HTTP service on which
the Framework Configuration can be retrieved. This allows the whole graph of

configuration to be passed from service to service using only two references: the
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Framework Configuration URI and its service.

5.3.2 Service Definition

The Service Definition describes where data can be retrieved relating to a par-
ticular part of the core schema. Each Service Definition includes a Service Type
that identifies which parts of the schema are satisfied by the Service Definition.
Additional Service Types may be defined by modules if their data requirements
are broader than the core schema. The user would fulfil these requirements in
the knowledge-base and then signpost to them using the Service Definition of the
Framework Configuration.

It was discussed previously (Section that the knowledge-base can be di-
vided into multiple logical graphs to separate concepts or alternative sets of data.
The service URI indicates the address of the SPARQL endpoint where the data
is located. The graph URI indicates which graph within the endpoint holds the
required data. This allows two Framework Configurations to point to the same
service and retrieve different versions of data, e.g. Year 1 and Year 2. Alterna-
tively, the two Framework Configurations could point to different services and
retrieve their alternative versions of the same data, e.g. Year 1 from Service A
and Year 1 from Service B.

The user may decide to organise their knowledge-base following their own
graph structure or physically separate the graphs onto different computers each
operating a different endpoint. The Service Definition permits this to take place
without restriction. The Service Type identifies which sets of data are satisfied
by each service URI and graph URI pair. The module will seek the Service Type
it requires without concern for the underlying organisation.

In the most simple configuration a single knowledge-base would have a single
graph containing configuration, scenario and results data. Similarly, while a
module may distinguish two areas of the data as being separate, e.g. person and
vehicle data, the user may decided to place them in the same graph, as they
will not interfere with each other. Therefore, the Service Definition may refer to
multiple Service Types, which are using the same service URI and graph URL

This is shown in Figure by the ”"Data” Service Definition. In this example,

170



"UOI)RINSYUO,) JIOMOUWRI] JO RWOYDS :9'G 9IN3T

[T1] Suuis:psx : swens|qenepydess mm
[T°°T] BuLis:psx : aweNa|qeLBARIIASS
[1°T] @dA12o1uas :198ie|adA]souas mm

Suipuighianp

)
[+ 0] Bupuighianpsey

[+T] ®24n0Say:sipa & [YN1S5Iel
[1°T] @24nosay:sipi : |YN224N0S m

[T-°T] Suuis:psx : Buuishusnb
[T1] 2dA1AdanD : adALAdanb mm

IS EE LYERIVEINEER N ERTIVES
[T-°T] ®24nosay:sipd : [4nudet3 mm
[T°°T] @21n0say:sipl @ [HN221uas

uolyulRga|NPoN

uoniuysgAienpd

uoliuysg=dInIes

[+ 0] uoniuyaghisnpsey

[+0] uoniuysganNpoNsey

[T°T] ueajooq:psx : uiydedjAdde mm
[1-°0] 821n0SaY:S}pJ : BIINIDSHIOMIIE)) Il

— [« "T] uoniuyagaauassey

uoijeinSijuo)joma el 4

171



two Framework Configurations are defined, which use the same knowledge-base
for the persisting data, i.e. data that is not influenced by parameters of the sce-
nario, and then identify different ”Scenario” and ”Results” Service Definitions.
Therefore, the parameters of the scenario are being varied, but not the demo-
graphic, network infrastructure or land use data.

This separation into four parts is recommended as the minimum division,
although a single Service Definition would be a valid configuration. This recom-
mendation is based upon partitioning the scenario parameter from the persisting
data, so that multiple iterations and variations can be executed, and placing the
results of the scenario in a separate graph, so that they can be easily removed,
e.g. if an error occurred during set-up or execution.

It was previously outlined (Section that six graphs were used to organise
the prototype knowledge-base and modules (Chapter @ Therefore, six Service
Types were defined in the Framework Configurations. However, these were design
decisions and not a mandatory requirement. Implementing modules are able to
state the Service Types they require and the user would then satisfy them through
the knowledge-base and the Framework Configuration. The lack of mandatory
requirements relating to Travel Demand Modelling means that this approach

could be used in other contexts outside of travel demand generation.

5.3.2.1 Service and Graph Query Manipulation

The Service Definition enables the user to identify the services and graphs that
they wish to use in the framework. These definitions are utilised by applying the
parameters to template SPARQL queries. This section discusses the mechanism
developed for manipulating these template queries. This mechanism is executed
by modules but is designed to be a generic re-usable component that modules
can access as a library. Each module may perform multiple queries and retrieve
the Service Definitions it requires based on the Service Type.

The Service Definition identifies the service and graph URIs available for each
Service Type. These services and graphs contain the datasets necessary to execute
queries and obtain results. The initial use case would have all the information

contained in a single graph on a single service for the query to retrieve.
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Figure 5.7: Diagram of two example Framework Configurations for services using
local scenario and results with remote knowledge-base.
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A broader scenario would find data spread across multiple services and mul-
tiple graphs. The graph structure of RDF and the SPARQL protocol Federated
Query enable the drawing together of this data without needing to execute mul-
tiple separate queries. This removes the need for implementation specific pro-
gramming code to handle the multiple stages of obtaining and passing the results
between separate queries.

The need for multiple stages would increase complexity and reduce the flex-
ibility for users in specifying replacement queries to suit their knowledge-base
or configuration as discussed later (Section . The Framework Configuration
enables the user to specify alternative configurations so that different services and
graphs, i.e. alternative datasets, can be used for each execution of the framework.

The mechanism is based upon queries being written as text strings which are
interpreted at run-time and therefore can be manipulated prior to execution. The
Listing|5.5shows an example query template. A target variable has data retrieved
for three properties: hasName, hasLabel and hasValue. As target is unbound the
results will be for every subject that has these three properties.

Each property is expected to be retrieved from a different remote source spec-
ified by enclosing within SERVICE and GRAPH clauses. These clauses have
an accompanying identifier, shown in this case within square brackets /.../. The
identifiers are specified by the module and are substituted with the service or

graph URI from a Service Definition according to the Service Type.
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PREFIX sch: <http://example.org/schema#>

SELECT 7target 7name 7label 7value
WHERE{

7target sch:hasName 7name .
SERVICE [labelService]{

GRAPH [labelGraph]{
7target sch:hasLabel 7label .

SERVICE [valueService]{
GRAPH [valueGraph]{

7target sch:hasValue 7value .

}

Listing 5.5: Example SPARQL query template with identifiers for service and
graph.

Figure |5.8| shows an example Framework Configuration that could be applied
to this template query. Each definition specifies a different service URI and graph
URI and Service Type. These are applied to the template to produce the query
as shown in Listing [5.6]
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<4 ValueDefinition

I serviceURI : http://example.org/servicettvalue
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Figure 5.8: Diagram of example Framework Configuration for use in query ma-
nipulation.

The SPARQL protocol specifies additional requirements for valid queries.
Each query is executed in the context of a base service and graph. The base service
is not included as part of the SPARQL query. The base graph is identified by the
FROM clause which specifies the default graph. Any additional named graphs
are stated by FROM NAMED clauses. These statements must be inserted be-
tween the SELECT/CONSTRUCT/ASK/DESCRIBE and the WHERE clause.

Therefore, these clauses must also be inserted when named graphs are being used.
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PREFIX sch: <http://example.org/schema#>

SELECT 7target 7name 7label 7value

FROM <http://example.org/graph#base>

FROM NAMED <http://example.org/graph#label>
FROM NAMED <http://example.org/graph#value>
WHERE{

7target sch:hasName 7name .
SERVICE <http://example.org/service#label>{

GRAPH <http://example.org/graph#label>{
7target sch:haslLabel 7label .

SERVICE <http://example.org/service#value>{
GRAPH <http://example.org/graph#value>{

7target sch:hasValue 7value .

by

Listing 5.6: Example SPARQL query prepared for execution with substituted
service and graph URIs.

It is not a requirement that the graphs of a knowledge-base are separated over
multiple services. In a simpler configuration a single service may provide all or
the majority of the required graphs. Therefore, comparison is made between the
service URI of the base Service Type and the service URI of additional Service
Types. When the two service URIs are identical the SERVICE clause, including
surrounding braces {...}, is removed. Listing demonstrates this scenario by
only specifying a single SERVICE clause.
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PREFIX sch: <http://example.org/schema#>

SELECT 7target 7name 7label 7value

FROM <http://example.org/graph#base>

FROM NAMED <http://example.org/graph#label>
FROM NAMED <http://example.org/graph#value>
WHERE{

7target sch:hasName 7name .
GRAPH <http://example.org/graph#label>{

?target sch:haslLabel 7label .

SERVICE <http://example.org/service#value>{
GRAPH <http://example.org/graph#value>{

7target sch:hasValue 7value .

3

Listing 5.7: Example SPARQL query prepared for execution on a single service.

Another scenario is that the knowledge-base has not been separated into the
same number of graph as the module originally defined. Instead several graphs
have been merged together, i.e. a Service Defintion with multiple Service Types.
The simplest framework configuration would be a single graph on a single service.

In the case of merged graphs, the graph URI of the additional Service Type is
checked against the graph of the base Service Type. If they are identical then the
GRAPH clause, including surrounding braces {...}, is removed. This is illustrated
in Listing where the first service and graph clauses have been removed to
retrieve the data from the base service and graph. The second service and graph

clauses have been substituted with the relevant URIs.
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PREFIX sch: <http://example.org/schema#>
SELECT 7target 7name 7label 7value
FROM <http://example.org/graph#base>
WHERE{
?target sch:hasName 7name .
?target sch:haslLabel 7label .
SERVICE <http://example.org/service#value>{

GRAPH <http://example.org/graph#value>{

7?target sch:hasValue 7value .

}

Listing 5.8: Example SPARQL query prepared for execution on single service and
graph.

The procedure for the query manipulation mechanism is described in Algo-
rithm[I} The string query is modified during the process with clauses being added
and removed. The Service Definitions are retrieved from the Framework Config-
uration and stored in an associative array termed serviceDefs. This information
may be re-used across multiple queries within each execution of a module but
also across multiple executions, as discussed later (Section [5.3.5)).

The query specific information are provided by the identifiers and base type
variables. The identifiers associate specific service or graph clauses with a Service
Type. The base type identifies the contextual Service Type that the query is being
applied within.

Applying this mechanism gives the user control over the organisation and
provision of data whether from local or remote sources. The modules are able

to use the SPARQL query protocol to obtain data in a decoupled manner from
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the underlying knowledge-base organisation. These queries can also be made
available for replacement by the user, as discussed later (Section [5.3.3), to give

further flexibility in the data retrieval and processing.

Algorithm 1 Service and Graph Query Manipulation

function QUERY MANIPULATION (query, service Def s, identi fiers, baseType)
baseServiceDef < serviceDefs.get(baseType)
baseService < baseServiceDe f.serviceU RI

baseGraph < baseServiceDef.graphU RI
query < INSERTFROMCLAUSE(query, baseGraph)

for ivdenti fier in identifiers do
servicel D < identi fier.servicel D
graphlD < identifier.graphl D
type < identi fier.serviceType

serviceDef < serviceDefs.get(type)
service <— serviceDe f.service

graph < serviceDef.graph

if service equals baseService then
query < REMOVESERVICECLAUSE(query, servicel D)
else
query < INSERTFROMNAMEDCLAUSE(query, service)
query < REPLACESERVICECLAUSE(query, servicel D, service)

if graph equals baseGraph then
query < REMOVEGRAPHCLAUSE(query, graphl D)

else
query < INSERTFROMNAMEDCLAUSE(query, graph)
query < REPLACEGRAPHCLAUSE(query, graphl D, graph)

return query
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5.3.2.2 File and HTTP Service URIs

A final consideration of the Service Definition is the use of file URIs. The
SPARQL Federated Query protocol is based upon using the HTTP protocol to
query a SPARQL endpoint, either located locally within a network or remotely
online. When using the framework this may present an unnecessary burden both
in configuration and processing overhead.

The URI definition permits the use of HTTP and File as schemes [128] [129).
These schemes identify the method to access the resource the URI describes. This
has been incorporated into the framework design and is shown in Figure by
the service URI for the ”Scenario” and "Results” Service Definitions of both
configurations.

The simplest use case of the framework is executing a programme against a
knowledge-base stored on the local file system. Requiring the use of the HT'TP
protocol would mean always establishing a HTTP endpoint for the file system
knowledge-base. Semantic Web libraries can support this process, but it is an
additional configuration step.

The User Application would be required to separate execution of modules
from the knowledge-base and run the HT'TP SPARQL server. This would impose
requirements upon the user and could delay the investigative stage for no benefit.
There is also a computational overhead introduced by a local HT'TP route that
can be avoided using a local file system knowledge-base. An illustrative outline
of the steps needed for the local HT'TP route is shown below with the equivalent

step for a local file system shown in bold:

1. SPARQL query is converted by the User Application into a HT'TP request.

2. HTTP request routed through the network adapter to the SPARQL end-

point.
3. HTTP request converted back into SPARQL query.
4. SPARQL query is executed by the SPARQL endpoint.

5. SPARQL query results converted into HTTP response.
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6. HTTP response routed through the network adapter to the User Applica-

tion.

7. HTTP response converted back into SPARQL query results.

Handling of File URI is not a feature of the SPARQL standard which is
based upon HTTP URIs for Federated Queries. Therefore, File URI cannot be
used in SPARQL queries. This is due to the interpretation of the File URI, i.e.
the contents of the indicated file or folder, being implementation dependent and
reliant upon the Semantic Web library of the User Application (Section .

The framework accepts the use of File URI by applying several restrictions.
First, that the folder or file pointed to by the File URI can be accessed by the
Semantic Web library executing the query. In the context of a local closed system
this is a reasonable assumption as most applications will use a single Semantic
Web library. Second, when the base service is a File URI then the query is not
executed as a remote request, but executed on the local knowledge-base using
the Semantic Web library. Third, that a sub-service using a File URI can only
be used when the base service is a File URI. Fourth, that a sub-service using a
File URI must align with the base service.

In more complex configurations there may be a mix of local file and remote
HTTP services. A Semantic Web library compliant with SPARQL Federated
Query can be executed on a local knowledge-base and will retrieve the data from
the remote sub-services within the query. However, any sub-services also using
a File URI must have the SERVICE clause removed as the SPARQL protocol
does not interpret the File URI. Therefore, the data for these File URI services is
retrieved from the local context, i.e. the base service File URI. This means that
all the File URIs used in a single query must match and a File URI cannot be
used for a sub-service if the base service is a HT'TP remote.

When considered for compatibility with the query manipulation mechanism
discussed previously (Section [5.3.2.1)), the File URI is being used as an identifier
rather than a resource locator, i.e. the data is not located on a HTTP ser-
vice. The user application would already have used the File URI to locate the
knowledge-base and access it using the Semantic Web library. This means the

approach to File URIs is compatible with the query manipulation mechanism and
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enables the same queries to be used on different configurations of the framework
(local and remote) by only changing the configuration parameters.

The restrictions established by applying this process can be summarised as:
e File URI support is dependent upon the Semantic Web library of the user.
e Only a single File URI can feature in a single query.

e A sub-service can only use a File URI if the base service uses a File URI.

Overcoming these design restrictions to support multiple File URI would re-
quire variation to the SPARQL standard or enhanced features of Semantic Web
libraries. This kind of variation to the SPARQL standard is highly unlikely as
a Semantic Web design principle is platform independence, which file system
knowledge-bases introduces. The enhancement of Semantic Web libraries is also
unlikely as the underlying SPARQL standard has not been changed and different
libraries could adopt incompatible approaches. In both cases support of multiple
File URIs represents a move away from the benefits of using standards based
technologies of the Semantic Web for a subset of use cases.

The previously outlined query manipulation (Section can be imple-
mented by a module without modifying the Semantic Web library it utilises. The
mechanism is applied to the text of the query and should be straightforward
for modules to implement, or use a library developed for the proposed frame-
work. Therefore, providing additional implementation details for the framework
to address the multiple File URI is undesirable.

This means that some framework configurations using multiple File URI, i.e.
multiple local knowledge bases, are not supported. However, these configurations
can be supported by all but one one of the local knowledge-bases being set-up
as a local HT'TP server. Their service URIs will then be HTTP URIs and the
stated restrictions would be met.

This may have the consequence of slower execution run-times in this specific
use case. However, travel demand generation and traffic simulation are not real-
time processes and so faster execution run-times are desirable rather than critical.
The user would also still have the choice of simplifying their configuration by con-

solidating the multiple local knowledge-bases into a single instance and applying

183



named graphs to ensure data separation (Section . The benefit of re-using
the same queries across multiple configurations can therefore be fully realised in

the proposed mechanism.

5.3.3 Query Definition

The objective of the framework is to provide the user with flexibility in the
configuration of modules, retrieval of data and execution of the modules. This
section discusses how the latter two objectives can be facilitated by enabling users
to rewrite the queries executed by modules. The queries are written in SPARQL
syntax which conforms to the published standard [43]. Therefore, the semantics
and vocabulary of the queries are clearly defined. The queries are interpreted at
runtime as text strings meaning that modifications can be applied or transmitted
without requiring modification or recompilation of modules.

Users with understanding of the underlying knowledge-base can re-write the
queries to retrieve alternative pieces of data for a module. Similarly, sub-modules
can be called to perform additional or alternative processing of the data within
the module as property functions using standard SPARQL syntax. The only
requirement is that the SELECT and CONSTRUC'T variables are unaltered and
bound so that the executing modules can retrieve the expected data from them.

The Query Definition provides for these replacement queries to be defined
as part of the Framework Configuration. This allows the replacement queries to
be accessed by local or remote modules; ensures the full configuration is stored
within the knowledge-base; and facilitates re-use across multiple configurations.
Figure provides an example of two Framework Configurations which each
utilise two Query Definitions.

In this example there is one common Query Definition and one specific to each
configuration. When modules are executing a query then a look up is performed
to check if the required query type is defined in the Framework Configuration. If
present then the replacement query is used and if absent then the default query
is executed.

The modules will only need to state the query type URI to identify relevant

Query Definitions and provide an example query for users to modify, i.e. the
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4 ConfigurationA 4 ConfigurationB

| [
hasQueryDefinition hasQueryDefinition

4) RequestStageEstimateA

B queryType : RequestStageEstimate
B queryString : “SELECT ?stage ..."”

4 CalculateStageEstimateUtilityA

B queryType : CalculateStageEstimateUtility
B queryString @ “SELECT ?utility ...”

4 CalculateStageEstimateUtilityB

B queryType : CalculateStageEstimateUtility
B queryString : “SELECT ?utility ...”

Figure 5.9: Diagram of two example Framework Configurations for query using
the same module to request stages but different calculations of utility.

default query that the module already executes. The queries used by modules can
be considered to serve the purposes of data retrieval and sub-module execution,
e.g. requesting a stage estimate during the trip planning phase. By publishing
either of these types of query a module will be providing greater control to the
user.

The former type of queries will allow a module to be adapted to a new schema
in the knowledge-base by the user rather than the alternate case of transforming
the data in the Knowledge-Base Construction phase (Section . Another
use case is the modification of calculations and equations, e.g. utility in discrete
choice models (Section [1.2.4.2)).

Publishing these queries by the module developer would be recommended,
but not mandatory as the user can still utilise the module by complying with
the published schema. There may also be a large quantity of these queries used
by a module which are trivial in nature and a burden to publish. In addition,
design decisions and assumptions for a module could make modification of certain

queries problematic, although compliance with the core schema should assist
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in preventing this (Chapter [4)). However, by not publishing these queries, and
exposing the module’s data retrieval process, a requirement is placed on the user
to conform to the module’s expected schema.

The latter type of queries provide control over the configuration of the frame-
work. It is through these queries that modules are accessed and so how alterna-
tives can be selected, e.g. a replacement sub-module for the default sub-module.
Therefore, these types of queries should be mandatory for publication so that
users can have control over the framework configuration to select alternative
functionality.

In both cases the user may wish to redirect part of the query to one or more
services and/or graphs. The user could place SERVICE and GRAPH clauses
with explicit URIs within the query. However, this would remove the flexibility for
changes to be applied during execution according to the Framework Configuration
when different datasets or modules may be explored.

The user would have to manually edit each change in the Query Definition
for each Framework Configuration; both time consuming and prone to error.
Therefore, the Query Binding structure provides a cross-reference from the query
defined in the Query Definition to the existing Service Definitions in the Frame-
work Configuration (Section .

The user can then include additional service and graph placeholder variable
names in the query. Alternatively, they can overwrite the default bindings for ex-
isting placeholders used by a module. When the query is processed these variable
names are substituted with the corresponding service or graph from the Service
Definition with the matching service type. Any variable names can be provided
by the user allowing as many cases as they require within a query and across mul-
tiple queries. Additional Service Definitions can be included in the Framework
Configuration beyond those required by the executed modules allowing further
flexibility to the user in how data is retrieved.

The approaches described enable the externalisation of the data retrieval,
calculation and sub-module selection performed by modules. These processes
can then be adapted and modified by the user to their configuration of data and
modules as opposed to being restricted to configurations with compliant interfaces

and data structures.
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5.3.4 Module Definition

A feature of the framework is that the user is able to provide alternative queries
using the Query Definition as described previously (Section . This intro-
duces the need for validating the query against the schema of the knowledge-base
as discussed later (Section[5.3.7)). A scenario this introduces is the user providing
a query that replaces the URI of a sub-module in a query with another module’s
URI in order to use its alternative implementation or functionality.

A step of the query validation process is checking whether the property URIs
of a query are contained in the knowledge-base’s schema. Otherwise the defined
triple will never yield a result, if the knowledge-base schema fully describes the
contained data, and making attempts to execute the query redundant. The URI
of modules are used as properties in queries but do not have to be included in
the schema, which describes the shape of the data.

A module can know its own URI and those of the default sub-modules that it
utilises and so these can be included and recognised during the query validation
process. However, replacement module URIs included by the user as part of a
Query Definition will be unknown and cause a validation error. The Module
Definition provides a mechanism for the user to declare the module which is
having its default sub-modules replaced and the replacement sub-module URIs.

These replacement sub-module URIs will feature in the new queries defined
in the Query Definitions. When the query is validated the Module Definition can
be checked for the sub-module URI. The Module Definitions are only required
if the user changes the sub-module within a query from the default expected by
the module. Since a query could potentially include multiple sub-modules the

Module Definition can define multiple target sub-modules URISs.

5.3.5 Caching of Invariant Data

The storage and processing of large quantities of data has led to the develop-
ment of databases. The RDF graphstore, that would be expected to store any
knowledge-base of size, and other non-SQL databases have been developed to
provide this functionality as alternatives to the traditional relational database.

These databases can provide persistent storage on the file system with features
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including querying and parallelism.

Once data has been loaded and prepared the persistent file storage allows very
large datasets to be accessed. Optimisations have been developed, e.g. indexing
and query caching, to assist in the retrieval of data. However, database retrieval
is still slower than an application retaining data in-memory.

The in-memory data is already in the required form for the application and
does not require retrieval from the file system and processing. While computer
memory capacity has continued to develop, they can still be relatively small in
size compared to the scale of datasets. This can inhibit an entire dataset being
retained in-memory by an application. Therefore, there is a compromise between
large scale, but slow access, databases versus the small scale, but quick access, of
in-memory storage.

A similar issue is found with the HTTP requests over a network used by the
proposed framework to access remote datasets. These HT'TP requests themselves
are relatively slow to perform as discussed previously(Section and their
reduction or removal would lead to improved execution run-times. The discussed
approach with supporting local file system references can remove some HTTP
requests when modules and data are set-up locally. However, the removal and
reduction of computation will enhance the efficiency of any system.

Another consideration is the manner in which SPARQL queries and property
functions, which execute and wrap the modules, are resolved by SPARQL query
engines. A property function is called for each potential solution to a query with
the parameters for each case passed for processing in isolation. The differences
between these cases may be a single parameter value. This can mean that a query
with many thousands of cases could be retrieving from the graphstore the same
or very similar data for every case.

Finally, graphstores can experience reductions in query performance as the
dataset size increases and with sub-optimal queries. The greater the number of
triples present in the dataset and the less specific the query then the greater
the cross-product of cases that could be legal query solutions. Separation of
knowledge-bases into multiple graphs can reduce the number of triples being
searched and query optimisation by ordering of steps to reduce candidate cases

early can improve response times. However, not performing redundant querying
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will always be quicker. In each of the outlined situations the caching of invari-
ant data in-memory can provide part of the solution. The cached data can be
repeatedly accessed to remove the need to access the graphstore, process HT'TP
requests and obtain data for usage between cases.

It has already been discussed (Section that the data in the knowledge-
base belongs to a variety of contexts. These contexts include invariant data that
will not be changed by the state of the modelling process, e.g. the location
of a building, while other data may undergo change, e.g. person and vehicle
positioning. This does not mean that the state of objects in the knowledge-base
will not change over the long term, but that they will not be adjusted in the
time-frame of the modelling process, i.e. a building on a site may be demolished
between different dataset years, but not over the course of the day or week of
traffic demand generation.

Another context to consider is the data that changes between modelling exe-
cutions, e.g. framework and scenario parameters. These parameters distinguish
one execution from another. However, they are invariant within the modelling
process. Therefore, the values do not require retrieval and updating once they are
already known by a module. These types of data can be identified by modules,
extracted from the knowledge-base and retained for use from case to case during
an execution.

Overall, the user is able to construct a large knowledge-base containing con-
textual data for the concepts, while the modules are able to extract and retain
targeted data for faster execution. This means that the user does not need to
extract and format a subset of the data for the module to utilise or compromise
the richness of the knowledge-base.

The lack of variability in framework and scenario parameters means that
Framework Configuration instances can be used as a reference to allow multi-
ple sets of cached data to be retained, identified when needed and discarded
when no longer used. A number of configurations for the framework have been
discussed (Section including local and remote execution of modules.

In both cases it would be expected that the in-memory capacity will be limited
as with any resource. In the local execution this is not a concern as modules will

likely be executed for short periods of time and on a single Framework Configu-
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ration instance. Therefore, cached data would be discarded once the execution
has completed, i.e. the User Application exits and releases its resources.

In remotely executed modules there would be continuous availability as a
service. The service would be available for long periods of time and expected to
execute multiple Framework Configuration instances. Each instance could have
different data associated and so must be logically discreet from other instances,
e.g. scenario parameters may differ. Therefore, there is potential for accumulating
large quantities of data in the cache.

The physical limit to in-memory caching can be increased by operating sys-
tem funcationality, e.g. paging to disk, and caching to disk libraries, [130, |131].
However, retaining cached data indefinitely is a waste of resources as once the
execution has completed a Framework Configuration instance will not be used
again, or if it is can incur the initial pre-caching cost, while periodic restart of a
service is not ideal.

The proposed solution is for the cached data to expire if it has not been
utilised for a period of time. The travel demand generation typically occurs
as a continuous process with households and persons iterated through in rapid
succession. Therefore, a period of seconds or minutes would indicate that the
process is completed and the cached data is no longer required.

The framework design is based upon modules being provided with a Frame-
work Configuration instance in order to retrieve the relevant service and query
information. Each Framework Configuration instance identifies the scenario,
knowledge-bases and current results. Therefore, modules can check the cache
for the Framework Configuration instance, retrieve the data and update the most
recent request log.

Once cached data is no longer being requested it can be discarded. A service
under heavy load would be able to limit cache sizes to not exhaust in-memory
capacity, stop caching when full, but expect cache space to released as the load
is completed.

The apply caching property has been included in Figure to enable users
to specify a choice as part of the global configuration. However, it would be
a module implementation decision whether to honour or ignore the parameter.

There may not be relevant data which is deemed invariant or there is insufficient
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resources for caching.

This caching solution allows the execution costs of database access, HT'TP
requests and redundant SPARQL querying to be mitigated without wasteful use of
resources or requiring additional data to be passed to modules. The effectiveness
of this solution is evaluated in Chapter

5.3.6 Ensuring Validation and Conformance of Data to
the Schema

The effectiveness and accuracy of any model or system is heavily influenced by
the quality of the input data. The proposed framework is developed upon the
provision of data from publishers which is then acted upon by the consuming
modules. Both parties must ensure that the data conforms to the schema that
they publish or utilise. This section outlines several areas that this is particularly
important in the Semantic Web and identifies an available solution.

The technical details of this solution are not discussed here but it provides
an existing mechanism for providing assurance in data conformance. Low quality
and non-compliant data will lead to errors in the produced results and can prevent
successful completion of any computational process. This is especially true of the

Semantic Web due to several factors:

e The SPARQL query process matches triples to the template graph pat-
terns in the query. When a set of triples do not match a graph pattern
it does not result in an error but instead that the particular set of triples
should be ignored. Data which is malformed, such as incorrect property
URIs or missing properties, will not cause a warning or error, but instead
be silently ignored to return less or no results. The inverse also applies
where a SPARQL query is not correctly aligned to the underlying data
(Section . Therefore, minor typographical errors in either stage will
produce unexpected results. This in contrast to SQL where a mismatching

key/column during data loading or querying will produce an error.

e The open and online retrieval of data from multiple sources also presents

a problem. The user does not control these data sources or the data they
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publish. Therefore, the quality and compliance is beyond their control.
There will inevitably be errors, omissions and variations between different
versions. The AAA principle (Section also allows publishers to include
properties of their own choice, which could conflict with a user’s schema or

vary away from the standard schema a user was expecting.

The graph structure of RDF makes human inspection and validation of
data difficult. In a tabular structure, data is held in rows and columns that
can be inspected for gaps or malformed entries. Additional columns can
easily be identified. In RDF, the triples relating to a single subject may
be dispersed throughout a file and the description of a single concept may
be spread over a chain of triples. There may be multiple occurrences of a
subject-property when only one should be present or none when at least one

is required.

A user needs to establish confidence in the knowledge-base and modules prior

to utilising them. Otherwise, there can be little confidence in the resulting out-

put until it has been thoroughly validated. Therefore, an automated solution is

necessary to ensure that a dataset complies with the intended schema. The user

will then be informed of the non-compliance and can take steps to resolve them.
The Shapes Constraint Language (SHACL) [95] is a Semantic Web standard

technology that has been developed to provide automated validation and report-

ing. The schema is composed of RDF triples that express the expected shape and

constraints of the data. This shape can be described with a variety of character-

istics, including:

the presence of properties;
the frequency of properties;
the datatypes of literals;
class membership;

and the values and ranges of data.
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Rules can also be expressed to apply inferences to the data to produce new
triples. The approach applies Closed World Assumption (Section , i.e. that
no new data exists that would invalidate the inferences or outcome, and does
not apply the Non-unique Name Assumption (Section , i.e. entities with
different names cannot be the same entity.

This is in contrast to RDFS [101] and OWL [93] schema languages. These
have been primarily designed to derive inferences from the data according to the
schema, rather than enforce data conformance. If the data and those inferences
are logically inconsistent then it is reported as being invalid for the schema.
However, the cause of the invalidity may not be apparent to the user.

The available terms in RDFS are very focussed and so the expressiveness is
narrow. The OWL language uses Open World Assumption (Section, applies
the Non-unique Name Assumption and is primarily used for classification. This
means that OWL may not produce the outcomes which a user may expect and
is not broad enough for all data validation purposes. For example, a missing
property when the schema states a minimum cardinality of one is not invalid as
the property may exist in the open world. The absence of a statement is typically
assumed to mean that the statement is false, but in OWL it is concluded that
the statement may be true or false.

The SHACL triples are encoded as RDF and therefore can be shared as part
of a schema. The schema can then be applied to the data when constructing the
knowledge-base. When the schema and data of the knowledge-base are processed
by a SHACL engine any violations can be identified for rectification. This can
also be applied to models retrieved from remote data sources using SPARQL
CONSTRUCT queries to ensure that the correct structure is being obtained.

In summary, there is a technological solution available for automated data
validation within the Semantic Web. This solution can be incorporated into User
Applications, datasets and modules to ensure that the data produced is compliant
with any required schema. This schema can be customised according to the needs
of the user and modules using a standardised set of properties, which provide both

data validation and inferencing.
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5.3.7 Ensuring Validation and Conformance of SPARQL

Queries to the Schema

The functionality of permitting users to supply their own queries through the
Query Definition raises the issue of query validation in SPARQL. A closed system
has queries written by developers with detailed understanding of the schema and
opportunity for thorough testing. An open system can accept queries from users
who lack detailed understanding and do not have time to thoroughly test queries.
Errors originating in user input should be discovered as early as possible [132]
to prevent queries being processed that ultimately fail, after wasting resources
undertaking the processing, or can return unexpected and incorrect results.

An advantage of SPARQL querying is the flexibility in allowing the user to
structure queries and retrieve data of their own choice. Therefore, a techni-
cal solution to address a user’s lack of understanding about the schema of the
knowledge-base, i.e. predicting the user’s true intention from a malformed query,
is difficult. However, identifying typographic and logical errors within queries
would be a useful assistance and save resources for both users and developers of
the framework and implementations of SPARQL generally.

In an SQL database the schema is stipulated by the designer through the
structure of table fields/columns and no additional fields/columns can be de-
fined. This means that queries can be validated to identify those fields which are
incorrect at the outset, either through user mistyping or misunderstanding of the
schema, i.e. a column in the table must exist for it to contain any data. The
SPARQL standard is based upon the graph of data in the knowledge-base being
schema-free and does not contain such a checking mechanism, i.e. the absence of
a triple match could be an incorrect query or the lack of matching data in the
knowledge-base.

In SPARQL, the property of a triple is analogous to a field/column in SQL.
The multiple statements in the graph patterns of the query are matched to the
data. The graph structure of the data is walked along for each case until a
mismatch to the graph pattern is found. A case which completes the graph
pattern is returned as a result.

Following the AAA principle (Section and no schema, a property which

194



has been mistyped in a query is considered to be different to the correctly typed
property present in the data. This can also be applied to class names. It is
instead considered that the user (Anyone) has made their own statement (About
Anything).

There will not be a binding to the statement in the graph pattern so it is
likely all cases will fail and the query will return no results. This lack of results
is interpreted that there are no matches for the query in this dataset, but there
could be in another dataset, rather than an error.

Similarly, SPARQL queries can contain named variables which are bound to
the data and re-used in later parts of the graph pattern and/or returned as results.
These variable names are only defined within the context of the query. Mistyping
a variable name will result in two variables when only one was intended.

When the data is being walked in the graph pattern these variables are bound
to all possible cases for the triple and then later rejected by other statements. A
mismatch between two variable names will result in cases not being rejected and
more of the dataset being explored than was required or intended.

It has also been identified that SPARQL implementations have focussed upon
grammatical checking of queries [133]. These grammatical checks identify when
keywords are mistyped or functional requirements cannot be fulfilled, e.g. vari-
ables named as a result, but are not included in sorting or grouping statements.
They do not pro-actively ensure that queries are valid for logical or schema con-
straints and instead reactively error and fail during query processing.

These logical and schema constraints have been categorised into syntactic
and semantic validation [133]. The identified syntactic rules cover several cases
including positioning errors, e.g. a literal being used as a subject or property,
and filter conditions using literals of different data-types. The semantic rules are
formed into an OWL ontology to use inferencing to check for logical consistency
in the query.

It has previously been discussed that the execution of SPARQL queries can
lead to the inefficient repetition of actions on invariant data (Section [5.3.5). This
situation also applies to the queries defined by a Query Definition in a Framework
Configuration.

Once a query has been validated its content will not be changing and repeated
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validation would be a waste of resources. Instead the outcome can be cached for
re-use according to the Framework Configuration and Query Type URIs. There-
fore, a successful query can be repeatedly executed, while a previously rejected
query can signal a swift termination.

The following sections will examine the validation of the query URIs and
variable names for incorporation into the framework. This validation seeks to
ensure that the potential exists for meaningful results to be returned by a query
rather than the actual results. The inclusion of more general SPARQL validation
errors [133] has been partially implemented on internal module queries to assist

with module development, but is an area of future work.

5.3.7.1 Validation of Query Unique Resource Identifiers

The previously identified issue of mistyped property and class URI is included in
the category of syntactic errors and can be resolved by checking to ensure queries
only contain URIs explicitly contained in the schema. However, in a Federated
Query the schema of the target service would need to be known for a check to be
carried out.

This is possible if the target service, i.e. modules and knowledge-bases, are
following the same core schema (Chapter . However, the framework has been
developed to tolerate local variations in modules and knowledge-bases by the user
providing their own Query Definitions (Section [5.3.3). These Query Definitions
may be the source of such errors through typographical errors or misunderstand-
ing variations in schema between modules and knowledge-bases.

To manage such errors a module could execute the query and then check the
outcome of the remote service’s validation. This is undesirable as it requires
reacting to failures after the execution has taken place. A single execution of
a query could contain multiple cases which will all result in errors. Therefore,
resources are wasted in reaching an outcome that could be predicted by validating
the query.

Alternatively, the module could request the schema from the remote service
and perform local query validation before executing the query. However, SPARQL

is designed to be schema free and there is no defined mechanism to request a
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schema. An enhancing feature of the framework could perform this request, but
it would create an extra burden on implementing the framework. Knowledge-
bases complying with the SPARQL standard, but not set-up for the framework,
would not be able to perform validation. This would either preclude them from
being used, and so not achieve the framework objective of remote data retrieval,
or limit the application of query validation.

A third option is to use the SPARQL ASK or DESCRIBE keywords to query
the remote service for the relevant graph pattern within the SERVICE clause.
The explicit class and property URIs can be extracted from the graph pattern and
then queried against the module or dataset. An ASK query provides a boolean
response to whether a solution exists to the query graph pattern. A DESCRIBE
query provides an RDF graph response about one or more resources, which in-
clude property URIs, with the precise response being implementation dependent.
Obtaining confirmation that the property URI is recognised and is an instance of
RDF property would meet the above requirement for error identification.

This is illustrated in Listing[5.9| which shows the specific targeting of a property
URI and the retrieval of all. These can be targeted at a specific graph. Therefore,
either keyword could be applied with the ASK providing the more direct check,
but potentially requiring multiple HT'TP requests, while DESCRIBE allows the
checking of multiple instances or characteristics.

These checks will identify whether the explicit class or property is contained
in the remote service, either in the data or schema. It does not resolve variables

or SPARQL syntax as this requires execution of the query.
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

ASK{
<http://example.org/schema#propAd> a rdf:Property .

DESCRIBE ?prop 7class
WHERE{
?prop a rdf:Property .
?class a rdfs:Class .

by

Listing 5.9: Example SPARQL query for ASK and DESCRIBE keywords to

confirm execute a remote module through its Property Function.

5.3.7.2 Validation of Query Variable Names

The matching of variable names can have a range of implications for a query.
The connection between statements in the graph pattern will not be made and
so extraneous results can be included. A newly encountered variable name will
obtain all instances that match the triple. If the variable name is mistyped then
numerous instances will be obtained when the true variable name would have
resulted in one or a few instances. This error can also affect the optimisation
of queries, performed by Semantic Web libraries, which seek to arrive at results
quicker by targeting those triples that limit the result set most effectively.

A mismatch in variable names between the CONSTRUCT template and
WHERE body will also cause those triples to not appear in the returned graph,
implying no data for those triples. There can also be a mismatch between the
variable names in the body of a query and the specific bindings of BIND and
VALUES clauses, which would result in the whole dataset being queried rather
than a targeted subset.

The incorrect naming of variables can also cause grammatical errors as key-
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word clauses, such as GROUP BY and ORDER BY, must include all variable
names that are included in the SELECT clause. While the variable names in
these keyword clauses may align, and so pass grammatical validation, there can
still be a misalignment to the variable names in the WHERE body, which would
not be detected.

These variable names only exist in the context of the query and therefore
variations in schema are not an issue. However, there is a challenge in identifying
variable names which have some similarity, and so are potentially intended to be
the same, but not so dissimilar that every pair of variable names is reported.

The variable names themselves can be groups of characters, words, parts of
words and compounds formed from multiple words or parts of words. The variable
names are case sensitive and so mistyping using name conventions, such as Camel
Case, can result in multiple variables , e.g. "myVar” is different to "myvar”. The
inclusion of a numeric character is also acceptable, e.g. ”"varl” and "var2”. A
variable name is permitted to only be placed and used once in the WHERE clause
and not in other query clauses to indicate that any value is permitted, i.e. a test
of another part of the triple.

These factors mean that any candidates for correction can only be highlighted
as a warning for the user, rather than an error, as similar variable names may
be the user’s intention, e.g. an alphanumeric suffix for variable names. Since
variable names do not have to be words the application of spell checking using
an approved list is inappropriate.

The grammatical error of a variable name in the GROUP BY or ORDER BY
clause not being matched in the WHERE body would be an error. Similarly,
applying the assumption that a user would only provide in-line data in the VAL-
UES clause for use in the query means any unmatched VALUES variable names
would be an error. An exception to this is when a variable name is used in the
SELECT clause and the VALUES clause, but not the WHERFE body, to directly
bind data for the results.

A number of distance metrics have been proposed for measuring the similar-
ity between character strings [134], including Levenshtein distance, Jaro-Winkler
metric, Jaccard similarity and Hamming Distance. These metrics examine the

strings from a variety of perspectives and produce varying numerical values to
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quantify the level of similarity. The Levenshtein distance measures the edit dis-
tance, i.e. number of insertions, deletions or substitutions, required for two strings
to match with a zero being an exact match.

This metric has been used in the implemented Algorithm [2|to identify variable
names that are similar, i.e. less than three edits, but not exact, i.e. greater than
zero edits. The threshold of three was selected to permit the insertion or deletion
of up to two characters or the transposing of a single pair.

A minimum threshold is applied to ensure that only strings which are long
enough to have a greater similarity than difference are checked, i.e. four char-
acters. Otherwise short words or single character variable names, which are
commonly used in SPARQL queries, would be flagged. Similarly an edit distance
of two is only reported for strings of equal lengths, to identify transposing. The
two edit distance cases of two insertions or an insertion and a substitution are
treated as being dissimilar strings.

The query is provided as a parameter from which are obtained the variable
names in the WHERFE keyword clause and candidate names from the result key-
word clauses, i.e. SELECT, CONSTRUCT or DESCRIBE. An exception to this
are any variable names that are bound in the SELECT clause due to aggrega-
tion of results, e.g. the result of a COUNT function. These specifically bound
variable names will not feature in the remainder of the query and so will never
be matched.

The variable names of the query WHERE clause are iterated through and
compared to the set of variable names. The equality of names is checked first to
provide an early exit for those strings with a distance of zero.

A check is then performed to ensure the length of both strings is sufficient for
the edit distance checking. Strings which are too short are still added to the list
of candidates as they may provide future matches for variable names. The result
of the Levenshtein Distance is checked for the one and two edit distance cases,
as illustrated in Table 5.1l

In the one edit case a further check is made into whether the initial or final
characters of equal length strings are matching. When not true the edit is in the
remainder of the strings and can be reported. An exception is made for characters

that only differ by case, e.g. "varA” and "vara” are reported. Otherwise the edit
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distance is ignored as being an enumeration with a prefix or suffix.

This could potentially under report errors as there is no checking to ensure
a consistent sequence of enumeration, but it could also be considered restrictive
to enforce sequential numbering. The enumeration is also limited to a single
character, i.e 1-9, a-z and A-Z, and therefore would report two variables using
more than two characters as similar, e.g. ”"varl” and "varl0”. Resolving these
reporting edge cases is an area of future work to investigate potential naming
conventions and the appropriate rules for enforcement.

In the two edit case a check is made to ensure the strings are equal in length
and whether the edits are the transposing of adjacent characters through two
substitutions. The two edit cases which result in two insertions, two deletions,
non-adjacent substitutions and non-transposing substitutions, i.e. more than two
character values, are ignored as being too dissimilar.

When an exact match is found the variable name is added to a set of matched
names. A name without an exact match is added to the set of candidate variable
names to allow comparison between variable names inside the WHERE clause.

Once all the names have been checked the other keyword clauses of the query,
i.e. VALUES, ORDER BY and GROUP BY and the original result clause, are
checked to ensure all of their names have a matching name in the WHERE clause.
Otherwise these variable names would never be bound to values. The VALUES
clause is checked for matches against the other clauses’ variable names for the

case when in-line data is being directly bound to them.
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Algorithm 2 Check Variable Name
procedure CHECK VARIABLE NAME(query)

list reports <— empty

editT'hreshold < 3

set names < query.where.var Names

set candidate Names < query.result.var Names

set matchedNames <— empty

for name in names do
1sMinLength <— name.length > editT hreshold
1sMatched < false
for candidate Name in candidate Names do
if name = candidate Name then
1sMatched < true
break loop
if isMinLength and candidate Name.length > editThreshold then
dist < LEVENSHTEINDISTANCE(name, candidate Name)
1sReport < false
if dist =1 then
pos < FINDEDITPOSITION(name, candidate N ame)
if pos = —1 or(pos # 0 and pos # name.length — 1) then
1sReport < true
else if dist = 2 then
isReport < CHECK TRANSPOSE(name, candidate N ame)

if isReport then
report < CREATEREPORT (name, candidate N ame, dist)
reports.add(report)
if isMatched then
matchedN ames.add(name)
else

candidate Names.add(name)

unusedReports < REPORTUNUSEDNAMES(query, matched N ames)
reports.add(unusedReports)

return reports
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Variable | Candidate Edit Reported | Comment
Name Name Distance
X X 0 No Variable and candidate names are identical.
X y 1 No Variable and candidate names are too short.
b'e XX 1 No Variable and candidate names are too short.
X XXX 2 No Variable and candidate names are too short.
X XXXX 3 No Variable name is too short. Edit distance is too great.
sub subj 1 No Variable name is too short.
subj sub 1 No Candidate name is too short.
subja subjA 1 Yes Final character only varies by case.
asubj Asubj 1 Yes Initial character only varies by case.
subjarea | subjArea 1 Yes Single character substitution.
subjBrea | subjArea 1 Yes Single character substitution.
subjA subj 1 Yes Single character deletion.
subj subjA 1 Yes Single character insertion.
subjA subjB 1 No Only final character varies, i.e. enumeration.
subjl subj2 1 No Only final character varies, i.e. enumeration.
aSubj bSubj 1 No Only first character varies, i.e. enumeration.
asubj bSubj 2 No Two character substitution, not transposed.
subjA subjAA 1 Yes Single character insertion.
subjl subj10 1 Yes Single character insertion.
objA subjA 2 No Single character insertion and single character substitution.
subj sujb 2 Yes Transposed adjacent characters.
jubs subj 2 No Transposed non-adjacent characters.
suja subj 2 No Non-transposed adjacent characters.
juba subj 2 No Non-transposed non-adjacent characters.

Table 5.1: Table of edit distance and validation outcome between variable and
candidate names.

5.3.8 Reporting the Schema Data and Query Validation

The framework is developed upon Semantic Web design principles of an open
network. Information is transferred between modules and knowledge-bases of the
framework with customisation by the user. The previous sections have outlined
the mechanisms available and proposed for ensuring that the data being produced
and consumed is valid and to ensure that queries have the potential to produce
meaningful results.

Once these validation steps have been performed it is necessary to report back
to the user the outcome so that remedial action can be taken. If the validation
is performed by the User Application then this reporting could be made directly
available to the user. However, if the validation has been undertaken by a module
then it cannot be directly reported. There may be multiple levels of modules

between the validating module and the User Application.
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The outcome of the validation process can instead be sent to an additional
Service Definition defined in the Framework Configuration with the express pur-
pose of receiving these reports. The User Application can then check for these
reports at each stage of the execution and convey them to the user.

The modules positioned between the reporting module and the User Appli-
cation can also check for errors reported by their sub-modules and abort their
execution. The inclusion of this validation reporting has more general usage as a
means for modules to also report other information that may assist the user, e.g.
policy, execution errors or additional meta-data, without it being included with
the results of executing the framework.

The data structure for capturing the data and query validation reports is
shown in Figure [5.10l The structure has properties for a text summary of the
validation results, e.g. the variable names or URI found to be invalid in a query,
and whether the result constitutes an advisory warning or a critical error.

Additional properties are defined for the identified subclasses of query and
data validation errors. Data Validation Results provide specific references to the
data source through service and graph URIs. Query Validation Results iden-
tify the URI of the invalid query used in the Framework Configuration. Fach
Query Validation Result also indicates the result type so that further background
information into the cause can be found.

Examples of these types as applied in the implementation are shown in Figure
5.11. Further subclasses and properties could be included to provide greater detail

or coverage for other validation errors.

ValidationResult

B summary : xsd:string [1..1]
B warning : xsd:boolean [1..1]

i
rdftype
I
I I
QueryValidationResult DataValidationResult
B queryType : QueryType [0..1] B serviceURI : rdfs:Resource [0..1]
mm resultType : ResultType [1..1] mm graphURI : rdfs:Resource [0..1]

Figure 5.10: Schema for Validation Result.
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— 4p FilterResult

— 4p QueryParseResult

ResultType =—rdf:type 4) TripleResult

— 4p UnmatchedResult

— 4 VariableNameResult

Figure 5.11: Diagram of example schema for validation Result Types.

5.3.9 Executing the Framework in Local and Remote

Configurations

It has been discussed in the previous sections that the framework can be or-
ganised into several configurations. These configurations represent the local and
remote access of data endpoints, which form the knowledge-base, and modules.
The identity and access of these endpoints and modules is controlled through
referencing service and graph URLs stored in the Framework Configuration.

This presents an issue in how the content of the Framework Configuration is
accessed. The data endpoints are unidirectional and do not require any informa-
tion contained in the Framework Configuration. They simply respond to HTTP
requests for data. However, the modules of the framework require access both
to the Service Definitions and Query Definitions to operate. In a local configu-
ration the local knowledge-base can be searched. Yet in a remote configuration
the executing modules would not be able to locate the content of the Framework
Configuration.

The Framework Configuration URI provides a unique identifying reference
that could also be used as service reference to publish online, or on the local net-
work, the knowledge-base storing the Framework Configurations content. How-
ever, this would require setting up a different URL for each execution of the

framework and would quickly introduce an administration and technical burden.
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An alternative is to provide each module with a service reference URL that can
be re-used across multiple Framework Configurations. Therefore, the published
knowledge-base would contain multiple Framework Configurations. This removes
the technical burden of configuring multiple URLs. This published knowledge-
base could also contain other scenario information which the Framework Con-
figurations reference and can be used as the destination for the results of the
modelling process.

The modules of the framework are defined in SPARQL queries through Prop-
erty Functions. These Property Functions accept a variable number of positional
arguments. The Framework Configuration URI is required by all modules in ei-
ther local or remote configuration. Therefore, this should be the first parameter
of each module Property Function as shown in Listing [5.10] The example query
is being executed with the module and the knowledge-base containing the Frame-
work Configuration in the same local context and so there are no service URLs

in the query.

PREFIX ex: <http://example.org/example#>
PREFIX mod: <http://example.org/module#>

SELECT 7result
WHERE{

?result mod:propFunc(ex:FrameworkConfigA ?argl 7arg2).

3

Listing 5.10: Example SPARQL query to execute a local module through its
Property Function.
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The execution of modules which are not in the same context as the knowledge-
base containing the Framework Configuration requires the service URL. This is
shown in Listing [5.11] The service clause to access the remote module through a
Federated Query is specified while the service URL is passed as the final argument
of the module’s Property Function.

The local knowledge-base, containing the Framework Configuration, would
need to be accessible as an endpoint to respond to the HTTP requests that the
module will send. The other services defined in the Framework Configuration
could optionally point to other knowledge-bases set-up remotely as endpoints.
These queries could be expanded to obtain data for the module’s parameters or

to act upon the results it provides.

PREFIX ex: <http://example.org/example#>
PREFIX mod: <http://example.org/module#>
PREFIX ser: <http://example.org/service#>

SELECT 7result
WHERE{
SERVICE ser:remote-endpoint{
?result mod:propFunc(ex:FrameworkConfigA 7argl 7arg2 ex:

- serviceURL).

by

Listing 5.11: Example SPARQL query to execute a remote module through its
Property Function.

5.3.10 Altering the Execution Flow of Modules

The previous sections have addressed how the user can control the modules and
knowledge-bases which are accessed by modifying the Service Definitions. The
user also has control over the data that is retrieved and its manipulation through
the Query Definitions. This section outlines how the execution flow of the frame-

work can be modified.
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The modules of the framework can call other modules to perform sub-tasks.
The implementers of the main module may intend that only a single sub-module
is interfaced, but the user has determined that they wish to use multiple modules,
as shown in Figure [5.12] This could be due to each providing different function-
ality e.g. alternative behaviour models, or to investigate a specific sub-set of

individuals in the data.

Original Configuration

Madulea » MaoduleB » MaoduleC
User Configuration
ModuleA > ModuleB »- ModuleC

S ModuleBl —

» MaoduleB2 L

> ModuleB3 —

Figure 5.12: Diagram of alternative configurations of modules during framework
execution.

In a conventional modular system, such as MATSim [32], the user would need
to rely on the main module providing a mechanism for substituting the sub-
module. The user would then need to develop, or rely on a developer to produce,
a wrapping module that integrates with the main module’s interface and then
performs the selection logic to their choice of multiple sub-modules.

Unless a developer was prepared to produce a generic and configurable wrap-
ping module then each user would have to perform this process for their own
investigation. This development would need to take place using the system’s
platform and design approach, which may vary between systems and so require
the user to develop multiple skill sets. In each case an investment of time and
resources is required from users that delays the investigation, introduces potential
error and is likely duplicating the efforts of other users.

In the framework, this re-configuration can be achieved by modification of the
SPARQL query, through the Query Definition, which is used at the boundary
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between modules. The main module developer would publish the default query
and schema for the data that the sub-module is expected to produce in the
knowledge-base for the main module. The modified query would include a union

clause to select alternative choices based upon the data as shown in Listing [5.12]

PREFIX mod: <http://example.org/module#>
PREFIX ex: <http://example.org/local#>

SELECT 7person 7route 7value
WHERE{
{
?person a ex:Quartiled4Income .
?route mod:routingMethodA (7person ?start 7end).
JUNION{
?person a ex:Employee .
?person ex:income 7income .
FILTER(?income > 50000)
?route mod:routingMethodB (?person 7start 7end).
JUNION{
?person a 7quartilelncome .
FILTER(?quartileIncome IN (ex:Quartile3Income ex:
< Quartile2Income))
(?route ?value) mod:routingMethodC (7person ?start 7end).
JUNION{
?person ex:maxPrice 7maxPrice .

?route mod:routingDefault (7person 7start 7end 7maxPrice).

}

Listing 5.12: Example SPARQL query to select different routing modules based

on class, data property filtering, list of classes and default option.

This example shows alternative routing modules being selected according to
the income of the individual. The user can apply a variety of selection methods

such as classification, value filtering, list of values and a default option as shown.
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Each module can be defined according to its own required parameters without
regard for the other modules in the query, as shown in the final option which has
four arguments or the third option which returns two arguments.

In this example, a URI is returned that can be used to retrieve additional
properties related to the process, either in this or a separate query. A convention
is applied here for modules using Property Functions to use the triple’s subject
as the output and the object for input, but this can be reversed as required by
the module design. The modules can apply different design paradigms and imple-
mentation choices. Data transformations can be included by the user in the query
if necessary to assist integration. The user is able to control the execution flow
using only the SPARQL language, which they used to set-up the knowledge-base
and framework, and pass data to modules implemented on different platforms.

The graph pattern in each clause are tested to ensure the statements are true
or a match is found in the data; if no match is found that pattern and clause
is closed without result. The union will only produce a single result from the
multiple clauses. Therefore, the clauses are evaluated in the order they are defined
and the first which contains true statements will be returned as the result. The
remaining clauses will not be evaluated and the user will need to determine an
order of precedence if the query statements do not select the cases on a mutually
exclusive basis.

A module that has identified multiple branches to sub-modules within its
design would be able to use the Query Type mechanism to allow the user to sup-
ply a different query to retrieve data for each branch. These alternatives would
be encoded as any other Query Definition in the Framework Configuration and
retrieved by the module during execution. Therefore, both the user and imple-
menter can explore options for alternatives and introduce more diverse modelling
of behaviour. The singular approach to behaviour modelling has been a criticism

of travel demand models as discussed previously (Chapter [1).

5.4 Requirements of the Framework

In this chapter and previously in Section [3.4] there has been detailed discussion

of the framework’s design and operation. This has included several design points
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and requirements to facilitate and improve operation. These requirements are

summarised below:

e Modules shall define property functions that accept a Framework Configu-

ration URI as the first parameter.

e Modules shall define property functions that accept an optional final pa-
rameter as a service URL. This service URL will identify the service pro-
viding a named graph containing the Framework Configuration URI and its

properties.

e When a service URL is provided, the service URL will be queried for the
Framework Configuration and its properties using the Framework Configu-

ration URI as the graph name.

e When a service URL is not provided, the local knowledge-base shall be
queried for the Framework Configuration and its properties using the Frame-

work Configuration URI as the graph name.

e Modules shall be configured by the properties of the Framework Config-
uration URI. These properties shall define Service Definitions and Query
Definitions.

o Service Definitions will identify the service and graph properties where data

shall be retrieved by Modules according to a Service Type.

e Modules must publish the Service Type URIs it requires to function and
identify the expected schema for those Service Types.

e Service Definition service property may consist of either File or HT'TP URI.
All Service Definitions for a Framework Configuration must use the same
File URI.

e Service Definition graph property must be a URI for a named graph.

o Framework Configurations shall only refer to one Service Definition of each

Service Type.
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e Query Definitions shall provide alternative SPARQL queries to replace the
Module’s default queries according to a Query Type.

e Modules must publish the Query Type URI and SPARQL queries that

interface with other Modules.

e Modules may publish other Query Type URI and SPARQL queries that it

utilises.

e Framework Configurations shall only refer to one Query Definition for each

Query Type.

5.5 Security of the Framework

A final important consideration of the framework is its security. It has been
discussed that the framework can be utilised in a local and remote environment.
In a local environment, there are limited security concerns as the user has control
over the data being utilised, all processes are run upon the local hardware and the
framework is not accessible externally through online services. Therefore, users
can check the data and processes being applied and control the burden upon
hardware resources.

The remote environment approach can also be utilised across an internal net-
work to distribute the resource requirements across multiple computers, but again
security concerns are minimal. Accessibility to services can be constrained to only
local network addresses. Therefore, a security concern arises if the local network
is not secured and has been compromised, which represent wider issues than the
framework.

In a remote environment a number of security concerns can be identified.
Private and personal data should not be freely accessible. Hostile users may
seek to perform denial of service attacks by overburdening services through high
volumes of requests or requests designed to take excessively long to resolve. These
hostile users may also seek to corrupt the data by adding, modifying or deleting

triples.
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The data being utilised by the framework, i.e. the travel demand generation
process, is generally derived from public or synthesised data. Therefore, there
should not be private data in the dataset, either due to it being anonymised or
engineered for public usage. However, the extendible nature of the knowledge-
base would permit a user to add a dataset that contains the core schema that is
further enriched with personal information, e.g. names, addresses, dates of birth.

Mitigating the risk of this private data accidentally being exposed online can
be achieved by placing the sensitive data in a separate graph, as discussed in
Section [4.9] as part of a separate knowledge-base instance that is not externally
accessible. The current SPARQL protocol controls access on a knowledge-base
basis rather than individual graph basis.

This approach creates a logical and physical separation while still allowing
cross referencing through the URI resource of the individuals. The user would
be able to access the additional characteristics for analysis or other uses by using
federated SPARQL queries to the private knowledge-base. When the configura-
tion uses only a local knowledge-base then all the data can be contained in the
same knowledge-base. Therefore, the user can ensure data protection without
needing to introduce new security concepts or mechanisms to the process.

The SPARQL protocol [43] utilises the Hypertext Transport Protocol (HTTP).
The HTTP protocol has access control and authentication mechanisms [135] so
that only those identified as safe parties will receive responses to their requests.
The HTTP protocol also provides secure communication through cryptography
[136] to prevent interception and modification by third parties.

These mechanisms ensure that both participants (requester and responder)
can have confidence they are communicating with the intended trusted party. The
SPARQL protocol also permits services to place restrictions upon size, number
and frequency of requests that it receives so that resources are not dominated by
a hostile or naive user, e.g. during a denial of service attack.

The integrity of a user’s data can be assured by the separation of read-only
query services from read-write update services that allow insertion and deletion
of data. Therefore, the input data of the process, e.g. population data, can be
published by a user or public data-source as a read-only SPARQL endpoint to

prevent a hostile user from modifying its contents.
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Finally, the framework also proposes passing SPARQL queries between mod-
ules and services. These queries may have been rewritten by the user. This
presents an attack vector where malicious steps are included in the query. How-
ever, this can be prevented by reviewing the query prior to processing to ensure it
is syntactically correct and does not perform malicious behaviour, e.g. additional
insert or delete commands.

Each query is a text file interpreted at run-time rather than a piece of exe-
cutable code. Therefore, its contents can be automatically scrutinised for areas
of concern prior to processing upon the knowledge-base. The available operations
and their usage are restricted by the SPARQL protocol which limits opportunity
for abuse. The need for sanitising SPARQL queries exists for any SPARQL end-
point and is not an issue introduced by the framework. Therefore, supporting
Semantic Web libraries may already include features to prevent this attack vector.

This issue of query manipulation is also not unique to SPARQL endpoints
and needs to be addressed for any system that utilises database querying [137].
The advantage of the SPARQL protocol is that it has been designed for use in
an online open environment, rather than SQL protocols which were established
on the basis of a controlled closed environment. In conclusion, there are no
identified security concerns arising from the framework which cannot be handled

using existing mechanism of the SPARQL protocol.

5.6 Chapter Summary

This chapter has discussed the different configurations which can be achieved by
utilising the proposed framework. There has been examination of the different
methods for obtaining source data and how establishing a knowledge-base can
assist in retrieving and integrating this data. This includes direct importation
from local sources, transformation of the data and retrieval from remote sources
to reduce the need in developing data converters and module interfaces.

By developing a core schema for the travel demand model issues of misaligned
data can be reduced. Published datasets or SPARQL endpoints which orientate
themselves around an agreed schema can be more readily consumed and utilised.

However, this does not have to be enforced and the framework supports adapta-
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tion by the user through the modification of module queries.

There has been consideration of issues arising from user and developer error
or misalignment in these queries. It is proposed that these can be resolved by
performing data and query validation. This validation can utilise existing tech-
niques but there has been the need to develop solutions to specific issues. By
applying these solutions the risk of incorrect results or wasted execution effort
can be reduced. A mechanism is also established to provide feedback to the user
when problems do occur.

The proposed framework can support local, remote and mixed configurations.
The accessing of these configurations is achieved using the HTTP support pro-
vided by SPARQL federated queries, but also allows direct access to file system
knowledge-bases to provide efficiency and simplify set-up. It has been identified
that a restriction exists in configurations with multiple local knowledge-bases,
but users have a number of options to mitigate this issue and still meet their
requirements.

There has also been consideration of the security of the framework and miti-
gating steps that can be taken if necessary. The leveraging of the SPARQL tech-
nology, which is designed for online utilisation, provides some protection from
known threats and reduces the risk of issues developing.

The use of SPARQL is applied throughout the framework to construct, trans-
form, redirect and execute scenarios. This provides a single language that is
platform independent so that users do not need to learn multiple programming
languages and can apply their developed skills repeatedly. The framework does
not introduce any variation to the SPARQL standard and is instead an extension
of its language and principles. Therefore, the barrier to using the framework is
lowered and potentially requires a narrower skill set than a conventional solution
for the travel demand generation process.

The requirements of the framework have been established with no domain
specific requirements identified. It is put forward that the framework provides a
general solution for accessing and configuring modular solutions for other prob-
lems. The further development of the framework would seek to develop, or expand
upon existing, mechanisms for the discovery and negotiation of remote services

of modules and datasets to assist the user in the configuration process.

215



It is proposed that the developed framework forms a contribution to the field.
This approach to supporting the travel demand generation process has not been
identified in conventional frameworks and differs from other examined Semantic
Web approaches for accessing remote services by providing control of the selection,
alignment and redirection of services and data through RDF data and SPARQL
query. This provides the potential for the travel demand generation process to
readily access online datasets; align and link those datasets around coherent and
consistent concepts; permit access to modules independently of their platform;

and produce platform-agnostic travel demand data.
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Chapter 6

Implementing the Travel

Demand Generation Framework

6.1 Introduction

This chapter discusses the prototype implemented to investigate the travel de-
mand generation and traffic simulation concepts discussed in Chapter |4 and the
design of the framework for controlling the execution of modules discussed in
Chapter [3] It seeks to address research question by examining the technical
design choices for implementing the framework modules; the configuration of the
framework and knowledge-base; and the design features of the prototype. There
is discussion of the technical details upon which the implementation is built. This
is followed by description of the organisation and configuration of the framework
and knowledge-base. Finally, there is design explanation of the implemented

modules.

6.2 Implementation of Prototype Framework
Modules

The prototype was implemented using the Apache Jena Semantic Web API [13§]
in a Java environment. In the course of developing the prototype a number of

contributions were made to the Apache Jena Semantic Web API, Java API and
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SUMO traffic simulator projects (see Appendix A).

A Semantic Web API provides a library for utilising Semantic Web tech-
nologies. Utilising a library provide a robust foundation to allow development
resources to focus upon the prototype. Several APIs are available, across sev-
eral programming languages, for module implementations to select with inter-
operability being achieved through compliance with the Semantic Web standards.
The Apache Jena project was selected due to its compliance with the Semantic
Web standards and providing extensions for persistent data storage, HT'TP server
and extendible SPARQL query engine. The project also actively contributes to
the development of the Semantic Web standards.

An extension framework complying with the GeoSPARQL standard [37] was
also developed for geospatial querying (see Appendix B). This was necessary as
Apache Jena currently has limited support for spatial querying and alternative
implementations required persistent graph database with varying GeoSPARQL
compliance [139, |140]. The implemented extension allows flexible deployment of
in-memory or persistent graph databases to enable the prototype to be a pure
Java solution. Additional functionality was implemented to determine geospatial
relationships useful when interpreting road networks such as the side a point is
positioned along a directed edge and the distance a point is placed along an edge.

The usage of a Java environment provides a high performing programming
language which is supported across multiple operating system platforms. Java is
widely used in enterprise applications, is popular in Semantic Web applications
and frameworks [138 [141-143] and has also been used in the development of
traffic simulators [32]. The Gradle build tool was used to access published on-line
libraries and provides a straight-forward build process for the developed code to
be re-used by the community.

The modules of the framework are implemented as property functions which
are registered with the SPARQL query engine of the Semantic Web APIL. These
plug-in property functions are recognised during query execution and process-
ing is handed over to execute their functionality. A custom property function
could represent a single discrete function that processes only the arguments or
retrieves additional data from the knowledge-base. They can also be an entry

point to a cascade of multiple functions that in turn call other property functions,
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execute additional queries and create or modify triples. The incorporation of
existing models and algorithmic implementations as framework modules requires
the wrapping of the model in the property function interface and the identification

of the data concepts necessary for its operation.

6.3 Configuration of the Framework and
Knowledge-Base

The knowledge-base provides the underpinning dataset for the execution of the
framework. In the prototype the dataset has been divided into multiple graphs
based upon identified domains, i.e. road network, spatial locations, and travel

groups, as discussed in Section [4.9| and illustrated in Figure [6.1, as previously
presented in Figure [4.49|

- 0

Framework
Configuration

Figure 6.1: Diagram of named graphs applied to the prototype knowledge-base.

It has been discussed previously (Chapters [3{ and [5)) that the Semantic Web
is designed to allow components to be physically distributed and communicate
through HTTP requests. Access configuration is controlled through the Frame-
work Configuration RDF graph which specifies the service type, graph URI and
service URI. The service URIs can be a single local file URI or multiple HT'TP
URLs. This means that the knowledge-base and modules can be physically dis-
tributed over multiple datasets accessed using SPARQL’s Federated Query stan-
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dard. Executing the prototype can also be separated into multiple batches for
multi-thread and multi-computer execution.

The domain data has been divided according to the requirements of the three
implemented modules across four inter-related graphs. The parameters of the
Travel Scenario are stored in a single graph to allow repeated re-use of the pa-
rameters through multiple executions of the Framework Configuration. The data
generated by all the prototype modules is stored in a named graph specified by
the Framework Configuration, so that all generated data can be easily exported

or removed.

6.4 Design Features of the Prototype

This section will examine the design features of the prototype. The complete
process of travel demand generation incorporates multiple stages including the
gathering and preparation of data; generation of travel demand; and the simula-
tion of the traffic environment (Chapter [3)). The prototype implementation has
focussed upon the second and third of these three phases as shown in Figure [6.2]

‘ Scheduling |:
‘

Travel Scenario v

‘ Trip Planning ]:
Travel Group Stzge Requests

Activity Patterns k4
‘ Metwork Routing |
A

Traffic Simulator
Interface

Activity & Travel
5chedules
Activity & Travel
Schedules Road Network Travel Results

r

________________________________________/

Figure 6.2: Diagram of the modules implemented for the prototype.

This focus has been determined based upon the second phase being the pri-
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mary phase for the whole process. The initial phase of knowledge-base construc-
tion has been excluded as an ideal dataset can be constructed and refined as an
input for the second and third phases. The final phase was included to ensure
that integration of the third party traffic simulators could be achieved with the
framework and the proposed data concepts (Chapter |4)).

The data structures passed between the three implemented modules have been
discussed previously in further detail (Section [£.6.5). It should be noted that
these data structures and implemented modules provide one approach for the
generation of travel demand. Alternative implementations, e.g. modules which
exchange different data structures, and configurations, e.g. a single travel demand
module, can be incorporated by conforming to the Activity & Travel Schedule data

structure, which are ultimately produced by the Scheduling module.

6.4.1 Scheduling Module

The implemented Scheduling module is the entry point of travel demand genera-
tion phase, i.e. the second phase. It finds an Activity Pattern Set for each Travel
Group and then builds the schedule for each Person within those Travel Groups.
The specific parameters of the scenario are provided in the Travel Scenario for
that execution. The schedule is constructed starting with the earliest Activity
Pattern item and building forwards in a single pass. Each Activity & Travel
Schedule always contains at least one activity and must start and end with an
activity.

The Activity Pattern for a Person consists of items in an ordered list. The
activities are handled in order according to their position in the list with first
and last representing special cases (Algorithm . The conclusion of the previous
activity is used as the basis for planning the travel of the next activity.

The first activity in an Activity Pattern is not preceded by any travel and
therefore can be placed directly on the schedule (Algorithm . The scheduling
process will not produce a continuous time sequence of activity and travel events.
There will be time intervals gaps caused by mismatches between travel duration
and time allowed between activities and the removal of activities. These gaps

need to be closed or filled, since conceptually a person is either performing some

221



Algorithm 3 Build Schedule Part 1

procedure BUILD SCHEDULE(person, travelScenario)
maxVar < travel Scenario.maxActivityV ariance
minDur < travelScenario.minActivity Duration

for activity in person.activity Pattern do
if activity is first then
prior Activity, prior End < FIRSTACTIVITY (activity,
travel Scenario)
else if activity is not last then
prior Activity, prior End <~ MIDDLEACTIVITY (activity,
travelScenario, prior Activity, prior End)
else
LASTACTIVITY (activity, travel Scenario, prior Activity, prior End)

form of activity or travelling.

Algorithm 4 Build Schedule Part 2

function FIRSTACTIVITY (activity, travel Scenario)
start < travelScenario.start
maxVar < travelScenario.maxActivityV ariance
minDur < travelScenario.minActivity Duration

earliestEnd < PROTECTTIME(start, activity.end, maxV ar, minDur)
latest End < activity.end + maxVar
end <—VARIATETIME (activity.end, earliest End, latest End)

SCHEDULEACTIVITY (activity, start, end)
return activity, end

There are multiple potential approaches to handling these time gaps, including
allocating additional activities and increasing the duration of existing activities
[9]. The adopted approach has been to extend the activity durations as their
definition includes any non-travel waiting periods (Section [L.2.2).

A case of these time interval gaps is caused by the mismatch between the
Travel Scenario and the Activity Pattern. The Travel Scenario defines the start
and end times of the scenario. These extend beyond or truncate the activities

defined in the Activity Pattern. The duration of the first and final activity are
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extended so that the schedule covers the full time interval of the scenario as shown

in Figure (Algorithm [4] and [8).

109:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Activity Pattern

i
:
I
Expanded [ | Activiy [ acny |
I
!
I
I . . . . . .
i

| Activity | | Activity | ‘ Activity |

I
Scenario Scenario
S@Ert End

Figure 6.3: Diagram of initial and final activity duration expansion to fill the
scenario time interval.

The middle activities require travel to reach the activity which is requested
from the Trip Planning module (Algorithm [5). This module responds to the
request with a Trip Plan consisting of one or more Travel Stages. These Travel
Stages are added to the schedule and used to inform the start time of the next
activity. The start and end times are varied to apply a stochastic component to
the template Activity Patterns. The failure to obtain a Trip Plan results in a
second attempt with the activity delayed as last as possible and reduced to the
minimum duration.

The request for a Trip Plan is obtained using a Trip Context that specifies
the Modes, Vehicles, Transit Lines and destination Locations that can be used
(Section . Each item in the Activity Pattern has an Activity Type. This
Activity Type is intersected with a Person’s related Activities, provided by one
or more Locations in the scenario, to produce a shortlist of potential destination
Locations. Therefore, a Person with an Activity Type that only has an Activity
at a single Location, e.g. education, employment and residence, will always be
respected and the Person will return to them during a tour.

If no Locations with the current Activity Type are asserted for a Person, e.g.
leisure and retail activities, then the Scheduling module searches for potential

Locations. These Locations are selected based on the Activity Type and distance
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Algorithm 5 Build Schedule Part 3

function MIDDLEACTIVITY (activity, travel Scenario,
prior Activity, prior End)
start < travelScenario.start
maxVar < travelScenario.maxActivityV ariance
minDur < travelScenario.minActivity Duration

travel Start < prior End

earliestStart < activity.start — maxVar
latestStart < activity.start + mazVar
start <~ VARIATETIME (activity.start, earliestStart, latestStart)

earliestEnd < PROTECTTIME(start, activity.end, mazxVar,
minDur)

latest End < activity.end + maxVar

end <—VARIATETIME (activity.end, earliest End, latest End)

tripPlan < REQUESTTRIPPLAN(travelStart, start)
if tripPlan is not success then
start < latest End — minDur
end < latestEnd
tripPlan <~ REQUESTTRIPPLAN(travelStart, start)

HANDLETRIPPLAN(tripPlan, activity, prior Activity, start, end)
return activity, end

from the current Location within the minimum and maximum travel range radius
of the Activity Pattern item.

The restriction of the travel range is relaxed by iteratively expanding the
search, by a distance specified by a Travel Scenario definition (Section ,
until at least one potential Location is found. These Locations may later be
rejected if there is insufficient travel time to reach them but an attempt to travel is
always made. Therefore, a Location can be selected based on the current context
of previous decision making as well as being asserted during Knowledge-Base
Construction (Section [3.3.2). Alternative options for identification of candidate
destination Locations could be Person being within a geographic area (Section

4.5.8) of the Location, e.g. retail attraction or service catchment area, or the
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popularity of a Location considering its current usage (Section .

A second cause of time interval gaps is between proposed Travel Stages and
Activities. The scheduling of travel between activities is timed for arrival /trip end
at the next activity’s start time. The duration of the travel will either be equal
or less than the available time slot. The time interval gap between a previous
activity ending and the travel starting is closed by extending the duration of the
previous activity as shown in Figure [6.4, An alternative implementation could
have travel always fitted into the time slot and the activity duration reduced
or start time delayed to allow the journey, although this presents issues with

activities being excessively shortened or delayed.

09:00 10:00 11:00 12:00 1300 14:00 15:00 16:00
Activity Pattern Activity 1 o | Activity 2 Activity 3
Trip Planned Activity 1 ' |Tra‘l.rel.ﬂ.‘ Activity 2 | Activity 3

Activity Extended | Activity 1 | Travel A |Av:t'n.r'rt',r2| Activity 3 |

Figure 6.4: Diagram of activity duration extended following selection of travel.

The Activity Patterns represent a template that are shared by multiple indi-
vidual Persons in a scenario. A direct replication of the Activity Pattern timing
into the schedule would result in large numbers of identical schedules. This would
cause large spikes in travel demand with waves of persons travelling at the same
time instances. To provide diversity the start and end times of activities are
randomly varied.

This random variation is specified by Scenario Definitions (Section
for maximum variation and minimum duration to ensure that excessively large
or small activity durations are not proposed, e.g. entire day or instantaneous
durations. The minimum duration of the activity is protected by identifying the
earliest time the activity can end (Algorithm @ A random variation is then
applied to increase or decrease the initial start time while still respecting the
upper and lower boundaries of the activity (Algorithm .

This variation to activity duration assumes that there is always sufficient time
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Algorithm 6 Protect Time

function PROTECT TIME(activityStart, planned End, maxV ar, minDur)
minimumEnd < activityStart + minDur
proposedEnd < plannedEnd — mazxVar

if minimumEnd after proposed End then
return minimumEnd

else
return proposed End

Algorithm 7 Variate Time

function VARIATE TIME(initialTime, earliestTime, latestTime)
variation < (latestTime — earliestTime)*RANDOMGENERATE(0, 1)

if RANDOMGENERATE(0, 1) < 0.5 then
variedlime < initialTime + variation
else
variedTime < initialTime — variation

if variedTime before earliestTime then
return earliestTime

else if variedTime after latestTime then
return latestTime

else
return variedlvme

interval for travel to take place. However, this may not always be the case as the
destination locations may be too far or available modes too slow to reach in the
time interval between activities. It may also be the case that the Activity Pattern
templates have been provided with very limited durations between activities.
When travel is not possible for the proposed time period then the process
is repeated but travel time is maximised by the activity having the minimum
duration and ending as late as permitted by the scenario parameters (Algorithm
. This may have a knock on effect to later travel time intervals when insufficient
gaps are provided between activities. However, when sufficient gap is provided
the delay may be absorbed by the next travel interval with the next activity being

varied as normal.
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The last activity in the schedule also requires travel to reach it (Algorithm [g)),
unless there is a single activity which would be expanded to fill the scenario time
period. Therefore, a request is made of the Trip Planning module to provide a
Trip Plan. The time slot for travel begins when the previous activity is finished
and concludes when the scenario ends. This provides the largest time slot for the
travel to be incorporated.

It is assumed that any minimum duration for the final activity can be fulfilled
after the scenario has ended. This assumption is based on prioritising that travel
schedules are complete with all individuals returning to their start Locations, e.g.
homes or commuting access point, if the Activity Pattern is designed to achieve
that. This behaviour of return journeys would be assumed to be typical over a
full day schedule.

Algorithm 8 Build Schedule Part 4

function LASTACTIVITY (activity, travelScenario,
priorActivity, prior End)

travel Start < prior End

end < travelScenario.end

tripPlan < REQUESTTRIPPLAN(travelStart, end)

start < tripPlan.travel End

HANDLETRIPPLAN(tripPlan, activity, prior Activity, start, end)

The Travel Stages obtained from the Trip Plan for the final activity are placed
on the schedule but using a different approach to the middle activities. The final
activity is positioned as late as possible in the scenario. Extending the previous
activity to fill any time gap until the travel commences could create an excessively
long duration between the previous activity and short duration final activity.

Instead the Travel Stages are moved to immediately after the previous activity
and the final activity is extended as shown in Figure [6.5] Therefore, there is still
potential that the last activity will satisfy some or all of its minimum duration
once the necessary travel has been planned. However, this approach assumes
that the Travel Stages can be moved in the schedule without consideration of
time constraints, e.g. public transit or route planning using traffic forecasts or
previous experience.

In the case of public transit, a journey may take longer at an earlier time
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of day, e.g. services are less frequent, or may not be possible, e.g. services are
discontinued late at night. This situation can be handled through an option
specifying that Trip Plans are built either from the start of the travel interval
forwards or the end of the travel interval backwards. In all cases except for travel
to the final activity the latter approach would be used, as the previous activity
duration would be extended. In the final activity the former approach would
be used and the final activity duration extended to the end of the planned trip.

Public transit has not been implemented in the prototype.

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Activity Pattern Activity 1 . -

Final Trip Planned | Activity 1 | Travel A | Activity 2 | |Tra1.rE|B |Act'n.r'rt'.r 3|
Fi'_}?::::::::: | Activity 1 | .Tral.rel.ﬁ | Activity 2 |Tra».re|ﬂ | |A|:t'rl..r'rtv 3|
Fina;;:::::: | Activity 1 | :Tral.rel.ﬂ\ |A|:t'rl..r'rt',r2 |Tra~.re|ﬂ| Act'rl.r'rt'.r:S |

Figure 6.5: Diagram of travel moved forward and final activity duration extended.

There are several other additional actions that may be required once Activities
and Travel Stages have been added to the schedule (Algorithm [9). The final
activity is scheduled as late as possible in the scenario. Therefore, rather than
extending the previous activity the travel stage and final activity are brought
forwards. The final activity is then extended to fill the scenario as shown in
Figure Activities earlier in the schedule are extended to fill the gap between
the activity end and the travel start as shown in Figure 6.4}

Other actions include an activity being skipped if there is insufficient time
to travel to it at a destination location, once the attempt to delay and reduce
the activity has been attempted. This can result in two activities with identical
Activity Types occurring at the current Location. When this occurs the activities
are merged into a single activity. Activities with different Activity Types can also
take place at the same Location and therefore can follow on without travel.

These processes for travel and activity adjustment are focussed upon a single

228



Algorithm 9 Handle Trip Plan

function HANDLE TRIP PLAN(tripPlan, activity, prior Activity, start,
end)

if tripPlan is success then
if activity is last then
start «+MOVETRAVELSTAGESEARLIER(prior Activity, tripPlan)
else
EXTENDPREVIOUSACTIVITY (prior Activity, tripPlan)

SCHEDULEACTIVITY (activity, start, end)
else
if tripPlan.location equals prior Activity.location then
if activity.type equals prior Activity.type then
MERGEACTIVITY (activity, prior Activity, end)
else
FOLLOWONACTIVITY (activity, prior Activity, end)

else
SKIPACTIVITY (activity)

person and the schedule being constructed in a iterative manner based on time
order. This can mean that essential activities, e.g. employment and education,
are unfulfilled while non-essential activities are undertaken, e.g. retail and leisure.
It has also been discussed previously that individuals co-ordinate activity and
travel within household groups to share and access resources, e.g. sharing cars
and escorting children (Section . An area of future work is utilising activity
priority and travel group co-operation as part of the scheduling process.
Consistent vehicle usage between travel stages is ensured so that a vehicle used
for travel is returned at some point in the schedule to its start location. There-
fore, commuters do not abandon their vehicles after travelling to other locations
but also do not insist on a single mode for an entire schedule. The Trip Context
provides information on available vehicles and their current location through the
trip vehicle option property. This also specifies when the Trip Planning module
must provide a Trip Plan that places all vehicles at their required location, e.g.
when a vehicle has been moved and the last activity is being scheduled. Alterna-
tive approaches could include taxi services where a return journey is not required

and vehicles being carried by other vehicles, e.g. bicycles in cars and on public
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transport.

The prototype Scheduling module has implemented a single approach to the
closing of time interval gaps, scheduling process, location search and vehicle usage.
It has been outlined that multiple alternatives exist for each of these choices.
These alternatives could be implemented by defining them as sub-modules and
incorporated into the framework using the query overwriting mechanism (Section
5.3.3)).

The selection of these alternatives can be dependant upon contextual informa-
tion which the framework also facilitates the user selecting. Therefore, modules
can be implemented either as a wide set of completely defined alternatives or
a deep set of sub-components. Further development of the Scheduling module
would investigate these discrete pieces of functionality being formed into sub-
modules. This area of future work would enable narrowly defined modules to
be implemented which will reduce the implementation burden and provide more
variety of behaviour for investigations.

The sub-module approach has been applied in the prototype between the
Scheduling and the Trip Planning and Network Routing modules. The Trip
Planning sub-module has self-contained functionality that can be replaced with
an alternative implementation while the Scheduling module is only concerned
with the outcome, i.e. a trip plan, and not the method, e.g. Random Utility
Model, Computational Process Model or Agent Based (Section [1.2.4]), of the sub-
module. The Trip Planning module applies the same approach in turn to the
Network Routing module for resolving specific functionality.

The selection of these sub-modules is controlled through SPARQL query and
can be controlled through the query overwriting mechanism. This demonstrates
the framework supporting the modular approach to constructing travel demand

models and allowing the user control over how these modules are brought together.

6.4.2 Trip Planning Module

The Trip Planning module is provided with a Trip Context by the Scheduling
module and responds with a Trip Plan consisting of multiple Travel Stages. The

Trip Planning module constructs a choice set of potential Trip Plans from which
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a single plan is selected using a Random Utility Model (RUM).

The choice set of Trip Plans is constructed using a recursive algorithm to
produce multi-stage and multi-mode Trip Requests for each destination Location
and Mode provided in the Trip Context (Algorithm. A Trip Request is formed
from one or more Stage Requests while the corresponding Trip Plan is formed
from one or more Travel Stages.

The initial condition is an empty list of stages that is passed into the re-
cursing function (Algorithm which adds additional stages to move from the
origin to destination locations. The resulting Trip Requests are checked to ensure
that any proposed usage of vehicles ensures the plan moves the vehicle to its
optional required location. Any Trip Requests that do not satisfy this condition
are removed.

The final set of Trip Requests, are later converted into Trip Plans using the
Network Routing module to provide contextual detail. This means an initial set
of general Trip Requests based on spatial information is produced to which the
contextual detail of the network infrastructure and scoring is applied to produce

Trip Plans.

Algorithm 10 Trip Planning Part 1

procedure BUILDTRIPREQUESTS(tripContext, limit)
set trips < empty
origin < tripContext.origin
for dest in tripContext.destinations do
for mode in tripContext.modes do
list stages <— empty
trips addAll PLANTRIP(stages, origin, mode, dest,
tripContext, limit)

if any vehicle.isRequired in tripContext.vehicles then
trips <— CHECKVEHICLEUSAGE(trips)

return trips

The recursing function plans a single stage of the trip using one Mode which
may or may not be able to reach the destination (Algorithm . Each Location
specifies the Modes for which it is accessible (Section 4.5.7)). Ideally a Mode is
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accessible at both the origin and destination. Therefore, the first check is made
for a single stage from the origin to the destination. When both are accessible
this stage is built and appended to any other prior stages from early recursions
of the function. These lists of one or more stages are then converted into Trip

Requests.

Algorithm 11 Trip Planning Part 2

function PLANTRIP(priorStages, origin, mode, dest, tripContext, limit)
set trips <— empty
originHasAccess < LOCATIONACCESS(origin, mode)
destHasAccess < LOCATIONACCESS(dest, mode)

if originHasAccess and dest HasAccess then
list of lists stagesLists < BUILDSTAGES(priorStages, origin,
mode, dest, tripContext)
for stages in stagesList do
trips add new TripRequest(stages)

set transfers < FINDTRANSFERS(dest, mode, tripContext, limit)
for transfer in transfers do
tLoc < transfer.location
tMode < transfer.mode
list of lists transStagesList < BUILDSTAGES(priorStages,
origin, mode, t Loc, tripContext)
for stages in transStagesList do
trips add PLANTRIP(stages, t Loc, tMode, dest, tripContext,
limit)

return trips

The direct access of the destination using a mode does not terminate the
recursion. However, this point is where the current progress of stages are finalised
(Algorithm and added to the list of proposed Trip Requests. It is therefore the
termination condition of the recursion. Alternative trip requests containing more
stages may be more viable, e.g. the current mode provides access to locations
with alternative faster modes, and therefore the process of searching is continued.

Transfer locations that are accessible to the current mode and other modes
permitted in the Trip Context are sought to allow a Mode change (Algorithm [12)).
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Each change of Mode forms a Travel Stage of the Trip Plan and so a Stage Request
of a Trip Request. These transfer locations are chosen by closest proximity to the
overall destination to achieve the greatest progress using the current mode to
travel from the current location via the transfer location.

This assumption of maximising progress is applied to minimise the number of
mode transfers performed by an individual. The transfer stages are added to the
previous stages and these form the progress of prior stages for the next iteration
of the recursion in a depth first manner. The next iteration also progresses by
using the transfer location as the origin and the transfer mode as the mode while

the destination remains the same.

Algorithm 12 Trip Planning Part 3

1: function FINDTRANSFERS(dest, mode, tripContext, limit)
2: set transfers < empty
3: transferModes < tripContext.modes

4: for tMode in transferModes do

5: if tMode.isVehicle then

6: vTransfers < FINDVEHICLETRANSFERS(mode, t Mode,
tripContext)

7 transfer addAll vT'ransfers

8: else if tMode.isTransit then

tTransfers < FINDTRANSITTRANSFERS(dest, tMode,
tripContext, limit)

10: transfer addAll tTransfers

11: else if tMode.isPersonal then

12: pTransfers « FINDPERSONTRANSFERS(dest, mode,
tMode, limit)

13: transfer addAll pTransfers

14: return transfers

The identification of transfer locations is undertaken by iterating through
all potential modes permitted by the Trip Context (Algorithm . Therefore,
the Scheduling module can control the use of modes, and so the transfer stages,
through defined properties of the Trip Context, i.e. modes can be excluded from
trip planning. The current implementation identifies three categories of mode

(vehicle, public transit and personal) with each having different behaviours for
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identifying transfers (Algorithm .

The vehicle Modes, i.e. not public transit or personal, are constrained by the
need to utilise a physical vehicle. The only possible location for a transfer to
take place is at the vehicle’s current location. A check is made to ensure that
this location can be accessed by both the transfer mode and the current mode.
Otherwise the traveller would not be able to reach the transfer location, i.e. where
the vehicle is located.

The public transit Modes are restricted to locations serviced by specific Tran-
sit Line of the mode. Public transit vehicles servicing a Transit Line travel
between the pre-determined locations of the line (Section . Therefore, not
all locations that are accessible by a mode are serviced by all Transit Lines | i.e.
all buses do not visit all locations accessible by buses, except for the exceptional
case of a single Transit Line in a scenario.

A Trip Request may need to use one Transit Line to travel to a transfer
location then switch to another Transit Line to reach the destination. There
may need to an intermediate walking stage to access the second Transit Line
as the same locations may not be visited by both Transit Lines, e.g. two bus
stops on different streets. Therefore, the public transit Mode may be repeated in
multiple stages of the Trip Request but each with a different Transfer Line.

The start and end location of the stage must be accessible to the public transit
Mode and be visited by the Transit Line. The available locations for a transfer
to take place are limited to those serviced by the Transit Line with the closest
to the destination being selected. The vehicles and transit lines available for
consideration are defined in the Trip Context and so can be controlled by the

Scheduling module.
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Algorithm 13 Trip Planning Part 4

1:
2
3
4
5:
6
7
8

function FINDVEHICLETRANSFERS(mode, trans fer Mode, tripContext)

set transfers < empty
vehicles < tripContext.vehicles
for vehicle in vehicles do
if vehicle.mode equals transferMode then
vLoc < vehicle.location
if JOINTACCESS(vLoc, mode, trans ferMode) then

transfers add new Trans fer(vLoc, mode, trans ferMode)
return transfers

9: function FINDTRANSITTRANSFERS(dest, trans fer Mode, tripContext,

10:
11:
12:
13:
14:
15:

16:
17:

limit)
set transfers < empty
transitLines < tripContext.transit Lines
for transitLine in transitLines do
if transit Line.mode equals transferMode then
locations < transit Line.locations
list transferLocations <— FINDNEAREST(dest,
locations, limit)
for tLocation in transferLocations do

transfers add new Transfer(tLocation,transferMode)
return transfers

18: function FINDPERSONTRANSFERS(dest, mode, trans fer Mode, limit)

19:
20:

21:
22:

set transfers < empty

list transferLocations <— FINDNEAREST(dest, mode,
transferMode, limit)

for tLocation in transferLocations do

transfers add new Transfer(tLocation, trans fer Mode)
return transfers
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The personal Modes, i.e. not used by a vehicle or public transit, are only
constrained by the joint accessibility of locations to make a transfer between cur-
rent and transfer mode. It is assumed that in principle if a location is accessible
by a personal or vehicle mode then there is always a path to the location from
any other similarly accessible location. This assumption is based on personal
modes representing human mobility and road networks being continuous in traf-
fic investigations where by isolated locations are not of general interest or use.
Considering such a scenario would increase complexity for an unusual edge case,
e.g. two islands not connected by a road bridge or vehicle ferry.

A Mode is permitted to be re-used in later stages so that public transit modes
can be repeated in a Trip Request. This allows repeated switching of personal
and public transit modes by an individual, e.g. walk, bus, walk, bus, walk. There
is no constraint on the number of stages that can be added to the Trip Request.
Instead all combinations of modes are sought and no assumption is made at this
point over which will be the most optimal.

The search for transfer locations in the public transport and personal category
of Modes is based on proximity to the destination and shared access. This is to
make the most progress with the minimum number of transfer stages. However,
the proximity of locations does not always equal the shortest path between loca-
tions. The road network infrastructure, mode and geography, e.g. routing via a

river bridge, can constrain the route travelled as shown in Figure [6.6]

A @
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Figure 6.6: Diagram of showing proximity of transfer locations to destination not
providing shortest path route.
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Travel from the origin (circle) to destination (square) can be achieved via
two transfer locations (triangle and pentagon). The pentagon transfer location is
most proximal to the destination but there is not a direct path between the two
that does not pass the alternative triangle transfer location. Similarly, the most
proximal location could be beyond the destination and so require travel past the
destination when an intermediate transfer location would be closer to both origin
and destination.

This can mean a less proximal transfer location can provide a more optimal
routing path. Therefore, the closest n transfer locations are selected for candidate
routes. The value of n transfer locations is controlled by a scenario parameter
(default value of three chosen for the prototype scenario). The accessibility of a
destination location encompasses concepts such as pedestrian access, motor vehi-
cle parking, public transit links, multiple building entrances and freight delivery
(Section [4.5.7)).

The recursive function (Algorithm tracks the multiple stages of the trip by
adding the current stage and the next transfer stage to the previous list of stages.
The new stages are built (Algorithm according to the category of mode, i.e.
personal, vehicle and public transit. An exit condition of not revisiting Locations
in the trip is made to ensure that acyclic graphs of travel stages are produced, i.e.
it is redundant for a trip to return to a location as this implies a change of mode
and the minimal number of mode switches should be made. When a Location is
revisited the whole chain of stages is discarded as being unviable.

The current stage is then built according to the category of mode so that
further conditions for its viability can be checked (Algorithm [15). In the case
of a vehicle Mode a search is made of available vehicles which match the stage’s
mode and are located at the origin. Otherwise use of the vehicle would imply
teleportation, self-driving or driving by another individual, which the prototype
does not support.

An additional check is then made to ensure that the vehicle is not required to
reach a specific location. A vehicle will only be used once in a trip and therefore
if it is required to reach the stated location then it must do so when used. An
alternative trip may achieve reaching the required location but a candidate trip

is not viable if it moves a vehicle somewhere other than its intended destination.
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Algorithm 14 Trip Planning Part 5

1: function BUILDSTAGES(priorStages, origin, mode, dest, tripContext)

2:

10:

11:

list of lists stagesList < empty

if origin equals dest or CHECK VISITED(dest, priorStages) then
return stageslList

if mode.isVehicle then
stagesList < BUILDVEHICLESTAGES(priorStages, origin, mode,
dest, tripContext)
else if mode.isTransit then
stagesList < BUILDTRANSITSTAGES(priorStages, origin, mode,
dest, tripContext)
else if mode.isPersonal then
stagesList < BUILDPERSONALSTAGES(priorStages, origin, mode,
dest)

return stagesList

In the case of the public transit Modes a check is made to ensure that the

current stage is serviced at both the origin and destination by all relevant Transit

Lines for the mode. There are no specific conditions attached in the case of a

personal category Mode as neither personal or public transit vehicle is required.
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Algorithm 15 Trip Planning Part 6

1: function BUILDVEHICLESTAGES(priorStages, origin, mode, dest,

10:

11

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22

then

tripContext)
list of lists stagesList < empty
vehicles < tripContext.vehicles
for vehicle in vehicles do
if vehicle.mode equals mode and wvehicle.location equals origin
vReqLocation < vehicle.requiredLocation
if not vehicle.isRequired or dest equals vReqLocation then
stages copy of priorStages
stages add new StageRequest(origin, dest, mode, vehicle)
stagesList add stages

return stagesList

: function BUILDTRANSITSTAGES(priorStages, origin, mode, dest,

tripContext)
list of lists stagesList < empty
transitLines < tripContext.transitLines
for transitLine in transit Lines do
if transit Line.mode equals mode then
originl sTransit Location <— HASLOCATION(transitLine, origin)
destlsTransitLocation <— HASLOCATION(transitLine, dest)
if originlsTransitLocation and destlsTransit Location then
stages copy of priorStages
stages add new Stage Request(origin, dest, mode, transit Line)

stagesList add stages
return stagesList

: function BUILDPERSONALSTAGES(priorStages, origin, mode, dest)
23:
24:
25:
26:

list of lists stagesList «<— empty
list stages copy of priorStages
stages add new StageRequest(origin, dest, mode)

stagesList add stages return stagesList
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The completion of the recursive algorithm produces a set of multi-stage and
multi-mode Trip Requests. These only describe the origin, destination, mode
and any vehicle or transit line usage for each of the stages in the candidate plan.
There is no detailed route in the plan to travel the network infrastructure between
the origin and destination of each stage. A contextual score is also required to
provide a weighting to select a single a plan for return to the Scheduling module.

The detailed route and information for the context scoring is provided by the
Network Routing module. The Stage Requests of the Trip Request are each passed
to the Network Routing module from which are obtained Stage Estimates. These
Stage Estimates do not have any temporal context and are converted into Travel
Stages, which have temporal context of a start and end time, by using target end
time and subtracting the Stage Estimates duration.

Multiple stages are formed by working backwards from the final stage and
using the activity start time as the initial target end time. The start time of
a stage forms the end time of the proceeding stage. These Travel Stages are
combined to form the Trip Plan. The total duration available for travel in the
schedule is used as an upper limit on the Trip Plan. Those Trip Plans that
take too long are rejected to ensure the selected choice will always fit into the
schedule. This avoids selecting a choice that will later be rejected when viable
alternatives had been found. An extension to the Trip Planning module would be
applying further contextual information, such as heavily penalising or excluding
walking during night time or cycling in the rain, which can be applied to the
Stage Estimate metrics.

A Random Utility Model has been implemented to select a Trip Plan from
the choice set based on a utility score. The utility score is calculated for each
Travel Stage and then summed for the Trip Plan. The utility score is derived
from coefficient weightings applied to metrics of the Travel Stage. The selected
metrics are the commonly used trip cost, duration and distance [124]. Each Travel
Stage has a detailed route that consists of multiple roads, i.e. edges, through the
network (Section [4.5.9).

e Distance: the physical distance travelled through the network to complete

the Travel Stage. A fixed value determined by the route a Mode can take
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through the network from origin to destination, i.e. not straight line from

origin to destination.

e Duration: the time taken to complete the Travel Stage. Determined by the
maximum speed (metres per second) of the Mode or road (edge), whichever
value is lower. The total duration is the time taken to travel along each leg
of the Travel Stage.

e Cost: the penalty, without unit or currency, for using a mode. Proportional
to distance and formed from a fixed and variable component such that
cost = fired_cost + (distance x variable_cost). The values for the Mode

related metrics are defined by the Mode Definition of the Travel Scenario.

The coefficient weightings are applied to each of these metrics as defined in
Equation (3]). This was derived to provide differentiation between modes based
upon varying trip distances as illustrated in Figure[6.7 The prototype’s Random
Utility Model, as used in the evaluation scenario (Chapter 7)), has been tuned
using the mode parameters specified in Table [6.1| and the person weightings of
cost (-2.7), distance (0.0), and duration (-0.022).

U:L] = zostwfl + ﬂZlistancemf] + 52urationx?] (3)
Mode Max Speed (m/s) | Fixed Cost | Variable Cost
Car 31.27 6.0 0.001
Walking 1.79 0.0 0.0
Bicycle 8.93 3.5 0.0011
Bus 26.9 6.0 0.001

Table 6.1: Table of mode definition parameters for maximum speed (m/s), fixed
cost and variable cost.

The coefficient weighting values have been tuned to give a dominating pref-
erence to walking for trips under 1.5 kilometres that then transfers to bicycles
and then car and bus at distances greater than 3.5 kilometre. The Simulated
Annealing parameter optimisation technique was applied to derive approximate

gobal optimum values for these thresholds |144].
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Figure 6.7: Graph of probability change over distance by mode for Random Utility
Model.

The thresholds are intended to provide a mix of mode usage and were based
upon indicative distance of traveller walking . The prototype does not support
public transit modes but the graph includes this mode for illustration of the choice
set that can be constructed. It should be noted that Trip Plans can be formed
of one or more Travel Stages which each have a different Mode. Therefore, the
graph shows the case of single stage Trip Plans following the same route, i.e.
equal distance. In multi-stage Trip Plans the utility contribution from each
Travel Stage will vary according to its Mode and distance.

The value of these weightings are obtained during execution from properties
of the individual Person. Therefore, each individual may have their own weight-
ings to determine their own choice behaviour. These weightings could also be
positioned on a Person Type to provide consistency across groups or as global
parameters through a definition in the Travel Scenario. Definition in the Travel
Scenario would also allow easier comparison between alternative sets of values if
that was a user’s investigative focus.

The utilities are calculated through query of the knowledge-base (Listing [6.1))

and not a hard coded equation in the Trip Planning module. Therefore, the
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values can be directly modified within the knowledge-base to produce alternative
probabilities. The prototype also permits the overwriting of the query, and so
the equation and data utilised, using the query overwriting mechanism of the
framework (Section . The only requirement is satisfying the result variables
of the SELECT query, i.e. duration, utility and destination.

The use of the query overwriting mechanism allows alternative utility equa-
tions and weightings to be investigated without modifying the Trip Planning
module. The values can also be repositioned, as the previous examples outlined,
by the user to suit their needs. The user has control over both the data and
the use of the data to explore the impact of alternative utility calculations. This
demonstrates the functionality of the framework in enabling greater variety of
behaviour within the modelling process and giving control over that behaviour

directly to the user.

243



PREFIX rou: <http://example.org/tom/schema/route#>
PREFIX util: <http://example.org/tom/schema/utility#>
PREFIX fn: <http://www.w3.org/2005/xpath-functions#>

SELECT 7duration 7utility 7destination
WHERE{

BIND(?stageEstimateVar AS 7stageEstimate)
BIND(?personVar AS 7person)

#Retrieve required data.
?stageEstimate rou:cost 7cost; rou:distance 7distance; rou:

«— duration 7duration; rou:endLocation 7destination .

#Retrieve utility wvalues from the Travel Group domain graph.
SERVICE 7travelGroupService{
GRAPH 7travelGroupGraph{
?person util:tripCostWeight 7costWeight; util:
— tripDistanceWeight 7distanceWeight; util:
— tripDurationWeight 7?durationWeight .

#Duration converted to seconds for multiplication.

BIND(((fn:hours-from-duration(?duration)* 3600) + (fn:minutes-
— from-duration(?duration)*60) + fn:seconds-from-duration
— (?duration) ) AS ?durationSecs)

#Calculate the utility for the stage estimate.

BIND( ((7cost * 7costWeight) + (?distance * 7distanceWeight) +
— (?7durationSecs * 7durationWeight)) AS 7utility)

Listing 6.1: SPARQL query implemented for calculation of trip utility.
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6.4.3 Network Routing Module

The Network Routing module provides the detailed route through the network
infrastructure. The module accepts a Stage Request and responds with a Stage
Estimate of the route and corresponding metrics of cost, distance and duration.
These metrics are widely used in travel forecasting and measuring location acces-
sibility [124] and represent the best case estimate for travel time between the two
locations. The route is determined using the A* shortest path algorithm [145]
between an origin and destination location. The shortest path metric used is the
travel time, i.e. duration, rather than distance as this has been found to be more
important to travellers [108].

The output of the module serves two purposes. First, the metrics form the
basis for scoring the different route choices so that a single route can be selected.
Second, the Travel Stages explicitly state the route to be followed so that all
traffic simulators are simulating the same set of journeys, rather than substituting
their own routing implementation which may introduce minor or major changes,
to give consistency of results. This would also allow the analysis of differences
between planned and simulated travel, if dynamic re-routing is being applied
during simulation.

The module provides a best case scenario of travel, i.e. travelling at maximum
speed and by the shortest path. It does not take into account dynamic factors,
such as traffic congestion, road closures, weather, traffic signalling or service
restrictions for public transport, as previously highlighted (Section which
could form alternative module implementations. These features have not been
identified in existing routing components of traffic simulators and forms an area
of future work to improve modelling realism. The implementation of network
routing for public transit is more concerned with the temporal context than the
routing between locations as the Transit Line restricts the available Locations
(section [4.5.5).

The exclusion of dynamic factors and temporal context ensures that separate
requests for an origin-destination pair using the same mode will receive the same
response. The cost and maximum speed values defined for each mode can result

in different routes and metrics. This means that the Stage Estimate responses,
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between two Locations for a single Mode, can be stored and retrieved for re-use in
the knowledge-base to reduce computational processing. However, the potential
characteristics of the network infrastructure do not guarantee that the reverse
route will be the shortest path, e.g. one-way streets and turning restrictions, and
so reciprocal routes must be calculated.

These Stage FEstimates can be calculated dynamically on-demand or pre-
computed for every origin-destination-mode tuple. However, the pre-computation
approach can require calculating a large number of routes that will not be used.
Each route is formed between two locations for a specific mode and so the number
of routes required can be calculated based upon the k-permutations of n equation
[146], [147] as shown in Equation (4), where z is the number of routes, n is the
number of locations, m is the number of modes, and % is number of locations
selected, i.e. 2. This ignores the trivial routing case of the same location for

origin and destination.

n!
(n—k)!
n—k+1)xm (4)

T = xXm

(
n(n —1) x m, when k =2

It can be seen in Table that the number of routes generated increases
dramatically as the number of locations increases. In scenarios with thousands
of buildings and thousands of people the number of routing requests is still likely
to fall short of the millions of routes produced by pre-computation.

As an illustrative example, a typical individual may be expected to perform
a few trips during a day long schedule. Each trip may have as many stages as
there are modes with each stage having a few possible destinations. An estimate
of the routes required is shown in Equation (5 where r is the number of routes,
t is the number of trips, s is the number of stages per trip, and d is the number

of destinations per stage.
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Locations | Modes Routes
100 1 9,900
100 2 19,800
100 3 29,700

1,000 1 999.000
1,000 2 1,998,000
1,000 3 2,997,000
10,000 1 99,990,000
10,000 2 199,980,000
10,000 3 299,970,000

Table 6.2: Table of number of routes generated in an exhaustive set of origin and
destination locations for each mode.

r=txsxd (5)
=5X2x5H
=50

Considering a two mode scenario and defining a few as 5, each individual in
the scenario would need up to 50 routes. Therefore, when 1,000 locations are in
the scenario there would need to be a minimum of 39,960 individuals to request
every calculated route. A typical household could be estimated to average 3
individuals. Therefore, if every location in the scenario was a dwelling, and so
no locations for employment, eduction or retail activities etc., then 92.49% of the
individuals would need to be commuters from outside the scenario geography.

The individuals of the scenario would also need to not visit any locations al-
ready visited by other individuals or more individuals would be required. Assum-
ing each route took 100ms to calculate then it would take 55.5 hours to calculate
the full set of routes for this set, although parallel or distributed computing can
be applied. In conclusion, the pre-computation approach very quickly generates
large numbers of routes that it is improbable will be utilised unless a scenario is
repeatedly executed and even then certain combinations of locations are likely to

be improbable. The number of routes generated also assumes a routing algorithm
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only generates a single optimal shortest path and does not propose alternative
routes, e.g. branching at key junctions.

The storage and searching of this large quantity of data will also have im-
plications for the execution times and resource usage when performing demand
modelling. The exhaustive set of routes is also very vulnerable to changes in the
knowledge-base. The set will become invalid or incomplete when any locations
are added or removed; any changes are made to the road network, e.g. maximum
speeds or turning restrictions; any modes were added or removed; or if any of the
scenario parameters were adjusted in the Mode Definition. Therefore, the pre-
computation approach produces a lot of data that is unlikely to be used; takes a
long period of time to generate at scale; is vulnerable to changes; and can have
an implications for execution times. In most use cases a dynamic approach dur-
ing execution will produce the required data in the most efficient manner. The
use case where pre-computation may be appropriate is the provision of exemplar
remote datasets which could be re-used repeatedly by a large number of users
(Section [3.2) and [3.4.2).

The road network data structure is defined as a directed graph of nodes and
edges (Section . A modelling simplification used in traffic simulators, such
as SUMO, for vehicles is that changes of direction, i.e. turning around, can only
occur at nodes, i.e. start and end of edges, and not mid-edge. The directed graph
represents the flow direction of vehicles along roads, i.e. bidirectional on two-way
roads and unidirectional on one-way roads. However, this distinction does not
apply to pedestrian, or similar, modes of transport which always treat footpaths
as bidirectional and may cross edges at designated crossings. Consideration of
unidirectional and bidirectional routing has an impact on the shortest path as
illustrated in Figure

The origin (circle) is positioned on an adjacent edge to the destination (square).
However, the edge direction for the road/edge is away from the destination. A
vehicle following the road must travel (dashed line) away from the destination
(edge A) before turning around and heading back in the intended direction (edge
B). The vehicle must then travel beyond the destination (edge C) in order to
turn around and reach its closest edge (edge D). The pedestrian using the foot-

way, running alongside the roadway, is able to travel in the reverse edge direction
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Figure 6.8: Diagram of unidirectional (dashed line) and bidirectional (dotted line)
routing through directed graph of edges.

(edge A) and directly to the nearest edge (edge D). Non-consecutive travel by a
vehicle or person, e.g. arriving at edge A and departing on edge B, and turning
mid-edge is not permitted by traffic simulators, such as SUMO and MATSim.
The creation of virtual vehicles which start on the alternative edge would com-
plicate the analysis of vehicle data. Therefore, the module applies unidirectional
routing for vehicle Modes and bidirectional routing for personal Modes.

The module does not assume or enforce any specific distance units so can
be applied to any road network with consistent units. During routing a check
is made between the current edge’s maximum speed and the modes maximum
speed, defined by the Mode Definition of the Travel Scenario (Section .
The lower value is selected to determine the travel time, i.e. duration, of the
edge. It is assumed that the maximum speed is honoured and applied universally
as physical acceleration/deceleration and human behaviour of exceeding speed
limits are traffic simulator concepts. The parameters from the Mode Definition
are also used to calculate a non-denominational cost for the stage based upon an

upfront fixed cost and distance based variable cost.

6.4.4 Traffic Simulator Interfaces

The third stage of the travel demand modelling process is the execution of the
schedules using a traffic simulator. The traffic simulator seeks to simulate the
physical environment and the interactions between road users and network in-

frastructure. There are multiple approaches and implementations of the physical
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behaviour just as has been found with the human behaviour and decision making
of the second stage. Therefore, simulation should ideally take place across mul-
tiple simulators with comparison of results to assist verification and validation.

The incorporation of traffic simulators into the framework is achieved by con-
sidering them as Modules. Ideally simulator interfaces would be developed to
accept RDF input and produce RDF output but existing implementations have
been designed as standalone tools with their own interfaces and represent com-
plex software artefacts. Therefore, a Module wrapper was developed to provide
conversion between the simulator input and output formats and enabling them to
be used in the framework. This approach can also be applied to other existing im-
plementations from earlier stages, e.g. population synthesis, activity generation,
travel demand generation, to convert the input and output between RDF.

The development of a wrapper interface presents a problem when consider-
ing the framework objective of incorporating a flexible schema that the user and
other modules can extend. In a fixed schema the interface can be designed to
the specific data items and conversion can be performed using a specific pro-
gramming language. However, changes or additions to the schema, e.g. new
properties or alternative property names, would require the interface to be re-
developed and published. Alternatively, the user, or developer of the module
changing the schema, would need to understand, modify and re-compile the in-
terface. This requires an investment of resources and reduces the flexibility for
modules to inter-operate. The further development of a traffic simulator may
also make an interface obsolete and prevent a user from accessing new features.
Therefore, there would be a need for interface developers to continually update
revised interfaces.

The proposed solution to these issues is for wrapper Modules to be developed
using Extensible Stylesheet Language Transformations (XLST) templates and
processors [67]. This standards based technology provides for the conversion
between different dialects and schema of Extensible Markup Language (XML)
documents and also supports other formats, e.g. Comma Separated Values (CSV)
and JavaScript Object Notation (JSON). The XML format is a widely used format
and is the format adopted by both traffic simulators utilised in the prototype, i.e.
MATSim and SUMO.
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The file based XLST templates are read by the XSLT processor alongside an
input file/s to produce an output file/s. The template content describes the source
and target structure and changes to the template are reflected in each execution of
the processor. Therefore, modifications can be performed at runtime by a user.
The templates are agnostic to the underlying platform, unlike a programmed
interface, and so can be transferred and executed by any compliant processor.
There is also full access to the contents of the knowledge-base so that additional
data can be incorporated as it is available for a particular simulator, which a
programmed interface may not have been designed to include.

The Module wrapper has to perform two stages of conversion. The initial
stage is conversion from the framework’s schema in XML to simulator input
schema in XML. The simulator would be executed and the output produced.
The conversion process is then reversed to convert the simulator output schema
in XML to framework schema in XML.

Obtaining the initial data of the framework schema in XML can be achieved
using SPARQL CONSTRUCT query and then outputting the resulting graph as
an RDF /XML serialisation. The CONSTRUCT query permits transformation of
data, e.g. property name changes, and so certain schema changes can be managed
by only modifying the query. The standardised RDF /XML serialisation [100] is
the original format for writing RDF graphs to file and so is widely supported by
Semantic Web libraries. The use of SPARQL queries again enables the user to
adapt the data extraction process at runtime so that changes to the schema from
the core schema (Chapter [4) can be incorporated.

The process for conversion is illustrated in Figure [6.9) The output of the
second stage travel demand model is the Activity € Travel Schedules. These are
utilised along with network infrastructure, and other simulator relevant data in
the knowledge-base, as input to the traffic simulator. The traffic simulator in-
terface extracts one or more graph files using SPARQL queries. The resulting
RDF /XML is then converted into the required format and schema of the sim-
ulator. The traffic simulator is executed and then the output converted into
RDF /XML and directly added back into the knowledge-base following the con-
figuration provided by the Framework Configuration (Chapter [5)). Provided the

number of input and output files of the simulator does not change between ver-
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sions then adaptations can be made to the schema and simulator input without
modification to the wrapper Module. However, this restriction could be accom-

modated through a more sophisticated wrapper module.

Traffic Simulator Interface
[ I XML/ISON/CSV .
| XSLTTemplates > Graph p| Traffic
| Conversion Simulator
) Conﬂgura’clon I
Road Metwork | Y
r TravelSchedule | RDF XML KML/ISON/CSV !
e ' Graph Resul r
| o o rap esults X
! SPARCL Queries L R R 1 XSLT Template |
" Extraction Conversion o
_Configuration |
Road MNetwork | 4
Travel Demand F Traveloch E'dL_I-|-E'| ROF/XML

Model LSS

Activity & Travel Activity & Travel
Al:tn.'rt\,' & Travel
Schedula Road MNetwork
_¥

Figure 6.9: Diagram of SPARQL query and XSLT template process for Traffic
Simulator Interface.

Interfaces were implemented in the prototype for MATSim and SUMO sim-
ulators. The Activity € Travel Schedules and Road Network data, along with
other relevant information, e.g. locations as points of interest, were extracted
from the knowledge-base. These were then converted into the multiple input files
for execution. SUMO is a micro-simulator that simulates individual vehicle inter-
actions while MATSim is a meso-simulator which takes a higher level approach
with a more abstract queuing system. The parameters for this queuing system
are not clearly specified in the MATSim documentation and were selected
from alternative research .

The data requirements between simulators were very similar with some differ-
ences in emphasis. For example, SUMO uses road edges for routes while MATSim
uses nodes but both are based on a graph structure. SUMO, with its original
emphasis on vehicle only simulation, requires complete and consistent vehicle
routing as a separate input to person plans while MATSim obtains vehicle rout-

ing from the person plans. The proposed core schema was able to satisfy the
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data requirements of both simulators to execute the Activity & Travel Schedules.
In both cases the wrapper Modules interfaces were implemented to reformulate
the knowledge-base data in the required formats using only XSLT and SPARQL
query, invoke the simulator and then convert the output into Activity € Travel
Results.

During the development of these interfaces it was found that the multiple
queries and serialisation of very narrowly defined sets of data were noticeably
quicker than the more general approach of a single query that retrieved all re-
quired data. Therefore, a one-to-many relationship may be necessary between
a simulator input file and the knowledge-base queries required to construct it.
Multiple simple queries are generally easier to maintain and more accessible for
users to modify but require orchestration by the Module wrapper interface.

The proposed approach does not remove the need to develop a wrapper Mod-
ule interface, unless traffic simulators are adapted to directly utilise RDF, but
it does reduce the burden and increase the flexibility and longevity in providing
them. It does require the user, or module developers, having skills in SPARQL
and XSLT languages. These are non-trivial requirements but not excessive and
only apply when changes are needed from the core schema.

Ideally modules and datasets would conform to the core schema and no ad-
justments would be needed. However, it should be considered that integration
between components in current travel demand processes may require multiple
interfaces in multiple programming languages with requirements changing be-
tween different configurations. In this approach the requirement is consistent
and therefore developed skills will be re-used across configurations. In addition,
the SPARQL language is the primary language for operation of the framework.
SPARQL is widely used for Semantic Web applications and so is a core skill for

users in the domain.

6.5 Chapter Summary

The prototype provides the user with control over the activity patterns, schema,
module parameters, module selection and discrete choice calculation. These can

be applied based on the class and properties present in the data with minimal
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design assumptions, e.g. modes are defined in the data and not an imposed
hierarchy beyond personal, vehicle and public transit.

The approach allows the user to include their own schema of concepts; select
alternative modules based on those concepts; access and modify both local and
remote datasets; and apply the generated demand to multiple traffic simulators.
The implemented modules are intended to be generic representations with min-
imal design assumptions that cannot be modified through query. However, the
overall modular architecture is intended to allow the substitution and selection of
modules for the user’s modelling approach. These can help address the current
shortcomings of singular behavioural models and burden of comparing between
travel demand frameworks.

The implemented scheduler produces full day schedules and is discrete from
the trip planning and network routing stages. The scheduler builds the schedule
in a single forward pass and there have been identified opportunities for vari-
ation, including potential sub-modules to enable variation within this module.
Additional features that have not been implemented include co-operation within
travel groups and the prioritisation of activities in the scheduling process.

The trip planning module can produce trips where the number of stages is
dependent on the modes and available transport resources, rather than those
pre-defined by the design. The construction of trips considers spatial access
constraints to locations and satisfy any requirement to return vehicles to a starting
location at the end of the schedule. The destination for trips can be formed from
asserted options in the knowledge-base or searched from viable options according
to the activity pattern.

The selection of trips uses a discrete choice calculation which is performed
through a query of the knowledge-base. This query can be substituted for al-
ternative formulations or expanded to select formulations according to traveller
class or other characteristics present in the knowledge-base by using the proposed
framework. Therefore, the user is not limited to the implemented calculation but
can adapt and explore according to their investigation.

The routing module produces best estimates for travel between locations
through the network infrastructure for personal and vehicle modes using the A*

algorithm. Areas of future work includes the consideration of temporality in
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public transport timetables, learning from past travel experience and alternative
routing, e.g. trunk road preference. It has also been identified that some road
network datasets contain semantic information that could be used to influence
routing choices, but are not currently considered in routing tools provided by the
examined simulators.

The integration of two third-party simulators has been achieved through in-
terfaces that combine SPARQL querying of the knowledge-base with the XLST
language for XML transformations. This allows change, variation or expansion
of concepts in the knowledge-base or traffic simulators to be compensated for
by the user without requiring re-development of the interface. Both of these
techniques use platform independent and text based templates which facilitates
their inspection and distribution. The use of a unifying knowledge-base also pro-
vides potential for users to develop new interfaces for alternative simulators using
the same techniques. Chapter [7| considers the implementation of the prototype
when utilised with a knowledge-base of scenario data and the performance of the

framework in alternative configurations.
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Chapter 7

Evaluation of Prototype Travel

Demand Generation Framework

7.1 Introduction

The previous chapters have established the design of the framework and the op-
erational modules; the schema of the knowledge-base on which the modules will
function; the design of the framework to control the module selection and oper-
ation; and the implementation of the prototype to demonstrate the framework
design and function. This chapter will seek to address research question
of whether a Semantic Web framework can be implemented for the generation
of travel demand by examining the prototype developed based on the concepts
covered in the previous chapters.

The discussion is formed into four parts. The first part discusses the sce-
nario constructed as the basis of the evaluation. The second part considers the
prototype developed using the framework schema and the organisation of the
implemented modules to produce travel demand for traffic simulation with two
third-party traffic simulators. The third part uses the prototype to consider the
alternative configurations of the framework and their performance. The final
part will outline the challenges encountered during the development of the proto-
type and applying the described Semantic Web based approach to travel demand

generation.
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The objective of this chapter is to consider the progress and issues encountered
in applying these approaches rather than seeking to establish their effectiveness
in replicating traffic and transport behaviour. Performing an analysis into their
effectiveness would require a dataset to provide a ground truth, with no published
dataset identified and is acknowledged as a challenge in the validation of traffic
models and microsimulation [46, |113].

Investigation was undertaken into identifying supporting data for the evalua-
tion of real-world scenarios. National traffic flow data is routinely published [149],
but sensor locations are sparsely distributed along major national roads and are
predominantly situated between or around urban environments. The use of local
traffic flow data from the Nottingham SCOQOT system was also investigated, but
encountered issues with fragile data collection, inactive sensors and the need for
extensive manual data preparation to assign geographic coordinates to sensors.
Performing primary research to gather a traffic flow dataset for a target area
would have significantly expanded the scope and resource requirements of the
project.

Investigation was also undertaken into the population synthesis process to use
aggregate census data as the basis for constructing a scenario and utilising travel
surveys for generating activity patterns. These datasets were successfully con-
verted into RDF algining with the core schema for the knowledge-base (Chapter
. However, the available published spatial datasets contained either limited
detail [123] or suffered from data completeness issues |123]. Therefore, further
datasets were required along with additional research into techniques to align
the population, activities and spatial locations to complete the Knowledge-Base
Construction process, which is also acknowledged as an area of ongoing research
[84].

An additional approach for evaluation would be comparison to existing im-
plementations, but the resource requirements and model availability made this
impractical in the project timescale. Conversely, both of these issues form part
of the overall objective that this work is seeking to address by improving the ac-
cessibility of both models and datasets. Therefore, the evaluation considers the
prototype and framework implementation in the context of a constructed scenario

to consider the schema, prototype and framework rather than the efficacy of the
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generated travel demand.

7.2 Construction of Travel Demand Generation

Prototype Scenario

The outcome of travel demand generation is influenced by the modelling and
implementation choices of its components and the scenario data to which the
process is applied. This section will describe the scenario produced of five thou-
sand individuals that is utilised in the following sections. These individuals were
assigned activities and locations to visit during the course of the scenario period
of one day.

The scenario was generated using a developed application rather than being
derived from published data. The application applied random processes to pro-
duce consistent RDF datasets that follow the previously discussed schema. The
properties of the generated dataset and schema were derived from data fields
present in published census [114], road network [123], travel diary [14] and travel
survey [2] sources.

This approach was selected to allow the scenario data to be quickly modified
and developed as the project progressed. The utilisation of real-world datasets
would have required further investigation into additional techniques for retriev-
ing and reconciling across datasets. This would have expanded the scope of the
project and potentially introduced issues in aligning the various data sources. An
area of future work is the investigation of these processes and their incorpora-
tion into the framework as part of the overall travel demand generation process
discussed previously (Chapter [3)).

An implication of this approach is that there is no contextual influence of land
usage. Locations, people and activities are distributed around the road network
in random positions. Therefore, there is no clustering that may be expected in
typical land-use, such as housing estates, industrial zones and retail districts.

The scenario knowledge-base was constructed using a randomly generated
road network of 14km by 8km produced by SUMO simulator’s NETGENERATE

application [46] and converted into RDF road network schema using an XSLT
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template (see Fig. [£.33). This road network can then be used by the travel
demand generation and both traffic simulators. The generated roads are all single
lane with pedestrian pavements running alongside. Pedestrian crossings were
situated at road junctions, when required by the simulator, i.e. SUMO.

This means that there is a high level of pedestrian access throughout the
network rather than pedestrians incurring additional travel durations they may
experience due to accessing foot bridges and crossings or the lack of pavements
along busy roads. The pedestrian model of SUMO gives pedestrians priority
at crossings with no delay waiting for traffic light phasing to control vehicles.
MATSim does not currently simulate this level of detail for pedestrian modes.
Therefore, pedestrian modes are highly favoured in terms of access and delaying
factors through the road network at simulation.

The phasing of traffic signals has also not been incorporated into the knowledge-
base. There are no identified datasets providing this data and only SUMO utilises
the data in its simulation. This again highlights the limited benefit of trying to
utilise a road network from a public data-source. Although the topology of the
road network will reflect a real-world location the behaviour of traffic signals at
junctions will not and so weaken the simulation outcomes. Instead the default
SUMO approach to traffic signalling has been applied. The quality and appro-
priateness of published road networks for traffic simulation also limits their use
without substantial reconciliation due to a lack of data on the number of lanes,
presence of traffic lights, maximum speeds and presence of footpaths.

All roads in the network were allocated the same maximum speed. This
means that although routes are based on travel time they will also be the shortest
distance. Therefore, there are no routing effects from higher speed trunk roads,
which often have multiple lanes and so higher capacity. The load on specific
roads will be dependent upon the generated people and locations rather than
also incorporating factors from the road network topology.

RDFS inferencing was applied to the knowledge-base following the RDF schema
and published public schemas described previously in Chapter [4 This provided
automatic inferencing and data validation, e.g. datatype checking, cardinali-
ties and inferred sub-class membership and sub-property relationships. Apply-

ing OWL2 inferencing and additional property relationships would enable more
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diverse inferencing, e.g. relationships between locations and persons based on
common activity types and person mode usage based upon vehicle usage.

A dataset was produced based on a road network containing one thousand
residence locations, five education locations, one hundred employment locations,
five freight depot locations and thirty locations each for retail, leisure, personal
business, and freight delivery. Each location was assigned geospatial coordinates
randomly selected from a set of evenly spaced points running alongside road links.

Vehicles were permitted to access all locations except for leisure, while pedes-
trians had access to all locations. Therefore, no differentiation is made in the
scenario between large delivery vehicles, car sized vehicles and bicycles. This was
a simplification of the scenario data generation and would be supported by the
travel demand modelling.

Locations were also selected at the road links near to the cardinal points and a
central train station to provide starting points for external non-resident travellers
using transport link activities. The road network and locations are shown in
Figure [7.1]

Each residence location contains a single household Travel Group consisting
of four persons to simulate four thousand resident individuals. Households were
assigned one of the ten Activity Pattern Sets with each person in the group being
allocated a single Activity Pattern. Ten Activity Pattern Sets were manually
created with each consisting of four Activity Patterns. The Activity Patterns
started and ended with home activities and consist of one or more activity blocks
ranging from half an hour to nine and a half hours. The start and end activi-
ties could be any Location or Activity Type but all were assigned to residence
Locations.

The activity pattern’s start and end times were chosen from the four quarters
of the hour, with later random variation of plus or minus fifteen minutes. Lunch
time and evening activities were included around core day time education and
employment activities, but interrupted by lunch time, with a home activity prior
to evening activities.

Each resident Person was randomly allocated activities at locations according
to activity types with one employment and education location and ten each for

retail, leisure and personal business locations. Locations were assigned multiple
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Figure 7.1: Map of road network and locations.
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activity types. House residences provide home and leisure activity types due to
leisure activities also including socialising with friends and family. Other loca-
tions provide employment and other related Activity Types. This demonstrates
the potential for multiple activities and alternative activity types to take place
at a single geographic location.

Non-resident persons were similarly assigned locations for activities but were
not assigned residences. Instead these were allocated to transport link activities
at edge of network Gateway Links and Train Station locations. Two hundred
Travel Groups were split evenly between the five transport link locations with
four Persons per group. Activity Pattern Sets following those of the resident
persons were produced but with residence activities replaced by transport link.

Freight driver persons were allocated an activity at a freight depot location to
start and end the schedule. Each freight depot was allocated a Travel Group con-
sisting of ten freight drivers. All freight drivers were assigned the same Activity
Pattern of deliveries every thirty minutes throughout the day but with varying
travel range.

No freight delivery locations were asserted for the freight drivers. Instead po-
tential locations were searched dynamically according to proximity of the current
location and travel range of the Activity Pattern item demonstrating contextual
selection. Destination selection was equalised through the freight driver utility
coefficients and freight vehicle mode parameters. All the described Locations
and Activity Types could be intermixed so that residents and freight drivers
may travel out to gateway links and freight delivery activities can take place at
residences.

The described person-types, activities and locations were applied in the user
schema, rather than prototype design, and can therefore be modified by the user.
These have been selected to illustrate typical domain concepts a user may wish
to model. The implemented prototype is able to operate upon these in a generic
manner while the user can still apply selection to use alternative modules, e.g.
trip planning for freight. This is in contrast to some travel demand models, e.g.
CEMDAP which divides the population into workers and non-workers with fixed
activity travel patterns [47].

The resident group were split into adult and child groupings. Each adult
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resident was allocated a single private Vehicle from a distribution covering car
(1:2), motorcycle (1:6) and bicycle (1:6) or no vehicle (1:6) with children only
allocated bicycles (1:4). All non-residents arriving via gateway link were assigned
either car (3:4) or motorcycle (1:4) Vehicles. Those non-residents arriving at
the train station were not assigned vehicles. All freight drivers were assigned
Heavy Goods Vehicles. All residents and non-residents were assigned personal
walking Modes, while freight drivers were not assigned a personal Mode to enforce
continuous usage of their vehicles.

Personal utility coefficient weightings for the Random Utility Model (RUM)
were specified according to the three person-types as a model simplification rather
than technical requirement. Each Mode was assigned max speed, fixed cost and
variable cost definition for the Travel Scenario. The RUM was tuned, except
freight drivers, to provide a walking preference for stages shorter than 1.4km and
using vehicles for longer trips as can be noticed in Figure 6.7, This threshold is
intended to provide a mix of mode usage and was based upon indicative traveller
walking distances [14].

It can be seen from the description in this section that the data requirements
of the travel demand generation process are not trivial. Several items of data
have a strong influence over the behaviour of the travellers including the activity
patterns, assigned locations and accessible modes. An area of future work is the
generation of public transport data for the usage in the scenario as this would

broaden the mode choices available to all travellers.

7.3 Evaluation of Travel Demand Generation

Prototype

This section examines the generated results from executing the previously de-
scribed scenario. It considers the schedules generated by the travel demand stage
of the process. There is then examination of the outcome from simulating the
generated schedules with two integrated traffic simulators. Finally, there is iden-
tification of issues in varying the number of participants in the prototype scenario

and summary of the evaluation.
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7.3.1 Activity Intervals and Travel Stages of Generated
Schedules

The travel demand generation process was executed over the period of one day
for all five thousand individuals. These five thousand individuals were split across
three person-types of 4,000 Residents in 1,000 Travel Groups, 800 Non-Resident
in 200 Travel Groups and 200 Freight in 20 Travel Groups. The number of activity
intervals and travel stages produced varied across the person-types according to
the activity patterns for each as shown in Table[7.1] The Freight group followed
the same regular activity pattern while the other two groups picked from a choice

of ten prepared patterns.

Person Type | Mean | Std. Dev. | Min | Max
Freight Driver 18 0 18 18
Activity Interval | Non-Resident | 4.703 1.418 3 8

Resident 4.611 1.395 3 8
Freight Driver 17 0 17 17
Travel Stage Non-Resident | 5.295 2.697 2 14
Resident 4.782 2.632 2 19

Table 7.1: Table of scenario activity intervals and travel stages by person type.

The distribution of activity intervals in progress across the entire scenario day
is shown in Figure [7.2l The scheduling process retained 25,806 out of 26,280
(98.2%) activity pattern items as activity intervals with 26,765 travel stages
planned. The figure shows the switch from home, delivery and transport link
activities at night to day time activities. The structure and hierarchy of these
activities is determined by the schema and data, so the user is able to expand
and modify as required.

The inverse of the activity intervals is the scheduled travel stages as individuals
who are not performing activities would be travelling. The travel stages can be
identified by the declining number of activities corresponding with the peaks seen
in Figure[7.3] There is a clear domination by walking as shown by Table[7.2] where
over half of the travel stages do not use a vehicle. This is not surprising as this
mode is always an option for travellers to utilise and is also used by them to reach

vehicular modes if the vehicle has been positioned at another location.
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Figure 7.2: Number of activities by activity type per one-minute interval.

Mode Count | Share

Bicycle 2,484 | 9.28%
Car 4,341 | 16.21%

Heavy Goods Vehicle | 3,400 | 12.70%
Motorcycle 1,291 | 4.82%
Walk 15,249 | 56.97%

Table 7.2: Table of mode share for travel stages.

The prevalence of walking travel is influenced by the positioning of locations,
activity patterns, mode access, vehicle availability and the trip selection process,
in this case a Random Utility Model. The trip selection process only favours
walking in trips less than 1.5 kilometres in a road network covering 112km? with
only a single type of location inaccessible to vehicles. Yet, the modelling of
pedestrians in SUMO simulator has only recently developed a pedestrian model
that influences vehicle travel and MATSim handles vehicle and pedestrian modes
separately with no interaction.

The aggregated values of the travel stages by mode for distance travelled

and duration are shown in Table [7.3| and Table respectively. It can be seen
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Figure 7.3: Number of travel stages by simulator per one-minute interval.

Mode Mean Std. Dev. | Median Min Max
Bicycle 6,279.18 | 3,555.556 | 5,300.227 | 12.435 | 18,922.75
Car 6,530.543 | 3,468.799 | 5,693.75 16.073 | 19,057.45
Heavy Goods Vehicle | 7,084.732 | 1,990.131 | 6,750.848 | 2,149.135 | 15,110.62
Motorcycle 6,762.546 | 3,632.69 | 5,798.207 | 20.883 | 17,053.04
Walk 2,597.206 | 3,376.757 | 1,225.354 0.115 16,421.44

Table 7.3: Table of travel stage distance (metres) by mode.

that the walk mode is used for shorter stages despite taking longer to complete.
The distribution in distance travelled is wide as indicated by the large standard
deviation and range between minimum and maximum distances. The trading off
between modes, other than vehicles to walking, is not taking place due to the
single allocation of vehicles and lack of public transport.

The maximum walking distances, and corresponding durations, reflect that 3
in 4 of the child and 1 in 6 of the adult Residents were not allocated any vehicle
and therefore were forced to walk, so contributing to the walking prevalence in
Figure[7.3] Therefore, long walking journeys up to 2.5 hours are produced due to

the demographic data that has been used, and the absence of public transport,
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Mode Mean Std. Dev. | Median | Min | Max
Bicycle 702.884 397.998 593 1 ]2,118

Car 469.862 249.460 410 1 1,370

Heavy Goods Vehicle | 509.664 143.108 486 154 | 1,084
Motorcycle 486.511 261.168 418 2 1,227
Walk 1,451.057 | 1,886.587 684 1 19,174

Table 7.4: Table of travel stage duration (seconds) by mode.

rather than the activity-based model.

The Heavy Goods Vehicle mode can also be seen to be searching for locations
above the minimum threshold for each trip. This threshold was not enforced for
other modes and so very short trips are demonstrated. Enforcing a minimum
travel distance would produce a greater volume of travelling, but does not fit
with the utilitarian view that humans select the most efficient option available.
Therefore, other factors, such as location preference or popularity, should be
considered to design out, or give greater substance, to choices than proximity.

These mode choices for short trips can also reflect the mandatory requirement
to return a vehicle to the starting location at the end of the day and walking
transfer stages to collect or drop-off a vehicle to access a location. Therefore,
enforcing one type of behaviour can introduce complexities in reflecting other
desirable behaviours. Overall, a diversity of trip distances and durations have
been produced across the modelled modes.

The distribution of travel stages being completed consecutively can be seen in
Table[7.5]with the majority of trips only requiring a single stage. The overall ratio
of travel stages per trip was 1.286 (26, 765 travel stages/(25,806 activity intervals—
5,000 initial activity intervals)). The low number of three stage trips can be
attributable to only a single location type not providing vehicle access and there
being no provision of public transport. Therefore, these trips will be of a walk-
vehicle-walk pattern. However, this does demonstrate the implemented multi-
stage, multi-mode trip planning algorithm being applied (Section [6.4.2).

A final consideration of the travel demand generation is the distribution of
travel around the road network. This is visualised in Figure [7.4] which shows the

travel along the road network as planned by the schedules. The frequency of link
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Stages | Count | Share
0 0 0%

1 15,422 | 57.62%

2 4,809 | 17.97%

3 575 2.15%

Table 7.5: Table of travel stages between activity intervals.

usage, in either direction, has been split into five groups across the range from
dark green for low usage to dark red for high usage, with black for no usage. It
can be seen that a wide area of the road network has routes planned along it
and travel throughout. It can be seen that the many roads have low usage by
the prevalence of dark and light green. The distribution of road links in trips is
illustrated in Figure and is left skewed with many links being used a small
number of times and a long tail of low number but high frequency cases.

As discussed in the previous section, the positioning of locations was applied
using random distribution methods and so there is no spatial context to land-use
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