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Abstract 

Breast cancer is a complicated, heterogeneous and diversified disease that comprises of a 

mixture of various subtypes. The emergence of high throughout technologies such as gene 

expression profiling and DNA copy number analysis has allowed a profound awareness of this 

complex disease. Breast cancer molecular classification began with ER, PR and HER2 based 

stratification of patients, and further classified into various intrinsic subtypes such as Luminal A, 

Luminal B, Her-2 enriched, Basal-like, and Claudin-low. These subtypes were proven to have 

significant divergences in amplified and mutated genes, survival rates, prognosis and response 

to therapy. 

The anti-diabetic drug Metformin has been prescribed to treat type 2 diabetes patients since 

1957 with a well-established side effects and safety profile. Additionally, cancer researchers 

have studied the anti-tumour effects of this drug since 2005 and have determined Metformin 

benefit in the reduction of cancers incidence. Thus, Metformin has been suggested as an ideal 

candidate to treat and prevent diverse types of cancers, including breast carcinoma.  

The purpose of this study is to elucidate the biological and molecular effects of Metformin on 

breast cancer cell lines such as BT-474, MCF-7, MDA-MB-231, MDA-MB-468, and SkBr3.  

Interestingly, Metformin treatments reduced the viability and proliferation of examined breast 

cancer cell lines, while induced cells apoptosis. Basal-like (MDA-MB-468) was the most sensitive 

phenotype to Metformin treatments, whereas HER2 (SkBr3) was the least sensitive subtype. 

We performed Gene Expression Microarray and NanoString analysis of Metformin treated MDA-

MB-468 and SkBr3 cells and found that the upregulated Protein Tyrosine Kinase 2 Beta (PTK2B) 

was predominantly involved in cell proliferation, cell survival, cell migration and cell invasion. 

We found that PTK2B promotes invasion and migration, while prevents the proliferation of 

breast cancer cells. It is also, playing a vital role in Autocrine Somatotropin signalling pathway in 

breast cancer. Additionally, Mass Spectrometry (MS) analyses and pathways enrichment 

analysis that has emphasised the role of PTK2B in breast cancer invasion and metastasis. 

Additionally, the combined action of both selected markers and Metformin treatment on 

fundamental biological functions in breast cancer were also assessed.  

These data showed that Metformin promotes Her-2 enriched breast cancer invasion through 

mechanisms involving PYK2, and that future treatments should consider potential complications 

resulting from metformin-based therapies. 
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CHAPTER 1 

 

 Introduction  

        

 1.1. Cancer 

Cancer is a general term that describes a large group of diseases, which affects any part of the 

body.  Other terminologies have been used to describe cancer including, malignant tumours and 

neoplasms. Cancer is a disease caused by an uncontrollable division of abnormal cells in a part 

of the body. Sometimes cancer cells can spread to other parts of the body beyond their usual 

boundaries, which is called a secondary tumour or a metastasis. This process of dissemination, 

which is known as metastasis has been recorded as the major cause of cancer death. More than 

200 distinct types of cancer are occurring, and 1 in 2 people in the UK will develop cancer during 

their lives. Among women, the most common types of cancers are breast, colorectal, lung, 

uterine cervix, and stomach cancer.  However, in men Lung, prostate, colorectal, stomach, and 

liver cancer are the most common types of cancer. The increase of cancer survival rates can be 

achieved by early detection, correct diagnosis, and effective treatment 

(https://www.who.int/cancer), (http://www.cancerresearchuk.org/).  

Intensive research efforts have been directed to improve our understanding of this complex 

disease and have resulted in some improvement in treatment and the survival rates of cancer. 

For instance, the US Food and Drug Administration (FDA) has approved Gardasil 9, as a new 

vaccine for Human Papillomavirus (HPV), a virus that causes cervical cancer in women. Likewise, 

Imatinib (Gleevec) is a targeted cancer drug (biological therapy) that was approved in 2001, as 

targeted treatment of the rare chronic myelogenous leukaemia. Moreover, during the past few 

years, there has been a growing emphasis on early cancer detection, neoplastic stem cells, 

microRNAs and cancer biomarkers.  However, the effect of cancer on individuals' life is still high, 

and the incidence of cancer is predicted to double within the next 20 years due to the ageing 

global population (Elsevier Community, 2016). Despite advances, there is still a great need for 

further research into areas which are focused on understanding the molecular mechanisms 

underlying cancer initiation and progression. Considering the many types of cancer and taking 

into account the genetic diversity of patients, there are still multiple routes that need to be 

explored to promote more effective, and maybe even more personalised, treatments.  

 

http://www.cancerresearchuk.org/
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1.2. Cancer Statistics for 2018 

Cancer is a global and considerable health problem as reflected by its yearly increasing rate of 

morbidity and mortality. Worldwide, an estimated 14.1 million people were diagnosed with 

cancer and 8.2 million related deaths in 2012. The UK alone recorded about 360,000 new cases 

of cancer in 2015, and around 164,000 deaths from cancer in 2016, which makes it the first 

leading cause of death in the UK, above heart disease and dementia. In the UK, a cancer is 

diagnosed every two minutes and a related death occurs every four minutes. In addition, more 

than 980 people are diagnosed with cancer, and more than 440 people die from this disease 

every day. Since the early 1990s, the incidence rates were increased by 12%, consequential to 

a growing and ageing population. Moreover, the estimated number of cancer cases are 

projected to increase by more than 40% to about 514,000 new cases per year in 2035, with a 

great rising in men than women (Figure 1.1) (Cancer Research UK, 2018). 

 

 

Figure 1.1. Percentage of total cancer incidents by cancer site comparing the increasing rates 
of cancer cases in three different periods in 1993 (observed), 2014 (observed) and 2035 
(estimated), and divided by sex. Adapted from (Smittenaar et al., 2016 via Cancer Research UK 
September 2018). 

 

 In the UK, the most commonly diagnosed cancers are breast, prostate, lung and bowel cancers, 

which account for more than a half (53%) of the total number of cancer cases in 2015. About a 

fifth of all cancer deaths is caused by lung cancer. The Figure below describes the 24 different 

cancers in major sites of the body, for both females and males. The International Classification 

of Diseases Tenth Revision (ICD-10) was used to classify cancer sites, and the Non-melanoma 
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skin cancers (ICD-10 C44) were excluded. Moreover, all ages were combined in this statistical bulletin, according to the National Cancer Registration 

and Analysis Service within Public Health England; Office for National Statistics, (Cancer Research UK, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.  Cancer diagnoses incidence rates in the UK 2016. The diagram represents the number of diagnosed male patients (in blue) and female 

patients (in yellow) for each type of organ-specific cancer. This data refers to the year 2016 by National Cancer Registration and Analysis Service within 

Public Health England; Office for National Statistics (Cancer Research UK, 2018).
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 In addition, there is a clear correlation between cancer incidence and mortality with ageing. In 

2013 – 2015, incidence rates were highest in people aged 85 – 89 for all cancers and for both 

males and females. During this period, more than a third (36%) of all cancer cases in the UK were 

diagnosed in people aged 75 and over each year, and more than half (53%) of all cancer deaths 

in the UK are related to people aged 75 and over. Moreover, significant divergences were 

noticed between sexes across age groups. Cancer incidence rates were higher in females aged 

15 to 59 years compared with males in the same age group, and more than doubled in females 

aged 40 to 44 years. That is highly likely related to the highest incidence rates of breast cancer 

which registered among females aged 30 to 59. Whilst cancer rates were higher in males aged 

60 years and over, which can be explained by the incidence of prostate cancer in males aged 65 

to 79 years (Cancer Research UK, 2018). The diagram below illustrates the increase in cancer 

incidence according to getting old. The source of this data is the National Cancer Registration 

and Analysis Service within Public Health England; Office for National Statistics, (Cancer Research 

UK, 2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. The number of cancer registrations in England, 2016. The diagram shows the age-
specific cancer incidence rates (per 100,000) and the differences between males and females 
for each age group. This statistical bulletin excludes non-melanoma skin cancer (ICD-10 C44). 
The Figure was adapted from the National Cancer Registration and Analysis Service within Public 
Health England; Office for National Statistics 2016 (Cancer Research UK, 2018). 

Even though cancer incidence rates are showing increasing trends over time, the mortality rates 

of cancer are continuously decreasing as well. In England, the death from cancer was accounted 
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for 28.5% of all registered deaths in 2016. However, the highest annual number of cancer deaths 

in England and Wales since 2003 was recorded in 2017, with a 1.6% increase in the number of 

deaths. This number is expected to be elevated as a consequence of increasing in both size and 

age of the population over the time. The Figure below 1.4. shows the total number of deaths in 

England and Wales from 2001 to 2017 for both sexes (Cancer Research UK, 2018). 

 

 

Figure 1.4. The total number of deaths from cancer in England and Wales from 2001- 2017. 
The trend lines are displaying cancer deaths number in men and women over different years. 
The highest annual number of deaths was in 2017 according to the office of National Statistics 
(Cancer Research UK, 2018). 

 

Contradictory, cancer survival has improved and has doubled in the last 40 years in the UK. 

Generally, cancer survival is higher in people who diagnosed aged under 40 years old, except for 

breast, bowel and prostate cancers, where survival is highest in middle age. The percentage of 

cancer survival was half for 10 or more years in 2010-2011 for England and Wales. Survival rates 

vary between different cancer types, which ranged from 98% for testicular cancer to just 1% for 

pancreatic cancer. In addition, cancer survival in women is higher than in men. Moreover, 38% 

of cancer cases were prevented in 2015. The reduction in mortality rates and the growing 

number of surviving patients correlated with progress in technologies and medications. Besides, 

the improvement in early detection of cancers has reduced the number of people who died from 

cancer (Cancer Research UK, 2018). 
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Despite the remarkable progress in cancer research, which has been made over the last few 

decades, the principles behind cancer induction are still not fully interpreted. Generally, cancer 

is described as accumulative mutations and epimutations, that result in cellular genomic and 

epigenomic alterations. It is also defined as an uncontrollable proliferation of any type of cells 

in the body. The genetic principles and pathways involved in the generation of cancer cells have 

not been satisfactorily elucidated. DNA mutations result in considerable damage in mitotic 

events that leads to a disordered proliferation in malignant cells. However, exposure to 

environmental agents including carcinogens, radiations and pathogenetic infections, may 

contribute to the initiation of most types of cancer through different mechanisms (Belizário, 

2018). Besides, most known cancer risk factors are ageing, smoking, sun and radiation exposure, 

chemicals and other substances, certain hormones, family history of cancer, excessive alcohol 

consumption, poor diet, lack of exercise, and excess body weight. Treating cancer can be 

achieved by preventing it through making changes in individuals’ lifestyle. The two largest 

preventable causes of cancer in the UK are smoking and obesity (Cancer Research UK, 2018). 

 

1.3. Hallmarks of cancer 

The genesis of cancer is known as carcinogenesis, oncogenesis or tumorigenesis in which normal 

cells switch to cancer cells. This process can be characterised by alterations in cellular, genetic, 

epigenetic levels and could also be due to abnormal cell division. The multistep development 

process of human cancers (from normal cells to cancer cells) is governed by eight common traits 

"hallmarks" and two Enabling Characteristics, which are combined between all cancer types. A 

peer-reviewed article published in 2000 by Hanahan and Weinberg entitled “The Hallmarks of 

Cancer”, highlighted the six common "hallmarks”, which allow cancer cells to survive, proliferate 

and invade (Hanahan and Weinberg, 2000). Then, followed by ‘Hallmarks of Cancer: The Next 

Generation’ in 2011 by Hanahan and Weinberg highlighted two new Enabling Characteristics, 

which are Genomic Instability, and Tumour-Promoting Inflammation. They also added two 

Emerging Hallmarks that are Reprogramming of Energy Metabolism and Evading Immune 

Destruction (Hanahan and Weinberg, 2011). 
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The main hallmarks of cancer include:  

1.3.1. Maintaining proliferation signalling 

Sustaining proliferative signalling enables cancer cells to proliferate and multiply in the absence 

of stimulation signals from external growth factors (GFs). Typically, normal cells of the body 

need stimulation by external mitogenic growth signals, which bind into cell surface receptors to 

switch the cells from a quiet status to an active proliferative status. In addition, cell division in 

normal cells is tightly controlled. However, cancer cells have this capability to proliferate in an 

uncontrollable way by producing the growth signals by themselves, in which permanently 

triggers the signalling pathways that respond to these signals, or by destroying 'off switches' 

that are preventing immoderate growth from these signals (Hanahan and Weinberg, 2000). 

 

1.3.2. Avoiding growth suppressors  

To support cellular dormancy and tissue homeostasis, multiple growth suppressors such as 

Retinoblastoma-associated (Rb) and p53 proteins signal operate within the healthy tissue as 

central control points within two critical complementary cellular regulatory circuits that control 

the decisions of cells to proliferate or activate senescence and apoptotic programs. Those 

signals include soluble growth inhibitors and immobilised inhibitors, which have been 

embedded onto the surfaces of nearby cells and into the extracellular matrix (Sherr, 2004). 

Generally, cancer cells are impervious to antigrowth signals from the surrounding environment 

by altering their tumour suppressor proteins. An alternative way to prevent cells from over-

division in normal cells is known as “contact inhibition”, which cancer cells do not have, so they 

keep dividing even if there is a limited body cavity space. Evading growth suppressor in cancer 

cells can be achieved by strengthening the adhesion of cadherin-mediated attachments 

between cancer cells (Curto et al. 2007; and Hanahan and Weinberg, 2011). 

 

1.3.3. Avoid apoptosis (programmed cell death)  

Apoptosis is the mechanism by which cells are programmed to die as a regular and controlled 

part of an organism's growth or development, or as a consequent of experiencing damages. 

Cancer cells confront different physiological stresses during tumorigenesis, including imbalances 

in the cells signalling and DNA damages that result in the enhancement of cell death. The 

apoptotic machinery can be bypassed in cancer cells even if the cells are becoming grossly 

abnormal due to several mechanisms such as inactivation of the p53 tumour suppressor gene 

(Horn and Vousden, 2007).  Or through increased expression of anti-apoptotic regulators (BCL2) 

or by the PI3 kinase–AKT/PKB pathway, which transmits antiapoptotic survival signals, this 
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pathway activates by extracellular factors such as IGF-1/2 (Insulin-like growth factor 1 or 2) or 

IL-3. Or by intracellular signals released from Ras, or by loss of the tumour suppressor pTEN, 

which is a phospholipid phosphatase that normally reduces the AKT survival signal (Hanahan 

and Weinberg, 2000). 

 

1.3.4. Enabling replicative immortality 

Normal mammalian cells have an intrinsic program, which is known as "Hayflick limit" that 

enables a limited number cell division before reaching senescence (non-proliferative but the 

viable state) stage or crisis (cell death). The sensor of this doubling programme is the telomere, 

which is a non-coding tandem hexanucleotide sequence repeats DNA that is found at the end 

of the chromosome. This telomere decreases in size during each cell cycle (division) till it 

becomes too small, resulting in induced senescence. Cancer cells are capable of growing 

indefinitely and achieving immortality by escaping this limit (Hanahan and Weinberg, 2000; 

Collado and Serrano, 2010). 

1.3.5. Inducing angiogenesis  

Normal tissues need oxygen and nutrients supplied by blood vessels that are crucial for cell 

function and survival. The formation of new blood vessels is an exclusive event during the 

development of embryos, wound repair, and during the female reproductive cycle. In cancer 

tissues, the most obvious feature is the formation of new blood vessels that allow tumour 

access to nutrients and oxygen, and for evacuating waste metabolic products and carbon 

monoxide. This process is constitutively active during tumour progression to help sustain 

neoplastic growth (Bertram, 2000). An increased transcription of angiogenic regulators causes 

the induction of angiogenesis in tumours and include the vascular endothelial growth factor 

(VEGF) and/or fibroblast growth factors (FGFs) (Ferrara, 2009; Bertram, 2000). 

1.3.6. Promoting tissue invasion and metastasis 

One of the characteristic features of cancer cells is their ability to invade adjacent tissues and 

thence spread to distant sites where they might find new supplies of un limiting nutrients and 

space to colonise, after leaving their primary tumour mass. Metastasis is the process of physical 

dissemination of cancer cells from a primary site of cancer to a secondary malignant growth at 

a distance, and their adaptation to the new microenvironment of hosting tissues. The multistep 

process of metastasis includes local invasion of surrounding tissues, then intravasation by 

cancer cells into the nearby blood and lymphatic vessels with survival within the harsh 

environment of the circulatory system, followed by crossing through the lymphatic and 

hematogenous systems, and then escape of cancer cells from the lumina of such vessels into 

the parenchyma of distant tissues (extravasation).  Then, the formation of small nodules of 
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cancer cells (micrometastases), and finally the growth of a micrometastatic tumour into 

macroscopic tumours, which is termed as ‘‘colonisation.’’ It is now well documented as a 

scientific knowledge that cancer cells acquire migratory abilities through the process of 

epithelial to mesenchymal transition (EMT) (Kalluri and Weinberg, 2009; Lamouille et al. 2014). 

EMT is a process that encompasses substantial changes in cell morphology, acquired migratory 

capabilities, and the abilities to invade and evade apoptosis of cancer cells. To that end, 

multiple transcription factors including Snail, Slug, Twist and Zeb1/2 are required to promote 

the acquisition of characteristic traits such as the expression of specific signalling membrane 

proteins, reorganisation of cytoskeletal proteins, increased production of molecules that 

enable migration and significant changes in the expression of particular microRNAs (Hanahan 

and Weinberg, 2000; Thiery and Sleeman, 2006; Lamouille et al. 2014). 

 

1.4. Additional Hallmarks of Cancer 

Two more emerging hallmarks of cancer, deregulating or changing and reprogramming cellular 

metabolism and evasion of the immune response by immune cells (T and B lymphocytes) were 

added to this list after an increased body of research. One is involved in sustaining and 

supporting the neoplastic proliferation growth, while the second enables the cancer cells to 

escape immunological destruction by T and B lymphocytes, macrophages, and natural killer cells. 

Two other enabling properties that allow cancer cells to survive and proliferate, development 

of genomic instability and tumour stimulated inflammation were also added to the previous 

hallmarks of cancer list. Genomic instability development that allows mutations in cancer cells 

with genetic alterations to drive the progression of cancer was the first property. The second 

attribute is tumour-promoting inflammation via the innate and adaptive immune systems that 

contribute to multiple hallmark capabilities by supplying proliferative growth factors, EMT 

inducing signals as well as extracellular matrix changing enzymes to the tumour 

microenvironment which helps in angiogenesis, invasion, and metastasis (Hanahan and 

Weinberg, 2011).  These ten biological capabilities that are acquired during the multistep 

development of tumours are known as “Cancer Hallmarks” are illustrated in Figure 1.5.  
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Figure 1.5. The hallmarks of cancer. The schematic representation depicts the six original 
hallmarks of cancer as proposed by Hanahan & Weinberg (Hanahan & Weinberg in 2000). 
Additionally, Hanahan and Weinberg in their next generation of” Hallmarks of Cancer” in 2011, 
have listed two new emerging hallmark characteristics, including Evading immune destruction 
and Reprogramming of energy metabolism (Hanahan and Weinberg, 2011). In addition, the 
other two subordinate enabling properties that allow cancer cells to survive and proliferate are 
the Development of genome instability and Tumour-promoting inflammation. This image was 
adapted from (Hanahan and Weinberg, 2011).  
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1.5. Breast cancer 

Breast cancer is the most commonly diagnosed cancer in the West and the predominant 

malignant tumour in females, which accounts as one of the main causes of cancer death and its 

incidence rate is increasing throughout the globe (Masumi, et al., 2012; Arau ´jo et al., 2017).  

Breast cancer represented the highest registered cancer among other types of cancer in women 

in the UK. About 1 in 7 (14.2%) women and 1 in 870 (0.001%) men in the UK will develop breast 

cancer during their lives (http://www.cancerresearchuk.org/). Approximately 55,200 people are 

diagnosed with breast cancer in the UK each year, which is around 150 people a day. An 

estimated 1.38 million new cases and about 458,000 deaths from breast cancer worldwide are 

reported every year (Taherian-Fard, et al., 2014). In England (in 2016), mortality rates were 

decreased, in contrast to increased incidence rates, showing that the number of patients who 

survived from breast cancer has improved. The advantage of advancement in medication, 

technology and early diagnostic allowed the reduction of the number of people who die from 

cancer (Cancer Research UK, 2018). The incidence and mortality rates of breast cancer are shown 

in Figure 1.6 below represented by European Age-Standardised Rates per 100,000 Females, UK, 

1993-2016. 

 

Figure 1.6. Age-standardised cancer mortality and incidence rates for female breast cancer in 
the UK in 2016. The graph shows the incidence and mortality trends in breast cancer, which is 
the most common cancer in females. It also displays rates per 100,000 persons from 1993 to 
2016. The source of this data is the National Cancer Registration and Analysis Service within 
Public Health England; Office for National Statistics (Cancer Research UK, 2018). 

 

http://www.cancerresearchuk.org/
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1.6. The Mammary Gland Structure and development 

The mammary gland (breast) is a unique anatomical structure that secretes milk during lactation 

stage. It is a complex secretory organ, composed of glandular(epithelium) and stromal 

(parenchyma) tissues (Figure 1.7). The stroma physically and nutritionally supports the 

epithelium. The stroma is formed by fatty cells, connective cells, blood vessels and lymphatic 

vessels, which influence the development of the mammary gland. The architecture of a mature 

human epithelium resembles a tree-like branching system with about 15 to 20 different lobes 

(milk producers). The lobe, which is also known as an acinus is assembled by several terminal 

lobular units of secretory alveoli and the converging duct (milk carriers). The epithelium is 

composed of a bi-layer epithelial cells structure (luminal and basal). The luminal epithelium 

forms the ducts and the secretory alveoli. The luminal epithelium also contains a population of 

cells that characterised by their hormone receptor status. The basal epithelium comprises of 

myoepithelial cells that generate the outer layer of the gland, in addition to a small population 

of stem cells, which supply the different cell types. (Macias and Hinck, 2012; Cyr et al., 2016).  

The mammary gland develops through three major stages, which are embryonic, pubertal and 

reproductive. Embryonic development proceeds in the absence of hormone regulation, while 

customised hormonal inputs control the pubertal and reproductive stages. During 

embryogenesis, local epithelial/mesenchymal interactions are directing many developing 

processes and are responsible for determining the location of the mammary gland and also 

control cell fate, such that at birth the tissue compartments are precisely placed, and the 

budding structure is accurately established. Epithelial/mesenchymal interactions have also 

controlled the development during postnatal stages of mammary gland morphogenesis. 

However, the nature of these interactions will enormously change after puberty by regulation 

hormones and growth factors. The hormones generate complex signalling networks that impact 

the epithelial/mesenchymal interactions by adjusting the production of secondary signalling 

pathways that drive cross-talk between and within compartments. The subsequent 

development stages such as pubertal growth, pregnancy, lactation and involution – occur 

postnatally are under the hormonal control. The branching morphogenesis initiated in puberty 

and require the growth hormone, oestrogen, and IGF1, to generate a ductal tree and fill the fat 

pad. During pregnancy, the joint action of progesterone and prolactin are fundamental for 

generating the alveoli that secreted milk during lactation. At weaning period when no more milk 

is needed, the process initiates involution whereby the gland is reconstructed back to its pre-

pregnancy status. Many signalling pathways, which have distinct regulatory functions at 

different stages of gland development are needed during this phase (Macias and Hinck, 2012). 
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Figure 1.7. Mammary Gland anatomy and histology. Schematic representation of normal female breast adapted from (Cyr et al., 2016).   At the 
histological level, the breast is built of epithelial and stromal cells divided by a basement membrane. The epithelial layer includes two types of cells: 
myoepithelial cells (basal) and luminal cells, which are enveloped by the basement membrane, whilst, at the functional level, the mammary gland was 
formed from the glandular and stroma tissues. The glandular tissues are composing of lobes (milk factories) and ducts (milk transporter) that match up 
the branching system. The stroma forms the area between the lobes.
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1.7. Breast cancer classification 

The term breast cancer refers to a malignant tumour, which has developed from breast cells 

(Cancer Research UK, 2018). Breast cancer is a complicated heterogeneous disease, which 

exhibits a variety of phenotypically distinct tumour types that have different histological and 

pathological features, clinical outcomes, risk factors, response to therapy and prognosis (Weigelt 

et al., 2010; Yersal et al., 2014). 

There are four schematic bases for classifying breast cancers and according to different criteria, 

and which include histological appearance (pathology), grade, stage of cancer, as well as protein 

and gene status (https://www.news-medical.net/health/Breast-Cancer-Classification.aspx ; 

Vuong, et al., 2014). 

Under the histopathological characteristics, breast cancer can be divided into ductal carcinoma 

in situ (DCIS) and lobular carcinoma in situ (LCIS). Both are also divided into pre-invasive and 

invasive breast cancer Figure 1.8 below (https://www.news-medical.net/health/Breast-Cancer-

Classification.aspx). The cancer grade is categorised as low grade “well-differentiated” to high 

grade “poorly differentiated”. In addition, the classification, which is based on the stage of 

cancer considers tumour size, lymph node involvement and metastasis of cancer, and that is 

known as "TNM". Similarly, hormone receptor expression status-based classification stratifies 

breast cancer based on the presence of oestrogen receptor (ER), progesterone receptor (PR) 

and HER2/neu amplification or overexpression, which facilitates certain novel therapeutic 

treatments (https://www.news-medical.net/health/Breast-Cancer-Classification.aspx). 

 Recently, more advanced classification has been raised according to the molecular profiling of 

breast cancer, which was originally proposed by Sørlie et al., 2001.  Gene Expression Microarray 

studies contributed to a new classification that is supported by new molecular markers. This 

categorized breast cancer patients into four molecular subtypes, which are luminal A, luminal B, 

HER2+, and basal types (Godfrey, et al., 2016). 

https://www.news-medical.net/health/Breast-Cancer-Classification.aspx
https://www.news-medical.net/health/Breast-Cancer-Classification.aspx
https://www.news-medical.net/health/Breast-Cancer-Classification.aspx
https://www.news-medical.net/health/Breast-Cancer-Classification.aspx
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Figure 1.8. Schematic representation of breast carcinomas progression from benign to malignant. Cross section of the breast duct and lobe that 
compares several types of cancer. The epithelial cells will misplace and fill the ducts and lobes with abnormal cells following several stages of breast 
carcinoma progression. 1 in 5 of breast cancers new cases is ductal carcinoma in situ (DCIS) while spreading of cancer cells into surrounding breast tissue 
is known as invasive breast cancer. Invasive carcinoma is divided into Invasive ductal carcinoma (IDC) and Invasive lobular carcinoma (ILC). This Figure 
was adapted from https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/types-of-breast-cancer/dcis.html.
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1.8. Breast cancer molecular subtypes 

Perou et al., 2000 suggested the existence of four subtypes based on a high throughput gene 

expression profiling. Following studies, further divided breast cancer into luminal subtypes A 

and B (Perou et al. 2000; Sørlie et al., 2001). Additionally, breast cancer may be divided into six 

molecular subtypes: luminal A, luminal B, Basal-like, HER2-enriched, Claudin-low, and Normal-

like breast cancer (Eroles et al. 2012, Previati et al. 2013).  

 

1.8.1. Luminal A (hormone receptor positive/HER2 negative) 

 

 Luminal A is the most common breast cancer subtype which includes 50-60% of all breast 

cancers and starts in the inner (luminal) cells lining the mammary ducts. Generally, this tumour 

has a low histological grade, a low degree of nuclear pleomorphism, low mitotic activity and 

good prognosis. The Luminal A subtype is characterised by the positive expression of oestrogen 

receptor (ER) and/or progesterone receptor (PR) and in higher levels, with low expression of 

proliferation-related genes such as Ki-67. It is also characterised by the expression of luminal 

epithelial cytokeratin’s (CK) 8 and 18, and other luminal markers that are associated with ER 

function such as LIV1 (zinc transporter ZIP6or SLC39A6; solute carrier family 39 zinc transporter, 

member 6), hepatocyte nuclear factor 3 alpha (FOXA1), X-box binding protein 1 (XBP1), GATA 

binding protein 3 (GATA3), B cell lymphoma 2 (BCL2), erbB3 and erbB4. In this subtype, patients 

have a good prognosis and a significantly low rate of relapse when compared to other subtypes. 

Treatment of Luminal A breast cancer metastases is based on hormonal therapy (Yersal et al., 

2014; Godfrey, et al, 2016). 

1.8.2. Luminal B (hormone receptor positive /HER2 positive or negative) 

The Luminal B subtype represents 15%-20% of breast cancers, which is comparable to Luminal 

A. In comparison to the earlier subtype (Luminal A), it has a more aggressive phenotype and 

higher histological grade. In addition, it has a worse prognosis and is more proliferative. 

Moreover, it has a higher recurrence rate and a lower survival rate after relapse. This subtype is 

also characterised by positive expression of ER and PR receptors and includes HER2 positive and 

negative subgroups associated with increased expression of growth receptor signalling genes 

index (Yersal et al., 2014; Godfrey, et al, 2016). Moreover, another distinguisher between 

Luminal A and B subtypes is the proliferation marker Ki-67 (Cheang et al., 2009).  Overall, the 

survival rates in untreated luminal-B breast cancers are similar to the survival rates of Basal-like 

and HER2-positive subtypes, which are widely recognised as high-risk tumours. Although 
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Luminal B tumours may have poor outcomes following hormonotherapy, it responds better to 

neo-adjuvant chemotherapy. The relapse rates are limited to the five first years after diagnosis 

in the Luminal B breast cancer subtype (Yersal et al., 2014).  

 

1.8.3. HER2-enriched (hormone receptor negative/HER2 positive) 

 

HER2-positive tumours are well defined, due to the ERBB2 gene being amplified, with an 

exclusive high expression of the HER2 receptor, combined with low or absent expression of ER 

and PR receptors. The HER2+ subtype stands for 15% to 20% of all breast cancer subtypes. HER2+ 

classify as more aggressive biologically and clinically. In terms of morphology, it is a highly 

proliferative tumour and 75% of HER2+ have a high histological and nuclear grade, while 40% 

have p53 mutations.  HER2-positive has a poor prognosis in the absence of treatment however, 

they have increased sensitivity to certain cytotoxic agents like doxorubicin and are resistant to 

hormonal therapy. In addition, a targeted therapy drug, Trastuzumab, which is a monoclonal 

antibody used to treat HER2 positive breast cancer (Yersal et al., 2014; Godfrey, et al, 2016). 

 

 

1.8.4. Basal-like (hormone receptor negative/HER2 negative) 

This breast cancer subtype is characterised by the high expression levels of basal myoepithelial 

markers, such as CK5, CK 14, CK 17 and laminin and negative expression of ER, PR and HER2, 

thus referred to as triple-negative breast cancer (TNBC) regarding immune histochemical 

classification of breast tumours. Whereas the Basal-like subtype resembles the outer (basal) 

cells surrounding the mammary ducts, which is defined by the gene expression microarray 

analysis. This type expresses elevated levels of basal myoepithelial markers such as CK5, CK 14, 

CK 17 and laminin. The Basal-like breast cancer subtype represents 8-37% of all subtypes. The 

Basal-like subtype correlates with a high histological and nuclear grade and a remarkably high 

mitotic and proliferative index. This subtype is clinically aggressive and highly metastatic to the 

brain and lung and has a poor prognosis. It only responds to chemotherapy reagents (Yersal et 

al., 2014). 
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1.8.5. Claudin-low (hormone receptor negative/HER2 negative) 

Another triple-negative breast cancer subtype is claudin-low, or normal like which is 

characterised by low expression levels of tight junctions and cell-cell adhesions molecules such 

as claudins 3, 4 and 7, Occludin and E-cadherin. It has also high expression levels of epithelial to 

mesenchymal transition genes and stem cell features. Indeed, it has been reported that patients 

with claudin-low tumours also have poor clinical outcomes (Yersal et al., 2014).  

1.8.6. Normal breast-like (hormone receptor negative/HER2 negative) 

This type of a tumour represents about 5–10% of all breast carcinomas and is poorly 

characterised. It is being grouped into the inherent subtypes with fibroadenomas and normal 

breast samples classification. Normal breast-like cancer is presenting an intermediate prognosis 

between luminal and Basal-like subtypes. It expresses characteristic genes of adipose tissue and 

does not respond to a neo-adjuvant chemotherapy. Lack of ER, HER2 and PGR expression, and 

a CK5 and EGFR negative statuses, make those tumours classified as triple-negative cancers. 

They are rare tumours and there is a doubt that they could be an artefact due to a technical 

contamination with normal tissue during microarrays analysis (Eroles et al., 2012). 

 

1.9. Role of receptors in Breast cancer  

Key receptors of breast cancer are HER2, oestrogen receptor and progesterone receptor, which 

have been used as biomarkers and play a critical role in breast cancer classification and 

treatment (Sekar et al. 2011).   

1.9.1. Hormone receptors 

Oestrogen receptor and PR are both predictive and prognostic markers for endocrine therapy 

outcomes and responses.  Oestrogen receptor and PR bind hormones exert their effects in the 

nucleus. Therefore, immunostaining for both receptor proteins is demonstrated in the nucleus 

of healthy breast tissues, which is usually used as an internal control. In addition, the 

progesterone receptor serves as an index marker to decide the oestrogen level status. Thus, the 

expression of both PR and ER is usually reported together to determine the choice and response 

of therapy among patients. The patients with progesterone receptor expression (PR+) have 

better survival rates than those who have (PR-) in breast cancer tumours (Cornejo et al. 2014). 
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1.9.1.1. Oestrogen receptors 

Two distinct types of oestrogen Receptors (ERs), which are ERα and ERβ are found expressed in 

various tissues including breast, ovary, endometrium tissues that express ERα; whilst kidneys, 

the brain, lungs, and several other organs express ERβ. The contributory role of ERα protein has 

been proved in carcinogenesis, while this role is still controversial for ERβ (Yager et al., 2006).   

Both ER receptors, which carry a DNA binding domain are nuclear receptors. However, 

membrane oestrogen receptors (MERS) are mostly G protein-coupled receptors (GPCR) such as 

GPER, ER-X, and Gq-mER (Yager et al., 2006). Once the oestrogen enters the cells, those 

receptors are activated, and a complex of oestrogen hormone and ER receptors will be formed. 

This complex will translocate into the nucleus, bind to the DNA and start to regulate the activity 

of different genes to produce transcriptional proteins. This complex has another function that is 

independent of DNA binding. Patients who express significant quantities of these intracellular 

receptors have increased the risk associated with proliferation and increased oestrogen-related 

cellular stimulation. Two major hypotheses were attempted to clarify the role of oestrogen in 

breast cancer development and progression. Firstly, the generation of radicals (initiator) through 

the genotoxic effects of oestrogen metabolites and secondly, the capacity of oestrogens 

hormonal property to induce the proliferation of cancers and premalignant cells (promoter) 

(Yager et al., 2006). 

1.9.1.2. Progesterone receptors (PRs)  

The progesterone receptor is a ligand-activated transcription factor, which is a steroidal 

hormone nuclear receptor (SR) family member. ER and PR steroid hormones receptors are 

closely related in their biological actions. PR is the main ER target gene, which acts as a leading 

effector of oestrogen downstream action. More recent studies have implicated progesterone in 

normal breast proliferation and are a breast cancer long-lasting risk factor. Similarly, to ER, PR 

has an extensive cross-talk with the same signal transduction pathways, which are needed for 

the development of mammary gland, as those are most highly expressed in breast cancer (Daniel 

et al., 2011). 

1.9.2. Human Epidermal Growth Factor Receptor 2 (HER2) or HER2/neu 

The HER2/neu receptor belongs to the human epidermal growth factor receptor 

(HER/EGFR/ERBB) family of proto-oncogenes. This protein plays a vital role in the development 

and progression of malignant breast tumours via its amplification and over-expression. Recently, 

HER2/neu has become an essential biomarker and therapeutic target for about 30% of breast 

cancer patients. The underlying mechanism of HER2/neu carcinogenesis is still not fully 
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understood, however, an overexpression or clusters of this protein were associated with rapid 

tumour growth, shortened survival time increased relapse risk following surgery, and poor 

response to chemotherapeutic treatments (Ross et al., 2003). 

 

1.10. Molecular mechanisms of breast cancer development and progression 

The cellular and molecular mechanisms of breast cancer development and progression were 

particularly associated with the proliferative response of breast cells toward several peptide 

growth factors or involvement of the oestrogen receptor (ER) and IGF (Insulin-like growth factor) 

signalling pathways. It has been shown that insulin-like growth factor (IGF) pathway has a 

leading role in the development of breast cancer by mediating a chain of events that 

phenotypically switches normally to neoplastic cells.  Experimental, clinical, and epidemiological 

evidence has revealed IGFs directly impact on the proliferation and survival of the cells (Oh et al. 

2008; Werner and Bruchim 2012). It also interacts with environmental and genetic factors that 

are implicated in cancer initiation. IGF is the essential axis of secreted ligands network such as 

insulin, IGF-1, IGF-2 and IGF-1 receptor (IGF-1R), that regulate metabolism, nutrition, endocrines, 

growth and ageing events. Besides, the IGF-1R that facilitates the biological actions of IGF-1 and 

IGF-2, is also considered as a key player in cancer development due to its antiapoptotic effects 

and transforming activities. Moreover, there is a clear association between increased risk of 

several types of cancer including breast and prostate, and excessive levels of circulating IGF-1 

(Werner and Bruchim 2012). Furthermore, “Breast Cancer genes” (BRCA1 and BRCA2) are well-

known ‘caretakers of the genome' and play a crucial role in DNA damage identification and DNA 

repair mediated processes. They have another vital role in the progression of inherited and 

sporadic breast and ovarian cancer, that is caused by mutations altered by genetic and 

environmental factors including high IGF-1 concentrations (Werner and Bruchim 2012).  

 In vitro, breast cancer is often modelled using established cell lines reflecting the different 

molecular classifications of breast cancer (Holliday and Speirs, 2011). The emergence of high 

throughput technologies such as gene expression profiling and DNA copy number analysis has 

allowed a profound awareness of this complex disease (Prat et al., 2015). During the last 15 

years, several studies have identified and further validated the classification of breast carcinoma 

into various intrinsic subtypes such as Luminal A, Luminal B, Her-2 enriched, Basal-like, Claudin-

low and normal breast-like. These subtypes were proved to have significant divergences in 

amplified and mutated genes, survival rates, risk factors, prognosis and response to therapy 

(Prat et al., 2010; de Macedo Andrade et al., 2014). Table (1.1) below provides examples of 

breast carcinoma cell lines according to the molecular classification of breast cancer. 
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Table 1. 1.Molecular classification of breast carcinoma, associated cell lines and therapies 
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The table shows breast cancer subtypes, their receptors expression status, and gives examples of breast cancer cell lines according to their expression 
of molecular classification. Abbreviations: EGFR= epidermal growth factor receptor, ER=oestrogen receptor, HER2=human epidermal growth factor 
receptor 2, PR=progesterone receptor. It also displays the therapeutic strategies being used in breast cancer treatments. Adapted from (Holliday and 
Speirs, 2011; Eroles et al., 2012; Makhoul, 2018). 
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1.11. Breast cancer treatments 

Traditionally, the main forms of treatment in breast cancer are Surgery, Radiation therapy, 

Endocrine therapy, Chemotherapy, and Biological Treatments. Varied factors are considered for 

breast cancer treatment choice including the type of breast cancer, size of a tumour, stage of 

cancer, grade of cancer, and protein receptors statuses (Maughan et al., 2010). The first type of 

treatment for breast cancer is surgery, which results in the physical removal of the tumour.  

Usually, surgery is followed by chemotherapy or radiotherapy.  In some cases, it is also followed 

by hormone therapy or biological treatments. Radiation and Chemotherapy can induce DNA 

damage, by either inhibiting the repair mechanisms and leading to cell death, or by interrupting 

the cell cycle. Currently, both regimens are more efficient and less toxic than the old-fashioned 

methods. Chemotherapy is most effective when combinations of drugs are used for adjuvant 

and neoadjuvant treatments. the most commonly used drugs in this therapy are Anthracyclines, 

Taxanes, 5-fluorouracil, Cyclophosphamide, and Carboplatin. Endocrine therapy is an effective 

treatment for most ER-positive and PR-positive tumours. However, modern therapeutic 

strategies have been developed to eradicate cancer cells such as Anti-Angiogenic Therapy, and 

Immunotherapy. Anti-angiogenesis drugs failed to target angiogenesis in the 

adjuvant/neoadjuvant setting. That leads to excluding this mechanism from the adjuvant setting 

in the 2000s. In addition, the thriving of immunotherapy in various solid tumours has put 

forward the potential employment of this treatment in breast cancer.  Many strategies have 

been used to use the capability of the immune system and redirect it to eradicate cancer or to 

persuade immune inertness. Those strategies include breast cancer vaccines, checkpoint 

inhibitors, monoclonal antibodies, that enhance the immune-mediated effect of chemotherapy 

(Makhoul, 2018). Immune-mediated mechanisms still need to be further investigated before 

applying it as a new method of treatment (Makhoul, 2018; Makhoul et al., 2018).   

Currently, strategies that have been developed to manage breast cancer are focused on 

pursuing receptor-mediated signalling that includes hormone receptors or HER2 (Gomez-Martin 

et al. 2013). Tyrosine kinase inhibitors (TKIs) such as Lapatinib have been considered as a 

potential agent in HER2+ breast cancer for targeting EGFR and HER2 receptors (Gomez-Martin 

et al. 2013; Vogelstein et al. 2013). The phosphatidylinositol 3-kinase/AKT/mammalian target of 

rapamycin (PI3K/AKT/mTOR) pathway plays a critical role in the intracellular signalling system 

that drives cellular growth and survival. Hyperstimulation of this pathway is involved in the 

tumorigenesis of ER+ breast cancer and resistance to endocrine therapy. However, 

PI3K/AKT/mTOR pathway inhibition can augment the benefit of endocrine treatment in ER+ 

breast cancer. (Gil, 2014).   
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Indeed, Luminal A and luminal B subtypes are amenable to hormone therapy because of their 

ER expression, which is a therapeutic target. In an equivalent way, the HER2 group is a 

prospective candidate for trastuzumab therapy.  On the other hand, the basal phenotype is 

characterised by the lack of ERα, PR and HER2 expression, which make these tumours difficult 

to treat due to the absence of expression of a recognized therapeutic target. It is more 

aggressive in terms of biology and often has a poor prognosis (Holliday and Speirs, 2011). 

Treatment regimens are variable between distinct types of cancer and the various stages of the 

disease. Figure 1.9. below shows the proportion of breast cancer patients under different 

treatment patterns.  

 

 
Figure 1.9. Graph representing the percentage of treatments regimens in breast cancer 
patients for both early and late stages in the UK. The mainstays of primary cancer treatments 
are Surgery, radiotherapy, and chemotherapy. However, Surgery was the most commonly used 
treatment in the UK in 2013 and 2014 as the first line of treatment. Whilst, radiotherapy is also 
varying between the site of a tumour and its stage upon diagnosing (Cancer Research UK, 2018). 
Early diagnosed patients are more likely to have surgery than chemotherapy, while the pattern 
for radiotherapy is varied. This data is according to (Cancer Research UK, 2018). 
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1.12. Metformin hydrochloride 

Metformin hydrochloride is a well-known antidiabetic medicine, part of the biguanides family 

of molecules. Metformin is derived from the plant Galega officinalis and has been used in 

medicine since medieval times. Metformin was originally developed for the treatment of 

hyperglycemia and Type 2 Diabetes Mellitus (T2DM) (Sośnicki et al., 2016). Metformin (1, 1-

dimethyl biguanide hydrochloride) was introduced for the first time in 1958 in the United 

Kingdom and in 1995 in the United States (Daugan et al., 2016). Currently, it is the first 

prescribed medication for type 2 diabetes Patients (T2D) (Song et al., 2012) and has been 

recommended as first-line of therapy for all type 2 diabetes mellitus (T2DM) patients that are 

newly diagnosed (American Diabetes Association, 2014). Metformin lowers blood sugar levels in 

people with T2DM through increasing the sensitivity of muscle cells to insulin to be used 

effectively and to reduce the amount of sugar (glucose) production in the liver 

(https://www.diabetes.org.uk/Type-2-diabetes). Due to Metformin’s favourable benefit-risk 

profile, it has been extensively used with about 120 million prescriptions around the world every 

year (Daugan et al., 2016). The broad spectrum of pleiotropic effects and good tolerability by 

patients is the most characterised features for this drug. In addition, Metformin endothelium 

functions and serum lipid profile has been upgraded. Consequently, this reduced the both-sided 

intricacy (micro- and macrovascular) of T2DM (Sośnicki et al., 2016). It is also approved for 

treatment of polycystic ovary syndrome (PCOS) and obesity due to its insulin resistance 

capability and counteraction of hormonal imbalances. Moreover, Metformin is being used as a 

viral and cancer inhibitor (Provinciali et al., 2015). Recently, further potential indications about 

Metformin, have been added as results of clinical and preclinical studies. Metformin has been 

used as a cardiovascular protective agent, anti-inflammatory, neuroprotective, and anticancer 

agent. Besides, Metformin is not involved in hypoglycaemia induction or weight gain. Current 

studies have referred that the pleiotropic effects of Metformin are due to its mitochondrial 

action (Daugan et al., 2016). The positive charge of Metformin allows this drug to interact with 

the mitochondrial membrane potential and accumulates in mitochondria to inhibit the 

mitochondrial electron transport chain complex I. This results in a decrease in cellular ATP 

concentration, allowing rise of ADP/ATP and AMP/ATP ratios which leads to low levels of energy 

production. The 5’ adenosine monophosphate-activated protein kinase (AMPK) is the major 

energetic sensor in the cells.  Cells can restore the energetic homeostasis by activating this 

protein kinase. This activation leads to an increase in the catabolic reactions and decreases in 

the anabolic reactions in order to balance the cellular energy and evade bioenergetic crisis and 

cell death (Daugan et al., 2016). 

https://www.diabetes.org.uk/Type-2-diabetes
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1.13. Metformin and cancer treatment 

Intensive evidence from in vitro and in vivo studies demonstrated the anticancer effects of 

Metformin. These are based on a dual mode of action: indirect effect via reducing glucose in the 

blood and insulin levels, and direct effect through AMPK activation (Daugan et al., 2016).  In 

2005, and for the first time Evans and colleagues suggested in their study that Metformin may 

reduce the risk of cancer in patients with type 2 diabetes (Evans et al., 2005). Additional  

epidemiological, clinical and laboratory studies further demonstrated the pleiotropic effects of 

Metformin on various types of cancers including breast (Liu et al., 2009; Bodmer et al., 2010; Col 

et al., 2012; Marinello et al., 2016; Pandiri et al., 2016, Tang et al., 2018), lung (Libby et al., 2009 ; 

Lai et al., 2012; Noto et al., 2012), colon (Currie et al., 2009; Tseng, 2012), pancreas (Currie et 

al., 2009; Lee et al., 2011; Hsieh et al., 2012; Soranna et al., 2012) and liver cancer (Lee et al., 

2011; Hsieh et al., 2012; Noto et al., 2012). Furthermore, Metformin suppressed the growth of 

human head and neck squamous cell carcinoma through comprehensive inhibition of protein 

translation (Sikka et al., 2012). Metformin treatment in diabetic patients resulted in a significant 

decrease in cancer risk and decreased cancer-related and overall mortality (Libby et al., 2009). 

These observations of Metformin effects were mostly noticed in patients treated with 

Metformin for a prolonged period or with considerable dosage (Libby et al., 2009; Bodmer et al., 

2010; Col et al., 2012; Tseng, 2012; Lin et al., 2014).  In addition, this drug decreased the risk of 

cancer and cancer mortality in type 2 diabetes patients (Rizos and Elisaf, 2013). Patients that 

have been treated with Metformin for more than four years, the cancer incidence has been 

decreased by about 50% (Evans et al., 2005). Another meta-analysis in T2DM patients who were 

receiving Metformin has confirmed that cancer incidence was significantly reduced by 30–50% 

in pancreatic cancer, hepatocellular carcinoma and colon cancer (Decensi et al., 2010). 

Moreover, in a prospectively followed cohort study, it has been found that Metformin use was 

associated with a lower cancer mortality in comparison with non-user of Metformin in a dose-

dependent manner. (Landman, et al., 2010).  Moreover, a peer-reviewed article by Ikhlas and 

Ahmad has been published in 2017 to survey the underlying mechanisms of Metformin 

anticancer activity alongside with preclinical and clinical studies outcomes, and that highlighted 

the involvement of AMPK dependent and AMPK independent pathways (Ikhlas and Ahmad, 

2017). Table 1.2. below is showing data that support the potential antitumor effect of Metformin 

in diverse types of cancer. 
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Table 1.2. Studies of anticancer potential of Metformin 

Type of 

cancer 

Metformin in 

combination with 

Model Results that led to 

anticancer effects 

References 

Pancreatic 

cancer 

Rapamycin Mice Reduction in the 

growth of pancreatic 

cancer 

Cifarelli et 

al., 2015 

 Gemcitabine MIA, 

SU86.86 

and 

AsPC1 

cell lines 

Downregulation of 

ABCB1 gene 

Lyn-Cook et 

al., 2015 

 TRAIL MIA 

PaCa-2, 

PANC-1 

cell lines 

Expression of DR5 and 

Bim 

Tanaka et 

al., 2015 

 Boswellic acid NP MiaPaCa-

2 cell line 

DNA fragmentation Snima et al., 

2015 

Breast 

cancer 

S31-301 MDA-

MB-468, 

HCC70, 

MDA231, 

BT20 cell 

lines 

Inhibition of Stat3 at 

Tyr-705 and Ser-727 

Deng et al., 

2012 

 Doxorubicin and 

paclitaxel 

MDAMB-

231, HCC-

70, HCC-

1937, 

MCF-7 

cell lines 

ERK 1/2 and AKT 

phosphorylation 

inhibition 

Guimaraes et 

al., 2015 
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 5-Fluorouracil, 

epirubicin, and 

cyclophosphamide 

MDA-

MB-468 

& 231, 

HCC1937, 

MCF7, 

SKBR3, 

T47D cell 

lines and 

CSC 

Inhibition of ATP 

production and DNA 

repair 

Soo et al., 

2015 

 Aspirin, atenolol Mice Mitochondrial 

complex 1 inhibition 

Talarico et 

al., 2015 

 Fulvestrant MCF7 cell 

line 

Cyclin G2 leads to the 

cell cycle arrest 

Horn et al., 

2015 

 Rapamycin MCF7 cell 

line 

Reduction in 

aromatase activity 

and reduced 

androgens to E2 

conversion 

Rice et al., 

2015,  

Tang et al., 

2018 

 Everolimus SCID mice Obstruction of S6 and 

4EBP1phosphorylation 

Wang et al., 

2015 

Colorectal 

cancer 

Vitamin D3 Rat and 

mouse 

The decrease in S6P 

expression as well as 

c-Myc and Cyclin D1 

protein expression 

Wang et al 

2015 

 5-Fluorouracil and 

oxaliplatin 

HT-29 

and HCT-

116 and 

SCID mice 

xenograft 

Wnt/β-catenin 

signalling pathway 

downregulation along 

with significant 

increase in miRNA 145 

and reduction in 

miRNA 21 

Nangia-

Makker et 

al., 2014 



30 | P a g e  
 

 DMFO BALB/c 

nu mice 

and HCT 

116, HT 

29, 

MEL1861, 

SK-23 cell 

lines 

Upregulation of 

Beclin-1 and 

downregulation of 

p70S6 and 4EBP1 

Zhang et al., 

2014 

 DCA CT26-

CL25, 

CT26-WT 

cancer 

cell lines, 

and 

BALB/c 

mice 

Reduction in tumour 

growth and an 

increase in apoptotic 

cells 

Sticca and 

Murphy,2014 

Prostate 

cancer 

P1K1 inhibitor 

(BI2536) 

LNCaP, 

C4-2, 

DU145, 

PC3, 

293A and 

RWPE-1 

cell lines 

p53-Dependent 

apoptosis and 

inhibition of 

glutamine anaplerosis 

Shao et al., 

2015 

 CDK inhibitor 

(AZD5438) 

Du145, 

PC3, 

PPC1 cell 

lines 

The remarkable 

increase in β-

galactosidase, p27, 

and p16 expression 

Blute et al., 

2015 

 Pyruvate kinase 

M2 activator 

(DASA-58) 

PC3, 

DU145 

cell lines 

Metabolic inactivation 

of PKM2 via both 

oxidation and Src-

mediated 

phosphorylation 

Giannoni et 

al., 2015 
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leading to PKM2 

nuclear translocation 

 Rapamycin Hi-Myc 

mice 

Reduced prostate 

tissue inflammation 

and inhibition of 

mTORC1 signalling 

Saha et al., 

2015 

 Benzylserine LNCaP 

and PC-3 

cell lines 

Reduced basal oxygen 

consumption and fatty 

acid synthesis along 

with the reduced E2F 

expression 

Wang et al., 

2015 

 

This table shows the anticancer potential of Metformin and when in combination with other 
drugs that were reported by various studies. This Table was adapted from (Ikhlas and Ahmad, 
2017). The abbreviations are: ABCB1 = ATP-binding cassette B1, TRAIL = tumour necrosis factor 
related apoptosis-inducing ligand, NP = nanoparticle, PKM2 = pyruvate kinase isozymes M1/M2, 
DR5 = death-receptor 5. 
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Furthermore, according to https://clinicaltrials.gov data from 2018 about 318 ongoing clinical 

trials were registered, which aimed at evaluating Metformin role in cancer treatment and cancer 

prevention procedures. Figure 1.10. provides a list of the number of principal ongoing clinical 

trials according to cancer types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. The number of main clinical trials assessing Metformin anticancer and prevention 
capacities against several types of cancer. This Table is displaying the number of ongoing clinical 
trials in several types of cancer. Breast cancer is top of this list (42 studies in breast cancer alone 
were registered). The source of this data is https://clinicaltrials.gov, 2018.  

 

 

 

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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1.14. Metformin and breast cancer  

The cytotoxic effect of Metformin on breast cancer has been shown using MCF-7 human breast 

cancer cells and FSaII mouse fibrosarcoma cells at a low concentration of the drug. Importantly, 

Metformin treatment caused a significant clonogenic death in FSaII mouse fibrosarcoma cells 

and MCF-7 human breast cancer cells. Besides, Metformin was selectively cytotoxic to cancer 

stem cells relative to non-cancer stem cells in a dose and time-dependent manner (Song et al., 

2012). Another study has determined the efficiency of Metformin on the inhibition of 

proliferation and induction of apoptosis in different breast cancer cell lines (Liu et al., 2012). 

Trilla-Fuertes and colleagues 2018 study revealed a heterogeneous effect of Metformin 

treatment on cell proliferation that is consistent with the cell cycle disruption in the G2 / M 

phase in breast cancer cell lines. In addition, they suggested an increase in the response enzymes 

of reactive oxygen species (ROS) due to Metformin therapy. In MCF7 cells, nitric oxide synthase 

was predicted to increase, and MDA-MB-468 cells showed susceptibility to Metformin 

treatment (Trilla-Fuertes et al., 2018). A clinical study integrating the measurement of markers 

of systemic metabolism, dynamic FDG-PET-CT, transcriptomics, and metabolomics at paired 

time points to profile the bioactivity of Metformin in primary breast cancer, showed that 

Metformin treatment reduced the levels of mitochondrial metabolites, activated multiple 

mitochondrial metabolic pathways, and increased the 18-FDG flux in tumours. The study 

concluded that mitochondrial response to Metformin in primary breast cancer may define anti-

tumour effect (Lord, et al., 2018). 

 Moreover, Metformin has increased radiosensitivity of human and mouse cancer cells (Song et 

al., 2012). This is important as radiotherapy is widely   used as a co-therapy with drug 

interventions in breast cancer treatment.  Furthermore, Metformin can intensify the inhibition 

of cell proliferation when co-administrated with chemotherapy (Liu et al., 2012). Metformin 

treatment for 24h before and after radiation sensitises MCF-7 cancer cell lines to irradiation 

(Song et al., 2012). Another study has shown that the combination of Metformin and 

chemotherapeutic agents and/or the mTOR inhibitor RAD001 might be a favourable approach 

for breast cancer treatment (Liu et al., 2012). Other studies demonstrated beneficial effects of 

Metformin as a coordinator, with other drugs or therapeutic methods, for cancer treatments. 

Hirsch et al., 2013 suggested that Metformin-based combinatorial therapy could be more 

efficient in xenograft cell lines (Hirsch et al., 2013). Metformin also suppresses the cellular 

transformation and selectively kills cancer stem cells in the breast cancer cell line MCF10A-ER-

Src (Hirsch et al., 2013). A finding of Dallaglio et al., 2014 elucidated the contradictory effects of 

Metformin on endothelial and tumour cells, as well as on angiogenesis in breast cancer. They 

have shown that Metformin inhibits the ability of the endothelial cell to organize into capillary-
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like networks through the energy sensor AMPK. Metformin anti-angiogenic activity was exerted 

through the inhibition of ERK1/2 activation, even in the presence of VEGF via AMPK activation 

(Dallaglio et al., 2014). In addition, Talarico and Colleagues in 2015, found in their study that 

Aspirin and Atenolol enhanced Metformin targeting action against both neoplastic and the 

microenvironment of breast cancer cells (Talarico et al., 2015). Moreover, Marinello and her 

team in 2016, highlighted the probable clinical utility of Metformin during treatment of luminal 

and triple-negative breast cancer as an adjuvant (Marinello et al., 2016).  A meta-analysis 

published in 2015 by Yang and his colleagues revealed that Metformin use does not reduce the 

incidence of breast cancer, however, Metformin therapy has significantly reduced the mortality 

rates in patients with luminal-type breast cancer (Yang et al., 2015). Furthermore, 

ClinicalTrials.gov adapted data has found that 42 clinical trials involving breast cancer employ 

Metformin treatment alone or in combination with other drugs. However, only 13 studies have 

been completed, 15 are recruiting patients, 3 ended, 5 actives, 1 withdrawn and 5 were 

unknown studies. Table 1.3 below is showing the complete 13 studies in details 

(https://clinicaltrials.gov, 2018). 

 

https://clinicaltrials.gov/
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Table 1.3. Inventory of the completed clinical trials encompassed breast cancer and Metformin 

Ranked Title Conditions Metformin in combination 

with 

1 Clinical and Biologic Effects of Metformin in Early Stage Breast Cancer •Breast Cancer  

2 Effect of Metformin on Breast Cancer Metabolism •Breast Cancer  

3 Metformin in Breast Cancer, Visualized with Positron Emission 

Tomography 

•Breast Cancer Radiation 

4 A Trial of Standard Chemotherapy with Metformin (vs Placebo) in 

Women with Metastatic Breast Cancer 

•Metastatic Breast Cancer Placebo 

5 Study of Erlotinib and Metformin in Triple Negative Breast Cancer •Breast Cancer Erlotinib 

6 Use of Metformin to Reduce Cardiac Toxicity in Breast Cancer •Breast Cancer Doxorubicin 

7 Metformin Hydrochloride vs. Placebo in Overweight or Obese Patients at 

Elevated Risk for Breast Cancer 

•Breast Cancer placebo 
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8 Neoadjuvant Letrozole Plus Metformin vs Letrozole Plus Placebo for ER-

positive Postmenopausal Breast Cancer 

•Hormone Receptor 

Positive Malignant 

Neoplasm of Breast 

Placebo 

9 Exercise and Metformin in Colorectal and Breast Cancer Survivors •Colorectal Cancer 

•Breast Cancer  

Exercise training 

10 Efficacy and Safety of Adjuvant Metformin for Operable Breast Cancer 

Patients 

•Breast Cancer Placebo 

11 Myocet + Cyclophosphamide + Metformin Vs Myocet + 

Cyclophosphamide in 1st Line Treatment of HER2 Neg. Metastatic Breast 

Cancer Patients 

•Human Epidermal 

Growth Factor 2 Negative 

Carcinoma of Breast 

Myocet + 

Cyclophosphamide 

12 The Impact of Obesity and Obesity Treatments on Breast cancer •Breast Cancer Exemestane 

13 Metformin and Temsirolimus in Treating Patients with Metastatic or 

UnresecTable Solid Tumor or Lymphoma 

•Breast Cancer 

  

Temsirolimus 

 

In this table 13 clinical trials have been completed, however, their data is not available except study number 9 which has obtained data. The condition 
of cancer and drugs combination were also presented. The data was collected from https://clinicaltrials.gov in 12/09/2018.

https://clinicaltrials.gov/
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1.15. Antitumor Effect of Metformin      

Considering several epidemiological studies that showed Metformin as a proposed 

antineoplastic drug, a question was raised concerning Metformin mode of action in cancer 

treatment.  As an answer to this query, different explanations have been advanced to clarify the 

considerable assumption of Metformin anticancer activity. This activity is based on reduced 

circulating insulin and insulin growth factor I (IGF-1) levels and activated cellular pathways that 

counteract various mitogenic stimuli (Sośnicki et al., 2016). Indeed, the antitumor effects of 

Metformin are correlated with direct and indirect mode of action of this drug, which is also 

known as insulin-dependent and–independent mechanisms that are directly acting on the 

cancer cell growth and proliferation. Both the systemic (indirect) and intracellular (direct) mode 

of action of Metformin depend on its activation of the 5’ adenosine monophosphate-activated 

protein kinase (5' AMP-activated protein kinase or AMPK). Metformin indirect mode of action 

can be abridged by an insulin level reduction. The two potential growth factors are insulin and 

IGF-1, which receptors are expressed on many cancer cells including breast cancer, and that 

could stimulate cell survival and mitogenesis. As a result, using Metformin for treatment could 

lower insulin levels and IGF-1 in the serum, which leads to the reduction of cell growth (Viollet 

et al., 2012; Morales and Morris, 2015).  Different mechanisms could explain Metformin direct 

mode of action at the cellular level. Firstly, the stimulation of LKB/AMPK signalling might block 

aerobic glycolysis in cancerous cells with efficient LKB/AMPK pathways, that enhances cell 

death. It also could induce malignant cell death even if those cells did not contain functional 

LKB/AMPK pathways, by reducing ATP levels and suppressing the response to energy stress. 

Metformin directly works on mitochondria to alter cellular bioenergy and restrict breathing and 

the cell sensitivity to Metformin depends on its ability to overcome active stress (Andrzejewski 

et al., 2014). While, the second potential effect of Metformin is on chronic inflammation, which 

may be a substantial factor in carcinogenesis and progression. AMPK stimulation seems to 

prohibit the synthesis of pro-inflammatory cytokines in different types of cells such as 

macrophages and adipocytes. The activation of 5’ adenosine monophosphate-activated protein 

kinase (AMPK), which is linked with the phosphatidylinositol 3-kinase (PI3K)/phosphatase and 

tensin homolog (PTEN)/protein kinase B (AKT) pathway and mitogen-activated protein kinase 

(MAPK)/extracellular signal-regulated kinases (ERK)cascades, all known for being often 

dysregulated in breast cancer. Therefore, simultaneously targeting AMPK through Metformin 

and the PI3K/AKT/mTOR pathway by a mTOR inhibitor could become a therapeutic approach” 

(Liu et al., 2012).  Metformin efficacy could also mediate the downstream regulation of fatty 

acid synthesis AMPK-dependent. Fatty acid synthase (FAS) is a crucial enzyme in fatty acid 

biosynthesis, which is related to a higher risk of malignant conversion (Pernicova and Korbonits, 
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2014). Though obesity is usually characterised by the development of a chronic proinflammatory 

condition, that results in increased immune cytokines filtration. These cytokines like leptin, 

adiponectin, interleukin 1 beta (IL-1β), IL-6, plasminogen activator inhibitor-1(PAI-1) and tumour 

necrosis factor alpha (TNFα), are involved in proliferation and progression of cancers. Metformin 

might affect chronic inflammation via AMPK activation, which has an inhibitory effect on the 

pro-inflammatory cytokine’s synthesis in diverse types of cells such as macrophages and 

adipocytes (Morales and Morris, 2015). Accordingly, it has been proposed that Metformin could 

potentially target the pro inflammatory cytokines within the tumour microenvironment and 

inhibits the growth in the sensitive cancers.  Finally, Metformin might have a significant role in 

limiting the tumour growth and metastasis through the inhibition of endothelial cell migration 

and neoplastic angiogenesis by decreasing the levels of VEGF (vascular endothelial growth 

factor) and PAI-1 levels of VEGF and PAI-1 (Morales and Morris, 2015). The double effect of 

Metformin is based on the reduction of insulin levels and its cell molecular activity on AMPK and 

mTOR (Ben Sahra et al., 2010). This positive action may be the key factor in cancer treatment. 

The schematic representation of Metformin both direct and indirect mechanism of inhibition in 

cancer cells is shown in Figure 1.10.  
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Figure 1.11. Metformin Mode of action in tumour cells. Adapted from (Daugan et al., 2016). The schematic diagram shows the unique mode of action 
of Metformin, which might give a potential double-strike against an anabolism-addicted tumour and its critical suppliers (insulin/glucose). The indirect 
action of Metformin is summarised by lowering levels of blood insulin and glucose persistently. While the indirect action of Metformin is to promptly 
suppresses the pivotal AMPK/mTOR/S6K1 axis and several protein kinases. Abbreviations: IR =insulin receptor, IGF-1R = insulin-like growth factor 
receptor, PI3K=phosphoinositide 3-kinase, MAPK=mitogen-activated protein-kinase, mTOR= mammalian target of rapamycin, CSCs=cancer stem cells, 
AMPK=activated protein kinase.  
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1.16. Cancer-related targets of Metformin 

1.16.1. Insulin-like growth factor-1 (IGF-1) 

Insulin-like growth factor (IGF-1) is a single polypeptides chain that comprises of 70 amino acids, 

with a reciprocal 70% homology in humans and shares an approximate 50% homology with the 

insulin, which is in line with associated insulin-like features of the IGFs. The systemic growth 

factors (IGF-1 and IGF-2) can be synthesised by most of the cells throughout the body. However, 

their levels are mainly determined by production in the liver. In addition, the main inducer of 

IGF synthesis is the growth hormone (GH), which regulates the concentration of circulating IGF-

1(Heemskerk et al., 1999). Insulin-like growth factor (IGF) has a fundamental role in the 

regulation of normal human tissues and growth via prompts the proliferation and differentiation 

of cells and prohibits cell apoptosis. Whilst, it has the capability to influence several underlying 

phenotypes of cancer. The regulation of cell processes can be achieved by the interaction of IGF-

1 and its specific receptors on the cell surface, the IGF-1 receptor (IGF-1R). An increased level of 

both IGF-1R and/or circulating IGF ligands has been seen in several cancers such as Ewing 

sarcoma, breast, prostate, pancreatic, melanoma and many other types of cancer. This 

overexpression can be caused by loss of tumour suppressors such as p53, breast cancer gene-1 

(BRCA1), von Hippel-Lindau protein and Wilms's tumour suppressor WT1. The dysregulation of 

the IGF axis could contribute to many hallmarks of cancer. (Simpson et al., 2017). 

1.16.2. IGF-1 receptor (IGF-1R) 

The IGF-1R is a heterotetrameric receptor, which has two extracellular binding domains ligands 

including alpha subunit, and two other transmembrane beta subunits. The beta subunits are 

holding the kinase domain, the alpha and beta domains are linked through disulfide bonds. Both 

IGF-1R and the insulin receptor (INSR) are members of the receptor tyrosine kinase (RTK) family 

class 2(Simpson et al., 2017).  The IGF1R complex is involved in mitogenic abilities, potent 

antiapoptotic and oncogenic transformation. In addition, it has an essential role in angiogenesis, 

invasion, and metastasis (Werner and Bruchim, 2012). 

1.16.3. 5' Adenosine monophosphate protein kinase (AMPK) 

5' AMPK is a highly conserved serine/threonine protein kinase that is composed of a catalytic 

subunit (α) and two regulatory subunits (β and γ), which is expressed in several tissue types such 

as the liver and skeletal muscles. This kinase is a leading sensor in sustaining the homeostasis of  
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cells energy. Activation of AMPK can boost ATP production and adjust metabolic energy, due to 

AMPKs essential role in several metabolic processes such as glucose uptake, oxidation of fatty 

acid in the muscles, synthesis of fatty acids, gluconeogenesis of liver and the regulation of food 

intake at the hypothalamus level. The dysregulation of this kinase has been related to several 

pathological conditions such as diabetes, neurodegeneration, cardiac hypertrophy and cancers 

(Vallianou et al., 2013). One of the acquired hallmarks of cancer is reprogramming of energy 

metabolism. Thus, the activation of AMPK might have a metabolic suppressor activity on the 

tumour by regulating the levels of energy in the cells and implementing metabolic checkpoints 

to inhibit the growth of cells (Li et al., 2015). Additionally, AMPK could modulate inflammation 

and directly influence tumorigenesis. The consequent events of AMPK activation could be 

processed through targeting several events and pathways such as mammalian target of 

rapamycin (mTOR), cell cycle arrest, inflammation, glucose metabolism, angiogenesis and 

cancer stem cells (CSCs).  AMPK can be activated in response to different kinases including liver 

kinase B1 (LKB1), calcium/calmodulin-dependent protein kinase (CaMKK) and transforming 

growth factor β (TGF-β)-activated kinase (TAK1). In addition, it acts on extracellular changes 

including depletion of ATP (shortage of energy), low glucose levels, and alteration in 

Nicotinamide Adenine Dinucleotide Phosphate Hydrogen (NADPH) levels. Besides, many drugs 

can also activate AMPK such as Metformin, some non-steroidal anti-inflammatory drugs 

(NSAIDs), traditional Chinese herbs and certain natural products. As a consequent to AMPK 

activation, several effectors proteins that are involved in various regulatory processes will be 

affected and will contribute to the pathogenesis of cancer. AMPK is a well-known target in the 

treatment of type-2 diabetes and metabolic syndrome. Moreover, AMPK is emerging as a 

potential metabolic tumour suppressor and as a possible target for cancer treatment and 

prevention. The cancer-related targets of AMPK include a Mammalian target of Rapamycin 

(mTOR), Cyclooxygenase-2 (COX-2) proinflammatory enzyme, the p53 tumour suppressor, 

Acetyl-CoA carboxylase (ACC) and the Akt Signalling pathway (Li et al., 2015; Daugan et al., 2016; 

Ikhlas and Ahmad, 2017).  

1.16.4. Mammalian target of Rapamycin (mTOR) 

mTOR is a serine/threonine protein kinase, which is formed of five significant components 

including mammalian target of rapamycin (mTOR), regulatory associated protein of mTOR 

(RAPTOR), mammalian lethal with SEC13 protein 8 (mLST8) or GβL, proline-rich AKT substrate 

40 kDa (PRAS40) and domain-containing mTOR-interacting protein (Debtor). Functionally, mTOR 

composes two distinct complexes, which are mTORC1 (mTOR complex 1) and mTORC2 (mTOR 

complex 2).  mTOR signalling is an important pathway that regulates different cellular processes 
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such as growth, proliferation, motility, survival, protein synthesis and transcription. Indeed, the 

inhibition of mTORC1 leads to the suppression in cell growth and proliferation, which directly or 

indirectly regulates autophagy and apoptosis via ribosomal biogenesis, mRNA translation, lipid 

synthesis, and other metabolic events. AMPK is the dependent and independent mTORC1 

inhibitor (Laplante and Sabatini, 2009; Li et al., 2015; Ikhlas and Ahmad, 2017). 

1.16.5. Phosphoinositide 3-kinase (PI3K) 

Phosphoinositide 3-kinase (P13K) is one of the significant intracellular transduction cascades 

that is implicated in cell growth and cell survival. Besides, the PI3K signalling pathway regulates 

several steps in glucose metabolism, and cytoskeletal functions like cell motility and adhesion. 

The direct coordination between glycolysis and cytoskeletal dynamics by PI3K has been shown 

to be AKT-independent both in vitro and in vivo (Hu et al., 2016).  Accordingly, PI3K influences 

Glucose avidity and cytoskeletal plasticity hallmarks of cancer. This pathway is involved in fatal 

diseases like diabetes and cancer. Insulin and growth factors (GFs) are the main stimulators of 

PI3K. Activation of PI3K resulting in phosphatidylinositol-3,4,5-trisphosphate (PIP3) production, 

and by which are initiated much signalling, that controls the metabolism of glucose, growth of 

cells and cell movement (Daugan et al., 2016; Hu et al., 2016).  Moreover, the PI3K/AKT signalling 

pathway plays an essential role in several types of tumour progression as it is involved in cell 

growth, proliferation, and apoptosis.  PI3K/AKT controls the downstream targets of many 

pathways including the indirect inhibition of mTOR causing cell cycle arrest and apoptosis. The 

AKT activates the Mouse double minute 2 homolog (MDM2) indirectly which leads to a decrease 

in the p53 level and activity that resulted in promoting of p53 translation and protein stability. 

(Zhang et al., 2018). 

1.17. Systems biology  

The complicated, adaptive, dynamic, and non-linear nature of human biology presents a 

challenge in drug discovery and development of novel, safe, and effective medications. The 

definitive aim of systems biology is to assimilate the physiology and the disease through multiple 

hierarchical levels of an organism, starting from chemical and molecular interactions linking to 

pathways and pathway networks. This understanding begins at the level of the cell to cell and 

tissue, going up to organs, organ systems, and eventually to the elaborate of the entire 

organisation. Besides, Systems biology research includes the integration of high-throughput 

datasets of system elements (omics data), experimental methods of analysis, and application of 

network approaches and computationally derived models (Hood and Perlmutter, 2004; Butcher 

et al., 2004; Berg, 2014). Therefore, Systems Biology can be defined as a more comprehensive 
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alternative approach to life science, in comparison with reductionism, which has dominated and 

influenced the biomedicine and clinical medicine through carrying out the diagnosis, treatment 

and prevention of diseases. Despite the successfulness of reductionism, it is also having many 

limitations (Ahn et al., 2006). Also, earnest efforts have been directed through systems biology 

approaches towards the identification of drug targets or the development of novel therapeutics 

and new indications for existing drugs in pharmaceutical research.  Current studies are inclined 

towards the small molecule’s identification and characterisation, which are selectively inhibiting 

(or activating) specific pathway mechanisms or molecular targets. Thus, special attention has 

been focused toward the studies that are involving drug mechanisms of action and supporting 

drug development goals, for example, patient stratification and clinical care choice. Moreover, 

global information at the levels of cell and tissue in specific time points, checking dynamic 

changes can be provided by using omics tools in samples from cell-based assays, preclinical 

animal models or human studies. Furthermore, omics data is a set of data that are obtained 

from mRNA transcriptomics, proteomics, and metabolomics, which were integrated with 

genomics information and other data types. This integration has employed to structure a model 

of cell signalling pathway and as disease networks either to find novel targets and/or to help 

better understand and expect a drug action in vivo. Besides, there are resources of literature 

knowledge and accumulated information in addition to experimentally derived data, which can 

be combined and converted to a formal form. Indeed, this can be achieved by processing a 

natural language processing (NLP) – based method or defined by an ontology expert into 

sequences of semantic statements. Systems biology studies in biomedical research termed as 

‘network medicine' or network pharmacology, in which researchers challenged the integration 

of data sets and started to change the way of medicine preparation (Barabási, et al., 2011; 

Silverman and Loscalzo, 2012; Berg, 2014). 

1.18. Systems biology and biological networks   

Systems biology approaches needed an integral grouping of both experimental and 

computational tools, to understand the biological processes, which are regulating the living 

system (Heath and Kavraki, 2009). A wide range of biological databases and visualisation tools, 

which have access for the public were developed for different purposes and were categorised 

into various levels and according to different methods (Zou et al., 2015).  There are many 

databases that index the information based on biological networks and pathways. Including 

good examples like the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway (Kanehisa 

et al., 2008), STRING (database of known and predicted protein-protein interactions) (Szklarczyk 

et al., 2014), Reactome (an open source and peer reviewed pathway database, and others (Croft 

et al., 2013; Zou et al., 2015). However, the limited information about the nature and direction 
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of the interactions and reductionist-based experiment construction are the main disadvantage 

of these databases. 

1.19. Machine learning and Artificial Neural Networks 

Machine learning (ML) is described as a field of computer science in which utilising statistical 

techniques enables the computer systems to "learn" with data by improving the performance 

on a specific task gradually without programming. ML has been employed in a variety of 

computing tasks were creating and programming clear algorithms with decent functioning is 

problematic or infeasible. In other words, ML is a branch of Artificial Intelligence that connected 

the general concept of inference, from the question of learning in samples data (Kourou et al., 

2015). An example of this application includes email filtering, detection of network intruders 

and computer vision. Likewise, in the field of data analysis, ML has been used as a method of 

Interrogating complex patterns in data and producing algorithms that advanced themselves to 

prognostication. The predictive analytics example enables the researchers, data scientists, 

engineers, and analysts to make an effective and right decision, as well as to detect the hidden 

insights via learning from historical relationships and the tendency of the data (Kourou et al., 

2015). Further, these algorithms can be distributed into unsupervised learning, supervised 

learning, and reinforcement learning procedures, which are all have a prospective 

implementation in biology. The employment of a variety of ML techniques, including Artificial 

Neural Networks (ANNs), Bayesian Networks (BNs), Support Vector Machines (SVMs) as well as 

Decision Trees (DTs) have been widely used to develop a predictive model in cancer research, 

which resulting in an efficient and precise decision action (Kourou et al., 2015). 

Indeed, Artificial Neural Networks (ANNs) are a form of machine learning, which have been 

designed simulating the human brain in the way that processing information and learning 

capabilities (Bishop, 2006).  Besides, the main characteristics of ANNs are highly complicated, 

nonlinear, and with equivalent information processing abilities. However, the unique features 

of ANNs including the highly fault and failure tolerant, scalable, and consistent generalisation 

ability that enabled them to predict or classify a new and unlearned data (Livingstone, 2008, 

Lancashire et al., 2009). As already mentioned, ANNs were inspired by the information-

processing system in the human brain to handle several classification and pattern identification 

problems (Haykin, 2009; Lancashire et al., 2009). The basic structural units of the human brain 

are the neurons which are interconnected systematically to effectively transfer and processing 

the information. Neurons have the characters of plasticity - adaptating to the surrounding 

environment. Similarly, artificial neurons are the primary processing unit of a computational 

neural network and can alter their internal weights, just like synapses, to optimise the network 
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outputs for a given training dataset.  Moreover, ANNs have been trained to combine between 

the input variables to “generate output data. Despite ANNs having been used in several 

classifications tasks as a “gold standard system”, they still have some drawbacks. ANNs proved 

to be a time-consuming method with a very poor performance, which results from their generic 

layered structure. This specific technique has been described as “black-box” technology. It is 

almost impossible to detect how did ANN performed the classification process or why it did not 

work (Ayer et al., 2010; Kourou et al., 2015). 

 

1.20. Stepwise ANN approach 

It has been shown that ANNs have extraordinary abilities for data mining and model recognition 

(Bishop, 1995). While, the complexity of high throughput data generated for biomedical 

research made it challenging to process. One of the master restrictions for ANNs enforcement 

in such technologies, particularly microarray data, is the Curse of Dimensionality. Bellman firstly 

states this term as, “the exponential growth of the input space as a function of dimensionality” 

(Bellman, 1961), which means that the value of a specific trait or gene can be invisible according 

to the vast number of other gene expression vectors. This phenomenon occurs when the 

number of parameters (P) is extremely higher than the number of cases (n), which allows the 

added noise from irrelevant inputs in the data space to reduce model performance on blind data 

(Bishop,1995). Several pre-processing and data-reductionist methods such as Principle 

Component Analysis (PCA) have been used to tackle the dimensionality aspect. Yet, 

simplification and feature withdrawal aspects are still challenging (Clarke et al., 2008). A 

Stepwise ANN approach developed in-house and already published (Lancashire et al., 2008), 

allows the identification of patterns within the datasets in which finding the set of individual 

variables that gives the best predictive performance to classify the dataset for a task. The 

learning in this model was carried out through a repeated manner along with the following 

addition of variables. Initially, the variation of each gene (n) from a microarray experiment was 

used as a single input node for the model, to produce n number of models, each n being a gene 

of the dataset. Afterwards, all the models can be compared and sorted correspondingly to their 

predictive performances for the hidden cases from the tested samples. Then, the learned 

weights and model specification can be applied for the further (n-1) example of input, to help 

the stepwise-additive features and contribute to the most predictive performance during each 

repetition. This process is repeated until no more advances in predictive performance can be 

seen in the model, or until the model reach the extent of best performance (Lancashire et al., 

2008). To produce a better-generalised model with an improved predictive ability for the hidden 
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case from the validation subset, a Monte Carlo Cross Validation (MCCV) strategy can be applied 

to each model. In this design, the samples are randomly partitioning into a ratio of 60:20:20 for 

50 iterations or bootstraps, which is, training (for model learning), test (assessing model 

performance during training by early stopping) and validation subsets (to independently test 

model on hidden data) respectively. This method has been proved as the most consistent 

models when no more significant improvement was observed with more loops (Lemetre, 2010). 

In addition, all the variables in the dataset have been scaled between 0 to 1 prior to being used 

an input for the algorithm. The parameters have been set to 3000 as the largest number of 

epochs, with a 1000 epochs window time, learning rate of 0.1, a mean squared error (MSE) 

threshold of 0.01, and momentum of 0.5. This arrangement was selected according to earlier 

studies, as given the best learning time and generalised models when applied successfully to 

gene expression datasets (Lancashire et al., 2008, Powe et al., 2014). Furthermore, the first 

weights are set randomly between -1 and 1, in addition to a constrained variance of 0.1. Only 1 

step of the algorithm has been running, to produce a single gene model over 10 independent 

runs. To get a consistent result, a rank order of all the generated genes is constructed on the 

least average RMS error for the experimental subset across 10 independent runs. 

1.21. ANN interaction algorithm 

The exponential increase in the application of gene expression profiling technologies allowed 

the identification of biomarkers, and signatures associated with specific disease, or disease state 

through analysing high throughput data using many computational techniques. However, 

relevance and reliability of those selected biomarkers to biological processes are still 

controversial, especially for those biomarkers, which been found by such approaches and 

currently are employed routinely in clinical use. Additionally, it has been understood that the 

cause of any process can rely on a complex network of interacting genes, rather than one 

dependent single molecule. This has led to the application of gene expression-based analysis for 

a selected process as a systems perspective of a disease (Barabasi et al., 2011). The gene set 

enrichment analysis (GSEA) (Subramanian et al., 2005) and web-based tools such as DAVID 

(Huang et al., 2009) are examples of a gene set or a pathway analysis. More developed protein 

and gene interaction networks and regulatory pathways were being created including, Bayesian 

approaches (Hartemink et al., 2002), likelihood approaches (Liu et al., 2005), dynamic ordinary 

differential equations (Christley et al., 2009) and more recent recurrent neural network models 

(Tong et al., 2014). All the above-mentioned methodologies have the main limitation: they can 

identify limited information regarding the interactions only, rather than extract all the potential 

information contained with the data. A demand for more iterative quantification and prediction 

of the influence of multiple genes have been put forward. As an alternative method, the 
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Interaction Algorithm Model has been developed to convince the quantification of the entire 

genes within the dataset. Unlike the ANN, stepwise analysis can find the influence of the most 

important genes within a system or phenotype, rather than decide the best predicTable 

variables in a categorical outcome. 

 

1.22. Filtering of interactions and visualisation of model 

Finally, the interactions matrix is obtained as the output of the algorithm, which is the pairwise 

organisation combinations between all the variables in a specific subset. To select the relevant 

associations only between the genes out of the enormous number of interactions (n (n-1)) that 

can be generated, the interactions with the highest absolute value (positive or negative to 

support the nature of interaction) only are considered after filtering out all the non- significant 

associations (Lemetre et al., 2009). Although, selected biological pathways or genes of interest 

can be implemented by applying advanced defined filtering strategies, which are be based on 

the standard error across the 10 loops based on the consistency of interactions. Cytoscape 

(Version 3.2.1), which is an open source platform for visualisation and complex network analysis 

has been used to visualise the interactome of the pairwise interactions between the 

components (Smoot et al., 2011). In the interactome map, each node stands for a gene probe 

(source or target), while, the interaction between a pair of genes is represented by an arrowhead 

as a directed edge or link, which pointed to the target. Moreover, the colour of each edge is 

coded as red (positive) and blue (negative), as well as the width of the edge, is referring to the 

weight score of the interaction. Furthermore, Barabási and Oltvai have outlined the theoretical 

description of the interactive mapping concept, in which each gene is symbolised as a node, and 

the correlation between the markers as an edge (Barabasi and Oltvai, 2004). As well as the highly 

influenced genes or target hubs are those who have multiple (>5) in-degree interaction edges 

with the other nodes. 

1.23. The aim of the project   

This project aims to confirm the mechanism of Metformin action on breast cancer systems 

biology approach by integrating computational methods and laboratory data. The framework 

was structured using techniques of cell biology, molecular biology and systems biology. 
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Aims and Objectives 

 

• To investigate the effect of Metformin on cellular viability, proliferation, and apoptosis 

using several cellular assays such as cell survival (MTT) assay, proliferation, and 

apoptosis assays. 

 

• To inspect the drug mode of action on the level of gene expression in selected cell lines 

(MDA-MB-468 and SkBr3) through implementing the Gene Expression Microarray and 

NanoString techniques and various bioinformatics tools including Artificial Neural 

Networks (ANN) and Cytoscape among others. 

 

• To interrogate the most influence gene in selected phenotypes of breast cancer (HER2+ 

and BASAL LIKE) via different statistical analysis and confirm the expression of PTK2B 

marker in separate ways utilising qRT-PCR, Western Blotting and immunofluorescence 

techniques.  

 

Hypothesis:  

                Metformin has an antitumour effect in different breast cancer subtypes. 
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Figure 1. 12. The schematic representation of the main stages of the project framework. 
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CHAPTER 2 

 

MATERIALS AND METHODS  

 

2.1. Materials  

 

2.1.1. Reagents 

 

CELL CULTURE MEDIA  PROVIDER  

EMEM  SLS (Lonza)  

DMEM SLS (Lonza)  

Hybri-Care ATCC®46-X 

Leibovitz’s (L-15) SLS (Lonza)  

McCoy’s  SLS (Lonza)  

Opti-MEM®  Thermo Fisher Scientific  

 

 

CULTURE MEDIA SUPPLEMENTS  PROVIDER  

Foetal calf serum (FCS)  Fisher (GE Healthcare)  

L-Glutamine  SLS (Lonza)  

Insulin-Solution from bovine pancreas SIGMA ALDRICH 

Sodium bicarbonate SIGMA ALDRICH 

 

 

OTHER CELL CULTURE REAGENTS  PROVIDER  

Dimethyl sulfoxide (DMSO) Insight Biotechnology and  
Fisher Chemical 

Dulbecco’s phosphate buffered saline (DPBS)  SLS (Lonza)  

Trypan Blue solution 0.4%  SIGMA ALDRICH 

Trypsin/Versene  SLS (Lonza)  

EDTA 0.5M Ambion 

 

 

DRUG USED IN THIS PROJECT PROVIDER 

1,1-Dimethylbiguanide hydrochloride 97% SIGMA ALDRICH 

 

 

ANTIBIOTICS PROVIDER 

Ampicillin  SIGMA ALDRICH 

Pen/strep antibiotic solution  SLS (Lonza)  

Puromycin  Life Technologies 
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CHEMICAL REAGENTS  PROVIDER  

Agar  Bioline  

Ammonium Per sulphate (APS)  Geneflow  

β- mercaptoethanol    SIGMA ALDRICH 

Bovine serum albumin (BSA)  Merck  

Bromophenol blue  Arcos Organics  

Calcium chloride (CaCL₂) SIGMA ALDRICH 

Clarity Western ECL Substrate  Bio Rad  

Chloroform SIGMA ALDRICH 

DAPI VECTASHIELD Mounting media  Vector Laboratories  

DC™ protein assay reagent A, B, S Bio-Rad 

Dithiothreitol (DTT) SIGMA ALDRICH 

dNTPs SIGMA ALDRICH 

Double distilled water (ddH₂O)  Barnstead, Nanopure Diamond  

Ethanol  Fisher Scientific  

Ethyl alcohol absolute  PROLAB, Fisher chemical 

Glycerol  SIGMA ALDRICH 

HEPES SIGMA ALDRICH 

Hexadimethrine bromide solution(polybrene)  SIGMA ALDRICH 

Isopropanol  Fisher chemical 

ISOTON sheath fluid  Beckman Coulter  

I TAQ™ Universal SYBR® Green Supermix BIO-RAD 

Lipofectamine 2000 Transfection Reagent  Invitrogen  

Liquid nitrogen  BOC  

Magnesium chloride (MgCl₂) SIGMA ALDRICH 

Marvel skimmed milk  Co-operative  

Methanol  Fisher Scientific  

M-MLV Reverse transcriptase Promega 

OligodT15 primers Promega 

Paraformaldehyde  Arcos  

Phosphate Buffer Saline (PBS)  Bio Whittaker Europe  

Potassium chloride (KCl)  SIGMA ALDRICH 

Presept (SPR25) Johnson & Johnson 

Propidium Iodide (PI) SIGMA ALDRICHAldrich 

Protein Assay Dye Reagent Concentrate  Bio-Rad  

Protease Inhibitor Cocktail  SIGMA ALDRICH 

Protogel (30% Acrylamide mix)  Geneflow  

RNA STAT-60 TEL-TEST-ING 

RNasin Promega 

RT buffer(5x) Promega 

Sodium chloride (NaCl)  Calbiochem  

Sodium dodecyl sulphate (SDS)  SIGMA ALDRICH 

Solution 18-AO. DAPI Chemometec 

TEMED  SIGMA ALDRICH 

Thiazolyl Blue Tetreazolium Bromide SIGMA ALDRICH 

Triton-X-100  SIGMA ALDRICH 

1M Tris-HCl  Invitrogen  

Trizma (Tris) base  SIGMA ALDRICH 

Tween-20  SIGMA ALDRICH 

Urea  SIGMA ALDRICH 

Yeast extract  SIGMA ALDRICH 
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IMMUNOCHEMICAL REAGENTS  PROVIDER  

Rabbit anti-human GADD45 α Cell signalling  

Rabbit anti-human IRF-9  Cell signalling and Abcam 

Rabbit anti-human PYK2 Thermo Fisher Scientific or Invitrogen 
and Cell signalling 

Rabbit anti-human SERPINB4 SIGMA-ALDRICH 

anti-human β-actin  SIGMA ALDRICH 

Rabbit anti-GFP  Abcam  

Mouse anti-GFP  Abcam  

Precision Plus Protein Western C Standards Bio-Rad 

Precision Protein™ Strep Tactin-HRP 
Conjugate 

Bio-Rad 

Anti-Rabbit IgG HRP-linked Ab  Cell Signalling  

Anti-Mouse IgG HRP-linked Ab  Cell Signalling  

Goat anti-Mouse IgG (H+L) Secondary 
Antibody, Alexa Fluor® 488 conjugate  

Thermo Fisher Scientific  

Goat anti-Rabbit IgG (H+L) Secondary 
Antibody, Alexa Fluor® 568 conjugate  

Thermo Fisher Scientific  

Goat anti-Mouse IgG (H+L) Secondary 
Antibody, Alexa Fluor® 568 conjugate  

Thermo Fisher Scientific  

Goat anti-Rabbit IgG (H+L) Secondary 
Antibody, Alexa Fluor® 488 conjugate  

Thermo Fisher Scientific  

 

 

REAGENT KITS  PROVIDER  

Agilent RNA 6000 Nano Kit with RNA Nano 
Chips  

Agilent  

Alexa Fluor 647 Annexin V  Biolegend  

Annexin V Binding Buffer  Biolegend  

Cultrex® BME Cell Invasion Assay, 96 well R&D Systems 

CyQUANT® NF Cell Proliferation Assay Kit Thermo Fisher Scientific 

DC™ protein assay reagent A, B, S Bio-Rad  

Gene expression Hybridisation Kit  Agilent  

Human Gene Expression 4x44K v2 Microarray 
Kit  

Agilent  

nCounter® Pan-Cancer Pathways Panel kit NanoString® Technologies 

One Color Spike-In Mix kit Agilent  

QIAGEN QIAfilter Plasmid Midi kit QIAGEN  

RNeasy Mini Kit (50)  QIAGEN  

 

 

CELL LINES  PROVIDER  

BT-474 ATCC 

MCF-7 ATCC 

MDA-MB-231 ATCC  

MDA-MB-468 ATCC  

MDA-MB-453 ATCC  

HEK-293T c ATCC  

SKBR3  ATCC  
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PLASMIDS AND COMPETENT CELLS  PROVIDER 

MISSION SHRNA PLASMID DNA 
TRCN0000000769(1) 

MISSION™ /SIGMA-ALDRICH 

MISSION SHRNA PLASMID DNA 
TRCN0000199334(2) 

MISSION™ /SIGMA-ALDRICH 

MISSION SHRNA PLASMID DNA 
TRCN0000231521(3) 

MISSION™ /SIGMA-ALDRICH 

MISSION SHRNA PLASMID DNA 
TRCN0000231523(4) 

MISSION™ /SIGMA-ALDRICH 

MISSION SHRNA PLASMID DNA 
TRCN0000199771(5) 

MISSION™ /SIGMA-ALDRICH 

PL-SIN-EF1α-EGFP  Addgene  

pLKO.1 puro  Addgene  

psPAX2  Addgene  

pMD2.G  Addgene  

XL-1 blue competent cells. NEB 

 

 

2.1.2. Buffers and gels 

 

 

LB AGAR PLATE WITH AMPICILLIN  FOR 500 ML  

NaCl  5 g  

Tryptone  5 g  

Yeast Extract  2.5 g  

Agar  7.5 g  

ddH₂O  Up to 500 mL  

Autoclaved, cooled down to 50°C  

Ampicillin  50 mg  

Poured on Petri dishes, left to solidify and stored at 4°C for up to a week.  

 

 

LB BROTH  FOR 500 ML  

NaCl  5 g  

Tryptone  5 g  

Yeast Extract  2.5 g  

Autoclaved, cooled down to 50°C  

Ampicillin  50 mg  

Stored at 4°C for up to a week  

 

 

1X ANNEXIN V buffer  FOR 0.5 L  

HEPES SIGMA ALDRICH 

NACL (SODIUM CHLORIDE) OMNIPUR 

KCL (POTASSIUM CHLORIDE) SIGMA ALDRICH 

CaCL₂  SIGMA ALDRICH 

DPBS Up to 1 L LONZA 

Adjust pH to 7.4 and stored at 4° C. 
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TRIS-EDTA (TE) BUFFER  FOR 500 ML  

1 M Tris pH 8  5 mL  

0.5 M EDTA pH 8  1 mL  

ddH₂O  Up to 500 mL  

 

 

RIPA BUFFER  FOR 500 ML  

1 M NaCl (150mM)  7.5 mL  

1 M Tris-HCL, pH 8.0 (50Mm)  2.5 mL  

10% sodium deoxycholate (0.5%)  2.5 mL  

10% SDS (0.1%)  0.5 ml 

10%Tritonx100 (1%) 5 ml 

100mM EDTA(1mM) 0.5 ml 

dH₂O 31.5 ML 

Add 1-10% protease inhibitor cocktail (sigma) freshly before use. 

 

 

LAEMMLI BUFFER (2X) Volume  

10% SDS (w/v) (4% final)  4mL  

Glycerol (20%)  2mL  

1M Tris-HCL, pH6.8 (125mM)  1.2mL  

10% 2-mercaptoethanol  1mL  

Distilled water  2.8mL  

Add bromophenol blue to a final concentration of 0.02%. 
Add 1-10% protease inhibitor cocktail (Sigma) freshly before use. 

 

ERIKA’S BUFFER WITH PROTEASE INHIBITOR 
(EB + PI)  

FOR 50 ML  

Urea  28.5 g  

Dithiothreitol (DTT)  1 g  

N-Octyl-Beta-Glucopyranoside  0.5 g  

ddH₂O  Up to 50mL  

Solution was mixed vigorously and sonicated until dissolved  

Proteinase Inhibitor cocktail  500 μL  

Aliquots were stored at -80°C.  

 

 

4X SDS-PAGE LOADING BUFFER  FOR 10 ML  

1M Tris-HCl pH 6.8  2.4 mL  

Sodium dodecyl sulfate (SDS)  0.8 g  

Glycerol  4 mL  

DTT  0.5 mL  

Bromophenol blue  4 mg  

ddH₂O  3.1 mL  

Aliquots were stored at -80°C.  
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5% STACKING GEL  FOR 6 ML (1X) 

dd H₂O  4.1 mL  

30% Acrylamide mix  1.0 mL  

1M Tris (pH 6.8)  0.75 mL  

10% SDS  0.06 mL  

10% ammonium persulfate  0.06 mL  

TEMED  0.006 mL  

 

15% RESOLVING GEL  FOR 10 ML (1X) 

H₂O  2.3 mL  

30% Acrylamide mix  5.0 mL  

1.5 M Tris (pH 8.8)  2.5 mL  

10% SDS  0.1 mL  

10% ammonium persulfate  0.1 mL  

TEMED  0.004 mL  

 

10% RESOLVING GEL  FOR 10 ML (1X) 

H₂O  4 mL  

30% Acrylamide mix  3.3 mL  

1.5 M Tris (pH 8.8)  2.5 mL  

10% SDS  0.1 mL  

10% ammonium persulfate  0.1 mL  

TEMED  0.004 mL  

 

8% RESOLVING GEL  FOR 10 ML (1X) 

H₂O  4.6 mL 

30% Acrylamide mix  2.7 mL 

1.5 M Tris (pH 8.8)  2.5 mL 

10% SDS  0.1 mL 

10% ammonium persulfate  0.1 mL 

TEMED  0.006 mL 

 

 

10X SDS RUNNING BUFFER  FOR 1 L  

Glycine  144g  

Trizma base  30.3 g  

SDS  10 g  

ddH₂O  Up to 1 L  

10X Running buffer was diluted with ddH₂O to 1X working concentration prior use. 
Running buffer was stored at 4°C.  

 

 

1X TRANSFER BUFFER  FOR 2 L  

Glycine  5.8 g  

Trizma base  11.6 g  

10% SDS  0.75 g  

Methanol  400 mL  

ddH₂O  Up to 2 L  

Transfer buffer was stored at 4° C.  
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10 X TRIS-BUFFERED SALINE (10 X TBS)  FOR 1 L  

Trizma base  24.2 g  

NaCl  80 g  

ddH₂O  Up to 1 L  

Adjust pH to 7.6 with concentrated HCl.  

 

 

1X TRIS-BUFFERED SALINE WITH TWEEN 
(TBST)  

FOR 1 L  

10 X TBS  100 mL  

ddH₂O  900 mL  

Tween-20  1 mL  

 

 

2.1.3. Equipment 

 

 

LABORATORY PLASTICS, GLASSWARE AND 
SHARPS  

PROVIDER  

Cell culture flasks (T25, T75, T175)  Sarstedt, UK  

Coverslips  SLS  

Conical flasks (50 ml,100 ml)  Pyrex  

Corning™ Disposable Vacuum Filter/Storage 
Systems, 0.45um PES, 500 mL 

Fisher Scientific 

E-Plate 16 PET ACEA Biosciences 

Eppendorf tubes (0.5 ml, 1.5 ml, 2 ml)  Sarstedt, UK  

FACS tubes  Tyco healthcare group  

Falcon tubes (50 ml, 15 ml)  Sarstedt, UK  

Filter tips (0.5-10 μl, 2-20 μl, 20-200 μl, 200-
1000 μl)  

Greiner bio-one/ Sarstedt  

Flat-bottom culture dishes (6, 24, 96-well)  Sarstedt, UK  

Glass coverslips & slides SLS  

HyperSep™ SpinTip Microscale SPE Extraction 
Tips  

Thermo Fisher Scientific  

Micro tips (0.5-10 μL, 20-200 μL, 200-1000 μL)  Sarstedt, UK  

MS Separation Columns  Miltenyi Biotech  

Magnetic cell separators Mini MACS  Miltenyi Biotech  

NC-slide A8 Chemometec 

Nitrocellulose Membranes 0.2µm GE Water & Process Technology 

Pasteur pipettes  Sarstedt, UK  

Petri dishes  Sarstedt, UK  

Pipettes (5mL, 10mL, 25mL)  Sarstedt, UK  

Cell Scraper SLS (Swann Morton)  

Screw-top tubes (15mL, 50mL)  Sarstedt  

Serological pipettes  Sarstedt  

Superfrost™ Microscope Slides  Thermo Fisher Scientific  

Syringes (10ml,20ml)  Becton Dickenson  

Timer Cell signalling 

Universal tubes (20ml)  Greiner  

Western blot filter paper  Schleicher-Schuell  
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0.45 μm syringe filter  Sartorius  

0.22 μm syringe filter  Sartorius  

40 μm nylon strainer  Greiner  

70 μm nylon strainer  Greiner  

 

 

LABORATORY EQUIPMENT  

4°C refrigerators  Lec  

-20°C freezers  Lec  

-80°C freezers  Revco/ Sanyo  

96-well plate reader  Tecan  

Autoclave  Rodwell  

Bacterial cell orbital incubator  Stuart  

Bacterial cell culture plate incubator  Genlab  

Cell culture incubator  Sanyo  

Centrifuges  Sanyo, Eppendorf  

CCD camera -Western blot imager  Syngene  

Class II safety cabinets  Walker  

Electrophoresis equipment Bio-Rad 

Fluorescence microscope  ZEISS  

Fluorescence microplate reader Tecan ULTRA 

Flow cytometer  Beckman Coulter  

Freeze vacuum dryer  Virtis  

Gene Pix®4100A Microarray Scanner GE Healthcare 

Haemocytometers  SLS  

Heat blocks  Lab-Line  

Light microscope  Nikon/Olympus  

Mass spectrometer Triple-TOF 6600  Sciex  

Nucleo Counter®NC-250™ Chemometec 

Vacuum drier  Eppendorf  

Hybridisation oven  SHEL LAB  

Microcentrifuge  MSE  

Nanodrop 8000 Spectrophotometer  Thermo Scientific 

NanoDrop ND UV-VIS Spectrophotometer 
version 3.2.1  

Thermo Scientific 

NanoString  Technologies 

pH meters  Metler Toledo  

Pipettes and multichannel pipettes  Gilson, Star Labs, Eppendorf  

Plate rocker  VWR, Stuart  

Real-time cell analyser System xCELLigence  

Rotor-Gene Q QIAGEN 

Measuring scale Fisher Scientific 

Sonicator  VWR  

Spectrophotometer for 96-well plate  Tecan ULTRA  

Transfer tank  Bio-Rad 

Ultracentrifuge Optima TLX  Beckman  

Ultrapure water dispenser  Barnstead  

Vacuum filtration unit  Sarstedt  

Vortex  Scientific Industries 

Water baths  Clifton  
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SOFTWARE  

Agilent Feature Extraction Software Agilent 

Axiovision Microscopy Software 4.7.1. version  ZEISS  

Cytoscape  open source bioinformatics software  

Gene Pix Pro-software Agilent 

GraphPad Prism 7  Graph Pad software  

Image J 1.50c  Image J software 

Kaluza 3.1 version  Beckman Coulter  

MetaCore™ Thomson Reuters 

Morpheus Broad Institute online software 

OneOmics™ software  Sciex  

Panther Online databases 

Protein Pilot version 5  Sciex  

Q-Rex Software QIAGEN 

Real-time cell analysis software Xcelligence 

TIBCO Statistica 13.3  TIBCO Statistica software 

 

 

2.1.4. Cell line growth media 

 

BT-474 COMPETE MEDIA  CONCENTRATIONS  

Hybri-Care (powder) -  

FCS  10 %  

Sodium bicarbonate  1.5 g/L 

Cell-culture-grade water 1L 

 

MCF-7 COMPETE MEDIA  CONCENTRATIONS  

EMEM -  

FCS  10 %  

Insulin-Solution  0.01 mg/ml (1µL/ml) 

 

MDA-MB-468, 231, 453 COMPETE MEDIA  CONCENTRATIONS  

Leibovitz’s (L-15) -  

FCS  10 %  

L-glutamine  1 %  

 

SKBR3 COMPETE MEDIA  CONCENTRATIONS  

McCoy’s  -  

FCS  10 %  

 

HEK-293T COMPETE MEDIA  CONCENTRATIONS  

DMEM  -  

FCS  10 %  

L-glutamine  1 %  
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2.2. Methods  

 

2.2.1. Cell culture 

 

2.2.1.1. Routine cell culture maintenance  

 

BT-474 (breast ductal carcinoma derived from solid invasive ductal carcinoma of the breast). 

MCF-7, MDA-MB-231, MDA-MB-468, SkBr3(breast adenocarcinoma derived from metastatic 

site: pleural effusion) and MDA-MB-453 (metastatic carcinoma derived from metastatic site: 

pleural effusion), representing five molecular breast cancer subtypes (Luminal B, Luminal A, 

Claudin-low, Basal-like , and HER2) respectively, were used from (Jon Van Geest Cancer Research 

Centre /Nottingham Trent University) where they  were purchased from American Type Culture 

Collection (ATCC), to investigate the efficacy of Metformin on breast cancer. As well as, HEK-

293T (human embryonic kidney) cell line was used for PTK2B transfection. Table 2.1. provides 

examples of breast carcinoma cell lines according to the molecular classification of breast cancer. 

 

Table 2.1. Molecular classification of breast carcinoma 

 

The abbreviations are: ER, oestrogen receptor; HER2, human epidermal growth factor receptor 
2; PR, progesterone receptor.  
 
All cell lines were cultured in their dedicated media. BT-474 cell line was cultured in Hybri-Care 

media. Minimum Essential Medium Eagles (EMEM) was used to culture MCF-7cell line with 

0.01mg/ml insulin solution. LEIBOVITZ (L-15) with 1% L-Glutamine was used for MDA-MB-231, 

MDA-MB-468 and MDA-MB-453 cell lines, while Mc Coy's 5A was used for culturing SkBr3 cell 

line. In addition, DMEM with 1% L-Glutamine media was used for HEK-293T, 10% fetal bovine 

Classification Receptor expression 
status 

Example cell lines 

Luminal A ER⁺, PR⁺/⁻, HER2⁻ MCF-7 

Luminal B ER⁺, PR⁺/⁻, HER2⁺ BT474 

Basal ER⁻, PR⁻, HER2⁻ MDA-MB-468 

Claudin-low ER⁻, PR⁻, HER2⁻ MDA-MB-231  

HER2 ER⁻, PR⁻, HER2⁺ SKBR3, MDA-MB-453 
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serum (FBS) was added to all types of media as a supplementary agent according to ATCC culture 

methods.  The 1% penicillin/streptomycin were used as antibiotics. BT-474, MCF-7, and SkBr3 

were incubated at 37°C, in a humidified atmosphere with 5% CO₂, while MDA-MB-231, MDA-

MB-468 and MDA-MB-453 were incubated at 37°C, in a humidified atmosphere without CO₂. To 

maintain the cells, they were routinely passaged at 70-80% confluence. During passage, cells 

were washed twice with Dulbecco's Phosphate Saline (DPBS) and detached through incubation 

with 0.25% (w/v) Trypsin- 0.53mM EDTA solution for 5-10 min at 37°C. Equal amounts of cell-

specific media were added immediately upon cell detachment and cells were then centrifuged 

at 260 g for 5 min. Cell counting was carried out, by re-suspending a harvested cell pellet in 1-3 

mL of cell-dedicated media and re-suspending cell solution in Trypan blue 1:10. The 

haemocytometer was applied to count the total number of living cells and excluded the number 

of dead cells (blue stained cells) from the count. The cell pellet was re-suspended in fresh media 

and cells were re-cultured in culture flasks by passaging. The stock of each cell line was prepared 

in a freezing media (1 mL FCS + 10% DMSO) at approximately 1 x10⁶ cell number and stored at -

80°C. Cells were thawed, gently resuspended in 10 mL cell-dedicated media and centrifuged at 

150 g for 5 min, upon need. The previous step of media change was performed to ensure that 

DMSO removed from frozen cells sample and to increase the viability of thawed samples. Then, 

cell pellets were gently re-suspended in a fresh amount of their dedicated media and plated in 

a suiTable flask (T25 or a T75) according to the pellet size, and then cells were incubated at 37°C 

with or without 5% CO₂ appropriately to their requirements.  

 

2.2.2. Interrogation Metformin mode of action in different breast cancer molecular 

subtypes 

 

2.2.2.1. Metformin preparation 

 

In brief, 0.165g of Metformin (Sigma-Aldrich, UK) powder was completely dissolved in 1ml of 

cell-dedicated culture media according to different cell lines by vortex, then filtered through a 

0.22μm syringe filtering device immediately before use. Concentrations of 1M and 10⁻²M were 

used as stock concentrations.  1M stock solution was used to make the different concentrations 

of (1, 2, 5, 10, 15, 20, and 25mM), while (0.01, 0.05, 0.1 and 0.5mM) concentrations were 

prepared from 10⁻²M stock solution consecutively. The drug was freshly prepared each time 

before applying to the assay. 
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2.2.2.2. Cell viability assay (MTT) 

 

Five human breast cancer cell lines (BT-474, MCF-7, MDA-MB-231, MDA-MB-468, and SkBr3) 

representing the five molecular breast cancer subtypes (Luminal B, Luminal A, Claudin-low, 

Basal-like, and HER2) respectively, were chosen to serve as in vitro models of breast cancer in 

the upcoming assays. 

Cell viability assay was determined by the MTT (3- [4, 5-dimethylthiazol-2-yl]-2, 5- 

diphenyltetrazolium bromide; thiazolyl blue) (Sigma-Aldrich, UK) which is a colourimetric assay 

that measures the absorbance of formazan molecules produced by the reduction of the 

tetrazolium salt by a dehydrogenase enzyme. This assay is widely used to test the toxicity of 

various drugs or substances by assessing the mitochondrial activity.  In brief, cells were seeded 

into a 96-well plate at a density of (1x10³- 1x10⁴) cell/well in 200 µL of a dedicated media per 

well, with 4 replicates for each concentration point. Plates were incubated for 24h. A cell-free 

media was added to another 4 wells to serve as a negative control. The media was removed 

carefully using a multichannel pipette, then the cells were exposed to different concentrations 

of Metformin and incubated for 24h and 48h respectively. The MTT dye was prepared at a 

concentration of 5 mg/mL by adding 250mg (0.25g) to 50 ml of DPBS and sterilised using a 

0.22µm syringe filter device (this can be stored at 4°C in protected from light for up to 1 month). 

20µL MTT reagent was added to each well and incubated in 37°C with or without 5% CO2 for 2 

to 4 h. All culture media was carefully removed using a multichannel pipette. Then, 250 µL of 

DMSO was used to dissolve the produced insoluble formazan.  Absorbance measurement was 

made at 570 nm using the TECAN ULTRA spectrophotometer. The results were transported 

directly to Excel.  The average absorbance values from the control wells are then subtracted 

from corresponding test wells to remove background signals. (Mosmann, 1983; Van Meerloo et 

al., 2011; Stockert et al., 2012).   Acquired data were then analysed in Excel, Dell Statistica 13 

software and following statistical analysis was performed using Graph Pad Prism 7. The EC50, P 

value, SD, SEM were calculated in this assay using Two-way ANOVA (multiple comparisons). 

2.2.2.3. Cell proliferation assay 

 

The CyQUANT® NF assay is based on the measurement of cellular DNA content via fluorescent 

dye binding. Cellular DNA content is highly regulated; it is closely proportional to cell number.  

Therefore, the extent of proliferation is determined by comparing cell counts for samples 

treated with drugs and untreated cells (controls). In this assay, cells were plated in a 96 

microplate at a density of 1000–10,000 cells per well, allowing 24 hours for adhesion before 

proceeding to the next step in the protocol. The cells were treated with Metformin in different 
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concentrations and incubated for 24h and 48h respectively and following manufacturer 

recommendations. Fluorescence intensity was measured using a fluorescence microplate reader 

(TECAN ULTRA fluorescence spectrophotometer) at ~485 nm excitation and ~530 nm emission. 

The results were transported directly to Excel and analysed. Considering the subtraction of the 

average absorbance values from the control wells to remove background signals. Obtained data 

were then analysed in Excel, Dell Statistica 13 software and statistical analysis were performed 

using Graph Pad Prism 7. The P value, SD, SEM were calculated in this assay using Two-way 

ANOVA (multiple comparisons).  

 

2.2.2.4. Flow cytometry analysis of Cell apoptosis 

 

Flow cytometry is a popular laser-based technology that determines the expression of cell 

surface and intracellular granularity, characterizes and define different cell types in a diversified 

cell population. It also assesses the purity of isolated subpopulations and analyses size, shape 

and complexity of cells. In addition, it allows a multi-parameter analysis of single cells 

simultaneously, using lasers and fluorescence detectors. Cell characteristics are measured 

through the detection of the scatters and the light emitted by each cell passing the laser beam 

resulting in quantifiable electoral signals. Flow cytometry is predominantly used to measure 

fluorescence intensity, which produced by fluorescent-labelled antibodies to detect proteins or 

ligands that bind to specific cell-associated molecules such as propidium iodide (PI) binding to 

DNA. Beckman Coulter Gallios flow cytometer that is equipped with three lasers (Blue 488 nm, 

Red 638 nm and Violet 405 nm) and 10 detection channels (FL-1 to FL-10) was used in this study.  

Apoptosis, or programmed cell death, is a normal physiological process for the removal of 

unwanted cells. The loss of plasma membrane asymmetry is one of earliest features of 

apoptosis. In apoptotic cells, the membrane phospholipid phosphatidylserine (PS) is 

translocated from the inner to the outer leaflet of the plasma membrane. Annexin V, a Ca2+-

dependent phospholipid-binding protein, has a high affinity to PS. So, fluorochrome-labelled 

Annexin V can be used for the detection of exposed PS using flow cytometry. For this reason, 

the apoptotic cells were analysed via Annexin V binding to phosphatidylserine (PS) at the surface 

of the cell by utilising two detection channels (FL-3 & FL-6). 
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2.2.2.5. Metformin treatment 

 

A confluent BT-474, MCF-7, MDA-MB-231, MDA-MB-468, and SkBr3 cells were grown in 6-well 

plates with 2ml of cell-dedicated media. In addition, 24 hours of incubation has been allowed 

for adhesion. The media was carefully aspirated and replaced with 2ml of cell-dedicated media, 

additionally supplemented with a range of Metformin concentrations (0.01, 0.05, 0.1, 0.5, 1, 2, 

5, 10, 15, 20, and 25mM) for 24 and 48 h.  After the incubation period, all treated cells were 

gathered. First, floating cells(dead) in the supernatants were collected into a 50-mL tube. 

Remaining cells were washed twice with DPBS and detached as previously described in section 

(2.2.1.1).  All cells (floating and adherent) were centrifuged at 260 g for 5 min, resuspended and 

diluted in DPBS to 1x106/mL roughly and counted using the Nucleo Counter® and Solution 18-

AO. DAPI dye, by mixing 50µL of cells suspension to 2.5µL of Solution 18, adds a 20µL of the 

mixture onto counting slides (sample/ chamber) and inserted into Nucleo Counter. The 

percentage of viable cells was obtained from the automatic calculations made by the software. 

 

 

2.2.2.6. Annexin staining 

 

A set of aliquots of 100,000 cells of BT-474, MCF-7, MDA-MB-231, MDA-MB-468, and SkBr3 

treated with different concentrations of Metformin were prepared in triplicate (one cell line per 

experiment) and resuspended in 1 mL of DPBS. Then, cells were transferred into labelled FACS 

tubes (include ‘unstained' and ‘PI-only' controls than one tube per treatment condition). Cells 

were washed twice with 2 mL of cold Annexin V Binding Buffer and centrifuged at 400 g for 5 

min. Following centrifugation, the supernatant was removed by flicking off a tube gently to avoid 

losing floating cells. Then, the cells were resuspended in 100μL of cold Annexin Binding Buffer, 

and for each tube 5μL of Alexa Fluor 647, Annexin V was added. Cells were vortexed gently and 

incubated at RT for 15 min in the dark. PI working stock (50µg/mL) was prepared during the 

incubation time. Finally, cells were resuspended in 40μL Annexin V Binding Buffer and 10 µL of 

working stock PI, gently vortexed and analysed. The flow cytometry BECKMAN COULTER 

GALLIOS FLOW CYTOMETER was utilised to sort the proportion of living cells, early apoptotic 

cells, and necrotic cells in this assay. Gained data was then analysed in Kaluza 3.1 software and 

statistical analysis was performed using Graph Pad Prism 7. The P value, SD, SEM were calculated 

in this assay using Two-way ANOVA (multiple comparisons). 
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2.2.2.7. Morphological effect of Metformin 

 

The morphological effect of Metformin on different breast cancer cells was observed after 24h 

and 48h respectively. Bright field images of treated cells with different concentrations of 

Metformin have been captured using the light microscope (X10) to evaluate Metformin efficacy. 

 

 

 

2.2.3. Microarrays 

 

2.2.3.1. RNA-Extraction with STAT 60 and Qiagen RNeasy Mini Kit  

 

In this assay and following assays, two concentrations of Metformin were considered, which are 

½ EC50 and 2 EC50 (1mM and 4mM) respectively. All assays were applied in triplicates for three 

different time points. 

MDA-MB-468 and SkBr3 cells were cultured in T75 flasks in the density of 4×10⁶ and 13 ml of 

cell-dedicated media for 24h. Then, media was replaced with a 13ml cell-dedicated media 

supplemented with a range of Metformin concentrations (1mM and 4mM), while the control 

flasks media was replaced to free-drug media. All flasks were incubated in their proper 

incubation condition (as described previously in Section 2.2.1.1) for 48h. After treatment with 

Metformin for 48h, cells were washed twice with DPBS (all the DPBS should remove carefully) 

and collected with 500µL of RNA STAT-60 by cell Scraper into a 2ml Eppendorf tubes and mixed 

well before incubation on ice for 5 minutes (pellet can be used immediately or frozen down in -

80 C°). Next, total RNA was isolated by using the Qiagen RNeasy Mini Kit as described in 

manufacturer protocol. The RNA was eluted in 30μL of RNase free water. The concentration and 

integrity of RNA were determined using the Nanodrop and the Bioanalyser instruments, 

respectively. In addition, RNA Agilent Nano Kit with RNA Nano Chips was used as recommended 

by manufacturer protocol. 
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2.2.3.2. Labelling with a fluorescent dye 

 

As has been recommended by the manufacturer, Agilent One Color Spike Mix was prepared. 

Concisely, One-Color Spike Mix stock solution was thoroughly mixed by a vortex mixer and 

heated for 5 min at 37°C and vortexed again. Serial dilutions of Spike Mix stock were prepared. 

A ‘First Dilution’, has been made by thoroughly mixing 38μL of Dilution Buffer with 2μL of Spike 

Mix stock. The ‘Second Dilution’, was also prepared by adding 2μL of Spike Mix stock to 48μL of 

Dilution Buffer and mixed thoroughly. While, the ‘Third Dilution’ has been prepared as a mixture 

of 4μL Spike Mix stock and 36μL of Dilution Buffer, which also has mixed very well. Distilled 

RNAse-free water has been used to dilute the RNA samples to the final concentration of 134 

ng/μL and mixed thoroughly. Into a fresh tube, 1.5μL (200 ng) of each sample was aliquoted, 

then 2μL of diluted Spike mix was added to each tube and mixed well. Master mix T7 Promoter 

Primer was prepared as shown in Table 2.2. For each tube, 1.8μL of T7 Promoter Primer Mix was 

added, then, incubated the reaction at 65°C in a rotary water bath for 10 min to denature both 

primer and template. 

 

Table 2. 2. T7 Promoter Master Mix 

 

Component 1X 18X 20X 

T7 Promoter Primer (Green Cap) 0.8 µL 14.4 µL 16 µL 

Nuclease-Free water (Whitecap) 1 µL 18 µL 20 µL 

Total volume 1.8 µL 32.4 µL 36 µL 

 
Table specifies the volume of reagents (experimental tubes) for 1x, 18x and 20x reactions. All 
reagents listed in this Table are included in Agilent low input QuickAmp one-colour labelling kit. 
 

 

After the 10-min incubation at 65°C, tubes were immediately incubated on ice for another 5 min 

and spun down briefly. In the meantime, cDNA Master Mix was prepared as shown in Table 2.3 

below. Firstly, 5X of First Strand buffer has pre-warmed for 3-4min at 80°C to ensure sufficient 

resuspension of the buffer components. The Affinity Script RNase Block mix was incubated on 

ice and was added immediately prior use to cDNA Master Mix. 
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Table 2. 3. cDNA Master Mix 

 

Component 1X 18X 20X 

5x First Strand Buffer (Green Cap) 2 µL 36 µL 40 µL 

0.1M DTT (White Cap) 1 µL 18 µL 20 µL 

10mM dNTP mix (Green Cap) 0.5 µL 9 µL 10 µL 

Affinity Script RNase Block Mix (Violet 
Cap) 

1.2 µL 21.6 µL 24 µL 

Total volume 4.7 µL 84.6 µL 94 µL 

 
Table specifies the volume of reagents (experimental tubes) for 1x, 18x and 20x reactions. All 
reagents listed in this Table are included in Agilent low input QuickAmp one-color labelling kit. 
 

 

 

 

The following step, for each tube a volume of 4.7μL cDNA Master Mix was added, pipetting up 

and down gently to mix and incubate in a water bath for 2h at 40°C. After the incubation time, 

samples were transferred to another water bath at 70°C and incubated for further 15min. 

Finally, the samples were moved onto the ice to cool down, they were briefly spun down. Table 

2.4. below shows the preparation of RNA Transcription Master Mix, by adding a 6μL of 

Transcription Master Mix to each tube, and gently were mixed by pipetting then incubated at 

40°C circulating water bath for 2h. 

 

 

Table 2. 4. RNA Transcription Master Mix 

 
Table specifies the volume of reagents (experimental tubes) for 1x, 18x and 20x reactions. All 
reagents listed in this Table are included in Agilent low input QuickAmp one-color labelling kit. 
 
 
 
 
 
 
 

Component 1X 18X 20X 

Nuclease-Free water (Whitecap) 0.75 µL 13.5 µL 15 µL 

5X Transcription Buffer (Blue Cap) 3.2 µL 57.6 µL 64 µL 

0.1M DTT (White Cap) 0.6 µL 10.8 µL 12 µL 

NTP mix (Blue Cap) 1 µL 18 µL 20 µL 

T7 RNA Polymerase Blend (Red Cap) 0.21 µL 3.78 µL 4.2 µL 

Cyanine 3-CTP 0.24 µL 4.32 µL 4.8 µL 

Total volume 6 µL 108 µL 120 µL 
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2.2.3. Purification of the labelled/amplified RNA  
 

 
To purify the amplified cRNA (RNA that labelled with cy3 dye) samples, QIAGEN RNasy mini spin 

columns were used. Firstly, for each cRNA samples, 84μL of Nuclease-free water was added (to 

make a volume of 100μL). Then, RLT buffer was added in 350μL, after mixing 250μL of 100% 

ethanol was added and mixed by pipetting up and down. Each cRNA sample in a volume of 700μL 

was transferred to an RNasy spin column, which was set on 2 mL collection tube. Then, the 

samples were centrifuged for 30 seconds at 10,000 g and 4°C.  The flow- through was discarded. 

The RNasy column was transferred onto a new set of collection tubes, and 500μL of RPE buffer 

was added, which contained ethanol, to each column. Columns then were spun for 30 seconds 

at 10,000 g and 4°C and discarded the flow through. Another 500μL of RPE buffer (containing 

ethanol) was added to the column and columns were spun down for 60 seconds at 10,000 g and 

4°C and the flow through was discarded. Again, columns were centrifuged briefly to dry the 

membrane. 

Finally, for each RNasy filter membrane, 30μL of RNase-free water was added directly and 

centrifuged for 30 seconds at 10,000 g and 4°C. The purified RNA was collected as the flow 

through. 

 

2.2.3.4. cRNA quantification   

 

  

Quantification of cRNA was made using NanoDrop ND UV-VIS Spectrophotometer version 3.2.1. 

Measurement has taken by selecting a sample type of ‘Microarray Measurement' and ‘RNA-40'. 

The sample loading area was cleaned by wiping with nuclease free water. Then, 1 µL of nuclease-

free water was loaded to each pedal to initialize the measurement. 1µL cRNA sample was used 

for the measurement. Data provided by this measurement was related to Cyanine 3 dye 

concentration (pmol/µL), the RNA absorbance ratio (260/280) and cRNA concentration (ng/µL). 

The cRNA yield and specific activity of each reaction were calculated based on those results, and 

according to the formulas below: 

                                                                                                 

𝒄𝑹𝑵𝑨 𝒚𝒊𝒆𝒍𝒅: µg of cRNA =
(Concentration of cRNA) x 30µL (elution volume) 

1000 
 

 

 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄 𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚: pmol Cy3 per µg cRNA =
Concentration of Cy3

Concentration of cRNA
 𝑥 1000   
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According to manufacturer protocol: Sample concentration and volume needed for 1.65 µg 

yield were calculated based on the formulas below: 

 

 𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏: (µ𝑔/µ𝐿)  =
cRNA yield  (µg) 

30µL (sample vol)   
 

 

𝑽𝒐𝒍 𝒏𝒆𝒆𝒅𝒆𝒅 𝐟𝐨𝐫 𝟏. 𝟔𝟓µ𝐠 (µ𝐋)  =
1.65 µg

Concentration (µg/µL) 
 

 

  2.2.3.5. Hybridisation  

All reagents used in these sections were supplied in the Agilent low input QuickAmp one-colour 

labelling kit and were used according to manufacturer protocol. Firstly, 10x Blocking Reagent 

solution was prepared by adding 500 µL of Nuclease-free water to lyophilised 10x Gene 

Expression Blocking Reagent vial. Secondly, Fragmentation Master Mix was prepared by adding 

1.65 µg cRNA with 11 µL 10X Blocking Agent, and 2.2 µL Fragmentation Buffer and filled up to 

55 µL volume with Nuclease Free water. Then, Fragmentation Mix containing samples were 

incubated for 30 min at 60°C, and immediately after incubation cooled down for 1 min on ice, 

and 55 µL of 2x GEx Hybridisation Buffer HI-RPM was added to each sample to stop 

fragmentation reaction. Samples mixed by gentle pipetting, then centrifugate at 10,000 g for 1 

min at RT. Finally, samples rested on ice, and load onto the array.  

Nine microarray slides (4-pack each) of Agilent Technologies Sure Print Technology G4845A 

Human GE 4x44 V2 Microarray Kit were used exactly as recommended by the manufacturer. 

Gasket slides were removed from the protective packaging (handled from the edges) and 

immediately placed in the chamber base to avoid any potential contamination from surrounding 

surface material. Slide was held with the label reading “Agilent” face up, which put the gasket 

slide of the slide side up. The chamber base guide points and the rectangular barcode guide 

were located adequately in the chamber base. Gasket slide was gently placed into the chamber 

base. 100 µL of Hybridisation sample mixture was loaded onto the gasket slide surface by adding 

a drop in the middle and avoiding touching the sides. The microarray slide was grabbed from 

the numeric barcode side facing up and “Agilent” label facing down and lowered on the top of 

the gasket slide carefully. The chamber cover was placed on the side facing up the chamber base 

and which contains both “sandwiched” slides. The assembled chambers were loaded into the 

hybridisation oven rotator rack. Finally, samples were hybridised for 17 h at 10 rpm at 65°C.  

The Gene Expression Wash Buffer was prepared by adding 2 mL of the provided 10% Triton X-

102 into the wash buffers. Gene Expression Wash Buffer 2 was warmed overnight at 37°C. First  



69 | P a g e  
 

three staining dishes, magnetic stirrers and magnetic stir plates were thoroughly and repeatedly 

washed with 100% acetonitrile, air dried in the fume hood and filled up with Mili-Q water and 

emptied. This cleaning procedure was repeated five times. Hybridisation chambers were 

removed from the oven at the record time, and the array-gasket sandwich was removed and 

quickly transferred into the slide staining dish 1 with Gene Expression Wash Buffer 1 at RT. The 

gasket was gently separated from the array using the blunt end of forceps and submerged in the 

buffer. The wet array was quickly put on to slide rack and placed in slide staining dishes 2 filled 

with Gene Expression Wash Buffer 1 at RT and incubated for 1 min stirring at RT. The rack with 

arrays was quickly transferred to the slide staining dishes 3 filled with pre-warmed Gene 

Expression Wash Buffer 2 and incubated for 1min stirring at 37°C. Finally, the slide rack was 

removed from the staining dish 3 and the residual liquid was removed by dabbing in a cleaning 

tissue and the microarray slides were put on a dry slide holder.   

 

2.2.3.6. Microarray Data Analysis   

 

Gene Pix® Pro 4100A Scanner was used to carry out the Image acquisition at 5 µm diameters. 

Feature extraction, quality docking and raw data generation were carried out using Agilent 

feature extraction software. Then, Partek genomic suite software was employed to Normalize 

the raw data, and to compute the statistical analysis and differential fold change (expression). 

Multiple testing correction using Student T-DIST, Bonferroni correction, and Benjamini Hochberg 

has been utilised to compute the P-value for each gene, which allows minimising the false 

discovery rate (FDR). 

Two approaches have been used in this project to analyse the Microarrays data.  

 

 

 

2.2.3.6.1. Artificial neural networks-based approach 

 

Firstly, an in-house developed integrative Stepwise-ANN algorithm (Lancashire et al., 2010) 

based approach was applied to the entire data to identify the differentially expressed genes in 

both breast cancer phenotypes in terms of treatment with Metformin (the question). The initial 

set consisted of 36 samples each sample profile was associated with 33,128 gene probes. The 

input data was coded as 0 for untreated (control) samples, and 1 for treated samples. Prior to 

training the ANN, sample data were randomly divided into three subsets; 60% for training, 20% 

for validation (to assess the performance of the model during the training process) and 20% for 
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testing (to test the model independently on data completely blind to the model), and the run 

has performed for 20 loops. The initial multilayer perceptron (MLP)-ANN weights were 

randomised between -1 and 1 with a constrained variance of 0.1. By using a three-layered 

feedforward –backpropagation algorithm, these weights were updated using a learning rate of 

0.1 and a momentum of 0.5 (Lancashire et al., 2009). For individual genes predictors, the median 

expression-based class split was carried out by (1) averaging the expression values for the 

multiple probes of the same gene across samples, when multiple probes of the same gene were 

present. (2) To classify a sample as high or low for the gene expression, the median expression 

value for the average expression has been calculated. The average across 10 independent runs 

was calculated, in order to identify the top predictive gene in the ANN model. Then, the stepwise 

results were imported to interaction algorithm and visualised as molecular interaction networks 

and integrate with gene expression profiles by utilising Cytoscape software, which is an open 

source bioinformatics software platform.  

 

2.2.3.6.2. Regression-based method and Fold change (Fc) -based method 

 

Secondly, to differentiate the expressed genes in each phenotype of breast cancer separately, 

the regression-based method has been followed by using the Excel's Regression tool provided 

by the Data Analysis add-in. Regression analysis was performed by utilising control values for 

each sample as Input X range and treated samples as Input Y range. A new analysis sheet was 

created by clicking all Residuals options. Then, the Standard Residuals was averaged across all 

the samples replicates and sorted according to the highest T. DIST and Bonferroni corrected 

values. Data obtained from this approach represented the two cell lines (MDA-MB-468 and 

SkBr3) in two concentrations (1 and 4 mM of Metformin) separately. The cut-off criteria were 

calculated as Bonferroni corrected value ≤ 0.05. 

 

A similar Fold change (Fc) -based method was also used to identify the genes that differentially 

expressed in each phenotype of breast cancer in different concentrations separately. Fc analysis 

was performed by utilising the following equation (Fc= T/C) after average all control and 

treatment values. Then, the genes were ranked according to highest T-test (P values) and 

Bonferroni corrected values.  The Fold change (Fc) was calculated using one cut-off criterion (2 

Fc ≥ -2), p-value (p) ≤ 0.05.  

The Data were clustered using hierarchical clustering heat maps on both entities and conditions 

with Euclidean distance metric and centroid linkage rule. Presented heat maps shown the 

differential expression of MDA-MB-468 and SkBr3 cell line samples. The Morpheus-Broad 

Institute online software was utilised to create the Hierarchical clustering heat maps. 
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2.2.4. Validation of Gene Expression Microarray data  

 

2.24.1. cDNA synthesis 

 

The previously isolated 36 RNA samples were used to synthesise the cDNA templates. The 

purified samples were quantified again by the Nanodrop, and the required volume for cDNA 

synthesis was taken. The first master mix was prepared in 0.5ml Eppendorf tubes by mixing 1µL 

of Oligo-dT15 primers with mRNA and nuclease-free water according to different samples 

concentrations. Samples were mixed gently and incubated in a thermal block at 70°C for 5 

minutes. Then, tubes were transferred immediately onto the ice box for 5minutes. Meanwhile, 

the second master mix was prepared according to Table 2.5. below. 

 

Table 2. 5. cDNA Master Mix 

Reagents Volume for 1X Volume for 18X 

RT Buffer 5 µL 90 µL 

MMLV RT 1 µL 18 µL 

RNA sin 0.7 µL 12.6 µL 

dNTPs 1 µL 18 µL 

NF Water 7.3 µL 131.4 µL 

Total 15 µL 270 µL 

 
Table specifies the volume of reagents (experimental tubes) for 1x and 18x reactions. All 
reagents listed in this Table are included in the cDNA synthesis kit.  
 

 

 

Then, 15µL of the second master mix was added to each tube of the first master mix (RNA oligo 

dT) and mixed thoroughly by gently pipetting up and down. Tubes were incubated in a water 

bath for 60 minutes at 40°C. After the incubation time, the reaction was inactivated by 

incubating the tubes in a thermal block at 95°C for 5 minutes. Finally, cDNA samples were stored 

at -20°C until use. 
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2.2.4.2. The application of Real-time quantitative PCR (qRT-PCR) and primers 

preparation 

 

First: Preparation of the primers 

All the primers vials were labelled according to the label sheet, as F & R (forward and reverse 

primers). Newly purchased primers were resuspended according to the manufacturer's 

recommendations by adding the accurate amount of nuclease-free water (N F W) to each vial 

up to 100 p moll and vortexed. The vials were kept for 30 minutes to dissolve completely. 

Working solutions were prepared by adding 10 µl from the primer stock to 90 µl of NFW (1:10) 

dilution. The stocks were stored in -20. SYBR Green was aliquoted into 500µl Eppendorf tubes 

to avoid freezing and thawing cycle and stored in -20. 

 

Second: Preparation of PCR reaction Master Mix. 

A master mix was prepared by mixing the reagent in Table 2.6 below. The master mix was 

calculated according to the number of samples + two extra (each sample in triplicates). 

Table 2. 6. Real-time quantitative PCR (qRT-PCR) Master Mix 

Reagents 1 x 24x 28x 

CYBR Green 6.25 µL 150 µL 175 µL 

N F W 0.5 µL 12 µL 14 µL 

Forward Primer 0.5 µL 12 µL 14 µL 

Reverse Primer 4.25 µL 102 µL 119 µL 

Total volume 11.5 µL 276 µL 322 µL 

Table specifies the volume of reagents (experimental tubes) for 1x, 24x, and28x reactions. 

 

This experiment was achieved using the first set of cDNA template samples followed this order 

(SkBr3 control, 1mM, 4mM, and MDA-468 control, 1mM, 4mM). The threshold was set on 

0.1642 for the entire run, while the TM varied according to the different primers TM. 11.5 µL 

of the master mix was pipetted carefully into labelled PCR tubes (kept on ice) and 1µL of cDNA 

sample templates was added. The tubes were closed tightly and placed into the thermal cycle 

rotter. Then, PCR was carried out using the primers temperature profile. Finally, obtained data 

were analysed by utilising Rotor-Gene Q software and performed with Graph Pad Prism 7 

software. 
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2.2.4.3. Western Blot analysis of protein lysates from MDA-MB-468 and SkBr3 cell 

lines 

 

 2.2.4.3.1. Preparation of the cell lysates   

 

MDA-MB-468, MDA-MB-231, MDA-MB-453, and SkBr3 cells were cultured and treated with 

Metformin as previously mentioned in section (2.2.3.1, RNA-Extraction with STAT 60 and Qiagen 

RNeasy Mini Kit). Following the incubation period (48h), cells were washed twice with ice-cold 

DPBS buffer at 4°C and detached as previously described in section (2.2.1.1).  Then, the cells 

were centrifuged at 260 g for 5 min at 4°C, resuspended in ice-cold DPBS. Cells were counted 

and diluted to 1x10⁶/mL roughly and spun down again at 260 g for 5 min at 4°C (all the DPBS 

was removed carefully). Pellet was placed immediately on dry ice for 10 minutes and stored in -

20 °C. Pellets were dissolved in 100µl of Laemelli buffer with 10% protease inhibitor cocktail (PI) 

by vortexing vigorously. Then, the pellets were boiled in the thermal block at 99°C for 15 

minutes. Protein quantification was carried out using the Bio-Rad Protein Assay. 

 

 2.2.4.3.2.  Protein quantification 

 

Prior to Western blot analyses, the total protein concentration in all lysate samples was assessed 

by using the Bio-Rad Dc protein assay and according to the supplier’s protocol. The use of a 

standard curve generated from known protein standards is the traditional method to calculate 

a protein concentration of an unknown sample. Hence, a standard curve was generated 

according to Table 2.7. below. 
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Tube # (1) is a 2 mg/ml of Bovine Serum Albumin (BSA) solution in Laemelli buffer, which was 

prepared by dissolving 0.002g of BSA in one ml of Laemmli buffer. 

 

Table 2. 7. Generation of protein standards 

 

Tube # Standard (µl) Buffer of  
Choice (µl)  

Final  
Concentration  

(mg/ml)  

Final  
Volume (µl)  

 1 500µl of Starting 2mg/ml standard  0  2  500 

 2 750µl of Starting 2mg/ml standard  250  1.5  750 

 3 500µl of Starting 2mg/ml standard  500  1  500 

 4 250µl of Tube #2 Standard  250  0.75  500 

 5 500µl of Tube #3 Standard  500  0.5  500 

 6 500µl of Tube #5 Standard  500  0.25  500 

 7 500µl of Tube #6 Standard  500  0.125  1000 

 8  -  500  0  500 

The table specifies the volume of reagents used to create the serial dilution of the standards in 
Protein Assay. 

 

The required volume of working reagent has been calculated previously according to the  

formula below: 

𝐓𝐡𝐞 𝐭𝐨𝐭𝐚𝐥 𝐯𝐨𝐥𝐮𝐦𝐞 𝐨𝐟 𝐫𝐞𝐪𝐮𝐢𝐫𝐞𝐝 𝐰𝐨𝐫𝐤𝐢𝐧𝐠 𝐯𝐨𝐥𝐮𝐦𝐞(𝐦𝐋)=(𝑁)𝑜𝑓𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠 +

(𝑁)𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × (𝑁)𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 × 200 

 

10μL of each standard and unknown sample were pipetted into a 96 well plate according to 

plate map. Then, 25μL of working reagent was added to each well-containing standards and 

unknown protein samples and mixed carefully by pipetting up and down. 200μL of reagent B 

was added to each well, then the plate was incubated in the dark at 37 ⁰C for 15-30 minutes. 

The absorbance was measured at 570 nm using TECAN ULTRA spectrophotometer. The average 

absorbance values from control wells were then subtracted from corresponding test wells.  

Finally, sample protein concentrations were calculated as a reference to the standard curve.   

To denature protein samples, a reducing agent such as dithiothreitol (DTT) or 2-

mercaptoethanol was added in ratio 1:3. As well as, bromophenol blue served as tracking dye 

(~0.05 mg/ml). Samples were boiled for at 95°C for 5 minutes in the thermal block before loading 

into the gel. 
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2.2.4.4 Preparation of Gel and electrophoresis 

 

The SDS PAGE gel was prepared as previously mentioned in section (2.1.2) and placed in the 

running tank, which was filled with 1X SDS running buffer (see section 2.1.2). Then, the 

denatured samples (section 2.2.4.3.2) were loaded to (30µg) each well carefully, alongside 5 µL 

of Precision Plus Protein Western Standards onto a polyacrylamide gel. The gel was run at 70V 

for10-20 min through the stacking gel, and then the voltage was increased to 100V through the 

resolving gel using electrophoresis. 

 

2.2.4.5. Wet transfer of proteins from gel to a membrane 

 

After about 90 min the electrophoresis was stopped, and gels were carefully removed from the 

tank. Then, proteins were gently transferred onto a Nitrocellulose blotting membrane via “wet 

transfer”. The Nitrocellulose membrane was already cut into 8.5 x 5 cm pieces, which fitted the 

gel size, besides two pieces of filter paper of the same size (per membrane).  

The transfer sandwich was assembled according to below order:  

 

Black plate 

Sponge 

Filter paper 

Gel 

Nitrocellulose membrane 

Filter paper 

Sponge 

Red plate 

 

 

 

Air bubbles were carefully removed from between the layers, in order not to affect the transfer 

process. Assembly parts were kept soaked with transfer buffer all the time. Then, the sandwich 

cassette was inserted into a transfer tank immediately and the tank was filled with an 

appropriate amount of ice-cold transfer buffer. Lastly, the lid was placed on the transfer tank 

and the run was set at 100v for about 1h in the cold room(4°C). 
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2.2.4.6. Blocking and probing membranes with antibodies 

 

After the transfer, the membrane was removed from the assembly cassette and washed 3 times 

with DPBS, rocking for 10 min. The membrane was then blocked with 5% Marvel skimmed milk 

in DPBS for 1 h rocking at RT. The membrane was then incubated with primary antibodies at 4°C 

on the rocking platform overnight.  The following day, the membrane was washed three times 

with DPBS + 0.1% Tween-20 and incubated with the corresponding secondary antibodies for 1 h 

on the rocking platform at RT.  Following the incubation, the membrane was washed with DPBS 

+ 0.1% Tween-20. Finally, the membrane was incubated with Clarity Western ECL Substrate for 

1 minute prior to exposure and developed using CCD camera.  All antibody concentrations are 

shown in Table 2.8. 

 

Table 2. 8. List of the antibodies that used in Western Blot analysis and their dilutions 

(M) = produced in Mice; and (R) = produced in Rabbit. 

 
 

2.2.4.7. Immunofluorescence analysis of proteins 

The MDA-MB-468, MDA-MB-231, MDA-MB-453, and SkBr3 cells were cultured at a density of 

5X10⁴ in 24 well plates with glass coverslips at the bottom of each well and treated with 

Metformin for 48h, as previously described in section (2.2.6 Metformin treatment). However, 

1mL of dedicated media was used, as well as two concentrations (1 and 4mM) of Metformin 

were used in this experiment. The following day, cells were washed three times with 1ml DPBS 

and fixed with 500µl of 4% Paraformaldehyde for 15 minutes. Cells were washed again with 1ml 

of (1x DPBS) for 10 min 3 times. Then, cells were blocked with 500 µl of 10% BSA in (1x PBS+0.1% 

Tween20). 200µl of antibody was added to the blocking solution and incubated overnight at 4°C. 

Primary antibody Dilution Secondary antibody Dilution 

Anti- β-actin (M) 1:5000 Anti-Mouse IgG HRP-

linked Antibody 

1:1000 

PYK2 momoclonal antibody (M). 1:1000 

IRF-9 momoclonal antibody (R) 1:1000 Anti-Rabbit IgG HRP-

linked Antibody 

1:1000 

Anti-SERPINB4 polyclonal 

antibody (R) 

 

1:1000 

GADD45α monoclonal 

antibody(R) 

1:1000 

Precision Plus Protein Western C 

Standards 

5µL Precision Protein™ 

Strep Tactin-HRP 

Conjugate 

1:5000 

Antibodies were diluted in 5% (w/v) Marvel skimmed milk in TBS  
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The following day, cells were washed with 1ml of (1x DPBS) for 10 min 3 times. 200µl of relevant 

secondary antibodies, which were diluted in the blocking solution, were added and incubated 

at RT for 1 h. Then, cells were washed with 1ml (1x DPBS) for 10 min 3 times. The remaining 

wash was left in the wells to ease the coverslips removal. Glass slides were cleaned with ethanol 

and paper towels to remove dust or debris and labelled properly. A small drop of mounting 

solution (vectashield+DAPI) was added in the centre of the glass slide and each coverslip was 

removed slowly from the well and was mounted on the top. Finally, the edges of the coverslip 

and the glass slide were sealed gently with nail varnish. Slides were viewed under a fluorescent 

microscope and the exposure for each fluorophore was adjusted to the controls (with secondary 

antibodies only). Slides were stored in the dark at 4°C. The names and dilutions of antibodies 

used in these experiments are shown in Table 2.9 below.  

 

Table 2. 9. List of the antibodies that used in Immunofluorescence staining and their 

dilutions 

(M) = produced in Mice; and (R) = produced in Rabbit. 

 

2.2.4.8. NanoString n Counter XT Gene Expression Assay for gene expression profiling 

in Basal-like and HER2 phenotypes  

Gene expression profile in 12 samples was analysed using the Pan-Cancer Pathways Panel, which 

consists of 770 genes from 13 cancer-associated canonical pathways, and 20 housekeeping 

genes. This assay was carried out according to the manufacturer instructions. All RNA samples 

were quality controlled using Nanodrop 8000, and 150ng of total RNA from each sample were 

used for setting up nanostring probe hybridisation overnight for (20hrs) at 65°C. The reaction 

Master Mix was prepared according to Table 2.10. below. 

 

 

 

 

Primary antibody Dilution Secondary antibody Dilution 

Anti-Interferon regulatory 

factor 9 antibody momoclonal 

antibody (R) 

1:100 Goat anti-Rabbit IgG (H+L) 

Secondary Antibody, 

Alexa Fluor® 568 

conjugate (RED & GREEN) 

 

1:1000 

Anti-SERPINB4 polyclonal 

antibody (R) 

 

1:100 

FAK2/PYK2 momoclonal 

antibody (R). 

1:100 

The diluent is:     10% BSA in (1x PBS+0.1% Tween20). 
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Table 2. 10. NanoString probe hybridisation Master Mix 

Reagents Volume for 1X Volume for 12X 

RNA solution 5µL (up to 150ng), 60 µL 

Reporter probe 8µL 96 µL 

Capture probe 2µL 24 µL 

 
Table specifies the volume of reagents (experimental tubes) for 1x and 12x reactions. All 
reagents listed in this Table are included in the Pan-Cancer Pathways Panel kit.  
 
 
After the overnight hybridisation completed, excess probes were removed using n Counter Prep 

Station, magnetic beads and hybridised mRNA/probe were immobilised on a streptavidin-

coated cartridge. The processed cartridge was subsequently scanned using an n Counter digital 

analyser platform for the generation of the raw data with a high-resolution scan 555 fields of 

view (fov). Raw data were processed with nSolver Analysis Software (V.4.0), imaging quality 

control (QC), mRNA positive control QC and Normalization QC checked.  All samples were within 

the quality parameters of nanoString gene expression assays. Differential expression, pathway 

scoring, and cell type scoring were performed using nSolver advance analysis module V. 2.0.115. 

Normalisation of the data was performed using the geNorm algorithm for the selection of the 

best housekeeping genes. Genes which showed ≥ 2, fold change in their expression with a BY 

(Benjamini yekutieli) P value ≤ 0.05 were considered significant between the group. 

 

2.2.5. Evaluation of PTK2B (Protein Tyrosine Kinase 2 Beta) role in breast carcinoma  

 

2.2.5.1 PTK2B Plasmid bulking   

 

Four individual clones from MISSION™ shRNA Target Set NM_004103 in plasmid format were 

purchased from SIGMA. A mandatory procedure to scale up plasmid vectors for long-term 

storage in glycerol (to provide a continuous supply), and mini-preparation was done using XL-1 

blue competent cells, which is a strain of E. coli used for cloning procedures. Prior to 

transformation, XL-1 blue competent bacterial were defrosted on ice and a 5µl of 20 ng/µL 

diluted shRNA plasmid was added and incubated on ice for 30 minutes. Then, the cells were 

heated at 42°C for 3 minutes and immediately placed on ice for 10 minutes. 250 µL of RT Luria 

Bertini (LB) medium was added. The tubes were taped tightly and shaken horizontally (200rpm) 

at 37°C for 1h. 200 µL from each transformation was spread on 2 pre-warmed selective plates 

with 50µg/mL ampicillin and were incubated overnight at 37°C. The following day, a single 

colony was picked and inoculated into 50 mL LB Miller with ampicillin(50µg/mL) and incubated 
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at 37°C for 16h with shaking. The following day, 4 (0.5mL) cryovials from each bacterial solution 

were collected and 0.5 mL of glycerol (50%) was added for long-term storage at -80° C. 

 

 

2.2.5.2. Plasmid isolation 

 

The Isolation of PTK2B Plasmid was carried out using the QIAGEN QIAfilter Plasmid Midi Kit 

following the manufacturer instructions. The 50 mL LB tubes with inoculated bacteria, which 

(section 2.2.5.1.) were centrifugated at 6000 rpm in ultracentrifuge for 45 min at 4°C. The pellet 

was resuspended in 4 mL of (P1) buffer, then 4 mL of (P2) buffer was added and mixed by 

inverting the sealed tube 4-6 times. Tubes were incubated at RT for 5 min. Meantime, the cap 

was screwed into the outlet nozzle of the QIAfilter Cartridge and was placed in a convenient 

tube or a QIArack. Then, 4 mL of prechilled (P3) buffer was added to the lysate and was mixed 

thoroughly by inverting 4-6 times. The lysate was poured into a barrel of the QIAfilter Cartridge 

and incubated at RT for 10min without inserting the plungers. The QIAGEN-tip was equilibrated 

by applying 4 mL of QBT buffer and allowed the column to empty by gravity flow. The cap was 

removed from the QIAfilter Cartridge outlet nozzle. The plunger was gently inserted into the QIAfilter 

Cartridge and the cell lysate was filtered into the equilibrated QIAGEN-tip. The lysate was entered 

into the resin by gravity flow. The QIAGEN-tip was washed twice with 10mL of (QC) buffer. Then, 

DNA was eluted with 5 mL prewarmed (QF) buffer (at 65°C). DNA was precipitated by adding 3.5 mL 

of RT isopropanol, mixed and centrifugated at 6,000 rpm for 60 min at 4°C. The supernatant was 

carefully decanted. DNA pellet was washed with 1 mL RT (70% EtOH) and centrifugated at 15,000 g 

for 10 min. The supernatant was carefully decanted, and the pellet was dried for 5-10 min and then 

DNA was dissolved in 30 µl of TE buffer. Isolated plasmids were quantified using Nanodrop 8000 

Spectrophotometer and stored in TE buffer at -20°C.   

 

 

2.2.5.3. HEK-293T transfection  

 

The HEK-293T (human embryonic kidney cells containing SV40 T-antigen) cells were cultured in 

T25 flasks and 4 mL of cell-dedicated media until 90% confluence. A mixture of 20µL 

Lipofectamine 3000 and 500 µL OPTIMEM media was prepared in a 1,5 mL tubes and incubated 

for 30 min at RT. Meanwhile, another mix of 8µg of target plasmid and 6µg packaging plasmid 

psPAX2 with 2µg envelope plasmid pMD2, plus 12µL P3000 and 500µL OPTIMEM medium was 

prepared. 
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The first mixture was combined with the second mixture and the final solution was added to 

each of HEK-293T T25 flasks with 4 mL of cell-dedicated media and incubated in the viral 

incubator at 37°C for 16h. The following day, the medium was changed in each HEK293T flask 

with 5mL of fresh HEK293T-dedicated media. One day after, the 1st fraction of media (F1) from 

transfected HEK-293T cell culture was collected in fresh tubes, spun to remove all unwanted 

cells and filtered through 40 µm nylon strainer. Fractions were aliquoted in 1 mL Eppendorf 

tubes and stored at -20°C. 5ml of fresh dedicated media was added to the 25 HEK cells flasks. 

The following day, the 2nd fraction (F2) was collected in a similar manner.   

2.2.5.4. Infection of target breast cancer cell lines 

 

The target cells (MDA-MB-468, MDA-MB-231, MDA-MB-453, and SkBr3) were diluted to 1×10⁵ 

cells and cultured in 6-well plates with 2mL of cell dedicated media. A combination of 1mL of 1st 

fraction and 1mL of cell dedicated media with 16 µL of Hexadimethrine bromide solution (HB) 

was prepared and added to each well of target cells and incubated for 24h at 37°C. The day after, 

early in the morning, the media was changed to fresh cell dedicated media and in the late 

afternoon, the antibiotic was added. To assess the efficiency of the infection, the expression of 

the Enhanced Green Fluorescence Protein (EGFP) was measured by using a Carl Zeiss PALM 

MicroBeam fluorescent microscope and emission wavelength at 488nm. 

 

2.2.5.5. Puromycin selection 

 

Newly infected cell lines were treated with cell-dedicated media supplemented with Puromycin 

(3 µg/mL) with the aim of selecting cells containing lentiviral construct. 

 

2.2.5.6. Whole cell lysate preparation for knockdown validation 

 

Cells were harvested from three passages of post-antibiotic-selection, and protein lysates from 

the shRNA-infected cells were analysed by Western blotting using a PTK2B antibody following 

the previously stated protocol in section (2.2.4.3). 
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2.2.5.7. Cell Migration or Wound-healing assay (Scratch assay) 

 

A wound-healing assay (Scratch assay) was applied to different breast cancer PYK2 knockdown 

cell lines. Briefly, the cells were counted to 1×10⁶ cells and seeded in 6-well plates with 2mL of 

cell dedicated media supplemented with Puromycin (3 µg/mL) as non-treated cells and 

supplemented with Puromycin and Metformin (1 µL/mL) as treated cells. The following day the 

media was replaced, and serum-free media was added to starve the cells (to prevent 

proliferation). After 24h of starvation, the media was replaced, and cells washed with 1mL 

(DPBS) per well. Scratches were performed using 200µL pipette tip and ruler. The cells were 

washed with 0.5mL (DPBS) twice and fresh serum-free media was added to each well (with or 

without Metformin). Measurement was directly carried out at time 0 by utilising the LCM and 

Axiovision software for imaging the scratches. The measurement was repeated after 24h and 

48h of treatment respectively. Finally, the percentage of gap closure was calculated according 

to the formula below: 

% 𝑮𝒂𝒑 𝒄𝒍𝒐𝒔𝒖𝒓𝒆 =
𝐌𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭  𝐚𝐭 𝟐𝟒𝐡

𝐌𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭 𝐚𝐭 𝟎𝐡 
× 100 

 

2.2.5.8. Cultrex® BME Cell Invasion Assay 

 

The invasion assay was implemented according to the Cultrex® BME Cell Invasion Assay kit 

protocol. This assay was applied on MDA-MB-468, MDA-MB-231, MDA-MB-453, and SkBr3 PYK2 

depleted gene cell lines. Cells were starved in Serum-Free Medium for 24h. Meanwhile, the top 

chamber of the 96 well plate cell invasion device was coated with 50 µL of 1X BME Solution 

(already diluted) and incubated at 37° C for 4 hours. The following day, cells were harvested and 

diluted to 1 x 10⁶ cells/mL in serum-free medium (with or without Metformin). 50 µL of cell 

suspension was added for each well at the top chamber and 150 µL of the medium was added 

to each well in the bottom chamber. The plate was incubated at 37° C (with or without CO2 

according to medium requirements) for 48 hours.  The following day, wells in the top chamber 

were washed with 100 µL of 1X washing buffer and wells in the bottom chamber were washed 

twice with 200 µL of 1X washing buffer. Then, 100 µL of diluted Calcein AM was added to the 

bottom chamber wells and incubated at 37° C for 1 hour. Finally, the top chamber was removed, 

and fluorescence intensity was measured using a fluorescence microplate reader (TECAN ULTRA 

fluorescence spectrophotometer) at ~485 nm excitation and ~520 nm emission. Results were 

transported directly to Excel and analysed considering the subtraction of the average 

absorbance values from the control wells to remove background signals. The percentage of 

invaded cells were calculated regarding the control condition. 
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2.2.5.9. xCELLigence System (RTCA) for Cell Proliferation 

 

Real-time monitoring of cell -viability was carried out via the xCELLigence system, which has 

been designed with special microtiter plates that contain interdigitated gold microelectrodes. 

This assay was also applied to the same cell line that mentioned in section (2.2.5.7. Scratch 

assay) using the 16-well plates (E-Plate 16), which are integrated with microelectronic cell sensor 

arrays. Firstly, background measurement was done prior to cell culture with free cell-media as 

one sweep for 1 minute (step 1). Then, cells were harvested and diluted to 1 x 10⁶ cell/mL. 100 

µl of cell suspension was added to each well and filled with 100 µl of cell-dedicated media.  E-

Plate 16 was incubated for 30 min at RT under sterile condition. Then, the E-Plate 16 was placed 

into the cradle of the RTCA Station in the incubator and step 2 was started (proliferation curve 

overnight).  The following day, cells were treated with cell-dedicated media supplemented with 

Metformin, and the third step was started. Cell Index (CI) was measured every 20 min for 2h and 

then every hour for 48h. Finally, the obtained results were analysed via RTCA software. 

 

2.2.5.10. Mass spectrometry analysis 

 

2.2.5.10.1. Whole cell lysate preparation 

 

HER2 positive (SkBr3 and MDA-MB-453) cell lines were cultured in T75 flasks until 90% 

confluency. Cells were treated with serum-free medium (with or without Metformin) for 48h 

prior to harvesting. Media was removed, and cells were washed three times with cold DPBS. The 

remaining DPBS was carefully removed, and 200µL of Erika's lysis buffer, which contains 9.5 M 

Urea, Dithiothreitol (DTT), N-Octyl-Beta-Glucopyranoside (OGP), (details in section 2.1.2. Buffers 

and gels) supplemented with 1% PI was added directly. Lysis buffer was spread across the entire 

cells and incubated for 2 minutes. Cells lysate was collected into Eppendorf tubes and the tubes 

were transferred to an ice water bath for sonication at max power for 5 min.  Then, samples 

were stored on ice for another 5 min. This step was repeated twice, then samples were 

centrifugated for 10min at 12,000g and 4°C. The supernatant (cell lysate) was removed carefully 

and stored in fresh tubes at -80°C.  

The lysis buffer choice is decisive, to ensure a high yield of proteins for mass spectrometry (MS) 

analyses. The buffers usually used contain strong detergents such as SDS or Tween-20 as lysing 

agents, and that is inappropriate for mass spectrometry sample preparation. For this, cells were 

mechanically dissociated, lysed and denatured in Erika's buffer supplemented with 1% Protease 
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Inhibitors (PI). In this buffer, the high concentration of urea induces protein denaturation, DTT 

breaks down the secondary structure of the protein and increases the solubility of proteins.  

  

2.2.5.10.2. Cell lysate protein quantification and MS analysis 

 

Prior to MS analysis, the protein assay was applied to all samples to quantify protein 

concentrations. Bio-Rad Protein Assay, which is compatible with Erika buffer, was used as 

described in the supplier protocol. In brief, the dye was diluted to 1:5 in ddH₂O and samples 

were diluted to 1:10 in TEAB. 10 µL of standards and samples were pipetted to each well (in 

triplicates), then 200 µL of diluted dye was added per well. The well was mixed and incubated 

at room temperature in the dark for 5 min. Absorption was measured at 595nm using TECAN 

ULTRA spectrophotometer. Protein concentrations were then calculated according to the 

standard curve. 50 µg of each sample were aliquoted to fresh tubes and be subjected to MS 

analysis. SCIEX Triple TOF® 6600 mass spectrometers linked to an Eksigent nanoLC 425 HPLC 

system, was employed to analyse the protein lysate samples.  The LC system was operating in 

microflow (5 µL/min) and 3 µl of each sample was directly injected on a YMC 25 cm × 0.3 mm 

Triart-C18 column (12 nm, 3 µm particle size). The MS analysis was carried out via two 

acquisition methods; Information Dependent Acquisition (IDA) for spectral library generation 

and by Sequential Window Activation of All Theoretical Mass Spectra (SWATH-MS) data 

acquisition. The tandem mass spectrometry spectra were searched using ProteinPilot 5.0 (SCIEX) 

with a SwissProt database containing human species at 1 % False Discovery Rate (FDR) cut off.  
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CHAPTER 3 

 

Investigating the effect of Metformin on different breast cancer 

molecular subtypes: 

 

3.1. Introduction 

Metformin is an oral antidiabetic drug with well-established side effect and safety profiles. This 

drug helps diabetics to respond to insulin by lowering and maintaining blood sugar levels. It 

controls blood sugar in several ways such as helping type 2 diabetics respond better to their own 

insulin by lowering the amount of sugar created by the liver and decreasing the amount of sugar 

absorbed by the intestines. Metformin is unlikely to cause hypoglycemia or weight gain if taken 

as a monotherapy. Currently, several research studies indicated that Metformin might be 

beneficial in reducing cancer incidence of a variety of cancers including breast cancer. The anti-

proliferative activity of Metformin, and thus its possible use as an adjuvant in traditional cancer 

therapies has been highlighted in various types of cancer including breast cancer (Wurth et al., 

2014; Lin et al., 2014). All the above-mentioned features nominated Metformin as an ideal 

candidate for breast cancer treatment. 

Breast cancer is a complicated multifaceted heterogeneous disease, which shows a wide 

spectrum of structures that display diversity in clinical, morphological and molecular features. 

Breast cancer can be classified under different categories. Traditional breast cancer molecular 

classification began with ER, PR and HER2 based stratification of patients, and that is currently 

applied in clinical practice (Prat and Perou, 2011; Vuong et al., 2014). These different subtypes 

have distinct clinical outcomes and responses to endocrine therapy and chemotherapy (Yersal 

et al., 2014). 

The focus of this chapter was to study the cytostatic effect of Metformin on different 

phenotypes of breast cancer: Luminal B, Luminal A, Claudin-low, Basal-like, and HER2. 

Consistently with breast cancer phenotypes diversity, five different human breast cancer cell 

lines (BT-474, MCF-7, MDA-MB-231, MDA-MB-468, and SkBr3) representing the five molecular 

breast cancer subtypes (Luminal B, Luminal A, Claudin-low, Basal-like, and HER2) were used to 

investigate the effect of Metformin on breast carcinoma. Consequently, eleven doses of 

Metformin (0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 15, 20, 25mM) were tested in vitro to determine the 

effect of Metformin on various cellular processes including cell morphology, survival, 

proliferation and apoptosis. 
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3.2. Investigating the effect of Metformin on cell survival (viability) using (MTT assay) 

The purpose of the MTT (3- [4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) assay 

is to measure cell viability in a relatively high throughput model (e.g. 96-well plates) without the 

need for elaborate cell counting. This commonly used assay is employed to determine the 

cytostatic effect of a drug at different concentrations.  The MTT assay measures cellular 

metabolic activity by measuring the activity of reduced nicotinamide adenine dinucleotide 

(phosphate) or NAD (P) H-dependent oxidoreductases. This activity occurs in mitochondria but 

may also happen in the presence of non-mitochondrial pyridine nucleotide-dependent enzymes. 

The amount of MTT formazan determined by measuring absorbance is directly proportional to 

the number of cells (Aleshin et al., 2015; Ito et al., 2015).  

The MTT cell viability assay has been used to determine the effect of increasing concentration 

of Metformin (0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 15, 20, 25mM) on the five different breast cancer 

subtypes, for 24h and 48h. This experiment was independently repeated three times for each 

cell line. The results showed that Metformin significantly reduced the cellular metabolic activity 

of MDA-MB-468 and MDA-MB-231 triple negative breast cancer cell lines (Basal-like and 

Claudin-low, respectively), and at the different Metformin concentrations, followed by BT-474 

breast cancer cells (Luminal B).   The lethal concentration was ≥10mM after 24h and ≥5mM after 

48h. The MCF-7 (Luminal A) and theSkBr3 (HER2) cell lines were less sensitive to Metformin 

treatment after 24h and 48h of incubation. The lethal concentrations were 15 to 25mM for both 

cell lines for the 24h and 48h incubation periods. Graph Pad Prism 7 software was utilised to 

reflect the responses of the five cell lines to Metformin and at the different concentrations 

(Figure 3. 1, A and B). There were statistically significant differences in the viability of the cells 

(P≤0.001 - 0.0001 ***-****) between MCF-7 and SkBr3 and when compared to the other cell 

lines.  In addition, there was a significant statistical difference between the two-time points (24h 

and 48h) of treatment (P = 0.0001****) for the entire assay and when using TIBCO Statistica 

13.3 software (Factorial ANOVA, Metformin concentrations versus cell lines and time). 
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Figure 3.1.  Graph representing cell viability status of different breast cancer cell lines to Metformin at different concentrations, determined using 
the MTT assay for 24h (A) and 48h (B) of treatment. The 2way ANOVA (multiple comparisons) has been used in this analysis. There was a significant 
difference P ≤0.05 - 0.0001 (*-****) between MCF-7 and SkBr3 cell lines in comparison with the other cell lines within each group of treatment (0-25 
mM) individually after 24 and 48 H of exposure to Metformin. As well as, there was an extremely significant difference (P=0.0001****) between the 
two-time points (24h and 48h) of treatment with Metformin. 
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3.3. The computing of EC50 doses of Metformin for all breast cancer subtypes 

Further analysis was conducted to calculate the EC50 that corresponds to the lethal concentration of drug required to kill 50% of cell populations and 

based on the MTT assay results. The non-linear regression curve fit and log of inhibitor (Metformin) versus normalised response-variable slopes 

(absorptions) based on graphs obtained by Graph Pad Prism 7 software, was used to determine the dose inhibition response of Metformin for the breast 

cancer cell lines after 24h and 48h of treatments respectively (Figures 3.2, A and B). These doses varied between -4.7and -2.0 Log M of Metformin 

concentration after 24h of treatments and - 3.2and -2.1 Log M after 48h of Metformin treatments and according to the different breast cancer subtypes. 
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Figure 3.2. The EC50 of the five breast cancer phenotypes as determined using the MTT assay after 24h (A) and 48h(B) of treatments with Metformin. 
The EC50 mean varied between ( -4.7 to -2.0 Log M) after 24H and (- 3.2 to -2.1 Log M) after 48H of Metformin concentrations according to different 
breast cancer subtypes. Representative graph from three independent experiments.  
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To compute the original concentrations of Metformin that reflect EC50 values (1mM), the 

antilog of the EC50 mean values have been calculated according to the following equation: 

10^Log EC50 after the calculation of the EC50 for each cell line and for each individual time 

point. This was to compare between the time points and for further selection to the one-time 

point of treatment with Metformin to carry out the next microarray assay. The results showed 

a significant difference (P value <0.0001 ****) between the 24h and 48h period of exposure to 

Metformin for the Claudin-low (MDA-MB-231) cell line. The EC50 value was dropped from 

5.9mM after 24h to 2.6mM after 48h of Metformin treatment respectively. However, there was 

a significant difference (P < 0.0001- P ≤ 0.05****-*) between 24h and 48h of exposure time to 

Metformin in Luminal A (MCF-7), Luminal B (BT-474) and HER2(SkBr3) cell lines in which the 

concentrations were increased after 48h of treatments, that correlated to an increase in cell 

proliferation after 48h. On the other hand, Basal-like (MDA-MB-468) cell line showed an 

insignificant difference between 24h and 48h of treatment with Metformin (1.8mM/24h) and 

(0.9mM/48h) respectively, representing the most sensitive phenotype to Metformin treatments 

after 48h of exposure time (Figure 3. 3).   
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Figure 3. 3. The actual EC50 of Metformin concentrations (mean) for the five breast cancer cell lines showing the significant values between the two-
time points (24 H, 48 H) of treatment with Metformin that was obtained from Cell Viability Assay. The Metformin concentrations varied between (0.5 
-5.9 mM) and according to different breast cancer subtypes and time points. Luminal B (BT-474), Luminal A (MCF-7), Claudin-low (MDA-MB-231), Basal-
like (MDA-MB-468), and HER2 (SkBr3).
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3.4. Investigating the effect of Metformin on cell proliferation of the different breast 

cancer phenotypes 

 

Cell proliferation is a process of cell number increase through cell divisions and is at the interface 

between cell loss (through cell death) and differentiation. The increase in cell proliferation can 

be observed in tumour cells at a higher rate than normal cells. A cell proliferation assay, which 

has been described in the methods chapter (section 2.2.2.3. Cell proliferation assay) was based 

on thymidine incorporation measures the number of cells synthesizing DNA during cell divisions. 

This was used to measure the effect of different concentrations of Metformin on the 

proliferation of breast cancer cells. The cell lines and the concentrations of applied Metformin 

are identical to the ones that were used for the cell survival assay. 

This experiment was independently repeated three times, which demonstrated that the level of 

cell proliferation in response to different concentrations of Metformin was extremely significant 

(P value = 0.0001****) for the entire assay and between the two time points of treatment (24h 

and 48h) by using TIBCO Statistica 13.3 software. The statistical method that has been used was 

Factorial ANOVA (Metformin concentrations versus cell lines and time). 

However, utilising Graph Pad Prism 7 software and Two-way ANOVA (multiple comparisons) 

analysis showed that the Basal-like (MDA-MB-468) cell line was the less proliferated cell line 

after 24h of exposure to Metformin in all concentrations (P=*-****).  While, after 48h of 

treatment with Metformin Claudin-low (MDA-MB-231) cell line was the least proliferative 

phenotype in the highest concentrations (15-25) mM. Clearly, the HER2 (SkBr3) cell line was the 

highest proliferated cell line in the concentrations of (1-25) mM after 48h of Metformin 

treatment. In addition, the three other cell lines representing the phenotypes Luminal A (MCF-

7), Luminal B (BT-474), and Basal-like (MDA-MB-468) had a median proliferative rate after 48h 

of treatment with Metformin. The responses of the five cell lines to Metformin and at the 

different concentrations for the two-time points are shown in Figure 3.5 A and B respectively. 
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Figure 3.4. The proliferation status of different breast cancer phenotypes after treatment with different concentrations of Metformin, as determined 
using a cell proliferation assay.  Non-significant (ns) differences between the different phenotypes in proliferation ratio were noticed after 24H of 
treatment. However, the MDA-MB-468 cell line was the less proliferative cell line. Further, after 48H of treatment with Metformin, significant 
differences have been noticed between each group of cells upon different concentration.  Two-way ANOVA (P=*-****).
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3.5. Investigating the effect of Metformin on apoptosis of breast cancer subtypes 

 

Apoptosis, or programmed cell death, is cell death that is generally triggered by normal, healthy 

processes in the body. Necrosis is the premature death of cells and living tissue, caused by 

external factors, such as infection, toxins, or trauma.  

Metformin resistance analyses in different breast cancer cell lines were determined using Flow 

cytometry-based apoptosis assay, which involved the co-staining of cells with Alexa Fluor 647 

Annexin V (apoptotic cells) and propidium iodide (PI) for (non-viable cells).  

This study demonstrated that Metformin treatment significantly increased apoptosis of Basal-

like (MDA-MB-468), Claudin-low (MDA-MB-231) and Luminal B (BT-474) cell lines. The Luminal 

A (MCF-7) and HER2 (SkBr3) cell lines were less apoptotic at high concentrations of Metformin. 

PI staining demonstrated that Metformin treatments induced necrosis in all cell lines at higher 

concentrations. Flow cytometry (FACS) and Kaluza 3.1 software were used in this study to derive 

the data. Figures 3.5, 3.6, and 3.7 show the different percentages of four gates in scatter diagram 

which are Ann V- PI- (living cells), Ann V+ PI- (apoptosis cells), Ann V+ PI+ (apoptosis and dead 

cells), and Ann V- PI+ (dead cells) for different breast cancer phenotypes.  The results showed 

that (MDA-MB-231, MDA-MB-468) cell lines were more affected by the Metformin after 48h of 

treatment. The proportion of apoptotic cells were 22.22% and 19.97% respectively and when 

compared with the control cells which had 0.09% and 0.05% respectively. The BT-474 cell line 

was the second most affected cell line, while MCF-7 was the third most affected cell line after 

48h of treatment. SkBr3 was the least apoptotic at 48h post-treatment. The percentage of 

apoptotic cells was 10.33 % after 48h of treatment and when compared to the percentages of 

non-treated cells which was 0.0%.  
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Figure 3.5. Flow cytometry analysis of Metformin resistance – gating strategy for cell viability 
staining. Demonstrating the effect of 2 and1 mM Metformin (EC50) on Claudin-low (MDA-MB-
231) and Basal-like (MDA-MB-468) cell lines following 48 hours of incubation correspondingly. 
Dot plot represents gating of ‘Cells’ population, the left down square of the four gates in the 
scatter diagram represents the Ann V- PI- (living cells); left up square, Ann V+ PI- (apoptosis cells); 
right up square, Ann V+ PI+ (apoptosis and dead cells); and right down square, Ann V- PI+ (dead 
cells). Representative graph out of the average of three independent experiments. 
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Figure 3.6. Flow cytometry analysis of Metformin resistance – gating strategy for cell viability 
staining. Showing the effect of 5mM Metformin (EC50) on Luminal B (BT-474) and Luminal A 
(MCF-7) cell lines respectively following 48 h of incubation. Dot plot represents gating of ‘Cells’ 
population, the left down square of the four gates in the scatter diagram represents the Ann V- 
PI- (living cells); left up square, Ann V+ PI- (apoptosis cells); right up square, Ann V+ PI+ 
(apoptosis and dead cells); and right down square, Ann V- PI+ (dead cells). Representative graph 
out of the average of three independent experiments. 
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Figure 3.7. Flow cytometry analysis of Metformin resistance – gating strategy for cell viability 
staining. Showing the effect of 5mM Metformin (EC50) on HER2 ⁺ cell line (SkBr3) following 48 
h of incubation. Dot plot represents gating of ‘Cells’ population, the left down square of the four 
gates in the scatter diagram represents the Ann V- PI- (living cells); left up square, Ann V+ PI- 
(apoptosis cells); right up square, Ann V+ PI+ (apoptosis and dead cells); and right down square, 
Ann V- PI+ (dead cells). Representative graph out of the average of three independent 
experiments.
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Additionally, the percentage of gated cells were calculated as a combined average of early 

apoptosis cells (Ann V⁺ PI⁻) and necrosis cells (Ann V⁺ PI⁺), to compare between all breast cancer 

subtypes at different concentrations for 24h and 48 hours of treatment, respectively. This 

analysis has been completed using Graph Pad Prism 7 software (Grouped Analyses, Two-way 

ANOVA). In addition, the Bonferroni test has been used for multiple comparison correction.  

There was a significant reduction in the percentage of viable cells following increased Metformin 

concentrations in Basal-like (MDA-MB-468) and Claudin-low (MDA-MB-231) cell lines after 24h 

and 48h of treatment with Metformin respectively, (Figures 3.8; 3.9). The Basal-like (MDA-MB-

468) cell line was significantly affected by the Metformin treatments starting from the 

concentration of 2mM. A lower proportion of dead cells has been observed in Luminal A (MCF-

7), Luminal B (BT-474) and HER2 (SkBr3) cell lines after 24h and 48h of incubation with 

Metformin and using the same concentrations as above. Although, non-significant values were 

noticed between the other three breast cancer cell lines (Luminal B, Luminal A, and HER2) at 

different concentrations if compared to the control (untreated) cells after 24h and 48h of 

Metformin treatment. Besides, HER2 (SkBr3) cell line was the less apoptotic cell line after 48h 

of exposure to Metformin as shown in Figure (3.9) below. 
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Figure 3.8. Representative graph of the total percentage of combined early apoptotic and necrotic cells after 24h of treatment with Metformin. There 
were significant differences in Basal-like (MDA-MB-468) and Claudin-low (MDA-MB-231) cell lines different Metformin treatments in contrast with 
control and starting from the concentration of 2mM and 5mM respectively, (P ≤ 0.01 **). However, non-significant changes (P=ns) have been observed 
between in Luminal A (MCF-7), Luminal B (BT-474) and HER2 (SkBr3) cell lines at the different concentrations. 
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Figure 3.9. Representative graph of the total percentage of combined early apoptosis and necrosis cells after 48h of Metformin. An extreme significant 
dissimilarity has been noticed when compared between the Basal-like (MDA-MB-468) and the other three breast cancer cell lines (Luminal B, Luminal 
A, and HER2) starting at concentrations of 2 mM and up to 25 mM (P ≤ 0.0001 ****). Wile, when comparing the Claudin-low (MDA-MB-231) cell line, 
significant differences were observed (P ≤ 0.05 *) at concentrations of 2mM and up to 25mM. However, non-significant changes (P=ns) have been 
observed between in Luminal A (MCF-7), Luminal B (BT-474) and HER2 (SkBr3) cell lines at the different concentrations.
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3.6. Investigating the effect of Metformin on the morphology of breast cancer subtypes  

 

 The effect of Metformin on cell morphologies of breast cancer cell lines was observed at different concentrations. The cells were treated with the same 

previously stated concentrations of Metformin and their morphologies were evaluated using light microscopy. All observed cells became rounded and 

detached. In addition, the number of cells decreased significantly at high concentrations of Metformin treatment and when compared with untreated 

controls. Figure 3.11 shows the morphological effect of Metformin (at the concentration of 25mM) particularly on the breast cancer cell lines after 48 

hours of treatment. 

 

Figure 3.10. Representative micrographs showing the morphological influence of Metformin on the different breast cancer cell lines: Luminal B (BT-
474), Luminal A (MCF-7), Claudin-low (MDA-MB-231), Basal-like (MDA-MB-468), and HER2 (SkBr3). The upper panel represented untreated cells, 
while the bottom panel refers to treated cells with EC50 of Metformin concentration for each cell line after 48h of treatment. Representative images 
from three experiments were taken at 10X magnification with scale bars indicating 10μm.
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From the all above results, it can be concluded that the most sensitive phenotype to Metformin 

is the Basal-like (MDA-MB-468) cell line while the less sensitive subtype is the HER2 (SkBr3) cell 

line.  It can also be suggested that 1mM and 4mM (1/2 EC50 and 2EC50) are optimal doses for 

future work, respectively and following 48h of treatment. The 1/2 EC50 (1mM) concentration 

was selected for the Gene Expression Microarray assay, in order to keep as many as possible 

living cells to extract sufficient RNA. However, the 2EC50 (4mM) dose was used to compare the 

effect of high concentration of Metformin treatment.  

3.7. Discussion 

The work presented in this chapter was aimed at investigating the cytostatic effect of Metformin 

on different breast cancer cell lines, that represent the breast cancer cell phenotypes: Luminal 

B, Luminal A, Claudin-low, Basal-like and HER2. This effect was assessed by determining cell 

viability, cell proliferation, and apoptosis of the cell lines. In addition, the morphological effect 

of Metformin on the cells was also considered. These findings enabled the selection of doses 

and cell lines to be determined for the following experimental work.  

Interestingly, Metformin treatment significantly reduced cell survival and proliferation, whilst 

inducing cell apoptosis and enhance cell necrosis. Besides, the Basal-like cell line (MDA-MB-468) 

has been noticed as much affected cell line. The lethal dose (EC) was ≤ 2mM and the EC50 

concentration was 1mM after 48h of treatment, respectively. In addition, Metformin affected 

the appearance of the cells, which became a rounded shape and floated. Comparatively, the 

HER2 subtype (SkBr3 cell line) was the least affected phenotype and the EC50 concentration was 

much higher 2.3mM after 48h of treatment.  

These observations were correlated with previous findings (Liu et al., 2009) that showed that 

Metformin inhibits in vitro, cell proliferation and survival of triple negative breast cancer cells. 

Another study (Liu et al.,   2012) demonstrated that using Metformin alone or in combination 

with chemotherapeutic agents inhibited cell proliferation in triple negative breast cancer cell 

lines. Moreover, Metformin has previously been shown to inhibit the growth of breast cancer 

cell lines (MCF-7, MDA-MB- 231 and MDA-MB-435) in vitro, and via AMPK induction and mTOR 

inhibition (Zakikhani et al., 2006; Dowling et al., 2007; Phoenix et al., 2009; Hadad et al., 2009; 

Hadad et al., 2011).   
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In addition, Metformin potential to reduce the proliferation rate of a subset of cancers can only 

be achieved if this cancer has particular molecular characteristics and if patient-specific 

pharmacokinetic variables lead to an adequately high level of drug exposure. For instance, it has 

been reported that Metformin reduced mortality for specific-HER2+-breast-cancer users versus 

non-users (Klil-Drori et al., 2017). However, the outcomes of this study raised a substantial 

concern regarding Metformin exposure time was imbalance over the entire observation time 

(type II diabetes mellitus (T2DM) long-time users and new-users) and referred to as biased (Klil-

Drori et al., 2017). Similarly, Sonnenblick and colleagues in 2017 stated in their study that 

Metformin may improve the worse prognosis, that is cancer associated with diabetes and insulin 

treatment, at most in patients with primary HER2-positive and hormone receptor-positive 

breast cancer (Sonnenblick et al., 2017).  

In summary, the results obtained in this study guided the project to select two breast cancer 

subtypes for further studies; the MDA-MB-468 Basal-like and the SkBr3 HER2 cell lines.  It also 

allowed the selection of two different concentrations of Metformin: ½ EC50 and 2EC50 (1 and 

4mM, respectively) which will be used in the experiment detailed in chapter 4. Finally, the aim 

of this part was to interrogate the Metformin effect on different subtypes of breast cancer and 

the next chapter will present a step-wise process of identification of involved genes and cellular 

pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 | P a g e  
 

CHAPTER 4 

 

Identification of novel markers and cellular pathways associated with 

BASAL-LIKE and HER2 breast cancer subtypes 

 

 4.1. Introduction 

 

One of the most important applications of DNA microarrays is the analysis of cancer cells 

transcripts, which can make a comparison of gene expression with normal cells. Using powerful 

tools including transcript profiling and clustering to classify a tumour into subtypes might lead 

to a preferable diagnosis and remedy of cancer (Dadkhah et al., 2015). Moreover, it offers the 

capability to design and develop personalised therapeutic treatments by improving 

understanding of the molecular basis of cancer and supporting the clinical decision (Mustapha 

et al., 2017). Furthermore, great efforts have been made to characterise and identify new 

molecules, which could improve the prediction of metastasis risk and increase the probability of 

therapy response (Yersal and   Barutca, 2014). 

 

 

4.2. The applications of microarray in gene expression 

 

DNA microarrays or Nucleic acid arrays are a robust and cost-effective tool for a large-scale 

analysis of parallel gene expression studies, using a specific predesigned DNA sequence 

immobilised or bound on a solid surface such as glass which is known as a chip. This technology 

was used to measure the proportional concentration of nucleic acid sequences in a mixture of 

labelled nucleic acids through hybridisation properties and further detection of their outcomes. 

Rapid progress has been achieved in DNA arrays technology since the late '90s and 2000s. In 

addition to this, the Human Genome Project completion in 2001 provided the raw information 

needed to confirm that the arrays could be made entirely representing the genes in a genome, 

which raised challenges from biological exploration to medicine applications (Bumgarner, 2014). 

 

 

The high throughput nature and the powerful combination of probe design algorithms and 

validation methods, of the technological evolution of surface chemistry and novel spotting 

techniques of DNA materials enabled the success of this technique. This technology has been 
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developed and combined as an ordinary tool in research laboratories and now has been 

converted into the clinic. Hence, it can be a worthwhile tool to understand the mechanisms 

behind a given disease system such as cancer. 

DNA microarray is divided into two types, depending on the probe material spotted on the array 

surface: cDNA microarrays and oligonucleotide microarrays (Govindarajan et al., 2012). In 

microarrays technology, 1000’s of nucleic acids is bound to a surface (chip) and are used to 

measure the relative concentration of nucleic acid sequences in a mixture via hybridization and 

following the detection of the hybridization events (Cooper, 2001). 

 

The focus of this chapter is to identify differences in gene expression between the two 

phenotypes of breast cancer. Up and down-regulated genes in BASAL-LIKE (MDA-MB-468) vs. 

HER2, (SkBr3) cell lines will be considered candidate markers for further investigations (chapter 

5). 

 

4.3. Identification of markers associated with BASAL-LIKE and HER2 breast cancer 

subtypes by applying the microarrays technique: 

 

DNA microarray techniques have been used to identify the variables between Metformin 

treated and untreated samples. Regarding the previous findings, two cell lines have been chosen 

for further investigations. Those are the more sensitive cell line BASAL-LIKE (MDA-MB-468) and 

the less sensitive one HER2, (SkBr3). Moreover, two concentrations of Metformin have been 

used, which are the ½ EC50 and the 2 EC50 concentrations (1 and 4 mM, respectively) and in 

addition to the control. 

RNA extracts were obtained from three independent experiments in duplicate. The purity and 

integrity of RNA were determined using the Nanodrop and the Bioanalyser instruments, 

respectively. cRNAs samples were hybridised to Human GE 4x44 V2 Microarray slides, each 

containing 4 arrays with 27,958 RNA probes representing whole human genome and 10 x 32 E1A 

spike-in control probes according to the Agilent Technologies protocol as previously mentioned 

in materials and methods chapter section (2.2.3). 

Data were extracted via Agilent Feature Extraction Software and were normalised via Partek 

Genomics Suite software. Later, the data were imported to TIBCO Statistica 13 software after 

labelling as zero for control and one for treatment; and transposed to a txt file. The entire data 

was run through the Artificial Neural Network (ANN) stepwise analysis, as previously mentioned 

in section (2.2.3.6.) Microarray Data Analysis. 
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4.3.1. RNA isolation and integrity determination for MDA-MB-468 and SkBr3 samples 

 

In this study, RNAs were isolated from three independent duplicates.  STAT 60 and Qiagen 

RNeasy Mini Kit were used for RNA-Extraction, following the manufacturer's protocol.  RNA 

samples’ quality was examined using Agilent RNA 6000 Nano Kit with RNA Nano Chips. Visual 

results for the quality analysis of each RNA sample are presented by an electropherogram trace 

(diagrams of fluorescence vs. length). The RNA integrity number (RIN), and the sample specific 

quality grade was computed from several features of the RNA electropherogram trace such as 

the ratio of 28S to 18S rRNA and the height of the 28S peak. 

RIN was expressed on a scale ranging from 0 to 10 (with 10 being the best quality). 

Electropherograms for each analysed sample are shown in (Figures A.4.1. in Appendix). All 

tested RNA samples showed high RNA concentration and maximum RIN numbers; therefore, 

they have been adopted for further processing (Table 4.1). 
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Table 4.1. Results of the analysis of RNA concentration and integrity 

 
Sample  Definition Concentration 

(ng/μL)  
RNA Integrity Number 

(RIN)  

1 SkBr3 control_1 243.3186 9.8 

2 SkBr3 control_2 217.423 9.9 

3 SkBr3 1mM_1 362.953 10 

4 SkBr3 1mM_ 2 375.5218 9.8 

5 SkBr3 4mM_1 197.5103 9.6 

6 SkBr3 4mM_ 2 386.245 9.8 

7 SkBr3 control_ 3 641.6473 9.7 

8 SkBr3 control _4 400.7732 9.8 

9 SkBr3 1mM_ 3 506.3795 9.8 

10 SkBr3 1mM_ 4 364.0004 9.8 

11 SkBr3 4mM_ 3 442.9556 9.3 

12 SkBr3 4mM_ 4 325.0985 9.3 

13 SkBr3 control _5 250.5866 9.9 

14 SkBr3 control_ 6 207.1992 9.5 

15 SkBr3 1mM_ 5 347.4929 10 

16 SkBr3 1mM_ 6 275.6745 9.9 

17 SkBr3 4mM_ 5 273.0768 9.8 

18 SkBr3 4mM_ 6 281.2303 9.8 

19 MDA-MB-468 control_ 7 180.3707 10 

20 MDA-MB-468 control_ 8 613.668 10 

21 MDA-MB-468 1mM_ 7 104.704 10 

22 MDA-MB-468 1mM_ 8 264.6074 10 

23 MDA-MB-468 4mM_ 7 785.6243 8.5 

24 MDA-MB-468 4mM_ 8 461.2615 9.3 

25 MDA-MB-468 control _9 333.4336 10 

26 MDA-MB-468 control _10 342.4385 10 

27 MDA-MB-468 1mM_ 9 320.1664 9.4 

28 MDA-MB-468 1mM_ 10 204.9831 9.9 

29 MDA-MB-468 4mM_ 9 329.6005 8.3 

30 MDA-MB-468 4mM_ 10 419.5941 10 

31 MDA-MB-468 control_ 11 369.41 9 

32 MDA-MB-468 control_ 12 456.615 9.9 

33 MDA-MB-468 1mM_ 11 435.664 9.4 

34 MDA-MB-468 1mM_ 12 500.4548 9.7 

35 MDA-MB-468 4mM_ 11 322.7923 7.5 

36 MDA-MB-468 4mM_ 12 439.95 9.1 

 
Results are shown for RNA samples derived from two sets of cell lines (Samples 1-18) from HER2 
(SkBr3) and (Samples 19-36) from BASAL-LIKE (MDA-MB-468) cell lines. 
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4.4. Labelling and cRNA quality assessment  

 

After the quality control check has been passed successfully, the next step was to reverse 

transcribe all mRNA samples into cDNA. Double-stranded cDNAs were then transcribed into RNA 

using transcription mix containing a Cy3 dye to create Cy3-labelled complementary RNA (cRNA). 

Then, the generated cRNAs were assessed in terms of their concentration and the concentration 

of the incorporated Cy3 dye, (Figure 4.1).   

 

 
 

Figure 4.1. Schematic representation of the main steps involved in a microarray experiment. 
Adapted from (Duggan et al., 1999). The various steps involved in a typical cDNA microarray 
experiment are shown above. This includes preparation of cDNA probes and differential 
fluorescent tagging of the respective reference and test samples, the simultaneous hybridization 
of the labelled cDNA by complementary base pairing to the probes on the microarray chip and 
measuring fluorescent intensity as the level of gene expression.  
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These results were used to determine cRNA yield and Specific activity to ensure the sufficient 

integration of the Cy3 labelling. Both cRNA yield and Specific Activity (SA) parameters have met 

the quality standard and as recommended by the manufacturer (cRNA yield >5, SA >6). 

According to these data, the cRNA amount was adjusted to 1.65μg as also recommended by the 

manufacturer and 4-pack Microarray slide formats have been used (Tables 4.2, 4.3).  The cRNAs 

samples were hybridised to Human GE 4x44 V2 Microarray slides, each containing 4 arrays with 

27,958 RNA probes, representing the complete human genome and 10 x 32 E1A spike-in control 

probes. Quality Control (QC) Report obtained together with raw data for each sample includes 

a Spike-in check that shows the dose/response curve of the spike-ins from the detection limit to 

the saturation point. Spike-in Linearity check plots derived from the QC Report for each sample 

analysed and are showed in the Appendix (A.4. 2.). All samples examined presented linearity of 

99%, which indicates an accurate and uniform array scanning and a satisfactory level of 

sensitivity of signal detection and saturation.  

 
Table 4.2. Table representing cRNA yield and specific activity results (cRNA yield >5; SP Act>6) 
 

Sample ID Cy3conc. 
(pmol/ μl)  

cRNA conc. 
(μg/μL)  

260/280 
Ratio 

cRNA 
Yield(μg) 

Specific 
activity/pmol 

Vol per 
1.65 μg 

1 5.54 360.2 2.25 10.806 15.380 4.580 

2 5.08 311.9 2.3 9.357 16.287 5.290 

3 3.68 270.7 2.25 8.121 13.594 6.095 

4 4.22 274.6 2.26 8.238 15.367 6.008 

5 4.02 274.1 2.25 8.223 14.666 6.019 

6 3.2 239.9 2.26 7.197 13.338 6.877 

7 2.72 190.8 2.21 5.724 14.255 8.647 

8 2.45 165.3 2.21 4.959 14.821 9.981 

9 4.98 343.6 2.28 10.308 14.493 4.802 

10 4.48 313 2.26 9.39 14.313 5.271 

11 4.09 274 2.24 8.22 14.927 6.021 

12 4.49 284.9 2.25 8.547 15.759 5.791 

13 2.6 198.1 2.25 5.943 13.124 8.329 

14 3.1 228.8 2.26 6.864 13.548 7.211 

15 2.68 180.3 2.21 5.409 13.865 8.483 

16 2.5 194.5 2.19 5.835 13.778 9.151 

17 2.19 158.6 2.18 4.758 13.808 10.403 

18 0.77 79.25 2.19 2.3775 9.7160 20.820 

           
For the first set of samples HER2 (SkBr3) which met higher than recommended specific activity 
and cRNA yields. 
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Table 4.3. Table representing cRNA yield and specific activity results (cRNA yield >5; SP Act>6) 
 

Sample ID Cy3conc. (pmol/ 
μl)  

cRNA 
conc. 

(μg/μL)  

260/280 
Ratio 

cRNA 
Yield(μg) 

Specific 
activity/pmol 

Vol per 
1.65 μg 

19 4.26 316.4 2.22 9.492 13.464 5.215 

20 8.87 435.9 2.29 13.077 20.349 3.785 

21 3.05 264.4 2.18 7.932 11.536 6.241 

22 3.49 252.7 2.24 7.581 13.811 6.529 

23 2.49 167.8 2.19 4.455 15.892 11.111 

24 2.2 183.2 2.16 5.496 12.009 9.007 

25 4.01 278.6 2.21 8.358 14.393 5.922 

26 2.55 194.4 2.23 5.832 13.117 8.488 

23 2.36 148.5 2.19 4.704 11.926 10.523 

27 1.87 156.8 2.19 5.547 13.953 8.924 

28 2.58 184.9 2.24 3.945 13.840 12.548 

29 1.82 131.5 2.21 9.219 15.197 5.369 

30 4.67 307.3 2.24 5.238 12.658 9.450 

31 2.21 174.6 2.25 5.058 12.040 9.786 

32 2.03 168.6 2.24 3.534 9.677 14.007 

33 1.14 117.8 2.17 5.217 13.744 9.488 

34 2.39 173.9 2.29 3.141 9.169 15.759 

35 0.96 104.7 2.12 3.096 14.826 15.988 

29 1.53 103.2 2.24 5.709 6.831 8.671 

36 1.3 190.3 2.07 4.686 5.570 10.563 

 
For the second set of samples BASAL-LIKE (MDA-MB-468) which met higher than recommended 
specific activity and cRNA yields. 
 

 

4.5. Microarray data analysis 

 

It was necessary to summarise and transform all the probe set IDs into genes and perform 

Normalization using the Partek Genomics Suite analysis software (trial version). Then, the 

differential fold change (expression) was statistically computed using the previously 

mentioned software. The P-value was processed using unpaired T-test with Benjaminin 

Hochberg and FDR multiple corrections. Then, two type approaches have been used to analyse 

the Microarrays data. Firstly, the Artificial Neural Network (ANN) stepwise analysis has been 

applied to the entire data to visualise differentially expressed genes for both breast cancer 

phenotypes. In contrast, the regression-based method and Fold change (Fc) -based method 

have been used to differentiate expressed genes in each phenotype of breast cancer 

separately. 
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4.5.1. Artificial Neural Network (ANN) stepwise analysis-based approach 

 

Artificial neural networks (ANNs) are intelligent thinking machines, working in non-linear 

mapping structures, based on the function of the human brain. They have been shown to be 

comprehensive and employable in a wide range of application.  In addition, they are multivariant 

analysis methods.  This powerful tool can treat complicated problems, identify and learn 

correlated patterns between input data sets and corresponding target values. Moreover, ANNs 

can be used to predict the output of new independent input data with high predictive accuracies 

(Lancashire et al., 2009). 

The first approach has been achieved by importing the entire data into TIBCO Statistica 13.3 

software and running with the Artificial Neural Network (ANN) stepwise analysis as previously 

mentioned in the methods chapter section (2.2.3.6.1. Artificial neural networks-based 

approach). To classify the samples as high or low gene expression, the median expression-based 

class split for individual genes predictors was carried out by calculating the median expression 

value for the average expression. 

 

4.5.2. Interactome Network Map for both BASAL-LIKE (MDA-MB-468) and HER2 

(SkBr3) cell lines 

 

Interactome network maps have been used to demonstrate the interactions between the 

expressed genes. In the network map, a node symbolizes a single gene, and the link between 

genes is known as an edge, which can be presented with an arrow to indicate the direction of 

the link from a source node to a target node. Cytoscape, which is an open source bioinformatics 

software platform, has been utilised to visualize the molecular interaction networks and 

integrate with gene expression profiles (Tong et al., 2014).   

Figure 4.2. demonstrated the actual interaction of the top 100 genes into a visual network map. 

The red arrows indicated to the up-regulated genes while the blue arrows represented the 

down-regulated genes. In addition, the width of the arrow shows the strength of the relation 

between the interacted genes. For a better identification to the system drivers within the data 

for both the source (influencers) and the target (the influenced), further analysis was carried out 

based on the entire matrix of interactions. Each gene was used as a source and a target 

separately; thus, the sum of all the interactions leading from or towards it were computed and 

the genes then ranked based on the highest absolute value. This analysis revealed, the highest 

influenced and influencer genes within this system (Table 4.4).  
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On comparison of the top 100-genes interactions map, the highest-ranking hubs from Figure 4.2. 

were also found to be top ranking target drivers (Table 4.4). As seen, the strongest influencers 

(source hubs) of the system are Bet1 Golgi Vesicular Membrane Trafficking Protein Pseudogene 

1 (BET1P1), YLP Motif Containing 1(YLPM1), Death-Associated Protein Kinase 3(DAPK3) which, 

are all found in the map but not easy to identify as the key influencers. While the strongest 

influenced (target hubs) were SKI/DACH Domain Containing 1 (Skida1), KIAA0232 (KIAA0232), 

and ATP Binding Cassette Subfamily B Member 8(ABCB8) which, easily can be identified as the 

key influencers. In addition, Skida1 has been noticed to be a positive source and a negative 

target at the same time. Dihydrolipoamide Dehydrogenase (DLD) has been found as a positive 

and negative target in the same analysis. Moreover, the top 100 gene map for the BASAL-LIKE 

(MDA-MB-468) and HER2 (SkBr3) cell lines when taken together, were generally negatively 

regulated. 
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Figure 4.2. Interactome of the top 100 interactions between the 60 common genes in BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) cell lines for the 
two treatments concentrations compared to control. Red arrow represents the upregulated gene, while the blue arrows represent downregulated 
genes. List of the 60 interacted genes can be found in Appendix Table A. 4.1.
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Table 4.4. BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) associated top 12 driver genes, for 
the two treatment concentrations compared to control. 

 
 

 
 
 
 

Rank Target Gene Name  Average 
interaction sum 

Absolute 
value  

1 Skida1 SKI/DACH Domain Containing 1 -331.26 331.26 

2 KIAA0232 Uncharacterise d Protein KIAA0232 -322.36 322.36 

3 ABCB8 ATP Binding Cassette Subfamily B 
Member 8 

-310.6 310.6 

4 LOC44108
1 

POM121 Membrane Glycoprotein 
(Rat) Pseudogene 

-297.96 297.96 

5 SRSF1 Serine And Arginine Rich Splicing 
Factor 1 

-270.87 270.87 

6 STIM1 Stromal Interaction Molecule 1 -251.68 251.68 

7 DLD Dihydrolipoamide Dehydrogenase -242.12 242.12 

8 METAP2 Methionyl Aminopeptidase 2 -238.74 238.74 

9 EIF4E Eukaryotic Translation Initiation 
Factor 4E 

-224.14 224.14 

10 MAFF MAF BZIP Transcription Factor F -201.36 201.36 

11 DLD Dihydrolipoamide Dehydrogenase 122.24 122.24 

12 Uqcr10 Ubiquinol-Cytochrome C Reductase, 
Complex III Subunit X 

142.28 142.28 

 
 
The top absolute value ranked source (influencers) and target (influenced) drivers were 
identified by the driver analysis, a method that utilises the entire matrix of interactions with 
each gene used as a source and a target separately, to calculate the sum of all the interactions 
leading from or towards it. 
 
 
 

Rank source Gene Name  Average 
interaction sum 

Absolute 
value  

1 BET1P1 Bet1 Golgi Vesicular Membrane 
Trafficking Protein Pseudogene 1 

-331.26 331.26 

2 YLPM1 Nucleophosmin 1  -322.36 322.36 

3 DAPK3 Death-Associated Protein Kinase 3 -310.6 310.6 

4 FLII FLII, Actin Remodeling Protein -297.96 297.96 

5 TTC7B Tetratricopeptide Repeat Domain 7B  -270.87 270.87 

6 KIAA1161 Myogenesis Regulating Glycosidase 
(Putative) 

-251.68 251.68 

7 GOLGA2 Golgin A2 -242.12 242.12 

8 TMEM248 Transmembrane Protein 248 -238.74 238.74 

9 KIAA0040 Uncharacterise d Protein KIAA0040 -224.14 224.14 

10 RIBC2 RIB43A Domain With Coiled-Coils 2 -201.36 201.36 

11 Skida1 SKI/DACH Domain Containing 1 122.24 122.24 

12 ETHE1 ETHE1, Persulfide Dioxygenase 142.28 142.28 
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4.5.3. Interactome Network Map for BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) 

cell lines assessed separately 

The same approach (ANN) stepwise analysis has been applied to the same population after 

separating the data into two groups, BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) to compare 

gene expression of each cell line independently. Again, the results were presented as molecular 

interaction networks for BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) cell lines, respectively 

(Figures 4.3. and 4.4.). In addition, the analysis of entire matrix interactions was also carried out 

to identify the highest influenced and influencer genes within this system (Table 4.5 and Table 

4.6).  

As before, the top 100 highest intensity interactions between the 48 probes in BASAL-LIKE 

(MDA-MB-468) cells were selected for a better identification of key driver hubs within these 

cells.  From the map in Figure 4.3, it can be observed that the top target hubs or drivers based 

on the highest number of in-degree edges in order are IZUMO Family Member 2 (IZUMO2), 

Serpin Family E Member 1 (SERPINE1), Coagulation Factor VIII Associated 2 (F8A2), EGF Like 

Domain Multiple 7 (EGFL7), and B-Raf Proto-Oncogene, Serine/Threonine Kinase (BRAF) while, 

the top target hubs were Limb Development Membrane Protein 1 (LMBR1), Bromodomain 

Adjacent To Zinc Finger Domain 2B (BAZ2B), ABR, RhoGEF And GTPase Activating Protein (ABR), 

and NK3 Homeobox 2 (NKX3-2). The overall interaction feedback loops were negative except for 

a few positive loops.  

 

On the other hand, the top 100 strongest interactions between the 77 combined genes in HER2 

(SkBr3) cells, were found to be between G Protein-Coupled Receptor 62 (GPR62), Chromosome 

1 Open Reading Frame 159(C1orf159), Synapsin II(SYN2) and Glucuronidase Beta (lnc-GUSB-5) 

as a source. However, Doublecortin Domain Containing 1 (DCDC1), HIG1 Hypoxia Inducible 

Domain Family Member 1A Pseudogene 1 (HIGD1AP1), ADAM Metallopeptidase With 

Thrombospondin Type 1 Motif 9 (ADAMTS9), and Iduronate 2-Sulfatase (IDS) were ranked as the 

robustly interacted targets, as shown in Table 4.6. In this map, both positive and negative 

feedback loops can be observed.  Additionally, it was noticeable that the F-Box And Leucine-Rich 

Repeat Protein 8 (FBXL8) probe has been found as a “common gene” as a source and target in 

the same time in HER2 (SkBr3) cells (Table 4.6). 

Moreover, Synapsin II (SYN2) was noticed as "common" between the two populations. The 

former played as a target in BASAL-LIKE (MDA-MB-468) phenotype and as a source in HER2 

(SkBr3) cell line. Over and above, the top four ranked sources and targets were negative 

feedback loops (Figure 4.4).  
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Figure 4.3. Interactome of the top 100 interactions between the 48 common genes in BASAL-LIKE (MDA-MB-468) cell line. The red arrows represent 
up-regulated genes, while the blue arrows represent down-regulated genes. List of the 48 interacted genes can be found in Appendix Table A.4.2. 
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Table 4.5. BASAL-LIKE (MDA-MB-468) associated top 12 driver genes for the two treatment 
concentrations compared to control 

 

Rank Source Gene Name Average 
interaction 

sum  

Absolute 
value 

1 LMBR1 Limb Development Membrane 
Protein 1 

-227.05 227.05 

2 BAZ2B Bromodomain Adjacent To Zinc 
Finger Domain 2B 

-220.88 220.88 

3 ABR ABR, RhoGEF And GTPase 
Activating Protein 

-215.39 215.39 

4 NKX3-2 NK3 Homeobox 2  -215.03 215.03 

5 CNTNAP5 Contactin Associated Protein-Like 
5 

-204.03 204.03 

6 ECT2L Epithelial Cell Transforming 2 Like -198.38 198.38 

7 PKDCC Protein Kinase Domain Containing, 
Cytoplasmic 

61.58 61.58 

8 STARD7 StAR-Related Lipid Transfer 
Domain Containing 7 

69.59 69.59 

9 F2 coagulation factor II 71.22 71.22 

10 THC2670954 Unknown 80.26 80.26 

11 TBC1D5 TBC1 Domain Family Member 5  122.26 122.26 

12 RGS7 Regulator Of G Protein Signaling 7 142.28 142.28 

 

Rank Target Gene Name Average 
interaction 

sum  

Absolute 
value 

1 IZUMO2 IZUMO Family Member 2 -227.05 227.05 

2 SERPINE1 Serpin Family E Member 1 -220.88 220.88 

3 F8A2 Coagulation Factor VIII Associated 
2 

-215.39 215.39 

4 EGFL7 EGF Like Domain Multiple 7 -215.03 215.03 

5 BRAF B-Raf Proto-Oncogene, 
Serine/Threonine Kinase 

-204.03 204.03 

6 SYN2 Synapsin II  -198.38 198.38 

7 TNFRSF12A TNF Receptor Superfamily Member 
12A 

61.58 61.58 

8 NACC1 Nucleus Accumbens Associated 1 69.59 69.59 

9 SSBP4 Single-Stranded DNA Binding 
Protein 4 

71.22 71.22 

10 TOM1L1 Target Of Myb1 Like 1 Membrane 
Trafficking Protein 

80.26 80.26 

11 THC2673793 Unknown 122.26 122.26 

12 SLC4A1AP Solute Carrier Family 4 Member 1 
Adaptor Protein 

142.28 142.28 

 
The top absolute value ranked source (influencers) and target (influenced) drivers. These were 
identified by the driver analysis, a method that utilizes the entire matrix of interactions with 
each gene used as a source and a target separately, to calculate the sum of all the interactions 
leading from or towards it.
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Figure 4.4. Interactome of the top 100 interactions between the 77 common genes in HER2 (SkBr3) cell line. The red arrows represent upregulated 
genes, while the blue arrows represent downregulated genes. List of the 77 interacted genes can be found in Appendix Table A.4.3.
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Table 4.6. HER2 (SkBr3) associated top 12 driver genes for the two treatment concentrations 
compared to control 

 

Rank Source Gene Name  Average 
interaction 

sum 

Absolut
e value 

1 GPR62 G Protein-Coupled Receptor 62 -213.14 213.14 

2 C1orf159 Chromosome 1 Open Reading 
Frame 159 

-209.3 209.3 

3 SYN2 Synapsin II  -201.76 201.76 

4 lnc-GUSB-5 Glucuronidase Beta -184.4 184.4 

5 SLFN12 Schlafen Family Member 12 41.77 41.77 

6 COL1A2 Collagen Type I Alpha 2 Chain 44.5 44.5 

7 A_33_P326688
9 

Unknown 45.69 45.69 

8 UNC5CL Unc-5 Family C-Terminal Like 46.21 46.21 

9 FBXL8 F-Box And Leucine-Rich Repeat 
Protein 8 

49.36 49.36 

10 MAPK11 Mitogen-Activated Protein Kinase 
11 

52.03 52.03 

11 FAM205BP Family With Sequence Similarity 
205 Member B, Pseudogene 

53.26 53.26 

12 ATP6V0D2 ATPase H+ Transporting V0 Subunit 
D2 

70.78 70.78 

 

Rank Target Gene Name  Average 
interaction 

sum 

Absolute 
value 

1 DCDC1 Doublecortin Domain Containing 1 -213.14 213.139977
9 

2 HIGD1AP1 HIG1 Hypoxia Inducible Domain 
Family Member 1A Pseudogene 1 

-209.3 209.3 

3 ADAMTS9 ADAM Metallopeptidase With 
Thrombospondin Type 1 Motif 9 

-201.76 201.76 

4 IDS Iduronate 2-Sulfatase -184.4 184.4 

5 A_33_P333878
8 

Unknown 41.77 41.77 

6 FBXL8 F-Box And Leucine-Rich Repeat 
Protein 8 

44.5 44.5 

7 CAT Catalase  45.69 45.69 

8 ACO2 Aconitase 2  46.21 46.21 

9 DDX1 DEAD-Box Helicase 1 49.36 49.36 

10 A_33_P332689
8 

Unknown 52.03 52.03 

11 NOXA1 NADPH Oxidase Activator 1 53.26 53.26 

12 FAM122A Family With Sequence Similarity 
122A 

70.78 70.78 

 
The top absolute value ranked source (influencers) and target (influenced) drivers. These were 
identified by the driver analysis, a method that utilizes the entire matrix of interactions with 
each gene used as a source and a target separately, to calculate the sum of all the interactions 
leading from or towards it. 
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The number of samples that have been used for the Gene Expression Microarray experiment 

was 36 samples only, which were sufficient to run the ANN. As previously cited, prior to the ANN 

training, the sample will randomly be divided into three subsets; 60% for training, 20% for 

validation and 20% for testing. However, to compare each cell line individually and compare 

between the two concentrations, as well as separately, means that the number of samples will 

be reduced. Hence, an alternative method was needed. For this aim, the Regression-based 

method and fold change- based method was utilised for data analytics. 

 

4.5.4. Regression-based method and fold change- based method for analysis of data 

from BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) cell lines 

This approach has been conducted to compare and analyse the gene expression levels between 

BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) cell lines samples individually, as well as to 

compare the different doses of Metformin treatments that have been used 1 and 4 mM). The 

two-dimensional comparison was conducted in the second approach, between the different 

breast cancer subtypes as the main comparison and between the different doses of Metformin 

as sub comparison. 

To apply this approach, an experimental group was created with the MDA-MB-468 cell line as a 

first group, and SkBr3 cell line as a second group. Each group was separately analysed. Moreover, 

two other subgroups were created according to the two treatments concentrations (EC 25 and 

2 EC50) as shown in Figure 4.5. 

 

 

 
 
Figure 4.5. Schematic diagram showing the second approach of Gene expression microarray 
data analysis. Each cell line was divided into two subgroups and two statistical methods were 
applied to each subgroup. 
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This analysis was performed with a regression-based method, which calculated the residuals and 

the standard residuals. The average of standard residuals was calculated, and the genes were 

ranked based on their expression values. Moreover, the fold change (Fc) for the same set of 

samples was calculated using one cut-off criterion (2 Fc ≥ -2), p-value (p) ≤ 0.05. The P value for 

each gene was calculated with multiple testing correction using Student T-DIST, Bonferroni 

correction, and Benjamini Hochberg. A detailed description was provided in the method chapter 

section (2.2.3.6.2. Regression-based method and fold change (Fc)- based method). 

This approach allowed the choice of highly significant Bonferroni values and minimise the false 

discovery rate (FDR). The reported differential expressions in this study were obtained from both 

the regression-based approach and Fold change-based approach, respectively. 

The Morpheus-Broad Institute online software was utilised to create the Hierarchical clustering 

heat maps. The heat map is a two-dimensional representation of data in which values are 

symbolized by colours.  The heat maps in Figures 4.6, 4.7 show a graphical representation of the 

total number of differentially expressed genes (where individual values are represented as 

colours) out of the previously mentioned approaches (Fold change- based and regression-based, 

respectively in BASAL-LIKE (MDA-MB-468). In addition, Tables 4.7 and 4.8 display the list of 

upregulated and downregulated genes in BASAL-LIKE (MDA-MB-468) cell line samples and in 

different concentrations when compared to control. 

Figures 4.8 and 4.9 referred to HER2 (SkBr3) fold change and regression analysis data 

representation individually, while Tables 4.9 and 4.10 show the different genes expression 

patterns that are significantly upregulated or downregulated. This data is obtained from both 

(Fc), and Regression analysis in HER2 (SkBr3) cell line samples, the Bonferroni Correction was ≤ 

0.05(*). 
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Figure 4. 6. Heat map representing the difference in the gene expression pattern between 
BASAL-LIKE (MDA-MB-468) cell line samples that were treated with different concentrations 
of Metformin and compared to control with Fc 2 ≥ -2. The colour gradient is between red and 
blues with white in the middle. The heat map shows 26 genes differently expressed according 
to different treatments.
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Table 4.7 shows the number of genes that satisfied the cut-off criteria Fc 2 ≥ -2, Bonferroni Correction ≤ 0.05(*). Gene expression pattern revealed 

differential expression of 26 genes (with cut-off FC 2≥ -2, Bonferroni Correction ≤ 0.05(*), including 9 upregulated and 17 downregulated in BASAL-LIKE 

(MDA-MB-468) cell line samples treated with different concentrations and compared to controls.  

 
Table 4. 7. List of genes upregulated and downregulated in BASAL-LIKE (MDA-MB-468) cell line Samples that were treated with different 

concentrations of Metformin and compared to controls with Fc 2 ≥ -2, Bonferroni Correction ≤ 0.05(*). 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 MDA-MB-468 4mM 
 

Gene Symbol Description Fold Change P-Value Bonferroni corrected 

SSH1 Slingshot protein phosphatase 1 2.366 9.47327E-07 0.032 

ATF3 Activating transcription factor 3 2.135 1.61397E-06 0.055 

ANKRD1 Ankyrin repeat domain 10 2.115 9.13559E-08 0.003 

ANKRD44 Ankyrin repeat domain 44 2.050 1.39402E-07 0.005 

NOD2 Nucleotide binding oligomerization domain 
containing 2 

-2.065 3.292E-07 0.011 

DDX46 DEAD-box helicase 46 -2.067 1.39636E-06 0.048 

HEXIM1 Hexamethylene bisacetamide inducible 1 -2.129 9.57046E-07 0.033 

CD59 CD59 molecule -2.163 1.56252E-07 0.005 

SOWAHA Sosondowah ankyrin repeat domain family 
member A 

-2.190 6.81005E-09 0.000 

PCDHB2 Protocadherin beta 2 -2.242 2.79865E-07 0.010 

CARD6 Caspase recruitment domain family, member 
6 

-2.344 1.32221E-07 0.005 

PLEKHS1 Pleckstrin homology domain containing S1 -2.475 2.27157E-07 0.008 

IKZF2 IKAROS family zinc finger 2 -2.485 2.72316E-07 0.009 
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Gene expression pattern has revealed differential expression of 14 genes, including 4 upregulated genes and 10 downregulated genes in BASAL-LIKE 

(MDA-MB-468) cell line samples using 4mM Metformin treatment. In addition, 5 upregulated genes and 8 downregulated genes in 1mM Metformin-

treated samples and when compared to controls. Red colour indicated upregulated genes and blue colour downregulated genes. 

MDA-MB-468 1mM  

Gene Symbol Description Fold Change P-Value Bonferroni corrected 

SAMD4A Sterile alpha motif domain containing 4A 2.166 6.2123E-11 2.12007E-06 

PRDX1 Peroxiredoxin 1 2.162 3.25844E-10 1.11201E-05 

PCGF3 Polycomb group ring finger 3 2.135 4.25531E-11 1.45221E-06 

UBE2H Ubiquitin-conjugating enzyme E2 H 2.067 3.25644E-11 1.11132E-06 

PFDN2 Prefoldin subunit 2 2.043 3.74805E-10 1.2791E-05 

ZNF226 Zinc finger protein 300 -2.041 8.95164E-07 0.030 

VDAC2 Voltage-dependent anion channel 2 -2.042 5.2118E-08 0.001 

RNF114 Ring finger protein 114 -2.071 8.40503E-07 0.028 

REEP1 Receptor accessory protein 1 -2.078 1.55661E-06 0.053 

EMP1 Epithelial membrane protein 1 -2.107 2.44773E-09 8.35337E-05 

GAB2 GRB2 associated binding protein 2 -2.370 7.34812E-07 0.025 

GABARAPL1 GABA (A) receptor-associated protein like 1 -2.475 3.01892E-09 0.0001 

PRR5L Proline-rich 5 like -2.505 1.52578E-07 0.005 
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Figure 4. 7. Heat map representing the difference in gene expression patterns between BASAL-
LIKE (MDA-MB-468) cell line samples treated with 1mM and 4mM doses using Regression test. 
The colour gradient is between red and blues with white in the middle. A heat map shows 25 
genes differently expressed according to different treatments concentrations. 
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Table 4.8 below shows the number of genes that achieved the highly significant Bonferroni Correction ≤ 0.05 (*).  Gene expression pattern has exposed 

differential expression of 25 genes including 10 upregulated and 15 downregulated in BASAL-LIKE (MDA-MB-468) cell line samples using different 

concentrations and compared to controls. 

Table 4. 8. List of upregulated and downregulated genes in BASAL-LIKE (MDA-MB-468) cell line Samples using different concentrations and 

compared to controls in Regression test, Bonferroni Correction ≤ 0.05 (*). 

MDA-MB-468 4mM 
 

Gene Symbol Description Average of 
standard residuals 

p-value Bonferroni 
Corrected 

WBSCR27 Williams Beuren syndrome chromosome 
region 27 

6.754 1.45394E-11 4.96185E-07 

SERPINB4 Serpin family B member 4 5.035 4.78565E-07 0.016 

DNAJB8-AS1 DNAJB8 antisense RNA 1, long non-coding 
RNA 

-4.817 1.45931E-06 0.049 

PXDC1 PX domain containing 1(PXDC1). -5.373 7.75787E-08 0.002 

 

MDA-MB-468 1mM 
 

Gene 
Symbol 

Description Average of 
standard residuals 

p-value Bonferroni Corrected 

WBSCR27 Williams Beuren syndrome chromosome 
region 27 

6.706 2.03126E-11 6.93209E-07 

ZNF2 Zinc finger protein 2 6.275 3.52788E-10 1.20396E-05 

TFDP2 Transcription factor Dp-2 5.536 3.11691E-08 0.001 

ZSCAN16 Zinc finger and SCAN domain-containing 16 5.430 5.65294E-08 0.001 

OXSR1 Oxidative stress responsive 1 5.422 5.91336E-08 0.002 

FOXD4L5 Forkhead box D4-like 5 5.184 2.17484E-07 0.007 

LOC100130176 Transmembrane protein 188 pseudogene 5.151 2.60258E-07 0.008 
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HIST2H3C Histone cluster 2 H3 family member c 5.131 2.89666E-07 0.009 

HACD4 3-hydroxy acyl-CoA dehydratase 4 4.910 9.13949E-07 0.031 

Gene 
Symbol 

Description Average of 
standard residuals 

p-value Bonferroni Corrected 

SLC12A9 solute carrier family 12, member 9, 
transcript variant 1 

-4.815 1.47357E-06 0.050 

BTN3A2 Butyrophilin subfamily 3-member A2 -4.816 1.46393E-06 0.049 

YBEY YbeY metallopeptidase (putative), transcript 
variant 1. 

-4.834 1.34178E-06 0.045 

ARMC5 Armadillo repeat containing 5, transcript 
variant 2. 

-4.894 9.92157E-07 0.033 

DOPEY2 Dopey family member 2 -4.905 9.3853E-07 0.032 

ENST00000474888 Small nuclear ribonucleoprotein polypeptide 
C pseudogene 3. 

-5.033 4.83771E-07 0.016 

HGF Hepatocyte growth factor. -5.064 4.10966E-07 0.014 

NLRP1 NLR family pyrin domain containing 1 -5.246 1.55979E-07 0.005 

BLOC1S3 Biogenesis of lysosomal organelles complex-
1. 

-5.366 8.07266E-08 0.002 

ENST00000412501 Olfactory receptor, family 13. -5.525 3.30497E-08 0.001 

epha6 EPH receptor A6 -5.744 9.30484E-09 0.0003 

NPRL3 NPR3 like GATOR1 complex subunit -6.407 1.50243E-10 5.12734E-06 

POLR2J2 RNA polymerase II subunit J2 -7.626 2.46892E-14 8.42568E-10 

 

Analysis was applied in BASAL-LIKE (MDA-MB-468) cell line samples treated with 4mM Metformin,4 genes were highly significant using Bonferroni 
Correction ≤ 0.05 (*), including 2 upregulated and 2 downregulated genes. In addition, 9 were upregulated and 13 downregulated genes when cells 
were treated with 1mM of Metformin and when compared to controls. WBSCR27 was the common upregulated gene in cells treated with 2EC50 and 
½ EC50 concentrations of Metformin. Red colour indicated upregulated genes and blue colour downregulated genes. 
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The 21 differentially expressed genes in HER2 (SkBr3) cell line, which was treated with 4mM and 

1mM Metformin concentrations are shown in the heat map (4.8) below. 

 

  

Figure 4. 8. The heat map represents the difference in gene expression pattern between HER2 

(SkBr3) cell line samples using different concentrations of Metformin and compared to control 

with Fc 2 ≥ -2. The colour gradient is between red and blues with white in the middle. 21 genes 

were differentially expressed according to different treatments concentrations. 
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Table 4.9 shows the number of genes that satisfied the cut-off criteria Fc 2 ≥ -2, p-value (p) ≤ 0.05. The gene expression pattern revealed 21 differentially 

expressed genes (with cut-off Fc 2 ≥ -2, p < 0.001-0.0001 (***-****). This includes 4 upregulated and 17 downregulated genes in HER2 (SkBr3) cell line 

samples treated with different concentrations and compared to controls. 

 

Table 4. 9. List of upregulated and downregulated genes in HER2 (SkBr3) cell line Samples treated with different concentrations and compared to 

control with Fc 2 ≥ -2, p < 0.001-0.0001 (***-****). 

SkBr3 4mM 

Gene Symbol Description Average of standard 
residuals 

p-value 

SPATA13 Spermatogenesis associated 13 2.303 0.0003 

EXOC7 Exocyst complex component 7 2.093 0.002 

IRF-9 Interferon regulatory factor 9 2.014 0.001 

BTN3A1 Homo sapiens butyrophilin, subfamily 3, member A1, 
transcript variant 1 

2.008 0.003 

DICER1 Dicer 1, ribonuclease type III -2.009 0.0002 

PRLR Prolactin receptor (PRLR). -2.012 0.001 

SOCS4 Suppressor of cytokine signalling 4 -2.022 0.001 

c2orf42 Chromosome 2 open reading frame 42 -2.031 5.83448E-08 

LRTM2 Leucine-rich repeats and transmembrane domains 2 -2.044 5.60099E-06 

BEND3 BEN domain containing 3 -2.045 0.002 

C17orf97 Chromosome 17 open reading frame 97 -2.079 0.002 
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FAM217B Family with sequence similarity 217-member B -2.091 0.0005 

AEN Apoptosis enhancing nuclease 
 
 
  

-2.106 0.001 

ANGEL2 Angel homolog 2 -2.107 0.003 

HAUS6 HAUS augmin like complex subunit 6 -2.124 0.001 

lcmt2 Leucine carboxyl methyltransferase 2 -2.154 0.0007 

THAP12 THAP domain containing 12 -2.211 6.24919E-06 

SLCO4A1 Solute carrier organic anion transporter family member 4A1. -2.253 0.0001 

THC2652746 tc|Q5SY11_HUMAN (Q5SY11) Collagen, type V, alpha 1. -2.316 0.0007 

 
 

SkBr3 1mM 

Gene Symbol Description Average of standard 
residuals 

p-value 

PTK2B Protein tyrosine kinase 2 beta 2.201257043 8.36492E-06 

DHFR2 Dihydrofolate reductase 2 -2.041615903 1.9546E-07 

THAP12 THAP domain containing 12 -2.205949006 5.78134E-06 

 
 
 
With a 4mM Metformin concentration, 4 genes were upregulated, and 15 genes were downregulated. However, in 1mM Metformin concentration, 
only 1 gene was upregulated, and 2 genes were down-regulated. In addition, THAP12 gene was shown as downregulated in both treatment conditions. 
Red colour indicated upregulated genes and blue colour downregulated genes. 
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Figure 4. 9. Heat map representing the difference in gene expression pattern between HER2 
(SkBr3) cell line samples treated with 1mM and 4mM concentrations in Regression test. The 
colour gradient is between red and blues with white in the middle. The heat map shows 4 
differently expressed genes and according to different treatment concentrations. 

 

Table 4.10 shows the number of genes that achieved the highly significant P values, in the 

Regression based method, p < 0.0001 (****). Gene expression pattern has exposed differential 

expression of four genes including one upregulated and one downregulated in each 

concentration in HER2 (SkBr3) cell line samples. 

Table 4. 10. The list of genes upregulated and downregulated in HER2 (SkBr3) cell line 

Samples treated with different concentrations of Metformin and compared to control in 

Regression test, p < 0.0001 (****). 

SkBr3 4mM 
 

Gene Symbol Description Average of 
standard 
residuals 

p-value 

BTN3A1 Butyrophilin, subfamily 3, member A1. 4.466 7.95913E-06 

ANKRD44 Ankyrin repeat domain 44 -5.878 4.17474E-09 

 
 

SkBr3 1mM 

Gene Symbol Description Average of 
standard 
residuals 

p-value 

RNA5-8S5 RNA, 5.8S ribosomal 5 5.028 4.96422E-07 

VSTM2B V-set and transmembrane domain 

containing 2B 

-4.901 9.54479E-07 

 
Gene expression model displayed one upregulated and one downregulated gene in each of 
Metformin treatment conditions. Red colour indicated upregulated genes and blue colour 
downregulated genes.
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The summation of rank for all the highly significant genes based on the second approach analysis 

outcomes has been calculated and presented in Table 4.11. This Table demonstrates the position 

of each gene and to carefully select the genes that will be considered for further investigations. 

 

Table 4.11. The SUM of rank for commonalities 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Ranking of 67 genes out of 34127 genes in both different analysis tests (Regression and Fold 
Change) for both BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) using different concentrations of 
Metformin. 
 
 

 

SUM of rank Gene Symbol 

1 c2orf42 

2 PXDC1 

2 VSTM2B 

3 WBSCR27 

3 SERPINB4 

3 NPRL3 

4 DNAJB8-AS1 

4 ZNF2 

4 LRTM2 

5 epha6 

6 TFDP2 

7 ENST00000412501 

8 ZSCAN16 

8 DHFR2 

9 OXSR1 

10 BLOC1S3 

11 NLRP1 

12 FOXD4L5 

13 LOC100130176 

14 HIST2H3C 

15 HGF 

15 GABARAPL1 

17 HACD4 

17 SOWAHA 

18 DOPEY2 

18 EMP1 

19 ARMC5 

20 YBEY 

21 BTN3A2 

27 PCGF3 

35 PFDN2 

54 SLCO4A1 

63 ANKRD1 

75 CARD6 

75 VDAC2 

78 THAP12 

80 ANKRD44 

84 CD59 

87 PTK2B 

92 AEN 

102 PLEKHS1 

103 DICER1 

107 IKZF2 

117 NOD2 

121 PRR5L 

172 HEXIM1 

174 SSH1 

183 PRDX1 

197 DDX46 

207 SOCS4 

223 GAB2 

238 RNF114 

241 ZNF226 

244 FAM217B 

245 IRF-9 

277 PCDHB2 

370 SAMD4A 

395 PRLR 

478 lcmt2 

551 HAUS6 

563 THC2652746 

575 C17orf97 

669 BEND3 

677 EXOC7 

698 ANGEL2 

983 BTN3A1 

1100 SPATA13 
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Commonalities between the different analyses (Regression-based method and fold change- 

based method) for both cell lines BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) cell lines and for 

different concentrations (1 and 4 mL) of Metformin shown in Appendix Figure A.4. 4. 

 

The outcomes of the second approach that was previously applied, nominated 16 genes to be a 

subject of investigation and validation. An in-depth investigation took place for those 16 genes 

via different databases such as PANTHER- GENE LIST ANALYSIS, DAVID Bioinformatics Resources, 

GEO Profiles Results-NCBI, Gene MANIA, KEGG: Kyoto Encyclopedia of Genes and Genomes, and 

Gene Cards suite (Tables 4.12. and 4.13.). 

 

Table 4.12. List of genes that were selected for validation by qRT-PCR 

 

Input ID Cell line Concentration Statistic test Regulation 

BTN3A2 MDA-MB-468 1mM Regression test Down 

EMP1 MDA-MB-468 1mM Fold Change Down 

HGF MDA-MB-468 1mM Regression test Down 

NPRL3 MDA-MB-468 1mM Regression test Down 

OXSR1 MDA-MB-469 1mM Regression test Up 

PRDX1 MDA-MB-468 1mM Fold Change Up 

ANKRD44 MDA-MB-468 4mM Fold Change Up 

PCDHB2 MDA-MB-468 4mM Fold Change Down 

PXDC1 MDA-MB-468 4mM Regression test Down 

SERPINB4 MDA-MB-468 4mM Regression test Up 

WBSCR27 MDA-MB-468 4mM Regression test Up 

 

BASAL-LIKE (MDA-MB-468) cell line upregulated and downregulated genes after treatment with 
Metformin out of Regression test and Fold Change test. Red colour indicated upregulated genes 
and blue colour downregulated genes. 
 
 

Table 4.13. List of genes that were selected for validation by qRT-PCR 

 

 

HER2 (SkBr3) cell line upregulated and downregulated genes after treatment with Metformin 
and using Regression test and Fold Change test. Red colour indicated upregulated genes and 
blue colour downregulated genes. 
 

Input ID Cell line  Concentration  Statistic test Regulation 

DHFR2 SkBr3 1mM Fold Change  Down 

PTK2B SkBr3 1mM Fold Change  Up 

VSTM2B SkBr3 1mM Regression test Down 

IRF-9 SkBr3 4mM Fold Change  Up 

ANKRD44 SkBr3 4mM Regression test Down 

C2orf42 SkBr3 4mM Fold Change  Down 
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Those sixteen genes (ANKRD44, BTN3A1, C2orf42, DHFR2, EMP1, HGF, IRF-9, NPRL3, OXSR1, 

PCDHB2, PRDX1, PTK2B, PXDC1, SERPINB4, VSTM2B, and WBSCR27) were chosen to quantify 

their gene expression statuses by Real-time quantitative PCR (qRT-PCR). Further validation 

involved immunoblotting and immunofluorescence (IF) to determine their expression at the 

protein level. 

 

 

4.6. Pathway analysis 

 

Upregulated and downregulated genes that were associated with BASAL-LIKE (MDA-MB-468) 

and HER2 (SkBr3) cell lines were investigated for their association with other molecular 

pathways using the Panther online databases (Mi et al., 2013). The main upregulated pathways 

in BASAL-LIKE (MDA-MB-468) cell line was associated with apoptosis signalling pathway, 

cytoskeletal regulation by Rho GTPase, gonadotropin-releasing hormone receptor pathway and 

the ubiquitin-proteasome pathway; with each representing (13 %) of each pathway. The down-

regulated pathways were related to Wnt signalling, EGF receptor signalling, Cadherin signalling, 

and PDGF signalling pathways (12%). The pathways were represented as a percentage of 

contribution in Figure 4.10.  

In HER2 (SkBr3) cell line, upregulated genes were associated with integrin signalling pathway 

(12%), CCKR signalling (12%), inflammation mediated by chemokine and cytokine signalling 

pathway (13%), and Gonadotropin-releasing hormone receptor pathway (13%). The down-

regulated pathways were involved in formyltetrahydrofolate biosynthesis, tetrahydrofolate 

biosynthesis, inflammation mediated by chemokine and cytokine signalling, Gonadotropin-

releasing hormone receptor, and Interferon-gamma signalling pathways as 10 %, as displayed in 

Figure 4.11. Gonadotropin-releasing hormone receptor pathway was found as a common 

pathway between the up- and down-regulated pathways in SkBr3 and also with the up-regulated 

pathways in MDA-MB-468.  Whilst, the inflammation mediated by chemokine and cytokine 

signalling pathway was found as a common pathway in both up-regulated and down-regulated 

pathways in SkBr3 cell line. 
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Figure 4.10.  Pathway ontology of the consensus BASAL-LIKE (MDA-MB-468) cell line associated genes. Pie chart representing the percentage of 
contribution of each gene to Panther GO. The genes are assigned to the different molecular and biological pathways based on their functions in 
developmental process, cellular process, metabolic process, cellular component organisation or biogenesis, and localization, either directly or indirectly. 
This diagram was constructed using the online pathway databases, Panther (Mi et al., 2013).
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Figure 4.11.  Pathway ontology of the consensus HER2 (SkBr3) cell line associated genes. Pie chart representing the percentage of contribution of each 

gene to Panther GO. The genes are assigned to the different molecular and biological pathways based on their functions in developmental process, 

cellular process, multicellular organismal process, metabolic process, biological regulation, and localization, either directly or indirectly This diagram 

was constructed using the online pathway databases, Panther (Mi et al., 2013). 
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4.7. Discussion 

The main aims of this chapter were to investigate gene expression between BASAL-LIKE and 

HER2 breast cancer cell subtypes following treatment with Metformin. These allowed finding 

gene expression commonalities between the two breast cancer phenotypes. Furthermore, up-

regulated genes may be associated with the resistance to Metformin treatment that was 

previously observed with the HER2 breast cancer phenotype (SkBr3 cell line). 

Interestingly, it has been noticed that, on a comparison of the top 100 interaction maps of the 

BASAL-LIKE and HER2 breast cancer subtypes populations, identical genes were not immediately 

identified as influential hubs. Although, from the driver analysis it was easy to notice the most 

influential influencers (source and target hubs) of the system.  

It was also noticed that in Basal-Like (MDA-MB-468) and HER2 (SkBr3) cell lines, the hubs were 

found to be “globally” negatively regulated and no positive centres were identified. 

Comparatively, the overall interaction feedback loops of BASAL-LIKE cell line were negative with 

few positive loops. However, the HER2 breast cancer subtype cell line interactions map showed 

several positive feedback loops between some molecules. 

The Artificial Neural Network (ANN) stepwise analysis-based approach has been applied to a 

total of 36 Microarray samples. Besides, the interactome Network Map has also been utilised 

for both Basal-Like (MDA-MB-468) and HER2 (SkBr3) cell lines simultaneously and then 

individually. The random segregation of samples into three different groups; 60% for training, 

20% for validation and 20% for testing, before the ANN training, required a large number of 

samples, to compare a small number of samples each cell line individually and distinguish 

between the two concentrations as well separately another approach has been implemented. 

At this end, the Regression-based method and fold change- based method was utilised. 

 The second approach revealed a cluster of information for each breast cancer subtype 

independently. Data collected from Microarrays have provided evidence of differential gene 

expression. The outcomes of these methods nominated sixteen genes that are ANKRD44, 

BTN3A1, C2orf42, DHFR2, EMP1, HGF, IRF-9, NPRL3, OXSR1, PCDHB2, PRDX1, PTK2B, PXDC1, 

SERPINB4, VSTM2B, and WBSCR27, and that were selected for quantification by real-time 

quantitative PCR (qRT-PCR) next chapter. Those genes have been selected according to in-depth 

investigative annotation via different databases including PANTHER- GENE LIST ANALYSIS, 

DAVID Bioinformatics Resources, GEO Profiles Results-NCBI, Gene MANIA, KEGG: Kyoto 

Encyclopedia of Genes and Genomes, and Gene Cards suite. The results highlighted their 

influence on biological functions. Also, they had highly significant P values assessed by both 
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statistical methods and were mostly up-regulated genes. The Panther online databases (Mi et 

al., 2013) has been used to investigate the differentially expressed genes that were obtained 

from both Basal-Like (MDA-MB-468) and HER2 (SkBr3) cell lines and out of fold change approach 

to determine their associations with other molecular pathways. This analysis highlighted a few 

combined pathways such as gonadotropin-releasing hormone receptor pathway, as a common 

pathway in both Basal-Like (MDA-MB-468) cell line-up-regulated pathways, and HER2 (SkBr3) 

cell line, in both up and downregulated channels. Indeed, apoptosis signalling pathway was 

found as up-regulated in Basal-Like (MDA-MB-468), confirming previous data in chapter 3 

Figures (3.6, 3.9, and 3.10).  Likewise, the Wnt signalling pathway was downregulated in MDA-

MB-468 cells. This pathway is a critical pathway in the regulation of cell migration, cell polarity, 

neural patterning and organogenesis during fetal development. It is also involved in tumour 

initiation, and disease retrogression, by which retaining the inherent drug-resistance features. 

However, in HER2 (SkBr3) cell line, four critical upregulated pathways were found: integrin 

signalling pathway, CCKR signalling, inflammation mediated by chemokine and cytokine 

signalling pathway, and Gonadotropin-releasing hormone receptor pathway. Interestingly, 

Protein Tyrosine Kinase 2 Beta (PTK2B) has been found as signalling through these pathways. 

PTK2B is also known as PYK2 or FAK2, which is a non-receptor tyrosine kinase that has been 

detected as an upregulated gene in the HER2 cell line after treatment with Metformin. Its 

encoded cytoplasmic protein tyrosine kinase is involved in calcium-induced regulation of ion 

channels and activation of the map kinase signalling pathway. This protein-tyrosine kinase also 

regulates reorganisation of the actin cytoskeleton, cell growth, proliferation, survival, migration, 

invasion and bone remodelling. Also, PYK2 is implicated in the regulation of cell migration 

through its dual action in the integrin signalling pathway, and Gonadotropin-releasing Hormone 

(GnRH) transmitting pathway receptor(Gαq), (Naor et al., 2000; Kraus and Naor, 2001; 

Huveneers and Danen, 2009). Besides, PYK2 is mediating the inflammation by integrating growth 

factor and cytokine receptors signalling (Selitrennik and Lev, 2015). Moreover, PYK2 has a 

contributory role in motility and migration through cholecystokinin /gastrin receptor signalling 

pathway (CCKR), (Smith et al., 2016). While the Interferon-gamma signalling pathway was 

downregulated in HER2 (SkBr3) cell line, it is also found that PYK2 is critical for the Jak-mediated 

MAPK and Stat1 activation by IFN-gamma (Takaoka et al., 1999). Furthermore, integral of 

signalling pathways initiated by receptor tyrosine kinases and integrins, are essential for growth-

factor intermediated the biological responses.  

Up-regulated pathways including integrin signalling pathway, CCKR signalling, Inflammation 

mediated by chemokine and cytokine signalling pathway, and Gonadotropin-releasing hormone 

receptor pathway that involved PYK2 in their signals were proved to be associated with cancer 
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progression, drug resistance, and cell survival. HER2(SkBr3) cells Metformin resistance is likely 

to be related to these up-regulated pathways.  

However, the down-regulated pathways were related to cell cycle arrest and apoptosis could 

explain the high proportion of dead cells in Basal-like cell line. 

Collectively, the objectives of this part were to screen the differentiation in gene expression 

pattern between both Basal-like and HER2 breast cancer phenotypes, in addition to detecting 

highly-expressed genes, which might be associated with the resistance to Metformin treatment 

in the HER2 subtype. This has been attained, and PYK2 has been nominated as a target gene. 

However, the validation of gene expression will be assessed by qRT-PCR, Western Blot and 

Immunofluorescence analysis. As well, the NanoString technique will be applied on Basal-like 

and HER2 phenotypes samples for pan-cancer pathways detection, in the next chapter (chapter 

5). 
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CHAPTER 5 

 

Confirmation of Gene Expression Microarray data by Real-time 

quantitative PCR (qRT-PCR), Immunoblotting and Immunofluorescence 

analyses 

 

5.1. Introduction 

 

Real-time quantitative PCR has become one of the most powerful technologies, especially in 

biologically oriented laboratories. It is a sensitive and reliable method to detect and quantify 

nucleic acids (DNA and RNA (cDNA) levels. It relies on the detection and quantification of 

fluorescence emitted from a reporter molecule at a real time. This detection occurs during the 

accumulation of the PCR output with each cycle of amplification, thus allowing the monitoring 

of the PCR reaction during the early and exponential phase, where the first significant increase 

in the amount of the PCR product correlates to the initial amount of target template. 

There are two different methods to present quantitative gene expression: absolute and relative 

quantification. The absolute quantification usually calculates the copy number of the gene by 

relating the PCR signal to a standard curve, while the relative gene expression presents the data 

of the gene of interest relative to some calibrator or internal control gene. 

The comparative CT method (relative quantification) also referred to as the 2-ΔΔCT method is a 

very popular technique that compares results from experimental samples with both a calibrator 

(Untreated or wild-type sample) and a Normalizer (housekeeping gene). In this method, which 

used for this study, Ct values for the gene of interest in both test and calibrator samples were 

adjusted in relation to a normalizer gene Ct from the same two samples.  The generated ΔΔCt 

value was combined to determine the fold change difference in gene expression (Schmittgen1 

and Livak, 2008). 

The aim of this chapter was to investigate the expression of ANKRD44, BTN3A1, C2orf42, DHFR2, 

EMP1, HGF, IRF-9, NPRL3, OXSR1, PCDHB2, PRDX1, PTK2B, PXDC1, SERPINB4, VSTM2B, and 

WBSCR27 in Basal-like and HER2 phenotypes to confirm the Gene Expression Microarray data 

(chapter 4). In addition, this work allowed the selection of a marker for further studies.    
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5.2. Assessment of efficiency, sensitivity and reproducibility using a standard curve 

 

PCR amplification efficiency is the most consistent factor in a real-time PCR reaction. Reaction 

efficiency can have assessed by creating a standard curve. This curve was plotted by generating 

a 5-fold serial dilution of nucleic acid samples and performing real-time PCR. The obtained 

results were plotted with input nucleic acid quantity on the x-axis and Ct on the y-axis. The slope 

of the curve was used to determine the reaction efficiency, which should be between 90% and 

110% (Figure 5.1). In addition, a good primer should have a length of about 18-22 bases, a 

melting temperature (Tm°) of below 65°C, and a GC-content between 40-60% (Schmittgen and 

Livak, 2008). 

 

5.3. Real-time quantitative PCR (qRT-PCR) of investigated genes  

 

The nominated 16 genes (ANKRD44, BTN3A1, C2orf42, DHFR2, EMP1, HGF, IRF-9, NPRL3, OXSR1, 

PCDHB2, PRDX1, PTK2B, PXDC1, SERPINB4, VSTM2B, and WBSCR27) have been a subject of 

investigation and validation through qRT-PCR. First, the standard curve was performed to assess 

the amplification efficacy of all primers used for this assay. Table 5. 1 shows the percentage of 

efficiency for the 16 primers and the housekeeping gene Glucuronidase Beta (GUSB). The 

percentage of efficiency has previously calculated for the GUSB housekeeping gene on threshold 

level sat on 0.1324, which gave the best efficiency. While the threshold was set on 0.164 for the 

other primers. The threshold level is the signal level that statistically reflects a significant 

increase over the calculated baseline (threshold should be higher than the baseline, which is 

higher than the noise level). The setting of threshold allows distinguishing the relevant 

amplification background signal from real signals.  The point where the reaction curve intersects 

with the threshold line is known as Ct, or "threshold cycle", which shows the number of cycles 

that were taken to detect a real signal from the samples.  
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Figure 5.1. Schematic representation of the standard curve for primers efficiency test. The X-axis represented the number of copies for each gene, 
while the Y-axis represented the Threshold Cycle (Ct). The slope of the curve determined the reaction efficiency, which should be between 90% and 
110%. This curve was plotted by creating a dilution series of cDNA template samples according to this order: SkBr3 control, ½ Ec50, 2Ec50, and MDA-
468 control, ½ Ec50, 2Ec50; and performing real-time PCR. 
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Table 5.1. Percentage of efficiency and amplification dynamic range 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Percentage of efficiency for the 16 primers, and the housekeeping gene GUSB. The Table displays 
the Oligo name and its Sequence (5' to 3'), melting temperature (Tm°), and the Efficiency of each 
primer. The results showed that three of these primers (HGF, VSTM2B, and WBSCR27) were not 
efficient for further study. While the other thirteen primers were efficient and used for the next 
study. The PCR amplification efficiencies were between 90%-110%.  
 

 

 

Oligo Name Sequence: (5' to 3') Tm° Efficiency 

FH1_ANKRD44 GTGCTTTGTGTCTTGAATTG 55° C 1.07 

RH1_ANKRD44 TCAATTTCACCTCCATTCTG 
  

FH1_BTN3A1 AGTCTCTGCTTTCTTTTTCC 55° C 1.1 

RH1_BTN3A1 AAATCACCTCTTAGCATTCC 
  

FH1_C2orf42 AGCTTTTGTTCGGAAAGATG 56° C 0.97 

RH1_C2orf42 GCATCTCTGGGGTATCTAAG 
  

FH1_DHFR2 CGCTGTGTCCCAAAACATGG 56° C 1.09 

RH1_DHFR2 GAATTCATTCCTGAGCGGCG 
  

FH1_EMP1 CTTCAGAACTCTCTTTGCTC 54° C 1.07 

RH1_EMP1 CATAATAACAGTAGCGATGTGG 
  

FH1_HGF CAAGGACCTACGAGAAAATTAC  58 AND 58° C NOT GOOD 

RH1_HGF ATCACAGTTTGGAATTTGGG 
  

FH1_IRF-9 CTCAGAAAGTACCATCAAAGC 58° C 1 

RH1_IRF-9 TCATTATTGAGGGAGTCCTG 
  

FH1_NPRL3 CGATTCCAGGTTTTCAGATG 54° C 0.91 

RH1_NPRL3 CAGGTTATGCAGACAGTTTATC 
  

FH1_OXSR1 AGGTTTTAATGCTGACACTG 54° C 1 

RH1_OXSR1 TTCTGGATCTTTTTGAAGGC 
  

FH1_PCDHB2 ACCCAGATACTCAGCTAAAGAAGC 58° C 0.95 

RH1_PCDHB2 TCTCTCACCAAACGTGCTCC 
  

FH1_PRDX1 GGGTCAATACACCTAAGAAAC 54° C 1.02 

RH1_PRDX1 CTTCATCAGCCTTTAAGACC 
  

FH1_PTK2B AATGCACTTGACAAGAAGTC 54° C 1.05 

RH1_PTK2B GCTTTAAGTTCTCCTGCATC 
  

FH1_PXDC1 AGAAATCATGAGGTCCAATG 58° C 0.98 

RH1_PXDC1 AATAAATGCTCTGTTGGGTC 
  

FH1_SERPINB4 CATGTTGATAGGTCAGGAAATG 55° C 1.09 

RH1_SERPINB4 ATTGATACGTCTTTTCTCCG 
  

FH1_VSTM2B ACAGAAGTCCCCAAAGATG 55 AND 57° C NOT GOOD 

RH1_VSTM2B ATCCTTATTTGTTACCTTGCTC 
  

FH1_WBSCR27 CCGGACTACGACCAGGATGTG 58 AND 60° C NOT GOOD 

RH1_WBSCR27 GCTTGTGTGAGGCAGTCCAC 
  

FH1_ GUSB CTC ATT TGG AAT TTT GCC GAT T  58° C 0.99 

RH1_GUSB CCG AGT GAA GAT CCC CTT TTT A   
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The efficiency test results showed that three of these primers (HGF, VSTM2B, and WBSCR27) are 

not efficient for further study. The other thirteen primers were efficient and thus selected for 

the next study. QRT-PCR was performed for those thirteen primers and with the housekeeping 

gene GUSB. This experiment was achieved according to the protocol in section 2.2.4.2 using 

different sets of cDNA template samples, and according to this order: SkBr3 control, 1mM, 4mM, 

and MDA-468 control, 1mM, 4mM. The threshold was set on 0.1642 for all qRT-PCR runs and 

primers, while the Tm° varied according to the different primers. This experiment was 

independently repeated three times, and the run was performed in triplicates for each sample. 

The expression profile for each gene is presented in Figures 5.2 and 5.3 for both Basal-like (MDA-

MB-468) and HER2 (SkBr3) cell lines, respectively. 

In this study, the comparative threshold method (Relative quantification) has been used to 

quantify gene expression in qRT-PCR, which provide gene expression values as fold change in 

comparison with reference samples or calibrators and assuming that PCR efficiencies of all 

investigated samples are the same. The Fold change for each sample was calculated according 

to this equation:  Fold change due to treatment = 2-ΔΔCT. 

 

 



146 | P a g e  
 

 

Figure 5.2. QRT-PCR data for Basal-like (MDA-MB-468) cell line representing up and 
downregulated genes, using different doses (A corresponds to 1mM and B to 4mM of 
Metformin treatments and when compared to controls. The threshold was set on 0.1642, while 
the Tm° varied according to the different primers. This experiment was independently repeated 
three times and in triplicates for each sample and following this order: SkBr3 control, 1mM, 
4mM, and MDA-468 control, 1mM, 4mM. In addition, the Fold change for each sample was 
calculated according to this equation: Fold change due to treatment = 2-ΔΔCT. 
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Figure 5.3. QRT-PCR data for HER2 (SkBr3) cell line representing up and downregulated genes, 
using different doses (A corresponds to 1mM and B to 4mM of Metformin treatments and 
when compared to controls.  The threshold was set on 0.1642, while the Tm° varied according 
to the different primers. This experiment was independently repeated three times and in 
triplicates for each sample and following this order: SkBr3 control, 1mM, 4mM, and MDA-468 
control, 1mM, 4mM. In addition, the Fold change for each sample was calculated according to 
this equation: Fold change due to treatment = 2-ΔΔCT. 
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The gene expression performance that was determined by qRT-PCR data analysis confirmed 

previous gene expression profiling that was established by gene expression microarray analysis. 

However, three genes (SERPINB4, EMP1, and PRDX1) displayed opposite expression by qRT-PCR. 

These genes were detected in the Basal-like cell line (MDA-MB-468) in a Fold Change-based 

method (EMP1, PRDX1) and regression-based method (SERPINB4). 

After confirming gene expression profiles, it was essential to determine their expression at the 

protein level. Consequently, two upregulated genes (IRF-9 and PTK2B) and one downregulated 

gene (SERPINB4) were selected for western blotting and Immunofluorescence studies.  

The Interferon Regulatory Factor 9 (IRF-9), which is also known as p48, ISGF3 or ISGF3G, is an 

interferon regulatory factor that mediates cell signalling by type I IFNs (IFN-α and IFN-β). IRF-9 

is also a specific transcription factor found downstream the JAK/STAT pathway, which plays a 

role in body immune balance (Zhao et al., 2017).  

Protein Tyrosine Kinase 2 Beta (PTK2B) or PYK2, is a non-receptor protein tyrosine kinase that 

regulates reorganisation of the actin cytoskeleton, cell polarisation, migration, adhesion and 

spreading, and is also involved in bone remodelling (Selitrennik and Lev, 2015). 

Moreover, Serpin Family B Member 4 (SerpinB4) or SCCA2 (Squamous cell carcinoma antigen2), 

is a member of the ovalbumin family of serine proteinase inhibitors. Originally, it was discovered 

as a tumour-specific antigen and a tumour marker for various kinds of squamous cell carcinomas 

(de Koning et al., 2011). 

The above-mentioned genes have been selected according to two factors: first, they showed 

significantly high P values in both statistical methods, which represented 5.61E+01 for IRF-9, 

2.85E-01 for PTK2B, and 0.0163 for SERPINB4; secondly, their association with biologically 

important functions. However, SERPINB4 demonstrated an opposite expression in (qRT-PCR) 

and it has been found as down-regulated in an MDA-MB-468 cell line in ANN stepwise analysis 

approach (see chapter 4 section 4.5.3). 

 

5.4. Protein expression in Basal-like and HER2 breast cancer cell lines 

 

For western blotting analyses, protein lysates of Basal-like (MDA-MB-468), Claudin -Low (MDA-

MB-231) and HER2 (SkBr3, and MDA-MB-453) cell were used at 30 μg (per well). Extracts from 

two cell lines have been used for each phenotype and for more reliability.  The data showed 

higher expression of IRF-9 in 1mM treatments for all cell lines and when compared with 

untreated and 4mM treatments (Figure 5.4). 
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Figure 5.4. Representative micrographs of immunoblots showing IRF-9 and PTK2B expression in MDA-MB-468 and MDA-MB-231 (left panel), and 

SkBr3 and MDA-MB-453 (right panel). -actin is used as a loading control. Cell extracts for immunoblotting were obtained from untreated and 
Metformin treated cells with 1mM and 4mM concentrations.
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PTK2B expression was the higher expression, which shown in 1mM Metformin treatments in all 

cell lines when compared with control and 4mM. However, the expression of PTK2B was higher 

in 1mM dosage in SkBr3 cell line than the other cell lines.   

Additionally, SERPINB4 showed negative expression in 1mM and 4mM Metformin doses in both 

MDA-MB-468 and MDA-MB-231 populations. Moreover, SKBR3 and MDA-MB-453 cell lines 

shown a low expression of SERPINB4 in both doses as demonstrated in Appendix (Figure A.5.1). 

 

Moreover, ImageJ (v1.50c) software was used to calculate the density of each sample band as 

demonstrated by measuring the densitometric ratio in Arbitrary Unit (AU) for IRF-9 and PTK2B 

compared to -actin expression in untreated Basal-like, Claudin-Low, and HER2 cell lines, and 

after treatment with Metformin 1 and 4mM Figure 5.5and Figure 5.6. SERPINB4 densitometric 

ratio was shown in Appendix Figure A.5.2. These findings confirmed the previous results from 

qRT-PCR data analysis. The Arbitrary Unit (AU) is a relative unit of measurement to show the 

ratio of the amount of substance, intensity, or other quantities, to a predetermined reference 

measurement.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5. Micrograph representing the densitometry ratio (AU) of IRF-9 protein expression 
in Metformin untreated and treated (1mM and 4mM) in Basal-like (MDA-MB-468), Claudin-
Low (MDA-MB-231), HER2 (SkBr3) and (MDA-MB-453) breast cancer cell lines(n=1). Higher 
protein expression level was observed in 1mm Metformin-treated cell lines. 
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Figure 5.6. Micrograph representing the densitometry ratio (AU) of PTK2B protein expression 
in Metformin untreated and treated (1mM and 4mM) in MDA-MB-468, MDA-MB-231, SkBr3 
and MDA-MB-453 breast cancer cell lines(n=1). Higher protein expression level was observed 
in 1mM Metformin-treated cell lines. 
 

 

5.5. Immunofluorescence analysis of PTK2B and IRF-9 expression in Basal-like (MDA-

MB-468), Claudin-Low (MDA-MB-231) and HER2 (SkBr3 and MDA-MB-453) cell lines 

 Confirming the protein expression of IRF-9, PTK2B and SERPINB4 in untreated and treated cells, 

immunofluorescence (IF) staining was performed. For more reliability, two cell lines have been 

used for each phenotype in this staining, which is Basal-like (MDA-MB-468), Claudin-Low (MDA-

MB-231) and HER2 (SkBr3 and MDA-MB-453) cell lines. Specific antibodies have been used in 

this assay, which details are in chapter 2 materials and methods (section 2.2. Reagents, page 2). 

IF analysis showed a higher level of IRF-9 and PTK2B expression in almost all cell lines (MDA-MB-

468, MDA-MB-231, SkBr3 and MDA-MB-453) in 1mM Metformin treated cells compared to a 

lower level of expression in control samples and a very low or undetected expression in 4mM 

samples. On the other hand, the SERPINB4 expression was noticeably higher in control samples 

and all cell lines compared to 1mM and 4mM samples, which were expressing a low or 

undetecTable level of expression.  These confirm previously obtained results by western blot 

analyses and further validate qRT-PCR and microarrays results. IRF-9 expression (red 

fluorescence) was shown in Figures 5.7, 5.8, 4.9 and 5.10 below.       
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Figure 5. 7. Micrographs showing expression of IRF-9 in Basal-like (MDA-MB-468) cell line using specific antibodies against IRF-9 (red). Nuclei were 
stained with DAPI (blue). the images were taken at 20X magnification and scale bars indicate 100μm. 
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Figure 5. 8. Micrographs showing expression of IRF-9 in Claudin-Low (MDA-MB-231) using specific antibodies against IRF-9 (red). Nuclei were 

stained with DAPI (blue). the images were taken at 20X magnification and scale bars indicate 100μm. 
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Figure 5. 9. Micrographs showing expression of IRF-9 in HER2 (SkBr3) cell line using specific antibodies against IRF-9 (red). Nuclei were stained with 

DAPI (blue). the images were taken at 20X magnification and scale bars indicate 100μm. 
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Figure 5. 10. Micrographs showing expression of IRF-9 in HER2 (MDA-MB-453) cell line using specific antibodies against IRF-9 (red). Nuclei were 
stained with DAPI (blue). the images were taken at 20X magnification and scale bars indicate 100μm. 
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A stronger PTK2B expression (green fluorescence) was detected in all cell lines treated with 1mM and when compared to the controls and 4mM 

treatments that showed a very low or undetecTable expression of PTK2B Figures (5.11, 5.12, 4.13, and 5.14). These IF results confirmed previous findings 

on a PTK2B expression whose expression was noticeably increased and correlated with 1mM Metformin treatments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 11. Micrographs illustrating expression of PTK2B in Basal-like (MDA-MB-468) cell line against PTK2B (green). Nuclei were stained with DAPI 

(blue). the images were taken at 20X magnification and scale bars indicate 100μm.  
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Figure 5. 12. Micrographs illustrating expression of PTK2B in Claudin-Low (MDA-MB-231) cell line against PTK2B (green). Nuclei were stained with 
DAPI (blue). the images were taken at 20X magnification and scale bars indicate 100μm. 

 

 

 



158 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 13. Micrographs illustrating expression of PTK2B in HER2 (SkBr3) cell line against PTK2B (green). Nuclei were stained with DAPI (blue). the 
images were taken at 20X magnification and scale bars indicate 100μm. 
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Figure 5. 14. Micrographs illustrating expression of PTK2B in HER2 (MDA-MB-453) cell line line against PTK2B (green). Nuclei were stained with DAPI 
(blue). the images were taken at 20X magnification and scale bars indicate 100μm. 
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SERPINB4 expression was highly expressed in controls in all cell lines compared to 1mM and 

4mM samples, and which showed low or undetectable levels of expression (Figures A.5.3, A.5.4, 

A.5.5 and A.5.6) in Appendix.   

The IF results confirmed previously obtained results by Western blot and qRT-PCR analyses, 

however, SERPINB4 displayed a different level of expression in Gene Expression Microarray 

analysis when Regression test has been used and only in BASAL-LIKE (MDA-MB-468) 4mM doses, 

while this gene has been found as down-regulated in an MDA-MB-468 cell line in (ANN) stepwise 

analysis approach (see chapter 4 section 4.5.3) 

The Protein Tyrosine Kinase 2 Beta (PTK2B) gene has been found as highly expressed in HER2 

(SkBr3) 1mM concentration of Metformin, with this subtype being less sensitive to Metformin 

treatment. PTK2B is also represented at a lower level in the other breast cancer subtypes after 

treatment with similar concentrations of Metformin.  

PTK2B was selected for further study.  The selection of PTK2B as a target for small molecule 

therapeutic approach was based on three criteria: (i) The high level of expression in low doses 

of Metformin treatment in HER2+ breast cancer cell line, which was the less sensitive breast 

cancer phenotype (with significantly high P value). (ii) The essential role in different biological 

processes including regulating the reorganisation of the actin cytoskeleton, cell polarisation, 

migration, adhesion and spreading, and is also involved in bone remodelling; (iii) The oncogenic 

role in the development of cancer generally, and in breast cancer specifically. 
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5.6. The application of NanoString technology on Basal-like and HER2 phenotypes 

samples for pan-cancer pathways detection 

The nCounter SPRINT Profiler is an advanced instrument, which is designed to analyse RNA, DNA, 

and proteins from difficult samples, such as tissue, impure cell lysates and biofluid samples or 

Formalin-fixed Paraffin-embedded (FFPE) extracts. The Counter® Technology Analysis System 

employs a novel digital barcode technology for the direct multiplexed measurement of analysis. 

In addition, it offers high levels of accuracy and sensitivity (< 1 copy per cell). This technology 

utilises molecular "barcodes" and single molecule imaging for direct hybridisation and detection 

of hundreds of unique transcripts in a single reaction. Each colour-coded barcode is tied to a 

single specific- target probe correspondent to an analyte of interest. Simultaneously, it is 

combined with an invariant control; the probes form a multiplexed Code Set (Saunus et al., 2018). 

The nCounter® Pan-Cancer Pathways Panel comprises a multiplex gene expression analysis with 

770 genes from 13 cancer-associated canonical pathways including MAPK, STAT, PI3K, RAS, Cell 

Cycle, Apoptosis, Hedgehog HH, Wnt APC, DNA Damage Control, Transcriptional Regulation, 

Chromatin Modification and TGF-β. Signalling pathways in tumours can be further organized 

into three core cellular processes: (i) Cell fate: the pathways that function through this process 

include Wnt, HH, and NOTCH. (ii) Cell survival: pathways like MAPK, STAT, PI3K, RAS, Cell Cycle 

Apoptosis, and TGF-β are well known to control cell survival. (iii) Genome maintenance: 

including the DNA damage control pathway. Figure 5.15 below summarises the signalling 

pathways and the cellular processes they regulate in cancer cells (Vogelstein et al., 2013). 

Furthermore, driver genes are genes in which acquired mutations are causally linked to cancer 

progression. Cancer driver genes can be classified as tumour suppressor genes (TSGs) or 

oncogenes (OGs), functionally based on their role in disease formation (Waks et al., 2016). 
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Figure 5.15. Classification of driver genes in cancer cell signalling and cellular processes. 
Adapted from Vogelstein et al., (2013). All driver genes can be classified into one or more of 12 
pathways represented in the middle circle. This can be further organized into three core cellular 
processes (Cell fate, Cell survival, and Genome maintenance), represented in the outer circle. 

 

The above-mentioned panel was used to measure the effect of Metformin treatments on the 

Pan-Cancer pathways with highly multiplexed analysis of basic cancer biology and pathway 

deregulation activity. In addition, this experiment was aimed at confirming the previously 

discussed results (Last chapter). 

RNA samples that were previously extracted using the RNeasy kit (QIAGEN), and quantified by 

the Nanodrop, were used in this assay. Twelve samples that had the highest quality (six samples 

for each) of both Basal-like (MDA-MB-468) and HER2 (SkBr3) cell lines were applied to Pan-

Cancer Pathways Panel and according to the manufacturer’s instructions using (100ng/5ul) of 

total RNA. Data were collected using the nCounter_ Dx Digital Analyser and processed using 

nSolver Software. The top 20 significant P values affected pathways are displayed in the Tables 

5.2 and 5.3, and which show the Log2 fold change for Basal-like (MDA-MB-468) cell line that was 
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Metformin treated with concentrations of 1mM and 4mM and compared to the untreated 

(controls). 

Table 5.2. The top 20 significant P value genes and corresponding pathways 

Gene ID Log 2-fold 
change 

P-value Gene. Sets 

GADD45G-mRNA 3.01 0.0004 Cell Cycle - Apoptosis, MAPK 

IL6R-mRNA 2.62 1.55E-05 JAK-STAT, PI3K 

FOSL1-mRNA 2.59 0.0012 Wnt 

GADD45A-mRNA 2.58 0.0010 Cell Cycle - Apoptosis, MAPK 

LAMB3-mRNA 2.36 0.0001 PI3K 

DUSP5-mRNA 2.35 0.0001 MAPK 

KLF4-mRNA 1.86 0.0001 Driver Gene 

NF2-mRNA 1.8 6.29E-05 Driver Gene 

SPRY2-mRNA 1.64 0.0007 JAK-STAT 

POLB-mRNA 0.98 0.0003 DNA Damage - Repair 

AXIN1-mRNA 0.90 0.0004 Driver Gene, Wnt 

DTX4-mRNA -1.10 0.0008 Notch 

FEN1-mRNA -1.14 0.0002 DNA Damage - Repair 

HSPB1-mRNA -1.25 0.0001 MAPK 

MYD88-mRNA -1.30 0.0003 Cell Cycle - Apoptosis, Driver Gene 

PRKACA-mRNA -1.42 0.0011 Cell Cycle - Apoptosis, Hedgehog, MAPK, Ras, 
Wnt 

CREB3L4-mRNA -1.52 0.0006 PI3K 

MCM2-mRNA -1.62 0.0010 Cell Cycle - Apoptosis 

PBX1-mRNA -2.06 5.42E-06 Transcriptional Misregulation 

MMP7-mRNA -2.52 0.0014 Wnt 

 

According to the Log2 fold change out of Nanostring analysis in Basal-like (MDA-MB-468) cell 

line using 1mM doses of Metformin. The colour gradient is between red (up-regulated genes) 

and blues (down-regulated genes). 
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Table 5.3. The top 20 significant P value genes and corresponding pathways 

Gene ID Log2 fold 
change 

P-value Gene. Sets 

GADD45A-mRNA 4.72 0.0004 Cell Cycle - Apoptosis, MAPK 

TNFAIP3-mRNA 3.19 0.0012 Driver Gene 

IL6R-mRNA 2.49 9.01E-05 JAK-STAT, PI3K 

KLF4-mRNA 1.60 0.0013 Driver Gene 

POLB-mRNA 1.43 0.0003 DNA Damage - Repair 

MAPK1-mRNA 1.17 0.0008 MAPK, PI3K, Ras, TGF-beta 

FANCC-mRNA 0.81 0.0006 DNA Damage - Repair 

PBX1-mRNA -1.16 0.0002 Transcriptional Misregulation 

ABL1-mRNA -1.27 0.0003 Cell Cycle - Apoptosis, Driver Gene, Ras 

TMPRSS2-mRNA -1.52 0.0008 Transcriptional Misregulation 

AMER1-mRNA -1.92 0.0010 Driver Gene 

DTX4-mRNA -2.11 0.0002 Notch 

BAMBI-mRNA -2.21 0.0004 TGF-beta, Wnt 

MEN1-mRNA -2.35 0.0012 Driver Gene, Transcriptional 
Misregulation 

IGFBP3-mRNA -2.36 0.0001 Transcriptional Misregulation 

MYD88-mRNA -2.43 0.0001 Cell Cycle - Apoptosis, Driver Gene 

HIST1H3B-mRNA -4.52 0.0010 Driver Gene, Transcriptional 
Misregulation 

H2AFX-mRNA -4.93 5.86E-05 DNA Damage - Repair 

ID1-mRNA -5.03 0.0002 TGF-beta 

HIST1H3G-mRNA -6.04 0.0007 Transcriptional Misregulation 

 

According to the Log2 fold change out of Nanostring analysis in Basal-like (MDA-MB-468) cell 
line using 4mM doses of Metformin. The colour gradient is between red (up-regulated genes) 
and blues (down-regulated genes). 

 

The up-regulated genes in Basal-like (MDA-MB-468) cell line were mainly involved in Cell Cycle 

- Apoptosis, MAPK; JAK-STAT, PI3K; Wnt; PI3K; MAPK; Driver Gene; JAK-STAT; Driver Gene, Wnt; 

and DNA Damage – Repair, as well as MAPK- PI3K-Ras- TGF-β, which are directed to the cell 

survival.  

Whilst, the down-regulated genes were implicated in Notch; DNA Damage – Repair; MAPK; Cell 

Cycle – Apoptosis- Driver Gene; Cell Cycle – Apoptosis- Hedgehog- MAPK- Ras- Wnt; PI3K; Cell 

Cycle – Apoptosis; Transcriptional Misregulation; and Wnt in addition to Driver Gene; TGF-β- 

Wnt; and TGF-β pathways that govern cell growth advantage. 
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This result with the previous results in chapter 4, which displayed a few common pathways 

including Apoptosis signalling as an up-regulated pathway. In addition, there were few 

combined downregulated pathways such as; Wnt signalling pathway; Apoptosis signalling 

pathway; PI3 kinase pathway; and TGF-β signalling pathway between the current results and the 

previous results in chapter 4.  

Likewise, several pathways including Cell Cycle – Apoptosis- MAPK; Ras; MAPK; Transcriptional 

Misregulation; Driver Gene; Driver Gene- PI3K; JAK-STAT; and MAPK- PI3K, were found as up-

regulated pathways in HER2 (SkBr3) cell line population at both concentrations of 1mM and 

4mM. Some of these pathways are involved in cell survival selective growth feature (Tables 5.4 

and 5.5). The down-regulated pathways were; Cell Cycle – Apoptosis- Driver Gene- JAK-STAT- 

MAPK- PI3K- Ras; Transcriptional Misregulation;  Driver Gene- MAPK- PI3K- Ras;  PI3K; DNA 

Damage – Repair;  Cell Cycle – Apoptosis;  Cell Cycle – Apoptosis- TGF-beta;  and Driver Gene as 

well as, MAPK; PI3K; Ras; Notch; and Driver Gene, JAK-STAT in both ( 1mM  and 4mM) 

treatments of Metformin. Few pathways are involved in cell survival and some pathways are 

function in cell fat selective growth advantages. Once again, consistent results with earlier 

results (chapter 4) represent one common pathway identified by down-regulated genes, which 

is Cell Cycle – Apoptosis- TGF-β pathway. 
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Table 5.4. The top 20 significant P value genes and corresponding pathways 

Gene ID Log2 
fold 

change 

P-value Gene. Sets 

GADD45A-mRNA 2.77 0.0008 Cell Cycle - Apoptosis, MAPK 
ETS2-mRNA 1.94 0.0014 Ras 

RASA4-mRNA 1.80 0.0026 Ras 
GADD45B-mRNA 1.59 0.0014 Cell Cycle - Apoptosis, MAPK 

HSPB1-mRNA 1.36 0.0001 MAPK 
TMPRSS2-mRNA 1.20 0.0005 Transcriptional Misregulation 

KLF4-mRNA 1.08 0.0014 Driver Gene 
IDH2-mRNA 0.86 0.0019 Driver Gene 
TSC1-mRNA 0.84 0.0020 Driver Gene, PI3K 

SPRY1-mRNA 0.81 0.0027 JAK-STAT 
NR4A1-mRNA 0.75 0.0018 MAPK, PI3K 
AKT1-mRNA -0.72 0.0027 Cell Cycle - Apoptosis, Driver Gene, JAK-STAT, MAPK, 

PI3K, Ras 
IGFBP3-mRNA -0.92 0.0017 Transcriptional Misregulation 
HRAS-mRNA -0.99 0.0013 Driver Gene, MAPK, PI3K, Ras 
SYK-mRNA -1.05 0.0020 PI3K 

FEN1-mRNA -1.08 0.0002 DNA Damage - Repair 
CDC6-mRNA -1.25 0.0021 Cell Cycle - Apoptosis 
TFDP1-mRNA -1.38 0.0003 Cell Cycle - Apoptosis, TGF-beta 
SRSF2-mRNA -1.64 0.0018 Driver Gene 

CDC25A-mRNA -2.04 0.0010 Cell Cycle - Apoptosis 
 

According to the Log2 fold change out of Nanostring analysis in HER2 (SkBr3) cell line using 1mM 
doses of Metformin. The colour gradient is between red (up-regulated genes) and blues (down-
regulated genes). 
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Table 5.5. The top 20 significant P value genes and corresponding pathways 

 

Gene ID Log2 
fold 

change 

P-value Gene. Sets 

TNFAIP3-mRNA 3.68 0.0001 Driver Gene 
JUN-mRNA 3.36 0.0003 MAPK, Wnt 

GADD45A-mRNA 3.31 0.0003 Cell Cycle - Apoptosis, MAPK 
GADD45B-mRNA 2.29 0.0003 Cell Cycle - Apoptosis, MAPK 
HSPA1A-mRNA 2.05 0.0011 MAPK 
NFKBIA-mRNA 2.05 0.0021 Cell Cycle - Apoptosis 
DUSP10-mRNA 1.86 0.0014 MAPK 
LAMB3-mRNA 1.76 0.0004 PI3K 

TSC1-mRNA 1.37 0.0003 Driver Gene, PI3K 
HSPB1-mRNA 1.17 0.0002 MAPK 
HSPA2-mRNA 0.93 0.0021 MAPK 
AKT1-mRNA -0.73 0.0025 Cell Cycle - Apoptosis, Driver Gene, JAK-STAT, MAPK, 

PI3K, Ras 
FEN1-mRNA -0.88 0.0006 DNA Damage - Repair 
NF2-mRNA -0.95 0.0007 Driver Gene 

PDGFB-mRNA -1.08 0.0023 MAPK, PI3K, Ras 
CREB3L4-mRNA -1.13 0.0020 PI3K 

DTX4-mRNA -1.14 0.0007 Notch 
H2AFX-mRNA -1.31 0.0022 DNA Damage - Repair 
SOCS1-mRNA -1.47 0.0022 Driver Gene, JAK-STAT 

CDC25A-mRNA -1.55 0.0027 Cell Cycle - Apoptosis 
 

According to the Log2 fold change out of Nanostring analysis in HER2 (SkBr3) cell line using 4mM 
doses of Metformin. The colour gradient is between red (up-regulated genes) and blues (down-
regulated genes). 

 

 

Furthermore, from Tables 5.2, 5.3, 5.4, and 5.5, it has been noticed that Growth Arrest And DNA 

Damage-Inducible Alpha (GADD45A mRNA), and Kruppel Like Factor 4 (KLF4-mRNA), were 

commonly upregulated genes between both breast cancer subtypes in 1mM dose, and 

GADD45A-mRNA and TNFAIP3-mRNA were upregulated in 4mM dose. GADD45A is a member of 

a group of genes whose transcript levels are increased following stressful growth arrest 

conditions and treatment with DNA-damaging agents (Fabregat et al., 2014). In addition, Tumor 

necrosis factor α induced protein 3 (TNFAIP3) was identified as a protein whose expression is 

rapidly induced by the tumour necrosis factor TNF-mediated NF-κB activation. This protein 

(TNFAIP3) is related to inflammatory carcinogenesis in several cancer types (Hadisaputri et al., 

2017).  
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5.7. The application of Real-time quantitative PCR (qRT-PCR) on common genes 

obtained from NanoString analysis 

Common up-regulated genes between both breast cancer subtypes Basal-like (MDA-MB-468) 

and HER2 (SkBr3) cell lines have been selected for gene expression by qRT-PCR and for protein 

expression by western blotting. The amplification efficiency was measured for the newly 

ordered primers, which was quite efficient for further studies. Table 5.6 below displayed the 

efficiency of (GADD45 A, B, and G) isoforms respectively. 

 

Table 5.6. Table representing percentages of efficiency and dynamic range of  

GADD45 A, B, and G primers 

Oligo Name Sequence (5’-3’) Tm° Efficiency 

FH1_GADD45A GCTCAACGTAATCCACATTC 59.6 1.08 

RH1_GADD45A GAGATTAATCACTGGAACCC 57.5 
 

FH1_GADD45B GTTGATGAATGTGGACCC 58.6 1.03 

RH1_GADD45B CGATGTTGATGTCGTTGTC 60.2 
 

FH1_GADD45G CATTTTACGCTGATCCAGG 60.7 1.17 

RH1_GADD45G GGGTTCGAAATGAGGATG 60.5 
 

 

The table displays the Oligo name and it is Sequence (5' to 3') and melting temperatures (Tm°). 
The results showed that all three primers were efficient for further study. The Efficiency of each 
primer was between 90% and 110%.  

 

QRT-PCR was performed using three GADD45 isoform’s (A, B, and G) primers together with the 

housekeeping gene GUSB. This experiment was using different sets of cDNA template samples 

in this order SkBr3 control, 1mM, 4mM, and MDA-468 control, 1mM, 4mM. The threshold was 

set on 0.1642 for all qRT-PCRs run, while the Tm° varied according to the different primers 

melting temperature. Three replicates were independently performed and for each sample. 

Significant differences were found between GADD45 A, B and G expressions upon different 

treatments, and also between different cell lines. The performance of each gene as up or down-

regulated are shown in Figures 5.16 for both Basal-like (MDA-MB-468) and HER2 (SkBr3) cell 

lines. 
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Figure 5.16. Graphs representing qRT-PCR data for (A) Basal-like (MDA-MB-468) and (B) HER2 
(SkBr3) cell lines. The graphs show the relative fold change, which represented up and 
downregulated genes (GADD45A, B, and G), using different Metformin concentrations (1mM 
and 4mM) and when compared to untreated (control) samples. In addition, the Fold change for 
each sample was calculated according to this equation: Fold change due to treatment = 2-ΔΔCT.    
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5.8. Validation of GADD45A protein expression in Basal-like and HER2 breast cancer cell lines 

This assay was achieved using whole cell lysates from the Basal-like (MDA-MB-468), Claudin -Low (MDA-MB-231) and HER2 (SkBr3 and MDA-MB-453) 

cell lines to detect the expression of GADD45A protein. Two cell lines have been used for HER2 phenotype for more reliability. A higher expression of 

GADD45A protein in response to 1mM and 4mM treatments for Basal-like (MDA-MB-468) and HER2 (SkBr3) cell lines was observed and when compared 

to the control Figure 5.17. However, Claudin-Low (MDA-MB-231) showed low expression of the protein in response to 4mM treatment and when 

compared to control and 1mM treatment concentrations. Additionally, in the HER2 cell line MDA-MB-453, negative expression of GADD45A protein 

was noticed for both treatments and control. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. Representative micrographs of immunoblots showing GADD45A protein expression in MDA-MB-468 and MDA-MB-231 (left panel), and 

SkBr3 and MDA-MB-453 (right panel). -actin is used as a loading control. Cell extracts for immunoblotting were obtained from untreated and 
Metformin treated cells with 1mM and 4mM concentrations. 
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Moreover, the protein intensity of each band was calculated using ImageJ software and was 

represented as Arbitrary Unit (AU). Figure 5.18 demonstrates the protein intensity ratio in AU 

for GADD45A protein. Clearly, these data confirmed previous results obtained from the 

NanoString and qRT-PCR techniques.  

 

 

Figure 5.18. Graph representing densitometry ratio AU of GADD45A protein expression in 
different breast cancer cell lines that were Metformin treated and untreated with 1mM and 
4mM concentrations. Higher protein expression in 1mM and 4mM concentrations in Basal-like 
(MDA-MB-468), and HER2 (SkBr3), and when compared to the control. However, less protein 
expression in both (1mM and 4mM) doses in Claudin-Low (MDA-MB-231) in comparison with 
the control. No protein expression was detected in the HER2 (MDA-MB-453) cell. 
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5.9. Discussion 

The main objective of this chapter was to investigate the expression of several genes (ANKRD44, 

BTN3A1, C2orf42, DHFR2, EMP1, HGF, IRF-9, NPRL3, OXSR1, PCDHB2, PRDX1, PTK2B, PXDC1, 

SERPINB4, VSTM2B, and WBSCR27) that were previously identified (see Chapter 4) using 

microarray gene expression analysis from Basal-like and HER2 cell lines. This study also aimed to 

select markers for further studies.  This objective has been met and evidence was provided using 

qRT-PCR, western blot, Immunofluorescence techniques. NanoString technique has also been 

used for pan-cancer pathways detection, attempting to find common pathways across different 

techniques. The qRT-PCR data analysis revealed that ANKRD44, BTN3A1, C2orf42, DHFR2, IRF-9, 

NPRL3, OXSR1, PCDHB2, PTK2B, and PXDC1 confirmed the previous Gene expression profiling 

data. Three other genes including SERPINB4, EMP1, and PRDX1 showed opposite gene 

expression in this analysis. In addition, three primers were inefficient for further study, which 

are (HGF, VSTM2B, and WBSCR27).   

Additionally, two upregulated genes (IRF-9 and PTK2B) and one downregulated gene (SERPINB4) 

have been chosen for further studies using western blotting and immunofluorescence assays to 

investigate their protein expression statuses. Those markers were selected according to their 

significant P values, and substantial biological and pathological functions. A brief summary of 

the function of the identified genes is provided below: 

IRF-9 (Interferon Regulatory Factor 9), also known as p48, ISGF3 or ISGF3G, is an interferon 

regulatory factor that mediates cell signalling by type I IFNs (IFN-α and IFN-β). IRF-9 is also a 

specific transcription factor found downstream the JAK/STAT pathway (Janus kinase (JAK)/ 

Signal Transducers and Activators of Transcription (STATs)), and which plays a role in body 

immune balance (Zhao et al., 2017). In addition, Luker and her colleagues, observed in their 

study published in 2001, that transient overexpression of IRF-9 confers a drug-resistance 

phenotype and stimulates the expression of IFN- reacting genes in breast and uterine tumours. 

Their data also identified a novel IFN-independent role for IRF-9 in the development of 

resistance to antimicrotubular agents by breast tumour cells, and which might link downstream 

mediators of IFN signalling to drug resistance in human cancers. This suggests that IRF-9 

upregulation following the Metformin treatment is probably associated with drug resistance in 

breast cancer (Luker et al., 2001). 

PTK2B (Protein Tyrosine Kinase 2 Beta) or PYK2, is a non-receptor protein tyrosine kinase that 

regulates reorganisation of the actin cytoskeleton, cell polarisation, migration, adhesion and 

spreading, and is also involved in bone remodelling. Amongst its related pathways are the 

immune response-IFN gamma signalling pathway and G-protein-coupled receptors (GPCRs) that 
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mediate the sympathetic nervous system.  It also functions in downstream signalling of several 

cellular pathways involving integrin and collagen receptors, immune receptors, G-protein 

coupled receptors (GPCR), cytokine, chemokine and growth factor receptors, and cellular stress. 

Moreover, PTK2B plays an oncogenic role in cancer development by regulating cell motility and 

invasion in glioma cells, modulating cell proliferation and tumour growth in multiple myeloma 

cells, and promoting cell proliferation and invasiveness through c-Src and ERK (extracellular 

signal-regulated kinases) activation in hepatocellular carcinoma. c-Src is a 60-kDa non-receptor 

protein tyrosine kinase, which is the protein product of the proto-oncogene c-src. In breast 

cancer cells, the kinase activity of PYK2 and its Tyrosine 402 phosphorylation are required for 

cell invasion. It also can mediate ErbB-2 (Her2 Neu) signalling to upregulate the adhesive ability 

of androgen receptor (AR-positive) in prostate cancer (PCa) cells and is involved in RhoC-

promoted invasiveness. In cells, PYK2 via S6K1(Ribosomal protein S6 kinase beta-1) activation 

modulates AR function and growth properties (Hsiao et al., 2016). Interestingly, Selitrennik and 

Lev, 2015 found in their study, that PYK2 merges EGFR/ HER2- and Interleukin-8 (IL-8 -receptor) 

signalling to promote cell invasiveness in breast cancer cells. PYK2 has also been found to be 

activated in response to both EGF and heregulin (HRG) in different breast cancer cell lines. Finally, 

the depletion of PYK2 leads to significant inhibition of EGF/HRG-mediated cell spreading, 

migration and invasion in breast carcinoma (Selitrennik and Lev, 2015).  

SerpinB4 (Serpin Family B Member 4) or SCCA2 (Squamous cell carcinoma antigen2), is a 

member of the ovalbumin family of serine proteinase inhibitors. Originally, it was discovered as 

tumour-specific antigen and a tumour marker for various kinds of squamous cell carcinomas. 

The mechanism of how SCCA2 enhance tumour growth has been established through its 

involvement in cell death inhibition, cell growth enhancement, epithelial-mesenchymal 

transition (EMT) induction, and defence against tumours inhibition (Izuhara et al., 2018). 

Furthermore, SCCA2 was shown to be involved in the pathogenesis of several inflammatory 

diseases including asthma, psoriasis, and atopic dermatitis (AD). In addition, SCC2 has been 

suggested as a novel biomarker for skin inflammatory diseases (Izuhara et al., 2018). Moreover, 

the study by (de Koning et al., 2011) demonstrate that overexpression of SERPINB4 in HeLa cells 

inhibits recombinant (Granzyme M) GrM-induced and (Natural killer) NK cell-mediated cell 

death indicating the beneficial expression of SERPINB4 for tumour cells. This might represent a 

novel mechanism by which tumour cells avoid the cytotoxic lymphocyte-induced GrM-mediated 

cell death. 

Analyses using NanoString technique and the nCounter® Pan-Cancer Pathways Panel, which 

encodes multiplex gene expression analysis with 770 genes from 13 cancer-associated canonical 

pathways such as MAPK, STAT, PI3K, RAS, Cell Cycle, Apoptosis, Hedgehog, Wnt, DNA Damage 
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Control, Transcriptional Regulation, Chromatin Modification, and TGF-β has been utilised to 

emphasise previously discussed results in the last chapter.  

The commonly downregulated genes in 1mM and 4mM were Flap endonuclease (1FEN1-mRNA), 

Deltex E3 Ubiquitin Ligase 4 (DTX4-mRNA) and H2A Histone Family Member X (H2AFX-mRNA). 

Flap Structure-Specific Endonuclease 1(FEN1) is a Protein-Coding gene. The annotations related 

to this gene according to Gene Ontology (GO) include magnesium ion binding and damaged DNA 

binding. This gene expression was found to be inducible during cell proliferation for DNA 

synthesis, while it was down-regulated during cell differentiation (Kim et al., 2000). As well as, 

Deltex E3 Ubiquitin Ligase 4 (DTX4) is a Protein-Coding gene, which is a regulator of the Notch 

signalling pathway (this pathway is involved in cell-cell communications that regulate a broad 

spectrum of cell-fate determinations by similarity), (Moretti and Brou, 2013). H2A Histone Family 

Member X (H2AFX-mRNA) belongs to the histones family that are basic nuclear proteins 

responsible for the nucleosome structure of the chromosomal fibre in eukaryotes. Essentially, it 

contributes to genome stability via its signalling role in DNA damage events and acts as a 

foundation for the association of repair foci (Pinto and Flaus, 2010). Another observation was 

made, that HSPB1-mRNA (Heat Shock Protein Family B (Small) Member 1) was up-regulated gene 

in both 1mM and 4mM treatment concentrations in HER2 (SkBr3) cell line and down-regulated 

in Basal-like (MDA-MB-468) cell line (1mM concentration). HSP27 is a significant member of the 

HSP family, which plays a key role in tumours prominence and progression. This protein is highly 

expressed in variance cancers and is related to aggressive tumour behaviour, metastasis, poor 

prognosis and resistance to chemotherapy (Konda et al., 2017). 

Additionally, Transmembrane Protease, Serine 2 (TMPRSS2-mRNA) was shown to be strongly 

expressed in HER2 (SkBr3) 1mM treated samples and weakly expressed in Basal-like (MDA-MB-

468) 4mM treated samples. This gene encodes a protein that belongs to the serine protease 

family, which is known to be involved in many physiological and pathological processes. It is also 

having an important role in mammalian tissues development and homeostasis including (heart, 

skin, inner ear, placenta, and digestive tract). Apparently, the irregular expression of these genes 

is associated with several aetiology disorders, including cancer (Szabo and Bugge, 2008). 

In this regard, the common upregulated gene GADD45A between Basal-like and HER2 breast 

cancer cell lines in the NanoString was validated for gene expression (qRT-PCR) and protein 

expression (western blot). These results also explored the link between previously mentioned 

pathways and the ones obtained by NanoString. For instance, the apoptosis signalling pathway 

and Wnt signalling pathway were found up-regulated and down-regulated respectively in Basal-

like (MDA-MB-468) cell line (See chapter 4, Figure 4.10.  Pathway ontology of the consensus 
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Basal-like (MDA-MB-468) cell line associated genes). However, in HER2 (SkBr3) population, a few 

common pathways have been found. Once more, consistent results between different validation 

methods have been established in this study and outcomes of these findings revealed 

interactions between all these pathways, that might explain the sensitivity of Basal-like (MDA-

MB-468) and the less sensitivity of HER2 (SkBr3) breast cancer phenotypes to Metformin 

treatment.  

The Apoptosis signalling pathway was significantly up-regulated in both breast cancer 

phenotypes, with increased cells death in Basal-like (MDA-MB-468) but a smaller proportion of 

apoptotic cells in HER2 (SkBr3) population (chapter 3). Likewise, the Wnt signalling pathway is 

a critical pathway that regulates cell migration, cell polarity, neural patterning and 

organogenesis during foetal development, and plays a crucial role in cell fate determination 

(Komiya and Habas, 2008).  

Similarly, the phosphatidylinositol 3–kinase (PI3K) pathway is a regulator of various cellular 

processes such as metabolism, apoptosis, growth, proliferation, survival, and cell migration and 

participates in specialised context-dependent functions (Chalhoub and Baker, 2009). The 

involvement of this pathway in various biological processes within the cell could clarify its up 

and down-regulation expression upon the different treatment conditions and in both cell lines 

(MDA-MB-468, and SkBr3). In addition, the resistance to Metformin treatment is likely linked to 

the deregulation of this pathway.  

Finally, the transforming growth factor-beta (TGF-β) is a member of a superfamily of cytokines 

that act on protein kinase receptors found on the plasma membrane and that induce an excess 

of biological signals that regulate cell growth, death and differentiation, immune response, 

angiogenesis, and inflammation. Furthermore, TGF- regulates cell cycle by arresting cell 

division at the early G1 phase and by downstream activation of pro-apoptotic factors including 

death-associated protein kinase (DAPK), growth arrest and DNA damage-inducible 45 (GADD45) 

and Bim or Bmf limit, therefore, cancer formation (Fabregat et al., 2014). (Kake et al., 2017), a 

study demonstrated for the first time that death-associated protein kinase 3 (DAPK3) controls 

proliferation, migration and invasion of A549 cells via ERK MAPK/c-Myc signalling, as well as it 

possibly being responsible for tumour growth and metastasis.  

Clearly, in Basal-like (MDA-MB-468) population samples, downstream pathways were mostly 

involved in apoptosis, proliferation, survival and cell migration, which might explain the 

sensitivity of this population to Metformin treatment and the significant death (apoptosis) of 

these cells after treatment. Yet, in the HER2 (SkBr3) cell line, one common pathway (Cell Cycle 

– Apoptosis- TGF-β) has been found downregulated and which is also involved in the regulation 
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of cell growth and death through G1 phase cell cycle arrest and limits the formation of cancer 

via negative stimulation of DAPK, GADD45. The latter (GADD45) was upregulated in both breast 

cancer cell lines, which linked to the TGF-β pathway downstream. 

In summary, protein expression status agrees with the data obtained by qRT-PCR and gave 

another indicator that helped the choice of one candidate for further experimental work. In 

addition, the NanoString data analysis has also emphasized the previous finding involving PTK2B 

in several pathways that contribute to tumour progression and invasion. PTK2B represents a 

significantly up-regulated marker in HER2 phenotype, which is the least sensitive breast cancer 

subtype to Metformin treatment. PTK2B has been involved in invasion and migration in breast 

cancer cells and might be a potential therapeutic target in HER2 breast cancer. PTK2B was 

selected for further study, according to its oncogenic role in the development of cancer generally, 

and in breast carcinoma specifically. The next chapter (chapter 6) will examine PTK2B’s role in 

proliferation, invasion, and migration. 
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CHAPTER 6 

 

Evaluation of the role of PYK2 in breast cancer invasion and metastasis  

 

6.1. Introduction 

 

Protein Tyrosine Kinase 2 Beta (PTK2B), which is also known as Proline-rich tyrosine kinase 2 

(PYK2) and focal adhesion kinase (FAK2), is a member of the focal adhesion kinase (FAK) family. 

The expression and phosphorylation of PYK2 are activated by various transmembrane receptors 

such as integrin, G-protein -coupled and cytokine receptors activation, and growth factors. In 

addition, PYK2 can be stimulated by changes in intracellular Ca2+ concentrations (Ni et al., 

2018).  The involvement of FAK family kinases in several diseases including cancer, 

cardiovascular disease, bone disease, fibrosis, rheumatoid arthritis, and neurological disorders 

has been shown in numerous studies. Besides, accumulating evidence has proved the 

contributory role of FAK and PYK2 to other proliferative and degenerative diseases.  Additionally, 

many preclinical and clinical trials are testing small molecule inhibitors for FAK and PYK2 as 

options for cancer treatment (Murphy et al., 2016). Moreover, this protein tyrosine Kinase is 

controlling essential cellular processes such as adhesion, migration, proliferation and cell 

survival in different cell types.  Another study by Ni et al., 2018, suggested that breast cancer 

metastasis could be blocked via targeting of either one (FAK or PYK2) or both kinases. 

Furthermore, Genna and Gil-Henn,2018, reported that PYK2 and its closely related focal 

adhesion FAK are involved in the invasion of cancer cells through organising the balance 

between invadopodia-dependent extracellular matrix invasion and FAK-mediated migration.  

They proposed that FAK organized the formation of invadopodium precursor indirectly by 

sequestering Src to focal adhesions and consequently controlling the tyrosine phosphorylation 

balance between invadopodia and focal adhesions in invasive cancer cells. Genna and his group 

(2018) found that PYK2 was expressed in a high level in invasive breast carcinoma. The 

underlying mechanism that potentiates tumour cell invasiveness by PYK2 could rely on cortactin, 

an interactor of PYK2. In invasive breast cancer cells, PYK2 colocalises with cortactin to 

invadopodia, which interposes, directly or indirectly, epidermal growth factor-induced cortactin 

tyrosine phosphorylation by Src-mediated Abl-related gene (Arg) activation. This results in actin 

polymerisation in invadopodia, extracellular matrix degradation and tumour cell invasion. 

Indeed, cell migration is a fundamental process, from simple organisms such as amoeba to a 

complex organism such as mammals. In multicellular organisms, cell migration is a central 
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process in development and maintenance of this organisms, including tissue formation during 

embryonic development, wound healing and immune responses. All above required the 

coordinated movement of cells in certain directions to specified locations (Vicente-Manzanares 

et al., 2005). 

In fact, effective cell invasion is mostly dependent upon cell migration, which determines the 

ability of cells to become mobile and to navigate through the extracellular matrix within a tissue 

or to infiltrate neighbouring tissues. Cancer cells that became invasive may spread to secondary 

sites and form metastases, which is a hallmark of cancer and the most leading cause of mortality 

among cancer patients. This Phenotype is correlated to high expression levels in several genes 

that involved in cells motility. This can stimulate the invasion of carcinoma cells by responding 

to signals from the microenvironment. For that, the molecules that involved in cell migration 

could be probable therapy targets (Yamaguchi et al., 2005; Clark and Vignjevic, 2015).  

The focus of this chapter was to determine the role of PYK2 on cell migration, invasion and 

proliferation of breast cancer cell lines and in response to Metformin.  Downstream pathways 

that are PYK2-dependent involved were also identified. For these purposes, Basal-like (MDA-

MB-468), Claudin -Low (MDA-MB-231), and HER2 (SkBr3, and MDA-MB-453) cell lines were 

chosen for the experimental studies. 

6.2. Generation of PTK2B knockdown cell lines from Basal-like (MDA-MB-468), Claudin 

-Low (MDA-MB-231) and HER2 (SkBr3 and MDA-MB-453) breast cancer cell lines 

 

The introduction of small interfering RNAs (siRNAs) or short interfering RNAs (shRNA) into 

cultured cells provides fast and efficient means of knocking down genes. SiRNA has been shown 

to be effective for short-term gene knockdown, while shRNA provides a more stable gene 

silencing. However, long-term gene silencing can be achieved by standard clonal selection 

methodologies using empty control or shRNA lentiviral expressing constructs and selection 

antibiotic selection such as puromycin. In these experiments, two recommended negative 

controls have been used, which are the untreated cells (provide a reference point for comparing 

all other samples) and the lentiviral carrying the empty vector (TRC1.5-pLKO.1-puro). See 

materials and methods (2.2.5.1 and 2.2.5.2). Cells expressing the empty vector provide an 

essential reference point for comparison with a gene-specific knockdown in cells expressing the 

shRNAs.   
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The Basal-like (MDA-MB-468, Claudin -Low (MDA-MB-231) cell HER2 (SkBr3) and (MDA-MB-453) 

cell lines were selected for PTK2B knockdown. The Her2 phenotype represented the les sensitive 

breast cancer subtype towards Metformin treatments, while the Basal-like and Claudin -Low 

was the most sensitive phenotypes (see results in chapter 3). 

In these experiments, four individual clones from MISSION™ shRNA Target Set NM_004103 were 

co-transfected with a lentivirus packaging plasmid into HEK 293T cells. The resulting lentiviral 

particles were used to infect the human breast cancer cell lines. The lentiviral delivery system 

ensures a high efficiency and permanent incorporation of the construct in the genome of 

infected cells. A library of infected clones was created from the MDA-MB-468, MDA-MB-231, 

SkBr3 and MDA-MB-453 cell lines. Each cell line was transfected with four different PTK2B 

shRNA constructs, and the lentiviral construct EF1-α-EGFP (Eukaryotic translation elongation 

factor 1) was used as a positive control to evaluate the efficiency of lentiviral production and 

transduction.  

 
 
Figure 6.1. Micrographs showing EGFP expression in breast cancer cell lines.  Cells were 
transduced with EF1-α-EGFP (positive control), Images were taken 48 hours post-transduction. 
Representative images were taken at 5X magnification. scale bar represents 100μm. 
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Antibiotic selection (puromycin) showed that 3µg/mL is the minimum concentration that killed 

100% of the cells after 72h (Figure A.6.1 in Appendix) and three clones out of four MISSION™ 

shRNA Target Set were efficiently transfected. For this, three clones were used for the upcoming 

validation. In addition, western blotting experiments were performed to determine the 

efficiency of PTK2B knockdown in transduced cell lines. 

 

 

6.3. Analyses of PTK2B protein expression in newly generated Basal-like , Claudin –

Low, and HER2 PTK2B-knockdown cell lines  

 

The aim of the following section was to determine PTK2B protein expression pattern following 

PTK2B knockdown in breast cancer cell lines. Whole protein lysates from shRNA-infected cells 

were analysed by western blotting using a PTK2B antibody (Figure 6.2). 

 

 

Figure 6.2. Representative images PTK2B expression in Control and PTK2B knockdown breast 
cancer cell lines. Western blot analysis of whole cell lysates from control and PTK2B knockdown 
from Basal-like, Claudin-Low and HER2 phenotypes. pLKO.1-puro corresponds to the empty 

vector negative control. -actin was used as a loading control. 
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PTK2B was expressed at its highest level in the pLKO.1-puro (Empty vector negative control) in 

all breast cancer cell lines. Although the expression of PTK2B was downregulated in shRNA 2 and 

4 expressing cells, its expression was also downregulated in shRNA1 expressing cells except for 

the HER2 (SkBr3) cell line that also expressed PTK2B at a level similar to the control (Figure 6.2). 

In addition, protein densities of each shRNA bands have been measured in relation to the 

pLKO.1-puro control bands. Figure (6.3) below reflects the densitometric ratio in Arbitrary Unit 

(AU) for PTK2B protein expression. 

These results confirmed that the knockdown system using PYK2 constructs is efficient and that 

shRNA2 (clone2) and shRNA4 (clone4) expressing cells can be used for next studies. In the 

subsequent experimental work, clone2 is referred to as shRNA1 and clone4 as shRNA2. 

 

 

 

Figure 6.3. Micrograph representing the densitometric ratio of PTK2B protein expression in 

control and shRNA knockdown cells. PTK2B expression in Arbitrary Unit (AU) in Basal-like (MDA-

MB-468), Claudin -Low (MDA-MB-231), HER2 (SkBr3) and (MDA-MB-453) cell lines.  
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6.4. Investigating the effects of PTK2B knockdown on cell migration, invasion and 

proliferation of breast cancer cell lines in the absence or presence of treatment  

 

6.4.1. Effect of PTK2B knockdown on cell migration and in response to Metformin 

treatment  

 

To determine the role of PTK2B in cell migration, a Wound-healing (Scratch) assay was used. This 

assay was applied to MDA-MB-468, MDA-MB-231, SkBr3, and MDA-MB-453 controls and 

shRNAs (shRNA1 and 2) in the absence or presence of Metformin. The results demonstrated that 

PTK2B knockdowns in MDA-MB-468, HER2 (SkBr3) and (MDA-MB-453) cells resulted in 

decreased migration 24 and 48h following scratching. This reduced migration was also 

significant when Metformin has used. However, non-significant differences on cell migration 

capability were observed in MDA-MB-231 cell line when comparing untreated and Metformin 

treated empty vector and PTK2B expressing cells (Figure 6.4 A, B, Figure 6.5 A, B, Figure 6.6 A, B 

and Figure 6.7 A, B). In addition, the Wound-healing (Scratch) assay images for MDA-MB-468, 

MDA-MB-231 and HER2+ breast cancer cell lines (SkBr3, MDA-MB-453) can be found in 

Appendix Figures A.6.2, A.6.3, A.6.4, A.6.5., A.6.6, A.6.7, A.6.8, A.6.9. 
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Figure 6.4. PTK2B depletion prevents cell migration in MDA-MB-468 cells. Wound-healing assay (Scratch assay) using MDA-MB-468 cells expressing 
empty vector, PTK2B- shRNA1 and PTK2B- shRNA2 and corresponding data quantification of gap closure at time point 24 h(A) and 48 h(B) following 
scratching. Two-way ANOVA P (**-****) ≤ 0.01-0.0001.  
 

 
 
 
 
 
 
 
 



184 | P a g e  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5. PTK2B depletion does not affect cell migration in MDA-MB-231 cells. Wound-healing assay (Scratch assay) using MDA-MB-231 cells 
expressing empty vector, PTK2B- shRNA1 and PTK2B- shRNA2 and corresponding data quantification of gap closure at time point 24 h(A) and 48 h(B) 
following scratching. Two-way ANOVA P =(ns).  
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Figure 6.6. PTK2B depletion prevents cell migration in SkBr3 cells. Wound-healing assay (Scratch assay) using SkBr3 cells expressing empty vector, 
PTK2B- shRNA1 corresponding data quantification of gap closure at time points 24 h(A) and 48 h(B) following scratching. Two-way ANOVA P (****) ≤ 
0.0001. 
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Figure 6.7- PTK2B depletion prevents cell migration in MDA-MB-453 cells. Wound-healing assay (Scratch assay) using MDA-MB-453 cells expressing 
empty vector, PTK2B- shRNA1 corresponding data quantification of gap closure at time points 24 h(A) and 48 h(B) following scratching. Two-way ANOVA 
P (*-****) ≤ 0.05-≤ 0.0001. 
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6.4.2. Effect of PTK2B knockdown on cell invasion and in response to Metformin 

treatment 

 

The Cultrex® BME Cell Invasion Assay is a 96-well microplate-based assay designed to accelerate 

the screening process for compounds that influence chemotaxis, by quantifying the degree to 

which invasive cells penetrate a barrier consisting of Basement Membrane Extract (BME) in 

response to chemoattractants and/or inhibiting compounds. This assay was used to validate the 

invasiveness capacity of PTK2B shRNA knockdown clones compared to the PLKO-1 (empty 

vector) in both conditions of non-treated and Metformin treatment after 48h of incubation. This 

assay has been applied to the four breast cancer phenotypes. Figures 6.8, 6.9, 6.10, and 6.11 

shown the total number of invading cells in the empty vector compared to shRNA1 and shRNA 

2 in the presence or of Metformin treated MDA-MB-468, MDA-MB-231, SkBr3, and MDA-MB-

453 cell lines (48h of treatment) and non-treated cells. The results indicated a reduction of 

invasive capacities of depleted PTK2B cells in all cell lines when compared to cells expressing the 

empty vector (pLKO.1-puro) except for the MDA-MB-231 cell line which showed a different 

response. The treatment with Metformin also significantly decreased the invasiveness of treated 

cells when compared to the control in most cell lines. However, a non-significant difference 

between the empty vector and PTK2B shRNA clones was noticed in MDA-MB-468 treated cells. 

 
 

 
Figure 6.8. PTK2B knockdown prohibited cell invasiveness in MDA-MB-468 cells. Cultrex® BME 
Cell Invasion Assay using MDA-MB-468 cells expressing empty vector and PTK2B constructs, 
corresponding data quantification the number of invading cells at time points 48 h following 
culturing. Two-way ANOVA P (**) ≤ 0.001. 
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Figure 6.9. PTK2B knockdown prohibited cell invasiveness in MDA-MB-231 cells. Cultrex® BME 
Cell Invasion Assay using MDA-MB-231 cells expressing empty vector and PTK2B constructs, 
corresponding data quantification the number of invading cells at time points 48 h following 
culturing. ANOVA **P ≤ 0.001, and Two-way ANOVA P (*) ≤ 0.05. 
 
 

 
 
Figure 6.10. PTK2B knockdown prohibited cell invasiveness in SkBr3 cells. Cultrex® BME Cell 
Invasion Assay using SkBr3 cells expressing empty vector and PTK2B constructs, corresponding 
data quantification the number of invading cells at time points 48 h following culturing. Two-
way ANOVA P (****) ≤ 0.0001, between the empty vector and PTK2B constructs. 
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Figure 6.11. PTK2B knockdown prohibited cell invasiveness in MDA-MB-453 cells. Cultrex® 
BME Cell Invasion Assay using MDA-MB-453 cells expressing empty vector and PTK2B 
constructs, corresponding data quantification the number of invading cells at time points 48 h 
following culturing. Two-way ANOVA P (**-****) ≤ 0.001 to 0.0001. 
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6.4.3. Effect of PTK2B knockdown on cell proliferation and in response to Metformin 

treatment using the xCELLigence System (RTCA) 

 

The xCELLigence system is a pioneer technology method, which provides a dynamic real-time, 

label-free cellular analysis for a variety of research applications in drug development, toxicology, 

cancer, medical microbiology and virology. The xCELLigence System is a microelectronic 

biosensor system for cell-based assays, which monitors cellular events in real time, without the 

incorporation of labels by measuring electrical impedance across interdigitated microelectrodes 

integrated on the bottom of its special tissue culture plates (E-Plate).  The impedance 

measurement improves conventional endpoint assays and provides quantitative information 

about the biological status of the cells, including cell number, adhesion, viability, and 

morphology. This impedance signal is converted to a specific parameter called Cell Index using 

a proprietary algorithm. The Cell Index is an excellent measure of how the cells are behaving 

over time (Martinez-Serra et al., 2014). 

Cell Proliferation assay has been applied on control and PTK2B knockdowns breast cancer cell 

lines, utilising the RTCA xCELLigence System and the E-Plate (16) (see chapter 2 materials and 

method section 2.2.5.9). The Cell Index (CI) was measured every 20 min for 2 h and then every 

hour until reaching 48h.  The results showed that MDA-MB-468 and MDA-MB-231 cells had 

reduced cell proliferation in PTK2B knockdowns when compared to the empty vector (control), 

in both treated and untreated conditions. However, a non- significant difference was observed 

between untreated and treated cells, except for the MDA-MB-468 cell line expressing PTK2B 

shRNA 1 (Figure.  6.12 and 6.13), while the proliferation of SkBr3 and MDA-MB-453 breast cancer 

cells was significantly increased following PTK2B knockdowns in comparison with control (empty 

vector). A similar observation has been made after Metformin treatment with significant 

differences between empty vector and PTK2B constructs (Fig. 6.14, 6.15) respectively. 

Furthermore, in this assay Metformin treatment did not appear to affect the proliferation of 

transduced cells in all cell lines except for the MDA-MB-453 cell line. 
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Figure 6.12. 
Micrograph representing the effect of PTK2B downregulation on cell proliferation in MDA-MB-468 cells. Data representing measurements of cell 
proliferation of MDA-MB-468 cells expressing PLKO-1(control) and PTK2B shRNA 1 and 2 after 48 h post treatment with Metformin. Using the 
xCELLigence System (RTCA) assay, the data represent the number of cells (Cell index) after 48h.  Only shRNA2 untreated cells displayed a significant 
difference between the empty vector and PTK2B shRNAs. Both treated shRNA1 and2 showed a significant difference between treated empty vector 
and PTK2B constructs. Two-way ANOVA P (*-**) ≤ 0.05-≤ 0.01. In addition, there was a significant difference between the treated and untreated shRNA1 
only. 
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Figure 6.13. Micrograph representing the effect of PTK2B downregulation on cell proliferation in MDA-MB-231 cells. Data representing measurements 
of cell proliferation of MDA-MB-231 cells expressing PLKO-1(control) and PTK2B shRNA 1 and 2 after 48 h post treatment with Metformin. Using the 
xCELLigence System (RTCA) assay, the data represent the number of cells (Cell index) after 48h.  Both shRNA1 and2 showed a significant difference 
between empty vector and PTK2B constructs in treated and untreated conditions. However, there were not any significant differences between 
untreated and treated cells. Two-way ANOVA P (**-****) ≤ 0.01-≤ 0.0001. 
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Figure 6.14. Micrograph representing the effect of PTK2B downregulation on cell proliferation in SkBr3 cells. Data representing measurements of cell 
proliferation of HER2 (SkBr3) cells expressing PLKO-1(control) and PTK2B shRNA 1 and 2 after 48 h post treatment with Metformin. Using the 
xCELLigence System (RTCA) assay, the data represent the number of cells (Cell index) after 48h.  Both shRNA 1 and 2 showed a significant difference 
between empty vector and PTK2B constructs constructs in treated and untreated conditions. However, a non-significant difference between untreated 
and treated cells has been observed. Two-way ANOVA P (****) ≤ 0.0001. 
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Figure 6.15. Micrograph representing the effect of PTK2B downregulation on cell proliferation in MDA-MB-453 cells. Data representing measurements 
of cell proliferation of HER2 (MDA-MB-453) cells expressing PLKO-1(control) and PTK2B shRNA 1 and 2 after 48 h post treatment with Metformin. Using 
the xCELLigence System (RTCA) assay, the data represent the number of cells (Cell index) after 48h.  Both shRNA 1 and 2 showed a significant difference 
between empty vector and PTK2B constructs in both treated and non-treated conditions. In addition, significant differences between untreated and 
treated cells hane been shown. Two-way ANOVA P (**-****) ≤ 0.01-≤ 0.0001.
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6.5. Employment of MetaCore ™ software analysis to interrogate PYK2 related 

pathways and biological processes. 

 

Meta Core™ online software search has been utilised to interrogate the biological pathways that 

are related to PYK2. The analysis has revealed 46 Normal pathways and 17 Pathological 

pathways that are related to this gene (PYK2) as presented in Table 6.1 below. 

 

Table 6.1. List of PYK2 engaged Pathways in both Normal and Pathological conditions 

 

Entry 

number 

Pathway Condition 

1 Blood coagulation_ GPIb-IX-V-dependent platelet activation Normal 

2 Cell adhesion_ Histamine H1 receptor signalling in the interruption 

of cell barrier integrity 

Normal 

3 Chemotaxis_CCL19- and CCL21-mediated chemotaxis Normal 

4 Chemotaxis_CCL2-induced chemotaxis Normal 

5 Chemotaxis_CXCR4 signalling pathway Normal 

6 Chemotaxis_SDF-1/ CXCR4-induced chemotaxis of immune cells Normal 

7 Development_ACM2 and ACM4 activation of ERK Normal 

8 Development_ Activation of Erk by ACM1, ACM3 and ACM5 Normal 

9 Development_ Activation of ERK by Alpha-1 adrenergic receptors Normal 

10 Development_ Activation of ERK by Kappa-type opioid receptor Normal 

11 Development_ Adenosine A2B receptor signalling Normal 

12 Development_ Adenosine A3 receptor signalling Normal 

13 Development_Alpha-2 adrenergic receptor activation of ERK Normal 

14 Development_ Angiotensin activation of ERK Normal 

15 Development_ Angiotensin signalling via PYK2 Normal 

16 Development_ Angiotensin signalling via STATs Normal 

17 Development_ c-Kit ligand signalling pathway during hemopoiesis Normal 

18 Development_ Delta-type opioid receptor signalling via G-protein 

alpha-14 

Normal 

19 Development_Endothelin-1/EDNRA signalling Normal 

20 Development_Endothelin-1/EDNRA transactivation of EGFR Normal 

21 Development_ G-protein-mediated regulation of MAPK-ERK 

signalling 

Normal 
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22 Development_ Growth hormone signalling via PI3K/AKT and MAPK 

cascades 

Normal 

23 Development_ Osteopontin signalling in osteoclasts Normal 

24 Development_SDF-1 signalling in hematopoietic stem cell homing Normal 

25 Development_ VEGF signalling via VEGFR2 - generic cascades Normal 

26 G-protein signalling _G-Protein alpha-q signalling cascades Normal 

27 G-protein signalling_ Regulation of p38 and JNK signalling 

mediated by G-proteins 

Normal 

28 Immune response _IFN gamma signalling pathway Normal 

29 Immune response_CCR5 signalling in macrophages and T 

lymphocytes 

Normal 

30 Immune response_CXCR4 signalling via the second messenger Normal 

31 Immune response_ Fc gamma R-mediated phagocytosis in 

macrophages 

Normal 

32 Immune response_IL-7 signalling in T lymphocytes Normal 

33 Immune response_ M-CSF-receptor signalling pathway Normal 

34 Immune response_ Neurotensin-induced activation of IL-8 in 

colonocytes 

Normal 

35 Immune response_ Role of integrins in NK cells cytotoxicity Normal 

36 Neurophysiological process_ACM1 and ACM2 in neuronal 

membrane polarization 

Normal 

37 Neurophysiological process_ Constitutive and regulated NMDA 

receptor trafficking 

Normal 

38 Neurophysiological process_ NMDA-dependent postsynaptic long-

term potentiation in CA1 hippocampal neurons 

Normal 

39 Oxidative stress_ ROS-mediated MAPK activation via canonical 

pathways 

Normal 

40 Regulation of lipid metabolism_Alpha-1 adrenergic receptors 

signalling via arachidonic acid 

Normal 

41 Regulation of lipid metabolism_ Stimulation of Arachidonic acid 

production by ACM receptors 

Normal 

42 Reproduction_ Gonadotropin-releasing hormone (GnRH) signalling Normal 

43 Stem cells_ Role of PKR1 and ILK in cardiac progenitor cells Normal 

44 Transcription_ Androgen Receptor nuclear signalling Normal 
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45 Translation_ Translation regulation by Alpha-1 adrenergic 

receptors 

Normal 

46 Transport_ACM3 signalling in lacrimal glands Normal 

47 Autocrine Somatotropin signalling in breast cancer Pathology 

48 CCR7 signalling pathways in dendritic cells in allergic contact 

dermatitis 

Pathology 

49 CHDI_ Correlations from Replication data_ Causal network 

(positive correlations) 

Pathology 

50 FGFR3 signalling in multiple myeloma Pathology 

51 G protein-coupled receptors signalling in lung cancer Pathology 

52 HBV mediates angiogenesis in HCC Pathology 

53 HBV signalling via protein kinases leading to HCC Pathology 

54 HBV-dependent NF-kB and PI3K/AKT pathways leading to HCC Pathology 

55 HGF receptor (Met) and MSP receptor (RON) signalling pathways 

in SCLC 

Pathology 

56 HIV-1 signalling via CCR5 in macrophages and T lymphocytes Pathology 

57 Neuroprotective action of lithium Pathology 

58 The proliferative action of Gastrin in pancreatic cancer Pathology 

59 Role of neuropeptides in the pathogenesis of SCLC Pathology 

60 Stem cells_ Pancreatic cancer stem cells in tumour metastasis Pathology 

61 Tissue Factor signalling in cancer via PAR1 and PAR2 Pathology 

62 The transition of HCC cells to an invasive and migratory phenotype Pathology 

63 VEGF signalling in multiple myeloma Pathology 

 
Pathways were derived by Meta Core™ online software analysis. The table shows 46 Normal 
pathways and 17 Pathological pathways.   The Blue colour indicates Normal pathways and the 
red Pathological pathways. 
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The table above demonstrated several normal pathways, as well as pathological pathways that 

are engaged with PYK2. In addition, the Autocrine Somatotropin signalling pathway has been 

noticed as the main pathway that is related to breast cancer. Somatotropin, which is also known 

as Growth hormone (GH), or human growth hormone (HGH) is an important development 

peptide hormone that stimulates growth, cell reproduction, and cell regeneration in human and 

other animals. It is a mitogen type that is specific to only certain kinds of cells (Subramani et al., 

2017). The somatotropic cells in the anterior pituitary gland, are the factory store and secretor 

of this hormone. In addition, GH is a stress hormone that boosts the concentration of glucose 

and free fatty acids as well as, stimulating the production of IGF-1. Epidemiological data 

demonstrate that GH/IGF-1 is associated with an increased risk of breast cancer directly and 

positively (Subramani et al., 2017). Besides, as shown in Figure 6.16 the overexpression of 

Somatotropin (GH), stimulates the JAK2 pathway, which induces the PYK2 pathway via different 

pathways. Some pathways lead to cell survival and cell proliferation, which are drivers of breast 

cancer, while, other pathways lead to migration and spreading of cells from one side, and 

angiogenesis from another side, which all are responsible for metastasis in breast cancer. The 

PYK2 is an essential driver gene in this pathologic pathway in breast cancer.  
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Figure 6.16. PYK2 involvement in Autocrine Somatotropin signalling pathway in breast cancer. 

The chart was obtained using Meta Core™ online software analysis (on 06/08/2018). 

Somatotropin (GH) stimulates the JAK2 pathway, which induces the PYK2 pathway via different 

pathways. All stimulated pathways are associated with breast cancer and metastasis. MetaCore 

annotation: IE=Influence on expression, B= Binding, T= Transformation, CRT= Co-regulation of 

transcription, Tr= Transcription regulation. 

Furthermore, the biological processes that are related to PYK2 were also analysed by Meta 

Core™ online software analysis. This search revealed 18 biological processes that are associated 

to PYK2, including Apoptosis, Cell adhesion, Immune response, Inflammation, 

Neurophysiological process, Proliferation, Reproduction, Signal Transduction, and Transport 

(Table 6.2.).  

Table 6.2. list of biological processes that are related to PYK2(FAK2) gene 

Entry number Processes 

1 Apoptosis_ Apoptosis stimulation by external signals 

2 Cell adhesion_ Glycoconjugates 

3 Cell adhesion_ Leucocyte chemotaxis 

4 Cell adhesion_ Platelet aggregation 

5 Immune response_ Phagocytosis 

6 Immune response_ Phagosome in antigen presentation 

7 Inflammation_ IFN-gamma signalling 

8 Inflammation_ NK cell cytotoxicity 

9 Neurophysiological process_ GABAergic 

neurotransmission 

10 Neurophysiological process_ Long-term potentiation 

11 Proliferation_ Lymphocyte proliferation 

12 Proliferation_ Positive regulation cell proliferation 

13 Reproduction_ FSH-beta signalling pathway 

14 Reproduction_ GnRH signalling pathway 

15 Reproduction_ Gonadotropin regulation 

16 Signal Transduction_ Cholecystokinin signalling 

17 Signal Transduction_ TGF-beta, GDF and Activin 

signalling 

18 Transport_ Calcium transport 

 
18 fundamental biological and molecular processes that are crucially involved in cell fate and 
cancer development were identified. These were derived from Meta Core™ online software 
analysis. 
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6.6. Protein expression profiling of samples from Her2 cell lines expressing pLKO.1 

(control) and PTK2B shRNAs  

Mass spectrometry (MS) analyses were performed to identify and quantify proteins that are 

expressed in the HER2 breast cancer cell line SkBr3 PLKO-1(control) and PTK2B knockdown (KD) 

samples. The proteomic method allows identifying the consistency of the proteins that are 

differentially expressed by control and PTK2B knockdown cells that were treated or untreated 

with Metformin. In this experiment, whole cell protein lysates from SkBr3 and MDA-MB-453 

cells expressing pLKO.1 and shRNA 1 (treated and untreated) were prepared. The protein 

amount of 6 μg were analysed (pLKO.1 and shRNA 1 treated and untreated) to ensure high 

peptide identification. The samples were analysed via SCIEX Triple TOF 6600 mass spectrometer, 

which generates data obtained in both IDA (Independent Data Acquisition) and SWATH 

(sequential window acquisition of all theoretical fragment ion spectra) modes. 

 Protein Pilot (version 5) software was utilised for a generation of a spectral library of identified 

proteins from the IDA data acquisition and the spectral library, and which aligned with the 

obtained SWATH data using the Peak View software (version 2.2). SCIEX One Omics platform 

was also used to analyse the data following library alignment for fold change of proteins 

expression definition. A fold change >2 and a confidence level > 0.65 cut-off were used to 

determine significantly regulated proteins between sample groups. For the generation of heat 

maps and pathway analysis, the confidence threshold was reduced to > 70 percentage to identify 

more protein IDs. 

 A comprehensive and complete record of all forerunner fragmentations from detected peptides 

and in biological samples can be obtained and examined by utilising the MS/MS SWATH 

independent data acquisition method, which allows a sensitive detection and quantification of 

several peptides including less abundant ones. The global protein profiling revealed 3284 

proteins IDs in SkBr3 cell line (all replicates). Top 25 upregulated and top 25 downregulated 

proteins according to the Fold Change Fc 2≥ -2 and confidence of 70 %, have been considered 

for heat maps generation (Figure 6.17), and which displays comparison between pLKO-1 and 

PYK2 Knockdown samples from untreated (left-hand heat map) and pLKO-1 vs. PYK2 Knockdown 

(KD) from Metformin treated samples (right-hand heat map).  

 



202 | P a g e  
 

 

Figure 6.17. Differentially expressed proteins from untreated and treated SkBr3 control and 
PTK2B cells. The left-hand heat map shows the comparison between untreated PLKO-1 and PYK2 
KD samples. The right-hand heat map represents the comparison between Metformin-treated 
pLKO-1 and PYK2 KD samples. The heat maps display the top 25 upregulated and 25 
downregulated proteins according to Fc 2≥ -2, and confidence of 70%. The colour gradient is 
between red and blues with white in the middle.  
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Table 6.3 shows the list of proteins that satisfied the cut-off criteria 2 Fc ≥ -2, and confidence 

of 70% comparing untreated PLKO-1 and PYK2 KD.   

Table 6.3. Top 25 upregulated proteins and 25 downregulated proteins in HER2 (SkBr3) cell 

line 

Protein Symbol Description Fold change Confidence level 

TOM5 Mitochondrial import receptor subunit TOM5 

homolog 

18.349 0.762 

SRSF4 Serine/arginine-rich splicing factor 4 14.853 0.758 

H2AZ Histone H2A.Z 12.249 0.895 

AGR2 Anterior gradient protein 2 homolog 11.426 0.7908 

CPSM Carbamoyl-phosphate synthase [ammonia], 

mitochondrial 

10.967 0.772 

GBG10 Guanine nucleotide-binding protein 

G(I)/G(S)/G(O) subunit gamma-10 

10.598 0.715 

LAGE3 EKC/KEOPS complex subunit LAGE3 9.374 0.823 

MGST1 Microsomal glutathione S-transferase 1 8.617 0.804 

NFYC Nuclear transcription factor Y subunit gamma 8.213 0.785 

PPOX Protoporphyrinogen oxidase 7.198 0.948 

HYEP Epoxide hydrolase 1 7.111 0.824 

CALM3 Calmodulin-3 7.052 0.718 

LYPD3 Ly6/PLAUR domain-containing protein 3 6.878 0.789 

SAM50 Sorting and assembly machinery component 

50 homolog 

6.659 0.760 

MPC2 Mitochondrial pyruvate carrier 2 6.587 0.789 

RABP1 Cellular retinoic acid-binding protein 1 6.252 0.795 

CALX Calnexin 5.822 0.787 

QCR9 Cytochrome b-c1 complex subunit 9 5.763 0.719 

MPCP Phosphate carrier protein, mitochondrial 5.503 0.710 

DHC24 Delta (24)-sterol reductase 5.376 0.772 

PCAT1 Lysophosphatidylcholine acyltransferase 1 5.083 0.816 

VTM2L V-set and transmembrane domain-containing 

protein 2-like protein 

4.847 0.789 

DHRS2 Dehydrogenase/reductase SDR family 

member 2, mitochondrial 

4.753 0.876 

MGST3 Microsomal glutathione S-transferase 3 4.579 0.776 

ZNT7 Zinc transporter 7 4.540 0.875 
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Protein Symbol Description Fold change Confidence level 

PEBP1 Phosphatidylethanolamine-binding protein 1 -2.890 0.902 

RSSA 40S ribosomal protein SA -2.946 0.885 

HSPB1 Heat shock protein beta-1 -2.962 0.844 

HEXA Beta-hexosaminidase subunit alpha -3.057 0.821 

RMD1 Regulator of microtubule dynamics protein 1 -3.133 0.822 

GDIR2 Rho GDP-dissociation inhibitor 2 -3.153 0.765 

TES Testing -3.195 0.843 

CNDP2 Cytosolic non-specific dipeptidase -3.228 0.753 

RL17 60S ribosomal protein L17 -3.229 0.710 

S10A9 Protein S100-A9 -3.563 0.741 

CBX5 Chromobox protein homolog 5 -3.832 0.755 

CATB Cathepsin B -3.832 0.806 

INO1 Inositol-3-phosphate synthase 1 -3.844 0.739 

GPDA Glycerol-3-phosphate dehydrogenase [NAD 

(+)], cytoplasmic 

-4.107 0.761 

S10A4 Protein S100-A4 -4.239 0.721 

GPNMB Transmembrane glycoprotein NMB -4.831 0.724 

LXN Latexin -5.566 0.727 

TRFL Lactotransferrin -5.939 0.806 

FETUA Alpha-2-HS-glycoprotein -8.989 0.703 

RL35 60S ribosomal protein L35 -9.105 0.831 

PSB8 Proteasome subunit beta type-8 -10.789 0.747 

LG3BP Galectin-3-binding protein -16.712 0.906 

CAPG Macrophage-capping protein -17.133 0.883 

ALBU Serum albumin -17.665 0.843 

F16P1 Fructose-1,6-bisphosphatase 1 -64.565 0.816 

 

Samples comparing untreated PLKO-1 and PYK2 KD samples with Fc 2≥ -2, and confidence of 
70%. Red indicated upregulated proteins and blue downregulated proteins. 
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Table 6.4 shown the list of proteins that satisfied the cut-off criteria Fc 2≥ -2, and confidence of 

70% comparing between PLKO-1 and PYK2 KD samples after treatment with Metformin for 

48h. 

Table 6.4. Top 25 upregulated proteins and 25 downregulated proteins in HER2 (SkBr3) cell 

line 

Protein Symbol Description Fold change Confidence level 

ODP Pyruvate dehydrogenase protein X 

component, mitochondrial 

24.007 0.719 

CDS2 Phosphatidate cytidylyltransferase 2 23.202 0.741 

AGR2 Anterior gradient protein 2 homolog 16.920 0.854 

PPOX Protoporphyrinogen oxidase 10.232 0.843 

LGMN Legumain 9.976 0.748 

SRSF4 Serine/arginine-rich splicing factor 4 8.652 0.781 

CALM3 Calmodulin-3 8.365 0.765 

LAGE3 EKC/KEOPS complex subunit LAGE3 7.965 0.709 

XAGE2 X antigen family member 2 7.816 0.710 

VTM2L V-set and transmembrane domain-containing 

protein 2-like protein 

7.273 0.846 

KCRB Creatine kinase B-type 5.427 0.827 

SRGP2 SLIT-ROBO Rho GTPase-activating protein 2 4.412 0.707 

DHC24 Delta (24)-sterol reductase 4.195 0.835 

CPSM Carbamoyl-phosphate synthase [ammonia], 

mitochondrial 

4.104 0.890 

MPC1 Mitochondrial pyruvate carrier 1 3.965 0.837 

HNRPD Heterogeneous nuclear ribonucleoprotein D0 3.540 0.715 

GBB4 Guanine nucleotide-binding protein subunit 

beta-4 

3.367 0.785 

H2AZ Histone H2A.Z 3.150 0.999 

SNTB1 Beta-1-syntrophin 3.095 0.894 

G6PD Glucose-6-phosphate 1-dehydrogenase 3.081 0.915 

SGTA Small glutamine-rich tetratricopeptide repeat-

containing protein alpha 

3.071 0.786 

STA10 PCTP-like protein 3.066 0.851 

AL3A2 Fatty aldehyde dehydrogenase 3.036 0.927 

VKOR1 Vitamin K epoxide reductase complex subunit 

1 

2.997 0.912 

CALX Calnexin 2.961 0.778 
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Protein Symbol Description Fold change Confidence level 

3HIDH 3-hydroxybutyrate dehydrogenase, 

mitochondrial 

-2.722 0.938 

CATB Cathepsin B -2.951 0.790 

VTNC Vitronectin -3.047 0.796 

CKAP4 Cytoskeleton-associated protein 4 -3.112 0.889 

TES Testing -3.172 0.897 

SSBP Single-stranded DNA-binding protein, 

mitochondrial 

-3.236 0.788 

GDIR2 Rho GDP-dissociation inhibitor 2 -3.283 0.774 

CHCH2 Coiled-coil-helix-coiled-coil-helix 

domain-containing protein 2 

-3.391 0.736 

SODM Superoxide dismutase [Mn], 

mitochondrial 

-3.465 0.824 

ACADM Medium-chain specific acyl-CoA 

dehydrogenase, mitochondrial 

-3.879 0.876 

SPHM N-sulphoglucosamine sulphohydrolase -3.885 0.872 

RL35 60S ribosomal protein L35 -3.972 0.828 

S10A4 Protein S100-A4 -4.973 0.736 

MYH14 Myosin-14 -5.164 0.809 

INO1 Inositol-3-phosphate synthase 1 -5.182 0.830 

GHITM Growth hormone-inducible 

transmembrane protein 

-5.510 0.789 

TAP1 Antigen peptide transporter 1 -5.659 0.769 

ALBU Serum albumin -7.230 0.856 

TBB6 Tubulin beta-6 chain -8.234 0.766 

PTRD1 Putative peptidyl-tRNA hydrolase 

PTRHD1 

-8.256 0.707 

INVO Involucrin -9.613 0.825 

PSB9 Proteasome subunit beta type-9 -10.508 0.814 

LG3BP Galectin-3-binding protein -14.193 0.838 

CAPG Macrophage-capping protein -20.253 0.858 

F16P1 Fructose-1,6-bisphosphatase 1 -40.187 0.841 

 

Samples comparing Metformin-treated pLKO-1 and PYK2 KD samples with Fc 2≥ -2, and 
confidence of 70%. Red indicated upregulated proteins and blue downregulated proteins. 
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In addition, Figure 6.18 shows the comparison between PLKO-1 untreated samples (control) 

and PLKO-1 treated (with Metformin) samples (left-hand heat map), and PLKO-1 untreated 

(control) samples vs. PYK2 KD treated samples (right-hand heat map). 

 

 

 

Figure 6.18. Differentially expressed proteins from untreated and treated SkBr3 control and 
PTK2B cells. The left-hand heat map shows the comparison between untreated and treated 
PLKO-1 samples.  The right-hand heat map represents the comparison between untreated PLKO-
1 samples and Metformin-treated PYK2 KD samples. The heat maps display the top 25 
upregulated and 25 downregulated proteins according to Fc 2≥ -2, and confidence of 70%. The 
colour gradient is between red and blues with white in the middle.  

 

 

Table 6.5 below shows the list of proteins that satisfied the cut-off criteria 1.4 Fc ≥ -2, and 

confidence of 70% comparing between pLKO-1 untreated (control) and PLKO-1 treated 

samples. 
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Table 6.5. Top 25 upregulated proteins and 25 downregulated proteins in HER2 (SkBr3) cell 

line 

Protein Symbol Description Fold change Confidence level 

ZNT7 Zinc transporter 7 5.525 0.751 

ATPK ATP synthase subunit f, mitochondrial 5.234 0.791 

MPCP Phosphate carrier protein, mitochondrial 4.858 0.721 

ATP5I ATP synthase subunit e, mitochondrial 4.046 0.757 

DHRS2 
Dehydrogenase/reductase SDR family member 

2, mitochondrial 
3.304 0.776 

CISY Citrate synthase, mitochondrial 3.265 0.752 

QCR2 
Cytochrome b-c1 complex subunit 2, 

mitochondrial 
3.187 0.793 

IDHP Isocitrate dehydrogenase [NADP], mitochondrial 3.176 0.839 

ATPB ATP synthase subunit beta, mitochondrial 3.172 0.905 

SDHB 
Succinate dehydrogenase [ubiquinone] iron-

sulfur subunit, mitochondrial 
3.119 0.73 

OAT Ornithine aminotransferase, mitochondrial 3.098 0.731 

CMC2 
Calcium-binding mitochondrial carrier protein 

Aralar2 
3.086 0.758 

VDAC1 
Voltage-dependent anion-selective channel 

protein 1 
2.999 0.768 

ATPA ATP synthase subunit alpha, mitochondrial 2.974 0.88 

VDAC2 
Voltage-dependent anion-selective channel 

protein 2 
2.901 0.783 

HCDH 
Hydroxyacyl-coenzyme A dehydrogenase, 

mitochondrial 
2.835 0.721 

ECB 
Trifunctional enzyme subunit beta, 

mitochondrial 
2.825 0.842 

MGST3 Microsomal glutathione S-transferase 3 2.812 0.714 

ABHDB Protein ABHD11 2.725 0.776 

ACON Aconitate hydratase, mitochondrial 2.675 0.768 

ODP2 
Dihydrolipoyllysine-residue acetyltransferase 

component of pyruvate dehydrogenase 
complex, mitochondrial 

2.655 0.729 

QCR1 
Cytochrome b-c1 complex subunit 1, 

mitochondrial 
2.637 0.85 

H2A2B Histone H2A type 2-B 2.624 0.811 

THIL Acetyl-CoA acetyltransferase, mitochondrial 2.612 0.832 

ECHA 
Trifunctional enzyme subunit alpha, 

mitochondrial 
2.605 0.743 

ECH1 
Delta (3,5)-Delta (2,4)-dienoyl-CoA isomerase, 

mitochondrial 
2.242 0.813 
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Protein Symbol Description Fold change Confidence level 

AATM Aspartate aminotransferase, mitochondrial 2.227 0.744 

GRP75 Stress-70 protein, mitochondrial 2.188 0.808 

SSBP 
Single-stranded DNA-binding protein, 

mitochondrial 
2.161 0.839 

DLDH 
Dihydrolipoyl dehydrogenase, 

mitochondrial 
2.134 0.76 

ECI1 
Enoyl-CoA delta isomerase 1, 

mitochondrial 
2.077 0.750 

IPYR2 
Inorganic pyrophosphatase 2, 

mitochondrial 
2.059 0.708 

PRDX3 
Thioredoxin-dependent peroxide 

reductase, mitochondrial 
2.049 0.784 

MIC19 MICOS complex subunit MIC19 2.026 0.738 

ETFA 
Electron transfer flavoprotein subunit 

alpha, mitochondrial 
1.941 0.816 

ANXA2 Annexin A2 1.877 0.78 

ECHD3 
Enoyl-CoA hydratase domain-containing 

protein 3, mitochondrial 
1.848 0.887 

PHB2 Prohibitin-2 1.793 0.722 

RAB2A Ras-related protein Rab-2A 1.639 0.714 

CPNE3 Copine-3 1.537 0.705 

HSDL2 
Hydroxysteroid dehydrogenase-like protein 

2 
1.522 0.732 

FAM3C Protein FAM3C 1.473 0.718 

 

 

Protein Symbol Description Fold change Confidence 

level 

RSSA 40S ribosomal protein SA -1.337 0.769 

HNRPF Heterogeneous nuclear ribonucleoprotein F -1.365 0.754 

ALDOC Fructose-bisphosphate aldolase C -1.417 0.764 

K1C19 Keratin, type I cytoskeletal 19 -1.440 0.731 

RL14 60S ribosomal protein L14 -1.509 0.885 

PCNA Proliferating cell nuclear antigen -1.563 0.774 

RL24 60S ribosomal protein L24 -1.579 0.752 

AROS Active regulator of SIRT1 -1.621 0.774 

 

Samples comparing untreated and treated PLKO-1 samples with Fc 1.4 ≥ -2, and confidence of 
70%. Red indicated upregulated proteins and blue downregulated proteins. 
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Table 6.6 shows the list of proteins that satisfied the cut-off criteria 2 Fc ≥ -2, and confidence of 

70% comparing between PLKO-1 untreated (control) and PYK2 KD treated samples. 

 

Table 6.6. Top 25 upregulated proteins and 25 downregulated proteins in HER2 

 (SkBr3) cell line 

Protein Symbol Description Fold change Confidence level 

SRSF4 Serine/arginine-rich splicing factor 4 17.913 0.749 

GBG10 Guanine nucleotide-binding protein 

G(I)/G(S)/G(O) subunit gamma-10 

12.517 0.747 

CDS2 Phosphatidate cytidylyltransferase 2 12.435 0.736 

TOM5 Mitochondrial import receptor 

subunit TOM5 homolog 

11.294 0.779 

CPSM Carbamoyl-phosphate synthase 

[ammonia], mitochondrial 

10.862 0.796 

H2AZ Histone H2A.Z 10.102 0.920 

AGR2 Anterior gradient protein 2 homolog 9.677 0.779 

PPOX Protoporphyrinogen oxidase 8.439 0.971 

HYEP Epoxide hydrolase 1 8.375 0.825 

MGST1 Microsomal glutathione S-

transferase 1 

8.102 0.807 

QCR9 Cytochrome b-c1 complex subunit 9 7.351 0.749 

SAM50 Sorting and assembly machinery 

component 50 homolog 

7.333 0.824 

ALG3 Dol-P-Man: Man(5)GlcNAc(2)-PP-Dol 

alpha-1,3-mannosyltransferase 

6.978 0.782 

ZNT7 Zinc transporter 7 6.974 0.789 

MPC2 Mitochondrial pyruvate carrier 2 6.660 0.800 

CALM3 Calmodulin-3 6.641 0.729 

RABP1 Cellular retinoic acid-binding protein 

1 

6.610 0.808 

RCN3 Reticulocalbin-3 6.375 0.777 

LYPD3 Ly6/PLAUR domain-containing 

protein 3 

6.334 0.721 

CALX Calnexin 6.136 0.873 

PCAT1 Lysophosphatidylcholine 

acyltransferase 1 

5.903 0.841 
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SAR1A GTP-binding protein SAR1a 5.464 0.856 

DHC24 Delta (24)-sterol reductase 5.434 0.800 

SAR1B GTP-binding protein SAR1b 5.395 0.727 

DHRS2 Dehydrogenase/reductase SDR 

family member 2, mitochondrial 

5.341 0.883 

 

Protein Symbol Description Fold change Confidence level 

RL7A 60S ribosomal protein L7a -3.210 0.802 

CNDP2 Cytosolic non-specific dipeptidase -3.230 0.755 

CATB Cathepsin B -3.267 0.781 

TES Testing -3.283 0.852 

RL24 60S ribosomal protein L24 -3.681 0.905 

RL14 60S ribosomal protein L14 -3.709 0.942 

GPDA Glycerol-3-phosphate 

dehydrogenase [NAD (+)], 

cytoplasmic 

-3.829 0.740 

TBB6 Tubulin beta-6 chain -3.835 0.822 

GDIR2 Rho GDP-dissociation inhibitor 2 -3.881 0.770 

INO1 Inositol-3-phosphate synthase 1 -4.017 0.741 

K2C7 Keratin, type II cytoskeletal 7 -4.060 0.710 

CBX5 Chromobox protein homolog 5 -4.163 0.831 

TRFL Lactotransferrin -5.657 0.701 

LXN Latexin -7.613 0.797 

S10A4 Protein S100-A4 -8.067 0.727 

INVO Involucrin -10.096 0.722 

RL35 60S ribosomal protein L35 -10.733 0.820 

ZFAN1 AN1-type zinc finger protein 1 -11.261 0.7195 

EF1G Elongation factor 1-gamma -13.597 0.752 

PAGE5 P antigen family member 5 -14.763 0.713 

LG3BP Galectin-3-binding protein -16.528 0.900 

ALBU Serum albumin -16.538 0.831 

BTF3 Transcription factor BTF3 -18.724 0.730 

CAPG Macrophage-capping protein -20.770 0.837 

F16P1 Fructose-1,6-bisphosphatase 1 -26.012 0.834 

 

Samples comparing untreated PLKO-1 and Metformin-treated PYK2 KD samples with Fc 2 ≥ -2, 
and confidence of 70%. Red indicated upregulated proteins and blue downregulated proteins. 
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6.7. Pathways Enrichment analysis  

Differentially expressed proteins in untreated and treated pLKO-1 and PYK2 KD SkBr3 samples 

with Fold change 2 ≥ -2 and confidence of 70%, were subsequently analysed using Meta Core™ 

pathway identification online tool. A list of upregulated or downregulated proteins in pLKO-1 

and PYK2 KD were clustered into several signalling pathways and in accordance with their 

statistical significance (p < 0.05). Meta Core process functional enrichment analyses led to the 

identification of 7 pathways with FDR (False Discovery Rate) < 0.05. Table 6.8 shows the 

pathways that are differentially regulated and that are expressed between pLKO-1 and PYK2 KD 

cells. Four common upregulated pathways (Transcription and Chromatin modification, Protein 

folding and Protein folding nucleus, Reproduction and spermatogenesis, motility and copulation, 

Reproduction and Male sex differentiation) have been identified in untreated pLKO-p and PYK2 

KD samples, and which are likely to be related to breast cancer disease due to Somatotropin 

overexpression in breast cancer (see details in the previous section 6.5, page 192). In addition, 

one up-regulated pathway has been found common between untreated pLKO-1 and PYK2 KD 

Control and treated pLKO-1 and PYK2 KD. This pathway is associated with transcription and 

chromatin modification is also found to be associated with human diseases, including cancer. 

However, one common pathway was downregulated (Cell cycle and Mitosis) in both untreated 

and treated pLKO-1 (Control) vs. PYK2 KD and that may explain the increase of proliferation in 

PYK2 KD samples compared to pLKO-1 samples. Moreover, two up-regulated pathways have 

been observed in untreated pLKO-1 vs. PLKO-1 treated, which are Apoptosis and Apoptotic 

mitochondria, and Response to hypoxia and oxidative stress, which is likely due to the impact of 

Metformin treatment.  

All above-mentioned steps of protein analysis and Pathways Enrichment analysis have been 

applied to the other HER2 cell line. Heat maps can be found in the Appendix (A.6.10.) and Table 

s (A.6.1, A.6.2, A.6.3, A.6.4, A.6.5).  
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Table 6.8. Pathways regulated by proteins that are differentially expressed between treated and untreated PLKO-1 and PYK2 

KD cells (SkBr3 cell line) 

 
PLKO-1 Control up-
regulated pathways 

 

Biological functions  p-value FDR Protein Names  

Transcription_ Chromatin modification 1.80456E-05 0.0009 Histone H2A, Pc2, H2AFZ, Histone H2 

Protein folding_ Protein folding nucleus 0.003 0.0492 NFYC, SFRS4 

Reproduction_ Spermatogenesis, motility and 
copulation 

0.003 0.0492 Histone H2A, Histone H2, Calmodulin 

Reproduction_ Male sex differentiation 0.004 0.0492 Histone H2A, Histone H2, Calmodulin 

PLKO-1 Control down-
regulated pathways 

 

Cell cycle_ Mitosis 0.0022 0.0377 HP1 alpha, CAP-G/G2, HP1 

PYK2 KD Control up-
regulated pathways 

 

Transcription_ Chromatin modification 1.80456E-05 0.0009 Histone H2A, Pc2, H2AFZ, Histone H2 

Protein folding_ Protein folding nucleus 0.0028 0.0492 NFYC, SFRS4 

Reproduction_ Spermatogenesis, motility and 
copulation 

0.0033 0.0492 Histone H2A, Histone H2, Calmodulin 

Reproduction_ Male sex differentiation 0.0039 0.0492 Histone H2A, Histone H2, Calmodulin 

PLKO-1 Control vs. 
PLKO-1 Treated up-
regulated pathways 

 

Apoptosis_ Apoptotic mitochondria 0.0001 0.0036 VDAC 2, VDAC 1, HSP70 

Response to hypoxia and oxidative stress 0.0012 0.0157 Peroxiredoxin, PRDX3, MGST3 

PLKO-1 Control vs. PYK2 
KD Treated up-

regulated pathways 
 

Transcription_ Chromatin modification 1.80456E-05 0.0009 Pc2, Histone H2, Histone H2A, H2AFZ 

PLKO-1 Control vs. PYK2 
KD Treated down-

regulated pathways 
 

Cell cycle_ Mitosis 0.0016 0.0197 HP1 alpha, CAP-G/G2, HP1 

Pathways were derived by Meta Core™ online software. Table only shows significant pathways (with FDR < 0.05).  Red indicated upregulated pathways 
and blue downregulated pathways. 
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6.8. Discussion: 

Several studies indicate that PTK2B (PYK2) is associated with increased migration and invasion, 

an early event of the metastatic process. Therefore, the main objective of this chapter was to 

interrogate this relation by investigating the role of PYK2 in different breast cancer subtypes. 

This was achieved through PYK2 knockdown and regarding Metformin treatment. Effects of this 

experimental approach on fundamental biological functions such as proliferation as well as the 

metastasis of cells were investigated. Thorough and complete interrogation has been made in 

this chapter to validate the role of PYK2 in cell migration, invasion and proliferation of breast 

cancer cell lines. 

Collectively, the findings showed that PYK2-knockdown cells exhibited a dramatic reduction in 

migration and invasion of HER2 (SkBr3) and (MDA-MB-453) breast cancer cells, while 

significantly increased their ability to proliferate after 48h of treatment and when compared to 

PLKO-1 cells (control). Similarly, the Basal-like (MDA-MB-468) cell migration and invasion were 

significantly reduced following PYK2 knockdown. However, the proliferation of cells was also 

decreased in comparison to the empty vector (control).  

Indeed, these findings are consistent with previous studies that reported a significant decrease 

in 2D motility and invadopodia mediated functions that decreased the matrix invasion as a result 

of PYK2 depletion in breast cancer cells. Besides, Genna and his colleagues have identified PYK2 

as a unique facilitator of invadopodia formation and function. As well as, they proved a novel 

underlying mechanism by which PYK2 mediates tumour cell invasion (Genna et al., 2018). 

Another study by Genna and Gil-Henn (2018) confirmed the relation between Proline-rich 

tyrosine kinase 2 (PYK2) and its closely related focal adhesion kinase (FAK) in the regulation of 

cancer cell invasion. This is achieved by coordinating the balance between focal adhesion-

mediated migration and invadopodia-dependent extracellular matrix invasion. It was suggested 

that targeting either one or both kinases could block breast cancer metastasis. Caoa and 

Colleagues (2017) showed that the loss of miR-23b played an essential role in hepatocellular 

carcinoma (HCC) progression and metastasis through regulating PYK2. They explored in their 

study the possible involvement of miR-23b in HCC cell proliferation and metastasis and provided 

insight into underlying mechanisms. They found that miR-23b, which functioned, as a tumour 

suppressor that inhibits HCC cell invasion and migration via EMT regulation, was downregulated 

in HCC tissues and cell lines. Interestingly, they identified PYK2 as a target of miR-23b, and the 
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overexpression of PYK2 could significantly restore the inhibitory effects of miR- 23b 

overexpression on the metastasis (Cao et al., 2017). 

 Our results are also consistent with the ‘’Divide or Conquer’’ and ‘‘go or grow’’ hypothesis, 

which proposed that dividing or migrating cells are temporally exclusive events in infiltrative 

gliomas (Lipinski et al., 2005).  This implies that cells cannot migrate and proliferate 

simultaneously, thus one behaviour will have a direct influence on the other. FAK has been 

shown in vitro as a promoter of cell cycle progression specifically in malignant astrocytoma cells. 

In addition, FAK expression in both SF767 and G112 glioma cell lines was associated with a 

reduction in cell migration and induction of cell cycle progression (Lipinski et al., 2005). Recent 

evidence by Kohrman and Matus (2017) documented a functional link between cell cycle arrest 

and invasive activity. The cells may require a switch from a proliferative to an invasive state as a 

critical aspect of metastasis. They reviewed an evidence that basement membrane (BM) 

invasion, which is a fundamental feature of cancer metastasis, required cell cycle arrest 

(Kohrman and Matus, 2017). 

Conversely, Claudin-Low (MDA-MB-231) cells showed a completely different response pattern, 

with increased migration and invasion and decreased proliferation following PYK2 knockdown 

and when compared to the control. This can rely on Pyk2 function in specific cell types migration, 

a study on Pyk2-deficient mice demonstrated that Macrophage cells fail to become polarised or 

to migrate despite the normal expression of Fak in these cells. Notably, in Pyk2-null cells, integrin 

adhesion–mediated activation of Rho and PI-3 kinase was significantly compromised. Similarly, 

the migration of lymphocytes B was impaired in Pyk2-null mice in the absence or presence of 

chemokines (Okigaki et al., 2003; Lipinski et al., 2005).  A comparable study in brain 

microvascular endothelial cells that express both PYK2 and FAK, found that expression of PYK2 

stimulated migration whereas expression of an inactive PYK2 variant substantially inhibited cell 

spreading and migration (Avraham et al., 2003). Additionally, PYK2 has been reported as a 

convergence point between receptor tyrosine kinases such as EGFR and FGFR, which play a 

central activation role in critical signalling networks to cell motility and proliferation, and G 

protein-coupled receptors (Meyer et al., 2003). Moreover, PYK2 has also been identified as a 

mediator in STAT3 triggering, which enhances the proliferation of cancer cells (Shi and Kehrl, 

2004). It is also implicated in the induction of heregulin stimulation, which promotes breast 

carcinoma invasion (McShan et al., 2002).  

Resistance to chemotherapeutic compounds is considered as one of the main therapeutic 

limitations in advanced breast cancer, where cancer cells escape the cytotoxic effects of 

chemotherapies by developing multiple drug resistance, which leads to cancer recurrence and 
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decreased survival in cancer patients. Tavora and his team in their 2014 study, identified a novel 

molecular mechanism underlying the chemo-sensitivity regulation of endothelial cells. They 

established that to inhibit tumour growth in mice, induction of tumour cell sensitisation to DNA-

damaging therapies is required, and this can be achieved explicitly by targeting focal adhesion 

kinase (FAK) in endothelial cells. They also supported their work through the clinical observation 

in human lymphoma, that complete remission was associated with low FAK expression in blood 

vessel. The study showed that FAK deletion in endothelial cells induces increased apoptosis and 

decreased proliferation within perivascular tumour-cell compartment of doxorubicin- and 

radiotherapy-treated mice. However, FAK deletion did not impact blood vessel function. In 

another word, the loss of endothelial cell FAK enhanced the chemosensitisation of tumour cells 

to DNA-damaging therapies in vitro and in vivo by reducing DNA-damage-induced cytokine 

production (Tavora et al., 2014). 

 In agreement with the above study, we observed that PYK2 depletion and Metformin treatment 

prevents invasion of Claudin-Low (MDA-MB-231), HER2 (SkBr3) and (MDA-MB-453) breast 

cancer cells. Metformin treatment did not appear to have any effect on migration and 

proliferation of the knockdown cells except the proliferation of MDA-MB-453 cell line, which 

reduced following the Metformin treatment. PI3K (phosphatidylinositol 3-kinases) /AKT 

(serine/threonine kinase also known as PKB) signalling pathway is also regulated by PYK2.  

Elevated levels of PYK2 expression have been associated with poor survival and metastasis in 

HCC via the activation of the PI3K/AKT pathway in a PYK2-dependent phosphorylation of AKT. 

PYK2 is also implicated in the enhancement of migration and invasion through the activation of 

the PI3K/AKT signalling pathway (Gutenberg et al., 2004; Sun et al., 2007; Sun et al., 2008; Gong 

et al., 2014). In addition, Zrihan-Licht and colleagues (2000) found that PYK2 expression 

increased the invasive potential of MDA-MB-435 and MCF-7 breast cancer cells by activating Src 

and the mitogen-activated protein kinase (MAP kinase) pathways. Behmoaram and her group in 

a 2008 study, observed an increased level of PYK2 expression in early and advanced breast 

cancer and when compared to benign and normal breast tissues. Moreover, the inhibition of 

PYK2 resulted in reduced tumour development and metastasis in pulmonary metastases (Fan 

and Guan, 2011). Furthermore, overexpression of PYK2 promoted cell migration and invasion, 

and enhanced metastasis and EMT in Hep-3B HCC cells, through phosphorylation, upregulation, 

and localisation of the EMT regulator transcription factor Hic-5 (Sun et al., 2011). 

 The Meta Core™ search has uncovered a role of PYK2 in several biological processes involved in 

various pathological pathways that include Autocrine Somatotropin signalling pathway in breast 

cancer. PYK2 plays a central role (in breast cancer) in Autocrine Somatotropin signalling pathway. 

This can clarify the diverse roles of this molecule in the different biological processes of breast 
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cancer. The exact role of PYK2 in cancer development is varied and complex. PYK2 plays a critical 

role in a variety of biological processes of carcinoma such as proliferation, and cellular migration 

and invasion.  

Interestingly, MS data analyses revealed several up and downregulated pathways, including 

common pathways in untreated and treated cells expressing PYK2 shRNAs. Most significant 

upregulated pathways that are associated with untreated samples (pLKO.1 and PYK2 KD) are 

associated with Transcription and Chromatin modification, Protein folding and Protein folding 

nucleus, Reproduction and Spermatogenesis, motility and copulation, and Reproduction and 

Male sex differentiation. Those pathways are most likely related to the exceeding levels of 

growth hormone (GH) in breast cancer. Bartke summarised in his 2000 review, that the growth 

hormone (GH) has a physiological role in the control of male reproductive development and 

function in the normal level of expression.   GH is fundamental in growth promotion, cell division 

and regeneration. It also exerts a diverse and widespread action on the human body after 

binding to its receptor (GHR). Besides, GH impacts the metabolism of carbohydrates, lipids and 

proteins, as well as, shapes body composition. GH has diverse roles in maintaining human 

development and homeostasis. Its continuous secretion stimulates the growth and participates 

in the equilibrium of a process that tightly organised and arranged by many organs. The 

deficiency in GH level is considered a medical condition, which affects all ages. This deficiency 

will not only have significant effect consequences in the health of the patient but also will impact 

on the quality of life. Besides its positive actions, it has also been involved in the genesis of 

several diseases including cancer and insulin-resistant diabetes, as a result of GH/GHR 

interaction and (IGF-I) production (Caicedo and Rosenfeld, 2018).  Once GH is secreted by the 

somatotropic cells in the pituitary gland, it will bind to its receptor (GHR) and then transported 

to the entire body by the circulatory system. This protein receptor (GHR) is a class 1 cytokine 

receptor family member that is located on the cell membrane as a constitutive dimer. As a 

consequence of this binding, Janus kinases (JAK2) are activated, an action followed by activation 

of transcription activators (STATs) that induce the IGF-I, IGFBP3 and the leucine-rich protein 

known as acid labile subunit synthesis (ALS).  

The major mediator of GH-stimulated somatic growth, as well as a mediator of GH-independent 

anabolic responses in many cells and tissues, is IGF-I, which is a small peptide that consist of 70 

amino acids. The main route by which the GHR exerts its physiological effects is JAK2/STAT-

5/IGF-I signalling pathway. Nevertheless, an altered route via expression of multiple transcripts 

has been found in murine models with deletion of liver GHR. Additionally, GH may employ other 

routes such as mitogen-activated protein kinase (MAPK) to perform its activities. Following GH 

activation, several continues activation will occur including   RAS GTPase, RAF kinase and the 
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MAP-ERK kinase (MEK). As a consequent of these serial activations of the transcriptional 

regulation of target genes, the growth enhancement and metabolism will be achieved (Guevara-

Aguirrea et al., 2018).  

Transcription and chromatin modification, which was a commonly upregulated pathway, is also 

related to cancer. Chromatin modification is a dynamic modification of chromatin architecture 

that controls gene expression by allowing access of condensed genomic DNA to regulatory 

transcription machinery proteins. Besides, a dynamic chromatin modification conveys an 

epigenetic regulatory role in several biological processes such as DNA replication and repair, 

apoptosis, chromosomes segregation, development and pluripotency. This re-modelling is 

implemented through covalent histone modifications by specific enzymes or ATP-dependent 

chromatin remodelling complexes. In addition, deviation in chromatin remodelling proteins, 

were found to be related to human diseases, including cancer. Currently, a major therapeutic 

strategy in the treatment of several cancers has evolving targeting chromatin remodelling 

pathways (Wang et al., 2007).  The up-regulation of this pathway might be related to Metformin 

action as a DNA damage agent. This pathway is employing several biological processes to repair 

and replicate the DNA. Furthermore, Chi and colleagues, summarised in their review, some 

evidence that links oncogenesis and miswriting, misinterpretation and mis-erasing of histone 

modifications, suggesting that deregulated gene expression and perturbation of cellular identity 

can be caused by histone code mis-regulation, contributing to cancer initiation, progression 

and/or metastasis (Chi et al., 2010). 

Cell Cycle and Mitosis pathway were noticed as down-regulated pathways in control samples 

comparing to treated samples. The activation of signalling pathways that promote cell cycle 

arrest and DNA repair is likely caused by Metformin mode of action. 

A study by Marinello and her team, in 2016 suggested that Metformin mechanism of action 

involves oxidative stress generation, DNA damage, and transforming growth factor β1 induction 

in MCF7 and MDA-MB-231 human breast cancer cells. 

Besides, Apoptosis, Apoptotic mitochondria, Response to hypoxia and oxidative stress pathways, 

which were also up-regulated in PLKO-1 Control samples vs. PLKO-1 Treated samples might be 

also due to Metformin treatment. 

In summary, this chapter aimed to elucidate the involving role of PYK2 in cell migration, cell 

invasion and cell proliferation of breast cancer cell lines. Our findings demonstrated that PYK2 

depletion decreased the migration and invasion of HER2 (SkBr3) and (MDA-MB-453) breast 

cancer cells and increased their ability to proliferate after 48h of treatment with Metformin. 
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Meta Core™ search has revealed the involving role of PYK2 in several biological processes and 

pathological pathways including Autocrine Somatotropin signalling pathway in breast cancer. In 

addition, MS data analysis was also showed several common up and down-regulated pathways 

between untreated and treated cells expressing PYK2 shRNAs. These pathways were likely 

related to levels of growth hormone (GH) in breast cancer and Metformin action.
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CHAPTER 7 

 

 DISCUSSION   

  

7.1. Summary of discussion   

 

This project sought to confirm the molecular mechanism of Metformin action on breast cancer 

using systems biology approach via integrating computational methods and laboratory data. 

This project is considered as an original study that identified novel targets that could be used to 

help develop more effective strategies in the treatment of breast cancer. To that end, five breast 

cancer cell lines including BT-474 (breast ductal carcinoma derived from solid  invasive ductal 

carcinoma of the breast), MCF-7, MDA-MB-231, MDA-MB-468, SkBr3 (breast adenocarcinoma 

derived from metastatic site: pleural effusion) and MDA-MB-453 (metastatic carcinoma derived 

from metastatic site: pleural effusion), representing five molecular breast cancer subtypes 

(Luminal B, Luminal A, Claudin-low, Basal-like , and HER2) respectively, have been employed in 

this project to investigate the efficacy of Metformin on breast cancer. Cell survival (MTT), 

proliferation and apoptosis assays have revealed that Metformin provides same responses 

patterns in all breast cancer subtypes and at different concentrations. However, significant 

differences have been seen between different phenotypes at the highest concentrations of 5-

25mM after 48h of treatment with Metformin. Interestingly, the treatment significantly reduced 

cell survival and proliferation, while induced cell apoptosis and enhanced cell necrosis. The 

Basal-like cell line (MDA-MB-468) was the most affected cell line. The lethal dose (EC) was ≤ 

2mM and the EC50 concentration was 1mM after 48h of treatment, respectively. In addition, 

Metformin affected the appearance of the cells (Morphology) and their adhesion ability. 

Comparatively, the HER2 subtype (SkBr3 cell line) was the least affected phenotype and the EC50 

concentration was much higher 2.3mM after 48h of treatment.  

This finding comes in line with previous results from several studies that revealed the 

antitumour activity of Metformin in various breast cancer types. In vitro studies showed that 

Metformin inhibits cell proliferation and survival of triple negative breast cancer cells (Liu et al., 

2009; Denget al., 2012). Another study by Vazquez-Martin and co-authors in 2011 confirmed 

that Basal-like breast cancer cells (MDA-MB-468) were significantly more sensitive to the 

growth-inhibitory effects of Metformin among the different molecular classes of breast cancer. 

Furthermore, they suggested that Metformin suppresses the metastasis-associated protein and 
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stem cell marker CD24 in MDA-MB-468 triple-negative breast cancer cells (Vazquez-Martin et 

al., 2011). Besides, Metformin monotherapy or in combination with chemotherapeutic agents 

inhibited cell proliferation in triple negative breast cancer cell lines. Additionally, it has been 

proved that Metformin inhibits the growth of breast cancer cell lines (MCF-7, MDA-MB- 231 and 

MDA-MB-435) in vitro, and via AMPK induction and mTOR inhibition (Zakikhani et al., 2006 

Dowling et al., 2007; Phoenix et al., 2009; Hadad et al., 2009; Hadad et al., 2011; Liu et al., 2009; 

Liu et al., 2012).  

Moreover, an investigation of Metformin efficacy on human breast cancer cell lines (MCF-7 and 

in MDA-MB-231) using different clinical and experimental concentrations has revealed the 

cytotoxicity, oxidative stress, DNA damage, and intracellular pathways related to cell growth and 

survival after 24 h of drug exposure (Marinello et al., 2016). Moreover, Zheng and co-authors in 

their 2018 study, have shown that Metformin monotherapy had low inhibition rates on cell 

viability and apoptosis. However, co-treatment of Metformin with flavone (core structure of 

flavonoids), has synergistically inhibited cell viability, increased apoptosis in human breast 

cancer cells via the inhibition of PI3K/AKT pathway (Zheng et al., 2018). Metformin exerts anti-

proliferative activity by interfering with the PI3K/AKT pathway to induce apoptosis in many 

cancer cells. AKT could activate eIF4E by inhibiting mTOR to stimulate cyclin D1, that leads to 

cell cycle arrest in G1 phase. Metformin considered as an original AMPK activator, in which 

increasing nuclear accumulation and protein stability of FoxO3a through the inhibition of AKT-

MDM2 signalling pathway to reduce the invasive and metastatic capacity of aggressive cancer 

cells (Zheng et al., 2018).  

Meta-analysis of 11 studies that involved 5,464 patients with breast cancer have shown that 

Metformin treatment in patients with diabetes enhanced both overall survival (OS) and cancer-

specific survival (Sonnenblick et al., 2017). However, the described studies in this analysis, had 

several limitations including heterogeneous populations, anticancer treatments and inclusion 

criteria, with limited modification for confusing variables. Metformin effect and diabetes 

outcome have not been previously evaluated in patients with human epidermal growth factor 

receptor 2 (HER2) –positive breast cancer who have taken treatment with adjuvant anti-HER2 

therapy. An exciting observation of this study is that the risk of distant disease-free survival 

(DDFS) and death was more than double in patients with diabetes and with hormone receptor-

positive cancer. However, this effect was not seen in patients with hormone receptor–negative 

tumours (Sonnenblick et al., 2017). Another study has used a syngeneic model of murine primary 

and metastatic mammary cancer and found that Metformin might have a tumour-suppressing 

activity in some instances including a metabolic phenotype of high fuel intake, a metabolic 

syndrome, and diabetes, however, it may have little or no effect on the events the controlling 
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the metastatic niche driven by pro inflammatory events (Phoenix et al., 2010). It has been 

reported that Metformin has cytotoxic activity in high concentrations and on various malignant 

cells in nutrient medium with foetal bovine serum (FBS). The major growth inhibitory effects of 

Metformin on tumour cells are mediated via the suppression of mTOR signalling pathway which 

might be preceded by the activation of AMPK (tumour suppressor Liver Kinase B1 (LKB1) 

dependent signalling pathway). This complex can prevent mTOR signalling through 

phosphorylation and stabilisation of TSC Complex Subunit 2(TSC2). It can inhibit HER2 protein 

kinase activation causing decreased signalling through downstream pathways. Metformin can 

inhibit the cell cycle slightly through the reduction of cyclin D1 expression (Damjanović et al., 

2015). Metformin has antiproliferative action on dividing cells, independently from the nature 

of target cells (malignant or normal proliferative cells), suggesting the possibility of a favourable 

effect of Metformin in autoimmune diseases suppression. In addition, Metformin can decrease 

levels of Vascular endothelial growth factor (VEGF) resulting in angiogenesis inhibition that can 

promote apoptosis through p53-dependent or independent pathways. It has been shown that 

high concentrations of Metformin directly decrease the survival of HER2+ breast cancer cells, or 

through immune-mediated PBMC antitumour action (Damjanović et al., 2015).  However, 

immunocytochemical staining of HER2+ in treated MDA-MB-361 breast adenocarcinoma cells 

did not affect the expression of HER2 on the surface of target cells (Damjanović et al., 2015). 

In conclusion, Metformin can potentially reduce the proliferation rate of a subset of cancers can 

only be achieved if these subsets have specific molecular characteristics and if the patient had 

the treatment.  

Gene Expression Microarray and various bioinformatics tools including Artificial Neural 

Networks (ANN) and Cytoscape among others, to inspect the effect of Metformin on the level 

of gene expression were used. Further, Regression-based method and Fold Change-based 

method was also employed for data analytics. These approaches have enabled the detection of 

several genes that were significantly expressed in an uncontrolled manner as up or 

downregulated in the breast cancer cell lines MDA-MB-468 and SkBr3. Additionally, the Panther 

online databases (Mi et al., 2013) has exposed the involvement of those genes with several 

biological pathways. These genes were ANKRD44, BTN3A1, C2orf42, DHFR2, EMP1, HGF, IRF-9, 

NPRL3, OXSR1, PCDHB2, PRDX1, PTK2B, PXDC1, SERPINB4, VSTM2B, and WBSCR27 respectively. 

The gonadotropin-releasing hormone receptor pathway has been found as a common 

upregulated pathway in both BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) cell lines. On the 

other hand, apoptosis signalling pathway was found up-regulated in BASAL-LIKE (MDA-MB-468) 

cell line, confirming previous data. Besides, the Wnt signalling pathway was downregulated in 

MDA-MB-468 cells, which might explain the sensitivity of this cell line to Metformin treatments. 
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As this pathway has been involved in drug resistance. Moreover, In HER2 (SkBr3) cell line, four 

critical upregulated pathways have been found: integrin signalling pathway, CCKR signalling, 

Inflammation mediated by chemokine and cytokine signalling pathway and Gonadotropin-

releasing hormone receptor pathway. Interestingly, Protein Tyrosine Kinase 2 Beta (PTK2B) has 

been found as signalling through all these pathways. PTK2B is also known as PYK2 or FAK2, is a 

non-receptor tyrosine kinase that has been confirmed as an upregulated gene in HER2 cell line 

following Metformin treatment. PYK2 is a critical regulator of survival and invasiveness of cancer 

cells (Naser et al., 2018). 

Several studies have identified the focal-adhesion kinases FAK and Pyk2 as possible common 

mediators of signalling by growth factors and integrins. The co-stimulation of growth-factor 

receptors and integrins activates the focal-adhesion kinase (FAK) family to support the 

outgrowth of neurites in rat pheochromocytoma (PC12) cells and human neuroblastoma SH-

SY5Y cells (Ivankovic-Dikic et al., 2000). Integrin is a protein that functions mechanically as an 

anchorage by attaching the cell cytoskeleton to the extracellular matrix (ECM), and 

biochemically by transferring chemical signals into the cell (outside-in signalling) to provide 

information on its site, local environment, adhesive status and the surrounding matrix. Integrins 

are a family of proteins that consist of α and β subtypes, which form transmembrane 

heterodimers. Integrins function as adhesion receptors for extracellular ligands and convert 

biochemical signals into the cell, through downstream effector proteins. Remarkably, they 

perform bidirectionally, by transporting information both outside and inside out (Harburger and 

Calderwood, 2009). Recently, several findings have demonstrated the involvement of integrins 

in stem and cancer stem cells. Integrins are also required for cancer progression and drug 

resistance. Besides, integrins are essential markers for identifying epithelial stem cells and 

progenitor cells in the mammary gland. Epithelial lineages arising from the same precursors in 

the breast can be discriminated according to their integrin profiles. The integrin 6 (CD49f) and 

1 subunit are expressed in low levels in Luminal cells, and at higher levels in the basal layer 

including mammary stem cells (Seguin et al., 2015). A cell can regulate the adhesive activity of 

its integrins from within. It also functions as signal transducers when activated by matrix binding, 

which enables various intracellular signalling pathways. Often Integrins and traditional signalling 

receptors cooperate to promote cell growth, cell survival, and cell proliferation (Alberts et al., 

2002).  Thus, this could clarify the susceptibility of Basal-like (MDA-MB-468) by downstream 

integrins and the reduced sensitivity of HER2 (SKBR3) phenotype upstream. 

Additionally, it has been proved that Gastrin-releasing peptide receptor regulates the leupaxin 

localisation and PYK2 activity (Chen and Kroog, 2005). Gastrin has two forms of the biologically 

active peptide, G34 and G17. The Gastrin gene is upregulated in pre-malignant conditions and 



224 | P a g e  
 

in certain cancers, which influences proliferation, angiogenesis and apoptosis, successively 

acting through the classical gastrin cholecystokinin B receptor CCK-BR and its isoforms, and via 

alternative receptors to stimulate signalling pathways, that influence the expression of 

downstream genes that affect cell survival, angiogenesis and invasion (Tripathi et al., 2015). This 

also supports this finding, which also found that (CCK) pathway was down-regulated in Basal-

like (MDA-MB-468) and upregulated in HER2 (SkBr3) phenotypes. Moreover, the Gastrin and 

cholecystokinin (CCK) are gastrointestinal peptide hormone whose primary function is to 

stimulate hydrochloric acid secretion by the gastric mucosa and inhibition of gastrin formation. 

It also acts as a mitogenic factor for gastrointestinal epithelial cells. The former is involved in 

different physiological processes including digestion, appetite control and regulation of body 

weight. Also, they play an essential role in several diseases such as acute pancreatitis, obesity, 

irritable bowel syndrome gallbladder disease, as well as stimulate tumour proliferation, and 

osteoporosis (Smith et al., 2016). 

It has been found that PYK2 is critical for the Jak-mediated MAPK and Stat1 activation by IFN-

gamma (Takaoka et al., 1999). Interferons (IFNs) are glycoproteins synthesised and released by 

host cells as a response to the presence of several pathogens such as viruses, bacteria, parasites 

or tumour cells. IFNs were named after their ability to “interfere” with viral replicate infection 

within the host cells. It has also been known that IFNs act as a cell proliferation inhibitor, 

differentiation inducer, immune system regulator and angiogenesis inhibitor through multiple 

signalling pathways. The biological effect of IFN-receptor signalling is mainly regulated by three 

factors, which are the IFN expression profile, the receptor profile, and target genes expression 

profile. The binding to specific receptors causes the initiation of signalling by IFNs that can 

directly induce gene transcription and/or multiple downstream signalling that consequently 

induce diverse cellular responses in tumour cells such as cell cycle arrest and apoptosis (Galani 

et al., 2017). Moreover, Mimura and his colleagues (2018) have found in their study, that 

interferon gamma increased the expression of programmed death ligand‐1 in solid tumour cells 

out of the JAK‐signal transduction and activation of transcription pathway and decreased the 

cytotoxicity effect of tumour antigen‐specific CTL against tumour cells in gastric cancer. Despite, 

IFNs regulate the duration and intensity of innate and adaptive immune responses as well as 

control the survival, proliferation, and differentiation of responding cells. They are also 

instigators of several severe neuroinflammatory disorders. Consequently, this dual nature of 

IFNs requires that their signalling and expression be tightly regulated (Mimura et al., 2018). IRF-

9 plays a central role in interferon signalling and contributes to the intracellular signalling of all 

three classes of interferons. Specifically, type I interferons (IFN-Is) which include the IFN-α’s and 

IFN-β amongst others, type II interferon with IFN-γ being the only member, and the type III 
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interferons (IFN-IIIs), consisting of the IFN-λs. IFN-Is have been proven to be highly effective 

treatments in some diseases therapy such as chronic viral hepatitis, autoimmune diseases, 

certain malignancies, and osteoporosis. Importantly, several studies have demonstrated that 

IRF-9 inhibits the emergence of a potentially harmful IFN--like response by driving signalling 

towards an IFN-I response. It has been found that IRF-9 is importantly linked to the tumour 

suppressor protein (p53) by inducing the p53 apoptotic response via the induction of cell 

transformation and enhancement of oncogene-dependent apoptosis. Besides, it has been 

reported that cells lacking IRF-9 were oversensitive to cytotoxic drugs. (Suprunenko and Hofer, 

2016). Moreover, IRF heterodimers can regulate the gene expression both positively and 

negatively depending on the cell type, signals and target gene (Song and Schindler, 2009). The 

upregulation expression of IRF-9 in both breast cancer subtypes Basal-like (MDA-MB-468) and 

HER2 (SkBr3) cell lines is associated with the up and down-regulation of (Interferon-gamma 

signalling pathway) in both phenotypes following the exposure to Metformin. 

 All previously identified up and down-regulated pathways; integrin signaling pathway, CCKR 

signalling, Inflammation mediated by chemokine and cytokine signalling pathway, 

Gonadotropin-releasing hormone receptor pathway, and Interferon-gamma signalling pathway 

that involved PYK2 in their signals have been proved as associated to cancer progression, drug 

resistance and cell survival, which might have influenced the resistance to Metformin treatment 

of the HER2 breast cancer cell line. However, the down-regulated pathways were related to cell 

cycle arrest and apoptosis, that could explain the high proportion of dead cells in the Basal-like 

cell line.  

Further analysis by Real-time quantitative PCR (qRT-PCR), Immunoblotting and 

Immunofluorescence have confirmed obtained data by Gene Expression Microarray analysis. 

Besides, subsequent analysis by NanoString technology has also confirmed obtained data. As 

previously mentioned, the aim of analysing total gene and protein expression was to discover 

novel biomarkers that are associated with Metformin resistance in HER2 positive cell lines and 

as potential and novel therapeutic targets, and these data will certainly contribute to these 

efforts. 

 Interestingly, it has been found that the apoptosis signalling pathway and Wnt signalling 

pathway were respectively upregulated and downregulated pathways in Basal-like (MDA-MB-

468) population samples analysed by Gene Expression Microarray and NanoString techniques. 

However, in HER2 (SkBr3) population, a few common pathways have been found and that 

include apoptosis signalling pathway, phosphatidylinositol 3–kinase (PI3K) and transforming 

growth factor-beta (TGF beta) pathways. 
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It is evident that in Basal-like (MDA-MB-468) population samples, downstream pathways were 

mostly involved in apoptosis, proliferation, survival and cell migration, that might explain the 

sensitivity of this population to Metformin treatment and the significant death (apoptosis) of 

these cells after Metformin exposure. These down-regulated pathways include the apoptosis 

signalling pathway, the Wnt signalling pathway. The latter is a critical pathway that regulates 

cell migration, cell polarity, neural patterning and organogenesis during foetal development, 

and plays a crucial role in cell fate determination (Komiya and Habas, 2008). The Wnt signalling 

pathway is critically involved in tissue development and homeostasis by maintaining cancer 

stem cells pools. It is also a main player in the initiation, maintenance and development of many 

cancers through effects on the behaviour of cancer stem cells (CSCs). The latter is responsible 

for tumour initiation, drug resistance and cancer relapse (Duchartrea et al., 2016; Zhan et al., 

2017). 

Few pathways have been found as up and down-regulated such as the phosphatidylinositol 3–

kinase (PI3K) pathway that is a regulator of various cellular processes such as metabolism, 

apoptosis, growth, proliferation, survival and cell migration, and that participates in specialised 

context-dependent functions (Chalhoub and Baker, 2009). A clear linkage has been established 

since the 1980s, between the PI3K pathway and cancer, in which elevated PI3K signalling is 

considered as a hallmark of cancer.  The PI3K signalling pathway is activated by extracellular 

signals including diverse oncogenes and growth factor receptors such as epidermal growth 

factor receptor, platelet-derived growth factor receptor and the mesenchymal-epithelial 

transition factor (Fruman et al., 2017). This pathway is activated in human cancers via several 

different mechanisms. An increased level of PI3K signalling is often caused by a direct mutational 

activation or amplification of genes that encode key components of the PI3K pathway like 

PIK3CA and AKT1, or loss of PTEN. Genetic mutation, and/or amplification of the upregulation 

RTKs have also been shown to activate the PI3K pathway. This is also shown to be possible via 

oncogenic activation (mutations) of Ras (Courtney et al., 2010). Thus, clarifying the involvement 

of this pathway in transferring cancer-relevant signals (Chalhoub and Baker, 2009). The 

phosphatidylinositol 3-kinase (PI3K)/AKT/ (mTOR) pathway, which is one of the most common 

activated signalling pathways in cancer and that leads to cell proliferation, survival, and 

differentiation. Thus, it has become the focus of clinical research. Besides, the inhibition of the 

PI3K signalling pathway can reduce cell proliferation, and in some conditions, promote cell death 

(Courtney et al., 2010). Furthermore, the dysregulation expression of the central phosphatase 

in the PI3K/PTEN/Akt pathway led to drug resistance in breast cancer (McCubrey et al., 2006). 

The involvement of this pathway in various biological processes within the cell could clarify its 

up and down-regulation expression upon different treatment conditions and in both cell lines 
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(MDA-MB-468, and SkBr3). In addition, the resistance to Metformin treatment might refer to 

the deregulation of this pathway.  

The transforming growth factor-beta (TGF-β) is a member of a superfamily of cytokines that act 

on protein kinase receptors found on the plasma membrane.  TGF-β induces several biological 

functions that including embryonic development, wound healing, cell growth, death and 

differentiation, organogenesis, immune modulation, inflammation, and cancer progression. In 

epithelial cells, TGF-β is an essential regulatory tumour suppressor factor, where it induces early 

apoptosis and inhibits proliferation.  The phenomenon of inhibiting cell growth in benign cells 

and promoting progression in cancer cells by TGF-β is known as a TGF-β paradox. Tumour cells 

had developed a mechanism to beat the TGF-β-induced suppressive effects. Once this happens, 

the cells might respond to this cytokine-inducing, which contributes to the tumour progression.  

In addition, TGF- is an inducer of epithelial-mesenchymal transition (EMT), a pre-invasive 

process of tumour cells that facilitate cancer cell migration and invasion. TGF- also mediates 

the production of mitogenic growth factors, that are involved in tumour proliferation and 

survival.  Moreover, TGF- is a known pro-angiogenic factor and immune suppressor that has 

been found overexpressed in a variety of human cancer types, and its expression correlated with 

angiogenesis, metastasis, tumour progression and patients' poor prognosis. Furthermore, TGF-

 regulates cell cycle by arresting cell division at the early G1 phase and thus inhibit the growth 

of various cell types. It also activates the apoptotic pathway and limits cancer formation through 

downstream activation of pro-apoptotic factors including death-associated protein kinase 

(DAPK), growth arrest and DNA damage-inducible 45 (GADD45) and Bim (Bcl-2 interacting 

mediator of cell death) or Bmf (Bcl-2 modifying factor) among others (Fabregat et al., 2014). 

Clearly, in Basal-like (MDA-MB-468) population samples downstream pathways were mostly 

involved in apoptosis, proliferation, survival and cell migration, which might explain the 

sensitiveness of this population to Metformin treatment and the significant death (apoptosis) of 

these cells after treatment. In the HER2 (SkBr3) cell line, one common pathway (Cell Cycle – 

Apoptosis- TGF-) has been found downregulated, which is also associated with the regulation 

of cell growth and death through G1 phase cell cycle arrest and inhibition of cancer formation 

via negative stimulation of DAPK and GADD45. Additionally, (GADD45) has been noticed as 

upregulated in both breast cancer cell lines, which is explicitly linked to the downregulation of 

TGF-beta pathway. Once again, different techniques have yielded consistent results between 

different validation methods in this study. The outcomes of these findings revealed interactions 

between all these pathways and PYK2 signalling, and that explain the susceptibility of Basal-like 

(MDA-MB-468) and the less sensitivity of HER2 (SkBr3) breast cancer phenotypes to Metformin 
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treatment. Besides, as previously emphasised, an ideal candidate marker has been selected for 

further studies which consist of PYK2. 

Protein Tyrosine Kinase 2 Beta (PYK2) regulates the restructuring of the actin cytoskeleton, cell 

division, cell migration, adhesion, spreading and bone remodelling (Gao and Blystone, 2009; 

Rufanova et al., 2009; Lipinski and Loftus, 2010; Sun et al., 2011). It plays an essential role in the 

regulation of the humoral immune response and is required for normal levels of peripheral B-

cells in the spleen and normal migration of splenic B-cells. It is also needed for macrophage 

divergence and migration towards sites of inflammation (Xu et al., 2008). It regulates 

cytoskeleton rearrangement and cell spreading in T-cells and contributes to the regulation of T-

cell responses (Hjorthaug and Aasheim, 2007; Ruusala and Aspenstrom, 2008; Collins et al., 

2010). It also promotes osteoclastic bone resorption, which required both PTK2B/PYK2 and SRC.  

It also might inhibit the differentiation and activity of osteoprogenitor cells (Hendriks et al., 2013; 

Posritong et al., 2018). It functions in downstream signalling of integrin and collagen receptors, 

immune receptors, G-protein coupled receptors (GPCR), cytokine, chemokine and growth factor 

receptors, and mediates responses to cellular stress (Dylla et al., 2004; Schaller, 2010). 

Additionally, it forms multisubunit signalling complexes with SRC and SRC family members upon 

activation; which leads to the phosphorylation of additional tyrosine residues, creating binding 

sites for scaffold proteins, effectors and substrates (Park et al., 2004; Takahashi et al., 2005). 

PYK2 regulates numerous signalling pathways (Roberts et al., 2008). It promotes activation of 

phosphatidylinositol 3-kinase and the AKT1 signalling cascade (Dikic, et al., 1996) and enhances 

the activation of NOS3. PYK2 regulates the production of cellular messenger cGMP and 

promotes the activation of the MAP kinase signalling cascade including activation of 

MAPK1/ERK2, MAPK3/ERK1 and MAPK8/JNK1 (Tokiwa et al., 1996; Sun et al., 2008). It activates 

the Rho family GTPases such as RHOA and RAC1 and recruits the ubiquitin ligase MDM2 to 

P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and 

proteasomal degradation (Lim, 2013; Gao et al., 2015).  It also acts as a scaffold, binding to both 

PDPK1 and SRC, thus allowing SRC to phosphorylate PDPK1 at Tyr-9, Tyr-373 and Tyr-376. 

Moreover, PYK2 promotes phosphorylation of NMDA receptors by SRC family members, by 

which it contributes to the regulation of NMDA receptor ion channel activity and intracellular Ca 

(2+) levels (Lev, et al., 1995; Taniyama et al., 2003). Interestingly, it has been found that 

angiotensin II stimulates the tyrosine phosphorylation of PDK1 in vascular smooth muscle in a 

calcium- and c-Src-dependent manner. The calcium-activated tyrosine kinase PYK2 is acting as a 

scaffold for Src-dependent phosphorylation of PDK1 on Tyr9 that allows phosphorylation of 

Tyr373 and -376 by Src. PYK2 and tyrosine-phosphorylated PDK1 colocalise in focal adhesions 

after angiotensin II stimulation (Taniyama et al., 2003). It might also regulate potassium ion 
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transport by phosphorylation of potassium channel subunits. Additionally, it phosphorylates SRC 

and increases the SRC kinase activity. It also phosphorylates ASAP1, NPHP1, KCNA2 and SHC1, 

and promotes the phosphorylation of ASAP2, RHOU and PXN, which required both SRC and 

PTK2/PYK2. (Mandiyan et al., 1999 ; Kruljac-Letunic et al., 2003 ; Liebau et al., 2011).   

In addition, a plethora of published studies revealed the role of PYK2 in increased migration and 

invasion, an early event of the metastatic process. Lentiviral constructs transfected into breast 

cancer Basal-like (MDA-MB-468), Claudin -Low (MDA-MB-231), and HER2 (SkBr3, and MDA-MB-

453) cell lines enabled the evaluation of PYK2 role in breast cancer invasion and metastasis. PYK2 

silencing Basal-like, Claudin –Low, and HER2 cell lines confirmed allowed the establishment of a 

knockdown system that was used for the project.   Wound-healing (Scratch) assay, Cultrex® BME 

Cell Invasion assay, and the xCELLigence System (RTCA) assay have been employed to verify the 

role of PYK2 on fundamental biological functions such as proliferation, migration and invasion 

of breast cancer cells, and in response to Metformin treatment. PYK2-knockdown cells exhibited 

a significant reduction in migration and invasion of HER2 (SkBr3) and (MDA-MB-453) breast 

cancer cells, while dramatically increased their ability to proliferate after 48h of treatment and 

when compared to PLKO-1 cells (control). Similarly, in the Basal-like (MDA-MB-468) cell 

migration and invasion were significantly reduced following PYK2 knockdown. The proliferation 

of cells was also decreased in comparison to the empty vector (control). 

Previous studies have reported that PYK2 depletion in breast cancer cells significantly decreases 

motility and invadopodia which affects invasion. Besides, PYK2 has been found as a unique 

facilitator of invadopodia formation and function and further revealed a potential mechanism 

of PYK2-mediated tumour cell invasion (Genna et al., 2018). It also confirmed that PYK2 and its 

closely related focal adhesion kinase (FAK) are actively involved in the regulation of cancer cell 

invasion, through balancing focal adhesion-mediated migration and invadopodia-dependent 

extracellular matrix invasion. This suggested that targeting either one or both kinases could 

block breast cancer metastasis (Genna and Gil-Henn, 2018). In summary, the results of this 

studies show a role of PYK2 in preventing proliferation and promoting migration and invasion of 

breast cancer cell lines which is in line with evidence that showed that cells cannot migrate and 

proliferate simultaneously. Thus, one behaviour will have a direct influence on the other (Lipinski 

et al., 2005). An in vitro study has proved FAK as a promoter of cell cycle progression, particularly 

in malignant astrocytoma cells. FAK expression in glioma cell lines was implicated in the 

reduction of cell migration and an increase in cell cycle progression (Lipinski et al., 2005). A 

recent study has shown a functional link between cell cycle arrest and invasive activity and 

revealed a potential mechanism of switching from a proliferative to an intrusive state as a critical 
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aspect of metastasis. Other studies provided further evidence that confirms that invasiveness of 

basement membrane (BM) requires cell cycle arrest (reviewed in Kohrman and Matus,2017). 

On the contrary, Claudin-Low (MDA-MB-231) cells showed a completely different response 

pattern, with increased migration and invasion, and decreased proliferation following PYK2 

knockdown and when compared to the control which can be associated with the PYK2 function 

in specific cell type migration. Evidence obtained from studies on Pyk2-deficient mice 

demonstrated Pyk2 function in motility of particular cell types, such as macrophages which 

failed to become polarised or migrate despite regular expression of Fak in these cells. A similar 

study has highlighted the association of Pyk2 depletion and decreased lymphocytes B migration 

in mice (Okigaki et al., 2003; Lipinski et al., 2005). It has also been found that the expression of 

an inactive PYK2 variant substantially inhibited cell spreading and migration in brain 

microvascular endothelial cells (Avraham et al., 2003). Additionally, PYK2 has a central activation 

role of critical signalling networks involved in cell motility, proliferation and G protein-coupled 

receptors (Meyer et al., 2004). Moreover, PYK2 has also been found as a mediator in STAT3 

triggering (Shi and Kehrl, 2004) and was also involved in the induction of heregulin stimulation 

that enhances breast carcinoma invasion (McShan et al., 2002).  

The synergistic effect of PYK2 knockdown and Metformin treatment has been observed as 

significantly decreasing the invasion of Claudin-Low (MDA-MB-231), HER2 (SkBr3) and (MDA-

MB-453) breast cancer cells. However, Metformin treatment did not affect the migration and 

proliferation of the knockdown cells apart from the proliferative capacity of the MDA-MB-453 

cell line, which has been reduced following Metformin treatment.  It was reported that the loss 

of endothelial cell FAK promotes the chemosensitisation of tumour cells to DNA-damaging 

therapies in vitro and in vivo by reducing DNA-damage-induced cytokine production (Tavora et 

al., 2014). Besides, it has been found that the invasive potential of MDA-MB-435 and MCF-7 

breast cancer cells was increased in a PYK2 expression manner and via activating Src and the 

MAP kinase pathways (Zrihan-Licht et al., 2000). Also, an increased level of PYK2 expression has 

been observed in early and advanced breast cancer in comparison to benign and normal breast 

tissues (Behmoaram et al., 2008). Moreover, the overexpression of PYK2 enhanced cell 

migration and invasion and promoted metastasis and EMT in Hep-3B HCC cells (Sun et al., 2011). 

Furthermore, PYK2 suppression caused a reduction of tumour development and metastasis in 

pulmonary metastases carcinoma (Fan and Guan, 2011). 

Meta Core™ search revealed the critical role of PYK2 in autocrine Somatotropin signalling 

pathway in breast cancer. This verified the diverse functions of PYK2 in breast cancer 

development and dissemination and its proliferation capacity. Interestingly, MS results strongly 
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indicated several common up and downregulated pathways in untreated and treated cells 

expressing PYK2 shRNAs.  Upregulated pathways were associated with transcription and 

chromatin modification, protein folding and protein folding nucleus, reproduction and 

spermatogenesis, motility and copulation, and reproduction and male sex differentiation. Those 

pathways are highly likely related to the exceeding levels of growth hormone (GH) in breast 

cancer. It has been reported that the growth hormone (GH) has a physiological role in the control 

of male reproductive development and function at the normal level of expression (Bartke, 2000). 

GH is essential to promote the growth, division, and regeneration of the cells. It also exerts a 

diverse and widespread action on the human body following binding to its receptor (GHR). 

Additionally, GH has affected the metabolism of carbohydrates, lipids and proteins, and shapes 

body composition. It has distinct roles in supporting human development and homeostasis. GH 

continuous secretion stimulates the growth and takes part in the equilibrium of a process that 

is tightly organised and arranged by many organs. However, the deficiency in GH is a 

considerable medical condition, which affects all ages. Along with its good actions, it is also 

associated in the genesis of several diseases including cancer and insulin-resistant diabetes, as 

a consequence of GH/GHR interaction and (IGF-I) production (Caicedo and Rosenfeld, 2017).   

Once GH is secreted by the somatotropic cells in the pituitary gland, it binds to its receptor (GHR) 

and then is transported to the entire body by the circulatory system. This protein receptor (GHR) 

is a class 1 cytokine receptor family member that is located on the cell membrane as a 

constitutive dimer. As a consequent of this binding, Janus kinases (JAK2) are activated, an action 

followed by activation of transcription activators (STATs) that induce the IGF-I, IGFBP3 and the 

leucine-rich protein known as acid labile subunit synthesis (ALS). IGF-1 is the central mediator 

of GH actions and is an insulinoid peptide with an amino acid sequence that is identified to that 

of proinsulin. The main route by which the GHR exerts its physiological effects is through the 

JAK2/STAT-5/IGF-I signalling pathway.  

Nevertheless, an altered route via expression of multiple transcripts has been found in murine 

models with deletion of liver GHR. Additionally, GH may employ other paths such as mitogen-

activated protein kinase (MAPK) to perform its activities. Following GH activation, several 

continuous activations will occur including   RAS GTPase, RAF kinase and the MAP-ERK kinase 

(MEK). Because of these successive activations of the transcriptional regulation of target genes, 

the growth enhancement and metabolism will be achieved (Guevara-Aguirrea et al., 2017).  

Another common upregulated pathway was transcription and chromatin modification, which is 

also related to cancer status. Chromatin modification is a useful modification of chromatin 

architecture that controls gene expression by exerting access of condensed genomic DNA to 
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regulatory transcription machinery proteins. Also, a dynamic chromatin modification carries an 

epigenetic regulatory role in several biological processes including DNA repair and replication, 

apoptosis, chromosomes division, development and pluripotency. This re-modelling is 

performed via covalent histone modifications by specific enzymes or ATP-dependent chromatin 

remodelling complexes.  Likewise, variation in chromatin remodelling proteins was found to be 

related to human diseases that comprise cancer. Currently, a dominant therapeutic strategy in 

the treatment of diversified tumours was developed to targets chromatin remodelling pathways 

(Wang et al., 2007).  Up-regulation of this pathway could be related to Metformin action as a 

DNA damage agent. This pathway is utilising several biological processes for DNA repair and 

replication. Furthermore, it is evident that oncogenesis is linked to miswriting, misinterpretation 

and misreading of histone modifications, proposing that the deregulation in the gene expression 

and perturbation of cellular identity can be caused by histone code misregulation, contributing 

to the initiation of cancer, and its progression through metastasis (Chi et al., 2010). 

On the other hand, the cell cycle and mitosis pathways were downregulated in control samples 

compared to treated samples. Metformin action has activated signalling pathways that promote 

cell cycle arrest, and DNA repair as a response to DNA damage in eukaryotic cells.  Metformin 

cytotoxicity, oxidative stress, DNA damage, and intracellular pathways related to cell growth and 

survival have also been shown in MCF-7 and MDA-MB-231 human breast cancer cells (Marinello 

et al., 2016).  

Apoptosis and mitochondria-mediated apoptosis, and response to hypoxia and oxidative stress 

pathways were also up-regulated in PLKO-1 Control vs PLKO-1 Treated, which could be caused 

by Metformin treatment. Metformin functions directly on mitochondria by limiting citric acid 

cycle activity and Oxidative phosphorylation (OXPHOS), as has been shown in isolated 

mitochondria and in intact cells. A compensatory increase in glycolysis accompanied the 

Metformin-mediated decrease in mitochondrial function. The sensitivity of Metformin is 

dependent on cells capabilities to engage aerobic glycolysis. Thus, Metformin could potentially 

be used in oncology to capitalise on the metabolic sensitivity of cancer cells (Andrzejewski et al., 

2014). A study recently published revealed that constant subjection to Metformin in cancer cells 

eventually leads to drug resistance that is related to increased PGC-1α levels. Metformin 

resistant cells are metabolically flexible and have the capability to switch nutrition sources from 

oxidative metabolism to glycolysis and glutamine metabolism in the condition of Metformin-

mediated inhibition of oxidative phosphorylation. An increased level of PGC-1α is a crucial 

regulator of OXPHOS and mitochondrial biogenesis, during inhibition of OXPHOS by Metformin 

(Andrzejewski et al., 2018). 
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In summary, different breast cancer phenotypes display selective sensitivity to metformin. 

Triple-negative (Basal-like and Claudin-low) subtypes were the most sensitive to Metformin 

treatment, followed by Luminal B, while HER2 positive and Luminal A were the less sensitive 

phenotypes. Interestingly, Metformin significantly enhanced PYK2 expression in HER2 cell lines 

and other phenotypes, however, less abundantly. PYK2 promoted invasion and migration and 

impacted the proliferation of breast cancer cell lines. Several techniques have been employed 

in this investigation to emphasise the previously observed phenomenon, that revealed the 

association of PYK2 with breast cancer progression and dissemination. PYK2 has been found to 

signal through several pathways that are involved in invasion and metastasis of breast cancer. 

In addition to others that are associated with cancer stem cells in breast cancer. PYK2 might be 

the suggested target in HER2 breast cancer therapy, and Metformin may be a promising 

candidate in triple negative breast cancer treatment. These findings will require further 

investigations using Immunohistochemistry staining, animal models, and preclinical trials which 

better reflect real patients.  The outcomes of this study could influence the choice of medication 

according to different breast cancer phenotypes. 
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7.2. Future work 

This PhD project aimed to interrogate Metformin efficacy on several breast cancer molecular 

subtypes. The aim of this project has been achieved, and Metformin treatment has induced the 

expression of PYK2 in HER2 positive phenotype. PYK2 drives crucial biological functions including 

cancer initiation and dissemination.  The second achievement was to find a putative breast 

cancer marker that could be used as a biomarker and potentially as a target for breast cancer 

therapy. This was also met by identifying the potential marker which is PYK2. The expression of 

PYK2 under the levels of gene and protein was validated. Besides, the involvement of PYK2 in 

breast cancer progression and metastasis was also assessed. However, to fully assess PYK2 

suitability for a small molecule targeted therapy in breast cancer, further Immunohistochemistry 

staining, animal work and preclinical trials should be implemented. A significant number of 

samples and a greater variety of breast cancer tissue samples that include different molecular 

subtypes would allow a more detailed study. Besides, the application of the ANN integrative 

data mining approach for clinical datasets validation would be additionally helpful. Finally, 

outcomes of clinical trials using Metformin Hydrochloride for breast cancer supported by the 

National Cancer Institute (NCI) will provide significant information about the potential use of 

Metformin in breast cancer treatment.   
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Figure A.4. 1. Electropherograms generated for RNA derived from SkBr3 and MDA-MB-468 

cells in quadruplicate (Sample 1-36). Data refer to the Result section 4.3.1. 
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Figure A.4. 2. The Results of the quantification of the Cyaninne3 dye and cRNA concentration. 

Data refers to the Results section 4.4. Samples labelled as (1-18) referred to SkBr3 cell line and 

samples (19-36) are referred to MDA-MB-468 cell line.
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Figure A.4. 3.  Quality Control (QC) Report from Data acquisition in GenePixPro microarray 
scanner – part 1. Plots show Agilent Spike-in Linearity check plots with Slope and R2 values for 
each sample analysed. 
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Table A. 4.1. List of the 60 common genes in BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) cell lines 

 

Input ID Gene symbol Gene Name Avearage of 
interaction 

A_32_P69368 ID2 glutamate receptor, ionotropic, delta 2 (GRID2), transcript variant 
1 

-6.846 

A_32_P25050 RDH10 lnc-RDH10-3:1|gb|AK125786 -6.628 

A_32_P210202 E2F7  E2F transcription factor 7 (E2F7) -6.186 

A_32_P174083 CYCS  cytochrome c, somatic (CYCS) -6.164 

A_32_P152767 SKIDA1  SKI/DACH domain containing 1 (SKIDA1) -6.095 

A_32_P105195 DDX46  DEAD (Asp-Glu-Ala-Asp) box polypeptide 46 (DDX46), transcript 
variant 2 

-5.929 

A_24_P942354 PITPNA phosphatidylinositol transfer protein, alpha (PITPNA) -5.926 

A_24_P921933 SRSF1  serine/arginine-rich splicing factor 11 (SRSF11), transcript variant 
1 

-5.911 

A_24_P66001 UQCR10  ubiquinol-cytochrome c reductase, complex III subunit X 
(UQCR10), transcript variant 1 

-5.797 

A_24_P405430 TIA1 TIA1 cytotoxic granule-associated RNA binding protein (TIA1), 
transcript variant 2 

-5.794 

A_24_P38895 H2AFX  H2A histone family, member X (H2AFX) -5.751 

A_24_P322847 POLR3H  polymerase (RNA) III (DNA directed) polypeptide H (22.9kD) 
(POLR3H), transcript variant 2 

-5.679 

A_24_P316305 AQR progestin and adipoQ receptor family member VII (PAQR7) -5.647 

A_24_P314571 SPC24  HSPC249 mRNA, complete cds.  -5.642 

A_24_P217834 HIST1H3D  histone cluster 1, H3d (HIST1H3D) -5.642 

A_24_P141736 METAP2  methionyl aminopeptidase 2 (METAP2) -5.430 

A_23_P98248 TRPT1 tRNA phosphotransferase 1 (TRPT1), transcript variant 1 -5.428 

A_23_P90533 POP4  processing of precursor 4, ribonuclease P/MRP subunit (S. 
cerevisiae) (POP4), transcript variant 1 

-5.421 

A_23_P8452 LFNG  LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase 
(LFNG), transcript variant 2 

-5.417 
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A_23_P63789 ZWINT  ZW10 interacting kinetochore protein (ZWINT), transcript variant 
2 

-5.338 

A_23_P53668 NFYB  nuclear transcription factor Y, beta (NFYB) -5.336 

A_23_P435941 SAMD1 ens|ENST00000448179|ens|ENST00000398216|linc|lnc-SAMD11-
1:1|linc|lnc-SAMD11-1:2 

-5.315 

A_23_P434809 S100A8 S100 calcium binding protein A8 (S100A8) -5.303 

A_23_P421306 SYT12  synaptotagmin XII (SYT12), transcript variant 1 -5.303 

A_23_P350045 REEP5  receptor accessory protein 5 (REEP5) -5.254 

A_23_P33154 STAU2 STAU2 antisense RNA 1 (STAU2-AS1), long non-coding  -5.238 

A_23_P327069 KIAA0232  KIAA0232 (KIAA0232), transcript variant 1 -5.181 

A_23_P310 MARCKSL1  MARCKS-like 1 (MARCKSL1), transcript variant 1 -5.160 

A_23_P305977 GRAMD2 GRAM domain containing 2 (GRAMD2) -5.153 

A_23_P30495 HMGCR  3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), transcript 
variant 1 

-5.145 

A_23_P27215 UBB Synthetic construct Homo sapiens gateway clone 
IMAGE:100019426 3' read TUBB  

-5.117 

A_23_P24723 TMEM138  transmembrane protein 138 (TMEM138), transcript variant 1 -5.103 

A_23_P209200 CCNE1  cyclin E1 (CCNE1) -5.097 

A_23_P166716 TRMT10C  tRNA methyltransferase 10 homolog C (S. cerevisiae) (TRMT10C) -5.078 

A_23_P166526 RIBC2  RIB43A domain with coiled-coils 2 (RIBC2) -5.032 

A_23_P157715 PPP1R16A  protein phosphatase 1, regulatory subunit 16A (PPP1R16A) -5.024 

A_23_P156667 PPP1R10  protein phosphatase 1, regulatory subunit 10 (PPP1R10), 
transcript variant 1 

-5.014 

A_23_P150255 RBM14 RBM14-RBM4 readthrough (RBM14-RBM4), transcript variant 1 -5.001 

A_23_P13554 ALG8  ALG8, alpha-1,3-glucosyltransferase (ALG8), transcript variant 2 -4.989 

A_23_P128734 ERH enhancer of rudimentary homolog (Drosophila) (ERH) -4.980 

A_23_P128147 TUBA1B  tubulin, alpha 1b (TUBA1B) -4.960 

A_23_P123974 DTYMK lnc-DTYMK-3:1 -4.946 

A_23_P116829 UBE2N  ubiquitin-conjugating enzyme E2N (UBE2N) -4.944 

A_23_P115375 HIST2H3D ENST00000415338|linc|lnc-HIST2H3D-1:1|linc|lnc-FAM72B-
2:1|linc|lnc-HIST2H3PS2-1:1 

-4.943 

A_23_P106505 LCMT2  leucine carboxyl methyltransferase 2 (LCMT2) -4.941 
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A_23_P103110 MAFF  v-maf avian musculoaponeurotic fibrosarcoma oncogene 
homolog F (MAFF), transcript variant 1 

-4.927 

A_24_P303193 HNRNPA0  heterogeneous nuclear ribonucleoprotein A0 (HNRNPA0) -4.923 

A_33_P3387771 USP9X ENST00000452501|linc|lnc-USP9X-1:1|linc|TCONS_00016979 -4.918 

A_33_P3272390 RANBP2 RANBP2-like and GRIP domain containing 5 (RGPD5), transcript 
variant 1 

-4.912 

A_33_P3344579 DLD dihydrolipoamide dehydrogenase (DLD), transcript variant 1 -4.900 

A_33_P3252141 TMX3  thioredoxin-related transmembrane protein 3 (TMX3) -4.890 

A_33_P3410935 C17orf89  chromosome 17 open reading frame 89 (C17orf89) -4.885 

A_33_P3358977 RNASEH2C  ribonuclease H2, subunit C (RNASEH2C) -4.873 

A_23_P205584 JKAMP JNK1/MAPK8-associated membrane protein (JKAMP), transcript 
variant 1 

-4.855 

A_33_P3268343 PGAM4  phosphoglycerate mutase family member 4 (PGAM4) -4.848 

A_33_P3628481 MGC27345  uncharacterized protein MGC27345 (MGC27345), long non-
coding  

-4.813 

A_32_P74366 VCPIP1 valosin containing protein (p97)/p47 complex interacting protein 1 -4.807 

A_33_P3220530 SRSF6  serine/arginine-rich splicing factor 6 (SRSF6), transcript variant 2, 
non-coding  

-4.797 

A_33_P3336780 ABCB8 ATP-binding cassette, sub-family B (MDR/TAP), member 8 
(ABCB8), transcript variant 2 

-4.789 

A_33_P3346048 LOC441081  POM121 membrane glycoprotein (rat) pseudogene (LOC441081), 
non-coding  

-4.775 

 

           The 60 common genes in two treatments concentrations compared to control in BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) cell lines. 
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Table A. 4.2. List of the 48 common genes in BASAL-LIKE (MDA-MB-468) cell line 

 

Input ID Gene symbol Gene Name Avearage of 
interaction 

A_23_P146146 ATP6V0D2 ATPase H+ transporting V0 subunit d2(ATP6V0D2) -6.668 

A_23_P100203 HSBP1 heat shock factor binding protein 1(HSBP1) -5.407 

A_23_P122228 NDUFS6 NADH:ubiquinone oxidoreductase subunit S6(NDUFS6) -5.282 

A_23_P24997 CDK4 cyclin dependent kinase 4(CDK4) -5.265 

A_24_P89080 DCK deoxycytidine kinase(DCK) -5.178 

A_32_P210642 EGFL7 EGF like domain multiple 7(EGFL7) -5.094 

A_23_P117095 FGF23 fibroblast growth factor 23(FGF23) -5.072 

A_24_P28657 AHCTF1 AT-hook containing transcription factor 1(AHCTF1) -5.043 

A_23_P11262 F8A2 coagulation factor VIII-associated 2(F8A2) -4.900 

A_23_P211504 KDELR3 KDEL endoplasmic reticulum protein retention receptor 3(KDELR3) -4.769 

A_23_P118536 SLFN12 schlafen family member 12(SLFN12) -4.740 

A_23_P42935 BRAF B-Raf proto-oncogene, serine/threonine kinase(BRAF) -4.704 

A_23_P105138 CAT catalase(CAT) -4.659 

A_23_P256455 RPA3 replication protein A3(RPA3) -4.560 

A_23_P106544 CMC2 C-X9-C motif containing 2(CMC2) -4.511 

A_23_P56810 SLC4A1AP solute carrier family 4 member 1 adaptor protein(SLC4A1AP) -4.420 

A_23_P120414 YWHAB tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein beta(YWHAB) 

-4.376 

A_23_P100344 ORC6 origin recognition complex subunit 6(ORC6) -4.372 

A_23_P98431 HMBS hydroxymethylbilane synthase(HMBS) -4.368 

A_23_P103905 UFC1 ubiquitin-fold modifier conjugating enzyme 1(UFC1) -4.355 

A_23_P2873 KLC1 kinesin light chain 1(KLC1) -4.320 

A_23_P103149 ACO2 aconitase 2(ACO2) -4.304 

A_23_P105705 FGF6 fibroblast growth factor 6(FGF6) -4.240 

A_23_P157316 C7orf34 chromosome 7 open reading frame 34(C7orf34) -4.224 
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A_23_P48088 CD27 CD27 molecule(CD27) -4.214 

A_23_P101521 IZUMO2 IZUMO family member 2(IZUMO2) -4.205 

A_23_P31135 ACAT2 acetyl-CoA acetyltransferase 2(ACAT2) -4.159 

A_23_P102950 rsph1 radial spoke head 1 homolog(RSPH1) -4.145 

A_24_P67898 MGEA5 meningioma expressed antigen 5 (hyaluronidase)(MGEA5) -4.093 

A_32_P815507 LOC100130920 uncharacterized LOC100130920(LOC100130920) -4.093 

A_23_P312300 SCGB2A1 secretoglobin family 2A member 1(SCGB2A1) -4.074 

A_24_P381136 PACSIN3 protein kinase C and casein kinase substrate in neurons 
3(PACSIN3) 

-4.026 

A_23_P370097 TMEM237 transmembrane protein 237(TMEM237) -4.000 

A_23_P321160 ZNF594 zinc finger protein 594(ZNF594) -3.999 

A_23_P145777 NDUFA4 NDUFA4, mitochondrial complex associated(NDUFA4) -3.997 

A_23_P120237 STARD7 StAR related lipid transfer domain containing 7(STARD7) -3.984 

A_33_P3291877 ARID1B AT rich interactive domain 1B (SWI1-like) (ARID1B), transcript 
variant 2, mRNA  

-3.978 

A_33_P3315314 MT1HL1 metallothionein 1H-like 1 (MT1HL1 -3.973 

A_33_P3223631 ENST00000601550 Unknown -3.962 

A_33_P3284586 FBXL8 F-box and leucine-rich repeat protein 8 (FBXL8) -3.944 

A_33_P3785051 EFCAB10 cDNA clone IMAGE:6616931, partial cds.  -3.943 

A_33_P3362567 A_33_P3362567 Unknown -3.916 

A_33_P3388745 LOC100132207 cDNA FLJ41345 fis, clone BRAWH2002761.  3.869 

A_33_P3372788 NBPF8 neuroblastoma breakpoint family, member 8 (NBPF8), transcript 
variant 1 

-3.858 

A_33_P3424577 ENST00000613594 T cell receptor beta constant 1 [Source:HGNC 
Symbol;Acc:HGNC:12156]  

3.834 

A_33_P3424122 TCHHL1 trichohyalin-like 1 (TCHHL1) -3.782 

A_33_P3695548 POLE polymerase (DNA directed), epsilon, catalytic subunit (POLE), 
mRNA [NM_006231] 

-3.774 

A_33_P3367615 KLF6 Kruppel-like factor 6 (KLF6), transcript variant B -3.744 

        

            The 49 common genes in two treatments concentrations compared to control in BASAL-LIKE (MDA-MB-468) cell line. 
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Table A. 4.3. List of the 77 common genes in HER2 (SkBr3) cell line 

 

Input ID Gene symbol Gene Name Avearage of 
interaction 

A_23_P122228 NDUFS6 NADH:ubiquinone oxidoreductase subunit S6(NDUFS6) -6.254 

A_23_P24997 CDK4 cyclin dependent kinase 4(CDK4) -5.351 

A_24_P89080 DCK deoxycytidine kinase(DCK) -5.308 

A_23_P117095 FGF23 fibroblast growth factor 23(FGF23) -5.223 

A_23_P131089 KANK3 KN motif and ankyrin repeat domains 3(KANK3) -5.191 

A_24_P28657 AHCTF1 AT-hook containing transcription factor 1(AHCTF1) -5.122 

A_23_P13914 dhx37 DEAH-box helicase 37(DHX37) -4.813 

A_23_P217475 IDS iduronate 2-sulfatase(IDS) -4.690 

A_23_P105138 CAT catalase(CAT) -4.620 

A_23_P10995 RBMS3 RNA binding motif single stranded interacting protein 3(RBMS3) -4.610 

A_23_P94879 F2 coagulation factor II, thrombin(F2) -4.573 

A_23_P98431 HMBS hydroxymethylbilane synthase(HMBS) -4.542 

A_23_P318616 LRTM2 leucine rich repeats and transmembrane domains 2(LRTM2) -4.447 

A_24_P277934 COL1A2 collagen type I alpha 2 chain(COL1A2) -4.428 

A_23_P169017 DEFB103A defensin beta 103A(DEFB103A) 4.330 

A_23_P112874 GPC5 glypican 5(GPC5) -4.315 

A_24_P410086 SSBP4 single stranded DNA binding protein 4(SSBP4) 4.251 

A_23_P117082 HEBP1 heme binding protein 1(HEBP1) -4.208 

A_23_P200874 CEP85 centrosomal protein 85(CEP85) -4.159 

A_23_P35977 PDZD3 PDZ domain containing 3(PDZD3) -4.151 

A_23_P386254 NKX3-2 NK3 homeobox 2(NKX3-2) -4.113 

A_24_P67898 MGEA5 meningioma expressed antigen 5 (hyaluronidase)(MGEA5) -4.095 

A_23_P45365 COL4A5 collagen type IV alpha 5 chain(COL4A5) -4.035 

A_23_P9280 KIF27 kinesin family member 27(KIF27) -4.005 

A_23_P253524 CENPE centromere protein E(CENPE) -3.963 
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A_24_P915007 NACC1 nucleus accumbens associated 1(NACC1) 3.918 

A_23_P20876 PTPDC1 protein tyrosine phosphatase domain containing 1(PTPDC1) -3.851 

A_23_P11262 F8A2 coagulation factor VIII-associated 2(F8A2) -3.826 

A_23_P51587 RGS7 regulator of G-protein signaling 7(RGS7) -3.773 

A_23_P104146 ZMYM4 zinc finger MYM-type containing 4(ZMYM4) -3.764 

A_23_P42935 BRAF B-Raf proto-oncogene, serine/threonine kinase(BRAF) 3.747 

A_23_P106505 lcmt2 leucine carboxyl methyltransferase 2(LCMT2) -3.741 

A_23_P2683 RPAP3 RNA polymerase II associated protein 3(RPAP3) -3.716 

A_23_P94998 LETM1 leucine zipper and EF-hand containing transmembrane protein 
1(LETM1) 

3.673 

A_23_P388190 DIDO1 death inducer-obliterator 1(DIDO1) -3.665 

A_23_P100344 ORC6 origin recognition complex subunit 6(ORC6) -3.646 

A_23_P105705 FGF6 fibroblast growth factor 6(FGF6) 3.639 

A_32_P50123 SRGAP2 SLIT-ROBO Rho GTPase activating protein 2(SRGAP2) -3.599 

A_23_P53057 ZNF215 zinc finger protein 215(ZNF215) 3.595 

A_23_P108554 DDX1 DEAD-box helicase 1(DDX1) 3.595 

A_23_P101521 IZUMO2 IZUMO family member 2(IZUMO2) 3.543 

A_23_P102950 rsph1 radial spoke head 1 homolog(RSPH1) -3.528 

A_23_P109345 PTTG1IP pituitary tumor-transforming 1 interacting protein(PTTG1IP) -3.496 

A_23_P112220 INSL4 insulin like 4(INSL4) -3.465 

A_23_P120048 BAZ2B bromodomain adjacent to zinc finger domain 2B(BAZ2B) -3.461 

A_23_P160828 C1orf159 chromosome 1 open reading frame 159(C1orf159) -3.438 

A_23_P312300 SCGB2A1 secretoglobin family 2A member 1(SCGB2A1) -3.436 

A_32_P815507 LOC100130920 uncharacterized LOC100130920(LOC100130920) 3.429 

A_23_P25698 SLC10A1 solute carrier family 10 member 1(SLC10A1) -3.417 

A_23_P41395 CCKAR cholecystokinin A receptor(CCKAR) 3.406 

A_23_P321160 ZNF594 zinc finger protein 594(ZNF594) -3.390 

A_23_P171095 USP27X ubiquitin specific peptidase 27, X-linked(USP27X) -3.388 

A_23_P120237 STARD7 StAR related lipid transfer domain containing 7(STARD7) -3.387 

A_33_P3248629 DENND2A ens|DENN/MADD domain containing 2A [Source:HGNC 
Symbol;Acc:HGNC:22212] [ENST00000492720] 

-3.374 



269 | P a g e  
 

A_33_P3225690 ZNF516 zinc finger protein 516 (ZNF516) -3.367 

A_33_P3406939 KIF24 kinesin family member 24 (KIF24) -3.364 

A_24_P358131 ENST00000404956 keratin 18 pseudogene 52 [Source:HGNC Symbol;Acc:HGNC:37888] -3.325 

A_33_P3350086 OR2T33 olfactory receptor, family 2, subfamily T, member 33 
(OR2T33)001004695] 

-3.315 

A_33_P3344292 SAMD4A sterile alpha motif domain containing 4A  [ENST00000554335] 3.304 

A_33_P3387991 CEBPE CCAAT/enhancer binding protein (C/EBP), epsilon (CEBPE) -3.302 

A_33_P3785051 EFCAB10 cDNA clone IMAGE:6616931, partial cds. -3.296 

A_23_P69089 AK021889 cDNA FLJ11827 fis, clone HEMBA1006502 3.286 

A_33_P3695548 POLE polymerase (DNA directed), epsilon, catalytic subunit (POLE) -3.273 

A_33_P3240693 THSD4 thrombospondin, type I, domain containing 4 (THSD4), transcript 
variant 2 

-3.272 

A_33_P3375086 THC2621369 tc|Q39C09_BURS3 (Q39C09) Flagellar FliF M-ring protein, partial 
(3%) 

-3.270 

A_33_P3221808 FAM205BP mRNA; cDNA DKFZp434J193 (from clone DKFZp434J193). -3.242 

A_33_P3328274 A_33_P3328274 Unknown -3.234 

A_33_P3315314 MT1HL1 metallothionein 1H-like 1 (MT1HL1) -3.232 

A_33_P3354569 GPD2 glycerol-3-phosphate dehydrogenase 2 (mitochondrial) (GPD2), 
transcript variant 1 

-3.215 

A_24_P200162 HIGD1A HIG1 hypoxia inducible domain family, member 1A (HIGD1A), 
transcript variant 3 

-3.206 

A_32_P196263 ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 
(ADAMTS9) 

3.194 

A_23_P37778 FHOD1 formin homology 2 domain containing 1 (FHOD1) 3.189 

A_33_P3317618 SYN2 synapsin II (SYN2), transcript variant IIb -3.187 

A_32_P34876 WDR93 WD repeat domain 93 (WDR93), transcript variant 1 -3.177 

A_23_P99360 TRIM13 tripartite motif containing 13 (TRIM13), transcript variant 3 -3.164 

A_33_P3223631 ENST00000601550 Unknown -3.146 

A_23_P146146 ATP6V0D2 ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d2 
(ATP6V0D2) 

-3.136 

 
             The 77 common genes in two treatments concentrations compared to control in HER2 (SkBr3) cell line. 



270 | P a g e  
 

  

 

 

 

 

1 Common element in "MDA-MB-468/4mL" 

and "MDA-MB-468/1mL":  WBSCR27 

 

1 Common element in "SkBr3/4mL" and 

"SkBr3/1mL": THAP12 

 

1 Common element in "MDA-MB-468/4mL" 

and "SkBr3/4mL": ANKRD44 

 

 

 

 

 

 

Figure A.4. 4.  Venn diagram showing commonalities between the different analyses Regression-based method and fold change- based 

method for both cell lines BASAL-LIKE (MDA-MB-468) and HER2 (SkBr3) cell lines and different concentrations (1 and 4 mL) of Metformin.  
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Figure A.5.1. Representative micrographs of immunoblots showing SERPINB4 expression in MDA-MB-468 and MDA-MB-231 (left panel), and SkBr3 

and MDA-MB-453 (right panel). -actin is used as a loading control. Cell extracts for immunoblotting were obtained from untreated and Metformin 

treated cells with 1mM and 4mM concentrations. 
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Figure A.5.2. Micrograph representing the densitometry ratio (AU) of SERPINB4 protein 
expression in Metformin untreated and treated (1mM and 4mM) in MDA-MB-468, MDA-MB-
231, SkBr3 and MDA-MB-453 breast cancer cell lines. low protein expression level was 
observed in 1mM and 4mM Metformin-treated cell lines, and a non-detectable protein in both 
MDA-MB-468 and MDA-MB-231 cell lines. 

 

 

Figure A.5.3. Micrographs displaying expression of SERPINB4 in Basal-like (MDA-MB-468) cell 

line against SERPINB4 (green). Nuclei were stained with DAPI (blue). the images were taken at 

20X magnification and scale bars indicate 100μm. 
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Figure A.5.4. Micrographs displaying expression of SERPINB4 in Claudin-Low (MDA-MB-231) 

cell line against SERPINB4 (green). Nuclei were stained with DAPI (blue). the images were 

taken at 20X magnification and scale bars indicate 100μm. 

 

Figure A.5. 5. Micrographs displaying expression of SERPINB4 in HER2 (SkBr3) cell line against 
SERPINB4 (green). Nuclei were stained with DAPI (blue). the images were taken at 20X 
magnification and scale bars indicate 100μm. 
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Figure A.5.6. Micrographs displaying expression of SERPINB4 in HER2 (MDA-MB-453) cell line 
against SERPINB4 (green). Nuclei were stained with DAPI (blue). the images were taken at 20X 

magnification and scale bars indicate 100μm. 

 
 
Figure A.6.1. The dose-response curve of antibiotic selection in breast cancer cell lines. 
Micrograph showed that 100% of the cells were killed after 72 h of exposure to 3µg/mL of 
puromycin.
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Figure.A 6.2. Wound-healing assay (Scratch assay) using MDA-MB-468 cells expressing empty vector, PTK2B- shRNA1 and PTK2B- shRNA2 untreated 

constructs. 
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Figure.A 6.3. Wound-healing assay (Scratch assay) using MDA-MB-468 cells expressing empty vector, PTK2B- shRNA1 and PTK2B- shRNA2 1mM 

Metformin treated constructs. 
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Figure.A 6.4. Wound-healing assay (Scratch assay) using MDA-MB-231 cells expressing empty vector, PTK2B- shRNA1 and PTK2B- shRNA2 unreated 

constructs. 
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Figure.A 6.5. Wound-healing assay (Scratch assay) using MDA-MB-231 cells expressing empty vector, PTK2B- shRNA1 and PTK2B- shRNA2 1mM 

Metformin treated constructs. 
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Figure.A 6.6. Wound-healing assay (Scratch assay) using SkBr3 cells expressing empty vector, PTK2B- shRNA1 and PTK2B- shRNA2 unreated 

constructs. 
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Figure.A 6.7. Wound-healing assay (Scratch assay) using SkBr3 cells expressing empty vector, PTK2B- shRNA1 and PTK2B- shRNA2 1mM Metformin 

treated constructs. 
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Figure.A 6.8. Wound-healing assay (Scratch assay) using MDA-MB-453 cells expressing empty vector, PTK2B- shRNA1 and PTK2B- shRNA2 unreated 

constructs. 
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Figure.A 6.9. Wound-healing assay (Scratch assay) using MDA-MB-453 cells expressing empty vector, PTK2B- shRNA1 and PTK2B- shRNA2 1mM 

Metformin treated constructs. 
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Figure A.6. 10.  Differentially expressed proteins from untreated and treated MDA-MB-453 

control and PTK2B cells. Data refers to the Results section 6.7. 
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Table A.6. 1. Top 50 upregulated and downregulated proteins in HER2 (MDA-MB-

453) cell line samples 

Protein 
Symbol 

Description Fold 
change 

Confidence 
level 

QCR2 Cytochrome b-c1 complex subunit 2, mitochondrial 9.113 0.706 

ECHA Trifunctional enzyme subunit alpha, mitochondrial 8.719 0.825 

ATPG ATP synthase subunit gamma, mitochondrial 8.566 0.762 

ATPB ATP synthase subunit beta, mitochondrial 7.050 0.859 

ATPA ATP synthase subunit alpha, mitochondrial 6.683 0.830 

PHB2 Prohibitin-2 6.392 0.757 

NDUS8 NADH dehydrogenase [ubiquinone] iron-sulfur 
protein 8, mitochondrial 

6.206 0.763 

P5CS Delta-1-pyrroline-5-carboxylate synthase 6.134 0.787 

ATPO ATP synthase subunit O, mitochondrial 5.969 0.718 

CLPP ATP-dependent Clp protease proteolytic subunit, 
mitochondrial 

5.897 0.730 

EFTU Elongation factor Tu, mitochondrial 5.788 0.825 

IDH3A Isocitrate dehydrogenase [NAD] subunit alpha, 
mitochondrial 

5.743 0.712 

VKOR1 Vitamin K epoxide reductase complex subunit 1 5.664 0.730 

PHB Prohibitin 5.541 0.873 

ECHB Trifunctional enzyme subunit beta, mitochondrial 5.508 0.775 

OAT Ornithine aminotransferase, mitochondrial 5.116 0.790 

CISY Citrate synthase, mitochondrial 4.783 0.837 

ECHM Enoyl-CoA hydratase, mitochondrial 4.738 0.828 

STML2 Stomatin-like protein 2, mitochondrial 4.688 0.704 

COX20 Cytochrome c oxidase protein 20 homolog 4.584 0.715 

THIL Acetyl-CoA acetyltransferase, mitochondrial 4.325 0.757 

GRP75 Stress-70 protein, mitochondrial 4.145 0.921 

SSRG Translocon-associated protein subunit gamma 3.937 0.775 

ACADV Very long-chain specific acyl-CoA dehydrogenase, 
mitochondrial 

3.886 0.764 

CH60 60 kDa heat shock protein, mitochondrial 3.870 0.841 

CH10 10 kDa heat shock protein, mitochondrial 3.684 0.766 

C1QBP Complement component 1 Q subcomponent-binding 
protein, mitochondrial 

3.632 0.748 

ETFA Electron transfer flavoprotein subunit alpha, 
mitochondrial 

3.628 0.727 

ODO2 Dihydrolipoyllysine-residue succinyltransferase 
component of 2-oxoglutarate dehydrogenase 
complex, mitochondrial 

3.535 0.761 

GLYM Serine hydroxymethyltransferase, mitochondrial 3.514 0.763 

MDHM Malate dehydrogenase, mitochondrial 3.477 0.873 

PRDX3 Thioredoxin-dependent peroxide reductase, 
mitochondrial 

3.330 0.812 

RM12 39S ribosomal protein L12, mitochondrial 3.253 0.731 

RM54 39S ribosomal protein L54, mitochondrial 3.248 0.776 

ETFB Electron transfer flavoprotein subunit beta 3.172 0.745 
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CD44 CD44 antigen 3.052 0.735 

RS5 40S ribosomal protein S5 2.948 0.848 

DLDH Dihydrolipoyl dehydrogenase, mitochondrial 2.638 0.759 

AIFM1 Apoptosis-inducing factor 1, mitochondrial 2.595 0.832 

RRBP1 Ribosome-binding protein 1 2.323 0.784 

NOP56 Nucleolar protein 56 2.225 0.728 

PLP2 Proteolipid protein 2 2.176 0.947 

SYPL1 Synaptophysin-like protein 1 2.113 0.919 

FAM3C Protein FAM3C 2.099 0.701 

PRIO Major prion protein 2.005 0.702 

NOP10 H/ACA ribonucleoprotein complex subunit 3 1.810 0.769 

HNRPC Heterogeneous nuclear ribonucleoproteins C1/C2 1.698 0.707 

SERA D-3-phosphoglycerate dehydrogenase 1.348 0.730 

 

Protein 
Symbol 

Description Fold 
change 

Confidence 
level 

H14 Histone H1.4 -2.087 0.715 

CNBP Cellular nucleic acid-binding protein -2.443 0.740 

 

Comparing untreated and Metformin-treated PLKO-1 samples with Fc 2 ≥ -2, and 
confidence of 70%. Red indicated upregulated proteins and blue downregulated proteins. 
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Table A.6. 2. Top 50 upregulated and downregulated proteins in HER2 (MDA-MB-

453) cell line samples 

Protein Symbol Description Fold 
change 

Confidence 
level 

ADT1 ADP/ATP translocase 1 18.424 0.822 

ATPG ATP synthase subunit gamma, mitochondrial 11.460 0.799 

TXTP Tricarboxylate transport protein, 
mitochondrial 

11.405 0.733 

TIM50 Mitochondrial import inner membrane 
translocase subunit TIM50 

11.173 0.718 

COX2 Cytochrome c oxidase subunit 2 10.555 0.779 

VDAC1 Voltage-dependent anion-selective channel 
protein 1 

10.528 0.789 

SAR1B GTP-binding protein SAR1b 10.071 0.855 

MYH14 Myosin-14 9.769 0.706 

SAR1A GTP-binding protein SAR1a 9.447 0.749 

1B38 HLA class I histocompatibility antigen, B-38 
alpha chain 

9.341 0.853 

MBOA7 Lysophospholipid acyltransferase 7 9.128 0.771 

ITB3 Integrin beta-3 9.060 0.776 

TSPO Translocator protein 8.325 0.747 

CALM3 Calmodulin-3 8.302 0.704 

ECHA Trifunctional enzyme subunit alpha, 
mitochondrial 

8.049 0.849 

SRPRB Signal recognition particle receptor subunit 
beta 

7.929 0.729 

NPTN Neuroplastin 7.891 0.755 

QCR1 Cytochrome b-c1 complex subunit 1, 
mitochondrial 

7.706 0.714 

NDUB8 NADH dehydrogenase [ubiquinone] 1 beta 
subcomplex subunit 8, mitochondrial 

7.284 0.730 

ATPD ATP synthase subunit delta, mitochondrial 7.075 0.735 

TSN7 Tetraspanin-7 6.997 0.724 

PTTG Pituitary tumor-transforming gene 1 protein-
interacting protein 

6.916 0.765 

ECI2 Enoyl-CoA delta isomerase 2, mitochondrial 6.855 0.778 

ECHB Trifunctional enzyme subunit beta, 
mitochondrial 

6.719 0.794 

MPU1 Mannose-P-dolichol utilization defect 1 
protein 

6.560 0.748 
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Protein Symbol Description Fold 
change 

Confidenc
e level 

RUXF Small nuclear ribonucleoprotein F -1.646 0.735 

XRCC6 X-ray repair cross-complementing protein 6 -1.652 0.736 

ACTC Actin, alpha cardiac muscle 1 -1.663 0.802 

EF1G Elongation factor 1-gamma -1.669 0.781 

GSTP1 Glutathione S-transferase P -1.726 0.770 

FUBP2 Far upstream element-binding protein 2 -1.798 0.895 

FRG1 Protein FRG1 -1.817 0.716 

MINP1 Multiple inositol polyphosphate phosphatase 
1 

-1.854 0.803 

DEK Protein DEK -1.858 0.807 

PCNA Proliferating cell nuclear antigen -1.962 0.796 

TOM34 Mitochondrial import receptor subunit 
TOM34 

-1.987 0.716 

CK054 Ester hydrolase C11orf54 -2.084 0.854 

ENY2 Transcription and mRNA export factor ENY2 -2.111 0.894 

RL7A 60S ribosomal protein L7a -2.189 0.787 

MCM3 DNA replication licensing factor MCM3 -2.197 0.776 

RL24 60S ribosomal protein L24 -2.291 0.878 

TRXR1 Thioredoxin reductase 1, cytoplasmic -2.615 0.816 

CC137 Coiled-coil domain-containing protein 137 -2.743 0.729 

RL14 60S ribosomal protein L14 -2.841 0.882 

TENA Tenascin -3.582 0.856 

HS71B Heat shock 70 kDa protein 1B -3.673 0.878 

H15 Histone H1.5 -3.895 0.767 

PLP2 Proteolipid protein 2 -4.246 1.000 

H14 Histone H1.4 -4.274 0.759 

VTNC Vitronectin -5.846 0.839 

 

Comparing untreated PLKO-1 and PYK2 KD samples with Fc 2 ≥ -2, and confidence of 70%. 
Red indicated upregulated proteins and blue downregulated proteins. 
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Table A.6. 3. Top 50 upregulated and downregulated proteins in HER2 (MDA-MB-

453) cell line samples 

Protein 
Symbol 

Description Fold change Confidence level 

SAR1A GTP-binding protein SAR1a 6.367 0.828 

PLTP Phospholipid transfer protein 4.212 0.705 

GP143 G-protein coupled receptor 143 3.626 0.895 

BAG5 BAG family molecular chaperone 
regulator 5 

3.472 0.792 

TSN7 Tetraspanin-7 3.335 0.887 

SRGP2 SLIT-ROBO Rho GTPase-activating 
protein 2 

3.068 0.917 

MILK1 MICAL-like protein 1 2.961 0.773 

SPY4 Protein sprouty homolog 4 2.727 0.732 

S10AD Protein S100-A13 2.611 0.711 

MELPH Melanophilin 2.484 0.754 

SDCB1 Syntenin-1 2.445 0.835 

MFGM Lactadherin 2.343 0.862 

APOD Apolipoprotein D 2.327 0.887 

S35F6 Solute carrier family 35 member F6 2.236 0.908 

NPC1 Niemann-Pick C1 protein 2.206 0.886 

PTTG Pituitary tumor-transforming gene 1 
protein-interacting protein 

2.043 0.722 

H2AZ Histone H2A.Z 2.035 0.910 

MYPR Myelin proteolipid protein 1.935 0.764 

STOM Erythrocyte band 7 integral 
membrane protein 

1.919 0.817 

STX7 Syntaxin-7 1.893 0.860 

CD99 CD99 antigen 1.873 0.703 

TTYH3 Protein tweety homolog 3 1.864 0.789 

MARCS Myristoylated alanine-rich C-kinase 
substrate 

1.844 0.862 

PPGB Lysosomal protective protein 1.838 0.780 

S10A1 Protein S100-A1 1.814 0.900 
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Protein 
Symbol 

Description Fold change Confidence level 

GLU2B Glucosidase 2 subunit beta -1.589 0.751 

TOM34 Mitochondrial import receptor 
subunit TOM34 

-1.640 0.766 

MCM7 DNA replication licensing factor 
MCM7 

-1.691 0.817 

HNRPC Heterogeneous nuclear 
ribonucleoproteins C1/C2 

-1.691 0.845 

MCM2 DNA replication licensing factor 
MCM2 

-1.691 0.805 

MCM5 DNA replication licensing factor 
MCM5 

-1.729 0.823 

MCM6 DNA replication licensing factor 
MCM6 

-1.753 0.813 

DPOD1 DNA polymerase delta catalytic 
subunit 

-1.788 0.758 

CYC Cytochrome c -1.802 0.735 

CK054 Ester hydrolase C11orf54 -1.815 0.813 

MDHM Malate dehydrogenase, 
mitochondrial 

-1.851 0.838 

PCNA Proliferating cell nuclear antigen -1.958 0.887 

PRDX4 Peroxiredoxin-4 -1.970 0.738 

DNMT1 DNA (cytosine-5)-methyltransferase 1 -2.053 0.816 

MCM3 DNA replication licensing factor 
MCM3 

-2.082 0.827 

ODO2 Dihydrolipoyllysine-residue 
succinyltransferase component of 2-
oxoglutarate dehydrogenase 
complex, mitochondrial 

-2.164 0.726 

TRXR1 Thioredoxin reductase 1, cytoplasmic -2.234 0.837 

RRBP1 Ribosome-binding protein 1 -2.434 0.836 

MGP Matrix Gla protein -3.237 0.871 

SPHM N-sulphoglucosamine 
sulphohydrolase 

-3.722 0.785 

HS71B Heat shock 70 kDa protein 1B -3.920 0.926 

MED1 Mediator of RNA polymerase II 
transcription subunit 1 

-7.762 0.799 

TRRAP Transformation/transcription 
domain-associated protein 

-7.828 0.752 

PLCG1 1-phosphatidylinositol 4,5-
bisphosphate phosphodiesterase 
gamma-1 

-7.868 0.760 

PLP2 Proteolipid protein 2 -11.326 0.952 

 

Comparing Metformin-treated PLKO-1 and PYK2 KD samples with Fc 2 ≥ -2, and 
confidence of 70%. Red indicated upregulated proteins and blue downregulated proteins. 
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Table A.6. 4. Top 50 upregulated and downregulated proteins in HER2 (MDA-MB-

453) cell line samples 

Protein 
Symbol 

Description Fold change Confidence level 

ADT1 ADP/ATP translocase 1 13.499 0.742 

SAR1A GTP-binding protein SAR1a 10.812 0.778 

NDUAC NADH dehydrogenase [ubiquinone] 1 
alpha subcomplex subunit 12 

10.489 0.734 

RHOG Rho-related GTP-binding protein RhoG 9.006 0.706 

T106B Transmembrane protein 106B 8.776 0.713 

SAR1B GTP-binding protein SAR1b 8.292 0.846 

VDAC1 Voltage-dependent anion-selective 
channel protein 1 

8.020 0.735 

1B38 HLA class I histocompatibility antigen, 
B-38 alpha chain 

7.796 0.810 

COX2 Cytochrome c oxidase subunit 2 7.624 0.733 

IFRD1 Interferon-related developmental 
regulator 1 

7.482 0.800 

ITB3 Integrin beta-3 7.329 0.776 

PTTG Pituitary tumor-transforming gene 1 
protein-interacting protein 

6.870 0.761 

QCR1 Cytochrome b-c1 complex subunit 1, 
mitochondrial 

6.767 0.727 

VKOR1 Vitamin K epoxide reductase complex 
subunit 1 

6.217 0.868 

ECHA Trifunctional enzyme subunit alpha, 
mitochondrial 

6.134 0.778 

NDUS8 NADH dehydrogenase [ubiquinone] 
iron-sulfur protein 8, mitochondrial 

6.110 0.789 

COX20 Cytochrome c oxidase protein 20 
homolog 

5.844 0.841 

PHB Prohibitin 5.651 0.904 

NB5R3 NADH-cytochrome b5 reductase 3 5.631 0.751 

TSN7 Tetraspanin-7 5.508 0.721 

ECI2 Enoyl-CoA delta isomerase 2, 
mitochondrial 

5.405 0.757 

PHB2 Prohibitin-2 5.390 0.919 

5NTD 5'-nucleotidase 5.192 0.785 

CYB5B Cytochrome b5 type B 5.099 0.713 

T4S1 Transmembrane 4 L6 family member 1 5.072 0.743 
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Protein 
Symbol 

Description Fold change Confidence level 

GSTP1 Glutathione S-transferase P -1.612 0.719 

JMJD6 Bifunctional arginine demethylase and 
lysyl-hydroxylase JMJD6 

-1.613 0.729 

CCAR2 Cell cycle and apoptosis regulator 
protein 2 

-1.633 0.791 

RL24 60S ribosomal protein L24 -1.659 0.726 

HSP7C Heat shock cognate 71 kDa protein -1.681 0.785 

NADAP Kanadaptin -1.758 0.888 

NONO Non-POU domain-containing octamer-
binding protein 

-1.759 0.726 

NECP2 Adaptin ear-binding coat-associated 
protein 2 

-1.800 0.775 

FUBP2 Far upstream element-binding protein 
2 

-1.801 0.884 

MINP1 Multiple inositol polyphosphate 
phosphatase 1 

-1.820 0.814 

RL14 60S ribosomal protein L14 -1.891 0.713 

DEK Protein DEK -1.967 0.811 

ENY2 Transcription and mRNA export factor 
ENY2 

-2.013 0.773 

CBX3 Chromobox protein homolog 3 -2.030 0.729 

CK054 Ester hydrolase C11orf54 -2.049 0.823 

TOM34 Mitochondrial import receptor subunit 
TOM34 

-2.185 0.788 

HAT1 Histone acetyltransferase type B 
catalytic subunit 

-2.303 0.724 

MCM3 DNA replication licensing factor MCM3 -2.400 0.768 

PCNA Proliferating cell nuclear antigen -2.479 0.837 

TENA Tenascin -2.546 0.794 

TRXR1 Thioredoxin reductase 1, cytoplasmic -2.553 0.820 

CNBP Cellular nucleic acid-binding protein -2.648 0.711 

HS71B Heat shock 70 kDa protein 1B -4.798 0.881 

PLP2 Proteolipid protein 2 -5.274 1.000 

VTNC Vitronectin -7.530 0.795 

 

Comparing untreated PLKO-1 and Metformin-treated PYK2 KD samples with Fc 2 ≥ -2, and 
confidence of 70%. Red indicated upregulated proteins and blue downregulated proteins. 
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Table A.6.5. Pathways regulated by proteins that are differentially expressed between treated and untreated PLKO-1 and PYK2 KD cells  

(MDA-MB-453 cell line) 

 

 
PLKO-1 Control vs. PYK2 KD 

Treated up-regulated pathways 

Biological functions p-value FDR Protein Names 

Proliferation_Negative regulation 
of cell proliferation 

0.000 0.010 Prohibitin, Securin, COX-2 
(PTGS2) 

PLKO-1 Control vs. PYK2 KD 
Treated down-regulated pathways 

Cell cycle_S phase 0.003 0.069 MCM3, PCNA, HP1 

PLKO-1 Control vs. PLKO-1 
Treated up-regulated pathways 

Cell adhesion_Cell-matrix 
interactions 

0.002 0.058 CD44 (EXT), CD44 soluble, CD44, 
CD44 (ICD) 

PLKO-1 Control vs. PLKO-1 
Treated down-regulated pathways 

Proliferation_Positive regulation 
cell proliferation 

0.031 0.031 CNBP 

 

Pathways were derived by Meta Core™ online software. Table only shows significant pathways (with FDR < 0.05).  Red indicated upregulated 
pathways and blue downregulated pathways.
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