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 10 

Highlights 11 

 A load sensor uses a single-mode-multimode-single-mode 12 
(SMS) fiber structure. 13 

 The SMS structure is sandwiched between two CR-39 plastic 14 
polymer plates.  15 

 A larger effective transverse strain can be achieved when 16 
the distance between the stage and the edge of the multimode 17 
fiber is larger.  18 

 The SMS device is suitable for sensing a small load or 19 
transverse strain with a reasonably high sensitivity. 20 

 21 

Abstract 22 

A load sensor is demonstrated using a single-mode-multimode-single-mode (SMS) fiber 23 

structure, which is sandwiched between two CR-39 plastic polymer plates. A larger effective 24 

transverse strain can be achieved when the distance, D2, between the stage and the edge of the 25 

multimode fiber is larger. A higher sensitivity is obtained when D2= 7 cm with a value of -26 

0.0102 nm/mN, as compared to -0.0027 nm/mN when D2= 3 cm. In contrast, an FBG integrated 27 

in a similar manner has shown an indiscernible change in the wavelength shift as compared to 28 

that produced by the SMS device. The result indicates that the proposed SMS device is suitable 29 

for sensing a small load or transverse strain with a reasonably high sensitivity. 30 
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Introduction 6 

 Optical fiber sensors have been widely used in measuring various physical, chemical, 7 

and even biological parameters, as they are compact, responsive, sensitive, stable and resistant 8 

to electromagnetic interference [1-2]. They have also been recommended for applications in 9 

areas such as structural monitoring of buildings [3], estimation of metal surface roughness [4], 10 

vibration tests [5], determination of the thickness of a transparent plate [6], etc. A fiber Bragg 11 

grating (FBG) based optical sensor is widely used and by far is the most common type of fiber 12 

sensors [7-8]. However, it suffers from a narrow measurement range especially when used for 13 

strain sensing, and consequently requires a mechanical arrangement to improve the 14 

measurement range and a complex interrogation system to achieve a high wavelength 15 

resolution. A single mode–multimode–single mode (SMS) fiber structure has also been 16 

proposed as a strain sensor as it generates a sufficient bandpass spectral response for a given 17 

wavelength range [9-10]. It can be used as either a stand-alone sensor or an edge filter that 18 

interrogates an optical sensor such as an FBG. Since an SMS fiber structure is much easier to 19 

fabricate than an FBG, a sensor based on an SMS fiber structure will be more economic than 20 

the one based on an FBG. In the past, the SMS fiber based sensor has been exploited in various 21 

applications such as displacement [11], pressure [12] and temperature sensors [13-14]. 22 

 A straight SMS fiber structure can be used as a load sensor, but just like an FBG sensor, 23 

a straight SMS structure suffers from a narrow measurement range, due to the limited strain 24 

that can be applied to avoid breaking it. In this paper, we propose to use a bent SMS fiber 25 



structure to measure load or strain. This technique offers the advantages of a much simpler 1 

configuration, ease of fabrication, wide strain measurement range up to 2800 με [15] and high 2 

resolution. 3 

 4 

Experimental arrangement 5 

 In recent years, in-line fiber-optic Fabry-Perot interferometers (FPIs) have received 6 

much attention for a wide range of applications. Fabricating an in-line fiber optic FPI requires 7 

the formation of two parallel separated mirrors to partially reflect the input optical signals into 8 

different optical paths. Numerous techniques have been employed to form the mirrors in the 9 

SMF, such as coating the end of the fiber [16], using offset structures [17], forming a micro-10 

notch by use of femtosecond lasers [18], using chemical etching [19], splicing [20], etc. Since 11 

the two beams reflected by the mirrors have an optical path difference (OPD), the relative phase 12 

difference of the two beams could be described by:  13 

∅ி௉ூ = ସగ௡௅
ఒ

                  (1) 14 

where λ is the input wavelength, n is the refractive index (RI) of FPI cavity, and L is the length 15 

of the FPI cavity. When a perturbation is applied to the FPI, the phase difference ∅ி௉ூ between 16 

the two beams will be influenced because the cavity length increases. The change of ∅ி௉ூ 17 

contributes to the interference shifts, which allows the FPI to be used for temperature or strain 18 

sensing. 19 

 20 
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 19 

Fig. 1: Schematic diagram of the proposed load sensor experimental setup utilizing an SMS 20 

fiber structure. Inset shows the photo-image of the SMS structure.  21 
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 In this work, we propose a specially designed SMS fiber structure as an FPI sensor. Fig. 1 

1 shows a schematic diagram of a straight SMS fiber structure, which is sandwiched between 2 

two CR-39 plastic polymer plates with a thickness of 0.05 cm, width of 4 cm and length of 17.4 3 

cm. Epoxy is used to integrate the device. The MMF has a step-index profile with a core 4 

diameter of 50 m and length of 9.3 cm. It is fusion spliced with the single mode fiber (SMF-5 

28) with a splicing loss of less than 0.1 dB to form the SMS structure. The device is clamped 6 

between two stages as shown where the distance between the stage and multimode input 7 

endpoint is labelled as D2.  It is noted that, the edge of the clamping stage is set within the 8 

multimode fiber region as shown in the schematic. 9 

Light from an Erbium amplified spontaneous emission (ASE) source centered around 10 

1550 nm is launched into the SMS structure. The light injected into the MMF from a SMF will 11 

excite multiple modes propagating in the MMF. The output spectrum measured at room 12 

temperature using an optical spectrum analyser (OSA) at a resolution of 0.05 nm is shown in 13 

Fig. 2, at zero loading and D2= 7 cm. For a straight fiber, the refractive index along the 14 

propagation direction is symmetrically distributed. The SMS fiber structure has a bandpass 15 

spectral response for the wavelength range shown in Fig. 2. The bandpass response is a result 16 

of multimode interference and recoupling within the SMS fiber structure. As observed, the 17 

comb spectrum obtained has a fixed peak to peak spacing of about 11 nm. The interference 18 

spectrum changes when strain is applied on the multimode fiber. 19 

 20 
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Fig. 2: Output spectrum from a straight SMS fiber structure. 3 

 4 

Result and discussion 5 

 In order to investigate the effect of transverse load on the SMS structure, a loading 6 

fixture is used as shown in Fig. 1. This fixture is designed to create a uniform state of plane 7 

strain on the fiber core in the vicinity of the MMF. Load is applied to the structure by hanging 8 

weights at the end of a load arm with D1= 4.5 cm. The test procedure for the experiments is as 9 

follows. The SMS structure is placed in the fixture with D2= 7 cm, and measurements of the 10 

wavelengths of the interference peaks are taken for unloaded condition. The load on the fiber 11 

is then incrementally increased up to 262.8 mN and the center wavelengths of the interference 12 

peaks are recorded at each load value. The fiber is then unloaded and the tests are repeated at 13 

D2 = 3 cm. When transverse strain or load is applied to a straight SMS fiber structure, the MMF 14 

length changes causing the phase differences between these multiple modes and subsequently 15 

the spectral response of the structure to change as well. The measured spectral response of the 16 

SMS fiber structure at D2 = 7 cm and  D2 = 3 cm are shown in Figs. 3 and 4 respectively, for 17 

various values of tranverse strain or loads. In the experiment, the measurements were taken at 18 

a span of 20 nm and resolution of 0.05 nm. As shown in both figures, both peak wavelength 19 

and bandwidth of the interference comb change as the load increases.  20 

 21 
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 12 

Fig. 3: The measured spectral response from the SMS structure at different load values at D2 13 

= 7 cm  14 
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Fig. 4: The measured spectral response from the SMS structure at different load values at D2 3 

= 3 cm  4 

 For a bent MMF, the refractive index distribution is no longer symmetric and must be 5 

defined by an equivalent refractive index distribution as follows [21]: 6 

݊ = ݊଴ ൬1 + ௫
ோ೐೑೑

൰ ,      (2) 7 

where n0 (x, y) is the refractive index of the straight fiber and Reff is the equivalent bent radius 8 

which can be expressed as follows [21]: 9 

ܴ௘௙௙ = ோ

ଵି
೙బ
మ

మ [௉భమିఔ(௉భమା௉భమ)]
 ,                   (3) 10 

where R is the bent radius of the fiber, ν is the Poisson ratio and P11 and P12 are components of 11 

the photo-elastic tensor. Eq. (3) shows that the field distribution in the bent MMF portion is 12 

asymmetric since the bent MMF effectively has an asymmetric refractive index distribution as 13 

illustrated in Eq. (2). The bend in the MMF section has a significant influence on the mode 14 

distribution in the SMS fiber structure, which in turn will have a profound effect on the overall 15 

transmission characteristics of the SMS structure as shown in Figs. 3 and 4. It can be inferred 16 

from both figures that the peak 3dB bandwidth increases while the peak wavelength of the 17 

interference comb spectrum shifts to a shorter wavelength as the load grows. In addition the 18 

peak power also increases with load increment.  19 

 The relation between the peak of interference wavelength and the amount of load at two 20 

different D2 distances is illustrated in Fig. 5. As shown in the figure, the peak wavelength 21 

linearly shifts to a shorter wavelength with load increment. The slopes of the variation are 22 



obtained at -0.0102 nm / mN and -0.0027 nm/mN for D2 = 7 cm and D2 = 3 cm, respectively.  1 

This shows that the sensor sensitivity increases as the distance between the load and the edge 2 

of the clamped stage increases. The lower slope achieved when D2 = 3 cm, shows that the 3 

effective transverse strain applied on MMF is smaller compared to when D2 = 7 cm. This is 4 

attributed to the increased in the equivalent bending radius, which in turn changes the mode 5 

distribution, phase shift and reduces the equivalent refractive index of the MMF as indicated 6 

in Eqs. 3, 2 and 1, respectively. Hence, smaller change of MMF equivalent refractive index is 7 

achieved when D2 = 3 cm  which leads to lower sensitivity. The 3 dB bandwidth of the output 8 

spectral against the load at two different D2 distances is shown in Fig. 6 where the 3 dB 9 

bandwidth increases linearly with the load for both curves. The slopes of the graph are 0.0085 10 

nm/mN and 0.0024 nm/mN for D2 = 7 cm and 3 cm respectively. The 3 dB bandwidth change 11 

is more pronounced for higher D2 due to the increased phase shift. The highest value of D2 is 12 

limited by the length of the plastic polymer in conjunction with how much it can securely clamp 13 

to the stage as shown in Fig. 1. To securely clamp the plastic polymer plate, it is advice that at 14 

least half of the stage distance is clamping the plate 15 
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Fig 5: Central peak wavelength of the interference spectrum against the amount of load for 1 
two different D2 values.  2 

 3 

Fig 6: 3 dB bandwidth of the interference spectrum against the amount of load for two 4 
different D2 values. 5 

 6 

A similar test on an FBG based sensor using the same setup as shown in Fig 1 is 7 

performed for comparison purpose. The FBG is placed between the same CR-39 plastic 8 

polymer plates of the same dimension. However, the edge of the stage is fixed at the center of 9 

the FBG, with D2= 7 cm, D1= 4.5 cm (the center point of load to the edge of the FBG).  The 10 

FBG has a bandwidth of 0.173 nm, length of 2 cm, and reflectivity of 99.97 %. Fig 7 shows 11 

the output transmission spectrum measured using OSA at the smallest span setting of 0.5 nm 12 

and resolution of 0.05 nm at different loads. It can be inferred that there is hardly any change 13 

in the center wavelength even when load of 262.8 mN is applied. 14 

 15 

 16 

 17 

y = 0.0085x + 3.2598
R² = 0.9947

y = 0.0024x + 3.9196
R² = 0.9982

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 50 100 150 200 250 300

3 
dB

 b
an

dw
id

th
 (n

m
)

Load (mN)

D2= 7 cm D2= 3 cm



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

                               Fig 7: Transmission spectrum of the FBG based sensor at different loads 12 

 13 

 14 

A center wavelength of 1546.961 nm and 1546.966 nm are observed at zero load and 15 

262.8 mN load respectively. This gives a wavelength shift of merely 0.005 nm at maximum 16 

load. This change of wavelength is too small for practical load sensing since the signal can be 17 

corrupted by noise from the instability of ASE source and ambient temperature. In contrast, for 18 

the SMS structure, at D2= 7 cm, the wavelength shift of 2.64 nm is obtained at maximum load. 19 

This shows that the SMS device has a higher sensitivity than the FBG. 20 

 21 

Conclusion 22 

In this paper, the performance of a load sensor that uses an SMS fiber structure integrated 23 

between two plates of CR-39 plastic polymer and clamped onto a stage is evaluated. It is found 24 

that, a larger effective transverse strain can be obtained when the distance, D2 between the edge 25 

of the multimode fiber and the edge of the stage is larger. A slope of -0.0102 nm/mN and -26 
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0.0027 nm/mN are obtained for D2= 7 cm and 3 cm respectively; where higher sensitivity is 1 

achieved when D2= 7cm. Moreover, it is found that an FBG sensor integrated and tested in a 2 

similar manner shows lower sensitivity. In short, the SMS device is shown to be a better load 3 

sensor where small load or strain is concerned. 4 
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