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Abstract

Despite the increasing developments on human activity recognition using
wearable technology, there are still many open challenges in spotting and
recognising sporadic gestures. As opposed to activities, which exhibit con-
tinuous behaviour, the difficulty of spotting gestures lies in their rather
sparse nature. This paper proposes a novel solution to spot and recognise
a set of similar eating and drinking gestures from continuous inertial data
streams. First, potential segments containing an eating or a drinking ges-
ture are found using a Crossings-based Adaptive Segmentation Technique
(CAST). Second, further to the long-established range of features employed
in previous human activities recognition research work, a gesture discrep-
ancy measure is proposed to improve the classification performance of the
system. At the final step, a range of state-of-the-art classification models is
employed for evaluation. Various conclusions can be drawn from the results
obtained. First, given the 100% recall achieved at the segmentation step,
the CAST can be considered a reliable segmentation technique for spot-
ting drinking and eating gestures which may be employed in future gesture
spotting work. Second, the addition of gesture discrepancy as a feature de-
scriptor consistently improves the classification performance of the system.
Third, the reliability of the food and drink intake monitoring approach pro-
posed in this work finds support on the out-performance of previous similar
work.
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1. Introduction

Current wearable and portable technologies such as smart phones, smart
watches or fitness trackers incorporate a great array of sensors, allowing
for human behaviour analysis in different applications. Examples include
fitness (Wundersitz et al., 2015), rehabilitation (Billiet et al., 2016), security
(Mahler et al., 2017) or health care (Chernbumroong et al., 2013). In line
with the latter application, the efforts of this paper are given to gain insights
into the fluid and food intake, which as suggested in Zhang et al. (2009),
can be crucial for many applications related to measuring wellness and/or
support for independent living.

Dietary behaviour plays an important role in our day to day lives and
health. While obesity is a major risk factor for heart diseases, stroke, high
blood pressure or diabetes (Wellman and Friedberg, 2002), malnutrition is
considered as a confounding factor for developing chronic diseases (Amft
et al., 2007). Dietary behaviour is normally tracked in the form of self-
assessment questionnaires. However, two major drawbacks are found in the
use of conventional dietary tracking approaches. First, the data entry pro-
cess may result cumbersome, since questionnaires have to typically be filled
manually by the subjects. Second, numerous studies indicate self-reported
estimates of daily activities are subjective and variable (Smith et al., 2005;
C. rush et al., 2008). With reference to dietary behaviour, people tend to
under-report their food consumption (Schoeller et al., 2013).

Additionally, maintaining an adequate hydration level is an important
aspect in dietary management (Sawka et al., 2005). Particularly, fluid in-
take is a severe issue in elderly care, where diminished thirst perception is
frequently related to reduced cognitive capabilities, leading concurrently to
difficulty at remembering to drink enough (Kenney and Chiu, 2001). Ap-
proximately 17 million people suffer a stroke yearly (Mackay, 2004), with
77% of them enduring an upper extremity disability or a function loss of
the limb upper motor (Lawrence et al., 2001). Such function loss may lead
stroke patients to difficulty at performing basic actions like eating or drink-
ing, therefore limiting their own independence (Chen et al., 2017).

Increasing developments have been achieved in Human Activity Recog-
nition (HAR) with the use of inertial sensors, however, efforts are primarily
given to the recognition of quasi-periodic activities such us climbing stairs,
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walking or running (Mannini and Sabatini, 2010; Liu et al., 2016). As op-
posed to activities, which exhibit continuous behaviour in time, the difficulty
of spotting gestures lies in their rather sparse nature. Further, spotting
naturally learned gestures such as grasping a fork, has been shown to be
harder than detecting gestures which have been purposely trained within a
constrained environment, e.g. human-machine interaction gestures (Junker
et al., 2008).

To clarify the distinct terminology used in this paper, it should be noted
that the conducted research related to gesture recognition undertakes the
classification of already labelled signal segments or windows while gesture
spotting attempts the identification of potential segments containing one of
the gestures within the sought gesture set. Although some previous studies
have only undertaken gesture recognition, a complete gesture tracking sys-
tem should include both gesture spotting and recognition since continuous
data streams not only include gestures within the gesture target set but also
a ‘Null’ class composed of other gestures/activities as well.

The issues mentioned above alongside the various open challenges in
spotting and recognising naturally learned gestures motivate the search for
solutions towards the development of an automatic non-invasive fluid and
food intake monitoring system. In line with this, this paper proposes a novel
and comprehensive approach to spot and recognise a set of four different
eating and drinking gestures using a single wrist-worn inertial unit. Based
on the analysis of previous work and the results achieved in this work, the
following contributions are made:

1. Evaluate and validate the segmentation technique proposed in our pre-
vious work (Ortega-Anderez et al., 2018a) on a larger data set which
includes additional intra-person and inter-person variability, as well as
a more extensive ‘Null’ class (activities without the sough gesture set).
An outstanding 100% recall is achieved at the segmentation stage, sup-
porting the reliability of this segmentation technique.

2. Propose the addition of a Soft Dynamic Time Warping (Soft-DTW)
gesture discrepancy to activity/gesture recognition systems. To the
best of our knowledge, previous published papers on HAR have not
considered the use of gesture discrepancy. Given the intra-person and
inter-person variability as well as the duration intra-variability of the
studied gestures, we believe the addition of gesture discrepancy to
long-established HAR feature vectors can increase the classification
performance of current systems. The results achieved in this work go
in accordance with the above intuition.
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3. Present a reliable fluid and food intake tracking solution which finds
support on the out-performance of previous similar work.

Recent statistics show eating difficulties are a prevalent issue among the
elderly population (Westergren et al., 2002). Furthermore, in many cases,
individuals require some form of eating assistance (Lohrmann et al., 2003).
The lack or diminution of performance of fluid or food intake by a subject,
can potentially indicate the need for peripheral support or the inability for
independent living. The above contributions not only imply a great step for-
ward towards the development of an intelligent system for the identification
of eating difficulties or eating neglect from subjects, but a valuable input in
the form of an adaptable and flexible novel segmentation technique (CAST)
and the introduction of a feature descriptor based on gesture discrepancy
for their employment in future work on intelligent systems for activity and
gesture recognition as well.

The rest of the paper is organised as follows: Section 2 reviews previous
work on segmentation of time series as well as on gesture spotting and
recognition. Section 3 presents the method proposed for the development
of a fluid and food intake tracking system. Section 4 presents the results
achieved and compares them to those of previous similar published works.
Section 5 reports the conclusions drawn from the achieved results.

2. Previous Work

This section provides a review of the published works on time series
segmentation as well as on gesture spotting and recognition. A discussion
on the findings that motivates the proposed research work is given at the
end. For reading convenience, this section has been divided according to the
aforementioned topics.

2.1. Time Series Segmentation

Despite the increasing achievements in HAR using wearable sensors, ef-
forts are principally given to the recognition of quasi-periodic activities such
as walking, stairs climbing or running (Mannini and Sabatini, 2010; Liu
et al., 2016). Given the continuous nature of the studied activities, an artifi-
cial segmentation technique, whereby the collected time streams are divided
into consecutive (often overlapping) time windows or fundamental motion
segments of equal length, is normally applied (Kwon et al., 2014; Wen and
Wang, 2017; Ronao and Cho, 2016; Chernbumroong et al., 2013; Ortega-
Anderez et al., 2018b). Typically, the window length is either decided based
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on previous HAR work or calculated as a hyper-parameter of the classifi-
cation problem. This, as suggested in Anderez et al. (2018), indicates the
window length is dependent on the activity set is studied. That is, windows
must be sufficiently long to capture fundamental characteristics of the signal
but sufficiently short to avoid capturing signal from multiple activities.

Given the sparse distribution in time of sporadic actions or gestures,
adaptive segmentation techniques have been shown to offer better perfor-
mance (Noor et al., 2017). Within adaptive segmentation techniques, Piece-
wise Linear Representations (PLRs) are well-known techniques (Keogh et al.,
2004; Lovrić et al., 2014). In PLRs, segments of time series are approximated
to a line either by the application of linear regression or interpolation, until
a customised threshold error is exceeded. A posteriori, a Feature Similar-
ity Search (FSS) is normally used to narrow down the number of segments
(Junker et al., 2008). In point of fact, the work in (Junker et al., 2008),
employed a PLR, namely the Sliding Window and Bottom-up (SWAB), to
spot a set of fluid and food intake gestures.

Besides PLRs, various customised segmentation approaches have been
proposed for spotting sporadic gestures or actions from continuous inertial
data streams. Noor et al. (2017) used an extendable Gaussian Probabil-
ity Function-based window. Parate et al. (2014) employed a segmentation
approach based on a re-adjustable resting position and a distance peak de-
tector from the most current resting position. Dong et al. (2014) utilised a
wrist motion energy threshold-based approach. Xu et al. (2012) used sign
changes on the accelerometer signal to divide it into different segments.

2.2. Gesture Spotting and Recognition

Numerous solutions for spotting and recognising gestures have been pro-
posed in recent years. Chen et al. (2017) studied the recognition of drinking
gestures using a single wrist-worn inertial sensor. A recall of 91.3% was
achieved using an SVM classifier on a feature vector calculated over win-
dows of 0.25 seconds.

Xu et al. (2012) proposed a solution to recognise a set of seven basic
hand gestures for human-machine interaction purposes using bi-axial data
from a tri-axial accelerometer. A set of ten features was used to determine
the gesture termination points. Once segments were found, three different
models were proposed for the recognition of the gestures. Among the three
models, the best results were achieved by a template matching model (95.6%
classification accuracy). Similar work by Tai et al. (2018) employed an
LSTM network to recognize a set of six different hand gestures using tri-axial
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accelerometer and tri-axial gyroscope data from five users. The proposed
LSTM-based approach achieved a classification accuracy of 95.85%.

Schiboni and Amft (2018) developed a Gaussian Mixture Hidden Markov
Models (GMM-HMMs) network for spotting drinking gestures. The experi-
mental data were collected from 7 users following their usual daily activities
while wearing a single wrist-worn inertial sensor which included a tri-axial
accelerometer, a tri-axial gyroscope and a tri-axial magnetometer. An aver-
age precision of 75.2% and recall of 76.1% were achieved.

An adaptive segmentation technique to spot a set of four transitional
activities (sit-to-stand, stand-to-sit, sit-to-lie and lie-to-sit) was developed
by Noor et al. (2017) using data from a waist-worn accelerometer. First, a
set of thirteen features was used on windows of fixed length to determine
whether the different windows contained a transitional, a dynamic or a static
activity. Windows classified as a transitional activity were extended until
a decrease in likelihood for a particular transitional activity, given by the
Gaussian probability density function, was identified. The results demon-
strated an improvement in classification recall from 89.9% using an artificial
segmentation approach to 93.0% with the adaptive segmentation technique.

A drinking spotting solution based on a Feature Similarity Search (FSS)
was proposed by Amft et al. (2010). Data was collected from six users
wearing a single wrist-worn inertial unit containing a tri-axial accelerometer,
a tri-axial gyroscope and a tri-axial compass while performing a set of various
free-living scenarios. A classification recall of 84.0% was achieved.

A solution for spotting and recognising smoking gestures using data from
a wrist-worn quaternion was proposed by Parate et al. (2014). First, ges-
tures were detected using a rest position tracking algorithm alongside a peak
detector used to detect peaks on the distance between the most recent rest
position and the current position. Further to the spotting stage, a feature
vector from the extracted segments was calculated and used to train a Con-
ditional Random Field (CRF) classifier. A precision of 91.0% and a recall
of 81.0% were achieved by the proposed system.

Junker et al. (2008) proposed a solution for spotting and recognising a
set of four dietary gestures (cutlery, drink, spoon and hand-held) using 5
inertial sensors (two on each arm and one on the trunk). To do so, a two-
stage spotting approach was first developed by the combination of a sliding-
window and bottom-up (SWAB) and a FSS. Once potential segments were
identified by the two-stage gesture spotting technique, a Hidden Markov
Model (HMM) was used to classify the gestures, achieving a precision of
73.0% and a recall of 79.0%.

Dong et al. (2014) presented a two-stage approach for spotting peri-
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ods of eating using data from a single wrist-worn inertial sensor. First, a
custom-peak algorithm based on wrist motion energy was used as a mean of
segmentation. The intuition behind this approach is that periods of eating
are preceded and followed by periods of higher wrist kinetic energy. Once
the potential periods of eating were identified, a range of four features was
extracted across those periods to train a naive Bayes classifier, by which a
classification recall of 81.0% was achieved.

2.3. Justification and Motivation

Various limitations are found in the reviewed articles. First, some studies
rely on extremely constrained environments. For example, in the published
paper related to drinking spotting by Chen et al. (2017), chairs were height-
adjusted to individuals. In addition, individuals were told how to perform
the drinking actions and the data set only included drinking gestures. The
work by Tseng et al. (2018) on recognising door opening gestures makes no
mention of a ‘Null’ class. The ‘Null’ class in a gesture recognition problem
is the class composed by gestures outside the studied gesture set. This fact
implies the data set was built only with door opening gestures. In research
conducted by Xu et al. (2012) on the recognition of a set of seven hand ges-
tures, participants were told to hold the accelerometer horizontally during
the experiments. To our view, gesture spotting and recognition should be
undertaken in realistic scenarios where participants perform the studied ac-
tions freely. In addition, the resultant data sets should include a reasonable
‘Null’ class with a range of additional gestures outside the sought gesture
set.

Second, the classification performance of gesture spotting and recogni-
tion systems under unconstrained environments still lies far away from that
in HAR systems. The main reason is that given the sparsity of gestures and
the resultant difficulty at developing accurate adaptive segmentation tech-
niques, a great number of true positives are missing at the segmentation
(spotting) step. For example, the work presented by Junker et al. (2008)
resulted in a recall of 80% at the segmentation stage. The results in (Amft
et al., 2010) indicate an 84% recall at spotting drinking gestures.

Besides, various fluid and food intake tracking solutions proposed have
been found to require the use of several sensor units (Junker et al., 2008;
Ortega-Anderez et al., 2018a). This could make such solutions be excessively
intrusive for a daily use. Overall, the drawbacks above suggest there are still
many open challenges in gesture spotting and recognition. The mitigation
of the above drawbacks has motivated the development of the fluid and food
intake tracking system presented in this work.

7



Figure 1: Schematic diagram of the proposed methodology to spot and recognise eating
and drinking gestures.

3. Methodology

This section presents the steps undertaken to develop the fluid and food
intake system. The different stages of the proposed system are illustrated
in Figure 1. First, potential segments containing an eating or a drinking
gesture are identified using a Crossings-based Adaptive Segmentation Tech-
nique (CAST). A posteriori, four different Computational Solutions (CS)
are proposed as follows:

CS1:- Dynamic Time Warping (DTW) Distance + K-Nearest Neigh-
bours (KNN)

CS2:- Feature set + range of state-of-the-art classification models
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CS3:- Gesture discrepancy + range of state-of-the-art classification
models

CS4:- Feature set+ gesture discrepancy + range of state-of-the-art
classification models

The above computational solutions are used to methodically justify the ad-
dition of a gesture discrepancy measure to long-established features used in
previous HAR work. In CS1, the use of Dynamic Time Warping is evaluated.
Given the challenging gesture set proposed, modest results are expected from
CS1, however, this serves as a basis to justify a further exploration of DTW
as feature descriptor as well as to validate the CAST on the identification
of eating and drinking gestures. CS2 explores the use of long-established
features employed in previous HAR applications for the recognition of eat-
ing and drinking gestures. CS3 introduces the use of gesture discrepancy as
feature descriptor. Ultimately, CS4 evaluates the combination of the long-
established range of features with the gesture discrepancy measure proposed.
The achievement of an improvement on the classification performance of CS4
as compared to previous computational solutions will justify the addition of
the gesture discrepancy measure in future activity and gesture recognition
work. The performance of the proposed computational solutions was studied
across three different gesture sets as follows:

2-Class: Null, Drinking or Eating

3-Class: Null, Drinking, Eating

5-Class: Null, Drinking, Spoon, Fork, Hand

where ‘Null’ refers to any gesture within the ‘Null’ class. That is, any gesture
which is not an eating or a drinking gesture.

3.1. Experimental Procedure

The fluid and food intake system was evaluated on a total of 0.93 hours
of data, which included a total of 226 relevant eating and drinking gestures.
Considering an approximated duration of 2 seconds per eating or drinking
gesture, the data set was composed of 0.125 hours of relevant gestures and
a total of 0.805 hours of ‘Null’ class. Six participants were asked to wear
a wrist-mounted Meta Motion R inertial unit (Mbientlab, 2018) on their
dominant hand. The inertial unit was programmed to provide tri-axial ac-
celerometer and tri-axial gyroscope data at 25 Hz.
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The scenario proposed was designed to provide data from the partici-
pants having a full meal, while facing the challenges one would expect to
encounter in real life. First, before starting the meal, participants were
asked to act freely within the house for an unlimited time. This included
activities like walking, walking upstairs, hands washing or chatting to other
participants. This ensured the data contained a reasonable ‘Null’ class. The
resultant temporal ratio Null/Relevant was 6.44. Second, the utensils dif-
fered for some participants, e.g. some participants used a glass to drink
water while other participants used a mug. Third, a great variety of dishes
was provided to ensure various utensils were utilised. Concretely, partic-
ipants were provided with crisps, soup, chicken breast and cake. Fourth,
participants were not given any instructions as to how or when to eat or
drink the different dishes. In addition, a left-handed participant took part
in the experiment, introducing more variability into the data set.

3.2. Signal Processing

In order to minimise the computational cost of the system, a limited
initial pre-processing was carried out on the raw inertial signals. The direc-
tions of the y-axis accelerometer and the z-axis gyroscope for the left-handed
participant were shifted 180◦ , given the opposite orientation of these two
signals when the sensor unit is worn on the left hand.

3.3. Signal Segmentation and Gesture Spotting

Spotting sporadic gestures requires the implementation of an adaptive
segmentation technique, whereby the extracted segments are determined by
changes in the signals themselves. Three main constraints are identified
on the segmentation of eating and drinking gestures. First, an eating or
a drinking gesture can exhibit different length in time. This implies the
segmentation has to adapt to such variability to extract the fundamental
characteristics of each gesture. Second, segments need to be adjusted as new
incoming data is received. Third, the impact of the well known long-term
drift of gyroscopes must be mitigated to avoid inaccurate measurements.

The concept of a segmentation technique to spot eating and drinking
gestures while overcoming the above constraints was presented in our earlier
work (Anderez et al., 2018). Given its good performance in a narrow data
set, the segmentation technique is further validated in this work using a
greater number of participants as well as an extensive ‘Null’ class.

The crossings of two moving averages are used to determine the potential
segments containing an eating or a drinking gesture. Given its functionality,
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Figure 2: Crossings-based adaptive segmentation technique applied to a sample signal
with two consecutive eating gestures.

the technique is referred to as Crossings-based Adaptive Segmentation Tech-
nique (CAST). The intuition behind CAST is the sequence of hand motions
involved in an eating or a drinking gesture. First, the corresponding tool
(e.g. a glass) is taken to the mouth. This is followed by a movement of
the hand back to the rest position. Such a sequence of motions leads to a
rapid increase on the fast moving average when food or a drink are taken
to the mouth, crossing over the slow moving average. A hand movement to
the rest position will follow, producing a rapid decrease on the fast moving
average and the consequent cross down of the slow moving average. This
is illustrated in Figure 2, where the segmentation of two consecutive eating
gestures using the CAST is shown.

The CAST can be explained as follows. Consider a signal y[t]. The
moving average ȳ[t] of y[t] is defined as:

ȳ[t] =
1

n

n−1∑
i=0

y[t− i] (1)

where n is the number of data points over which the moving average is
calculated. Two moving averages ȳ1[t] and ȳ2[t] are calculated over the
intervals T1 and T2 respectively, such that T2 > T1. If y[t] increases, the
CAST moving average ȳ1[t] will react faster to that increase on y[t]. The
same will happen when a decrease is applied on y[t].
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The optimal values for T1 and T2 as well as the accelerometer axis (y-
axis) over which the moving averages were calculated, were experimentally
determined in our previous work (Anderez et al., 2018). Given that more
computational intensive tools are to be applied after the segmentation step,
T1 and T2 were calculated so as to optimise the classification recall. The
resultant values for T1 and T2 on the y-axis accelerometer signal are n = 25
and n = 150 respectively. Considering the sampling frequency of 25 Hz,
ȳ1[t] and ȳ2[t] are the moving averages of the acceleration on the y-axis over
1 second and 6 seconds respectively.

Overall, the CAST overcomes the challenges exposed at the beginning of
this section. First, it adapts to the nature of the signal, since both moving
averages ȳ1[t] and ȳ2[t] react in consonance with the original signal y[t]. Sec-
ond, it deals with the different length of gestures successfully. For instance,
in a long drinking gesture, the decrease on the fast moving average ȳ1[t] after
the glass has been taken to the mouth is slower than in a short gesture, since
the hand movement that causes the decrease on y[t] and therefore on ȳ1[t] is
deferred. Third, CAST can be used real-time since it adapts to new incom-
ing data adjusting the moving averages accordingly. Fourth, given that the
signal utilised for the segmentation is the accelerometer y-axis, this tech-
nique avoids the undesired impact of the gyroscope long-term drift, since
the crossings between the moving averages can act as a gyroscope trigger.

3.4. Gesture Recognition

Once the potential segments containing an eating or drinking gesture are
identified, gesture recognition is tackled as a classification problem. For the
four proposed computational solutions (CS1, CS2, CS3, CS4), four different
feature sets are employed as follows:

FS1:- Dynamic Time Warping

FS2:- Feature Vector

FS3:- Gesture Discrepancy

FS4:- Feature Vector and Gesture Discrepancy

More detail about these approaches is provided in the following sections.

3.4.1. Dynamic Time Warping

Let q[t] = [q1, q2, ...qn] and s[t] = [s1, s2, ...sn] be two temporal sequences
with values at every time instant t=[1,...,n]. The distance d(q, s) is typically
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measured as their Euclidean distance:

d(q, s) =

√√√√ n∑
t=1

(q[t]− s[t])2 (2)

Two major constraints are found on the use of the Euclidean distance on
time-dependent sequences: 1) the length of the sequences must be equal
i.e. |q| = |s|, 2) it does not consider the temporal distortion that may exist
between q and s, since it measures the vertical distance between pairs of
points according to their indexes at their respective sequences.

To overcome the above constraints, the optimal alignment between time-
dependent sequences is calculated with the use of DTW (Sakoe and Chiba,
1978). The alignment can be explained as follows: Considering the two
temporal sequences q and s of respective lengths |q| and |s|, DTW finds a
mapping path {(p1, r1), ..., (pj , rj)} such that the distance on the mapping

path
∑j

i=1 |x(pi)− y(ri)| is minimised with the following two constraints:{
Anchored beginning: (p1, r1) = (1, 1)
Anchored end: (pj , rj) = (|q|, |s|) (3)

The DTW distance between q and s is then calculated as the cost of the
optimal alignment as follows:

Di,j := D(q(i), s(j)) +min


D(i− 1, j)
D(i− 1, j − 1)
D(i, j − 1)

 (4)

where D(q(i)− s(j)) is calculated as the Euclidean distance.
Figure 3 illustrates the use of the Euclidean distance and DTW to mea-

sure the similarity between temporal sequences. It can be seen that DTW
overcomes the drawbacks encountered when using the Euclidean distance.
First, it can measure the distance between signals with different lengths,
since one point of the sequence q can be aligned to more than one point of
the sequence s and vice versa. Second, the alignment performed is able to
capture the temporal distortion between the signals.

Ultimately, the DTW distance is used for gesture recognition. To do
so, a K-Nearest Neighbors (KNN) classification model is employed, whereby
unseen segments are assigned to the most common class among its k-nearest
neighbours, with DTW being the distance measure between the different
segments using the y-axis accelerometer signal.
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Figure 3: Difference between the Euclidean distance and the DTW distance of two signals;
a) Euclidean distance, b) DTW distance: the distance between two points is calculated
as their Euclidean distance (vertical distance) after alignment.

3.4.2. Feature Vector

This computational solution makes use of long-established set of features
used within the field of HAR (Ortega-Anderez et al., 2018b; Ravi et al., 2005;
Casale et al., 2011; Bayat et al., 2014). The feature vector has been conscien-
tiously culled to provide a knowledgeable description of the data regarding a
wide array of signal characteristics. These include measures of central ten-
dency, periodicity, dispersion, changes in direction, frequency distribution
and magnitude area. The range of features proposed was calculated over
the medio-lateral ax, antero-posterior ay and vertical az acceleration corre-
sponding to the tri-axial accelerometer readings, as well as on the yaw gx,
roll gy and pitch gz corresponding to the tri-axial gyroscope readings across
the potential segments. On top of the above, the duration of each segment
is also incorporated into the feature set. The resultant dimensionality of the
feature vector proposed is n = 85.

3.4.3. Gesture Discrepancy

This computational solution introduces a gesture discrepancy measure
as a mean of a signal descriptor. To do so, the Soft-DTW differentiable loss
function proposed by Cuturi and Blondel (2017) is employed to calculate
a gesture barycenter for each of the gestures within the different proposed
gesture sets through a minimisation problem. Further, the DTW distances
to each of the calculated barycenters are used to build the feature set.

Let’s consider multivariate time series of varying length taking values
in Ω ⊂ IRp, whereby they are represented as a matrix of p rows. Soft-
DTW unifies the original DTW discrepancy (Sakoe and Chiba, 1978) and
the Global Alignment Kernel (GAK) proposed by Cuturi et al. (2007), both
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used to compare two time series x[t] = [x1, x2, ..., xn] ∈ IRp×n and y[t] =
[y1, y2, ..., ym] ∈ IRp×m.

Given the cost matrix ∆(x, y) := [δ(xi, yj ]ij ∈ IRn×m and the set of
binary alignments matrices An,m ⊂ {0, 1}, the inner product 〈A,∆(x, y)〉
of the cost matrix with an alignment matrix A in An,m gives the score of
A. DTW and GAK consider respectively the cost of all possible alignment
matrices as follows:

DTW (x, y) := min
A∈An,m

〈A,∆(x, y)〉, (5)

κγGA(x, y) :=
∑

AεAn,m

e−〈A,∆(x,y)〉/γ (6)

From the equations above, a unified algorithm can be formulated as:

minγ{a1, ..., an} :=

{
mini ≤n ai, γ = 0,

−γ log
∑n

i=1 e
−ai/γ , γ > 0.

(7)

where γ is a smoothing parameter taking values in IR≥0. Given the above,
γ-soft-DTW can be defined as:

dtwγ(x, y) := minγ{〈A,∆(x, y)〉, A ∈ An,m.} (8)

Therefore, the original DTW score is recovered when γ is set to 0 and
dtwγ = −γlogkγGA when γ > 0.

Ultimately, given a group of N time series y1, ..., yN , that is, N matrices
of p rows and varying number of columns, m1, ..., mN , the interest is to define
a single barycenter time series x for that group under a set of normalised
weights λ1, ..., λN ∈ IR+ such that

∑N
i=1 λi = 1. Thus, the barycenter is

calculated by approximately solving the following problem:

min
x∈IRpxn

N∑
i=1

λi
mi
dtwγ(x, yi) (9)

where it is assumed that x has fixed length n. Given the proposed gesture
sets G1, G2, G3 of respective lengths |G1|, |G2|, |G3|, a barycenter was cal-
culated for each of the gestures different from the ‘Null’ class g1, ..., g|Gi|−1

within G1, ...G3, for each of the experiment participants P1, ..., P6, for each
of the time series in ax, ay, az, gx, gy, gz, corresponding to the tri-axial ac-
celerometer and the tri-axial gyroscope readings. A posteriori, the DTW
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Figure 4: Distance to the drinking barycenter (accelerometer y-axis) of one of the exper-
iment participants; a) Different drinking gestures from the participant, b) Calculation of
the participant’s drinking barycenter, c) Distribution of distances to the barycenter in (b)
across the gestures from the rest of the participants.

distances to the set of calculated barycenters were computed and further
used as feature descriptors.

Two pictorial examples of the calculation of a gesture barycenter and
the distribution of the DTW distances to the calculated gesture barycenter
across the different gestures are shown in Figure 4 and 5. Further, the bi-
dimensional distribution of the DTW distances to the barycenters exposed
in Figure 4 and Figure 5 across the different gestures is shown in Figure 6
for illustration purposes. As a result of the above distance computations,
the resultant dimensionality of the feature vector was n = 36 for the 2-
class classification problem, n = 72 for the 3-class classification problem
and n = 144 for the 5-class classification problem.

3.4.4. Feature Vector and Gesture Discrepancy

Feature set FS4 is a combination of the features introduced in FS2 and
FS3 to evaluate whether the addition of a gesture discrepancy measure to
long-established feature vectors improves the recognition rate of the sys-
tem. The combination of both feature sets gives a resultant dimensionality
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Figure 5: Distance to the spoon barycenter (accelerometer y-axis) of one of the experi-
ment participants; a) Different spoon gestures from the participant, b) Calculation of the
participant’s spoon barycenter, c) Distribution of distances to the barycenter in (b) across
the gestures from the rest of the participants.

Figure 6: Bi-dimensional distribution of the DTW distances to the drinking and spoon
barycenters of one of the participants across the gestures from the rest of the participants.
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of n = 121 for the 2-class classification problem, n = 157 for the 3-class
classification problem and n = 229 for the 5-class classification problem.

3.5. Evaluation

A leave-one-out cross-validation strategy was employed for evaluation
purposes. That is, a different participant was used as the test set on each
of the cross-validation steps. For the feature sets including the gesture dis-
crepancy measure (FS3 and FS4), the distances to the barycenters of the
participant used as the test set on each cross-validation cycle were removed
from the feature set.

Given the special structure of the feature set FS1 proposed in CS1, its
performance was evaluated by the employment of a KNN classifier. The
rest of the computational solutions were evaluated across a range of state-
of-the-art classification models, including Artificial Neural Networks (ANN),
Support Vector Machines, Random Forest (RF) as well as KNN.

4. Results

This section presents the results obtained by the implementation of the
presented methodology. Section 4.1 shows the performance of the proposed
CAST segmentation technique at spotting potential eating and drinking
gestures. Section 4.2 presents the results achieved by the different compu-
tational solutions proposed for gesture recognition. A discussion upon the
results obtained is given in Section 4.3.

4.1. Gesture Spotting

As explained in Section 3, the first step on the development of the pro-
posed fluid and food intake recognition system is to spot potential segments
containing an eating or a drinking gesture. This was tackled by the imple-
mentation of CAST, which uses the crosses between two moving averages to
spot those potential segments. A pictorial example for one of the experiment
participants is shown in Figure 7.

Given that more computational intensive tools are to be applied at the
gesture recognition step, the aim at this preliminary spotting step was to
optimise the classification recall, that is, minimising the number of ‘False
Negatives’, in this case eating or drinking gestures classified as pertain to
the ‘Null’ class. The achieved spotting results shown in Figure 8 outline an
average precision of 29% and an average recall of 100%, showing that this
is successfully achieved by the segmentation technique proposed.
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Figure 7: Performance of the Crossings-based Adaptive Segmentation Technique for one
of the experiment participants.

Figure 8: Spotting performance of CAST.

4.2. Gesture Recognition

After the segments potentially containing an eating or a drinking gesture
are identified, gesture recognition comes into place. Four different compu-
tational solutions were proposed across three different experiments. A com-
prehensive study upon the performance of the implemented computational
solutions was performed and the best results obtained in each of the three
experiments are presented below:
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Figure 9: Classification performance of the four computational solutions proposed on the
2-class classification problem.

4.2.1. Experiment 1: 2-Class Classification Problem

In this experiment eating and drinking gestures are grouped together and
classified against the ‘Null’ class. The results presented in Table 1 outline an
average per-class classification accuracy of 97.4%, a precision of 97.2% and a
recall of 96.3% using a Random Forest Classifier on the feature set composed
of the proposed range of features alongside the gesture discrepancy measure
(FS4). Figure 9 shows the performance of the four computational solutions
proposed.

4.2.2. Experiment 2: 3-Class Classification Problem

This experiment aims at the recognition of eating and drinking ges-
tures separately. This was tackled as a 3-Class classification problem, with
the classes being ‘Null’, ‘Drinking’ and ‘Eating’. The classification met-
rics shown in Table 2 report an average per-class classification accuracy of
98.2%, a precision of 95.7% and a recall of 95.0%. The reported results
were achieved using an Artificial Neural Network (ANN) on the feature set
(FS4). The classification performance achieved by each of the computational
solutions proposed are shown in Figure 10.

Table 1: Classification metrics for the 2-class classification problem using CS4 with RF

Accuracy (%) Precision (%) Recall (%)

Null 97.4 97.6 98.8

Eating or Drinking 97.4 96.8 93.8

Average per-class 97.4 97.2 96.3
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Figure 10: Classification performance of the four computational solutions proposed on the
3-class classification problem.

4.2.3. Experiment 3: 5-Class Classification Problem

In this experiment, the ‘Eating’ class is further divided into 3 different
classes (‘Spoon’, ‘Fork’ and ‘Hand’), leading to a 5-class classification prob-
lem, with the classes being ‘Null’, ‘Drinking’, ‘Spoon’, ‘Fork’ and ‘Hand’.
The classification metrics in Table 3 report an average per-class classifica-
tion accuracy of 97.8%, a precision of 88.7% and a recall of 85.8%, using an
ANN on the feature set (FS4). The classification performance of the four
computational solutions are shown in Figure 11.

4.3. Discussion

The methodology proposed addressed the problem of spotting and recog-
nising fluid and food intake gestures with the use of a single wrist-worn iner-
tial unit. At the spotting step, the aim was to minimise the number of false
negatives. This was based on the fact that more computational intensive
tools, namely classification models, were to be applied at the recognition
step. The novel adaptive segmentation technique proposed (CAST) cor-

Table 2: Classification metrics for the 3-class classification problem using CS4 with an
ANN

Accuracy (%) Precision (%) Recall (%)

Null 97.9 98.1 99.0

Drinking 99.0 93.3 93.3

Eating 97.7 95.7 92.8

Average per-class 98.2 95.7 95.0
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Figure 11: Classification performance of the four computational solutions proposed on the
5-class classification problem.

rectly identified all the drinking and eating gestures. Although the average
precision was considerably low (29%), a 100% recall was achieved, indicating
the aim proposed was successfully accomplished. Further, a range of four
different feature sets was proposed for gesture recognition. As expected,
the addition of the gesture discrepancy measure as a feature descriptor con-
sistently improved the classification performance of the system across the
three experiments proposed. This can be explained by the fact that the sig-
nal alignment performed through the use of DTW accounts for the gestures
intra-person and inter-person temporal distortion, thus adding crucial infor-
mation to long-established feature sets used in previous activity or gesture
recognition problems.

Given the great variety of gestures involved in an eating activity, previous
research has varied the way of tackling its recognition. To fairly evaluate
the proposed methodology against previous similar work, the performance

Table 3: Classification metrics for the 5-class classification problem using CS4 with an
ANN

Accuracy (%) Precision (%) Recall (%)

Null 97.0 97.2 98.8

Drinking 98.6 90.2 91.7

Spoon 99.0 96.5 90.2

Fork 97.6 75.0 68.6

Hand 97.0 84.4 80.0

Average per-class 97.8 88.7 85.8
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of the recognition of drinking gestures is considered. As shown in Table
4, the proposed methodology in this paper out-performs previous gesture
recognition work including both the spotting and recognition stages. Only
the classification precision achieved in (Chen et al., 2017) shows a higher
value. Although, Chen et al. (2017) did not include the spotting step. That
is, the data set lacked a ’Null’ class as well as other gestures different from
drinking gestures. As a result of this, the precision and recall metrics were
clearly boosted, since the experiment proposed was evidently biased towards
the recognition of drinking gestures.

5. Conclusions and Future Work

This paper presented a novel intelligent system for the spotting and
recognition of eating and drinking gestures in a free-living scenario using a
single wrist-worn inertial unit as a mean of data collection.

From the methodological view-point, two major contributions are made.
1) The novel adaptive segmentation technique proposed (CAST) overcomes
the two major drawbacks observed in previous similar work. On the one
hand, as contrary to previous adaptive segmentation techniques in the field
(Junker et al., 2008), CAST achieves a 100% spotting recall, thus preventing
the system from having false negatives at the preliminary spotting phase.
This is crucial since the errors at the spotting phase will propagate to the
recognition phase, therefore limiting the performance of the whole intelligent
system. Other systems have opted for the employment of sliding windows
(Feng and Duarte, 2019; Ronao and Cho, 2016; Serrano et al., 2017), where
the window length is typically estimated as a hyper-parameter of the clas-

Table 4: Comparison of the proposed approach with previous work on the recognition of
drinking gestures.

Method Sensor Units Spot. Recog. Accuracy Precision (%) Recall (%)

Junker et al. (2008) 5 X X - 88.0 83.0

Amft et al. (2010) 1 X X - 84.0 90.0

Chen et al. (2017) 1 X X - 96.5 91.3

Schiboni and Amft (2018) 1 X X - 75.2 76.1

Serrano et al. (2017) 4 X X - 82.28 84.42

Ramos-Garcia et al. (2014) 1 X X 86.5 - -

Proposed Approach (3-class) 1 X X 99.0 93.3 93.3

Proposed Approach (5-class) 1 X X 98.6 90.2 91.7
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sification problem. This approach fails to adapt to the duration variability
present in drinking and eating gestures, therefore biasing the system to-
wards the most common duration found in the corresponding experimental
dataset. 2) While long-established feature sets incorporate shallow (nor-
mally statistical) characteristics of the signals, the Soft-DTW based gesture
discrepancy measure proposed accounts for the intra and inter-personal tem-
poral distortion at performing eating and drinking gestures. As shown by
the results obtained, this clearly offers an advantage to our system, which
has seen a consistent improvement across the three experiments proposed.
In terms of the average per-class classification recall, the addition of the
gesture discrepancy measure improves the performance of the system from
0.950 to 0.963, from 0.931 to 0.95 and from 0.783 to 0.858 for the 2-class,
3-class and 5-class classifications problems respectively. Regarding the av-
erage per-class classification precision, the performance improvements seen
are from 0.952 to 0.972, from 0.948 to 0.957 and from 0.874 to 0.887.

From a technical perspective, the intelligent system proposed shows two
major advantages. 1) It overcomes the occlusion issues and privacy concerns
of systems employing video cameras (Chen and Shen, 2017) and depth sen-
sors (Kim et al., 2019) in a home environment, while providing more intrin-
sic information about the subject than systems employing ambient sensors.
Although ambient systems have shown good results at detecting simple ac-
tivities such as sleeping or toileting, those results are significantly worsened
when attempting the recognition of complex activities like eating (Wen and
Zhong, 2015). 2) It significantly out-performs previous intelligent systems
on the recognition of eating and drinking gestures with wearable devices.

This study has potential limitations. The way eating and drinking ges-
tures are performed does not vary significantly between different subjects,
however, the performance of the system on participants with functional lim-
itations such as patients suffering from Parkinson’s disease or stroke pa-
tients, could potentially be affected. In addition, this study assumes eating
and drinking are performed from a sitting position. Ultimately, it should
be stated subjects sometimes use their non-dominant hand to eat or drink,
however, these actions are normally performed with the dominant hand.
Our priority here is fostering the usability of the system by avoiding the
undesired obtrusiveness found in systems employing more than one sensing
unit.

Despite these limitations, the aforementioned contributions not only im-
ply a great step forward towards the development of an intelligent dietary
tracking system, but a valuable input in the form of an adaptable and flexi-
ble novel segmentation technique (CAST) and the introduction of a feature
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descriptor based on gesture discrepancy for their employment in future work
on intelligent systems for activity and gesture recognition as well.

Future work will be focused on four different aspects: 1) Although the
proposed system shows positive results, short-term future efforts will be fo-
cused on the search of possibilities to further improve the performance of
the system. To do so, deep learning models, namely Long Short-Term Mem-
ory (LSTMs) and Convolutional Neural Networks (CNNs) will be explored
alongside the CAST segmentation technique and compared to the perfor-
mance of the current computational solution. Transfer learning in the form
of inductive learning will be proposed for future intelligent systems on activ-
ity and gesture recognition. 2) Given the local dependency characteristics
of temporal sequences and the translation invariant nature of human ges-
tures, these will be explored by the use of multi-input deep neural networks,
whereby the current future set will be complemented with the patterns en-
countered through the different convolutional layers of a CNN. 3) Further
to the search for computational solutions to improve the current gesture
recognition rate, the development of an intelligent system for the detection
of meal periods based on the occurrence of the gestures across time will be
the next step of this work. 4) The ultimate effort of the work will be di-
rected to the investigation and implementation of trend analysis techniques
to develop an intelligent system for the identification of anomalies on the
dietary behaviour of individuals.
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