
Object Classification for Robotic Platforms

Samuel Brandenburg1, Pedro Machado1, Pranjali Shinde2, João Filipe
Ferreira1,3, and T.M. McGinnity1,4

1 Computational Neurosciences and Cognitive Robotics Group, Nottingham Trent
University, Clifton Campus NG11 8NS, UK,

samuel.brandenburg2016@my.ntu.ac.uk, {pedro.baptistamachado,
joao.ferreira martin.mcginnity}@ntu.ac.uk

2 INESC TEC, R. Dr. Roberto Frias, Porto, Portugal
pranjali.shinde@inesctec.pt

3 Inst. of Systems and Robotics, University of Coimbra, Polo II, Coimbra, Portugal,
jfilipe@isr.uc.pt

4 Intelligent Systems Research Centre, Ulster University, Magee Campus, BT48 7JL,
UK,

tm.mcginnity@ulster.ac.uk

Abstract. Computer vision has been revolutionised in recent years by
increased research in convolutional neural networks (CNNs); however,
many challenges remain to be addressed in order to ensure fast and
accurate image processing when applying these techniques to robotics.
These challenges consist of handling extreme changes in scale, illumi-
nation, noise, and viewing angles of a moving object. The project main
contribution is to provide insight on how to properly train a convolutional
neural network (CNN), a specific type of DNN, for object tracking in the
context of industrial robotics. The proposed solution aims to use a com-
bination of documented approaches to replicate a pick-and-place task
with an industrial robot using computer vision feeding a YOLOv3 CNN.
Experimental tests, designed to investigate the requirements of training
the CNN in this context, were performed using a variety of objects that
differed in shape and size in a controlled environment. The general focus
was to detect the objects based on their shape; as a result, a suitable and
secure grasp could be selected by the robot. The findings in this article
reflect the challenges of training the CNN through brute force. It also
highlights the different methods of annotating images and the ensuing
results obtained after training the neural network.

Keywords: Object classification, training, YOLOv3, CNN, ROS

1 Introduction

Humans can detect target objects amongst distractors nearly instantly once they
have caught their attention, even in the presence of extreme changes in scale,
illumination, noise, and viewing angle of an object [1]. Adding to this, humans
possess self and spatial awareness, abilities which are developed from an early age
[2]. Spatial awareness is essential for humans to complete their daily activities,

2 Samuel Brandenburg et al.

which may range in difficulty from reaching for a cup of coffee to playing a high-
performance sport. Many of these innate capabilities in humans have still to find
convincing implementation in state-of-the-art robotics – see, for example, [3, 4,
5]. This research highlights the challenges and recent advancements in detecting
objects using an artificial neural network (ANN).

Recent advancements in computer vision have been driven by research on
deep neural networks (DNN); however, DNNs require an extensive amount of
data and pre-processing. Poor data filtering can miscue results, therefore pre-
processing is a crucial procedure for proper training. Therefore, standards such
as the cross-industry standard process have been created to ensure to increase
the rate of success [6]. This project’s main contribution is to provide insight on
how to properly train a convolutional neural network (CNN), a specific type
of DNN, for object tracking in the context of industrial robotics. The paper
structure is as follows: Chapter 2 presents the related work; the methodology is
discussed in chapter 3; the results and the critical analysis is done in chapter 4;
and the conclusions and future work are discussed in chapter 5.

2 Related work

The enactment of “pick and place” by a robot inherently presents many chal-
lenges, many of which at the level of artificial visual perception. Adding to
these challenges, the use of ANNs to enhance visual processing involves time-
consuming, complex training procedures. Furthermore, many factors, such as
insufficient or low-quality training sets, can reduce their performance. For in-
stance, an image fed into an ANN for processing may contain not only the
desired object, but also other objects in the background. These distractors may
degrade ANN performance if training is not properly performed. Another chal-
lenge in using ANNs is the detection of objects using a moving sensor (i.e. by
resorting active perception, such as visual servoing). In this case, distortions
such as motion blur may result in the detection algorithm failing to recognise
the item.

CNN Neural Networks – Convolutional neural networks have proved over-
time to be an effective algorithm for recognising visual patterns. The first model
for a convolutional neural network was the leNet-5 created by Yann Lecun in
1998 [7]. This network was made up of two convolutional layers, two average
pooling layers, two fully connected layers, and a softmax layer [7]. The leNet
was not able to classify images, but it proved successful at classifying numbers.
However, interest in CNNs was revived In 2012 when AlexNet was created which
was much larger than its predecessor [8]. The network contained 5 Convolutional
Layers and 3 Fully Connected Layers [8]. Training AlexNet to classify images
took five to six days using two GTX 580 3GB GPUs [8]. This breakthrough has
led to CNNs being the preferred solutions for image processing; however, real-
time requirements make this version of the algorithm unsuitable for computer
vision, in particular in robotics.

Object Classification ... 3

Faster Region Convolutional Neural Network Algorithm – Faster R-
CNN is the current state-of-the-art optimisation method for CNN algorithms,
designed to achieve real-time performance. Fast R-CNN and its predecessor used
a technique called selective search [9]. Faster R-CNN, however, uses a technique
called region proposal networks (RPN), which are much faster. RPN take an
image as an input and output sets of anchor boxes of proposed objects; these
objects are then associated with a score [10]. Faster R-CNN works by first cre-
ating a feature map from the input image. Subsequently, the RPN generates a
set of proposed objects together with their score. Like its predecessor, Faster R-
CNN still uses the ROI layer to make the proposed regions a fixed length. Once
all the regions are of the same size, they are passed to the fully connected layer
where SoftMax and linear regression are applied. The image is then classified and
the algorithm outputs bounding boxes for the objects [11]. As a consequence of
this optimisation process, Faster R-CNN decreases the time it takes to detect
an image from 2 seconds to 0.2 seconds [10].

YOLO Algorithm – YOLO, which stands for “you only look once”, was first
introduced in 2015 by Joseph Redmon et al. [12] as alternative to R-CNN, which
had complex pipelines that made it slow and hard to optimise. Unlike R-CNN,
YOLO looks at the full image once. It uses a single CNN that predicts multi-
ple bounding boxes and class probabilities for those boxes simultaneously [12].
YOLO predicts the score of an object using logistic regression for each bound-
ing box. The proposed network was composed of 24 convolutional layers, four
max-pooling layers5, and two fully connected layers [12].

There are several benefits associated with YOLO. First of all, as mentioned
previously, YOLO is faster compared to other detection methods because it
avoids complex pipelines by framing it as a regression problem. YOLO encodes
contextual information about classes and their appearance because it views the
entire image for training and testing. Furthermore, it outperforms algorithms
like fast R-CNN in making fewer background errors – Fast R-CNN mistakes
background patches as objects because it does not have the full context of an
image. Lastly, YOLO can generalise features it learns from objects, which can
then be applied to new items.

At the time YOLO was introduced, it was the fastest general purpose object
detection algorithm when compared to R-CNNs, Fast R-CNNs, and two versions
of Faster R-CNNs [12]. The first was the VGG-16, which was ten mean Average
Precision (mAP) higher but six times slower than YOLO [12]. The other was
Zeiler-Fergus Faster R-CNN [12]. This model was much faster than the previous
one, but it was not as fast and accurate as YOLO.

Additional developments have been made in the meanwhile to further im-
prove YOLO’s performance. In December 2016, YOLO version 2 was launched.
This version differs from its predecessor because it uses a classification model

5 Max pooling is a technique that extracts the most significant features from the
convolutional layer.

4 Samuel Brandenburg et al.

called Darknet19 [13]. Darknet consists of 19 convolutional layers and 5 max-
pooling layers [13]. The purpose of Darknet is to increase the speed and accuracy
of classifications. Although the original YOLO algorithm outperformed previous
object detectors, it under-performed in accuracy compared to Fast R-CNN by
introducing a considerable amount of localisation errors [13]. Another aim was
correcting the low recall YOLO produced compared to the region proposal-based
method [13]. There were many ways YOLO version 2 addressed these problems.
The first was to use batch normalisation, which significantly improved conver-
gence while removing the need for other forms of regularisation. Another im-
provement made was to add high-resolution classifiers, which provided a 4%
increase in mAP [13]. YOLO was susceptible to unstable gradients during train-
ing, therefore Anchor boxes reduced mAP slightly from 69.5 to 69.2, but the
recall improved from 81% to 88% [13]. In other words, even if accuracy was
slightly decreased, it increased the chances of detecting all the ground truth
objects.

YOLO version 3 (YOLOv3) is the latest version that focuses on improve-
ments on object classification [14]. Methods such as Single Shot Detection still
outperform YOLOv3 in terms of accuracy; YOLOv3, however, executes three
times faster for the same input [14]. Furthermore, YOLOv3 makes a consid-
erable improvement in how well it can detect small objects [14]. Finally, this
framework now uses Darknet 53, an enhancement to Darknet19, and increases
the scale for feature extraction by increasing the number of convolutional layers
from 19 to 53 [14].

3 Methodology

The object classification methodology was designed for robotic grasping applica-
tions. In the particular case of the authors, a Sawyer robotic arm6 equipped with
an AR10 hand7 and state-of-the-art Biotac SP fingertips8 was target. However,
only the thumb, index finger, and middle finger were used with Biotec sensors
installed at the end of them. The main task was to grasp objects using 3 of the 5
fingers in the hand using an adaptive grasp controller. It was decided that those
items would be of a ball, a Pringles can, a sponge, and a water bottle (Figure 1).
These items were chosen because each object varied in shape and size; Therefore,
the robotic arm would need to change the grasping method for each of the items.
For this to be accomplished, the first objective was to detect the objects. Once
the item had been detected, the gripping algorithm could be appropriately ad-
justed, and the robotic arm and hand guided to perform the grip. The first step

6 Retrieved from https://www.syntouchinc.com/en/sensor-technology/, last accessed
2019-06-20

7 Retrieved from https://www.active8robots.com/robots/ar10-robotic-hand/, last ac-
cessed 2019-06-20

8 Retrieved from https://www.active8robots.com/robots/ar10-robotic-hand/, last ac-
cessed 2019-06-20

Object Classification ... 5

Fig. 1. Objects used for training the YOLOV3

to installing and configuring the YOLOv39 and adjust specific convolutional lay-
ers to match the number of classes, and filters to the number of classes designed.
The selected classes where robotic hand, table marks, sphere, cuboid, prism and
cylinder. These classes were extracted from a newly constructed database of im-
ages that was taken with an Intel D435 real sense camera. The robotic hand
and the table marks are required for navigating the arm toward the target ob-
ject, and the 3D shape of the objects is required for selecting the pre-grasp and
pose of the objects. The aim of this paper in the object detection and therefore
the details of the navigational algorithms, pre-grasp and pose estimations are
not addressed in the paper. Annotation for training was performed by manually
labelling each object in each image in the training data-set using a custom anno-
tation tool developed by the authors10. This method of annotating classes makes
up the majority of the pre-processing phase. The CNCR annotation tool opens
a window browser (see Figure 2) and lets the user import images and classes.
The user can then label objects by defining a bounding box. The box parameters
are then recorded in a text file. Each row contains five columns: the first indi-
cates the index for the different classes, the second and third columns specify
the location of the object in an X and Y grid, respectively, and the last column
stores the height and width of the object. Training YOLOV3 can start once a
dataset of images and their annotations have been formed; however, preventive
measures must be put in place in order to prevent underfitting and overfitting
[15]. Overfitting, in particular, prevents the model from generalising to unknown
data and thus leading to poor performance. A standard way to prevent overfit-
ting and underfitting is to construct a validation set, i.e. by defining distinct
training and test subsets from the images collected in the training phase.

9 Retrieved from https://medium.com/@manivannan data/
how-to-train-YOLOv3-to-detect-custom-objects-ccbcafeb13d2, last accessed
on 25/04/2019

10 Available online, https://gitlab.com/CNCR-NTU/CNCR annotation tool, last ac-
cessed on the 15/06/2019

6 Samuel Brandenburg et al.

Fig. 2. CNCR annotation tool

The next step of the process was training the model. To train the YOLOV3
model the names of the classes, the configuration file, the data file, and the
YOLOv3 architecture were needed, taking approximately two days to conclude
the procedure. The YOLOv3 creates weights in increments of 10k steps during
this period; however, adjustments were made to have weights created every 2k
steps (this value was an empirical value obtained experimentally). The trained
weights were then tested on the testing data and the weights that produced
better results were selected.

4 Results

During the pre-processing phase, it became apparent that many factors influ-
enced object detection performance when annotating. The majority of this sec-
tion will highlight the methods used while annotating. Furthermore, this section
will convey their results. Over ten training cycles have been conducted during
the implementation phase. The overall goal of accomplishing computer vision
was to detect and generalise similar objects.

A significant part needed for visual servoing was detecting the parameters
of the table. The table was marked on each corner by a strand of red tape.
The first objective was producing a stable object detection model. Therefore,
detecting the medium size ball was the first goal. Key points that were learned
during this objective was the training dataset needed to contain over 200 images.
Furthermore, the performance of the model varied depending on the weights
used. There were performance issues with each of the weights used. However, 10k
weights gave the model more accuracy and stabilised detection. Below displays
results of the first test 1.

It took two training sets before obtaining positive results. However, it was
found that the ball would not be detected if it was moved too far to the right
or left on the table. Another downside was the size of the bounding box on the
item. The width of the bounding box was similar to that of the annotations. A
smaller box would be ideal. As a result, the next set of annotations contained

Object Classification ... 7

Table 1. Accuracy Readings from .5 - 1.0 using different weights

Item 10k weight 12k weight 16k weight 20k weight 30k weight

Ball .98 .98 .99 .95 .91

small boxes covering the item versus one larger box. It was seen that smaller
boxes could reduce the amount of background noise (see

Table 2. Detection with the Background Changing

10k weights
percentage

table
background(known)

mat
background(known)

unknown
background

sphere 1.00 .95 N/A

cuboid .86 .82 N/A

Cylinder .96 .98 N/A

Additionally, smaller annotation boxes would decrease the size of the bound-
ing box. For instance, if annotation were being done for an object in being
grasped by the robotic hand, The boxes outlining the hand would shrink, but
increase in number to only contain the hand. This method brought abysmal
results because the model became overfitted. The model projected bounding
boxes over the whole image. In order to correct this problem changes needed to
be made to the labelled files. It was discovered that an object should contain no
more than two annotation boxes around it. Creating a limit helped prevent over-
fitting. It also made the ball detectable again. The previous issue still resided,
but it lost the object less than before11.

The next step was detecting multiple objects at the same time. The can and
the ball needed to be detected. Achieving this objective was relatively easy. This
was accomplished by increasing the number of images in the training set. It was
also important that there was as less background noise as possible. However,
more issues appeared when all the items needed to be annotated. The difference
was the positioning of the items in the image. Merging annotations occurred very
often because the items were too close. Another method would be to highlight
the sections that would not overlap the images. The issues with that approach
are that it does not get the full object. Therefore, it may degrade results on that
one item if partial annotations are continuously being done.

At this point, the detection algorithm was performing well on the ball, the
Pringles can, and the sponge with a confidence score over 0.7. However, it is
important to note that some items may consist of a combination of different
shapes. Therefore, the classifying process for such an item must contain different

11 Available online https://www.youtube.com/watch?v=vdDqMtdyUYU, last accessed
on 25/04/2019

8 Samuel Brandenburg et al.

classes in an item. This was the case for the bottle. When annotating an item
like a bottle, it was important to match each shape with the class that fitted
best. Breaking the item into different identifiable shapes assist the process of
picking the item up. However, the first attempt at annotating multiple shapes
had different classes merging into another. Thus when testing this model using
10k weights, no items were being classified. It was identified that the overlap
of labelling boxes substantially increases the number of false positives. Thus
the solution was the avoidance of overlapping annotation boxes. This strategy
worked, and the detection algorithm began working for all the objects. The next
test was to evaluate the generalisation of spheres. This test involved using more
than ten spheres with different sizes and colours. However, only two spheres were
detected. The training sphere was detected, and another sphere similar in colour
but different in size. After receiving abysmal results, further tests were conducted
to understand why the generalisation of spheres failed. This test involved using a
lid that had a sphere shape with a light blue tint similar to the other two spheres.
When the item laid flat, it was not detected, but when it was standing upright,
it was detected as a sphere. These results demonstrated that (i) the algorithm
recognised objects similar in shape and colour to that it was trained on and (ii)
that increasing the number of different samples was crucial to enable the CNN
to start generalising patterns to unfamiliar objects. The next step was to create
the environment so that visual servoing could be used since all the objects were
being detected. This process involved mapping out the boundaries of the table by
adding markers to each corner. After training the model to recognise these tags,
It was found that the two nearest markers were detected, but not consistently.
Furthermore, the furthest two markers failed to be detected. Despite, adding
more annotations outlining all the table markers, the problem was not fixed. At
the same time, these annotations included the placement of the robotic arm at
different positions of the table. It was later discovered that the lighting of the
room and shadows created by the arm was the reason behind the inconsistent
detection.

After all of the objects were successfully detected, training the CNN to recog-
nise the robotic arm and table marks was next. This is needed for moving the
arm from a starting point to the object pick-up place. The process involved
mapping out the boundaries of the table by adding markers to each corner.
After training the model to recognise these tags, It was found that the two near-
est markers were detected, but not consistently. Furthermore, the furthest two
markers failed to be detected. Despite, adding more annotations detection of all
the table markers was not fixed. At the same time, these annotations included
moving the robotic arm across the table when conducting test on its’ range of
motion. It was later discovered that the lighting of the room and shadows were
the reason certain items stopped being detected. This was especially true when
the robotic arm was moving since its’ arm made a shadow. As mentioned be-
fore in the literature review illumination changes make perfect object detection
difficult. One method that helped alleviate these issues were annotating objects

Object Classification ... 9

while in different illuminations. This method proved it had the potential to work;
however, annotating every angle and circumstance was too tedious of a task.

Other interesting facts learned while testing the customised model of YOLOv3
was objects needed to be moved around. If an object stays in the same position
for all the images, it will not be detected once it is moved. This was discovered
while testing on a set of spheres. The initial training set contained images where
the position of the spheres did not move. It was found that annotation files could
be automated by copying the parameters in an annotated file. Those parame-
ters were then pasted into new text files that were attached for the remaining
training files. However, this method proved unsuccessful. Another aspect that
affects the model’s performance is when changes are made to the background.
This theory was tested by placing a sphere on a black mat. The sphere was de-
tected while on the table, but it was not when moved to the mat. Furthermore,
the bounding box for an object would disappear if anything went near the item.
This was another challenge to resolve. The robotic requires consistent detection
while reaching for the item. If the item is no longer detected than the robotic
arm may fail to grasp the item correctly. One way of resolving this issue was
including the robot hand near the item and around the item.

The current model was tested using a range of weights to determine which
one performed the best. From a visual perspective, 10k weights detect more items
and it also was more consistent. Furthermore, it also had the highest accuracy
percentage from all the test which was 85%. 30k weights gave the model its’ sec-
ond highest percentage at 83%. Nevertheless, it still struggles to detect the table
marker furthermost away on the left-hand side. It also does not detect the robot
hand consistently. Whereas, the other weights in the table detected the robot
hand consistently. However, their accuracy percentage was also slightly less accu-
rate with the lowest being 20k weights at 77%. Nevertheless, the current model
has shown that it is capable of detecting objects it has seen. Another positive

Table 3. Illumination impact

labels table cylinders prism sphere mislabels

With light 4/4 5/5 3/4 1/1 1

Reduced lighting 3/4 2/5 1/4 0/1 0

result is that the current mode can detect up to 92% of the items. It also can
detect the hand while its moving better than it initially could. However, some
of the issues mentioned in the related worked section. When the illumination
changes, the detection rate drops to 46%. This refers to inconsistent detection
and tracking. This experiment exhibited many of the challenges written about
in the related work section. In addition to the challenges presented from changes
illumination, detection performance drops when viewing objects from different
angles. Video footage was taken with multiple cameras from different positions.
The main camera was able to detect the items from up above, but only two of

10 Samuel Brandenburg et al.

the three side cameras detected anything 12. This project also revealed how im-
portant annotating was and why there is a need for large datasets. This is to say
that the large dataset tries to encompass an extensive range of scenarios. If the
dataset contains these, the model can then begin to generalise this information
to unknown objects.

Fig. 3. Object detection with a) reduced lighting and b) normal light

Figure 3 illustrate how much performance is reduced from illumination changes.
In the image above it can be seen that most of the objects are detected. How-
ever in the second image the performance drops considerably. This is just one
example of how variations can impact classification.

5 Conclusions and Future Work

This project proposed a combination of techniques to replicate a pick and place
task using a robotic arm. YOLOV3, a state of the art detection algorithm, was
the central algorithm used for this work. More specifically, a customised version
of YOLOV3 was used, trained on over 2,000 training images. The assessment of
this model showed that it could detect up to 92% of the trained objects. However,
real-time results are inconsistent; therefore, this model can sometimes achieve a
higher percentage rating. Furthermore, detection in different angles along with
generalising objects classification was performed. Despitee these achievements,
the proposed methods for this project heavily depended on stable object de-
tection and tracking which was not achieved. This was especially needed to
implement the intended visual servoing practices. Consistent object detection of
the table was to be used to guide the robotic arm to find items using triangu-
lation. Unfortunately, the act of moving robotic arm created many fluctuations
that affected the appearance of the object. As a result, detecting and tracking
those objects was very inconsistent. It was also discovered that the weight for

12 Available online https://www.youtube.com/watch?v=IzN3kp7eAuY, last accessed
on 25/04/2019

REFERENCES 11

the model made a significant impact on the model performance. Four tests were
conducted to discover the optimum amount of weights were needed. This assess-
ment highlighted that the model showed the best results at 10k weights. This
change to 10k would increase object detection accuracy to 85%. However, If the
number of weights was to decrease the model performance would reduce because
it is underfitted. In contrast, if the weights were too high, the model would be
overfitted. Both of these issues led to poor performance.

Therefore, at first glance we conclude that, although over 2,000 images were
annotated, stable object detection will require many more training samples.
However, this is far too time-consuming; therefore, other methods to achieve
this objective should be explored in future work. However, the most significant
drawback to the proposed method was to require consistent detection of the cor-
ners for trajectory planning. A more straightforward solution would have been
to collect the coordinate of the location from one triangulation. This would have
solved the issue of inconsistent detection. Another potential solution could have
been to use object detection to identify if an object is on a designated spot. The
robotic arm could then react by reaching for the item. The implementation for
this process would be hard coded thus simplifying many of the issues that are
associated with visual servoing. Yet another alternative would be to implement
one-shot learning on a pre-trained neural network. This could be done using the
weights provided by YOLOv3 which would alleviate the tedious task of manual
pre-processing thousands of images. Additionally, it may be better to choose a
different method of visual servoing. Finally, off-the-shelf open source software
such as VISP exists that allows a user to form a spatial map, allowing for even
potential improvements to explore in future work.

References

[1] Mehran Yazdi and Thierry Bouwmans. “New trends on moving object
detection in video images captured by a moving camera: A survey”. In:
Computer Science Review 28 (2018), pp. 157–177. issn: 15740137. doi:
10.1016/j.cosrev.2018.03.001. url: https://doi.org/10.1016/j.cosrev.2018.
03.001.

[2] Rabia Jafri, Asmaa Mohammed Aljuhani, and Syed Abid Ali. “A Tangi-
ble Interface-based Application for Teaching Tactual Shape Perception and
Spatial Awareness Sub-Concepts to Visually Impaired Children”. In: Pro-
cedia Manufacturing 3.Ahfe (2015), pp. 5562–5569. issn: 23519789. doi:
10.1016/j.promfg.2015.07.734. url: http://dx.doi.org/10.1016/j.promfg.
2015.07.734.

[3] Charu C. Aggarwal. “Convolutional Neural Networks”. In: Neural Net-
works and Deep Learning. Cham: Springer International Publishing, 2018,
pp. 315–371. doi: 10.1007/978-3-319-94463-0 8. url: http://link.springer.
com/10.1007/978-3-319-94463-0%7B%5C %7D8.

12 REFERENCES

[4] Danica Kragic et al. “Interactive, Collaborative Robots: Challenges and
Opportunities”. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence (IJCAI-18). 2018, pp. 18–25.

[5] João Filipe Ferreira and Jorge Dias. “Attentional Mechanisms for Socially
Interactive Robots – A Survey”. In: IEEE Transactions on Autonomous
Mental Development 6.2 (June 2014), pp. 110–123. doi: 10.1109/TAMD.
2014.2303072.

[6] Rudiger Wirth and J. Hipp. “CRISP-DM: Towards a standard process
model for data mining”. In: Proceedings of the Fourth International Con-
ference on the Practical Application of Knowledge Discovery and Data
Mining 24959 (2000), pp. 29–39. issn: 1092-6208. doi: 10.1.1.198.5133.

[7] C. C.Jay Kuo. “Understanding convolutional neural networks with a math-
ematical model”. In: Journal of Visual Communication and Image Rep-
resentation 41 (2016), pp. 406–413. issn: 10959076. doi: 10.1016/j.jvcir.
2016.11.003. arXiv: arXiv:1609.04112v2.

[8] Siddharth Das. CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet,
ResNet and more 2017. url: https://medium.com/@sidereal/cnns-
architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
(visited on 04/24/2019).

[9] Pulkit Sharma. A Step-by-Step Introduction to the Basic Object Detection
Algorithms (Part 1). 2018. url: https://www.analyticsvidhya.com/blog/
2018/10/a- step- by- step- introduction- to- the- basic - object - detection-
algorithms-part-1/ (visited on 03/15/2019).

[10] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 39.6 (2017), pp. 1137–1149. issn: 01628828.
doi: 10.1109/TPAMI.2016.2577031. arXiv: 1506.01497.

[11] Pulkit Sharma. A Step-by-Step Introduction to the Basic Object Detection
Algorithms (Part 1). 2018. url: https://www.analyticsvidhya.com/blog/
2018/10/a- step- by- step- introduction- to- the- basic - object - detection-
algorithms-part-1/ (visited on 03/24/2019).

[12] Joseph Redmon et al. In: (2015). issn: 01689002. doi: 10.1109/CVPR.
2016.91. arXiv: 1506.02640. url: http://arxiv.org/abs/1506.02640.

[13] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, faster, stronger”.
In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017 2017-Janua (2017), pp. 6517–6525. doi: 10.1109/
CVPR.2017.690. arXiv: arXiv:1612.08242v1.

[14] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improve-
ment”. In: (2018). issn: 0146-4833. doi: 10.1109/CVPR.2017.690. arXiv:
1804.02767. url: http://arxiv.org/abs/1804.02767.

[15] Jason Brownlee. Overfitting and Underfitting With Machine Learning Al-
gorithms. 2016. url: https ://machinelearningmastery.com/overfitting-
and-underfitting-with-machine-learning-algorithms/ (visited on 04/22/2019).

