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ABSTRACT
High variability (HV) training has been found to be more effective than low variability
(LV) training when learning various non-native phonetic contrasts. However, little
research has considered whether this applies to the learning of tone contrasts. The only
two relevant studies suggested that the effect of HV training depends on the perceptual
aptitude of participants (Perrachione et al., 2011; Sadakata & McQueen, 2014).
The present study extends these findings by examining the interaction between
individual aptitude and input variability using natural, meaningful second language
input (both previous studies used pseudowords). A total of 60 English speakers
took part in an eight session phonetic training paradigm. They were assigned to
high/low/high-blocked variability training groups and learned real Mandarin tones
and words. Individual aptitude was measured following previous work. Learning
was measured using one discrimination task, one identification task and two
production tasks. All tasks assessed generalization. All groups improved in both the
production and perception of tones which transferred to untrained voices and items,
demonstrating the effectiveness of training despite the increased complexity
compared with previous research. Although the LV group exhibited an advantage
with the training stimuli, there was no evidence for a benefit of high-variability in any
of the tests of generalisation. Moreover, although aptitude significantly predicted
performance in discrimination, identification and training tasks, no interaction
between individual aptitude and variability was revealed. Additional Bayes Factor
analyses indicated substantial evidence for the null for the hypotheses of a benefit of
high-variability in generalisation, however the evidence regarding the interaction was
ambiguous. We discuss these results in light of previous findings.

Subjects Psychiatry and Psychology, Human-Computer Interaction, Computational Science
Keywords L2 phonetic contrasts, Phonetic training, Lexical tone learning, Second language

INTRODUCTION
One challenging aspect of learning a second language (L2) is learning to accurately
perceive non-native phonetic categories. This task is particularly difficult when the
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L2 relies on the same acoustic dimensions as the first language (L1), but for different
purposes (Bygate, Swain & Skehan, 2013), suggesting that it is challenging to adjust existing
acoustic properties in the L1 to learn new L2 categories. This challenge is compounded
by the fact that speech is highly variable in the natural linguistic environment. Variability
comes not only from the phonetic context but also from differences between speakers.
Thus, learners must learn to distinguish the new L2 categories despite all the variability
present in the learning input. There is evidence that native listeners can process this
variability in speech faster and more accurately than non-native listeners (Bradlow &
Pisoni, 1999), indicating that variability is indeed a challenge for L2 learners. Despite this,
it has been suggested that input variability may be beneficial for L2 learning and
generalisation (Barcroft & Sommers, 2005; Lively, Logan & Pisoni, 1993). However, recent
evidence suggests that the ability to benefit from variability may depend on individual
learner aptitude (Perrachione et al., 2011; Sadakata & McQueen, 2014), at least in the
learning of lexical tones (i.e. the distinctive pitch patterns carried by the syllable of a word
which, in certain languages, distinguish meaningful lexical contrasts). The current paper
further explores how and when variability supports or impedes learning of new L2
phonetic categories, focusing on English learners of Mandarin tone contrasts.

High variability L2 phonetic training for non-tonal contrasts
A substantial body of literature has explored whether phonetic training can be used to
improve identification and discrimination of non-native phonetic contrasts in L2 learners.
An early study by Strange & Dittmann (1984) attempted to train Japanese speakers on
the English /r/-/l/ distinction, a phoneme contrast that does not exist in Japanese.
Participants were trained on stimuli from a synthetic rock-lock continuum. The key result
was that although performance increased both for trained and novel synthetic items,
participants failed to show any improvement for naturally produced minimal pair items.
Later research suggested that a key factor which prevented generalisation to natural speech
tokens was a lack of variability in the training materials: Variability was present in the
form of the ambiguous intermediate stimuli along the continuum, however, there was a
single phonetic context and a single (synthesized) speaker. Logan, Lively & Pisoni (1991)
also trained Japanese learners on the English /r/-/l/ contrast, but included multiple
natural exemplars spoken by six speakers, with the target speech sounds appearing in a
range of phonetic contexts. In contrast to Strange and Dittman, they found that
participants successfully generalised both to new speakers and new words at test. This was
the first study to indicate the importance of variability within the training materials.
A follow up study by Lively, Logan & Pisoni (1993) provided further evidence for this by
contrasting a condition with high variability (HV) input to one with low variability (LV)
input in which the stimuli were spoken by a single speaker (although still exemplified
in multiple phonetic contexts). Participants in the LV group improved during the training
sessions but failed to generalise this learning to a new speaker.

Following Lively, Logan & Pisoni (1993) high variability phonetic training (HVPT)
has become standard in L2 phonetic training. This methodology has been successfully
extended to training a variety of contrasts in various languages such as learning of
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the English /u/-/ʊ/ distinction by Catalan/Spanish bilinguals (Aliaga-García & Mora,
2009), learning of the English /i/-/ɪ/ contrast by native Greek speakers (Giannakopoulou,
Uther & Ylinen, 2013; Lengeris & Hazan, 2010), and learning of the English /w/-/v/
distinction by native German speakers (Iverson et al., 2008).

There is also some evidence that this type of perceptual training benefits production in
addition to perception. Bradlow et al. (1999) found that production of the /r/-/l/ contrast
improved in Japanese speakers following HVPT, with this improvement being retained
even after 3 months. Similar improvement on the production of American English mid
to low vowels by Japanese speakers following HVPT was also reported by Lambacher et al.
(2005). However, the evidence here is mixed: A recent study by Alshangiti & Evans (2014)
employed HVPT to train Arabic learners on non-native English vowel contrasts and
found no improvements in production, although participants receiving additional
explicit production training did show some limited improvement.

Although the studies reviewed above all used HVPT, only the original work by Lively,
Logan & Pisoni (1993) directly contrasted the use of high and low variability materials.
It is notable these seminal experiments used small samples (the tests of generalisation
were administered to only three of the participants). Since then, few studies have explicitly
contrasted high and low variability training. One such study was Sadakata & McQueen
(2013), who trained native Dutch speakers with geminate and singleton variants of the
Japanese fricative /s/. Participants were trained with either a limited set of words recorded
by a single speaker (LV) or with a more variable set of words recorded by multiple speakers
(HV). Both types of training led to increases in generalisation to untrained fricatives
and speakers. However, in an identification task, the improvement was greater for
participants receiving HV training than those receiving LV training. Similar results were
reported by Wong (2014) who trained native Cantonese speakers with the English /e/-/æ/
contrast. Both LV (one speaker) and HV (six speakers) training lead to increased
performance from pre- to post-test, but the improvement was greater for the HV group.
This was found in tests of generalisation to new speakers and new items, and from
perception to production. In contrast, a recent phonetic training study did not find the
same benefit. Giannakopoulou et al. (2017) compared matched HV (four speakers) and LV
(one speaker) training for adult and child (8-year-old) native Greek speakers who were
trained on the English /i/-/ɪ/ contrast. This study did not show a benefit for HV compared
to LV training in either age group, even for generalisation items. However, for adult
participants, it is unclear the extent to which this was due to ceiling effects. To our
knowledge, the only other previous studies that specifically manipulated variability during
learning of non-native phonetic categories are those by Perrachione et al. (2011) and
Sadakata &McQueen (2014), which both looked at the learning of lexical tone. We discuss
these studies in more detail in the following section.

Although there is a relatively small evidence base regarding a benefit of high over
low phonetic training for non-native phoneme categories, there is further evidence for this
benefit in related areas of speech and language learning, specifically accent categorization
and adaptation (Bradlow & Bent, 2008; Clopper & Pisoni, 2004), and L2 vocabulary
learning (Barcroft & Sommers, 2005, 2014; Sommers & Barcroft, 2007, 2011). Benefits of
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HVPT are generally seen in tasks of generalisation, suggesting that exposure to variation
across speakers and/or items boosts the ability to generalise across these dimensions.
This intuitively sensible result is in line with the predictions of computational models in
which irrelevant contextual/speaker identity cues compete with phonetically relevant
cues, so that dissociation of these irrelevant cues is the key mechanism which
underpins generalisation (Apfelbaum & McMurray, 2011; Ramscar & Baayen, 2013;
Ramscar et al., 2010).

Phonetic training of L2 lexical tones
Each of the phonetic training studies discussed above involved training a segmental
contrast (consonantal or vocalic). Lexical tone is another type of phonological contrast in
some natural languages, whereby the pitch contour is used to distinguish lexical or
grammatical meanings (Yip, 2002). For example, Mandarin Chinese has four lexical tones:
level-tone (Tone 1), rising-tone (Tone 2), dipping-tone (Tone 3) and falling-tone (Tone 4).
These pitch contours combine with syllables to distinguish meanings. For instance,
the syllable ba combines with the four tones to mean: eight (bā, Tone 1), pluck (bá, Tone 2),
grasp (bǎ, Tone 3) and father (bà, Tone 4). Each of these words thus forms a minimal pair
with each of the others. Note that while non-tonal languages such as English use pitch
information extensively for intonation (e.g. forming a question, or for emphasis), and that
pitch plays a role in marking stress at the lexical level in (e.g. IMport/imPORT), this is
quite different from a lexical tone system, causing difficulties for L2 learners of Mandarin.

The first study examining lexical tone training was conducted by Wang et al. (1999).
A similar paradigm to that used by Logan, Lively & Pisoni (1991) was adopted using four
speakers for training. Training materials were all real monosyllabic Mandarin words
that varied in the consonants, vowels and syllable structure. During training participants
heard a syllable whilst viewing two of the four standard diacritic representations (i.e. /,
↗, ∨,↘, which are iconic in nature). They were asked to pick out the picture of the arrow
that corresponded to the tone. At test, participants chose which tone they had heard
out of a choice of all four diacritics. There were also two generalisation tasks, one testing
generalisation to untrained items and one testing generalisation to a new speaker. Native
American English speakers showed significant improvement in the accuracy of tone
identification after eight sessions of HV training over 2 weeks, and this generalised to both
new words and a new speaker. In a follow up study, Wang, Jongman & Sereno (2003)
used the same training paradigm to test whether learning transferred to production.
They recruited participants taking Mandarin courses and asked them to read through a list
of 80 Mandarin words written in Pinyin (an alphabetic transcription) before and after
training. They found improvements in production, although these were mainly seen in
pitch contour rather than pitch height.

These studies suggested that as with segmental phoneme contrasts, HV training may
also facilitate the learning of tone contrasts. However, Wang et al. (1999) and Wang,
Jongman & Sereno (2003) did not directly contrast high and low variability training
materials. Perrachione et al. (2011) investigated this contrast directly. They trained native
American English speakers with no previous knowledge of Mandarin (or any other tonal
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language), using English monosyllabic pseudowords combined with Mandarin tones 1, 2,
and 4 (/, ↗ & ↘). The training task used either LV (one speaker) or HV (four speaker)
input. During the training, participants matched the sound they heard with one of
three pictures of concrete objects presented, where the three words associated with these
pictures were minimal trios that differed only in tone. Participants were tested on their
ability to generalise their learning to new speakers. Importantly, Perrachione et al. (2011)
were also interested in the role of individual differences in learning. Therefore, they
also determined participants’ baseline ability to perceive the tone contrasts prior to
training using a Pitch Contour Perception Test. In this task, participants heard a vowel
produced with either Mandarin tone 1, 2 or 4 whilst viewing pictures of standard diacritics
associated with these tones (/, ↗ & ↘), and were asked to select the arrow that
corresponded to the tone. Based on performance in this task, the researchers grouped
participants into high and low aptitude groups. The results showed that whilst the LV
group outperformed the HV group during training (presumably due to accommodation to
a repeated speaker throughout the task), there were no differences between the high
and LV groups during test. Critically however, there was an interaction between an
individuals’ aptitude categorization and the type of variability training: Only participants
with high aptitude benefitted from HV training, while those with low aptitude actually
benefitted more from LV training. It is important to note that this interaction was seen in a
task which relied on participants’ ability to generalise their learning1 of tones to an
untrained speaker. That is, in a task where we would expect that exposure to multiple
speakers would be beneficial since it should allow learners to better dissociate the tones
from the particular speakers used in training. These results, therefore, suggest that only the
high aptitude learners can take advantage of this benefit. Another training study by
Sadakata & McQueen (2014) also explored the relationship between input variability and
individual aptitude in lexical tone training, though using different training and testing
materials. They trained native Dutch speakers (with no prior knowledge of Mandarin or
any other tonal language) using naturally produced bisyllabic Mandarin pseudowords.
The two syllables in each word either had Tone 2 followed by Tone 1, or Tone 3 followed
by Tone 1, and each tone pair was randomly assigned one of two numeric labels (e.g. for
one participant Tone 2-Tone 1 was labelled ‘1’, Tone 3-Tone 1 was labelled ‘2’).
During the training task, participants identified the tone pair type of each stimulus by
choosing the correct numeric label (e.g. hear /pasa/ with Tone 2-Tone 1, correct response
is 1). Thus, in contrast to the study by Perrachione et al. (2011), participants did not need
to learn the meaning of each word. Input variability was manipulated, with three levels
(low/medium/high). In contrast to the work by Perrachione et al. where the HV and
LV conditions differed only in terms of the number of speakers, in this study variability
was increased both by including more speakers and more items. Specifically, the number
of different vowels used in the bi-syllabic sequences was manipulated: the LV group
encountered only one vowel (e.g. pasa, casa, lasa, etc.) whereas the medium and HV groups
encountered four different vowels (pasa, pesa, pisa, pusa; casa, cesa, cisa, cusa; lasa, lesa,
lisa, lusa etc.). Participants were tested on the trained items (i.e. using trained speakers
and trained items). Generalisation was also examined in a number of ways by looking

1 In their paper, Perrachione et al. (2011)
do not refer to this task as a general-
isation task. Instead they report a gen-
eralisation measure which is a ratio of
performance on this test with novel
speakers to performance in training (test-
performance/training-performance).
Note that this ratio will increase not only
if participants are better at test, but also if
they are worse in training. Using this
measure, Perrachione et al. found a
benefit of high variability training.
However on inspection of the means, it
seems that this relationship is driven by
the poorer performance in training in the
high variability condition, rather than by
better performance in the test with novel
speakers. We therefore do not see the
ratio measure as providing evidence for
an overall benefit of HV training on
generalisation.
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at (1) trained items spoken by an untrained talker; (2) pseudowords containing untrained
vowels (3) pseudowords in which the order of tones in the bi-syllables were reversed
(i.e. a novel position), and (4) items where the tone was embedded in a sentence context.
As in the study by Perrachione et al. (2011), Sadakata & McQueen (2014) also tested
individual aptitude but with a different method. They employed a categorization task using
stimuli from a six step Tone 2 to Tone 3 continuum (created using natural productions
of the two tones with the Mandarin vowel /a/ as endpoints and linearly interpolating
between these endpoints). Participants were asked to identify if the sound they heard was
more like Tone 2 or Tone 3, and a categorization slope was obtained for each participant
providing a measure of their ability to discriminate this contrast, which is generally
found to be the most challenging tone contrast for L2 learners of Mandarin. Participants
were grouped according to their slopes, and this grouping was entered as a factor in
the analyses of tests of learning, along with the effect of training condition (high-medium-
low) and the interaction between factors. For the test with trained speakers and items,
there was no group level effect of variability condition, however there was an interaction
between variability and aptitude similar to that reported by Perrachione et al.: Participants
with high aptitude benefitted from HV training, while those with lower aptitude
benefitted more from LV training. For the generalisation tests, participants showed
above chance performance in all but the new position condition, demonstrating an ability
to generalise their learning of tone across different dimensions. However, they did not
demonstrate an overall benefit of higher variability in any of the transfer tests, nor,
did variability interaction with aptitude. Note that the overall lack of a HV benefit is again
surprising, particularly for test items with untrained talkers and novel items, since the
manipulations in training should specifically work to increase generalisation along
these dimensions.

In sum, the two studies which have directly compared high and low variability input
in training Mandarin tone contrasts have not found the predicted benefit of HV on
generalisation, either when varying just speakers or when varying speakers and items.
However, both of these studies found an interaction between participant aptitude and
variability condition. The results of these studies thus provide mutually corroborating
evidence—using somewhat different training and testing methods—that the ability to learn
from HV input is dependent on learner aptitude, although it should be noted that this
interaction was found in a task with untrained speakers in one study (Perrachione et al.,
2011), but in a task with trained stimuli in the other (Sadakata & McQueen, 2014).

Why might the ability to benefit from varied training materials depend on participant
aptitude? Perrachione et al. (2011) suggest that one reason why low aptitude participants
may struggle with multi-speaker input is that the speakers were intermixed during
training: This requires trial-by-trial adaptation to each speaker, which was not required in
the corresponding single speaker LV conditions. This may place a burden on learners
(see Mattys & Wiget, 2011; Nusbaum & Morin, 1992, for evidence that intermixed
multi-speaker stimuli are difficult even for L1 processing and that this interacts with
constraints on working memory and attention). To test this, Perrachione et al. (2011)
conducted a second experiment in which items from each speaker were presented in separate
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blocks (as is more common in HVPT). This improved performance during the training task
compared with unblocked training for low aptitude learners only, confirming the hypothesis
that switching between speakers on a trial-by-trial basis during training interferes with
learning for low aptitude learners. On the other hand, Sadakata & McQueen (2014)
employed a training paradigm in which speakers were blocked in the HV condition, yet they
still found the interaction with aptitude. However, recall that in their experiment they
also manipulated item variability, yet only speakers were blocked by session, not items.
Thus, it remains possible that trial-by-trial inconsistency at the level of items could explain
some of the greater difficulty of low aptitude learners in their study.

The current study
The fact that neither of the tone training studies found an overall benefit of high over LV in
tone generalisation is surprising in light of the phonetic literature and the predictions
of the computational model (Apfelbaum & McMurray, 2011; Ramscar & Baayen, 2013)
mentioned above. Moreover, as the previous authors point out, if it is actually the case that
learning from multiple voices is more or less effective for different groups of learners,
this has important implications for the design of L2 training tools. For this to be the case,
it is important to establish the generalisability of the findings to different contexts and
materials, particularly those which are relevant in an L2 learning context. We suggest that
what L2 learners are most interested in developing is their ability to use tone when
mapping a word’s phonological form to its meaning (and vice versa). In this light, the
paradigm used by Sadakata & McQueen (2014) lacks ecological validity in looking only at
mapping to abstract tone categories. On the other hand, Perrachione et al. (2011) do train
form-meaning mappings, yet, unlike Sadakata & McQueen (2014) they use English
pseudo-word stimuli, which has the consequence that learners do not simultaneously have
to deal with non-native segments and tones, as in a real world L2 learning situation.
Furthermore, although there is limited data on the differences between words and
non-words in production, it has been noted that non-words may have different properties
from real words even within the same language (Scarborough, 2012) and may be more
clearly articulated (Hay, Drager & Thomas, 2013; Maxwell et al., 2015). Thus, using
non-words might make stimuli slightly easier to learn than if real words were used.

The current training study addresses these issues in a partial replication of the previous
work: We use stimuli produced by native Mandarin speakers which are real words in that
language. This design choice follows earlier studies such as Wang et al. (1999) using a
paradigm in which participants are trained to identify word meaning on the basis of tone.
In contrast to the previous studies, we also trained the contrasts between all four tones
(six tone contrasts) rather than just three (on the assumption that learners are interested
in learning the complete set of contrasts within a particular language). We note that
these design choices potentially increase the difficulty of our training materials compared
to previous work. A key question was whether these choices would impact the interaction
between learner aptitude and the benefits of more variable training materials.

We followed Perrachione et al. (2011) in varying variability along one dimension
only—speaker variability, keeping training items identical across conditions. We also
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followed Perrachione et al. (2011) in comparing HV input which was blocked by
speaker, with input that was not, making three training conditions: LV (one speaker),
HV (four speakers intermixed within each training session) and blocked training
(four speakers each presented in separate blocks). Note that our choice to manipulate only
talker-variability means that the HV blocked condition is matched to the LV condition
in terms of trial-by-trial inconsistency, unlike in Sadakata & McQueen (2014) where,
even though they blocked by speaker, the HV condition contained more trial-by-trial
variability in terms of items. We predicted that the difficulty of HV input for lower aptitude
participants would be greater in the unblocked condition, thus potentially increasing the
likelihood of seeing the predicted interaction between variability and learner aptitude.
On the other hand, blocked input is more usual of HVPT (Iverson, Hazan & Bannister,
2005; Logan, Lively & Pisoni, 1991) and may increase the possibility of seeing an overall
benefit of speaker variability on generalisation.

We used two perceptual tasks designed to tap individual aptitude. These were
adapted from those used in Perrachione et al. (2011) and Sadakata & McQueen (2014).
However, while the previous studies grouped participants into one of two categories
(high aptitude vs low aptitude) based on the aptitude score, in the current study they were
used as continuous measures. This allowed us to avoid assigning an arbitrary ‘cut off’
for high vs low aptitude groups, and the loss of information which occurs when an
underlying continuous variable is turned into a binary measure. Note that the statistical
approach used in the current paper (logistic mixed effect models) allowed us to include
continuous predictors and look at their interactions with other factors.

A further extension in the current study is that we use several new outcome measures
to test learning and generalisation. First, most similar to the task used in Perrachione
et al. (2011) was a picture identification task which was a version of the training task
(2AFC picture identification) without feedback. Following Perrachione et al. (2011) we
included untrained-speaker items, where benefits of speaker variability in training should
be most apparent. However, bearing in mind that Sadakata & McQueen (2014) actually
found the key interaction with aptitude only in the test with trained stimuli, we also
included trained-speaker test items.

We also included a second perceptual task which did not involve knowing specific
form-meaning mappings and thus had the benefit that it could be conducted both pre- and
post-test. This was a three interval oddity task which required participants to pick the
odd-one-out after hearing three words spoken aloud, each by a different speaker. Two of
the tokens were productions of the same word and the third differed only in the tone
(e.g. bā, Tone 1; bā, Tone 1; bà, Tone 4). Because all three tokens are physically different,
it requires the listener to focus on the phonological level ignoring irrelevant acoustic
differences. Furthermore, the use of three speakers forces the listener to ignore irrelevant
speaker-specific differences, making it especially challenging (Strange & Shafer, 2008).
This task used untrained speakers in every trial, so that every test-item required
generalisation to new speakers2. In addition, here it was possible to use both trained
and untrained items. Note that even though the variability over items is matched across
conditions, it is possible that varying speaker specific cues might also thus promote

2 If we wished to use trained speakers, in
order to be able to the use the same test
with the low variability condition, we
would have to use a single speaker across
all three test trials. Our pilot work sug-
gested that participants performed at
ceiling on a single-speaker version of this
task, even at pre-test.
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generalisation across this dimension. If this is the case, a HV benefit may be stronger for
untrained items than trained items.

Finally, we also tested production using a picture naming task at post-test, in
which participants were required to name the pictures used in training in Mandarin.
We also conducted a word repetition task, which had the benefit that it could also be
conducted at pre-test, and that we could use both trained and untrained words (as for
the three-interval oddity task discussed above). Although there is evidence HVPT
can benefit the production of tones (Wang, Jongman & Sereno, 2003), there has been no
direct examination of whether HV training materials are more effective than LV training
materials for production. However, more generally in the L2 vocabulary learning
literature, training with multiple speakers has been found to lead to better recall in a
picture naming task (Barcroft & Sommers, 2005), suggesting that the HVPT advantage
should extend to production measures.

In sum, the current experiment assessed whether individuals benefit from high over LV
perceptual training when learning novel L2 tone contrasts, and whether this interacts
with learner aptitude. We used measures of aptitude taken from previous studies, but a
training paradigm with real Mandarin stimuli embedded in a vocabulary learning task,
which trained discrimination of all six Mandarin tone contrasts. Learning and
generalisation were measured in multiple tests of both perception and production.
In general, the current design increased ecological validity and likely also increased the
difficulty of the learning task relative to previous work. It is possible that increasing
difficulty could exacerbate differences between learners of different aptitudes, potentially
increasing the effect. On the other hand, it is also possible that the increased difficulty
might make HV input much harder for all participants, decreasing or removing the specific
benefit of HVPT for high aptitude learners.

METHOD
Participants
A total of 60 adults recruited from UCL Psychology Subject Pool participated in the
experiment, 20 in each of the three conditions (LV, HV, high variability blocked (HVB)).
Participant information is summarized in Table 1. There was no difference between these
groups in age, F (2,57) = 1.95, p = 0.15. Participants had no known hearing, speech,
or language impairments. Written consent was obtained from participants prior to the
first session. Each participant was paid £45 at the end of the study.

Table 1 Mean age range, average number of languages learned and mean starting age of learning the
first L2 for participants in each condition.

Condition Mean age Age range Languages
learned

Average
staring age

Low variability 26.15 (2.2) 19–53 2.7 (0.5) 13.8 (1.1)

High variability 25.65 (0.7) 19–47 2.5 (0.6) 12.2 (0.5)

High variability blocked 22.05 (1.4) 19–30 2.0 (1.3) 11.8 (0.4)

Dong et al. (2019), PeerJ, DOI 10.7717/peerj.7191 9/45

http://dx.doi.org/10.7717/peerj.7191
https://peerj.com/


All participants except three were native English speakers. Of the remaining three, one
participant (LV condition) was a native bilingual of English and Hindi, one participant
(HV condition) was a native French speaker, and one participant (HV condition) was a
native Finnish speaker. Critically, participants had no prior experience of Mandarin
Chinese or any other tonal language. On average, participants had learned 2.4 (SD = 0.8)
languages and the average age for starting to learn the first L2 was 12.6 years (SD = 1.3).

Ethical approval was given by the UCL Research Ethics Committee with the
approval number 6176/002.

Stimuli
Stimuli used in training and in the picture identification, three interval oddity,
word repetition and picture naming tests
These stimuli consisted of 36 minimal pairs of Mandarin words (six minimal pairs for each
of the six tone contrasts generated by the four Mandarin tones). The words in each pair
contained the same phonemes, differing only in tone (e.g. māo, Tone 1 (cat) vs mào,
Tone 4 (hat)). All words were picturable and started with a wide range of phonemes
(see Appendix A). In order to examine generalisation across items, half of the word pairs
(three per tone contrast) were designated ‘trained’ words and other half were designated
‘untrained’ words. Trained words were encountered in both training and test tasks;
untrained words were only encountered in the three interval oddity and word
recognition tests.

The full set of 72 Mandarin words was recorded by two groups of native Mandarin
speakers using a Sony PCM-M10 handheld digital audio recorder. The first group
consisted of three female and two male speakers. These stimuli were used in the Training,
Word Repetition and Picture Identification tasks. The second group consisted of three
new female speakers and two new male speakers. These stimuli were used in the three
interval oddity task (making all new speakers in that task). See Table 2 for a summary of
the manipulation of item and speaker novelty across the different test tasks, and Table 3 for
the tasks in which speakers are counterbalanced.

In the LV condition only one speaker (Trained voice 1) was used in training, and this
same speaker was also used as the test voice in the Word Repetition test and for trained

Table 2 Use of trained and untrained items and voices in different tasks.

Task Items Voice

Picture identification Trained One trained voice (counterbalanced, see Table 3)
One untrained voice (counterbalanced, see Table 3)

Three interval oddity (Pre and Post) Trained and untrained Four new voices

Picture naming Trained NA

Word repetition (Pre and Post) Trained and untrained One trained voice (counterbalanced, see Table 3)

Individual aptitude test 1 Pitch contour
perception test (Pre and post)

Vowels Four untrained voices

Individual aptitude test 2 Categorisation of
synthesised tonal continua (Pre and Post)

Synthesised voice Synthesised voice
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items in the picture identification test. In the HV conditions, four speakers (Trained voice
1 plus three others) were used in training. Only one of these speakers (Trained voice 1) was
used in the word repetition test and for trained items in the picture identification test.
In all conditions, a further speaker (Untrained voice 1) was assigned to the untrained test
items in the picture identification test. The assignment of speakers was rotated across
participants, resulting in five counterbalanced versions of each condition (see Table 3).
This ensured that any difference found between the low and HV conditions, and between
trained and untrained voices, were not due to idiosyncratic difference between speakers.
There was no counterbalancing of speaker in other tasks.

All words were edited into separate sound files, and peak amplitude was normalised
using Audacity (Audacity Team, 2015, http://audacity.sourceforge.net/). Any background
noise was also removed. All recordings were perceptually natural and highly distinguishable
as judged by native Chinese speakers. Clipart pictures of the 72 words were selected from
free online clipart databases.

Stimuli used in the aptitude tests
Pitch Contour Perception Test: SixMandarin vowels (/a/, /o/, /e/, /i/, /u/, /y/) were repeated in
the four Mandarin tones by two male and two female native Mandarin speakers from talker
set 2, making 96 stimuli in total. Stimuli were identical across conditions and participants.

Categorization of Synthesised Tonal Continua: Natural endpoints were chosen from
a native Mandarin male speaker producing the word ‘wan’ with both Tone 2 and Tone 3.
A neutral vowel was also recorded by a native male English speaker producing the ‘father
vowel’ /a/. This vowel was edited slightly to remove portions containing creaky voice
at the end. The three syllables (wan (Tone 2), wan (Tone 3), /a/) were then manipulated in
Praat (Boersma &Weenink, 2015). All three syllables were normalised to be approximately
260 ms long using the Pitch Synchronous Overlap and Add method. The neutral vowel
was manipulated to have a flat fundamental frequency (148 Hz) and a flat intensity
contour (75 dB). The pitch contours of the two natural endpoints were extracted and a

Table 3 Counterbalancing of voices across training conditions in the picture identification task
(the only test in which trained and untrained voices are directly contrasted) and the Word
Repetition tests.

Task Voice

Version 1 Version 2 Version 3 Version 4 Version 5

Training, LV F1 F2 F3 M1 M2

Training, HV/HVB F1 F2 F3 M1 M2

F3 F1 M2 F1 F2

M1 M1 F1 F2 F3

M2 M2 F2 F3 M1

Picture Identification

Trained voice F1 F2 F3 M1 M2

Untrained voice F2 F3 M1 M2 F1

Word repetition F1 F2 F3 M1 M2
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six-step pitch continuum (Step 1: Tone 2, Step 6: Tone 3) was generated by linearly
interpolating between the endpoints. These six pitch contours were then each superimposed
on a copy of the neutral vowel using the PSOLA method. Stimuli were identical across
participants and conditions.

Procedure
The experiment involved three stages (see Fig. 1): Pre-test (session 1), training
(sessions 2–7), and post-test (session 8). Participants were required to complete all eight
sessions within 2 weeks, with the constraint of one session per day at most. The majority
of sessions took place in a quiet, soundproof testing room in Chandler House, UCL.
The remaining sessions took place in a quiet room in a student house.

Participants were given a brief introduction about the aim of the study and told that
they were going to learn some Mandarin tones and words. They were explicitly told
that Mandarin has four tones (flat, rising, dipping and falling) and that the tonal
differences were used to distinguish meanings. The experiment ran on a Dell Alienware
14R laptop with a 14-inch screen. The experiment software was built using a custom-built
software package developed at the University of Rochester.

The specific instructions for each task were displayed on-screen before the task
started. After each task, participants had the opportunity to take a 1-min break. The tasks
completed in each session are listed in Fig. 1 and described in more detail below. Note that
the Pitch Contour Perception Test and Categorisation of Synthesised Tonal Continua
were carried out at the beginning of the first session as they provided the measure of
individual aptitude prior to exposure to any Mandarin stimuli. There was no time limit
for making responses in any of the tasks. Participants wore a pair of HD 201 Sennheiser
headphones throughout the experiment with audio stimuli presented at a comfortable
listening level.

Individual aptitude measures
The pitch contour perception test

This test was based on the work of Wong & Perrachione (2007). Participants heard a tone
(e.g. /a/ (Tone 1)), while viewing pictures of four arrows indicating the different pitch
contours. Participants clicked on the arrow that they thought matched the tone heard.

Figure 1 Tasks completed in each of the eight sessions. This figure describes all tasks arranged through
session 1–8. Full-size DOI: 10.7717/peerj.7191/fig-1
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No feedback was provided. There were 96 stimuli in total (four speakers � four tones � four
vowels). This task provided another measure of individual differences in tone perception
prior to training. Although Perrachione et al. only conducted this task at pre-test, for
consistency with the Categorization of Synthesised Tonal Continua (described below) we
also repeated the test at post-test and conducted analyses to identify whether performance
on this task was itself improved as a result of training (see section ‘Categorisation of
Synthesised Tonal Continua’).

Categorisation of synthesised tonal continua

This test was based on Sadakata & McQueen (2014). Participants first practiced listening
to Tone 2 and Tone 3 while viewing the corresponding picture of an arrow depicting
the pitch change. Each tone was repeated 10 times. In each test trial, participants then
decided whether the sound they heard was closer to Tone 2 or Tone 3 by clicking on the
corresponding arrow. No feedback was provided. The speech continua consisted of
six steps (Step 1: Tone 2, Step 6: Tone 3) with each step repeated 10 times per block.
Participants completed two blocks, with an optional 1 min break in the middle, resulting
in 120 trials in total. This task provided a measure of individual differences in tone
perception prior to training. In line with Sadakata and McQueen’s procedure, participants
completed the task both before and after training and we conducted analyses to
explore whether there was improvement from pre to post-test (section ‘The Pitch Contour
Perception Test’).

Training task
Participants completed the training task in Session 2–7. On each trial, participants heard
a Mandarin word and selected one of two candidate pictures displayed on the computer
screen. The two pictures always belonged to the same minimal pair. Feedback was
provided about whether the answer was correct (a green happy face appeared) or incorrect
(a red sad face appeared). If the correct choice was made, a picture of a coin also appeared
in a box on the left-hand side of the screen, with the aim of motivating participants to
try to earn more coins in each subsequent session of training. After that, everything but the
correct picture was removed from the screen and the participant heard the correct
word again. In the lower right corner of the screen a trial indicator of X/288 was displayed
where X indicated the number of trials completed. This tool helped participants to keep
track of their performance (see Fig. 2).

There were 18 picture/word pairs used. Each word was used as the target four times.
Thus, each picture pair appeared eight times, resulting in 288 trials per session.
Participants were assigned to one of the following conditions: LV, HV and HVB (with the
assignment of speakers counterbalanced—see Table 3). Each training session lasted for
approximately 30 min.

In the LV condition, only one speaker was used. In the HV conditions, four speakers
were used. For each participant, each of their six training sessions was identical. In the
HV condition without blocking, all of the speakers were heard in each of the training
sessions, with the order randomised so that speaker varied from trial to trial. In contrast,
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in the HV blocked condition, from Day 1 to Day 4 of training (i.e. Session 2–5), only one
speaker was involved on each day’s training session, (with the trained speaker that was
used in the test tasks (e.g. F1 for Version 1) always occurring on Day 3 (i.e. Session 4));
on Days 5 and 6 of training (i.e. Sessions 6 and 7), participants heard all four speakers,
each in a separate block, with each word being repeated twice in each voice on these days.
In all three conditions, the order of items was randomised within each session.

Perceptual tests
Three interval oddity test (pre-post test)

This task required participants to identify the odd one out (i.e. the stimulus with a different
tone) from a choice of three Mandarin words, each spoken by a different speaker.
Four untrained speakers were used (three female, one male). Each trial used one of the
36 minimal pairs from the main stimuli set (18 trained pairs, 18 untrained pairs).
Preliminary work suggested that trials differed in difficulty depending on whether the
‘different’ stimulus was spoken by the single male speaker, or one of the three female
speakers. We therefore ensured that there were equal numbers of the following trial types:
(i) ‘Neutral’—all three words were spoken by female speakers (ii) ‘Easy’—the ‘different’
word was spoken by a male speaker and the other two were spoken by female speakers;
(iii) ‘Hard’—the ‘different’ word was spoken by a female speaker and the other two
were spoken by one male speaker and one female speaker. Each of the words in the minimal
pair was used once as the target (‘different’) word, making 72 trials in total.

During the task, three frogs were displayed on the screen. Participants heard three
words (played with ISIs of 200 ms) and indicated which word was the odd one out by
clicking on the appropriate frog, which could be in any of the three positions. They could
not make their response until all three words had been heard, at which point a red box
containing the instruction ‘Click on the frog that said the different word’ appeared at
the bottom of the screen. No feedback was provided. Participants completed this task
twice—once in the pre-test, and once in the post-test.

Figure 2 Screen shot from the Training task. The stimuli heard is ‘dì’, tone 4, (earth). The foil picture
on the right is ‘dí’ tone 2, (siren). Full-size DOI: 10.7717/peerj.7191/fig-2
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Picture identification test (post-only test)

This task was the same as the training task with the following changes. Firstly, each
word was only repeated twice, once by a trained speaker (trained voice 1) and once by an
untrained speaker (Untrained voice 1), making 72 trials in total. Secondly, no feedback
was given. This task was completed only in the post-test.

Production test
Word repetition test (pre-post test)

All 72 Mandarin words from the main stimulus set (18 trained pairs, 18 untrained pairs)
set were presented one at a time in a randomised order. They were always spoken by the
same speaker and this speaker was also used in their training stimuli (training voice 1;
see Table 3). After each word, 2 s of white noise was played. This was included to make sure
that participants had to encode the stimulus they were repeating and could not access
the information in echoic storage (Flege, Takagi & Mann, 1995). Participants were
instructed to listen carefully to the word and then to repeat the word aloud after the white
noise. Verbal responses were digitally recorded and were later transcribed and rated by
native speakers of Mandarin (see section ‘Coding and Inter-rater Reliability Analyses’).
This task was completed once in the pre-test and once in the post-test.

Picture naming test (post-only test)

All 36 pictures from the training words were presented in a randomised order. Participants
were instructed to try to name the picture using the appropriate Mandarin word.
Verbal responses were recorded and were later transcribed and rated by native Mandarin
speakers (see section ‘Coding and Inter-rater Reliability Analyses’). This task was
completed only in the post-test.

Other tasks
English introduction task

This task was included in the batch of tasks administered at pre-test in case the meaning of
some pictures were ambiguous (not all items were concrete nouns—for example, ‘to
paint’). Participants saw each of the 36 pictures from the training set presented once each
in a random order and heard the corresponding English word. No response was recorded.
Participants completed this task only once, at the end of the pre-test session.

Questionnaires

Participants completed a language background questionnaire after the experiment.
Participants were asked to list all the places they had lived for more than 3 months and any
languages that they had learned. For each language the participant was asked: (a) to state
how long they learned the language for and their starting age; (b) to rate their own
current proficiency of the language.

RESULTS
Statistical approach
Three different sets of frequentist analyses are reported. First, we conducted the analysis on
two individual aptitude measures Categorisation of Synthesised Tonal Continua and Pitch
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Contour Perception Test. The primary aim of these analyses was to ensure that the three
groups did not differ at pre-test, however we also looked for possible differences at
post-test. Second, separate analyses are reported on data from the tests administered
pre- and post-training (i.e. Word Repetition task and Three Interval Oddity task), the data
collected during Training and the data from the two tasks administered only at post-test
(i.e. the Picture Identification task and Picture Naming task). These analyses explored
the effects of our experimentally manipulated conditions on the various measures of
Mandarin tone learning. Third, analyses were conducted exploring the role of aptitude in
each of these tasks (section ‘Analyses with Individual Aptitude’). Specifically, we wanted
to see whether aptitude interacted with variability-condition in predicting the benefits
of training, in line with the predictions of previous research (Perrachione et al., 2011;
Sadakata & McQueen, 2014).

Except where stated, analyses used logistic mixed effect models (Baayen, Davidson &
Bates, 2008; Jaeger, 2008; Quené & Van den Bergh, 2008) using the package lme4
(Bates et al., 2013) for the R computing environment (R Development Core Team, 2010).
Logistic mixed effect models allow binary data to be analysed with logistic models
rather than as proportions, as recommended by Jaeger (2008). In each of the analyses,
the factor variability-condition has three levels (LV, HV and HVB) which we coded into
two contrasts with LV as the baseline (LV vs HV, LV vs HVB). An exception to this is
the training data, where a model containing all three conditions would not converge and
we took a different approach, as described in the section ‘Training’. We also included
the interactions between these contrasts and the other factors. We used centred coding
which ensured that other effects were evaluated as averaged over all three levels of
variability-condition (rather than the reference level of LV3). Similarly, for the
Three Interval Oddity task, we included a trial-type factor. The purpose of this was to
control for the fact that participants were likely to find some trial types easier than others
due to the gender of the speakers producing the stimuli (see section ‘Three Interval Oddity
Test (Pre-Post Test)’). We therefore coded a factor trial-type with three levels (neutral,
easy, hard–see method) and included contrasts with neutral (‘neutral vs easy’ and ‘neutral
vs hard’) using centred coding. In order to perform the analysis comparing pre- and
post-test performance, test-session was coded as a factor with two levels (pre-test/post-test)
with ‘pre-test’ set as the reference level. This allowed us to look at the (accidental) possible
differences between the experimental conditions at the pre-test stage, as well as whether
post-test performance differed from this baseline. All other predictors, including both
discrete factor codings with two levels (item-novelty in the Word Repetition and
Three Interval Oddity tasks, and voice-novelty in the Picture Identification task) and
numeric predictors (training-session) in the Training data analyses and the individual
difference measures in the models reported in the section ‘Analyses with Individual
Aptitude’), were centred (i) to reduce the effects of collinearity between main effects and
interactions, and (ii) so that the main effects were evaluated as the average effects over
all levels of the other predictors (rather than at a specified reference level for each factor).
We automatically put experimentally manipulated variables and all of their interactions
into the model, without using model selection (except for trial-type in the Three Interval

3 This differs from the default coding of
contrasts in the lme4 package. It was
achieved by replacing the three-way fac-
tor ‘condition’ with two centred dummy
variables and using the main fixed effects
from the output of this model.
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Oddity task which works as a control factor and for this factor we only used its main
effect and the interaction with test-session). However, we did not inspect the models for all
main effects and interactions. Instead, we report the statistics which were necessary to
look for accidental differences at pre-test, and those related to our hypotheses. We aimed
to examine whether the training improved participants’ performance on both untrained
items and untrained voices and whether such improvement was modulated by their
individual aptitudes. Participant is included as a random effect and a full random slope
structure was used (i.e. by-subject slopes for all experimentally manipulated within-subject
effects (test-session, voice-novelty, item-novelty) and interactions, as recommended
by Barr et al. (2013). In some cases the models did not converge and in those cases
correlations between random slopes were removed. Models converged with bound
optimization by quadratic approximation (BOBYQA optimization; Powell, 2009).
R scripts showing full model details can be found here: https://osf.io/wdh8a/.

In addition to the frequentist analyses, in order to aid interpretation of key null results
we also included Bayes factor analyses. Our approach for these is described within the
relevant section (Section ‘Bayes Factor Analyses’).

Individual aptitude tasks
The pitch contour perception test
The predicted variable was whether a correct response was given (1/0) on each trial.
The predictors were the contrasts between variability-conditions (LV vs HV; LV vs HVB)
and test-session (pre-test, post-test). There was no significant difference between the
LV and HV groups (β = -0.35, SE = 0.26, z = -1.38, p = 0.17) or between the LV and
HVB groups (β = 0.17, SE = 0.26, z = 0.66, p = 0.51) at pre-test on this measure.
Participants showed significant improvement after training (β = 0.21, SE = 0.05, z = 4.13,
p < 0.001), which can be seen in Fig. 3.

Thus, the three participant groups did not differ in their pre-test performance and the
groups showed equivalent improvement from pre- to post-test. Given that this measure
is affected by training, we used participants scores at pre-test as our measure of individual
differences in the analyses reported in the section ‘Analyses with Individual Aptitude’.

Categorisation of synthesised tonal continua
We estimated individual’s performance on the Categorisation of Synthesised Tonal
Continua task following Sadakata & McQueen (2014). We used the Logistic Curve Fit
function in SPSS to calculate a slope coefficient for each participant (Joanisse et al.,
2000). The slope (standardised β) indicates individual differences in tone perception.
The smaller the slope, the better the performance. Sadakata and McQueen, removed data
from participants with a slope measuring greater than 1.2. Using this threshold 43/60
participants failed the threshold in the current study. This is consistent with the observation
that most of the participants were not able to consistently categorise the endpoints of the
continua, indicating that this was not a good test of aptitude. We do not report further
analyses involving this aptitude variable however they can be found in the supplemental
materials (https://osf.io/wdh8a/).
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Training
Amodel containing data from all three conditions did not converge; however two separate
models, one including the LV and HV conditions, and the other the LV and HVB
conditions (with condition as a factor with two levels), did converge. In each case the
predicted variable was whether a correct response was given (1/0) on each trial.
The predictors were the numeric factor training-session (1:6) and the factor variability-
condition which had two levels (Model 1: LV vs HV; Model 2, LV vs HVB). The mean
accuracy is displayed in Fig. 4.

In both models, there was an effect of training-session (Model 1: β = 0.49, SE = 0.04,
z = 11.52, p < 0.001; Model 2: β = 0.53, SE = 0.04, z = 12.17, p < 0.001): Participants’
performance increased significantly over time, with additional training sessions.
Overall, the LV group performed better than both the HV group (β = -0.79, SE = 0.16,
z = -5.03, p < 0.001) and the HVB group (β = -0.83, SE = 0.32, z = -2.61, p < 0.01).
However, the LV vs HV contrast was also modulated by an interaction with test-session
(β = -0.19, SE = 0.04, z = -4.59, p < 0.001), as was the LV vs HVB contrast (β = -0.35,
SE = 0.08 z = -4.33, p < 0.001). From Fig. 4 it can be seen that the LV and the HVB group did
not differ in the first session (i.e. where they get identical input) but the difference gradually

Figure 3 Mean accuracy for the LV (low variability), HV (high variability) & HVB (high variability
blocked) groups in Pitch Contour Perception Task. Error bars represents the 95% confidence intervals.

Full-size DOI: 10.7717/peerj.7191/fig-3

Dong et al. (2019), PeerJ, DOI 10.7717/peerj.7191 18/45

http://dx.doi.org/10.7717/peerj.7191/fig-3
http://dx.doi.org/10.7717/peerj.7191
https://peerj.com/


increased over the next few sessions. For the LV and the HV group, they differed
starting from the first session and this difference continued to increase throughout training.

Perceptual tests
Three interval oddity task
The predicted variable was whether a correct response was given (1/0) on each trial.
The predictors were test-session (pre-test, post-test), variability-condition (LV vs HV,
LV vs HVB), trial-type (neutral vs easy, neutral vs hard) and item-novelty (trained item,
untrained item). The mean accuracy is displayed in Fig. 5.

At pre-test, there was no significant difference between the LV and HV groups
(β = -0.002, SE = 0.14, z = -0.01, p = 0.99) nor between the LV and HVB groups (β = 0.12,
SE = 0.14, z = 0.86, p = 0.39), suggesting that the groups started at a similar level. However,
performance with the ‘untrained’ was significantly greater than performance on the
‘trained’ items at pre-test (β = -0.31, SE = 0.06, z = -4.95, p < 0.01), suggesting incidental
differences between item sets. As expected, at pre-test participants performed significantly
better on ‘easy’ trials (where the target speaker had a different gender) than ‘neutral’
trials (where all three speakers had the same gender, β = 0.40, SE = 0.08, z = 5.09, p < 0.01)
and ‘neutral’ trials were marginally easier than ‘hard’ trials (where one of the foil speakers
had the odd gender out, β = -0.14, SE = 0.08, z = -1.81, p = 0.07).

Overall, participants’ performance increased significantly after training (Mpre = 0.59,
SDpre = 0.21, Mpost = 0.66, SDpost = 0.19, β = 0.31, SE = 0.05, z = 6.54, p < 0.001).
The interaction between test-session and item-novelty was not significant (β = 0.14,
SE = 0.09, z = 1.49, p = 0.14), suggesting no evidence that training had a greater effect

Figure 4 Mean accuracy in the Training task for the LV (Low Variability), HV (High Variability) and
HVB (High Variability Blocked) training groups in each session. Y-axis starts from chance level.
Error bars show 95% confidence intervals. Full-size DOI: 10.7717/peerj.7191/fig-4
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for trained words than for untrained words. Critically, there was no interaction with
test-session for either the contrast between the LV vs the HV conditions (β = -0.01,
SE = 0.12, z = -0.12, p = 0.90) or the contrast between the LV vs the HVB conditions
(β = 0.01, SE = 0.12, z = 0.11, p = 0.91) and they were not qualified by any higher level
interactions with item-novelty (LV vs HV: β = -0.1, SE = 0.22, z = -0.64, p = 0.52; LV vs
HVB: β = 0.13, SE = 0.22, z = 0.57, p = 0.57). This suggests no evidence that the extent
to which participants improved on this task between pre and post-test differed according
to variability-conditions, or that this differed for trained vs untrained items.

Although not part of our key predictions, we also looked to see if there was evidence that
participants improved more with the easier or harder trials. In fact, the interaction between
test-session and the contrast between ‘easy’ and ‘neutral’ was significant (β = -0.27,
SE = 0.11, z = -2.39, p = 0.02) while the contrast between ‘neutral’ and ‘hard’ was not
(β = 0.12, SE = 0.11, z = 1.06, p = 0.29). This was due to the fact that there was
improvement for ‘neutral’ (Mpre = 0.57, SDpre = 0.14, Mpost = 0.65, SDpost = 0.15) and
‘hard’ trials (Mpre = 0.54, SDpre = 0.16, Mpost = 0.65, SDpost = 0.15) but not for ‘easy’
trials (Mpre = 0.66, SDpre = 0.16, Mpost = 0.68, SDpost = 0.15).

Picture identification
The predicted variable was whether a correct response was given (1/0) on each trial.
The predictors were the factor voice-novelty (Trained voice, Untrained voice) and the
factor variability-condition which had two contrasts (LV vs HV, LV vs HVB). The mean
accuracy is displayed in Fig. 6.

Figure 5 Mean accuracy in Three Interval Oddity task for LV (low variability), HV (high variability)
and HVB (high variability blocked) training groups in Pre- and Post-tests for trained and untrained
items. Error bars show 95% confidence intervals. Full-size DOI: 10.7717/peerj.7191/fig-5
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There was a main effect of voice-novelty (β = 1.07, SE = 0.16, z = 6.53, p < 0.001)
reflecting higher performance in trials with trained voices. Although participants in the
LV group performed better than those in the HV group (β = -0.71, SE = 0.32, z = -2.23,
p = 0.03), there was no significant difference between the LV and the HVB group
(β = -0.14, SE = 0.32, z = -0.44, p = 0.66) and there was a significant interaction between
voice-novelty and both the LV-HV contrast (β = -1.19, SE = 0.35, z = -3.43, p < 0.01) and
the LV-HVB contrast (β = -1.11, SE = 0.36, z = -3.08, p < 0.01). Breaking this down
by variability-condition: for each condition there was significantly better performance
with trained than untrained voices (LV: β = 1.83, SE = 0.29, z = 6.42, p < 0.001; HV: β = 0.64,
SE = 0.23, z = 2.86, p < 0.01; HVB: β = 0.73, SE = 0.26, z = 2.82, p < 0.01), indicating
greater ease with the familiar voice. Breaking down by voice-novelty: For the trained voice,
performance was higher in the LV condition than in either the HV or HVB conditions,
although this was only significant for the LV vs HV contrast (LV vs HV: β = -1.30, SE = 0.44,
z = -2.97, p < 0.01; LV vs HVB: β = -0.70, SE = 0.45, z = -1.55, p = 0.12). Importantly,
for untrained voices, neither of the contrasts between conditions was significant (LV vs HV:
β = -0.12, SE = 0.26, z = -0.45, p = 0.65; LV vs HVB β = 0.41, SE = 0.27, z = 1.51, p = 0.13),
indicating no evidence for greater generalisation following HV training.

Figure 6 Mean accuracy of Picture Identification for LV (low variability), HV (high variability) and
HVB (high variability blocked) training groups for untrained voices and trained voices. Error bars
show 95% confidence intervals. Full-size DOI: 10.7717/peerj.7191/fig-6
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Production tests
Coding and inter-rater reliability analyses
The same methods were used for both production tests. The files were combined into
a single set, along with the 360 stimuli which were used in the experiment (and which
were produced by native Mandarin speakers). The latter items were included in order
to examine whether the raters were reliable. All stimuli were rated by two raters: Rater 1
was the first author and Rater 2 was recruited from the UCL MA Linguistics
program and was naïve to the purposes of the experiment. Raters were presented with
recordings in blocks in a random sequence (blind to test-type, condition, whether the
stimulus was from pre-test or post-test and whether it was produced by a participant
or was one of the experimental stimuli). For each item, raters were asked to (i) identify
the tone, (ii) give a rating quantifying how native-like they thought the pronunciation
was compared (one to seven with one as not recognisable and seven as native speaker
level), and (iii) transcribe the pinyin (segmental pronunciation) produced by the
participants.

If there was no sound or the tone was unrecognizable, the rater coded 0 when
identifying the tone. Data from these trials were removed from the dataset before analyses
were conducted. In addition, all of the data from one participant was removed from
the analyses due to bad recording quality resulting from a technical error. In total, this
resulted in 3.38% (359/10,620) of production trials being removed from analysis
(Word Repetition: Pre-test 1.98% (84/4,248); Post-test 3.72% (158/4,248); Picture Naming
5.51% (117/2,124)). Three measurements were taken from the production tasks: mean
accuracy of tone identification (Tone accuracy), mean tone rating (Tone rating) and mean
accuracy of production in pinyin (derived by coding each production as correct (1 = the
entire string is correct) or incorrect (0 = at least one error in the pinyin)). As a first
test of rater reliability, performance with the native speaker stimuli was examined–these
were near ceiling: Rater 1: Tone accuracy = 98%, Tone rating = 6.7, Pinyin accuracy = 80%;
Rater 2: Tone accuracy = 87%, Tone rating = 6.5, Pinyin accuracy = 80%).

Furthermore, for the remaining data (i.e. the experimental data) inter-rater reliability
was examined for all three measures for the two production tasks. For the binary measures
(Tone accuracy and Pinyin accuracy), kappa statistics were calculated using the ‘fmsb’
package in R (Cohen, 2014). For the Word Repetition data, for Tone accuracy kappa = 0.39
(‘fair agreement’), and for Pinyin accuracy kappa = 0.33 (‘fair agreement’; Landis &
Koch, 1977). For the Picture Naming test, for Tone accuracy kappa = 0.67 (‘substantial
agreement’) and for Pinyin accuracy kappa = 0.53 (‘moderate agreement’); For the Tone
rating, the package ‘irr’ in R was used to assess the intra-class correlation (McGraw &
Wong, 1996) based on an average-measures, two-way mixed-effects model. For Word
Repetition, ICC = 0.22 and for Picture Identification ICC = 0.37; according to Cicchetti
(1994), values less than 0.40 are regarded as ‘poor’. Given this, we do not include analyses
with Tone Rating as the dependent variable (though these data are included in the data
set https://osf.io/wdh8a/). All of the analyses presented in the sections ‘Word Repetition’
and ‘Picture Naming’ were based on Rater 2 (the naive rater).
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Word repetition

Tone accuracy

The predicted variable was whether a correct response was given (1/0) on each trial
(as identified by the coder). The predictors were test-session (pre-test, post-test), variability-
condition (LV vs HV, LV vs HVB) and item-novelty (trained, untrained). The mean
accuracy, split by test-session and training condition, is shown in Fig. 7.

At pre-test, there was no significant difference between the LV and the HV group
(β = 0.01, SE = 0.18, z = 0.06, p = 0.95) nor between the LV and the HVB group (β = 0.11,
SE = 0.18, z = 0.64, p = 0.53), suggesting the groups started at a similar level. There
was also no difference between trained and untrained words at pre-test (β = -0.02,
SE = 0.07, z = -0.26, p = 0.80).

Across the three groups, participants’ performance increased significantly after training
(Mpre = 0.71, SDpre = 0.09, Mpost = 0.79, SDpost = 0.09, β = 0.40, SE = 0.08, z = 5.29,
p < 0.001). There was no significant difference in the improvement for trained and
untrained items (word-type by test-session interaction: β = 0.13, SE = 0.10, z = 1.22
p = 0.22). Critically, the interactions between the variability contrasts and test-session
were not significant (LV vs HV: β = -0.10, SE = 0.18, z = -0.55, p = 0.58; LV vs HVB:
β = -0.11, SE = 0.18, z = -0.62, p = 0.54), and they were not qualified by any higher
level interactions with item-novelty (LV vs HV: β = 0.15, SE = 0.25, z = 0.61, p = 0.54;
LV vs HVB: β = -0.31, SE = 0.26, z = -1.21, p = 0.23). This suggests there is no

Figure 7 Accuracy of Word Repetition for LV (low variability), HV (high variability) and HVB (high
variability blocked) training groups in Pre- and Post-tests for trained and untrained items. Error bars
show 95% confidence intervals. Full-size DOI: 10.7717/peerj.7191/fig-7
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evidence that participants’ improvement in their production of tones was affected by their
variability-condition, or that this differed for trained vs untrained items.

Pinyin accuracy

The predicted variable was whether the participants produced the correct string of
phonemes (1/0) in each trial (as determined by Rater 2). The predictors were test-session
(pre-test, post-test), variability-condition (LV vs HV, LV vs HVB) and item-novelty
(trained, untrained). Mean pinyin accuracy is displayed in Fig. 8.

At pre-test, there was no significant difference between the LV and the HV group
(β = -0.01, SE = 0.11, z = -0.11, p = 0.91) nor between the LV and the HVB group
(β = -0.03, SE = 0.11, z = -0.24, p = 0.81), suggesting that the groups started at a similar
level. However, participants did better on untrained words than trained words at pre-test
(β = 0.21, SE = 0.07, z = 3.11, p < 0.01), suggesting potential accidental differences in
these items. Participants showed significant improvement after training (Mpre = 0.54,
SDpre = 0.09,Mpost = 0.58, SDpost = 0.19, β = 0.15, SE = 0.05, z = 3.38, p < 0.01). However,
there was no evidence that different variability conditions resulted in different amounts
of improvement (test-session by LV vs HV: β = 0.05, SE = 0.11, z = 0.46, p = 0.65;
test-session by LV vs HVB: β = -0.12, SE = 0.11, z = -1.08, p = 0.28) or any interaction
between variability condition, test-session and item-novelty (LV vs HV: β = 0.11, SE = 0.22,
z = 0.51, p = 0.61; LV vs HVB: β = -0.14, SE = 0.22, z = -0.64, p = 0.52). This suggests

Figure 8 Mean pinyin accuracy of Word Repetition for LV (low variability), HV (high variability) and
HVB (high variability blocked) training groups in Pre- and Post-tests for trained and untrained items.
Error bars show 95% confidence intervals. Full-size DOI: 10.7717/peerj.7191/fig-8
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there is no evidence that participants’ improvement in pinyin accuracy was affected by their
variability-condition, or that this differed for trained vs untrained items.

Picture naming

Tone accuracy

The predicted variable was whether a correct response was given (1/0) on each trial
(as identified by the coder). There was only one predictor, variability-condition (LV vs HV,
LV vs HVB) for both models. The descriptive statistics are displayed in Fig. 9.

Participants in the LV group showed no significant difference compared with the HV
group (β = -0.34 SE = 0.19, z = -1.81, p = 0.07) and the HVB group (β = -0.10, SE = 0.19,
z = -0.52, p = 0.61. This suggests there is no evidence that participants’ ability to
produce the tones accurately differed according to their variability-condition.

Pinyin accuracy

The predicted variable was whether the participants produced the correct string of
phonemes (1/0) in each trial and there was a single predictor variability-condition (LV vs
HV, LV vs HVB). For both models there was no significant difference between variability
conditions (LV vs HV: β = 0.09, SE = 0.23, z = 0.41, p = 0.68; LV vs HVB: β = 0.12,
SE = 0.23, z = 0.51, p = 0.61). This suggests there is no evidence that participants’ pinyin
accuracy differed according to their variability-condition.

Analyses with individual aptitude
In order to look at the effect of learner aptitude and the interaction between this factor and
variability condition, we first calculated the mean accuracy at pre-test on the Pitch Contour
Perception Test for each participant. This score (scaled by a factor of 10, so that each one
unit increase in aptitude corresponded to a 10% higher performance in the Pitch Contour

Figure 9 Tone accuracy and Pinyin accuracy of Picture Naming for LV (low variability), HV (high
variability) and HVB (high variability blocked) training groups. Error bars show 95% confidence
intervals. (A) Mean accuracy of Picture Naming, tone accuracy measure. (B) Mean accuracy of Pic-
ture Naming, pinyin accuracy measure. Full-size DOI: 10.7717/peerj.7191/fig-9
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Perception test) was centred and used as a continuous predictor (aptitude) and added
to each of the models reported above. In addition, we added the interaction between this
factor and key experimental factors (see Table 4). Based on Perrachione et al. (2011) and
Sadakata & McQueen (2014), for our measures of tone-learning, HV should benefit
high aptitude participants only, while LV would benefit low aptitude participants only.
In our design, we used a continuous measure of individual ability rather than a binary
division of high and LV. We therefore predicted a stronger positive correlation between
aptitude and amount of learning in the HV condition than in the LV condition. In the tests
administered only post training (i.e. Picture Identification and Picture Naming) this
would show up as an interaction between aptitude and condition. In the models for the
pre- and post-test data (i.e. Three Interval Oddity and Word Repetition) this would
show up as a three-way interaction between condition, test-session and aptitude. We also
looked at the interactions between these factors and voice-novelty (Picture Identification)
and item-novelty (Three Interval Oddity and Word Repetition). Note that there are
no clear directional hypotheses here: Perrachione et al. (2011) found the interaction in a
test with untrained voices and trained items, and Sadakata & McQueen (2014) found

Table 4 Statistics obtained when adding in participant aptitude (as measured by performance on the Pitch Contour Perception Test task at
pre-test) into the models predicting performance on the test and training tasks. Statistics marked in bold are significant (0.05) results.

Data set Coefficient name Statistics

Word repetition: Tone
accuracy (Pre/post)

Aptitude β = 0.07, SE = 0.03, z = 2.35, p = 0.019

Aptitude by Test-Session β = 0.03, SE = 0.04, z = 0.72, p = 0.473

Aptitude by LV-HV Contrast by Test-Session β = 0.05, SE = 0.11, z = 0.47, p = 0.639

Aptitude by LV-HVB Contrast by Test-Session β = 0.13, SE = 0.10, z = 1.35, p = 0.176

Aptitude by LV-HV Contrast by Test-Session by Item-Novelty β = -0.14, SE = 0.15, z = -0.97, p = 0.334

Aptitude by LV-HVB Contrast by Test-Session by Item-Novelty β = 0.07, SE = 0.13, z = 0.50, p = 0.61

Three interval oddity
(Pre/post)

Aptitude β = 0.07, SE = 0.03, z = 2.19, p = 0.029

Aptitude by Test-Session β = 0.01, SE = 0.23, z = 0.31, p = 0.757

Aptitude by LV-HV Contrast by Test-Session β = 0.05, SE = 0.07, z = 0.77, p = 0.443

Aptitude by LV-HVB Contrast by Test-Session β = 0.05, SE = 0.06, z = 0.83, p = 0.410

Aptitude by LV-HV Contrast by Test-Session by Item-Novelty β = -0.12, SE = 0.13, z = -0.94, p = 0.346

Aptitude by LV-HVB Contrast by Test-Session by Item-Novelty β = 0.06, SE = 0.11, z = 0.52, p = 0.604

Training Aptitude β = 0.13, SE = 0.048, z = 2.70, p = 0.007

Aptitude by LV-HV Contrast β = -0.04, SE = 0.11, z = -0.332, p = 0.740

Aptitude by LV-HVB Contrast β = 0.03, SE = 0.10, z = 0.26, p = 0.795

Picture identification
(Post only)

Aptitude β = 1.48, SE = 0.08, z = 1.96, p = 0.050

Aptitude by Voice Novelty β = -0.03, SE = 0.07, z = -0.33, p = 0.745

Aptitude by LV-HV Contrast β = -0.02, SE = 0.19, z = -0.12, p = 0.901

Aptitude by LV-HVB Contrast β = 0.01, SE = 0.17, z = 0.09, p = 0.932

Aptitude by LV-HV Contrast by Voice-Novelty β = 0.35, SE = 0.21, z = 1.63, p = 0.103

Aptitude by LV-HVB Contrast by Voice-Novelty β = -0.11, SE = 0.19, z = -0.58, p = 0.566

Picture naming:
tone accuracy

Aptitude β = 0.08, SE = 0.04, z = 1.89, p = 0.059

Aptitude by LV-HV Contrast β = -0.09, SE = 0.11, z = -0.84, p = 0.402

Aptitude by LV-HVB Contrast β = 0.12, SE = 0.10, z = 1.22, p = 0.224
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the interaction in a test with trained voices and trained items. For training, in principal
both the two-way interaction of aptitude by condition and the three-way interaction of
aptitude by condition by training-session are of interest. However, it was not possible to fit a
converging model containing the three-way factor4.

Each model reported in Table 4 contained all the fixed effects included in the original
models in addition to the fixed effects listed in the table (note that to avoid convergence
issues due to over complex models, we did not attempt to include the complete set of
interactions for every combination of experimental variables with aptitude—only those for
which we had predictions). We attempted to have full random effects structure for
these fixed effects however in some cases we had to remove correlations between slopes
due to problems with convergence and for one of the models with the training data we had
to remove the random slope for training session). Note that we don’t include models
for the pinyin measures, since our measure of aptitude is relevant to tone learning only.
For each of the new models we first confirmed that adding in the new effects and
interactions with the individual measures did not change any of the previously reported
patterns of significance for the experimental effects (see script https://osf.io/wdh8a/) for
full models.

The results are shown in Table 4. Aptitude is a positive predictor of performance in each
of the tests and in training, with p-values significant or marginal in each case. However
there was no interaction between aptitude and any other factor. Thus, there was no
evidence that this measure of aptitude correlated with participants ability to benefit
from training (no interaction with test-session), nor—critically for our hypothesis—did
this differ by training condition (no interaction with condition or with test-session
by condition).

Although the analyses use a continuous measure of Pitch Contour Perception Test,
for the purposes of visualisation, Fig. 10 (Three Interval Oddity task and Training task),
Fig. 11 (Picture Naming and Picture Identification) and Fig. 12 (Word Repetition) use
the mean accuracy for participants split into aptitude groups using a median split based on
their Pitch Contour Perception Test score.

In sum, participants with higher aptitude measures were better at the tasks, but there is
no evidence either that this affected their improvement due to training, or, critically,
their ability to benefit from the different variability exposure sets.

Bayes factor analyses
In the analyses reported above, we did not find evidence—in any of our tests—for either
of two key hypotheses: (1) the hypothesis that training with multiple speakers leads to
greater generalisation to new speakers than training with a single speaker or (2) the
hypothesis that there is an interaction between the variability of the training materials and
participant aptitude, such that higher aptitude participants benefit more from training
with multiple speakers while lower aptitude participants benefit more from training with a
single speaker. However, there is a difficulty in interpreting these null results since a
non-significant result (p > 0.05) does not tell us whether we have evidence for the null, as
opposed to no evidence for any conclusion at all, or even evidence against the null.

4 This was the case even if we split the data
into two models, as we did in the Section
‘Training’.
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Thus, we should not reduce our confidence in either of our hypotheses on the basis of
the null results reported above (despite the fact that reducing confidence in a theory
following non-significant results is common practice)—see Dienes (2014) for discussion.
An alternative statistic is a Bayes Factor, which are used to assess the strength of evidence
for one theory (H1) over another (the null hypothesis). We therefore supplemented
the analyses above by computing Bayes factors for contrasts relating to these two key
hypotheses. These are reported in the sections ‘H1: Greater generalization—to Novel Voices
and in Production—in the Multiple Speaker Conditions (HV and HVB) than in the
LV Condition’ and H1: There is an Interaction Between an Individual’s Tone-Aptitude
and Variability-Condition, Such That Participants with Greater Tone-Aptitude Show
Greater Performance Following the Multiple Speaker Conditions (HV and HVB) and

Figure 10 Accuracy in Three Interval Oddity and Training for LV (low variability), HV (high
variability) and HVB (high variability blocked) training groups. Error bars show 95% confidence
interval. (A)Mean accuracy of Three Interval Oddity, split by high (HA) vs low (LA) aptitude in the Pitch
Contour Perception Test (B) Mean accuracy of Training, split by high (HA) vs low (LA) aptitude in the
Pitch Contour Perception Test. Full-size DOI: 10.7717/peerj.7191/fig-10
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Figure 11 Accuracy in Picture Naming and Picture Identification for LV, HV and HVB training groups, split by high (HA) vs low (LA)
aptitude in the Pitch Contour Perception Test. Error bars show 95% confidence interval. (A) Mean accuracy of Picture Naming tone accuracy
measure (B) Scatter plot contrasting Mean accuracy of Picture Naming tone accuracy measure and corresponding aptitude measure from
Picture Contour Perception Test (C) Mean accuracy of Picture Naming Pinyin accuracy measure (D) Scatter plot contrasting Mean accuracy
of Picture Naming Pinyin accuracy measure and corresponding aptitude measure from Picture Contour Perception Test (E) Mean accuracy of
Picture Identification (F) Scatter plot contrasting Mean accuracy of Picture Identification and corresponding aptitude measure from Picture
Contour Perception Test. Full-size DOI: 10.7717/peerj.7191/fig-11
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Those with Lesser Tone Aptitude Show Greater Performance in the Single Speaker
Condition (LV)’ below.

H1: Greater generalisation—to novel voices and in production—in the
multiple speaker conditions (HV and HVB) than in the low variability
condition (LV)

We aimed to compute Bayes Factors comparing this hypothesis to the null for each of our
data sets. To have maximum evidence, we pool the HV and HVB conditions and contrast
this with the LV condition. For the post-tests we are interested in the evidence for a
main effect of this contrast. For the pre-post tests, we are interested in the interaction
between this contrast and session. To further maximise evidence, for the Three Interval
Oddity test and Word Repetition tests we look at trained and untrained items combined
(since both types of item involve generalisation to an untrained voice and thus should
benefit from HV training), however in the Picture Identification test we excluded trained
voice test items, since the benefit of HV training was not predicted for these items.
For the production measures, we are interested in whether there is a HV benefit for our
tone learning measure and our pinyin measure (the latter given that Barcroft & Sommers
(2014), found a benefit of multi-speaker training in their vocabulary recall task).

We computed Bayes factors following Dienes (2014) and Dienes, Coulton & Heather
(2018). To compute a Bayes factor (B) it is necessary to have both a model of the data and a
model of H1. The model of the data is an estimate of the mean difference for the
contrast in question, and of the standard error. Here, we get these estimates by running
logistic mixed models and taking the betas and standard errors for the relevant
coefficients (note that this allows us to meet normality assumptions by continuing to
work within log-odds space). The models we ran here were similar to the previous

Figure 12 Accuracy in Word Repetition for LV, HV and HVB training groups, split by high (HA) vs
low (LA) aptitude in the Pitch Contour Perception Test. Error bars show 95% confidence intervals.
(A) Mean accuracy of Word Repetition tone accuracy measure (B) Mean accuracy of Word Repetition
Pinyin accuracy measure. Full-size DOI: 10.7717/peerj.7191/fig-12
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analyses but with variability-condition coded as a centred contrast between LV and the
HV+HVB conditions, and other factors combined/excluded as described in the previous
paragraphs. The full set of models is in https://osf.io/wdh8a/.

We model H1 using a half-normal distribution with a mode of 0 and a standard
deviation x which is set to be a rough estimate of the predicted difference for this contrast.
This allows for possible effects between 0 and twice the predicted effect, with values closer
to 0 being more likely (Dienes, 2014).

In the absence of any prior data using sufficiently similar materials, and since we did
not wish to use unprincipled default values, we estimated x for each contrast using the
scale and/or values from elsewhere in the data (see Dienes, 2014, 2015 for a related
approach). Specifically, for each of the cases where we predicted a main effect (Picture
Identification and Picture Naming), we set x as the difference between the grand mean
(the Intercept—since we use a centred coding) and an estimate of minimal possible
performance on the task. The logic is as follows5: The maximum difference between
conditions is seen if LV participants show baseline performance and HV participants show
performance greater than baseline. In this case, if performance on this test is p (so the
grand mean is �p) and the baseline is b, the difference in p between the two conditions
will be equal to: 2(�p� b). This gives us an estimate of themaximum value of x; since we are
using a half normal distribution with a mean of zero, we assume the maximum value is
equal to approximately 2SD, so we can set our estimate x of the standard deviation to
be equal to half of this value (i.e. x ¼ �p� b). Baseline performance depends on the task:
for the 2AFC Picture Identification task it is chance (50% = 0 in log odds space); for
the Picture Naming, tone measure, we assume a ¼ chance of identifying the correct one
(25% = -1.099 in log odds space); for Picture Naming, Pinyin measure, there is no
chance and we therefore took minimal performance as making one correct response in the
test6 (i.e. 1/72 = -4.263 in log odds space). For the cases where we are estimating an
interaction between test-session and variability-condition we set x as equal to the mean
increase in performance from pre- and post-test across conditions (main effect of test-
session). The logic is as follows: themaximum difference is seen if LV participants show no
effect of test-session (no improvement) and HV participants show a positive effect of
test-session. In this case, if the mean effect of test-session is�t, the difference in t between the
two conditions will be equal to 2�t. Again, we can set our estimate of x to be half this value
(i.e., x ¼ �t).

We interpret BFs using the following conventions: B < 1/3 indicates substantial evidence
for the null, B > 3 indicates substantial evidence for H1, values between 1/3 and 3 indicate
that the data collected do not sensitively distinguish H0 from H1 (Jeffreys, 1998; Dienes,
2008). Since there is subjectivity in how the values for H1 are determined, we indicate the
robustness of Bayesian conclusions by reporting a robustness region for each B, which
gives the range of values of the scale factor x that qualitatively support the same conclusion
(i.e. evidence as supporting H0, or as supporting H1, or there not being much evidence
at all). Note that for evidence for H0, the maximum x is always infinity. The results are
reported in Table 5. It can be seen we have substantial or strong evidence for the null for
every test except for the Word Repetition test for the Pinyin accuracy measure, where

5 Further details of the logic of these
computations is spelt out in the script
available at https://osf.io/wdh8a/.

6 Note that we cannot compute log-odds
of 0.
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the evidence is ambiguous, and that the robustness regions indicate that we would continue
to have evidence for the null even with smaller estimates of the scale factor x.

H1: There is an interaction between an individual's tone-aptitude and variability-
condition, such that participants with greater tone-aptitude show greater
performance following the multiple speaker conditions (HV and HVB)
and those with lesser tone aptitude show greater performance in the single
speaker condition (LV)

We aimed to compute Bayes Factors comparing this hypothesis to the null for each of our
data sets. We take the same approach as above except that we also compute Bayes factors
for Training data, and for the Picture Identification test we look at both trained voice
and untrained voice data—pooling the two in order to maximise available evidence. This is
because this interaction has been reported with trained items (Sadakata &McQueen, 2013)
as well as untrained items (Perrachione et al., 2011). We again combine the HV and
HVB conditions except for training where we look at the LV vs HV and LV vs HVB
contrasts separately, since we have seen in our previous analyses that HV and HVB are
quite different (HVB participants show higher performance).We again combine the
evidence from trained and untrained items in the pre-post tests. For the post-session only
tests, we are interested in the evidence for an interaction between the variability-condition
contrast and aptitude. For the tests which appeared both pre- and post-training, we
are interested in the interaction between the variability-condition contrast, aptitude
and test-session. For training we look at the evidence for an interaction between each
variability-condition contrast and aptitude (a more complex model containing the
interaction with training-session did not converge). As in our frequentist analyses of
aptitude, for the production measures—Word Repetition and Picture Naming—we do not
look at the pinyin measures since our aptitude measure is relevant only to tone learning.

We computed Bayes factors following the same procedure as in the section ‘H1:
Greater Generalization—to Novel Voices and in Production—in the Multiple Speaker
Conditions (HV and HVB) than in the LV Condition’ and again derived our estimates of
the scale factor x—the difference predicted under H1—using the scale and/or values
from elsewhere in the data. Specifically, for each of the cases where we predicted a two-way
interaction between variability-condition and aptitude we set x as equal to the mean

Table 5 Bayes Factor results testing the hypothesis that there is greater generalisation following either of the high variability training
conditions than the low variability condition.

Contrast Mean
difference

Stand.
Error

H1
estimate x

Bayes
factor (B)

Robustness
region

Picture ID (Novel voice only) HV+ HVB > LV 0.13 0.228 1.71 0.219 1.11 : ∞
Picture naming, (Tone accuracy) HV+ HVB > LV -0.225 0.168 1.076 0.067 0.202 : ∞
Picture naming (Pinyin Accuracy) HV+ HVB > LV 0.104 0.196 4.05 0.08 0.101 : ∞
Word repetition (Tone accuracy) test-session by HV+ HVB > LV -0.108 0.157 0.395 0.239 0.303 : ∞
Word repetition (Pinyin accuracy) test-session byHV+ HVB > LV 0.095 -0.034 0.152 0.421 0 : 0.202

Three interval odditytest-session by HV+ HVB > LV -0.001 0.1 0.31 0.303 0.303 : ∞
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effect of aptitude across conditions (main effect of aptitude)7. The logic is as follows:
The maximum difference is seen if LV participants show no effect of aptitude and the HV
participants show a positive effect of aptitude (note that a negative effect of aptitude is
not expected in any condition). In this case, if the mean effect of aptitude is �a, the
difference in a between the two conditions will be equal to 2�a. Again, we can set our
estimate of x—the SD of the half normal—to be half this maximum value, that is, x ¼ �a. For
the cases where we are interested in the three-way interaction between aptitude,
test-condition and test-session, we based our estimate on half the difference between the
maximal effect of aptitude (maxA—taken from the scale) and their actual aptitude score
at pre-test (baselineA—taken from the data). The logic is as follows: The maximal effect
of the interaction would be seen if participants in the LV condition showed the same baseline
effect of aptitude at pre-test and at post-test (ba), whereas participants in the HV condition
showed maximal improvement at post-test (maxa). In this case, the interaction between
aptitude and session for the HV group would be equal to: maxa—ba. Again, we can set our
estimate of x—the SD of the half normal—to be half this maximum value, that is, x ¼ ma�ba

2 .
The maximum effect of aptitude was computed from the scale and the length of the

aptitude predictor. Specifically, we assumed that the maximal effect of aptitude would be
obtained if participants with maximal aptitude were at ceiling (71/72 correct—log odds
4.263) and those with minimal aptitude were at chance (25% in Word Repetition,
Tone Accuracy, log odds= 1.099; 33.33% in Three Interval Oddity, log odds = 0.693).
We divided this range by the length of the aptitude predictor to obtain a measure of a
one-step change in aptitude.

The results are summarised in Table 6. It can be seen that although there is more
evidence for the null than H1 in each case (i.e. BF < 1) we do not have substantial evidence
for the null over H1 in any case. Thus, we cannot draw any inferences about the interaction
from this data. Note that, in most cases, the robustness regions indicate that even if
the scale factor x was twice as large, that is, corresponding to themaximum value we might
expect, the B would be ambiguous.

DISCUSSION
The current study investigated the effect of different types of phonetic training on English
speakers’ learning of novel Mandarin words and tones. To our knowledge, this is the

Table 6 Bayes Factor results testing the hypothesis that there is an interaction between aptitude and variability-condition greater
generalisation following either of the high variability training conditions than the low variability condition.

Contrast Mean
difference

Stand.
Error

H1
estimate x

Bayes
factor (B)

Robustness
region

ID, (Tone accuracy) aptitude by HV+ HVB > LV 0.006 0.127 0.171 0.617 0 : 0.354

Picture naming, (Tone accuracy) aptitude by HV+ HVB > LV 0.042 0.083 0.099 0.904 0 : 0.354

Three interval oddity (Tone accuracy) aptitude by test-session by HV+ HVB > LV 0.048 0.05 0.345 0.371 0 : 0.354

Word Repetition (Tone accuracy) aptitude by test-session by HV+ HVB > LV 0.091 0.082 0.379 0.654 0 : 0.758

Training aptitude by HV > LV -0.037 0.119 0.129 0.572 0 : 0.253

Training aptitude by HVB > LV 0.026 0.101 0.129 0.732 0 : 0.354

7 An alternative which would be more
equivalent to the other BF analyses
would be to inform the effect using the
value of the two-way interaction of
aptitude: test-session. We do not do this
since we did not find an effect of this
two-way interaction in either data set.
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first study to train naive participants on all four Mandarin tones, using real language
stimuli embedded in a word learning task. Learning was examined using a range of
perception and production tasks. Following previous literature, we compared three training
conditions: LV (single speaker), HV (four speakers, presented intermixed) and HV blocked
(four speakers, presented in blocks). We also administered tests designed to tap
individual aptitude in the perception of pitch contrasts, adapted from the previous literature.
The results indicated that participants’ performance increased during training and that
training also led to improved performance on pre- to post-tests of discrimination and
production, with evidence of generalisation to untrained voices and items. Participants also
showed some ability to recall trained words—including their tones—in a picture naming
task administered at post-test. However, the only place where we saw any effect of the
variability manipulation was in the training task (and with trained items in the picture
identification task, which was highly similar to training), where the low variability group
outperformed both of the HV groups. Critically, we found no evidence in any of our tests
that HV input benefitted learning or generalisation, nor did we find any evidence of an
interaction between individual aptitude and the ability to benefit from HV training. In the
following discussion, we first consider the findings from each task in turn before turning to a
more general discussion of our findings in relation to the predicted benefit of HV input.

Tests of individual aptitude
In the current work, we conducted two tests with the purpose of capturing individual
aptitude: The Pitch Contrast Perception Test (following Perrachione et al., 2011) and the
Categorisation of Synthesised Tonal Continua (following Sadakata & McQueen, 2014).
Although our goal was to measure participants’ baseline aptitude, the tests were conducted
both at pre- and post-test, following Sadakata and McQueen, who did not find differences
from pre- to post-tests with their categorisation measure, and who used combined
data from pre- and post-test to compute participants slopes. Unfortunately, the performance
of our own participants suggested that the Categorisation of Synthesised Tonal Continua
test was not a good test of aptitude, with the majority of participants failing to meet
the slope threshold used in Sadakata and McQueen, and most being unable to
consistently categorise the end points of the continua. It is unclear why our results differ
from the previous study (we aimed to follow their procedures), but this meant that we
were unable to use this as an aptitude measure in our later analyses. The scores on
the Pitch Contrast Perception Test alone therefore served as our measure of individual
aptitude. Interestingly, preliminary analyses (section ‘The Pitch Contour Perception
Test’) demonstrated that performance in this test improved from pre- to post-training.
This suggests that this measure is not a ‘pure’ measure of individual differences since
it also appears to be affected by experience. Given this, we only used participants’ scores
on this test from pre-test as the measure of aptitude in subsequent analyses.

Performance in training
The training task employed in this study was a 2AFC task, where participants had to
identify the correct meaning of a Mandarin word based on its tone. The results from
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training indicate that participants performed better in the single speaker LV training than
in either the multiple speaker HV or HVB groups. This difference was present from
the first session for the LV-HV contrast, and from the second session for the LV-HVB
contrast (i.e. the first session where the two conditions differ), and increased over time for
both contrasts. Greater difficulty with multiple speaker input is in line with the findings
of Perrachione et al. (2011), although the differences did not emerge so rapidly in that
study, possibly due to there being fewer trials per session. Intuitively, repeated exposure to
the single speaker in the LV condition allows for greater adaptation to speaker specific
cues, whereas in the HV conditions participants have to adapt to multiple speakers. This
is particularly difficult in the unblocked HV condition, where trial-by-trial adaptation
is needed, which is effortful for participants (Magnuson & Nusbaum, 2007). Importantly,
however, for all three groups, their performance gradually increased over each session.
In combination with the fact that their performance on the other tasks increased after
training, this indicates that the training task and materials were effective. We also explored
the role of learner aptitude in this task (as measured by performance on the Pitch
Contour Perception Test at pre-test) and whether this influenced participant’s performance
differently in the different variability conditions. Overall, aptitude was found to be a
significant predictor of performance during training. However, there was no evidence for
an interaction with training condition, although our Bayes Factor Analyses suggests that
the data here are inconclusive. We return to this finding in the section ‘The Role of
High Variability Materials in Training and Generalisation’ below.

Perception tests
We included two perceptual tasks which tapped learning and generalisation due to
training: A Picture Identification task administered at post-test and a Three Interval Oddity
task administered at both pre- and post-test. The Picture Identification task was a version
of the training task without feedback, and is the most similar to the tests used by
Perrachione et al. (2011), and Sadakata & McQueen (2014). We used this test to look at
learning of the trained stimuli, comparing trained and untrained voices. The three
interval oddity task had not been used in the previous studies, but allowed us to use a
pre-/post-test design, and also to look at participants’ performance with untrained items.
These tests provided evidence that participants improved in their perception of tones
following training: They were above chance in using the tone to identify the correct picture
in the picture identification task at post-test, and they improved in their ability to
discriminate tones in the three interval oddity task (59% performance prior to training,
66% post training). There was also evidence of generalisation across both voices and items:
Participants were above chance in identifying the correct pictures even with an untrained
voice (although they did show significantly weaker performance than with the trained
voice) and they improved in their ability to discriminate the between minimal pair items in
the three interval oddity task, even for untrained items.

Our key questions concerned the role of variability in training. First, we were interested
in whether there was evidence that exposure to multiple voices during training led to
greater ability to generalise across voices at test—that is, greater performance with novel
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voices in the HV conditions than in the LV condition. We did not see this. In fact, the only
effect of variability in this data was a low variability benefit, which we saw in the Picture
Identification task for the trained-voice items (seen in the contrast between LV and HV
conditions). This mirrors what we saw in training and reflects the greater exposure to this
particular speaker in the LV training. However, in the tests tapping generalisation to a
novel speaker—that is, in untrained voice trials in the Picture Identification task, and
with all of the test-items in the Three Interval Oddity task, there was no difference between
variability-training conditions. Bayes factor analyses indicate that in both cases, there was
substantial evidence for the null.

The second hypothesis was that there would be an interaction between learner
aptitude (as measured by the Pitch Contour Perception Test at pre-test) and variability
training condition, such that high aptitude participants would benefit more from HV
training. Note that previous work had found this interaction both in tests involving
generalisation (Perrachione et al., 2011) and with trained items (Sadakata & McQueen,
2014) so we considered both in our analyses here. There was no evidence of such an
interaction in either the Picture Identification or Three Interval Oddity tasks. However,
Bayes Factor analyses suggest that the data are inconclusive. We return to these points
in the section ‘The Role of High Variability Materials in Training and Generalisation’
below.

Another finding from the Three Interval oddity test that is worth noting, although it did
not concern our hypotheses, is that some trial types were harder than others. Recall
that this test involved participants hearing three different stimuli each produced by a
different speaker, which makes noting the similarity across two of the stimuli much
harder—something we discovered in pilot work, where even before training participants
were near ceiling with an equivalent task in which the same speaker produced all three
stimuli within a single trial. However, analyses of trial-type demonstrated that
participants were additionally affected by the gender of the three speakers producing
each of the stimuli. Specifically, at pre-test, participants showed best performance for
trials where one of the speakers was male and the other two were female, and the target
‘odd man’ was the male speaker (‘easy’ trials). In contrast, they showed worst
performance if there was one male and two female speakers, but the ‘odd man’ was one
of the female speakers (‘hard’ trials). Middle level performance was shown for trials
where all three speakers were female (‘neutral’ trials). This is presumably due to
participants relying on perceptual cues associated with speaker gender to do the task.
Interestingly, our analyses showed that performance only increased for the trials where
the odd one was not the lone male (the ‘neutral’ and ‘hard’ ones), but not for those
where the male was the odd man. Given that participants are not near ceiling at pre-test
(67%), it is perhaps surprising that their trained knowledge of the tone contrasts
does not boost their performance. One possibility is although they are now better able to
use tone cues, they are also less likely to use gender based cues, which they may now
realise are less reliable, masking improvement based on tone for these particular
test items.
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Production tasks
In this study, we used two production tasks, a word repetition task administered pre
and post training, in which participants repeated back Mandarin words, and a Picture
Naming task testing vocabulary recall, which was administered at post-test only.
HV perceptual training for tones has been previously found to transfer to production
(Bradlow & Pisoni, 1999; Zeromskaite, 2014), however the benefits of HV and LV
training have not been contrasted.

In the Word Repetition task, there was a significant, though relatively modest
improvement in participants’ ability to reproduce the tone of the stimuli, such that it could
be identified by a native speaker (from pre- to post-test: 70–76%) and in the Picture
Naming task, participants showed an ability to recall and reproduce the correct tone,
although unsurprisingly with less accuracy than in the repetition task (50%). For Word
Repetition, we were also able to look at transfer to untrained words: As in the perception
tasks, there was once again equivalent improvement for both trained and untrained
items. Together, these results provide evidence that purely perceptual training on tone
contrast can transfer to production, as well as to novel items.

In addition to looking at the production of tones, we also looked at participants’ ability
to produce the correct segmental phonology (pinyin-score). Participants showed a
small but significant improvement on this measure in Word Repetition (54% correct at
pre-test, 58% at post-test), and some ability to recall the segments in the Picture Naming
test (50% correct). This indicates some learning of segmental phonology due to training,
despite the fact that the focus of the training task was on training tonal information
through the presentation of tonal minimal-pairs.

Turning to the role of variability, the predicted benefit of HV training was not evident in
any of the measures in either of the production tasks, with Bayes factor analyses indicating
substantial evidence for the null except for the Word Repetition pinyin-measure,
where the evidence was ambiguous. With regard to aptitude, although performance on the
Pitch Contour Perception Test at pre-test was predictive of participants’ ability to
produce tones in both tasks (indicating a relationship between participants perceptual and
production ability), we did not find the predicted interaction between aptitude and
variability condition in either task. Here however, Bayes Factor analyses suggests that the
results are inconclusive. We return to these points about variability below.

The role of high variability materials in training and generalisation
In the current study, across all of the different tests, we did not find either an overall benefit
of exposure to HV training materials for generalisation, or any interaction between such a
benefit and individual aptitude.

We consider first the lack of overall variability benefit for generalisation. Importantly,
in addition to finding a pattern of null results (i.e. p < 0.05) in the frequentist analyses,
additional Bayes Factor analyses also found substantial evidence for the null (BF < 0.33)
in all but one of the test measures (Word Repetition, Pinyin, where BF = 0.421).
Thus, there is good evidence that, at least for these training and test materials, exposure
to stimuli from multiple speakers does not lead to greater generalisation in either
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perception or production. This finding is consistent with the lack of a main effect of
variability condition in the transfer tasks in either Sadakata & McQueen (2014) or
Perrachione et al. (2011) (see also footnote 1). However it is at odds with other phonetic
training studies focused on segmental contrasts (Clopper & Pisoni, 2004; Logan, Lively &
Pisoni, 1991; Lively, Logan & Pisoni, 1993; Sadakata & McQueen, 2013) and with the
literature demonstrating a HV benefit in vocabulary learning (Barcroft & Sommers, 2005,
2014; Sommers & Barcroft, 2007, 2011). This suggests that this overall variability benefit
may be restricted to segmental rather than tonal phonetic learning, at least for speakers
of a non-tonal L1.

It is difficult to reconcile the lack of benefit for vocabulary learning in the picture
naming task, given the findings of Barcroft & Sommers (2005, 2014) and Sommers &
Barcroft (2007, 2011), since this test is quite similar to that used in their experiments.
However, one possibility is that this is due to differences in our training set up (i.e. focused
on training tonal contrasts) compared with the earlier vocabulary studies. Nonetheless
it remains unclear why tone learning should be different from other types of phonetic
learning in terms of benefiting from talker-variability. Theoretically speaking, in a
framework where all cues compete, variation in idiosyncratic speaker-specific cues would
be expected to provide key evidence as to which cues are irrelevant to the phonetic contrast
in question (Apfelbaum & McMurray, 2011; Ramscar & Baayen, 2013; Ramscar et al.,
2010). This raises the question of how participants in our LV condition are able to
generalise at all—that is, how can they identify the phonetically relevant cues compared
with the idiosyncratic cues associated with the single speaker to which they were
exposed? One possibility is that other variation in our materials aided generalisation,
in particular in our real word stimuli, each tone-contrast is encountered with multiple
consonants and vowels. If item variability also aids generalisation to new speakers, this
might explain why we found equivalent generalisation across conditions instead of seeing
greater generalisation in the HV conditions (i.e. even the LV condition is really a HV
condition, because of the item variability). On the other hand, Sadakata & McQueen
(2014) also saw generalisation even for their LV condition, and in their study this condition
lacked variation in terms of both speakers and phonetic contexts. This suggests that
the relevant cues for the tone contrasts may be sufficiently acoustically salient for learners
to identify them, even when exposure occurs in limited contexts.

Another possibility—and the one suggested by the findings of Sadakata & McQueen
(2014) and Perrachione et al. (2011)—is that benefits of HV for generalisation are masked
by individual differences. In their studies, only high aptitude participants showed a
HV benefit, while low aptitude participants did not. It is possible that for lower aptitude
participants, the benefits of exposure to varying, idiosyncratic cues are offset by the
greater difficulty that these participants have in attuning to the different speakers during
training, as discussed above (section ‘Tests of Individual Aptitude’). This explanation
is supported by evidence from a study by Goldinger, Pisoni & Logan (1991) who explored
the effect of increasing the processing cost of multi-speaker input in the context of word
recall (in the L1). Specifically, they exposed participants to single vs multi-speaker word
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lists, manipulating presentations rates. They found that single-speaker lists produced
better word recall than multiple-speaker lists at short inter-word intervals (less than
2,000 ms) whereas this effect was reversed for longer inter-word intervals. This suggests
that increasing encoding difficulty can remove the benefits of multi-speaker exposure.
Relatedly, Sinkeviciute et al. (2019) found that young learners have greater difficulty
processing multi-speaker training materials in L2 vocabulary learning, and subsequently
fail to show a speaker-variability benefit at test. One interpretation of these findings is
that age-related capacity limitations may constrain the ability to benefit from speaker
variability, supporting the notion that differences in capacity limitations can affect an
individual’s ability to benefit from multi-talker training.

Returning to the current study, we did not find an interaction between variability-
training and learner aptitude. However, it is important to acknowledge the results of our
Bayes factor analyses, which did not find substantial evidence in support of the null
over H1 (or H1 over H0) for any of the test tasks. This means that we cannot draw
conclusions about this hypothesis from the current data. In theory, we could continue
collecting data until we had substantial evidence for either H0 or H1. To explore the
feasibility of this, we conducted supplementary analyses to estimate the sample size that
might be needed to see substantial evidence for the null (based on the assumption that the
error term would reduce in proportion to √SE). Taking the Picture Identification test
(the test most similar to previous studies) our results suggests that it would require
N > 300—that is, over five times our current sample size. This suggests that this
experimental paradigm is not sufficiently sensitive to address this hypothesis.

Given the ambiguity of our findings with regard to the interaction, it is not appropriate
to extensively interpret why we do not find the interaction while the previous studies did.
However, we note that there are a variety of differences across the studies which could
underpin the different findings, if it holds true. For example, the test of individual
differences which we use is harder than that used by Sadakata & McQueen (2014) since it
uses all six Mandarin vowels (whereas the original study used five, without /y/) and all of
the Mandarin tones (where Perrachione et al. used three, without Tone 3). This change
also means that that we cannot easily contrast the range of participant scores in the two
studies and it may be that the spread of ability of our participant is different from theirs.
In addition, our training task is potentially harder than both of the previous studies,
that is, involving all four tones in the context of natural Mandarin stimuli in the context of
a word learning tasks. Finally, we also note that our statistical analyses are different from
both of the previous studies in that they took their continuous aptitude measures and
turned these into binary factors using a ‘cut off ’, whereas our statistical approach allows us
to use them as continuous variables. However, this should in principle make our approach
more powerful than in previous studies.

Future directions
If the interaction between aptitude and training condition reported in Sadakata &McQueen
(2014) and Perrachione et al. (2011) is to have implications for educational materials,
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it is important to establish whether it extends to other more naturalistic materials.
Given the relatively small samples in these original studies, and the increasing recognition
that psychology experiments have been routinely underpowered (Maxwell, Lau &
Howard, 2015; and see Vasishth et al. (2018) for a recent demonstration in the area of
reading) and that can lead to increases in both type 1 and type 2 error, we suggest that it
would be useful to implement a direct, high powered replication of these previous studies.
We note that having a sufficient sample to provide substantial evidence for H1/H0
using Bayesian methods, or to obtain 90% power for frequentist methods, would likely
require a much larger sample than is standard in these types of studies. Given the
time-consuming nature of these multiple session training studies, moving to online testing
may be necessary to make this feasible (see Xie et al., 2018 for an example of an
acoustic training study done over the web), or alternately multi-lab collaboration may be
necessary. Note that this would also allow us to see whether the fact that Perrachione et al.,
(2011) found their interaction with untrained voices, whereas Sadakata & McQueen
(2014) found it only for trained voices, is a true difference (due to the different paradigms)
or due to power. Critically, successful replication would allow us to then extend the
paradigms in such a way as to explore the factors above. For example, would increasing the
number of tones to use all four Mandarin tones and/or using natural Mandarin stimuli
affect the interaction between variability in the input and learner aptitude?

Although direct replication will play a useful role in establishing these effects, we
believe that ultimately it will also be important to develop a more nuanced approach to
measuring the factors leading to different levels of aptitude both in tone learning, and in
other types of phonetic learning. We note that here in addition to not seeing the
predicted interaction with variability, we also didn’t see interactions between aptitude
and training session in any of our tasks, suggesting that our aptitude measure predicted
baseline performance on the task and not the ability to improve due to training. In
addition, the tasks used to measure ‘aptitude’ are quite similar in nature to the training
and test tasks, decreasing their explanatory value. Our ongoing work explores the
combined predictive value of a range of measures including measures of attention,
working memory and musical ability. Identifying factors which are predictive of aptitude
for tone learning has clear implications for teaching and the personalisation of teaching
methods.

CONCLUSION
We trained naive participants on all four Mandarin tones, using real language stimuli
embedded in a word learning task. We found improvements in both production and
perception of tones which transferred to novel voices and items. We found that learning
was greatest for training with a single voice but that training with a single voice vs
four voices (whether intermixed or blocked) lead to equal amounts of generalisation.
Although learner aptitude predicted performance in most tasks, there was no evidence
that different levels of aptitude lead to better or worse learning from different types of
training input.
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