Journal of Sports Sciences

Identifying playing talent in professional football using artificial neural networks --Manuscript Draft--

Full Title:	Identifying playing talent in professional football using artificial neural networks
Manuscript Number:	RJSP-2019-0277R2
Article Type:	Special Issue
Keywords:	soccer; talent identification; Premier League; Championship; Artificial Intelligence
Abstract:	The aim of the current study was to objectively identify position-specific key performance indicators in professional football that predict out-field players league status. The sample consisted of 966 out-field players from 2 seasons in the Football League Championship. Players were assigned to one of three categories (0,1 and 2) based on where they completed most of their match time in the following season, and then split based into five positions. 340 performance, biographical and esteem variables were analysed using a Stepwise Artificial Neural Network approach. A Monte Carlo cross-validation procedure was used to avoid over-fitting and the neural network modelling involved a multi-layer perceptron architecture with a feed-forward backpropagation algorithm. The models correctly predicted between 72.7% and 100% of test cases (Mean prediction of models $=85.9 \%$), the test error ranged from 1.0% to 9.8% (Mean test error of models $=6.3 \%$). Variables related to passing, shooting, regaining possession and international appearances were key factors in the predictive models. This is highly significant as objective position-specific predictors of players league status could be used to aid the identification and comparison of transfer targets as part of the due diligence process in professional football.
Order of Authors:	Donald Barron
	Graham Ball
	Matthew Robins
	Caroline Sunderland
Response to Reviewers:	Response to Reviewers - Journal of Sports Sciences Reviewer \#4: I suggest highlighting in the discussion that the network does not merely predict the subjective scouting decisions, as you've explained in your response. Otherwise, I am satisfied with the revised version. Response The text in the discussion has been updated to answer your query around merely predicting subjective scouting decisions. Please provide feedback if you feel this is not sufficient or needs revision. Discussion The aim of the current study was to develop objective models that identified positionspecific key performance indicators that predict out-field players league status. The artificial neural network created fifteen position-specific models to predict out-field players league status. The artificial neural network's ability to correctly classify more than 75% of the players league status for fourteen different position comparisons is a key result. The models were able to accurately predict the league status of players being transferred between different levels of competition and those who were promoted or demoted with their team. Therefore, they did not simply predict subjective scouting decisions.

Identifying playing talent in professional football using artificial neural networks

Donald Barron ${ }^{1}$, Graham Ball ${ }^{2}$, Matthew Robins ${ }^{3}$, Caroline Sunderland ${ }^{4}$
1 School of Science, Technology and Engineering, University of Suffolk, Ipswich, UK (Email: d.barron2@uos.ac.uk, Tel: +44 (0)1473 338035).
2 John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK (Email: graham.ball@ntu.ac.uk, Tel: +44 (0)115 848 8308).

3 Institute of Sport, University of Chichester, Chichester, UK (Email: m.robins@chi.ac.uk, Tel: +44 (0)1243 816456).

4 Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK (Email: caroline.sunderland@ntu.ac.uk, +44 (0)115 8486379).

Corresponding author: Donald Barron

Keywords: Soccer, Talent Identification, Premier League, Championship, Artificial Intelligence

Abstract

The aim of the current study was to objectively identify position-specific key performance indicators in professional football that predict out-field players league status. The sample consisted of 966 out-field players who completed the full 90 minutes in a match during the 2008/09 or 2009/10 season in the Football League Championship. Players were assigned to one of three categories (group 0,1 and 2) based on where they completed most of their match time in the following season, and then split based on five positions including full backs ($\mathrm{n}=$ 205), centre backs $(\mathrm{n}=193)$, centre midfielders $(\mathrm{n}=205)$, wide midfielders $(\mathrm{n}=168)$ and forwards ($\mathrm{n}=195$). 340 performance, biographical and esteem variables were analysed using a Stepwise Artificial Neural Network approach. The models correctly predicted between 72.7\% and 100% of test cases (Mean prediction of models $=85.9 \%$), the test error ranged from 1.0% to 9.8% (Mean test error of models $=6.3 \%$). Variables related to passing, shooting, regaining possession and international appearances were key factors in the predictive models. This is highly significant as objective position-specific predictors of players league status have not previously been published. The method could be used to aid the identification and comparison of transfer targets as part of the due diligence process in professional football.

\section*{Introduction}

Coaches and decision makers in professional football have traditionally used subjective observations to assess the performance of their team, to review the strengths and weaknesses of future opponents and to identify potential signings (Carling, Williams and Reilly, 2005). Match analysis research into the individual's performance in football has focused heavily on the physical demands of the sport (Carling, 2013). Research led by sport scientists with a heavy focus upon the physical aspects of performance in football has not managed to identify key predictors of match outcome or team success (Bradley et al., 2016; Carling, 2013).

However, studies investigating physical performance during matches have also incorporated technical elements and provided some insights into the successful performance of players and teams (Bradley et al., 2013; Bradley et al., 2016; Dellal et al., 2010; Dellal et al., 2011). Technical factors have been identified that are prominent predictors of team success and match outcome. Shots, shots on target and ball possession are the most commonly reported predictors (Castellano, Casamachina and Lago, 2012; Lagos-Penas, Lago-Ballesteros, Dellal and Gomez, 2010; Liu, Gomez, Lago-Penas and Sampaio, 2015). There has been a heavy emphasis on the attacking aspects of play linked to success and more detailed analysis is required into the defensive aspects of play to gain a greater understanding of the game.

Following on from the research into team success and physical profiles, there has been an increasing interest in the technical profiles of players. Studies have found positional differences in Ligue 1 in France, the Premier League in England and in Spain's La Liga (Dellal, Wong, Moalla and Chamari 2010; Dellal et al., 2011). The development of advanced computer systems has supported a greater understanding of position profiles in football. However, most of the research to date has used subjective methods to select variables for analysis (Taylor, Mellalieu and James, 2004) or they have replicated indicators used in other studies (Andrzejewski, Konefal, Chmura, Kowalczuk and Chmura, 2016). Using subjective criteria selection rather than exploring a broad spectrum of the data points has meant that many variables have yet to be assessed. Therefore, the impact of these variables upon playing success and career progression is unknown.

A broader analysis of player performance and career progression has been provided by using artificial neural networks to assess a wide range of variables (Barron, Ball, Robins and Sunderland, 2018). Artificial neural networks have been shown to be better at identifying
patterns in complex non-linear data sets than forms of regression analysis and they are capable of generalizing results to solve real world problems (Basheer and Hajmeer, 2000; Lancashire, Lemetre and Ball, 2009; Tu, 1996). In a football context, artificial neural networks have been shown to be capable of creating models that can differentiate between specific groups and identify key variables that predict career progression (Barron et al, 2018). Previous studies though have been limited by assessing players regardless of position and their accuracy could be improved by making assessments of each position and the creation of position-specific career progression models.

To the authors' knowledge there has not been an objective study carried out to develop a position-specific predictive model that could support the scouting and recruitment process in professional football. The efficient and effective identification and assessment of transfer targets is a key aspect of any professional football club and requires a thorough due diligence process. Therefore, the aim of the current study was to develop an objective model to identify position-specific key performance indicators in professional football that predict out-field players league status using an artificial neural network.

Methods

Players and Match Data

The basis of the current study followed Barron et al's (2018) method but looked to build on it and focus on position-specific assessments of players. The sample consisted of 966 out-field players (mean \pm SD age and height: $25 \pm 4 \mathrm{yr}, 1.81 \pm 0.06 \mathrm{~m}$) who had completed a full 90 minutes in the English Football League Championship during the 2008/09 and 2009/10 seasons (Table 1). Technical performance data and biographical data was collected using ProZone's MatchViewer software (ProZone Sports Ltd., Leeds, UK), the official Football League website
(www.efl.com) and Scout7 Ltd's (Birmingham, UK) site. The Prozone MatchViewer system was used to collect performance data due to its accurate inter-observer agreement for the number and type of events (Bradley, O'Donoghue, Wooster and Tordoff, 2007). The data collected from the Prozone MatchViewer software was made available by STATS LLC (Chicago, USA). Institutional ethical approval was attained from the Non-Invasive Human Ethics Committee at Nottingham Trent University.

In total, 536 variables were collected in including the total number, accuracy (\% success), means, medians and upper and lower quartiles of passes, tackles, possessions regained, clearances and shots. Additional data on total appearances, playing percentage, total goals and assists, international appearances and heights was also collected. The data set originally included 536 variables but low variance statistics were removed. After removing low variance data points, the data set included 340 variables for comparison. Each player's data was converted into mean 90 -minute performance data before they were assigned to one of three categories (group 0, group 1 and group 2).

Player Grouping

Players were allocated to one of five positions (full back, centre back, wide midfielder, central midfielder or attacker) based on where they spent most of their playing time during the season (See Table 1). They were then assigned to one of three categories (group 0, group 1 and group 2) based on where they went on to complete most of their match time during the following season. The first category (group 0) included the players who completed most of their match time in a lower league during the following season. The second group (group 1) included those players who completed most their match time in the English Football League Championship during the following season and the final category (group 2) contained the players who
progressed to complete most their match time in the English Premier League during the following season.

Sample sizes for each comparison were balanced to have an equal number of cases using a random number selector (i.e. 24 full backs were selected from group 0 to have an equal number of cases for comparisons to group 2). Players who played on loan during the 2008/09 and 2009/10 seasons were included in the study but players who moved to a club outside England were excluded due to the complications in assessing the merits of foreign competitions against those in England. The five positions for each category of playing status were subsequently analysed using a Stepwise Artificial Neural Network approach to identify the optimal collection of variables for predicting playing status.

Artificial Neural Network Model

The artificial neural network modelling was based on the approach previously used in gene profiling with breast cancer data (Lancashire et al., 2009) and used in assessing player performances in the Football League Championship (Barron et al., 2018). It used in house code written in Microsoft visual basic 6 to call Statistica 10.0 (Statsoft Inc., Tulsa, USA) artificial neural network model at each loop of the stepwise procedure and output the results in a text format.

Before training the artificial neural network, the data was randomly split (60% for training purposes, 20% for validation and 20% blind test cases). A Monte-Carlo cross validation procedure was used to avoid over-fitting of the data. The artificial neural network modelling involved a multi-layer perceptron architecture with a feed-forward back-propagation algorithm. This algorithm used a sigmoidal transfer function and weights were updated by
feedback from errors. Results were provided for the average test performance and the average test error. The average test performance indicates the percentage of test cases that are correctly predicted. The average test error is the root mean square error for the test data set, this indicates the difference between the values predicted by the model and the actual values of the test data set (Salkind, 2010). Further information on the artificial neural network model can be viewed in the supplementary information.

Results

Analysis using the artificial neural network created fifteen position-specific models to predict out-field player's league status. The models correctly predicted between 72.7% and 100% of test cases $($ Mean prediction of models $=85.9 \%)$, the test error ranged from 1.0% to $9.8 \%($ Mean test error of models $=6.3 \%$). Fourteen models correctly predicted 75% or more of the test players league status with an error of 9.6% or less (Table 2). The fifteen models, created in total, contained between five and twenty variables to predict the players league status with 134 variables in total being required to make the position models. The most prominent set of variables were those related to the players passing ability, with 48 of the 134 variables (35.8%) being passing statistics. The next most prominent type of variable was related to players shooting. In total, twenty variables (14.9\%) related to shooting were selected in the models. Statistics related to regaining possession accounted for eleven of the variables (8.2%) selected. Variables related to international appearances were selected nine times (6.7\%). A full outline of the categories of variables selected can be viewed in full (Table 3).

Full Back Models

The performance of the full back models as a group were the lowest of the five positions (Average test performance $=78.4 \% \pm 8.0 \%$ and average test error $=8.6 \% \pm 1.7 \%)($ Table 4).

The group 0 v 1 comparison had the lowest average test performance and highest test error out of all the models created (Average test performance $=72.7 \%$ and average test error $=9.8 \%$) Total appearances and mean percentage of backwards passes successful were key variables in the model (Table 5). The group 1 v 2 comparison had an average test performance of 75% and a test error of 9.3%. The percentage of sideways passes successful (upper quartile) and median total shots were the most prominent variables in the model (Table 6). The best full back model was for group $0 \vee 2$ which had an average test performance of 87.5% and a test error of 6.6%.

The mean goals scored and minimum headers were the two most prominent factors in the model (Table 7).

Centre Back Models

The performance of the centre back models as a group had an average test performance of $94.4 \% \pm 5.1 \%$ and an average test error of $3.5 \% \pm 2.3 \%$. The group 0 v 1 model had an average test performance of 93.3% and an average test error of 4.1% using twenty variables. The percentage of successful passes in the opposition half (upper quartile) and shooting accuracy (upper quartile) were the most prominent variables in the model (Table 8). The group 1 v 2 model had the lowest average test performance and highest test error of the three centre back models (average test performance $=90.0 \%$ and average test error $=5.5 \%$). Backwards passes (lower quartile) and maximum short passes were the top two factors in the model (Table 9). The group 0 v 2 model had the highest average test performance of any model and the lowest test error of any model (average test performance $=100 \%$ and test error $=1.0 \%$). The group 0 v 2 centre back model contained eighteen variables with $0-6$ assists mean (group $0=0.1 \pm 0.1$, group $2=0.2 \pm 0.1$), mean shots on target inside the box (group $0=0.2 \pm 0.2$, group $2=0.3 \pm$ 0.2) and minimum penalty area entries (Group $0=0.2 \pm 0.4$, Group $2=0 \pm 0$) being key variables (Table 10).

Wide Midfielder Models

The wide midfield models group average test performance was $84.8 \% \pm 13.2 \%$ with an average test error of $6.3 \% \pm 2.5 \%$. The group 0 v 1 model had an average test performance of 79.4% and a test error of 8.2%. The maximum percentage of unsuccessful headers and forward passes successful (upper quartile) were the biggest predictors in the model (Table 11). The group 1 v 2 model had an average test performance of 77.8% and a test error of 7.4%. U21 international caps and median forward passes unsuccessful were the most prominent factors in the model (Table 12). The group 0 v 2 model had the second highest average test performance and third lowest test error of all the models created (average test performance $=100 \%$ and a test error of 3.4%). The group 0 v 2 wide midfielder model contained six variables including: total goals (group $0=1.4 \pm 1.9$, group $2=5.5 \pm 3.8$), passes attempted opposition half upper quartile (group $0=16.2 \pm 6.3$, group $2=21.4 \pm 5.8)$, fouls in the defensive third mean (group $0=0.2$ ± 0.2, group $2=0.3 \pm 0.3$), total shots on target (excluding blocked) maximum (group $0=1.0$ ± 0.8, group $2=2.6 \pm 1.1$), \% forward passes successful mean (group $0=53.4 \% \pm 14.8 \%$, group $2=55.2 \% \pm 9.7 \%$) and forward passes successful median (group $0=5.0 \pm 3.2$, group 2 $=6.1 \pm 2.2$) (Table 13).

Centre Midfielder Models

The best overall average was for the centre midfielder's models as a group (Average test performance $=86.1 \% \pm 6.6$ and average test error $=6.8 \% \pm 2.5$). The group 0 v 1 model had the lowest average test performance of the centre midfield models and had the second highest test error across all models (Average test performance $=78.6 \%$ and average test error $=9.6 \%$). Fouls and maximum first time passes were the most prominent variables in the model (Table 14). The group 1 v 2 model had an average test performance of 88.9% and a test error of 5.9%. Successful passes (lower quartile) and penalty area entries (lower quartile) were two key
variables in the model (Table 15). The group 0 v 2 model had an average test performance of 90.9% and a test error of 4.8%. The number of starts and maximum shots on target outside the box were the highest predictors in the model (Table 16).

Attacker Models

The performance of the attacker models as a group had an average test performance of 84.7% $\pm 6.6 \%$ and an average test error of $6.2 \% \pm 3.2 \%$. The group 0 v 1 model had an average test performance of 80% and an average test error of 8.7%. The most prominent variables in the model were international caps and the number of touches (lower quartile) (Table 17). The group 1 v 2 model had an average test performance of 81.8% and a test error of 7.2%. U21 international caps and international caps were the two most important factors in the model (Table 18). The best average test performance for an attacker model was recorded for the group 0 v 2 model and it had the lowest overall test error of all models (average test performance $=$ 92.3% and test error $=2.6 \%)$. The group 0 v 2 attacker model contained ten variables with total goals (group $0=2.7 \pm 3.0$, group $2=10.0 \pm 6.2$), blocks upper quartile (group $0=1.0 \pm 0.5$, group $2=1.5 \pm 0.7$) and short passes minimum (group $0=4.9 \pm 2.5$, group $2=4.3 \pm 2.4$) being key variables (Table 19).

Model Comparisons

The models produced comparing positions for group 0 v 1 had the lowest overall average test performance and highest test error (mean test performance $=80.8 \% \pm 7.6 \%$ and average test error $=8.1 \% \pm 2.3 \%$). The overall average test performance across all five positions for group 1 v 2 comparisons was $82.7 \% \pm 6.6 \%$ and the average test error was $7.1 \% \pm 1.5$. The highest overall average test performance across the five positions was for group 0 v 2 (mean test performance $=94.1 \% \pm 5.6 \%$ and average test error $=3.7 \% \pm 2.1 \%)($ Table 20). The top three
models produced by the neural network were for 0 v 2 centre back (average test performance 100% and 1.0% test error), group 0 v 2 wide midfielder (average test performance 100% and 3.4% test error) and group 0 v 1 centre back (average test performance 93.3% and 4.1% test error). The means and standard deviations for key variables for the top three models can be reviewed in full (Tables 21-23).

Discussion

The aim of the current study was to develop objective models that identified position-specific key performance indicators that predict out-field players league status. The artificial neural network created fifteen position-specific models to predict out-field players league status. The artificial neural network's ability to correctly classify more than 75% of the players league status for fourteen different position comparisons is a key result. The models were able to accurately predict the league status of players being transferred between different levels of competition and those who were promoted or demoted with their team. Therefore, they did not simply predict subjective scouting decisions.

The results surpass the previous prediction rates reported using artificial neural networks in other team sports, such as those undertaken in cricket (Iyer and Sharda, 2009; Saikia, Bhattacharjee and Lemmer, 2012). Their studies could predict classification of batsmen and bowlers with accuracy levels ranging from 49% to 77%. In individual sports, artificial neural networks have been able to predict 80.2% of gymnast's future classifications based on a multidimensional testing process (Pion, Hohmann, Liu, Lenoir and Segers, 2017). Therefore, the current artificial neural network prediction rates are among the highest reported to date in an athlete classification study.

Passing Variables

The most prominent set of variables were those related to the players passing ability, with 48 of the 134 total variables included in models (35.8%) being passing statistics. Many passing variables have been highlighted previously as key indicators when differentiating between players of various playing levels and linked to team success (Bradley et al., 2013; Rampinini, Impellizzerie, Castagna, Coutts and Wisloff, 2009). Comparisons between players within the English football pyramid showed that players in the Premier League performed a greater number of total passes, successful passes and forward passes (Bradley et al., 2013). Out of the 48 passing variables identified in the models, 29 were related to the success of the passing variables. The passing variables related to their success were a mixture of 27 different statistics accounting for the direction (forwards, sideways and backwards) of the pass, the origin of the pass (own half or opposition half) and the mean, median, minimum, maximum and upper and lower quartile figure for different variables.

In further agreement with Bradley and colleagues (2013) findings, thirteen of the passing variables were related to forward passing. Forward passes have been shown to have the lowest chance of success when compared to sideways or backwards passes (Szczepanski and McHale, 2016). Yet, to create scoring opportunities and in turn score goals players are required to progress the play with forward passing. Variables relating to forward passes appeared in models for full backs (group 0 v 1 and group 0 v 2), centre backs (group 0 v 1), wide midfield (group 0 v 1 , group 1 v 2 and group 0 v 2), centre midfield (group 0 v 1 and group 0 v 2) but did not feature prominently in any models for attackers. This would appear logical as attackers play in more advanced areas and have fewer opportunities to perform forward passes. The prevalence of forward passing variables for a number of positions and different comparisons highlights its importance in playing success.

The current study also highlighted two variables related to short passing with the maximum and minimum variables being selected in two models (group 1 v 2 centre back and group 0 v 2 attacker). Research into factors that distinguish between top four and bottom four English Premier League teams highlighted short passes as a key variable (Adams, Morgans, Sacramento, Morgan and Williams, 2013). Specifically, the mean frequency of successful short passes played by centre backs and full backs was the biggest factor differentiating between the two groups.

Using the artificial neural network methodology has highlighted some overlap between factors previously identified by research articles. The current study has also identified novel findings for variables that have not previously been analysed or identified as key variables. Eight passing variables were related to those in the opposition half and they appeared in six different position models (group 0 v 1 centre back, group 0 v 1 and 0 v 2 centre midfield, group 0 v 1 and 0 v 2 wide midfield and 0 v 2 attacker models). Six of the variables were also related to first time passes played and they appeared in the group 0 v 1 and 0 v 2 centre back, group 1 v 2 full back, group 0 v 1 and 1 v 2 centre midfield and group 0 v 1 attacker models. Passes in the opposition half indicate possession taking place in more offensive pitch locations and could indicate the involvement of players in attacking moves. The ability to pass the ball accurately over a range of distances and directions is a key factor in performance and for differentiating between players of varying ability. This is accepted knowledge amongst coaches but the models have accurately identified specific key variables and provided an objective assessment of their impact on league status.

Shooting Variables

The next most prominent type of variable was related to players shooting ability. In total, twenty variables (14.9%) related to shooting were selected in the models. This agrees with previous research into team success in football, with total shots and shooting accuracy being the most commonly reported predictors in matches (Castellano et al., 2012; Lagos-Penas et al., 2010; Liu et al., 2015). Surprisingly, all positions except attacker included shooting variables in the models created in the current study. However, one of the attacker models (group 0 v 2) did include total goals as a key variable. Many teams now prefer to play with one lone attacker in their line-up that spreads the need for scoring goals throughout the team and the requirements of the centre forward position could be changing as a result (Adams et al., 2013).

Attacking Entries

Other attacking variables selected as part of the models were related to crossing and entries into the final third and penalty area. Final third and penalty area entries were selected three times and in three different models. Crosses are a factor that have been repeatedly identified as being key to differentiating between successful and unsuccessful teams (Lagos-Penas et al., 2010; Lagos-Penas et al., 2011). They have not been identified as key when differentiating between players of different performance levels previously, they were only selected twice in the current study meaning they did not play a prominent role in the position models. The mean number of crosses were selected in the group 0 v 2 attacker model (crosses mean group 01.0 ± 0.8, group 21.75 ± 1.23). The inclusion of the number of crosses in the attacker model and the higher values reported for group 2 may offer more evidence for the evolving role of the attacker.

As well as crosses, final third and penalty area entries were selected three times and in three different models. Previous research has indicated that penalty area entries differentiate between winning and losing teams (Ruiz-Ruiz, Fradua, Fernandez-Garcia and Zubillaga, 2013). However, in the current study they were selected in one model for centre backs (group 0 v 2), the centre backs from players dropping down to a lower playing level reported higher values (minimum penalty area entries group 00.2 ± 0.4, group 20.0 ± 0.0). The identification of minimum penalty area entries in the centre back model and group 0 having a higher value is a novel finding. It may appear counter intuitive but centre backs who drop down to a lower level may play in teams who use a more direct style of play and play longer passes from their centre backs as opposed to building the play with shorter passing combinations.

Defensive Variables

The models also highlighted several defensive variables as key predictors of league status. Statistics related to regaining possession accounted for eleven of the variables (8.2\%). Previous research into match outcomes and players technical and tactical ability has heavily focused on the attacking aspects of play (Mackenzie and Cushion, 2013), passing (Adams et al., 2013; Szczepanski and McHale, 2016) and possession (Castellano et al., 2012; Collett, 2013; LagosPenas et al., 2010; Liu et al., 2015). A limited number of defensive variables have been researched or identified that are linked to success. A balanced defensive shape (Tenga, Holme, Ronglan and Bahr, 2010), defensive reaction after losing possession (Vogelbein, Nopp and Hokelmann, 2014) and regaining possession in the final third have been identified previously (Almeida, Ferreira and Volossovitch, 2014).

The current study highlighted possession won based on the minimum, median, maximum and upper quartile variables as being key predictors of league status. Possession gained upper
quartile and interceptions median and maximum were also selected as key variables in models. The defensive variables were not selected as part of any of the full back models. They were commonly selected as part of the wide midfield (group 0 v 1 and group 1 v 2) and attacker models (group 1 v 2 and group 0 v 2). This may appear counter intuitive and these factors would not normally be assessed when profiling more attacking positions within the team. Modern playing philosophies valuing high pressing tactics from forward players to regain possession in more advanced areas of the pitch, this may explain the importance of these factors in wide midfield and attacker models within the current study (Perarnau, 2014).

International Recognition

Other key variables selected throughout several models relate to international appearances, international caps and U21 international caps were selected nine times (6.7\%) in total. This is a novel finding as previous assessments of player's performances have limited themselves to match performance and season totals of performance data. Previous research into international recognition and team or playing success has not been undertaken to the author's knowledge. However, international recognition has been found to be linked with player salary allocation, particularly at the higher levels of the game (Frick, 2011).

Position-Specific Models

The current study created a number of strong predictive models for player's league status, there were also some key findings relating to the prediction rates of specific positions. Three of the five positions had very similar levels of classification accuracy (centre midfield 86.1%, wide midfield 85.7% and attacker 84.7%) but the full back position's overall accuracy was only 78.4% and the centre back position's overall accuracy was 94.4%. The full back results are still an important finding but below the levels reported for other positions. The group 0 v 1 full back
model had the lowest classification accuracy of all the models and the group 1 v 2 full back model had the second lowest classification accuracy. The full back position is one that requires a complex set of technical and tactical skills as it requires a wide array of attacking and defensive qualities (Bush, Archer, Hogg and Bradley, 2015).

Recent evaluations of the changes within performance data for playing positions has shown extensive changes over time in the Premier League (Bush et al., 2015). Pronounced increases were found for the levels of high-speed running and the distances covered while sprinting, with full backs showing the largest increases between 2006-07 and 2012-13 (Bush et al., 2015). Therefore, the full back position may be influenced more by the physical aspects of performance. This could explain the lower prediction rates for full backs due to the lack of physical tracking data being available.

Study Limitations

Strong models were identified for fourteen out of the fifteen position comparisons assessed but there are some limitations to the present study that should be addressed in future research. The match running performance data for players was not available for the current study. There is an acceptance amongst the sports science community that running performance is not a predictor of team success or match outcome (Bradley et al., 2016; Carling, 2013). However, including match running performance data could provide a higher level of classification accuracy for some of the positions assessed. Another limitation of the study is the lack of contextual data available and the inability of the data to provide a detailed assessment for off the ball parameters. The final limitation of the study relates to the sample size for players progressing to play in the Premier League. The samples for the players progressing from the five positions to play in the Premier League were the smallest of all the groupings. Statistical
power tests on similar sample sizes have reached the required levels (Lancashire et al., 2009).
However, future studies should look to increase the sample available to increase confidence that the results are repeatable to new cases.

Conclusions

The current study has shown that artificial neural networks are a valid and highly effective tool to classify and predict players league status. Fourteen models across all five positions were created that provided strong prediction accuracy levels for players league status. This is an important result as it outlines an objective methodology that can aid the scouting and recruitment process in professional football. The process of identifying and recruiting players in professional football has largely been a subjective process in the past. Further research should look to combine assessments of physical and technical performance data to provide a more accurate prediction of league status. Studies should also look to create models to predict the career progression of players from multiple leagues to provide a better practical tool for scouting and recruitment purposes. The combination of subjective assessments and more objective tools could lead to a more effective overall process in the highly competitive football transfer market.

Acknowledgments

The authors would like to thank STATS for providing access to the performance data that is used in this study. We would also like to thank Scout7 for providing access to their system to include biographical and international appearance data in the current study.

References

Adams, D., Morgans, R., Sacramento, J., Morgan, S., and Williams, M. D., 2013. Successful short passing frequency of defenders differentiates between top and bottom four English Premier League teams. International Journal of Performance Analysis in Sport, 13, pp. 653668.

Almeida, C. H., Ferreira, A. P., and Volossovitch, A., 2014. Effects of match location, match status and quality of opposition on regaining possession in UEFA Champions League. Journal of Human Kinetics, 41 (2014), pp. 2013-214.

Andrzejewski, M., Konefal, M., Chmura, P., Kowalczuk, E., and Chmura, J., 2016. Match outcome and distances covered at various speeds in match play by elite German soccer players. International Journal of Performance Analysis in Sport, 16 (3), pp. 817-828.

Basheer, I.A., and Hajmeer, M., 2000. Artificial neural networks: fundamentals, computing, design and application. Journal of Microbiological Methods, 43 (2000), pp. 3-31.

Bradley, P. S., Archer, D., Hogg, B., Schuth, G., Bush, M., Carling, C., and Barnes, C., 2016. Tier-specific evolution of match performance characteristics in the English Premier League: It's getting tougher at the top. Journal of Sports Sciences, 34 (10), pp. 980-987.

Bradley, P. S., Carling, C., Diaz, A. G., Hood, P., Barnes, C., Ade, J., Boddy, M., Krustrup, P., and Mohr, M., 2013. Match performance and physical capacity of players in the top three competitive standards of English professional soccer. Human Movement Science, 32 (2013), pp. 808-821.

Bradley, P. S., O’Donaghue, P., Wooster, B., and Tordoff, P., 2007. The reliability of ProZone MatchViewer: a video-based technical performance analysis system. International Journal of Performance Analysis in Sport, 7 (3), pp. 117-129.

Bush, M. D., Archer, D. T., Hogg, R., and Bradley, P. S., 2015. Factors influencing physical and technical variability in the English Premier League. International Journal of Sports Physiology and Performance, 10, pp. 865-872.

Carling, C., 2013. Interpreting physical performance in professional soccer match-play: Should we be more pragmatic in our approach. Sports Medicine, 43 (2013), pp. 655-663.

Carling, C., Williams, A. M., and Reilly, T. R., 2005. Handbook of soccer match analysis: A systematic approach to improving performance. London: Routledge.

Castellano, J., Casamichana, D., and Lago, C., 2012. The use of match statistics that discriminate between successful and unsuccessful soccer teams. Journal of Human Kinetics, 31 (2012), pp. 139-147.

Collett, C., 2013. The possession game? A comparative analysis of ball retention and team success in European and international football, 2007-2010. Journal of Sports Sciences, 31 (2), pp. 123-136.

Dellal, A., Chamari, K., Wong, D. P., Ahmaidi, S., Keller, D., Barros, R., Bisciotti, G. N., and Carling, C., 2011. Comparison of physical and technical performance in European soccer match-play: FA Premier League and La Liga. European Journal of Sport Science, 11 (1), pp. 51-59.

Dellal, A., Wong, D. P., Moalla, W., and Chamari, K., 2010. Physical and technical activity of soccer players in the French First League - with special reference to their playing position. International SportMed Journal, 11 (2), pp. 278-290.

Frick, B., 2011. Performance, salaries, and contract length: Empirical evidence from German soccer. International Journal of Sport Finance, 6, pp. 87-118.

Iyer, S., R., and Sharda, R., 2009. Prediction of athletes performance using neural networks: An application in cricket team selection. Expert systems with applications, 36 (2009), pp. 55105522.

Lancashire, L. J., Lemetre, C., and Ball, G. R., 2009. An introduction to artificial neural networks in bioinformatics - application to complex microarray and mass spectrometry datasets in cancer studies. Briefings in Bioinformatics, 10 (3), pp. 315-329.

Lago-Penas, C., Lago-Ballesteros, J., Dellal, A., and Gomez, M., 2010. Game-related statistics that discriminated winning, drawing and losing teams from the Spanish soccer league. Journal of Sports Science and Medicine, 9, pp. 288-293.

Liu, H., Gomez, M. A., Lago-Penas, C., and Sampaio, J., 2015. Match statistics related to winning in the group stage of 2014 Brazil FIFA World Cup. Journal of Sports Sciences, 33 (12), pp. 1205-1213.

Mackenzie, R., and Cushion, C., 2013. Performance analysis in football: A critical review and implications for future research. Journal of Sports Sciences, 31 (6), pp. 639-676.

Perarnau, M., 2014. Pep confidential: The inside story of Pep Guardiola's first season at Bayern Munich. Edinburgh: Arena Sport.

Pion, J., Hohmann, A., Liu, T., Lenoir, M., \& Segers, V. (2017). Predictive models reduce talent development costs in female gymnastics. Journal of Sports Sciences, 35(8), 806-811.

Rampinini, E., Impellizzeri, F. M., Castagna, C., Coutts, A. J., and Wisloff, U., 2009. Technical performance during soccer matches of the Italian Serie A league: Effect of fatigue and competitive level. Journal of Science and Medicine in Sport, 12, pp. 227-233.

Ruiz-Ruiz, C., Fradua, L., Fernandez-Garcia, A., and Zubillaga, A., 2013. Analysis of entries into the penalty area as a performance indicator in soccer. European Journal of Sport Science, 13 (3), pp. 241-248.

Saikia, H., Bhattacharjee, D., and Lemmer, H., H., 2012. Predicting the performance of bowlers in IPL: An application of artificial neural network. International Journal of Performance Analysis in Sport, 12 (1), pp. 75-89.

Salkind, N., J., 2010. Encyclopedia of research design. California: Sage.

Taylor, J., B., Mellalieu, S., and James, N., 2004. Behavioural comparisons of positional demands in professional soccer. International Journal of Performance Analysis in Sport, 4 (1), pp. 81-97.

Tenga, A., Holme, I., Ronglan, L. T., and Bahr, R., 2010. Effects of playing tactics on goal scoring in Norwegian professional soccer. Journal of Sports Sciences, 28 (3), pp. 237-244.

Tu, J. V., 1996. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49 (11), pp. 1225-1231.

Vogelbein, M., Nopp, S., and Hokelmann, A., 2014. Defensive transition in soccer - are prompt possession regains a measure of success? A quantitative analysis of German FusballBundesliga 2010/11. Journal of Sports Sciences, 32 (11), pp. 1076-1083.

Formatted: Normal, Space After: 0 pt, Line spacing:

 1.5 lines| Group | Players (n) | Age (years) | Height (cm) | 90 Minute Appearances | Total Minutes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Group 0 Full Back | 56 | 24.2 ± 4.3 | 180.5 ± 4.4 | 10.1 ± 10.7 | 1112 ± 1040 |
| Group 1 Full Back | 125 | 24.9 ± 4.2 | 180.2 ± 4.3 | 20.0 ± 12.1 | 2603 ± 1107 |
| Group 2 Full Back | 24 | 25.4 ± 3.3 | 179.7 ± 3.6 | 18.5 ± 12.5 | 1919 ± 1200 |
| Group 0 Centre Back | 37 | 27.5 ± 5.1 | 187.2 ± 5.1 | 15.9 ± 10.9 | 15901 ± 1023 |
| Group 1 Centre Back | 131 | 25.6 ± 3.7 | 186.7 ± 4.2 | 22.5 ± 12.4 | 2186 ± 1116 |
| Group 2 Centre Back | 25 | 25.6 ± 3.4 | 187.4 ± 3.7 | 22.8 ± 12.0 | 2173 ± 1141 |
| Group 0 Wide Midfield | 42 | 24.4 ± 4.3 | 179.1 ± 5.5 | 6.6 ± 7.0 | 1119 ± 858 |
| Group 1 Wide Midfield | 103 | 24.6 ± 3.7 | 177.2 ± 5.6 | 12.6 ± 9.6 | 1840 ± 1000 |
| Group 2 Wide Midfield | 23 | 24.8 ± 3.7 | 179.2 ± 4.8 | 19.4 ± 11.5 | 2425 ± 1109 |
| Group 0 Centre Midfield | 36 | 25.6 ± 4.8 | 179.7 ± 5.1 | 12.4 ± 11.9 | 1505 ± 1147 |
| Group 1 Centre Midfield | 148 | 25.6 ± 3.9 | 178.8 ± 5.8 | 19.5 ± 11.1 | 2238 ± 1006 |
| Group 2 Centre Midfield | 21 | 26.3 ± 4.5 | 178.5 ± 4.5 | 25.6 ± 13.6 | 2693 ± 1253 |
| Group 0 Attacker | 38 | 26.6 ± 4.8 | 182.2 ± 6.5 | 6.2 ± 6.9 | 1096 ± 920 |
| Group 1 Attacker | 130 | 26.0 ± 3.9 | 181.6 ± 5.9 | 11.8 ± 9.3 | 1845 ± 931 |
| Group 2 Attacker | 27 | 26.2 ± 4.5 | 181.7 ± 5.8 | 13.2 ± 9.3 | 2081 ± 930 |

Table 1. Biographical data represented as means and standard deviations for player groupings.
\qquad
\qquad
\qquad
\qquad
 1

 3

相

 4 65

Table 2. Results for all models with balanced data sets. The best average test performance $=$ 100.0% and the best average test error $=1.0 \%$ (Using a combination of eighteen variables) Centre Back Group 0 v 2. The worst average test performance $=72.7 \%$ and the worst average test error $=9.8 \%$ (Using a combination of five variables) - Full Back Group 0 v 1.

Position	Groups	Average Test Performance (\%)	Average Test Error (\%)	Number of Variables
Full Back	0 v 1	72.7	9.8	5
Full Back	0 v 2	87.5	6.5	10
Full Back	1 v 2	75	9.3	6
Centre Back	0 v 1	93.3	4.1	20
Centre Back	0 v 2	100	1.0	18
Centre Back	1 v 2	90	5.5	6
Wide Midfield	0 v 1	76.5	8	10
Wide Midfield	0 v 2	100	3.4	6
Wide Midfield	1 v 2	77.8	7.4	9
Centre Midfield	0 v 1	78.6	9.6	9
Centre Midfield	0 v 2	90.9	4.8	10
Centre Midfield	1 v 2	88.9	5.9	5
Attacker	0 v 1	80	8.7	5
Attacker	0 v 2	92.3	2.6	10
Attacker	1 v 2	81.8	7.2	6
Average	NA	85.7	6.3	9.0

Table 3. Summary of the variables in all position models by grouping.

Variable Grouping	Times Selected	Selected (\%)
Passing	48	35.8
Shooting	20	14.9
Regains	11	8.2
International Appearances	9	6.7
Heading	8	6.0
Fouls	5	3.7
Goals	5	3.7
Appearances	4	3.0
Entries	3	2.2
Possession Lost	4	3.0
Tackled	3	2.2
Time in Possession	3	2.2
Assists	2	1.5
Blocks	2	1.5
Clearances	2	1.5
Crossing	2	1.5
Touches	2	1.5
Balls Received	1	0.7
Possessions	1	0.7

$1 \boldsymbol{\sigma}_{\text {Position Comparison }}$	Overall Average Test Performance (\%)	Overall Average Test Error (\%)
$\mathbf{1 1}$	78.4 ± 8.0	8.6 ± 1.7
$\mathbf{1 2}$ Full Back	94.5 ± 5.1	3.5 ± 2.3
13 Centre Back	84.8 ± 13.2	6.3 ± 2.5
14	6.8 ± 2.5	
15Wide Midfield	86.1 ± 6.6	6.2 ± 3.2
16 Centre Midfield	84.7 ± 6.6	
18Attacker		

Table 5. Results for Group 0 v Group 1 Full Back balanced data set comparison. The best average test performance $=72.7 \%$ and the best average test error $=9.8 \%$ (Using a combination of five variables).
23

$\begin{aligned} & 24 \\ & 25^{\mathrm{Rank}} \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
26_{1}	Total Appearances	63.6	11.2
27			
28^{2}	\% Backwards Passes Successful (Mean)	72.7	10.6
293	Total Minutes	72.7	9.8
	\% Forwards Passes Successful (Mean)	72.7	9.8
$\begin{aligned} & 32_{5} \\ & 33 \end{aligned}$	Forwards Passes (Maximum)	72.7	9.8
34^{6}	Blocks (Mean)	70.5	9.9
$\begin{aligned} & 35_{7} \\ & 36 \end{aligned}$	\% Unsuccessful Headers (Median)	68.2	10.0
37^{8}	Forward Passes Successful (Median)	68.2	10.0
$\begin{aligned} & 38_{9} \\ & 39 \end{aligned}$	\% Passes Successful Own Half (Mean)	72.7	9.9
40^{10}	Passes Own Half 25\% (Lower Quartile)	72.7	10.0

11 Rank	Variable	Average Test Performance (\%)	Average Test Error $(\%)$
12		60.0	11.3
14^{1}	\% Sideways Passes Successful 75\% (Upper Quartile)	60.0	10.9
15^{2}	Total Shots (Median)	70.0	9.7
16	International Caps	70.0	9.3
17^{3}	Tackled (Mean)	70.0	9.1
184	First Time Passes (Maximum)	75.0	9.3
19	Number of Possessions (Median)	70.0	9.4
21_{6}^{5}	Tackled (Minimum)	70.0	9.4
22	\% Sideways Passes Successful 25\% (Lower Quartile)	70.0	9.8
23^{7}	Total Assists	70.0	9.8
24_{8}	\% First Time Passes Unsuccessful 25\% (Lower Quartile)		
26^{9}			

Table 7. Results for Group 0 v Group 2 Full Back balanced data set comparison. The best average test performance $=87.5 \%$ and the best average test error $=6.6 \%$ (Using a combination of ten variables).

$\begin{aligned} & 32 \\ & 34^{\text {Rank }} \\ & 35 \end{aligned}$	Variable	$\begin{aligned} & \text { Average Test } \\ & \text { Performance (\%) } \end{aligned}$	Average Test Error (\%)
$3 \overline{61}$	Goals (Mean)	75.0	9.1
$\begin{aligned} & 37 \\ & 38^{2} \end{aligned}$	Headers (Minimum)	75.0	8.6
393	\% Forward Passes Unsuccessful (Mean)	81.3	8.2
$\begin{aligned} & 40 \\ & 41^{4} \end{aligned}$	Shots Off Target (Exc. Blocked) (Maximum)	78.1	8.1
425	\% Forward Passes Unsuccessful 75\% (Upper Quartile)	75.0	8.2
$\begin{aligned} & 43 \\ & 44^{6} \end{aligned}$	U21 Caps	75.0	8.0
457	Shots Inside the Box (Mean)	81.3	7.7
$\begin{aligned} & 46 \\ & 47^{8} \end{aligned}$	Possession Lost (Mean)	81.3	7.0
489	Shots On Tgt Outside the Box (Maximum)	81.3	7.2
50^{10}	Total Assists	87.5	6.6
51			

Table 6. Results for Group 1 v Group 2 Full Back balanced data set comparison. The best average test performance $=75.0 \%$ and the best average test error $=9.3 \%$ (Using a combination of six variables).
2

 4 5

$\begin{aligned} & \text { 11 Rank } \\ & 12 \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
13			
14^{1}	\% Passes Successful Opp Half 75\% (Upper Quartile)	66.7	10.9
152	Shooting Accuracy 75\% (Upper Quartile)	73.3	9.3
$\begin{aligned} & 16 \\ & 17^{3} \end{aligned}$	\% Successful Headers 75\% (Upper Quartile)	80.0	7.6
184	Balls Received 75\% (Upper Quartile)	80.0	7.6
$\begin{aligned} & 19 \\ & 20^{5} \end{aligned}$	Crosses (Median)	80.0	7.9
216	\% First Time Passes Successful 25\% (Lower Quartile)	80.0	6.8
$\begin{aligned} & 22 \\ & 23^{7} \end{aligned}$	Total Shots on Target (Mean)	86.7	6.4
24_{8}	Passes Successful Opp Half (Minimum)	86.7	6.0
26^{9}	U21 Caps	86.7	6.1
27_{10}	Shooting Accuracy 25\% (Lower Quartile)	86.7	5.2
$\begin{aligned} & 28 \\ & 29^{11} \end{aligned}$	Medium Passes (Mean)	86.7	5.2
30_{12} 31	Forward Passes Successful (Minimum)	93.3	4.5
32^{13}	Total Shots on Tgt (Excluding Blocked) (Mean)	86.7	5.0
33_{14} 34	Goals (Mean)	86.7	4.5
35^{15}	\% Unsuccessful Headers 25\% (Lower Quartile)	90.0	4.7
3616 37	Long Passes (Median)	93.3	4.5
38^{17}	\% Passes Successful Opp Half (Minimum)	93.3	4.2
$\begin{aligned} & 39_{18} \\ & 40 \end{aligned}$	Avg Time in Possession (Mean)	86.7	4.8
41^{19}	\% Forwards Passes Successful (Minimum)	86.7	4.7
$\begin{aligned} & 42_{20} \\ & 43 \end{aligned}$	Shooting Accuracy (Median)	93.3	4.1

Table 8. Results for Group 0 v Group 1 Centre Back balanced data set comparison. The best average test performance $=93.3 \%$ and the best average test error $=4.1 \%$ (Using a combination of twenty variables).

$\begin{aligned} & \text { 11Rank } \\ & 12 \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
13			
14^{1}	Backwards Passes 25\% (Lower Quartile)	70.0	10.7
152	Short Passes (Maximum)	70.0	9.4
$\begin{aligned} & 16 \\ & 17^{3} \end{aligned}$	Interceptions (Maximum)	80.0	8.1
184	Shots on Target Inside the Box (Mean)	80.0	6.8
$\begin{aligned} & 19 \\ & 20^{5} \end{aligned}$	Sideways Passes Unsuccessful (Mean)	80.0	6.6
216	Sideways Passes Successful 75\% (Upper Quartile)	90.0	5.5
$\begin{aligned} & 22 \\ & 23^{7} \end{aligned}$	Passes Successful Own Half (Mean)	90.0	5.5
24_{8}	\% Passes Successful Opp Half (Minimum)	80.0	6.3
$25{ }_{26}{ }^{9}$	\% Sideways Passes Successful (Median)	90.0	6.4
$\begin{aligned} & 27_{10} \\ & 28 \end{aligned}$	Shots On Tgt Outside the Box (Mean)	85.0	6.6

28

Table 9. Results for Group 1 v Group 2 Centre Back balanced data set comparison. The best average test performance $=90.0 \%$ and the best average test error $=5.5 \%$ (Using a combination of six variables).

-

8

4

$\begin{aligned} & 11 \overline{\text { Rank }} \\ & 12 \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
13^{1}	0-6 Assists (Mean)	80.0	8.1
14_{2} 15	Shots on Target Inside the Box (Mean)	80.0	5.8
16^{3}	Penalty Area Entries (Minimum)	90.0	4.4
$\begin{aligned} & 17_{4} \\ & 18 \end{aligned}$	International Caps	90.0	3.7
19^{5}	Long Passes 25\% (Lower Quartile)	90.0	3.2
$\begin{aligned} & 20_{6} \\ & 21 \end{aligned}$	Shots Outside the Box (Mean)	90.0	2.9
22^{7}	U21 Caps	100.0	2.4
$\begin{aligned} & 23_{8} \\ & 24 \end{aligned}$	Possession Gained 75\% (Upper Quartile)	100.0	1.5
25^{9}	Avg Time in Possession (Median)	100.0	1.5
$\begin{aligned} & 26_{10} \\ & 27 \end{aligned}$	Clearances (Maximum)	100.0	1.2
2811	Shots Outside the Box (Median)	100.0	1.1
$\begin{aligned} & 29_{12} \\ & 30 \end{aligned}$	First Time Passes (Mean)	100.0	1.3
3113	Unsuccessful Passes (Minimum)	100.0	1.4
$\begin{aligned} & 32_{14} \\ & 33 \end{aligned}$	Interceptions 75\% (Upper Quartile)	100.0	1.3
3415	Possession Gained (Minimum)	100.0	1.3
$\begin{aligned} & 35_{16} \\ & 36 \end{aligned}$	Shots Inside the Box 25\% (Lower Quartile)	100.0	1.1
3717	Total Shots on Target (Mean)	100.0	1.2
$\begin{aligned} & 38_{18} \\ & 39 \end{aligned}$	Tackled (Minimum)	100.0	1.0
4019	Final Third Entries (Mean)	100.0	1.0
$\begin{aligned} & 41_{20} \\ & 42 \end{aligned}$	Medium Passes 25\% (Lower Quartile)	100.0	1.3

Table 10. Results for Group 0 v Group 2 Centre Back balanced data set comparison. The best average test performance $=100 \%$ and the best average test error $=1.0 \%$ (Using a combination of eighteen variables).

$\begin{aligned} & 11 \text { Rank } \\ & 12 \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
13			
14^{1}	\% Unsuccessful Headers (Maximum)	70.6	10.8
152	Forward Passes Successful 75\% (Upper Quartile)	73.5	10.0
16			
17^{3}	Possession Won 75\% (Upper Quartile)	70.6	9.8
184	Shooting Accuracy 25\% (Lower Quartile)	76.5	8.9
19			
20^{5}	\% Unsuccessful Headers 75\% (Upper Quartile)	79.4	8.5
216	\% Successful Headers (Median)	76.5	8.4
22			
23^{7}	Sideways Passes Successful 75\% (Upper Quartile)	76.5	8.2
24_{8}	Fouls (Mean)	76.5	8.1
25			
26^{9}	Tackled (Maximum)	79.4	8.2
$\begin{aligned} & 27_{10} \\ & 28 \end{aligned}$	Passes Attempted Opp Half (Mean)	76.5	8.0

Table 11. Results for Group 0 v Group 1 Wide Midfield balanced data set comparison. The best average test performance $=79.4 \%$ and the best average test error $=8.2 \%$ (Using a combination of nine variables).

Table 12. Results for Group 1 v Group 2 Wide Midfield balanced data set comparison. The best average test performance $=77.8 \%$ and the best average test error $=7.4 \%$ (Using a combination of nine variables).
33

$\begin{aligned} & 34 \overline{\text { Rank }} \\ & 35 \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
36			
37^{1}	U21 International Caps	66.7	10.3
382	Forwards Passes Unsuccessful (Median)	77.8	9.3
40^{3}	\% Sideways Passes Unsuccessful (Median)	77.8	9.1
41_{4}	Fouls (Mean)	77.8	8.9
42 (
43^{5}	Possession Won (Maximum)	77.8	8.6
44_{6}	\% Unsuccessful Headers (Maximum)	77.8	8.5
45			
46^{7}	Backwards Passes Unsuccessful (Maximum)	77.8	8.7
47_{8}	Possession Lost (Maximum)	77.8	7.9
48			
49^{9}	Possession Won (Minimum)	77.8	7.4
$\begin{aligned} & 50_{10} \\ & 51 \end{aligned}$	\% Unsuccessful Headers 25\% (Lower Quartile)	77.8	7.6

$\begin{aligned} & 1 \overline{1 \text { Rank }^{2}} \\ & 12 \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
13			
14^{1}	Total Goals	84.6	7.2
152	Passes Attempted Opp Half 75\% (Upper Quartile)	84.6	6.3
16			
17^{3}	Fouls in Defensive 3rd (Mean)	84.6	6.1
184	Total Shots on Tgt (Excluding Blocked)		
19	(Maximum)	92.3	4.5
20_{5}	\% Forwards Passes Successful (Mean)	92.3	3.3
226	Forward Passes Successful (Median)	100.0	3.4
23 24	Tackled 75\% (Upper Quartile)	92.3	3.7
258	\% Unsuccessful Passes 75\% (Upper Quartile)	92.3	3.6
$\begin{aligned} & 269 \\ & 27 \end{aligned}$	Backwards Passes Unsuccessful (Mean)	92.3	3.5
2810	Possession Lost (Median)	92.3	3.1
29			

Table 14. Results for Group 0 v Group 1 Centre Midfield balanced data set comparison. The best average test performance $=78.6 \%$ and the best average test error $=9.6 \%$ (Using a combination of nine variables).
34

$\begin{aligned} & 35 \operatorname{Rank} \\ & 36 \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
371	Fouls	57.1	11.5
392	First Time Passes (Maximum)	64.3	10.9
$\begin{aligned} & 40_{3}^{3} \\ & 41^{3} \end{aligned}$	Backwards Passes 75\% (Upper Quartile)	64.3	10.6
424	Number of Touches (Median)	64.3	10.6
$\begin{aligned} & 43_{5} \\ & 44 \end{aligned}$	Fouls (Maximum)	64.3	10.5
456	Total Minutes	71.4	9.9
$\begin{aligned} & 46 \\ & 47 \\ & 48 \end{aligned}$	\% Forward Passes Unsuccessful 25\% (Lower Quartile)	71.4	9.6
498	Sideways Passes (Median)	71.4	9.6
$\begin{aligned} & 50_{9} \\ & 51 \end{aligned}$	Passes Attempted Opp Half (Minimum)	78.6	9.6
5210	Height	71.4	9.7

Table 13. Results for Group 0 v Group 2 Wide Midfield balanced data set comparison. The best average test performance $=100 \%$ and the best average test error $=3.4 \%$ (Using a combination of six variables).

$\begin{aligned} & 12 \text { Rank } \\ & 13^{\text {Ran }} \\ & 14 \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
151	Successful Passes 25\% (Lower Quartile)	66.7	10.2
$\begin{aligned} & 16 \\ & 17^{2} \end{aligned}$	Penalty Area Entries 25\% (Lower Quartile)	66.7	9.6
183	Goals (Mean)	77.8	8.4
$\begin{aligned} & 19 \\ & 20^{4} \end{aligned}$	Backwards Passes Unsuccessful (Mean)	88.9	6.2
215	First Time Passes Successful (Maximum)	88.9	5.9
$\begin{aligned} & 22 \\ & 23^{6} \end{aligned}$	Backwards Passes (Median)	88.9	6.2
247 25	\% Sideways Passes Successful 25\% (Lower Quartile)	88.9	6.4
26^{8}	Total Shots 25\% (Lower Quartile)	88.9	6.4
279	Passes Own Half (Mean)	88.9	6.9
28	Dribbles 75\% (Upper Quartile)	83.3	7.2

Table 15. Results for Group 1 v Group 2 Centre Midfield balanced data set comparison. The best average test performance $=88.9 \%$ and the best average test error $=5.9 \%$ (Using a combination of five variables).

Table 16. Results for Group 0 v Group 2 Centre Midfield balanced data set comparison. The best average test performance $=90.9 \%$ and the best average test error $=4.8 \%$ (Using a combination of ten variables).
34

$\begin{aligned} & 35_{\text {Rank }} \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
37			
381	No. Of Starts	72.7	9.6
$\begin{aligned} & 39_{2} \\ & 40^{2} \end{aligned}$	Shots On Tgt Outside the Box (Maximum)	81.8	8.6
413	Possession Lost (Maximum)	77.3	8.0
$\begin{aligned} & 424 \\ & 43 \end{aligned}$	Forwards Passes (Mean)	81.8	7.2
445	Possession Won (Median)	81.8	6.0
$\begin{aligned} & 45 \\ & 46 \end{aligned}$	Clearances 25\% (Lower Quartile)	81.8	5.5
477	Total Shots on Target (Mean)	90.9	5.2
488	Total Blocked Shots (Maximum)	90.9	5.2
509	Forwards Passes (Median)	90.9	4.9
$\begin{aligned} & 51_{10} \\ & 52^{10} \end{aligned}$	\% Passes Successful Opp Half 75\% (Upper Quartile)	90.9	4.8

53

54

$\begin{aligned} & 11 \text { Rank } \\ & 12 \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
13^{1}	International Caps	73.3	10.4
$\begin{aligned} & 14_{2} \\ & 15 \end{aligned}$	Number of Touches 25\% (Lower Quartile)	73.3	9.2
16^{3}	First Time Passes (Maximum)	73.3	9.1
$\begin{aligned} & 17_{4} \\ & 18 \end{aligned}$	Blocks (Maximum)	73.3	8.9
19^{5}	Final Third Entries (Mean)	80.0	8.7
$\begin{aligned} & 20_{6} \\ & 21 \end{aligned}$	Passes Successful Own Half (Median)	73.3	8.9
22^{7}	\% Successful Passes (Maximum)	73.3	9.2
238 24	Tackled 25\% (Lower Quartile)	73.3	9.0
25^{9}	\% Forwards Passes Successful (Minimum)	73.3	9.1
$\begin{aligned} & 26_{10} \\ & 27^{2} \\ & \hline \end{aligned}$	\% Passes Successful Opp Half (Minimum)	73.3	9.1

Table 17. Results for Group 0 v Group 1 Attacker balanced data set comparison. The best average test performance $=80.0 \%$ and the best average test error $=8.7 \%$ (Using a combination of five variables).

Table 18. Results for Group 1 v Group 2 Attacker balanced data set comparison. The best average test performance $=81.8 \%$ and the best average test error $=7.2 \%$ (Using a combination of six variables).

$\begin{aligned} & 33_{\text {Rank }} \\ & 34 \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
351	U21 International Caps	63.6	11.0
$\begin{aligned} & 36 \\ & 37^{2} \end{aligned}$	International Caps	72.7	9.9
383	Unsuccessful Passes (Maximum)	72.7	9.6
$\begin{aligned} & 39_{4} \\ & 40 \end{aligned}$	Interceptions (Maximum)	72.7	8.7
415	Possession Won (Median)	81.8	7.2
$\begin{aligned} & 42 \\ & 43 \end{aligned}$	\% Unsuccessful Passes 75\% (Upper Quartile)	81.8	7.2
447	Final Third Entries 25\% (Lower Quartile)	81.8	7.8
$\begin{aligned} & 45 \\ & 46 \end{aligned}$	Tackles (Maximum)	81.8	7.4
479	\% Unsuccessful Passes (Minimum)	81.8	7.5
$\begin{aligned} & 48 \\ & 49^{10} \end{aligned}$	Penalty Area Entries (Minimum)	81.8	7.3

$\begin{aligned} & 1 \overline{\text { Rank }} \\ & 12 \end{aligned}$	Variable	Average Test Performance (\%)	Average Test Error (\%)
13			
14^{1}	Total Goals	76.9	7.6
152	Blocks 75\% (Upper Quartile)	84.6	5.6
16	Short Passes (Minimum)	92.3	5.0
17^{3}			
184	Passes Own Half 25\% (Lower Quartile)	92.3	4.4
19	\% Unsuccessful Headers (Maximum)	92.3	4.0
216	Crosses (Mean)	92.3	3.0
22			
23^{7}	Avg Time in Possession 75\% (Upper Quartile)	92.3	2.9
248	Interceptions (Median)	92.3	3.0
25	Passes Successful Opp Half 75\% (Upper Quartile)	92.3	3.0
27_{10}	Backwards Passes 25\% (Lower Quartile)	92.3	2.6
28			

Table 19. Results for Group 0 v Group 2 Attacker balanced data set comparison. The best average test performance $=92.3 \%$ and the best average test error $=2.6 \%$ (Using a combination of ten variables).

Table 20. Comparison of overall average test performance scores from position models as means and standard deviations.

Group Comparison	Overall Average Test Performance (\%)	Overall Average Test Error (\%)
Group 0 v 1 Comparisons	80.8 ± 7.6	8.1 ± 2.3
Group 1 v 2 Comparisons	82.7 ± 6.6	7.1 ± 1.5
Group 0 v 2 Comparisons	94.1 ± 5.6	3.7 ± 2.1

Table 21. Group 0 v 2 Centre Back model variables represented as means and standard deviations for all player groupings.

Variables	Group 0 Centre Back	Group 2 Centre Back
0-6 Assists (Mean)	0.1 ± 0.1	0.2 ± 0.1
Shots on Target Inside the Box (Mean)	0.2 ± 0.2	0.3 ± 0.2
Penalty Area Entries (Minimum)	0.2 ± 0.4	0.0 ± 0.0
International Caps	4.8 ± 18.3	9.2 ± 14.6
Long Passes 25\% (Lower Quartile)	4.3 ± 2.2	4.9 ± 2.0
Shots Outside the Box (Mean)	0.1 ± 0.2	0.1 ± 0.1
U21 Caps	0.3 ± 0.9	3.5 ± 6.6
Possession Gained 75\% (Upper Quartile)	34.2 ± 5.5	36.7 ± 5.7
Avg Time in Possession (Median)	2.4 ± 2.2	2.6 ± 0.3
Clearances (Maximum)	10.9 ± 3.2	11.4 ± 3.2
Shots Outside the Box (Median)	0.0 ± 0.2	0.0 ± 0.0
First Time Passes (Mean)	6.5 ± 1.9	7.0 ± 1.2
Unsuccessful Passes (Minimum)	1.4 ± 1.8	1.0 ± 1.2
Interceptions 75\% (Upper Quartile)	29.9 ± 4.2	31.1 ± 5.3
Possession Gained (Minimum)	21.1 ± 4.9	18.5 ± 6.3
Shots Inside the Box 25\% (Lower Quartile)	0.1 ± 0.4	0.0 ± 0.1
Total Shots on Target (Mean)	0.2 ± 0.2	0.3 ± 0.2
Tackled (Minimum)	0.2 ± 0.7	0.0 ± 0.2

Table 22. Group 0 v 2 Wide Midfield model variables represented as means and standard deviations for all player groupings.

Variables	Group 0 Wide Midfield	Group 2 Wide Midfield
Total Goals	1.4 ± 1.9	5.5 ± 3.8
Passes Attempted Opp Half 75\% (Upper Quartile)	16.2 ± 6.3	21.4 ± 5.8
Fouls in Defensive 3rd (Mean)	0.2 ± 0.2	0.3 ± 0.3
Total Shots on Tgt (Excluding Blocked) (Maximum)	1.0 ± 0.8	2.6 ± 1.1
\% Forwards Passes Successful (Mean)	53.4 ± 14.8	55.2 ± 9.7
Forward Passes Successful (Median)	5.0 ± 3.2	6.1 ± 2.2
Total Goals	1.4 ± 1.9	5.5 ± 3.8
Passes Attempted Opp Half 75\% (Upper Quartile)	16.2 ± 6.3	21.4 ± 5.8
Fouls in Defensive 3rd (Mean)	0.2 ± 0.2	0.3 ± 0.3
Total Shots on Tgt (Excluding Blocked)	1.0 ± 0.8	2.6 ± 1.1
(Maximum)		

Table 23. Group 0 v 1 Centre Back model variables represented as means and standard deviations for all player groupings.

Variables	Group 0 Centre Back	Group 1 Centre Back
\% Passes Successful Opp Half 75\% (Upper Quartile)	81.2 ± 22.3	92.4 ± 13.5
Shooting Accuracy 75\% (Upper Quartile)	23.5 ± 35.6	20.1 ± 33.8
\% Successful Headers 75\% (Upper Quartile)	51.0 ± 8.7	52.7 ± 6.6
Balls Received 75\% (Upper Quartile)	16.9 ± 5.8	20.6 ± 8.9
Crosses (Median)	0.1 ± 0.3	0.1 ± 0.3
\% First Time Passes Successful 25\% (Lower	59.3 ± 13.0	59.9 ± 12.7
Quartile)	0.2 ± 0.2	0.3 ± 0.3
Total Shots on Target (Mean)	0.2 ± 0.5	0.3 ± 1.0
Passes Successful Opp Half (Minimum)	0.3 ± 0.9	1.3 ± 3.2
U21 Caps	0.0 ± 0.0	1.9 ± 11.4
Shooting Accuracy 25\% (Lower Quartile)	7.9 ± 2.9	9.6 ± 5.1
Medium Passes (Mean)	1.5 ± 1.3	1.6 ± 2.5
Forward Passes Successful (Minimum)	0.1 ± 0.1	0.2 ± 0.2
Total Shots on Tgt (Excluding Blocked) (Mean)	0.0 ± 0.1	0.1 ± 0.1
Goals (Mean)	49.0 ± 8.7	47.2 ± 6.7
\% Unsuccessful Headers 25\% (Lower Quartile)	5.5 ± 2.1	6.3 ± 2.5
Long Passes (Median)		

Supplementary Information

The learning rate (the rate at which weights are updated as a proportion of the error) was set at 0.1 while the momentum (the proportion of the previous change in weights applied back to the current change in weights) was 0.5 and two hidden nodes (feature detectors) were used as part of the artificial neural network architecture in a single hidden layer. The maximum number of epochs (updates of the network) used was three hundred while the maximum number of epochs without improvement on the test was one hundred. This was used to prevent over fitting of the model.

List of Initial 340 Variables Included in the Study

Number	Variable
1	\% Backwards Passes Successful Lower Quartile
2	\% Backwards Passes Successful Mean
3	\% Backwards Passes Successful Min
4	\% Backwards Passes Unsuccessful Max
5	\% Backwards Passes Unsuccessful Mean
6	\% First Time Passes Successful Lower Quartile
7	\% First Time Passes Successful Mean
8	\% First Time Passes Successful Median
9	\% First Time Passes Successful Min
10	\% First Time Passes Successful Upper Quartile
11	\% First Time Passes Unsuccessful Lower Quartile
12	\% First Time Passes Unsuccessful Max
13	\% First Time Passes Unsuccessful Mean
14	\% First Time Passes Unsuccessful Median
15	\% First Time Passes Unsuccessful Upper Quartile
16	\% Forward Passes Unsuccessful Lower Quartile
17	\% Forward Passes Unsuccessful Max
18	\% Forward Passes Unsuccessful Mean
19	\% Forward Passes Unsuccessful Median
20	\% Forward Passes Unsuccessful Min
21	\% Forward Passes Unsuccessful Upper Quartile
22	\% Forwards Passes Successful Lower Quartile
23	\% Forwards Passes Successful Max
24	\% Forwards Passes Successful Mean

25	\% Forwards Passes Successful Median
26	\% Forwards Passes Successful Min
27	\% Forwards Passes Successful Upper Quartile
28	\% Passes Successful Opp Half Lower Quartile
29	\% Passes Successful Opp Half Mean
30	\% Passes Successful Opp Half Median
31	\% Passes Successful Opp Half Min
32	\% Passes Successful Opp Half Upper Quartile
33	\% Passes Successful Own Half Lower Quartile
34	\% Passes Successful Own Half Max
35	\% Passes Successful Own Half Mean
36	\% Passes Successful Own Half Median
37	\% Passes Successful Own Half Min
38	\% Passes Successful Own Half Upper Quartile
39	\% Sideways Passes Successful Lower Quartile
40	\% Sideways Passes Successful Mean
41	\% Sideways Passes Successful Median
42	\% Sideways Passes Successful Min
43	\% Sideways Passes Successful Upper Quartile
44	\% Sideways Passes Unsuccessful Lower Quartile
45	\% Sideways Passes Unsuccessful Max
46	\% Sideways Passes Unsuccessful Mean
47	\% Sideways Passes Unsuccessful Median
48	\% Sideways Passes Unsuccessful Upper Quartile
49	\% Successful Headers Lower Quartile
50	\% Successful Headers Max
51	\% Successful Headers Mean
52	\% Successful Headers Median
53	\% Successful Headers Min
54	\% Successful Headers Upper Quartile
55	\% Successful Passes Lower Quartile
56	\% Successful Passes Max
57	\% Successful Passes Mean
58	\% Successful Passes Median
59	\% Successful Passes Min
60	\% Successful Passes Upper Quartile
61	\% Unsuccessful Headers Lower Quartile
62	\% Unsuccessful Headers Max
63	\% Unsuccessful Headers Mean
64	\% Unsuccessful Headers Median
65	\% Unsuccessful Headers Min
66	\% Unsuccessful Headers Upper Quartile

67	\% Unsuccessful Passes Lower Quartile
68	\% Unsuccessful Passes Max
69	\% Unsuccessful Passes Mean
70	\% Unsuccessful Passes Median
71	\% Unsuccessful Passes Min
72	\% Unsuccessful Passes Upper Quartile
73	0-6 Assists Mean
74	Age
75	Avg Time in Possession Lower Quartile
76	Avg Time in Possession Max
77	Avg Time in Possession Mean
78	Avg Time in Possession Median
79	Avg Time in Possession Min
80	Avg Time in Possession Upper Quartile
81	Avg Touches Max
82	Backwards Passes Lower Quartile
83	Backwards Passes Max
84	Backwards Passes Mean
85	Backwards Passes Median
86	Backwards Passes Min
87	Backwards Passes Successful Lower Quartile
88	Backwards Passes Successful Max
89	Backwards Passes Successful Mean
90	Backwards Passes Successful Median
91	Backwards Passes Successful Min
92	Backwards Passes Successful Upper Quartile
93	Backwards Passes Unsuccessful Max
94	Backwards Passes Unsuccessful Mean
95	Backwards Passes Upper Quartile
96	Balls Received Lower Quartile
97	Balls Received Max
98	Balls Received Mean
99	Balls Received Median
100	Balls Received Min
101	Balls Received Upper Quartile
102	Blocks Max
103	Blocks Mean
104	Blocks Median
105	Blocks Upper Quartile
106	Clearances Lower Quartile
107	Clearances Max
108	Clearances Mean

109	Clearances Median
110	Clearances Upper Quartile
111	Corners Conceded Max
112	Corners Conceded Mean
113	Crosses Lower Quartile
114	Crosses Max
115	Crosses Mean
116	Crosses Median
117	Crosses Upper Quartile
118	Dribbles Max
119	Dribbles Mean
120	Dribbles Upper Quartile
121	Final Third Entries Lower Quartile
122	Final Third Entries Max
123	Final Third Entries Mean
124	Final Third Entries Median
125	Final Third Entries Min
126	Final Third Entries Upper Quartile
127	First Time Passes Lower Quartile
128	First Time Passes Max
129	First Time Passes Mean
130	First Time Passes Median
131	First Time Passes Min
132	First Time Passes Successful Lower Quartile
133	First Time Passes Successful Max
134	First Time Passes Successful Mean
135	First Time Passes Successful Median
136	First Time Passes Successful Min
137	First Time Passes Successful Upper Quartile
138	First Time Passes Unsuccessful Max
139	First Time Passes Unsuccessful Mean
140	First Time Passes Unsuccessful Upper Quartile
141	First Time Passes Upper Quartile
142	Forward Passes Successful Lower Quartile
143	Forward Passes Successful Max
144	Forward Passes Successful Mean
145	Forward Passes Successful Median
146	Forward Passes Successful Min
147	Forward Passes Successful Upper Quartile
148	Forwards Passes Lower Quartile
149	Forwards Passes Max
150	Forwards Passes Mean

151	Forwards Passes Median
152	Forwards Passes Min
153	Forwards Passes Unsuccessful Lower Quartile
154	Forwards Passes Unsuccessful Max
155	Forwards Passes Unsuccessful Mean
156	Forwards Passes Unsuccessful Median
157	Forwards Passes Unsuccessful Min
158	Forwards Passes Unsuccessful Upper Quartile
159	Forwards Passes Upper Quartile
160	Fouled Max
161	Fouled Mean
162	Fouled Upper Quartile
163	Fouls
164	Fouls in Defensive 3rd Mean
165	Fouls Max
166	Fouls Mean
167	Goals Mean
168	Headers Lower Quartile
169	Headers Max
170	Headers Mean
171	Headers Median
172	Headers Min
173	Headers Upper Quartile
174	Height
175	Interceptions Lower Quartile
176	Interceptions Max
177	Interceptions Mean
178	Interceptions Median
179	Interceptions Min
180	Interceptions Upper Quartile
181	International Caps
182	Long Passes Lower Quartile
183	Long Passes Max
184	Long Passes Mean
185	Long Passes Median
186	Long Passes Min
187	Long Passes Upper Quartile
188	Medium Passes Lower Quartile
189	Medium Passes Max
190	Medium Passes Mean
191	Medium Passes Median
192	Medium Passes Min

193	Medium Passes Upper Quartile
194	No. of 90 Mins App.
195	No. Of Starts
196	Number of Possessions Lower Quartile
197	Number of Possessions Max
198	Number of Possessions Mean
199	Number of Possessions Median
200	Number of Possessions Min
201	Number of Possessions Upper Quartile
202	Number of Touches Lower Quartile
203	Number of Touches Max
204	Number of Touches Mean
205	Number of Touches Median
206	Number of Touches Min
207	Number of Touches Upper Quartile
208	Offsides Mean
209	Passes Attempted Opp Half Lower Quartile
210	Passes Attempted Opp Half Max
211	Passes Attempted Opp Half Mean
212	Passes Attempted Opp Half Median
213	Passes Attempted Opp Half Min
214	Passes Attempted Opp Half Upper Quartile
215	Passes Lower Quartile
216	Passes Max
217	Passes Mean
218	Passes Median
219	Passes Min
220	Passes Own Half Lower Quartile
221	Passes Own Half Max
222	Passes Own Half Mean
223	Passes Own Half Median
224	Passes Own Half Min
225	Passes Own Half Upper Quartile
226	Passes Successful Opp Half Lower Quartile
227	Passes Successful Opp Half Max
228	Passes Successful Opp Half Mean
229	Passes Successful Opp Half Median
230	Passes Successful Opp Half Min
231	Passes Successful Opp Half Upper Quartile
232	Passes Successful Own Half Lower Quartile
233	Passes Successful Own Half Max
234	Passes Successful Own Half Mean

235	Passes Successful Own Half Median
236	Passes Successful Own Half Min
237	Passes Successful Own Half Upper Quartile
238	Passes Upper Quartile
239	Penalty Area Entries Lower Quartile
240	Penalty Area Entries Max
241	Penalty Area Entries Mean
242	Penalty Area Entries Median
243	Penalty Area Entries Min
244	Penalty Area Entries Upper Quartile
245	Playing \%
246	Possession Gained Lower Quartile
247	Possession Gained Max
248	Possession Gained Mean
249	Possession Gained Median
250	Possession Gained Min
251	Possession Gained Upper Quartile
252	Possession Lost Lower Quartile
253	Possession Lost Max
254	Possession Lost Mean
255	Possession Lost Median
256	Possession Lost Min
257	Possession Lost Upper Quartile
258	Possession Won Lower Quartile
259	Possession Won Max
260	Possession Won Mean
261	Possession Won Median
262	Possession Won Min
263	Possession Won Upper Quartile
264	Shooting Accuracy Lower Quartile
265	Shooting Accuracy Mean
266	Shooting Accuracy Median
267	Shooting Accuracy Upper Quartile
268	Short Passes Lower Quartile
269	Short Passes Max
270	Short Passes Mean
271	Short Passes Median
272	Short Passes Min
273	Short Passes Upper Quartile
274	Shots Inside the Box Lower Quartile
275	Shots Inside the Box Max
276	Shots Inside the Box Mean

277	Shots Inside the Box Upper Quartile
278	Shots Off Target (Exc. Blocked) Max
279	Shots Off Target (Exc. Blocked) Mean
280	Shots on Target Inside the Box Max
281	Shots on Target Inside the Box Mean
282	Shots On Tgt Outside the Box Max
283	Shots On Tgt Outside the Box Mean
284	Shots Outside the Box Max
285	Shots Outside the Box Mean
286	Shots Outside the Box Median
287	Sideways Passes Lower Quartile
288	Sideways Passes Max
289	Sideways Passes Mean
290	Sideways Passes Median
291	Sideways Passes Min
292	Sideways Passes Successful Lower Quartile
293	Sideways Passes Successful Max
294	Sideways Passes Successful Mean
295	Sideways Passes Successful Median
296	Sideways Passes Successful Min
297	Sideways Passes Successful Upper Quartile
298	Sideways Passes Unsuccessful Max
299	Sideways Passes Unsuccessful Mean
300	Sideways Passes Upper Quartile
301	Successful Passes Lower Quartile
302	Successful Passes Max
303	Successful Passes Mean
304	Successful Passes Median
305	Successful Passes Min
306	Successful Passes Upper Quartile
307	Tackled Lower Quartile
308	Tackled Max
309	Tackled Mean
310	Tackled Median
311	Tackled Min
312	Tackled Upper Quartile
313	Tackles Lower Quartile
314	Tackles Max
315	Tackles Mean
316	Tackles Median
317	Tackles Upper Quartile
318	Total Appearances

319	Total Assists
320	Total Blocked Shots Max
321	Total Blocked Shots Mean
322	Total Goals
323	Total Minutes
324	Total Shots Lower Quartile
325	Total Shots Max
326	Total Shots Mean
327	Total Shots Median
328	Total Shots on Target Max
329	Total Shots on Target Mean
330	Total Shots on Tgt (Excluding Blocked) Max
331	Total Shots on Tgt (Excluding Blocked) Mean
332	Total Shots Upper Quartile
333	U21 Caps
334	Unsuccessful Passes Lower Quartile
335	Unsuccessful Passes Max
336	Unsuccessful Passes Mean
337	Unsuccessful Passes Median
338	Unsuccessful Passes Min
339	Unsuccessful Passes Upper Quartile
340	Yellow Cards

List of 196 Variables Excluded from the Study

Number	Variable
1	\% Backwards Passes Successful Max
2	\% Backwards Passes Successful Median
3	\% Backwards Passes Successful Upper Quartile
4	\% Backwards Passes Unsuccessful Lower Quartile
5	\% Backwards Passes Unsuccessful Median
6	\% Backwards Passes Unsuccessful Min
7	\% Backwards Passes Unsuccessful Upper Quartile
8	\% First Time Passes Successful Max
9	\% First Time Passes Unsuccessful Min
10	\% Passes Successful Opp Half Max
11	\% Sideways Passes Successful Max
12	\% Sideways Passes Unsuccessful Min
13	0-6 Assists Lower Quartile
14	0-6 Assists Max

15	0-6 Assists Median
16	0-6 Assists Min
17	0-6 Assists Upper Quartile
18	1st Assist Lower Quartile
19	1st Assist Max
20	1st Assist Mean
21	1st Assist Median
22	1st Assist Min
23	1st Assist Upper Quartile
24	2nd Assist Lower Quartile
25	2nd Assist Max
26	2nd Assist Mean
27	2nd Assist Median
28	2nd Assist Min
29	2nd Assist Upper Quartile
30	3rd Assist Lower Quartile
31	3rd Assist Max
32	3rd Assist Mean
33	3rd Assist Median
34	3rd Assist Min
35	3rd Assist Upper Quartile
36	4th Assist Lower Quartile
37	4th Assist Max
38	4th Assist Mean
39	4th Assist Median
40	4th Assist Min
41	4th Assist Upper Quartile
42	5th Assist Lower Quartile
43	5th Assist Max
44	5th Assist Mean
45	5th Assist Median
46	5th Assist Min
47	5th Assist Upper Quartile
48	6th Assist Lower Quartile
49	6th Assist Max
50	6th Assist Mean
51	6th Assist Median
52	6th Assist Min
53	6th Assist Upper Quartile
54	Avg Touches Lower Quartile
55	Avg Touches Mean
56	Avg Touches Median

57	Avg Touches Min
58	Avg Touches Upper Quartile
59	Backwards Passes Unsuccessful Lower Quartile
60	Backwards Passes Unsuccessful Median
61	Backwards Passes Unsuccessful Min
62	Backwards Passes Unsuccessful Upper Quartile
63	Blocks Lower Quartile
64	Blocks Min
65	Clearances Min
66	Corners Conceded Lower Quartile
67	Corners Conceded Median
68	Corners Conceded Min
69	Corners Conceded Upper Quartile
70	Corners from LEFT Lower Quartile
71	Corners from LEFT Max
72	Corners from LEFT Mean
73	Corners from LEFT Median
74	Corners from LEFT Min
75	Corners from LEFT Upper Quartile
76	Corners from RIGHT Lower Quartile
77	Corners from RIGHT Max
78	Corners from RIGHT Mean
79	Corners from RIGHT Median
80	Corners from RIGHT Min
81	Corners from RIGHT Upper Quartile
82	Corners Taken Lower Quartile
83	Corners Taken Max
84	Corners Taken Mean
85	Corners Taken Median
86	Corners Taken Min
87	Corners Taken Upper Quartile
88	Crosses from LEFT Lower Quartile
89	Crosses from LEFT Max
90	Crosses from LEFT Mean
91	Crosses from LEFT Median
92	Crosses from LEFT Min
93	Crosses from LEFT Upper Quartile
94	Crosses from RIGHT Lower Quartile
95	Crosses from RIGHT Max
96	Crosses from RIGHT Mean
97	Crosses from RIGHT Median
98	Crosses from RIGHT Min

99	Crosses from RIGHT Upper Quartile
100	Crosses Min
101	Dribbles Lower Quartile
102	Dribbles Median
103	Dribbles Min
104	First Time Passes Unsuccessful Lower Quartile
105	First Time Passes Unsuccessful Median
106	First Time Passes Unsuccessful Min
107	Fouled Lower Quartile
108	Fouled Median
109	Fouled Min
110	Fouls in Defensive 3rd Lower Quartile
111	Fouls in Defensive 3rd Max
112	Fouls in Defensive 3rd Median
113	Fouls in Defensive 3rd Min
114	Fouls in Defensive 3rd Upper Quartile
115	Fouls Lower Quartile
116	Fouls Median
117	Fouls Min
118	Fouls Upper Quartile
119	Free Kicks Taken Lower Quartile
120	Free Kicks Taken Max
121	Free Kicks Taken Mean
122	Free Kicks Taken Median
123	Free Kicks Taken Min
124	Free Kicks Taken Upper Quartile
125	Goals Lower Quartile
126	Goals Max
127	Goals Median
128	Goals Min
129	Goals Upper Quartile
130	Offsides Lower Quartile
131	Offsides Max
132	Offsides Median
133	Offsides Min
134	Offsides Upper Quartile
135	Own Goals Lower Quartile
136	Own Goals Max
137	Own Goals Mean
138	Own Goals Median
139	Own Goals Min
140	Own Goals Upper Quartile

141	Playing Time Lower Quartile
142	Playing Time Max
143	Playing Time Mean
144	Playing Time Median
145	Playing Time Min
146	Playing Time Upper Quartile
147	Red Cards
148	Red Cards Lower Quartile
149	Red Cards Max
150	Red Cards Mean
151	Red Cards Median
152	Red Cards Min
153	Red Cards Upper Quartile
154	Shooting Accuracy Max
155	Shooting Accuracy Min
156	Shots Inside the Box Median
157	Shots Inside the Box Min
158	Shots Off Target (Exc. Blocked) Lower Quartile
159	Shots Off Target (Exc. Blocked) Median
160	Shots Off Target (Exc. Blocked) Min
161	Shots Off Target (Exc. Blocked) Upper Quartile
162	Shots on Target Inside the Box Lower Quartile
163	Shots on Target Inside the Box Median
164	Shots on Target Inside the Box Min
165	Shots on Target Inside the Box Upper Quartile
166	Shots On Tgt Outside the Box Lower Quartile
167	Shots On Tgt Outside the Box Median
168	Shots On Tgt Outside the Box Min
169	Shots On Tgt Outside the Box Upper Quartile
170	Shots Outside the Box Lower Quartile
171	Shots Outside the Box Min
172	Shots Outside the Box Upper Quartile
173	Sideways Passes Unsuccessful Lower Quartile
174	Sideways Passes Unsuccessful Median
175	Sideways Passes Unsuccessful Min
176	Sideways Passes Unsuccessful Upper Quartile
177	Tackles Min
178	Total Blocked Shots Lower Quartile
179	Total Blocked Shots Median
180	Total Blocked Shots Min
181	Total Blocked Shots Upper Quartile
182	Total Shots Min

183	Total Shots on Target Lower Quartile
184	Total Shots on Target Median
185	Total Shots on Target Min
186	Total Shots on Target Upper Quartile
187	Total Shots on Tgt (Excluding Blocked) Lower Quartile
188	Total Shots on Tgt (Excluding Blocked) Median
189	Total Shots on Tgt (Excluding Blocked) Min
190	Total Shots on Tgt (Excluding Blocked) Upper Quartile
191	Yellow Cards Lower Quartile
192	Yellow Cards Max
193	Yellow Cards Mean
194	Yellow Cards Median
195	Yellow Cards Min
196	Yellow Cards Upper Quartile

Identifying playing talent in professional football using artificial neural networks

Keywords: Soccer, Talent Identification, Premier League, Championship, Artificial Intelligence

Abstract

The aim of the current study was to objectively identify position-specific key performance indicators in professional football that predict out-field players league status. The sample consisted of 966 out-field players who completed the full 90 minutes in a match during the 2008/09 or 2009/10 season in the Football League Championship. Players were assigned to one of three categories (group 0,1 and 2) based on where they completed most of their match time in the following season, and then split based on five positions including full backs ($\mathrm{n}=$ 205), centre backs $(\mathrm{n}=193)$, centre midfielders $(\mathrm{n}=205)$, wide midfielders $(\mathrm{n}=168)$ and forwards $(\mathrm{n}=195) .340$ performance, biographical and esteem variables were analysed using a Stepwise Artificial Neural Network approach. The models correctly predicted between 72.7% and 100% of test cases (Mean prediction of models $=85.9 \%$), the test error ranged from 1.0% to 9.8% (Mean test error of models $=6.3 \%$). Variables related to passing, shooting, regaining possession and international appearances were key factors in the predictive models. This is highly significant as objective position-specific predictors of players league status have not previously been published. The method could be used to aid the identification and comparison of transfer targets as part of the due diligence process in professional football.

Introduction

Coaches and decision makers in professional football have traditionally used subjective observations to assess the performance of their team, to review the strengths and weaknesses
of future opponents and to identify potential signings (Carling, Williams and Reilly, 2005). Match analysis research into the individual's performance in football has focused heavily on the physical demands of the sport (Carling, 2013). Research led by sport scientists with a heavy focus upon the physical aspects of performance in football has not managed to identify key predictors of match outcome or team success (Bradley et al., 2016; Carling, 2013).

However, studies investigating physical performance during matches have also incorporated technical elements and provided some insights into the successful performance of players and teams (Bradley et al., 2013; Bradley et al., 2016; Dellal et al., 2010; Dellal et al., 2011). Technical factors have been identified that are prominent predictors of team success and match outcome. Shots, shots on target and ball possession are the most commonly reported predictors (Castellano, Casamachina and Lago, 2012; Lagos-Penas, Lago-Ballesteros, Dellal and Gomez, 2010; Liu, Gomez, Lago-Penas and Sampaio, 2015). There has been a heavy emphasis on the attacking aspects of play linked to success and more detailed analysis is required into the defensive aspects of play to gain a greater understanding of the game.

Following on from the research into team success and physical profiles, there has been an increasing interest in the technical profiles of players. Studies have found positional differences in Ligue 1 in France, the Premier League in England and in Spain's La Liga (Dellal, Wong, Moalla and Chamari 2010; Dellal et al., 2011). The development of advanced computer systems has supported a greater understanding of position profiles in football. However, most of the research to date has used subjective methods to select variables for analysis (Taylor, Mellalieu and James, 2004) or they have replicated indicators used in other studies (Andrzejewski, Konefal, Chmura, Kowalczuk and Chmura, 2016). Using subjective criteria selection rather than exploring a broad spectrum of the data points has meant that many
variables have yet to be assessed. Therefore, the impact of these variables upon playing success and career progression is unknown.

A broader analysis of player performance and career progression has been provided by using artificial neural networks to assess a wide range of variables (Barron, Ball, Robins and Sunderland, 2018). Artificial neural networks have been shown to be better at identifying patterns in complex non-linear data sets than forms of regression analysis and they are capable of generalizing results to solve real world problems (Basheer and Hajmeer, 2000; Lancashire, Lemetre and Ball, 2009; Tu, 1996). In a football context, artificial neural networks have been shown to be capable of creating models that can differentiate between specific groups and identify key variables that predict career progression (Barron et al, 2018). Previous studies though have been limited by assessing players regardless of position and their accuracy could be improved by making assessments of each position and the creation of position-specific career progression models.

To the authors' knowledge there has not been an objective study carried out to develop a position-specific predictive model that could support the scouting and recruitment process in professional football. The efficient and effective identification and assessment of transfer targets is a key aspect of any professional football club and requires a thorough due diligence process. Therefore, the aim of the current study was to develop an objective model to identify position-specific key performance indicators in professional football that predict out-field players league status using an artificial neural network.

Methods

Players and Match Data

The basis of the current study followed Barron et al's (2018) method but looked to build on it and focus on position-specific assessments of players. The sample consisted of 966 out-field players (mean \pm SD age and height: $25 \pm 4 \mathrm{yr}, 1.81 \pm 0.06 \mathrm{~m}$) who had completed a full 90 minutes in the English Football League Championship during the 2008/09 and 2009/10 seasons (Table 1). Technical performance data and biographical data was collected using ProZone's MatchViewer software (ProZone Sports Ltd., Leeds, UK), the official Football League website (www.efl.com) and Scout7 Ltd's (Birmingham, UK) site. The Prozone MatchViewer system was used to collect performance data due to its accurate inter-observer agreement for the number and type of events (Bradley, O'Donoghue, Wooster and Tordoff, 2007). The data collected from the Prozone MatchViewer software was made available by STATS LLC (Chicago, USA). Institutional ethical approval was attained from the Non-Invasive Human Ethics Committee at Nottingham Trent University.

In total, 536 variables were collected in including the total number, accuracy (\% success), means, medians and upper and lower quartiles of passes, tackles, possessions regained, clearances and shots. Additional data on total appearances, playing percentage, total goals and assists, international appearances and heights was also collected. The data set originally included 536 variables but low variance statistics were removed. After removing low variance data points, the data set included 340 variables for comparison. Each player's data was converted into mean 90 -minute performance data before they were assigned to one of three categories (group 0, group 1 and group 2).

Player Grouping

Players were allocated to one of five positions (full back, centre back, wide midfielder, central midfielder or attacker) based on where they spent most of their playing time during the season (See Table 1). They were then assigned to one of three categories (group 0, group 1 and group 2) based on where they went on to complete most of their match time during the following season. The first category (group 0) included the players who completed most of their match time in a lower league during the following season. The second group (group 1) included those players who completed most their match time in the English Football League Championship during the following season and the final category (group 2) contained the players who progressed to complete most their match time in the English Premier League during the following season

Sample sizes for each comparison were balanced to have an equal number of cases using a random number selector (i.e. 24 full backs were selected from group 0 to have an equal number of cases for comparisons to group 2). Players who played on loan during the 2008/09 and 2009/10 seasons were included in the study but players who moved to a club outside England were excluded due to the complications in assessing the merits of foreign competitions against those in England. The five positions for each category of playing status were subsequently analysed using a Stepwise Artificial Neural Network approach to identify the optimal collection of variables for predicting playing status.

Artificial Neural Network Model

The artificial neural network modelling was based on the approach previously used in gene profiling with breast cancer data (Lancashire et al., 2009) and used in assessing player performances in the Football League Championship (Barron et al., 2018). It used in house code
written in Microsoft visual basic 6 to call Statistica 10.0 (Statsoft Inc., Tulsa, USA) artificial neural network model at each loop of the stepwise procedure and output the results in a text format

Before training the artificial neural network, the data was randomly split (60\% for training purposes, 20% for validation and 20% blind test cases). A Monte-Carlo cross validation procedure was used to avoid over-fitting of the data. The artificial neural network modelling involved a multi-layer perceptron architecture with a feed-forward back-propagation algorithm. This algorithm used a sigmoidal transfer function and weights were updated by feedback from errors. Results were provided for the average test performance and the average test error. The average test performance indicates the percentage of test cases that are correctly predicted. The average test error is the root mean square error for the test data set, this indicates the difference between the values predicted by the model and the actual values of the test data set (Salkind, 2010). Further information on the artificial neural network model can be viewed in the supplementary information.

Results

Analysis using the artificial neural network created fifteen position-specific models to predict out-field player's league status. The models correctly predicted between 72.7% and 100% of test cases (Mean prediction of models $=85.9 \%$), the test error ranged from 1.0% to 9.8% (Mean test error of models $=6.3 \%$). Fourteen models correctly predicted 75% or more of the test players league status with an error of 9.6% or less (Table 2). The fifteen models, created in total, contained between five and twenty variables to predict the players league status with 134 variables in total being required to make the position models. The most prominent set of variables were those related to the players passing ability, with 48 of the 134 variables (35.8%)
being passing statistics. The next most prominent type of variable was related to players shooting. In total, twenty variables (14.9\%) related to shooting were selected in the models. Statistics related to regaining possession accounted for eleven of the variables (8.2\%) selected. Variables related to international appearances were selected nine times (6.7\%). A full outline of the categories of variables selected can be viewed in full (Table 3).

Full Back Models

The performance of the full back models as a group were the lowest of the five positions (Average test performance $=78.4 \% \pm 8.0 \%$ and average test error $=8.6 \% \pm 1.7 \%)($ Table 4). The group 0 v 1 comparison had the lowest average test performance and highest test error out of all the models created (Average test performance $=72.7 \%$ and average test error $=9.8 \%$) Total appearances and mean percentage of backwards passes successful were key variables in the model (Table 5). The group 1 v 2 comparison had an average test performance of 75% and a test error of 9.3%. The percentage of sideways passes successful (upper quartile) and median total shots were the most prominent variables in the model (Table 6). The best full back model was for group 0 v 2 which had an average test performance of 87.5% and a test error of 6.6%. The mean goals scored and minimum headers were the two most prominent factors in the model (Table 7).

Centre Back Models

The performance of the centre back models as a group had an average test performance of $94.4 \% \pm 5.1 \%$ and an average test error of $3.5 \% \pm 2.3 \%$. The group 0 v 1 model had an average test performance of 93.3% and an average test error of 4.1% using twenty variables. The percentage of successful passes in the opposition half (upper quartile) and shooting accuracy (upper quartile) were the most prominent variables in the model (Table 8). The group 1 v 2
model had the lowest average test performance and highest test error of the three centre back models (average test performance $=90.0 \%$ and average test error $=5.5 \%$). Backwards passes (lower quartile) and maximum short passes were the top two factors in the model (Table 9). The group 0 v 2 model had the highest average test performance of any model and the lowest test error of any model (average test performance $=100 \%$ and test error $=1.0 \%$). The group 0 v 2 centre back model contained eighteen variables with $0-6$ assists mean (group $0=0.1 \pm 0.1$, group $2=0.2 \pm 0.1$), mean shots on target inside the box (group $0=0.2 \pm 0.2$, group $2=0.3 \pm$ 0.2) and minimum penalty area entries (Group $0=0.2 \pm 0.4$, Group $2=0 \pm 0$) being key variables (Table 10).

Wide Midfielder Models

The wide midfield models group average test performance was $84.8 \% \pm 13.2 \%$ with an average test error of $6.3 \% \pm 2.5 \%$. The group 0 v 1 model had an average test performance of 79.4% and a test error of 8.2%. The maximum percentage of unsuccessful headers and forward passes successful (upper quartile) were the biggest predictors in the model (Table 11). The group 1 v 2 model had an average test performance of 77.8% and a test error of 7.4%. U21 international caps and median forward passes unsuccessful were the most prominent factors in the model (Table 12). The group 0 v 2 model had the second highest average test performance and third lowest test error of all the models created (average test performance $=100 \%$ and a test error of 3.4%). The group 0 v 2 wide midfielder model contained six variables including: total goals (group $0=1.4 \pm 1.9$, group $2=5.5 \pm 3.8$), passes attempted opposition half upper quartile (group $0=16.2 \pm 6.3$, group $2=21.4 \pm 5.8$), fouls in the defensive third mean (group $0=0.2$ ± 0.2, group $2=0.3 \pm 0.3$), total shots on target (excluding blocked) maximum (group $0=1.0$ ± 0.8, group $2=2.6 \pm 1.1$), $\%$ forward passes successful mean (group $0=53.4 \% \pm 14.8 \%$,
group $2=55.2 \% \pm 9.7 \%$) and forward passes successful median (group $0=5.0 \pm 3.2$, group 2 $=6.1 \pm 2.2)$ (Table 13).

Centre Midfielder Models

The best overall average was for the centre midfielder's models as a group (Average test performance $=86.1 \% \pm 6.6$ and average test error $=6.8 \% \pm 2.5)$. The group 0 v 1 model had the lowest average test performance of the centre midfield models and had the second highest test error across all models (Average test performance $=78.6 \%$ and average test error $=9.6 \%$). Fouls and maximum first time passes were the most prominent variables in the model (Table 14). The group 1 v 2 model had an average test performance of 88.9% and a test error of 5.9%. Successful passes (lower quartile) and penalty area entries (lower quartile) were two key variables in the model (Table 15). The group 0 v 2 model had an average test performance of 90.9% and a test error of 4.8%. The number of starts and maximum shots on target outside the box were the highest predictors in the model (Table 16).

Attacker Models

The performance of the attacker models as a group had an average test performance of 84.7% $\pm 6.6 \%$ and an average test error of $6.2 \% \pm 3.2 \%$. The group 0 v 1 model had an average test performance of 80% and an average test error of 8.7%. The most prominent variables in the model were international caps and the number of touches (lower quartile) (Table 17). The group 1 v 2 model had an average test performance of 81.8% and a test error of 7.2%. U21 international caps and international caps were the two most important factors in the model (Table 18). The best average test performance for an attacker model was recorded for the group $0 \vee 2$ model and it had the lowest overall test error of all models (average test performance $=$ 92.3% and test error $=2.6 \%)$. The group 0 v 2 attacker model contained ten variables with total
goals (group $0=2.7 \pm 3.0$, group $2=10.0 \pm 6.2$), blocks upper quartile (group $0=1.0 \pm 0.5$, group $2=1.5 \pm 0.7$) and short passes minimum (group $0=4.9 \pm 2.5$, group $2=4.3 \pm 2.4$) being key variables (Table 19).

Model Comparisons

The models produced comparing positions for group 0 v 1 had the lowest overall average test performance and highest test error (mean test performance $=80.8 \% \pm 7.6 \%$ and average test error $=8.1 \% \pm 2.3 \%)$. The overall average test performance across all five positions for group 1 v 2 comparisons was $82.7 \% \pm 6.6 \%$ and the average test error was $7.1 \% \pm 1.5$. The highest overall average test performance across the five positions was for group 0 v 2 (mean test performance $=94.1 \% \pm 5.6 \%$ and average test error $=3.7 \% \pm 2.1 \%)($ Table 20). The top three models produced by the neural network were for 0 v 2 centre back (average test performance 100% and 1.0% test error), group 0 v 2 wide midfielder (average test performance 100% and 3.4% test error) and group 0 v 1 centre back (average test performance 93.3% and 4.1% test error). The means and standard deviations for key variables for the top three models can be reviewed in full (Tables 21-23).

Discussion

The aim of the current study was to develop objective models that identified position-specific key performance indicators that predict out-field players league status. The artificial neural network created fifteen position-specific models to predict out-field players league status. The artificial neural network's ability to correctly classify more than 75% of the players league status for fourteen different position comparisons is a key result. The models were able to accurately predict the league status of players being transferred between different levels of

The results surpass the previous prediction rates reported using artificial neural networks in other team sports, such as those undertaken in cricket (Iyer and Sharda, 2009; Saikia, Bhattacharjee and Lemmer, 2012). Their studies could predict classification of batsmen and bowlers with accuracy levels ranging from 49% to 77%. In individual sports, artificial neural networks have been able to predict 80.2% of gymnast's future classifications based on a multidimensional testing process (Pion, Hohmann, Liu, Lenoir and Segers, 2017). Therefore, the current artificial neural network prediction rates are among the highest reported to date in an athlete classification study

Passing Variables

The most prominent set of variables were those related to the players passing ability, with 48 of the 134 total variables included in models (35.8%) being passing statistics. Many passing variables have been highlighted previously as key indicators when differentiating between players of various playing levels and linked to team success (Bradley et al., 2013; Rampinini, Impellizzerie, Castagna, Coutts and Wisloff, 2009). Comparisons between players within the English football pyramid showed that players in the Premier League performed a greater number of total passes, successful passes and forward passes (Bradley et al., 2013). Out of the 48 passing variables identified in the models, 29 were related to the success of the passing variables. The passing variables related to their success were a mixture of 27 different statistics accounting for the direction (forwards, sideways and backwards) of the pass, the origin of the pass (own half or opposition half) and the mean, median, minimum, maximum and upper and lower quartile figure for different variables.

In further agreement with Bradley and colleagues (2013) findings, thirteen of the passing variables were related to forward passing. Forward passes have been shown to have the lowest chance of success when compared to sideways or backwards passes (Szczepanski and McHale, 2016). Yet, to create scoring opportunities and in turn score goals players are required to progress the play with forward passing. Variables relating to forward passes appeared in models for full backs (group 0 v 1 and group 0 v 2), centre backs (group 0 v 1), wide midfield (group $0 \vee 1$, group $1 \vee 2$ and group $0 \vee 2$), centre midfield (group $0 \vee 1$ and group $0 \vee 2$) but did not feature prominently in any models for attackers. This would appear logical as attackers play in more advanced areas and have fewer opportunities to perform forward passes. The prevalence of forward passing variables for a number of positions and different comparisons highlights its importance in playing success.

The current study also highlighted two variables related to short passing with the maximum and minimum variables being selected in two models (group 1 v 2 centre back and group 0 v 2 attacker). Research into factors that distinguish between top four and bottom four English Premier League teams highlighted short passes as a key variable (Adams, Morgans, Sacramento, Morgan and Williams, 2013). Specifically, the mean frequency of successful short passes played by centre backs and full backs was the biggest factor differentiating between the two groups.

Using the artificial neural network methodology has highlighted some overlap between factors previously identified by research articles. The current study has also identified novel findings for variables that have not previously been analysed or identified as key variables. Eight passing variables were related to those in the opposition half and they appeared in six different position models (group 0 v 1 centre back, group 0 v 1 and 0 v 2 centre midfield, group 0 v 1
and 0 v 2 wide midfield and $0 \vee 2$ attacker models). Six of the variables were also related to first time passes played and they appeared in the group 0 v 1 and 0 v 2 centre back, group 1 v 2 full back, group 0 v 1 and 1 v 2 centre midfield and group 0 v 1 attacker models. Passes in the opposition half indicate possession taking place in more offensive pitch locations and could indicate the involvement of players in attacking moves. The ability to pass the ball accurately over a range of distances and directions is a key factor in performance and for differentiating between players of varying ability. This is accepted knowledge amongst coaches but the models have accurately identified specific key variables and provided an objective assessment of their impact on league status.

Shooting Variables

The next most prominent type of variable was related to players shooting ability. In total, twenty variables (14.9%) related to shooting were selected in the models. This agrees with previous research into team success in football, with total shots and shooting accuracy being the most commonly reported predictors in matches (Castellano et al., 2012; Lagos-Penas et al., 2010; Liu et al., 2015). Surprisingly, all positions except attacker included shooting variables in the models created in the current study. However, one of the attacker models (group 0 v 2) did include total goals as a key variable. Many teams now prefer to play with one lone attacker in their line-up that spreads the need for scoring goals throughout the team and the requirements of the centre forward position could be changing as a result (Adams et al., 2013).

Attacking Entries

Other attacking variables selected as part of the models were related to crossing and entries into the final third and penalty area. Final third and penalty area entries were selected three times and in three different models. Crosses are a factor that have been repeatedly identified as
being key to differentiating between successful and unsuccessful teams (Lagos-Penas et al., 2010; Lagos-Penas et al., 2011). They have not been identified as key when differentiating between players of different performance levels previously, they were only selected twice in the current study meaning they did not play a prominent role in the position models. The mean number of crosses were selected in the group 0 v 2 attacker model (crosses mean group 01.0 ± 0.8, group 21.75 ± 1.23). The inclusion of the number of crosses in the attacker model and the higher values reported for group 2 may offer more evidence for the evolving role of the attacker.

As well as crosses, final third and penalty area entries were selected three times and in three different models. Previous research has indicated that penalty area entries differentiate between winning and losing teams (Ruiz-Ruiz, Fradua, Fernandez-Garcia and Zubillaga, 2013). However, in the current study they were selected in one model for centre backs (group 0 v 2), the centre backs from players dropping down to a lower playing level reported higher values (minimum penalty area entries group 00.2 ± 0.4, group 20.0 ± 0.0). The identification of minimum penalty area entries in the centre back model and group 0 having a higher value is a novel finding. It may appear counter intuitive but centre backs who drop down to a lower level may play in teams who use a more direct style of play and play longer passes from their centre backs as opposed to building the play with shorter passing combinations.

Defensive Variables

The models also highlighted several defensive variables as key predictors of league status. Statistics related to regaining possession accounted for eleven of the variables (8.2\%). Previous research into match outcomes and players technical and tactical ability has heavily focused on the attacking aspects of play (Mackenzie and Cushion, 2013), passing (Adams et al., 2013;

Szczepanski and McHale, 2016) and possession (Castellano et al., 2012; Collett, 2013; LagosPenas et al., 2010; Liu et al., 2015). A limited number of defensive variables have been researched or identified that are linked to success. A balanced defensive shape (Tenga, Holme, Ronglan and Bahr, 2010), defensive reaction after losing possession (Vogelbein, Nopp and Hokelmann, 2014) and regaining possession in the final third have been identified previously (Almeida, Ferreira and Volossovitch, 2014).

The current study highlighted possession won based on the minimum, median, maximum and upper quartile variables as being key predictors of league status. Possession gained upper quartile and interceptions median and maximum were also selected as key variables in models. The defensive variables were not selected as part of any of the full back models. They were commonly selected as part of the wide midfield (group 0 v 1 and group 1 v 2) and attacker models (group 1 v 2 and group 0 v 2). This may appear counter intuitive and these factors would not normally be assessed when profiling more attacking positions within the team. Modern playing philosophies valuing high pressing tactics from forward players to regain possession in more advanced areas of the pitch, this may explain the importance of these factors in wide midfield and attacker models within the current study (Perarnau, 2014).

International Recognition

Other key variables selected throughout several models relate to international appearances, international caps and U 21 international caps were selected nine times (6.7\%) in total. This is a novel finding as previous assessments of player's performances have limited themselves to match performance and season totals of performance data. Previous research into international recognition and team or playing success has not been undertaken to the author's knowledge.

However, international recognition has been found to be linked with player salary allocation, particularly at the higher levels of the game (Frick, 2011).

Position-Specific Models

The current study created a number of strong predictive models for player's league status, there were also some key findings relating to the prediction rates of specific positions. Three of the five positions had very similar levels of classification accuracy (centre midfield 86.1%, wide midfield 85.7% and attacker 84.7%) but the full back position's overall accuracy was only 78.4% and the centre back position's overall accuracy was 94.4%. The full back results are still an important finding but below the levels reported for other positions. The group 0 v 1 full back model had the lowest classification accuracy of all the models and the group 1 v 2 full back model had the second lowest classification accuracy. The full back position is one that requires a complex set of technical and tactical skills as it requires a wide array of attacking and defensive qualities (Bush, Archer, Hogg and Bradley, 2015).

Recent evaluations of the changes within performance data for playing positions has shown extensive changes over time in the Premier League (Bush et al., 2015). Pronounced increases were found for the levels of high-speed running and the distances covered while sprinting, with full backs showing the largest increases between 2006-07 and 2012-13 (Bush et al., 2015). Therefore, the full back position may be influenced more by the physical aspects of performance. This could explain the lower prediction rates for full backs due to the lack of physical tracking data being available.

Study Limitations

Strong models were identified for fourteen out of the fifteen position comparisons assessed but there are some limitations to the present study that should be addressed in future research. The match running performance data for players was not available for the current study. There is an acceptance amongst the sports science community that running performance is not a predictor of team success or match outcome (Bradley et al., 2016; Carling, 2013). However, including match running performance data could provide a higher level of classification accuracy for some of the positions assessed. Another limitation of the study is the lack of contextual data available and the inability of the data to provide a detailed assessment for off the ball parameters. The final limitation of the study relates to the sample size for players progressing to play in the Premier League. The samples for the players progressing from the five positions to play in the Premier League were the smallest of all the groupings. Statistical power tests on similar sample sizes have reached the required levels (Lancashire et al., 2009). However, future studies should look to increase the sample available to increase confidence that the results are repeatable to new cases.

Conclusions

The current study has shown that artificial neural networks are a valid and highly effective tool to classify and predict players league status. Fourteen models across all five positions were created that provided strong prediction accuracy levels for players league status. This is an important result as it outlines an objective methodology that can aid the scouting and recruitment process in professional football. The process of identifying and recruiting players in professional football has largely been a subjective process in the past. Further research should look to combine assessments of physical and technical performance data to provide a more accurate prediction of league status. Studies should also look to create models to predict
the career progression of players from multiple leagues to provide a better practical tool for scouting and recruitment purposes. The combination of subjective assessments and more objective tools could lead to a more effective overall process in the highly competitive football transfer market.

References

Adams, D., Morgans, R., Sacramento, J., Morgan, S., and Williams, M. D., 2013. Successful short passing frequency of defenders differentiates between top and bottom four English Premier League teams. International Journal of Performance Analysis in Sport, 13, pp. 653668.

Almeida, C. H., Ferreira, A. P., and Volossovitch, A., 2014. Effects of match location, match status and quality of opposition on regaining possession in UEFA Champions League. Journal of Human Kinetics, 41 (2014), pp. 2013-214.

Andrzejewski, M., Konefal, M., Chmura, P., Kowalczuk, E., and Chmura, J., 2016. Match outcome and distances covered at various speeds in match play by elite German soccer players. International Journal of Performance Analysis in Sport, 16 (3), pp. 817-828.

Basheer, I.A., and Hajmeer, M., 2000. Artificial neural networks: fundamentals, computing, design and application. Journal of Microbiological Methods, 43 (2000), pp. 3-31.

Bradley, P. S., Archer, D., Hogg, B., Schuth, G., Bush, M., Carling, C., and Barnes, C., 2016. Tier-specific evolution of match performance characteristics in the English Premier League: It's getting tougher at the top. Journal of Sports Sciences, 34 (10), pp. 980-987.

Bradley, P. S., Carling, C., Diaz, A. G., Hood, P., Barnes, C., Ade, J., Boddy, M., Krustrup, P., and Mohr, M., 2013. Match performance and physical capacity of players in the top three competitive standards of English professional soccer. Human Movement Science, 32 (2013), pp. 808-821.

Bradley, P. S., O'Donaghue, P., Wooster, B., and Tordoff, P., 2007. The reliability of ProZone MatchViewer: a video-based technical performance analysis system. International Journal of Performance Analysis in Sport, 7 (3), pp. 117-129.

Bush, M. D., Archer, D. T., Hogg, R., and Bradley, P. S., 2015. Factors influencing physical and technical variability in the English Premier League. International Journal of Sports Physiology and Performance, 10, pp. 865-872.

Carling, C., 2013. Interpreting physical performance in professional soccer match-play: Should we be more pragmatic in our approach. Sports Medicine, 43 (2013), pp. 655-663.

Carling, C., Williams, A. M., and Reilly, T. R., 2005. Handbook of soccer match analysis: A systematic approach to improving performance. London: Routledge.

Castellano, J., Casamichana, D., and Lago, C., 2012. The use of match statistics that discriminate between successful and unsuccessful soccer teams. Journal of Human Kinetics, 31 (2012), pp. 139-147.

Collett, C., 2013. The possession game? A comparative analysis of ball retention and team success in European and international football, 2007-2010. Journal of Sports Sciences, 31 (2), pp. 123-136.

Dellal, A., Chamari, K., Wong, D. P., Ahmaidi, S., Keller, D., Barros, R., Bisciotti, G. N., and Carling, C., 2011. Comparison of physical and technical performance in European soccer match-play: FA Premier League and La Liga. European Journal of Sport Science, 11 (1), pp. 51-59.

Dellal, A., Wong, D. P., Moalla, W., and Chamari, K., 2010. Physical and technical activity of soccer players in the French First League - with special reference to their playing position. International SportMed Journal, 11 (2), pp. 278-290.

Frick, B., 2011. Performance, salaries, and contract length: Empirical evidence from German soccer. International Journal of Sport Finance, 6, pp. 87-118.

Iyer, S., R., and Sharda, R., 2009. Prediction of athletes performance using neural networks: An application in cricket team selection. Expert systems with applications, 36 (2009), pp. 55105522.

Lancashire, L. J., Lemetre, C., and Ball, G. R., 2009. An introduction to artificial neural networks in bioinformatics - application to complex microarray and mass spectrometry datasets in cancer studies. Briefings in Bioinformatics, 10 (3), pp. 315-329.

Lago-Penas, C., Lago-Ballesteros, J., Dellal, A., and Gomez, M., 2010. Game-related statistics that discriminated winning, drawing and losing teams from the Spanish soccer league. Journal of Sports Science and Medicine, 9, pp. 288-293.

Liu, H., Gomez, M. A., Lago-Penas, C., and Sampaio, J., 2015. Match statistics related to winning in the group stage of 2014 Brazil FIFA World Cup. Journal of Sports Sciences, 33 (12), pp. 1205-1213.

Mackenzie, R., and Cushion, C., 2013. Performance analysis in football: A critical review and implications for future research. Journal of Sports Sciences, 31 (6), pp. 639-676.

Perarnau, M., 2014. Pep confidential: The inside story of Pep Guardiola's first season at Bayern Munich. Edinburgh: Arena Sport.

Pion, J., Hohmann, A., Liu, T., Lenoir, M., \& Segers, V. (2017). Predictive models reduce talent development costs in female gymnastics. Journal of Sports Sciences, 35(8), 806-811.

Rampinini, E., Impellizzeri, F. M., Castagna, C., Coutts, A. J., and Wisloff, U., 2009. Technical performance during soccer matches of the Italian Serie A league: Effect of fatigue and competitive level. Journal of Science and Medicine in Sport, 12, pp. 227-233.

Ruiz-Ruiz, C., Fradua, L., Fernandez-Garcia, A., and Zubillaga, A., 2013. Analysis of entries into the penalty area as a performance indicator in soccer. European Journal of Sport Science, 13 (3), pp. 241-248.

Saikia, H., Bhattacharjee, D., and Lemmer, H., H., 2012. Predicting the performance of bowlers in IPL: An application of artificial neural network. International Journal of Performance Analysis in Sport, 12 (1), pp. 75-89.

Salkind, N., J., 2010. Encyclopedia of research design. California: Sage.

Taylor, J., B., Mellalieu, S., and James, N., 2004. Behavioural comparisons of positional demands in professional soccer. International Journal of Performance Analysis in Sport, 4 (1), pp. 81-97.

Tenga, A., Holme, I., Ronglan, L. T., and Bahr, R., 2010. Effects of playing tactics on goal scoring in Norwegian professional soccer. Journal of Sports Sciences, 28 (3), pp. 237-244.

Tu, J. V., 1996. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49 (11), pp. 1225-1231.

Vogelbein, M., Nopp, S., and Hokelmann, A., 2014. Defensive transition in soccer - are prompt possession regains a measure of success? A quantitative analysis of German FusballBundesliga 2010/11. Journal of Sports Sciences, 32 (11), pp. 1076-1083.

Table 1. Biographical data represented as means and standard deviations for player groupings.

Group	Players (n)	Age (years)	Height (cm)	90 Minute Appearances	Total Minutes
Group 0 Full Back	56	24.2 ± 4.3	180.5 ± 4.4	10.1 ± 10.7	1112 ± 1040
Group 1 Full Back	125	24.9 ± 4.2	180.2 ± 4.3	20.0 ± 12.1	2603 ± 1107
Group 2 Full Back	24	25.4 ± 3.3	179.7 ± 3.6	18.5 ± 12.5	1919 ± 1200
Group 0 Centre Back	37	27.5 ± 5.1	187.2 ± 5.1	15.9 ± 10.9	15901 ± 1023
Group 1 Centre Back	131	25.6 ± 3.7	186.7 ± 4.2	22.5 ± 12.4	2186 ± 1116
Group 2 Centre Back	25	25.6 ± 3.4	187.4 ± 3.7	22.8 ± 12.0	2173 ± 1141
Group 0 Wide Midfield	42	24.4 ± 4.3	179.1 ± 5.5	6.6 ± 7.0	1119 ± 858
Group 1 Wide Midfield	103	24.6 ± 3.7	177.2 ± 5.6	12.6 ± 9.6	1840 ± 1000
Group 2 Wide Midfield	23	24.8 ± 3.7	179.2 ± 4.8	19.4 ± 11.5	2425 ± 1109
Group 0 Centre Midfield	36	25.6 ± 4.8	179.7 ± 5.1	12.4 ± 11.9	1505 ± 1147
Group 1 Centre Midfield	148	25.6 ± 3.9	178.8 ± 5.8	19.5 ± 11.1	2238 ± 1006
Group 2 Centre Midfield	21	26.3 ± 4.5	178.5 ± 4.5	25.6 ± 13.6	2693 ± 1253
Group 0 Attacker	38	26.6 ± 4.8	182.2 ± 6.5	6.2 ± 6.9	1096 ± 920
Group 1 Attacker	130	26.0 ± 3.9	181.6 ± 5.9	11.8 ± 9.3	1845 ± 931
Group 2 Attacker	27	26.2 ± 4.5	181.7 ± 5.8	13.2 ± 9.3	2081 ± 930

Table 2. Results for all models with balanced data sets. The best average test performance $=$ 100.0% and the best average test error $=1.0 \%$ (Using a combination of eighteen variables) Centre Back Group 0 v 2. The worst average test performance $=72.7 \%$ and the worst average test error $=9.8 \%$ (Using a combination of five variables) - Full Back Group 0 v 1.

Position	Groups	Average Test Performance (\%)	Average Test Error (\%)	Number of Variables
Full Back	0 v 1	72.7	9.8	5
Full Back	0 v 2	87.5	6.5	10
Full Back	1 v 2	75	9.3	6
Centre Back	0 v 1	93.3	4.1	20
Centre Back	0 v 2	100	1.0	18
Centre Back	1 v 2	90	5.5	6
Wide Midfield	0 v 1	76.5	8.4	10
Wide Midfield	0 v 2	100	7.4	6
Wide Midfield	1 v 2	77.8	9.6	9
Centre Midfield	0 v 1	78.6	4.8	10
Centre Midfield	0 v 2	90.9	5.9	5
Centre Midfield	1 v 2	88.9	8.7	5
Attacker	0 v 1	80	2.6	10
Attacker	0 v 2	92.3	7.2	6
Attacker	1 v 2	81.8	6.3	9.0
Average	NA	85.7		9

Table 3. Summary of the variables in all position models by grouping.

Variable Grouping	Times Selected	Selected (\%)
Passing	48	35.8
Shooting	20	14.9
Regains	11	8.2
International Appearances	9	6.7
Heading	8	6.0
Fouls	5	3.7
Goals	5	3.7
Appearances	4	3.0
Entries	3	2.2
Possession Lost	4	3.0
Tackled	3	2.2
Time in Possession	3	2.2
Assists	2	1.5
Blocks	2	1.5
Clearances	2	1.5
Crossing	2	1.5
Touches	2	1.5
Balls Received	1	0.7
Possessions	1	0.7

Table 4. Comparison of overall average test performance scores from position models as means and standard deviations.

Position Comparison	Overall Average Test Performance (\%)	Overall Average Test Error (\%)
Full Back	78.4 ± 8.0	8.6 ± 1.7
Centre Back	94.5 ± 5.1	3.5 ± 2.3
Wide Midfield	84.8 ± 13.2	6.3 ± 2.5
Centre Midfield	86.1 ± 6.6	6.8 ± 2.5
Attacker	84.7 ± 6.6	6.2 ± 3.2

Table 5. Results for Group 0 v Group 1 Full Back balanced data set comparison. The best average test performance $=72.7 \%$ and the best average test error $=9.8 \%$ (Using a combination of five variables).

Rank	Variable	Average Test Performance (\%)	Average Test Error (\%)
1	Total Appearances	63.6	11.2
2	\% Backwards Passes Successful (Mean)	72.7	10.6
3	Total Minutes	72.7	9.8
4	\% Forwards Passes Successful (Mean)	72.7	9.8
5	Forwards Passes (Maximum)	72.7	9.8
6	Blocks (Mean)	70.5	9.9
7	\% Unsuccessful Headers (Median)	68.2	10.0
8	Forward Passes Successful (Median)	68.2	10.0
9	\% Passes Successful Own Half (Mean)	72.7	9.9
10	Passes Own Half 25\% (Lower Quartile)	72.7	10.0

Table 6. Results for Group 1 v Group 2 Full Back balanced data set comparison. The best average test performance $=75.0 \%$ and the best average test error $=9.3 \%$ (Using a combination of six variables).

Rank	Variable	Average Test Performance (\%)	Average Test Error $(\%)$
1	\% Sideways Passes Successful 75\% (Upper Quartile)	60.0	11.3
2	Total Shots (Median)	60.0	10.9
3	International Caps	70.0	9.7
4	Tackled (Mean)	70.0	9.3
5	First Time Passes (Maximum)	70.0	9.1
6	Number of Possessions (Median)	75.0	9.3
7	Tackled (Minimum)	70.0	9.4
8	$\%$ Sideways Passes Successful 25\% (Lower Quartile)	70.0	9.4
9	Total Assists	70.0	9.8
10	\% First Time Passes Unsuccessful 25\% (Lower Quartile)	70.0	9.8

Table 7. Results for Group 0 v Group 2 Full Back balanced data set comparison. The best average test performance $=87.5 \%$ and the best average test error $=6.6 \%$ (Using a combination of ten variables).

Rank	Variable	Average Test Performance (\%)	Average Test Error $(\%)$
1	Goals (Mean)	75.0	9.1
2	Headers (Minimum)	75.0	8.6
3	\% Forward Passes Unsuccessful (Mean)	81.3	8.2
4	Shots Off Target (Exc. Blocked) (Maximum)	78.1	8.1
5	\% Forward Passes Unsuccessful 75\% (Upper Quartile)	75.0	8.2
6	U21 Caps	75.0	8.0
7	Shots Inside the Box (Mean)	81.3	7.7
8	Possession Lost (Mean)	81.3	7.0
9	Shots On Tgt Outside the Box (Maximum)	81.3	7.2
10	Total Assists	87.5	6.6

Table 8. Results for Group 0 v Group 1 Centre Back balanced data set comparison. The best average test performance $=93.3 \%$ and the best average test error $=4.1 \%$ (Using a combination of twenty variables).

Rank	Variable	Average Test Performance (\%)	Average Test Error $(\%)$
1	\% Passes Successful Opp Half 75\% (Upper Quartile)	66.7	10.9
2	Shooting Accuracy 75\% (Upper Quartile)	73.3	9.3
3	\% Successful Headers 75\% (Upper Quartile)	80.0	7.6
4	Balls Received 75\% (Upper Quartile)	80.0	7.6
5	Crosses (Median)	80.0	7.9
6	\% First Time Passes Successful 25\% (Lower Quartile)	80.0	6.8
7	Total Shots on Target (Mean)	86.7	6.4
8	Passes Successful Opp Half (Minimum)	86.7	6.0
9	U21 Caps	86.7	6.1
10	Shooting Accuracy 25\% (Lower Quartile)	86.7	5.2
11	Medium Passes (Mean)	86.7	5.2
12	Forward Passes Successful (Minimum)	93.3	4.5
13	Total Shots on Tgt (Excluding Blocked) (Mean)	86.7	5.0
14	Goals (Mean)	86.7	4.5
15	\% Unsuccessful Headers 25\% (Lower Quartile)	90.0	4.7
16	Long Passes (Median)	93.3	4.7
17	\% Passes Successful Opp Half (Minimum)	93.3	4.5
19	\% Forwards Passes Successful (Minimum)	86.7	4.7
20	Shooting Accuracy (Median)	93.3	4.7

Table 9. Results for Group 1 v Group 2 Centre Back balanced data set comparison. The best average test performance $=90.0 \%$ and the best average test error $=5.5 \%$ (Using a combination of six variables).

Rank	Variable	Average Test Performance (\%)	Average Test Error $(\%)$
1	Backwards Passes 25\% (Lower Quartile)	70.0	10.7
2	Short Passes (Maximum)	70.0	9.4
3	Interceptions (Maximum)	80.0	8.1
4	Shots on Target Inside the Box (Mean)	80.0	6.8
5	Sideways Passes Unsuccessful (Mean)	80.0	6.6
6	Sideways Passes Successful 75\% (Upper Quartile)	90.0	5.5
7	Passes Successful Own Half (Mean)	90.0	5.5
8	\% Passes Successful Opp Half (Minimum)	80.0	6.3
9	\% Sideways Passes Successful (Median)	90.0	6.4
10	Shots On Tgt Outside the Box (Mean)	85.0	6.6

Table 10. Results for Group 0 v Group 2 Centre Back balanced data set comparison. The best average test performance $=100 \%$ and the best average test error $=1.0 \%$ (Using a combination of eighteen variables).

Rank	Variable	Average Test Performance (\%)	Average Test Error (\%)
1	0-6 Assists (Mean)	80.0	8.1
2	Shots on Target Inside the Box (Mean)	80.0	5.8
3	Penalty Area Entries (Minimum)	90.0	4.4
4	International Caps	90.0	3.7
5	Long Passes 25\% (Lower Quartile)	90.0	3.2
6	Shots Outside the Box (Mean)	90.0	2.9
7	U21 Caps	100.0	2.4
8	Possession Gained 75\% (Upper Quartile)	100.0	1.5
9	Avg Time in Possession (Median)	100.0	1.5
10	Clearances (Maximum)	100.0	1.2
11	Shots Outside the Box (Median)	100.0	1.1
12	First Time Passes (Mean)	100.0	1.3
13	Unsuccessful Passes (Minimum)	100.0	1.4
14	Interceptions 75\% (Upper Quartile)	100.0	1.3
15	Possession Gained (Minimum)	100.0	1.3
16	Shots Inside the Box 25\% (Lower Quartile)	100.0	1.1
17	Total Shots on Target (Mean)	100.0	1.2
18	Tackled (Minimum)	100.0	1.0
19	Final Third Entries (Mean)	100.0	1.0
20	Medium Passes 25\% (Lower Quartile)	100.0	1.3

Table 11. Results for Group 0 v Group 1 Wide Midfield balanced data set comparison. The best average test performance $=79.4 \%$ and the best average test error $=8.2 \%$ (Using a combination of nine variables).

Rank	Variable	Average Test Performance $(\%)$	Average Test Error (\%)
1	\% Unsuccessful Headers (Maximum)	70.6	10.8
2	Forward Passes Successful 75\% (Upper Quartile)	73.5	10.0
3	Possession Won 75\% (Upper Quartile)	70.6	9.8
4	Shooting Accuracy 25\% (Lower Quartile)	76.5	8.9
5	\% Unsuccessful Headers 75\% (Upper Quartile)	79.4	8.5
6	\% Successful Headers (Median)	76.5	8.4
7	Sideways Passes Successful 75\% (Upper Quartile)	76.5	8.2
8	Fouls (Mean)	76.5	8.1
9	Tackled (Maximum)	79.4	8.2
10	Passes Attempted Opp Half (Mean)	76.5	8.0

Table 12. Results for Group 1 v Group 2 Wide Midfield balanced data set comparison. The best average test performance $=77.8 \%$ and the best average test error $=7.4 \%$ (Using a combination of nine variables).

Rank	Variable	Average Test Performance $(\%)$	Average Test Error (\%)
1	U21 International Caps	66.7	10.3
2	Forwards Passes Unsuccessful (Median)	77.8	9.3
3	\% Sideways Passes Unsuccessful (Median)	77.8	9.1
4	Fouls (Mean)	77.8	8.9
5	Possession Won (Maximum)	77.8	8.6
6	\% Unsuccessful Headers (Maximum)	77.8	8.5
7	Backwards Passes Unsuccessful (Maximum)	77.8	8.7
8	Possession Lost (Maximum)	77.8	7.9
9	Possession Won (Minimum)	77.8	7.4
10	\% Unsuccessful Headers 25\% (Lower Quartile)	77.8	7.6

Table 13. Results for Group 0 v Group 2 Wide Midfield balanced data set comparison. The best average test performance $=100 \%$ and the best average test error $=3.4 \%$ (Using a combination of six variables).

Rank	Variable	Average Test Performance (\%)	Average Test Error $(\%)$
1	Total Goals	84.6	7.2
2	Passes Attempted Opp Half 75\% (Upper Quartile)	84.6	6.3
3	Fouls in Defensive 3rd (Mean)	84.6	6.1
4	Total Shots on Tgt (Excluding Blocked) (Maximum)	92.3	4.5
5	\% Forwards Passes Successful (Mean)	92.3	3.3
6	Forward Passes Successful (Median)	100.0	3.4
7	Tackled 75\% (Upper Quartile)	92.3	3.7
8	\% Unsuccessful Passes 75\% (Upper Quartile)	92.3	3.6
9	Backwards Passes Unsuccessful (Mean)	92.3	3.5
10	Possession Lost (Median)	92.3	3.1

Table 14. Results for Group 0 v Group 1 Centre Midfield balanced data set comparison. The best average test performance $=78.6 \%$ and the best average test error $=9.6 \%$ (Using a combination of nine variables).

Rank	Variable	Average Test Performance $(\%)$	Average Test Error $(\%)$
1	Fouls	57.1	11.5
2	First Time Passes (Maximum)	64.3	10.9
3	Backwards Passes 75\% (Upper Quartile)	64.3	10.6
4	Number of Touches (Median)	64.3	10.6
5	Fouls (Maximum)	64.3	10.5
6	Total Minutes	71.4	9.9
7	$\%$ Forward Passes Unsuccessful 25\% (Lower	71.4	9.6
8	Quartile)	71.4	9.6
9	Passes Attempted Opp Half (Minimum)	78.6	9.6
10	Height	71.4	9.7

Table 15. Results for Group 1 v Group 2 Centre Midfield balanced data set comparison. The best average test performance $=88.9 \%$ and the best average test error $=5.9 \%$ (Using a combination of five variables).

Rank	Variable	Average Test Performance $(\%)$	Average Test Error $(\%)$
1	Successful Passes 25\% (Lower Quartile)	66.7	10.2
2	Penalty Area Entries 25\% (Lower Quartile)	66.7	9.6
3	Goals (Mean)	77.8	8.4
4	Backwards Passes Unsuccessful (Mean)	88.9	6.2
5	First Time Passes Successful (Maximum)	88.9	5.9
6	Backwards Passes (Median)	88.9	6.2
7	\% Sideways Passes Successful 25\% (Lower Quartile)	88.9	6.4
8	Total Shots 25\% (Lower Quartile)	88.9	6.4
9	Passes Own Half (Mean)	88.9	6.9
10	Dribbles 75\% (Upper Quartile)	83.3	7.2

Table 16. Results for Group 0 v Group 2 Centre Midfield balanced data set comparison. The best average test performance $=90.9 \%$ and the best average test error $=4.8 \%$ (Using a combination of ten variables).

Rank	Variable	Average Test Performance $(\%)$	Average Test Error $(\%)$
1	No. Of Starts	72.7	9.6
2	Shots On Tgt Outside the Box (Maximum)	81.8	8.6
3	Possession Lost (Maximum)	77.3	8.0
4	Forwards Passes (Mean)	81.8	7.2
5	Possession Won (Median)	81.8	6.0
6	Clearances 25\% (Lower Quartile)	81.8	5.5
7	Total Shots on Target (Mean)	90.9	5.2
8	Total Blocked Shots (Maximum)	90.9	5.2
9	Forwards Passes (Median)	90.9	4.9
10	$\%$ Passes Successful Opp Half 75\% (Upper Quartile)	90.9	4.8

Table 17. Results for Group 0 v Group 1 Attacker balanced data set comparison. The best average test performance $=80.0 \%$ and the best average test error $=8.7 \%$ (Using a combination of five variables).

Rank	Variable	Average Test Performance (\%)	Average Test Error (\%)
1	International Caps	73.3	10.4
2	Number of Touches 25\% (Lower Quartile)	73.3	9.2
3	First Time Passes (Maximum)	73.3	9.1
4	Blocks (Maximum)	73.3	8.9
5	Final Third Entries (Mean)	80.0	8.7
6	Passes Successful Own Half (Median)	73.3	8.9
7	\% Successful Passes (Maximum)	73.3	9.2
8	Tackled 25\% (Lower Quartile)	73.3	9.0
9	\% Forwards Passes Successful (Minimum)	73.3	9.1
10	\% Passes Successful Opp Half (Minimum)	73.3	9.1

Table 18. Results for Group 1 v Group 2 Attacker balanced data set comparison. The best average test performance $=81.8 \%$ and the best average test error $=7.2 \%$ (Using a combination of six variables).

Rank	Variable	Average Test Performance (\%)	Average Test Error (\%)
1	U21 International Caps	63.6	11.0
2	International Caps	72.7	9.9
3	Unsuccessful Passes (Maximum)	72.7	9.6
4	Interceptions (Maximum)	72.7	8.7
5	Possession Won (Median)	81.8	7.2
6	\% Unsuccessful Passes 75\% (Upper Quartile)	81.8	7.2
7	Final Third Entries 25\% (Lower Quartile)	81.8	7.8
8	Tackles (Maximum)	81.8	7.4
9	\% Unsuccessful Passes (Minimum)	81.8	7.5
10	Penalty Area Entries (Minimum)	81.8	7.3

Table 19. Results for Group 0 v Group 2 Attacker balanced data set comparison. The best average test performance $=92.3 \%$ and the best average test error $=2.6 \%$ (Using a combination of ten variables).

Rank	Variable	Average Test Performance (\%)	Average Test Error $(\%)$
1	Total Goals	76.9	7.6
2	Blocks 75\% (Upper Quartile)	84.6	5.6
3	Short Passes (Minimum)	92.3	5.0
4	Passes Own Half 25\% (Lower Quartile)	92.3	4.4
5	\% Unsuccessful Headers (Maximum)	92.3	4.0
6	Crosses (Mean)	92.3	3.0
7	Avg Time in Possession 75\% (Upper Quartile)	92.3	2.9
8	Interceptions (Median)	92.3	3.0
9	Passes Successful Opp Half 75\% (Upper Quartile)	92.3	3.0
10	Backwards Passes 25\% (Lower Quartile)	92.3	2.6

Table 20. Comparison of overall average test performance scores from position models as means and standard deviations.

Group Comparison	Overall Average Test Performance (\%)	Overall Average Test Error (\%)
Group 0 v 1 Comparisons	80.8 ± 7.6	8.1 ± 2.3
Group 1 v 2 Comparisons	82.7 ± 6.6	7.1 ± 1.5
Group 0 v 2 Comparisons	94.1 ± 5.6	3.7 ± 2.1

Table 21. Group 0 v 2 Centre Back model variables represented as means and standard deviations for all player groupings.

Variables	Group 0 Centre Back	Group 2 Centre Back
$0-6$ Assists (Mean)	0.1 ± 0.1	0.2 ± 0.1
Shots on Target Inside the Box (Mean)	0.2 ± 0.2	0.3 ± 0.2
Penalty Area Entries (Minimum)	0.2 ± 0.4	0.0 ± 0.0
International Caps	4.8 ± 18.3	9.2 ± 14.6
Long Passes 25\% (Lower Quartile)	4.3 ± 2.2	4.9 ± 2.0
Shots Outside the Box (Mean)	0.1 ± 0.2	0.1 ± 0.1
U21 Caps	0.3 ± 0.9	3.5 ± 6.6
Possession Gained 75\% (Upper Quartile)	34.2 ± 5.5	36.7 ± 5.7
Avg Time in Possession (Median)	2.4 ± 2.2	2.6 ± 0.3
Clearances (Maximum)	10.9 ± 3.2	11.4 ± 3.2
Shots Outside the Box (Median)	0.0 ± 0.2	0.0 ± 0.0
First Time Passes (Mean)	6.5 ± 1.9	7.0 ± 1.2
Unsuccessful Passes (Minimum)	1.4 ± 1.8	1.0 ± 1.2
Interceptions 75\% (Upper Quartile)	29.9 ± 4.2	31.1 ± 5.3
Possession Gained (Minimum)	21.1 ± 4.9	18.5 ± 6.3
Shots Inside the Box 25\% (Lower Quartile)	0.1 ± 0.4	0.0 ± 0.1
Total Shots on Target (Mean)	0.2 ± 0.2	0.3 ± 0.2
Tackled (Minimum)	0.2 ± 0.7	
		0.2

Table 22. Group 0 v 2 Wide Midfield model variables represented as means and standard deviations for all player groupings.

Variables	Group 0 Wide Midfield	Group 2 Wide Midfield
Total Goals	1.4 ± 1.9	5.5 ± 3.8
Passes Attempted Opp Half 75\% (Upper Quartile)	16.2 ± 6.3	21.4 ± 5.8
Fouls in Defensive 3rd (Mean)	0.2 ± 0.2	0.3 ± 0.3
Total Shots on Tgt (Excluding Blocked)	1.0 ± 0.8	2.6 ± 1.1
(Maximum)	53.4 ± 14.8	55.2 ± 9.7
\% Forwards Passes Successful (Mean)	5.0 ± 3.2	6.1 ± 2.2
Forward Passes Successful (Median)	1.4 ± 1.9	5.5 ± 3.8
Total Goals	16.2 ± 6.3	21.4 ± 5.8
Passes Attempted Opp Half 75\% (Upper Quartile)	0.3 ± 0.3	
Fouls in Defensive 3rd (Mean)	0.2 ± 0.2	2.6 ± 1.1
Total Shots on Tgt (Excluding Blocked)	1.0 ± 0.8	
(Maximum)		

Table 23. Group 0 v 1 Centre Back model variables represented as means and standard deviations for all player groupings.

Variables	Group 0 Centre Back	Group 1 Centre Back
\% Passes Successful Opp Half 75\% (Upper Quartile)	81.2 ± 22.3	92.4 ± 13.5
Shooting Accuracy 75\% (Upper Quartile)	23.5 ± 35.6	20.1 ± 33.8
\% Successful Headers 75\% (Upper Quartile)	51.0 ± 8.7	52.7 ± 6.6
Balls Received 75\% (Upper Quartile)	16.9 ± 5.8	20.6 ± 8.9
Crosses (Median)	0.1 ± 0.3	0.1 ± 0.3
\% First Time Passes Successful 25\% (Lower	59.3 ± 13.0	59.9 ± 12.7
Quartile)	0.2 ± 0.2	0.3 ± 0.3
Total Shots on Target (Mean)	0.2 ± 0.5	0.3 ± 1.0
Passes Successful Opp Half (Minimum)	0.3 ± 0.9	1.3 ± 3.2
U21 Caps	0.0 ± 0.0	1.9 ± 11.4
Shooting Accuracy 25\% (Lower Quartile)	7.9 ± 2.9	9.6 ± 5.1
Medium Passes (Mean)	1.5 ± 1.3	1.6 ± 2.5
Forward Passes Successful (Minimum)	0.1 ± 0.1	0.2 ± 0.2
Total Shots on Tgt (Excluding Blocked) (Mean)	0.0 ± 0.1	0.1 ± 0.1
Goals (Mean)	49.0 ± 8.7	6.3 ± 2.5
\% Unsuccessful Headers 25\% (Lower Quartile)	5.5 ± 2.1	
Long Passes (Median)		

Supplementary Information

The learning rate (the rate at which weights are updated as a proportion of the error) was set at 0.1 while the momentum (the proportion of the previous change in weights applied back to the current change in weights) was 0.5 and two hidden nodes (feature detectors) were used as part of the artificial neural network architecture in a single hidden layer. The maximum number of epochs (updates of the network) used was three hundred while the maximum number of epochs without improvement on the test was one hundred. This was used to prevent over fitting of the model.

List of Initial 340 Variables Included in the Study

Number	Variable
1	\% Backwards Passes Successful Lower Quartile
2	\% Backwards Passes Successful Mean
3	\% Backwards Passes Successful Min
4	\% Backwards Passes Unsuccessful Max
5	\% Backwards Passes Unsuccessful Mean
6	\% First Time Passes Successful Lower Quartile
7	\% First Time Passes Successful Mean
8	\% First Time Passes Successful Median
9	\% First Time Passes Successful Min
10	\% First Time Passes Successful Upper Quartile
11	\% First Time Passes Unsuccessful Lower Quartile
12	\% First Time Passes Unsuccessful Max
13	\% First Time Passes Unsuccessful Mean
14	\% First Time Passes Unsuccessful Median
15	\% First Time Passes Unsuccessful Upper Quartile
16	\% Forward Passes Unsuccessful Lower Quartile
17	\% Forward Passes Unsuccessful Max
18	\% Forward Passes Unsuccessful Mean
19	\% Forward Passes Unsuccessful Median
20	\% Forward Passes Unsuccessful Min
21	\% Forward Passes Unsuccessful Upper Quartile
22	\% Forwards Passes Successful Lower Quartile
23	\% Forwards Passes Successful Max
24	\% Forwards Passes Successful Mean

25	\% Forwards Passes Successful Median
26	\% Forwards Passes Successful Min
27	\% Forwards Passes Successful Upper Quartile
28	\% Passes Successful Opp Half Lower Quartile
29	\% Passes Successful Opp Half Mean
30	\% Passes Successful Opp Half Median
31	\% Passes Successful Opp Half Min
32	\% Passes Successful Opp Half Upper Quartile
33	\% Passes Successful Own Half Lower Quartile
34	\% Passes Successful Own Half Max
35	\% Passes Successful Own Half Mean
36	\% Passes Successful Own Half Median
37	\% Passes Successful Own Half Min
38	\% Passes Successful Own Half Upper Quartile
39	\% Sideways Passes Successful Lower Quartile
40	\% Sideways Passes Successful Mean
41	\% Sideways Passes Successful Median
42	\% Sideways Passes Successful Min
43	\% Sideways Passes Successful Upper Quartile
44	\% Sideways Passes Unsuccessful Lower Quartile
45	\% Sideways Passes Unsuccessful Max
46	\% Sideways Passes Unsuccessful Mean
47	\% Sideways Passes Unsuccessful Median
48	\% Sideways Passes Unsuccessful Upper Quartile
49	\% Successful Headers Lower Quartile
50	\% Successful Headers Max
51	\% Successful Headers Mean
52	\% Successful Headers Median
53	\% Successful Headers Min
54	\% Successful Headers Upper Quartile
55	\% Successful Passes Lower Quartile
56	\% Successful Passes Max
57	\% Successful Passes Mean
58	\% Successful Passes Median
59	\% Successful Passes Min
60	\% Successful Passes Upper Quartile
61	\% Unsuccessful Headers Lower Quartile
62	\% Unsuccessful Headers Max
63	\% Unsuccessful Headers Mean
64	\% Unsuccessful Headers Median
65	\% Unsuccessful Headers Min
66	\% Unsuccessful Headers Upper Quartile

67	\% Unsuccessful Passes Lower Quartile
68	\% Unsuccessful Passes Max
69	\% Unsuccessful Passes Mean
70	\% Unsuccessful Passes Median
71	\% Unsuccessful Passes Min
72	\% Unsuccessful Passes Upper Quartile
73	0-6 Assists Mean
74	Age
75	Avg Time in Possession Lower Quartile
76	Avg Time in Possession Max
77	Avg Time in Possession Mean
78	Avg Time in Possession Median
79	Avg Time in Possession Min
80	Avg Time in Possession Upper Quartile
81	Avg Touches Max
82	Backwards Passes Lower Quartile
83	Backwards Passes Max
84	Backwards Passes Mean
85	Backwards Passes Median
86	Backwards Passes Min
87	Backwards Passes Successful Lower Quartile
88	Backwards Passes Successful Max
89	Backwards Passes Successful Mean
90	Backwards Passes Successful Median
91	Backwards Passes Successful Min
92	Backwards Passes Successful Upper Quartile
93	Backwards Passes Unsuccessful Max
94	Backwards Passes Unsuccessful Mean
95	Backwards Passes Upper Quartile
96	Balls Received Lower Quartile
97	Balls Received Max
98	Balls Received Mean
99	Balls Received Median
100	Balls Received Min
101	Balls Received Upper Quartile
102	Blocks Max
103	Blocks Mean
104	Blocks Median
105	Blocks Upper Quartile
106	Clearances Lower Quartile
107	Clearances Max
108	Clearances Mean

109	Clearances Median
110	Clearances Upper Quartile
111	Corners Conceded Max
112	Corners Conceded Mean
113	Crosses Lower Quartile
114	Crosses Max
115	Crosses Mean
116	Crosses Median
117	Crosses Upper Quartile
118	Dribbles Max
119	Dribbles Mean
120	Dribbles Upper Quartile
121	Final Third Entries Lower Quartile
122	Final Third Entries Max
123	Final Third Entries Mean
124	Final Third Entries Median
125	Final Third Entries Min
126	Final Third Entries Upper Quartile
127	First Time Passes Lower Quartile
128	First Time Passes Max
129	First Time Passes Mean
130	First Time Passes Median
131	First Time Passes Min
132	First Time Passes Successful Lower Quartile
133	First Time Passes Successful Max
134	First Time Passes Successful Mean
135	First Time Passes Successful Median
136	First Time Passes Successful Min
137	First Time Passes Successful Upper Quartile
138	First Time Passes Unsuccessful Max
139	First Time Passes Unsuccessful Mean
140	First Time Passes Unsuccessful Upper Quartile
141	First Time Passes Upper Quartile
142	Forward Passes Successful Lower Quartile
143	Forward Passes Successful Max
144	Forward Passes Successful Mean
145	Forward Passes Successful Median
146	Forward Passes Successful Min
147	Forward Passes Successful Upper Quartile
148	Forwards Passes Lower Quartile
149	Forwards Passes Max
150	Forwards Passes Mean

151	Forwards Passes Median
152	Forwards Passes Min
153	Forwards Passes Unsuccessful Lower Quartile
154	Forwards Passes Unsuccessful Max
155	Forwards Passes Unsuccessful Mean
156	Forwards Passes Unsuccessful Median
157	Forwards Passes Unsuccessful Min
158	Forwards Passes Unsuccessful Upper Quartile
159	Forwards Passes Upper Quartile
160	Fouled Max
161	Fouled Mean
162	Fouled Upper Quartile
163	Fouls
164	Fouls in Defensive 3rd Mean
165	Fouls Max
166	Fouls Mean
167	Goals Mean
168	Headers Lower Quartile
169	Headers Max
170	Headers Mean
171	Headers Median
172	Headers Min
173	Headers Upper Quartile
174	Height
175	Interceptions Lower Quartile
176	Interceptions Max
177	Interceptions Mean
178	Interceptions Median
179	Interceptions Min
180	Interceptions Upper Quartile
181	International Caps
182	Long Passes Lower Quartile
183	Long Passes Max
184	Long Passes Mean
185	Long Passes Median
186	Long Passes Min
187	Long Passes Upper Quartile
188	Medium Passes Lower Quartile
189	Medium Passes Max
190	Medium Passes Mean
191	Medium Passes Median
192	Medium Passes Min

193	Medium Passes Upper Quartile
194	No. of 90 Mins App.
195	No. Of Starts
196	Number of Possessions Lower Quartile
197	Number of Possessions Max
198	Number of Possessions Mean
199	Number of Possessions Median
200	Number of Possessions Min
201	Number of Possessions Upper Quartile
202	Number of Touches Lower Quartile
203	Number of Touches Max
204	Number of Touches Mean
205	Number of Touches Median
206	Number of Touches Min
207	Number of Touches Upper Quartile
208	Offsides Mean
209	Passes Attempted Opp Half Lower Quartile
210	Passes Attempted Opp Half Max
211	Passes Attempted Opp Half Mean
212	Passes Attempted Opp Half Median
213	Passes Attempted Opp Half Min
214	Passes Attempted Opp Half Upper Quartile
215	Passes Lower Quartile
216	Passes Max
217	Passes Mean
218	Passes Median
219	Passes Min
220	Passes Own Half Lower Quartile
221	Passes Own Half Max
222	Passes Own Half Mean
223	Passes Own Half Median
224	Passes Own Half Min
225	Passes Own Half Upper Quartile
226	Passes Successful Opp Half Lower Quartile
227	Passes Successful Opp Half Max
228	Passes Successful Opp Half Mean
229	Passes Successful Opp Half Median
230	Passes Successful Opp Half Min
231	Passes Successful Opp Half Upper Quartile
232	Passes Successful Own Half Lower Quartile
233	Passes Successful Own Half Max
234	Passes Successful Own Half Mean

235	Passes Successful Own Half Median
236	Passes Successful Own Half Min
237	Passes Successful Own Half Upper Quartile
238	Passes Upper Quartile
239	Penalty Area Entries Lower Quartile
240	Penalty Area Entries Max
241	Penalty Area Entries Mean
242	Penalty Area Entries Median
243	Penalty Area Entries Min
244	Penalty Area Entries Upper Quartile
245	Playing \%
246	Possession Gained Lower Quartile
247	Possession Gained Max
248	Possession Gained Mean
249	Possession Gained Median
250	Possession Gained Min
251	Possession Gained Upper Quartile
252	Possession Lost Lower Quartile
253	Possession Lost Max
254	Possession Lost Mean
255	Possession Lost Median
256	Possession Lost Min
257	Possession Lost Upper Quartile
258	Possession Won Lower Quartile
259	Possession Won Max
260	Possession Won Mean
261	Possession Won Median
262	Possession Won Min
263	Possession Won Upper Quartile
264	Shooting Accuracy Lower Quartile
265	Shooting Accuracy Mean
266	Shooting Accuracy Median
267	Shooting Accuracy Upper Quartile
268	Short Passes Lower Quartile
269	Short Passes Max
270	Short Passes Mean
271	Short Passes Median
272	Short Passes Min
273	Short Passes Upper Quartile
274	Shots Inside the Box Lower Quartile
275	Shots Inside the Box Max
276	Shots Inside the Box Mean

277	Shots Inside the Box Upper Quartile
278	Shots Off Target (Exc. Blocked) Max
279	Shots Off Target (Exc. Blocked) Mean
280	Shots on Target Inside the Box Max
281	Shots on Target Inside the Box Mean
282	Shots On Tgt Outside the Box Max
283	Shots On Tgt Outside the Box Mean
284	Shots Outside the Box Max
285	Shots Outside the Box Mean
286	Shots Outside the Box Median
287	Sideways Passes Lower Quartile
288	Sideways Passes Max
289	Sideways Passes Mean
290	Sideways Passes Median
291	Sideways Passes Min
292	Sideways Passes Successful Lower Quartile
293	Sideways Passes Successful Max
294	Sideways Passes Successful Mean
295	Sideways Passes Successful Median
296	Sideways Passes Successful Min
297	Sideways Passes Successful Upper Quartile
298	Sideways Passes Unsuccessful Max
299	Sideways Passes Unsuccessful Mean
300	Sideways Passes Upper Quartile
301	Successful Passes Lower Quartile
302	Successful Passes Max
303	Successful Passes Mean
304	Successful Passes Median
305	Successful Passes Min
306	Successful Passes Upper Quartile
307	Tackled Lower Quartile
308	Tackled Max
309	Tackled Mean
310	Tackled Median
311	Tackled Min
312	Tackled Upper Quartile
313	Tackles Lower Quartile
314	Tackles Max
315	Tackles Mean
316	Tackles Median
317	Tackles Upper Quartile
318	Total Appearances

319	Total Assists
320	Total Blocked Shots Max
321	Total Blocked Shots Mean
322	Total Goals
323	Total Minutes
324	Total Shots Lower Quartile
325	Total Shots Max
326	Total Shots Mean
327	Total Shots Median
328	Total Shots on Target Max
329	Total Shots on Target Mean
330	Total Shots on Tgt (Excluding Blocked) Max
331	Total Shots on Tgt (Excluding Blocked) Mean
332	Total Shots Upper Quartile
333	U21 Caps
334	Unsuccessful Passes Lower Quartile
335	Unsuccessful Passes Max
336	Unsuccessful Passes Mean
337	Unsuccessful Passes Median
338	Unsuccessful Passes Min
339	Unsuccessful Passes Upper Quartile
340	Yellow Cards

List of 196 Variables Excluded from the Study

Number	Variable
1	\% Backwards Passes Successful Max
2	\% Backwards Passes Successful Median
3	\% Backwards Passes Successful Upper Quartile
4	\% Backwards Passes Unsuccessful Lower Quartile
5	\% Backwards Passes Unsuccessful Median
6	\% Backwards Passes Unsuccessful Min
7	\% Backwards Passes Unsuccessful Upper Quartile
8	\% First Time Passes Successful Max
9	\% First Time Passes Unsuccessful Min
10	\% Passes Successful Opp Half Max
11	\% Sideways Passes Successful Max
12	\% Sideways Passes Unsuccessful Min
13	0-6 Assists Lower Quartile
14	0-6 Assists Max

15	0-6 Assists Median
16	0-6 Assists Min
17	0-6 Assists Upper Quartile
18	1st Assist Lower Quartile
19	1st Assist Max
20	1st Assist Mean
21	1st Assist Median
22	1st Assist Min
23	1st Assist Upper Quartile
24	2nd Assist Lower Quartile
25	2nd Assist Max
26	2nd Assist Mean
27	2nd Assist Median
28	2nd Assist Min
29	2nd Assist Upper Quartile
30	3rd Assist Lower Quartile
31	3rd Assist Max
32	3rd Assist Mean
33	3rd Assist Median
34	3rd Assist Min
35	3rd Assist Upper Quartile
36	4th Assist Lower Quartile
37	4th Assist Max
38	4th Assist Mean
39	4th Assist Median
40	4th Assist Min
41	4th Assist Upper Quartile
42	5th Assist Lower Quartile
43	5th Assist Max
44	5th Assist Mean
45	5th Assist Median
46	5th Assist Min
47	5th Assist Upper Quartile
48	6th Assist Lower Quartile
49	6th Assist Max
50	6th Assist Mean
51	6th Assist Median
52	6th Assist Min
53	6th Assist Upper Quartile
54	Avg Touches Lower Quartile
55	Avg Touches Mean
56	Avg Touches Median

57	Avg Touches Min
58	Avg Touches Upper Quartile
59	Backwards Passes Unsuccessful Lower Quartile
60	Backwards Passes Unsuccessful Median
61	Backwards Passes Unsuccessful Min
62	Backwards Passes Unsuccessful Upper Quartile
63	Blocks Lower Quartile
64	Blocks Min
65	Clearances Min
66	Corners Conceded Lower Quartile
67	Corners Conceded Median
68	Corners Conceded Min
69	Corners Conceded Upper Quartile
70	Corners from LEFT Lower Quartile
71	Corners from LEFT Max
72	Corners from LEFT Mean
73	Corners from LEFT Median
74	Corners from LEFT Min
75	Corners from LEFT Upper Quartile
76	Corners from RIGHT Lower Quartile
77	Corners from RIGHT Max
78	Corners from RIGHT Mean
79	Corners from RIGHT Median
80	Corners from RIGHT Min
81	Corners from RIGHT Upper Quartile
82	Corners Taken Lower Quartile
83	Corners Taken Max
84	Corners Taken Mean
85	Corners Taken Median
86	Corners Taken Min
87	Corners Taken Upper Quartile
88	Crosses from LEFT Lower Quartile
89	Crosses from LEFT Max
90	Crosses from LEFT Mean
91	Crosses from LEFT Median
92	Crosses from LEFT Min
93	Crosses from LEFT Upper Quartile
94	Crosses from RIGHT Lower Quartile
95	Crosses from RIGHT Max
96	Crosses from RIGHT Mean
97	Crosses from RIGHT Median
98	Crosses from RIGHT Min

99	Crosses from RIGHT Upper Quartile
100	Crosses Min
101	Dribbles Lower Quartile
102	Dribbles Median
103	Dribbles Min
104	First Time Passes Unsuccessful Lower Quartile
105	First Time Passes Unsuccessful Median
106	First Time Passes Unsuccessful Min
107	Fouled Lower Quartile
108	Fouled Median
109	Fouled Min
110	Fouls in Defensive 3rd Lower Quartile
111	Fouls in Defensive 3rd Max
112	Fouls in Defensive 3rd Median
113	Fouls in Defensive 3rd Min
114	Fouls in Defensive 3rd Upper Quartile
115	Fouls Lower Quartile
116	Fouls Median
117	Fouls Min
118	Fouls Upper Quartile
119	Free Kicks Taken Lower Quartile
120	Free Kicks Taken Max
121	Free Kicks Taken Mean
122	Free Kicks Taken Median
123	Free Kicks Taken Min
124	Free Kicks Taken Upper Quartile
125	Goals Lower Quartile
126	Goals Max
127	Goals Median
128	Goals Min
129	Goals Upper Quartile
130	Offsides Lower Quartile
131	Offsides Max
132	Offsides Median
133	Offsides Min
134	Offsides Upper Quartile
135	Own Goals Lower Quartile
136	Own Goals Max
137	Own Goals Mean
138	Own Goals Median
139	Own Goals Min
140	Own Goals Upper Quartile

141	Playing Time Lower Quartile
142	Playing Time Max
143	Playing Time Mean
144	Playing Time Median
145	Playing Time Min
146	Playing Time Upper Quartile
147	Red Cards
148	Red Cards Lower Quartile
149	Red Cards Max
150	Red Cards Mean
151	Red Cards Median
152	Red Cards Min
153	Red Cards Upper Quartile
154	Shooting Accuracy Max
155	Shooting Accuracy Min
156	Shots Inside the Box Median
157	Shots Inside the Box Min
158	Shots Off Target (Exc. Blocked) Lower Quartile
159	Shots Off Target (Exc. Blocked) Median
160	Shots Off Target (Exc. Blocked) Min
161	Shots Off Target (Exc. Blocked) Upper Quartile
162	Shots on Target Inside the Box Lower Quartile
163	Shots on Target Inside the Box Median
164	Shots on Target Inside the Box Min
165	Shots on Target Inside the Box Upper Quartile
166	Shots On Tgt Outside the Box Lower Quartile
167	Shots On Tgt Outside the Box Median
168	Shots On Tgt Outside the Box Min
169	Shots On Tgt Outside the Box Upper Quartile
170	Shots Outside the Box Lower Quartile
171	Shots Outside the Box Min
172	Shots Outside the Box Upper Quartile
173	Sideways Passes Unsuccessful Lower Quartile
174	Sideways Passes Unsuccessful Median
175	Sideways Passes Unsuccessful Min
176	Sideways Passes Unsuccessful Upper Quartile
177	Tackles Min
178	Total Blocked Shots Lower Quartile
179	Total Blocked Shots Median
180	Total Blocked Shots Min
181	Total Blocked Shots Upper Quartile
182	Total Shots Min

183	Total Shots on Target Lower Quartile
184	Total Shots on Target Median
185	Total Shots on Target Min
186	Total Shots on Target Upper Quartile
187	Total Shots on Tgt (Excluding Blocked) Lower Quartile
188	Total Shots on Tgt (Excluding Blocked) Median
189	Total Shots on Tgt (Excluding Blocked) Min
190	Total Shots on Tgt (Excluding Blocked) Upper Quartile
191	Yellow Cards Lower Quartile
192	Yellow Cards Max
193	Yellow Cards Mean
194	Yellow Cards Median
195	Yellow Cards Min
196	Yellow Cards Upper Quartile

