
Contents lists available at ScienceDirect

Ecological Informatics

journal homepage: www.elsevier.com/locate/ecolinf

Tree loss impacts on ecological connectivity: Developing models for
assessment

Roslyn C. Henrya,⁎, Stephen C.F. Palmerb, Kevin Wattsc,d, Ruth J. Mitchelle, Nick Atkinsonf,
Justin M.J. Travisb

a School of GeoSciences, University of Edinburgh, Geography Building, Drummond Street, Edinburgh, EH89XP, UK
b School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
c Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
d Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
e The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
f The Woodland Trust, Kempton Way, Grantham, Lincolnshire NG31 6LL, UK

A R T I C L E I N F O

Keywords:
Connectivity
Tree disease
Tree mortality
Modelling
RangeShifter
Scattered trees
Corridors

A B S T R A C T

Trees along linear features are important landscape features, and their loss threatens ecological connectivity.
Until recently, trees outside of woodlands (TOWs) were largely unmapped however; the development of in-
novation mapping techniques provides opportunities to understand the distribution of such trees and to apply
spatially explicit models to explore the importance of trees for connectivity. In this study, we demonstrate the
utility of models when investigating tree loss and impacts on connectivity. Specifically, we investigated the
consequences of tree loss due to the removal of roadside trees, a common management response for diseased or
damaged trees, on wider landscape functional connectivity. We simulated the loss of roadside trees within six
focal areas of the south east of the UK. We used a spatially explicit individual-based modelling platform,
RangeShifter, to model the movement of 81 hypothetical actively dispersing woodland breeding species across
these agriculturally fragmented landscapes. We investigated the extent to which removal of trees, from roadsides
within the wider landscape, affected the total number of successful dispersers in any given year and the number
of breeding woodlands that became isolated through time. On average roadside trees accounted for< 2% of
land cover, but removing 60% of them (~1.2% of land cover) nevertheless decreased the number of successful
dispersers by up to 17%. The impact was greatest when roadside trees represented a greater proportion of
canopy cover. The study therefore demonstrates that models such as RangeShifter can provide valuable tools for
assessing the consequences of losing trees outside of woodlands.

1. Introduction

The loss and fragmentation of habitats is a major threat to biodi-
versity (Haddad et al., 2015). Scattered trees within a fragmented
landscape have a significant role to play in combating the effects of
habitat loss and fragmentation. In a recent global meta-analysis,
Prevedello et al. (2017) found landscapes with scattered trees sup-
ported greater levels of biodiversity than landscapes without scattered
trees, reinforcing the idea that scattered trees are ‘keystone’ structures
of landscapes (Fischer and Lindenmayer, 2007; Gibbons et al., 2008). In
particular, hedgerows and scattered trees alongside roads and railway
lines are often cited as examples of habitat corridors (Bailey, 2007;
Bennett, 1990; McCollin et al., 2000; Roy and de Blois, 2008). Hedge-
rows and other linear tree features have been shown to aid the dispersal

of some forest plants (Roy and de Blois, 2008), pollen (Van Geert et al.,
2010), mammals (De Lima and Gascon, 1999; Laurance and Laurance,
1999), birds (Fernandez-Juricic, 2000) and insects (Petit and Burel,
1998; Tischendorf et al., 1998). Trees present outside woodlands can
also act as stepping stones, increasing connectivity and facilitating
range expansion (Rossi et al., 2016). In a recent study, Fischer et al.
(2010) found that scattered trees in an agricultural landscape had a
disproportionately positive effect on species richness, thus emphasising
their role as keystone structures in fragmented landscapes.

Many of these ecologically important landscape features are now
under threat. Loss of scattered trees and connectivity is often associated
with anthropogenic land use change, such as agricultural intensification
and management. However, tree mortality rates and die-off events have
increased greatly in some parts of the world as trees suffer from
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elevated temperatures and water stress due to climate change (Bigler
et al., 2006; Breshears et al., 2005; McDowell et al., 2010; Peñuelas
et al., 2001). Furthermore, in recent years, the number of tree diseases
and their rate of spread appear to have increased across the globe, due
to several factors including climate change and global trade (Woodward
and Boa, 2013). For example, in North America, chestnut blight Cry-
phonectria parasitica has caused near complete loss of chestnuts Castanea
dentata (Jacobs, 2007). Dutch elm disease Ophiostoma spp. has caused a
similar loss of mature elms Ulmus spp. in Europe and North America
(Potter et al., 2011): some 26 million landscape trees were lost in the
UK alone during the major outbreak in the 1970s. Across Europe, ash
Fraxinus spp. trees are also dying due to the ascomycete Hymenoscyphus
fraxineus widely known as ash dieback (Baral et al., 2014; Kjær et al.,
2012) (previously called Chalara fraxinea and H. pseudoalbidus). The
impact of woodland tree loss due to threats such as deforestation, dis-
ease and climate change on biodiversity has been documented (Barlow
et al., 2016; Brook et al., 2003; Mitchell et al., 2014). However, trees
outside of woods (TOWs) are often overlooked and rarely mapped (see
Levin et al., 2009; Gullick et al., 2017 as mapping exceptions). Yet the
recent development of innovative high resolution mapping for mapping
individual TOWs (Bluesky National Tree Map, 2015) indicates that a
large proportion of trees are present outside of existing mapped
woodlands, thus the importance of TOWs for ecological connectivity
may be undervalued. With the development of mapping techniques,
opportunities to consider the value of TOWs for biodiversity and con-
nectivity have arisen. In particular, the loss of TOWs, principally those
close to infrastructure such as roads and railways, on wider landscape
connectivity can be explored.

A suite of approaches already exists for modelling landscape eco-
logical processes and new ones are emerging (Synes et al., 2016).
Connectivity is one of the key attributes maintaining linkages between
fragmented habitat patches within landscapes. Among the spatially
explicit approaches for modelling connectivity are three distinct
methods, least-cost path (LCP) (Adriaensen et al., 2003), circuit theory
(e.g. Circuitscape, McRae et al., 2008) and emerging mechanistic or
process models, such as the stochastic movement simulator (SMS)
which is embedded in the spatially explicit modelling platform Ran-
geShifter (Bocedi et al., 2014; Palmer et al., 2011). Within all three,
landscapes are characterised by habitat and matrix elements, each of
which has a permeability or cost value associated with moving through
it (related to the resistance/preference). The three approaches differ in
the way they model the potential pathways individuals may use to
travel between patches. At one extreme, LCP calculates a single, de-
terministic, optimum route between any two patches, whereas in Cir-
cuitscape (McRae et al., 2013) all possible pathways are evaluated by
analogy to electrical resistance. SMS explicitly incorporates the move-
ment behaviours of individuals, simulating the trajectories of many
individuals making probabilistic decisions regarding each step eval-
uated within a limited perceptual range. In a recent study, the degree to
which each estimator (LCP, Circuitscape and SMS) correlated with ge-
netic estimates of connectivity was compared for an amphibian and a
bird species having contrasting movement abilities: SMS was the best
performer and Circuitscape outperformed LCP (Coulon et al., 2015).
The improvement in performance gained by using SMS comes un-
avoidably with an increase in the number of parameters required for
the model. However, embedding detailed individual movements into
spatially explicit population models can offer important advantages
over alternative methods for estimating connectivity (Aben et al., 2016;
Coulon et al., 2015). Spatial modelling approaches have been used to
estimate ecological connectivity and to inform landscape management
options in other contexts (Aben et al., 2016; Binzenhöfer et al., 2005;
Conlisk et al., 2014; Synes et al., 2015). Yet, there is considerable un-
tapped potential to develop and apply spatially explicit models, in-
corporating mechanistic dispersal, to address landscape connectivity
questions related to the impact of climate change, tree disease and/or
management actions that lead to the loss of TOWs.

In this study, we construct a spatially explicit individual-based
model for actively dispersed virtual species that are assumed to use
roadside trees as stepping stones and/or corridors between woodland
breeding habitats in real UK landscapes. We use the recently developed
innovative high resolution national tree map for mapping individual
TOWs (Bluesky National Tree Map, 2015). In an intensively managed
landscape such as the UK, TOWs are often an important ecological
component within the highly fragmented and hostile agricultural ma-
trix. As field sizes have expanded with the intensification of agriculture,
trees along infrastructure features such as roads, railways and water-
courses have occupied an increasing proportion of all TOWs. However,
infrastructure brings people into contact with such trees and concerns
over perceived danger presented by diseased or dying trees (i.e. their
inherent tendency to limb failure or collapse) increases the likelihood of
management actions targeting the removal of trees close to infra-
structure in the event of a disease epidemic or climate-induced dieback
(Gullick et al., 2017). We aim to consider the impact of this manner of
tree loss on wider ecological landscape connectivity, as a first step to-
wards understanding the most appropriate management and recovery
response. Specifically, we model actively dispersing woodland breeding
species, and investigate the extent to which the removal of roadside
trees affects the total number of successful dispersers in any given year
and the number of breeding patches that become isolated through time.
We present results demonstrating the utility of individual-based spatial
models, incorporating mechanistic dispersal, for addressing questions
related to connectivity and tree loss, and discuss the potential of
modelling to inform applied management.

2. Methods

2.1. Study landscapes

Our study landscapes consisted of six 10 km × 10 km squares in the
south east of the UK (Table 1, Fig. 1). This region is a good example of
an area with trees under threat; ash dieback is prevalent within the
region and is expected to cause the catastrophic loss of ash trees that
comprise a substantial proportion of all trees in the wider landscape.
Furthermore, climate change and subsequent increasing heat and
drought in the south and east of the UK are also likely to increase tree
loss, particularly of young trees and mature trees outside of woodlands
(Broadmeadow et al., 2009).

The squares were selected to provide a representative range of
landscapes in the region. Baseline maps were created using canopy tree
data extracted from the National Canopy Map (NCM) for England and
Wales provided by BlueSky (Bluesky National Tree Map, 2015) under
licence to the Woodland Trust. The NCM provides the location, height
and canopy/crown extents where canopy exceeds 3 m in height. It is
created from high resolution aerial photography, terrain and surface
data, and from colour/infrared satellite imagery. Using ArcGIS, NCM
tree cells were classified as woodland trees if they fell within the For-
estry Commission's National Forest Inventory (Forestry Commission,

Table 1
Tree cover as a percentage of land cover within each of the 10 km × 10 km study squares,
and in parentheses the percentage of the total tree cover for the three classes, matrix,
roadside and woodland trees.

Square SW corner co-ordinates
(°Lat,°Lon)

Tree cover (%)

Total Matrix Roadside Woodland

TM18 52.108, 1.065 13.3 6.4 (48.3) 2.2 (16.3) 4.7 (35.4)
TL96 52.205, 0.779 15.7 5.6 (35.8) 2.4 (15.5) 7.6 (48.7)
TL54 52.038, 0.185 14.2 5.6 (39.2) 2.0 (14.4) 6.6 (46.4)
TM17 52.288, 1.078 12.1 5.8 (47.6) 2.1 (17.7) 4.2 (34.7)
TL74 52.032, 0.477 10.3 5.0 (49.1) 1.7 (16.9) 3.5 (34.0)
TL90 51.667, 0.746 6.1 3.5 (58.2) 1.4 (22.4) 1.2 (19.4)
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2015) woodland polygons of> 0.5 ha extended by a buffer of 10 m
width. Road data for the study area were downloaded from Edina
(http://digimap.edina.ac.uk) OS open roads. Linear road features were
buffered to 25 m either side and tree cells were classified as roadside
trees if they fell within the road buffer. Matrix trees were those that did
not fall within the boundaries of NFI woodlands or road buffers. The
remainder of the landscape was dominated by agricultural land classi-
fied within our model as hostile matrix habitat. Woodland patches were
defined as the breeding habitat for the 81 virtual species (described
below), and other habitat types (roadside trees, matrix trees, matrix
habitat) formed the inter-patch matrix (Fig. 2) each with a habitat-
dependent movement cost associated (Table 2). Thus, we restricted the
models to species that need a woodland patch for reproduction. For
these species, the trees outside of woodland improve the permeability
of the matrix. We have not focused on species for which single trees
outside of woodland provide suitable breeding habitat. 10 m raster
maps were then created from the ArcGIS shapefile layers with cells
identified as woodland trees, roadside trees, matrix trees and inter-
patch matrix (Fig. 2a).The percent of the tree cover for each square and
the composition of the tree cover (matrix, road side, or woodland trees)
is given in Table 1.

2.2. Tree removal scenarios

We simulated the removal of 20%, 40% and 60% of roadside trees in
each square due to anticipated felling of diseased and damaged trees
along roads. For each of the six squares and for each of the 20%, 40%
and 60% removal scenarios, we generated ten landscape replicates in
which roadside trees were removed at random from the baseline
landscape (for an example of this see Fig. 3). Thus for each of the six
squares, breeding patches remained the same in the baseline landscape
and in each of the 30 generated removal landscape replicates, but the

inter-patch matrix differed.

2.3. Model

We modelled the effects of the tree removal scenarios on con-
nectivity using RangeShifter, an individual-based spatially explicit
modelling platform (Bocedi et al., 2014), which combines demographic
and dispersal sub-models, notably accounting explicitly for the three
phases of dispersal (emigration, transfer, settlement). Within Range-
Shifter, the distribution of individuals' dispersal distances is an emer-
gent property of behavioural rules at each phase and interaction with
the landscape (e.g. the dispersal of an individual between two wood-
land patches depends upon the quality of the matrix). For the purpose
of this study, the movement of individuals was modelled using SMS,
which is embedded within Rangeshifter. SMS simulates the movement
of individuals between breeding sites across a cost surface, subject to
two key movement parameters, namely perceptual range (PR, the dis-
tance within which an individual evaluates surrounding habitat costs)
and directional persistence (DP, an individual's predisposition to follow
a correlated path). In addition to matrix cells having a substantially
higher movement cost than cells with trees, they also had a much
higher mortality risk in terms of the habitat-dependent risk of mortality
per step taken.

2.4. Simulations

For each of the landscapes, we simulated the dynamics of virtual
species. The use of virtual species in spatial ecological modelling is
increasing used (Feng and Papeş, 2017; Fukuda and De Baets, 2016)
and presents advantages in terms of facilitating the development,
testing and showcasing of methods (e.g. Leroy et al., 2016). Further-
more it can provide initial insights on potential impacts of

Fig. 1. Map of southern England showing square locations.
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environmental changes and management activities even when data are
lacking for sets of real species (e.g. Saura et al., 2011; Synes et al.,
2015). We considered actively dispersing species that might use road-
side trees as stepping stones and/or corridors for movement between
woodlands. We assumed that such species would have sensory abilities

to navigate towards trees in the landscape, and would display a strong
preference for doing so rather than moving across open fields. A list of
species within the study area and their associated demographic and
dispersal parameters was not available; thus the set of model species is
not based on particular species, but has been designed to represent the
characteristics of a broad range of potential invertebrate taxa, varying
in their population densities and dispersal abilities.

The virtual species were modelled as asexual with non-overlapping
generations. The choice to model asexual populations does not imply
only asexual reproduction, but rather represents invertebrate species
that mate prior to emigrating from their natal patch; hence new co-
lonies are founded by fertilised females and the dispersal of males does
not need to be modelled. The 81 species were chosen using a fully
factorial design by applying three levels of each of the following
parameters: carrying capacity (K= 25, 50, 75 inds/ha), perceptual
range (PR = 3, 6, 12 cells), directional persistence (DP = 5.0, 7.0, 9.0)
and the mortality risk incurred by crossing unsuitable matrix habitat
(HM= 0.02, 0.035, 0.05). Other parameters within RangeShifter were
held constant for all simulations (Table 2).

For each of the 81 species, 10 demographic replicate scenarios were
run on the baseline landscapes to generate baseline measures of con-
nectivity. Then, for each species, 10 demographic replicates were run
on each of the 30 removal scenario landscapes for each of the six
squares (10 replicate landscapes for each of the 20%, 40% and 60%
roadside tree removal scenarios). For each species, landscape and re-
plicate combination, populations were initialised at half carrying ca-
pacity in every breeding patch. The models ran for 30 years, but the
first 10 years were taken as a burn-in period and discarded, as trial
simulations had demonstrated that this allowed for the population
dynamics to stabilise before results were taken.

Fig. 2. Example of one of the six landscape squares (TL96) showing (a) the classification
into four habitat types and (b) the 144 discrete breeding patches in the square (unique
colours).

Table 2
Parameters used in RangeShifter, varied parameters shown in red.

Demographic parameter

Reproduction Asexual/female only
Stage structure Non-overlapping generations
Intrinsic growth rate (Rmax) 10
Competition coefficient (bc) 1
Carrying capacity (inds/ha) (K) 25, 50, 75
Dispersal characteristics
Emigration probability Density-dependent
Max. emigration probability (D0) 0.7
Slope at inflection point (α) 10
Inflection point (β) 0.5
Movement model SMS
Perceptual range (cells) 3,6,12
Perceptual range method (PR) Harmonic mean
Directional persistence (DP) 5.0,7.0,9.0
Memory size (cells) 2
Maximum number of steps (cells) 2000
Cost value/mortality risk (HM) of:
Matrix 500/0.02, 750/0.035, 1000/0.05
Woodland 1/0.0001
Matrix trees 1/0.0001
Roadside trees 1/0.0001
Settle-if Find a suitable patch (not the natal one)

Fig. 3. (a) Example of a 1 km × 1 km area within one of the six landscape squares (TL96)
(b) Example of 60% roadside tree removal for the area shown in (a).
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2.5. Data analysis

For each generation, RangeShifter provides a connectivity matrix
presenting counts of the number of successful dispersers from each
breeding patch to every other breeding patch in the study area. The
connectivity matrices were used to calculate the total number of suc-
cessful dispersers (individuals that did not die during dispersal) in any
given year and the number of breeding patches that become isolated
(patches receiving no immigrants in the 20 years after the burn-in
period).

2.6. Baseline landscapes

General linear models were fitted in R using package lme4 (Bates
et al., 2015; R Team, 2017) to apportion the variance explained by each
of the four varied factors (perceptual range, directional persistence,
carrying capacity, matrix per step mortality risk). For all squares, de-
mographic replicate and year, together with their interactions with the
four varied factors, accounted for< 0.01% of the variance in the
number of successful dispersers (Appendix A, Table A1) and in the
number of isolated patches (Appendix A, Table A2). Therefore, counts
of successful dispersers and the number of isolated patches were aver-
aged across all demographic replicates and years.

2.7. Removal scenarios

For all tree removal scenarios (20%, 40%, 60%) on all squares,
demographic replicate and year, together with their interactions with
the four varied factors, accounted for< 0.01% of the variance in the
number of successful dispersers (Appendix A, Tables A3,A4,A5).
Therefore, as with the baseline, the number of successful dispersers was
averaged across all demographic replicates and years for each land-
scape replicate within a given square and removal scenario. The mean
number of successful dispersers was then scaled as a proportion of the
baseline mean for the corresponding simulation (i.e. combination of K,
HM, PR and DP).

Similarly, the number of isolated patches was averaged across all
demographic replicates and years, and the effect of tree removal was
represented by the increase in the mean number of isolated patches
relative to the corresponding baseline simulation.

To account for all species simulations being run on the same 10
landscapes replicates (LR) for a given removal scenario in a particular
square, the data were fitted separately for each square to linear mixed
models in which landscape replicate was included as a random effect.
The least squared means for the four varied factors (K, HM, PR, DP)
were extracted from these models using R package lsmeans (Lenth,
2016) to illustrate the main effects of each model parameter.

3. Results

3.1. Successful dispersers

For each square, the mean proportion of successful dispersers de-
clined as the percent of trees removed increased (Table 3). In general,
the reduction in successful dispersers due to tree removal was< 10%,
but for some individual parameter and landscape replicate combina-
tions, the reduction in successful dispersers could be up to 17%. Re-
moving roadside trees also changed the dispersal trajectories of in-
dividuals and increased the frequency of disperser visits to cells
containing non-roadside matrix trees (Fig. 4).

The proportion of variance in successful dispersers explained by
landscape replicate was between 3% and 30%, indicating that the ac-
tual spatial pattern of tree removal is likely to be important for con-
nectivity. As the percent of trees removed increased, the proportion of
variance explained by landscape replicate (LR) decreased (TL90 was the
exception). Thus, in general as more trees were removed the spatial

pattern of tree removal becomes less important. Conversely, as more
trees were removed the variance explained by carrying capacity (K) and
directional persistence (DP) increased and the proportion of variance
explained ranged from 5% to 50% and< 1% to 18% respectively. The
interaction of carrying capacity and per-step mortality risk accounted
for between 0.7% and 12% of the variance, but otherwise interactions
were relatively unimportant.

Increasing carrying capacity (K) and matrix per step mortality risk
(HM) (Fig. 5a and b, appendix B table B1) decreased the mean pro-
portion of successful dispersers. Conversely, increasing SMS directional
persistence (DP) increased the mean proportion of successful dispersers
(Fig. 5c, appendix B table B1).

3.2. Isolated patches

At only 20% roadside tree removal, the increase in patch isolation
over baseline levels was very limited, but larger increases in isolation
were observed at higher levels of removal (Table 4, Fig. 6). Overall, the
mean change was limited because some spatial configurations allow for
a more substantial decrease and some an increase in patch isolation. For
example, in the worst-case scenario the maximum increase in the
number of isolated patches was 3.9 above the baseline (Table 4).
However, in some cases tree removal also decreased the number of
isolated patches compared to the baseline, minimum values ranging
between −1.2 and −2.1 (Table 4). Increasing the per-step mortality
risk led to larger increases in the number of isolated patches, whereas
increasing directional persistence resulted in smaller increases (Ap-
pendix B Table B2, Fig. 6). Main effects and their first-order interactions
generally accounted for a small proportion of the variance in the iso-
lation metric, although the influence of mortality risk and directional
persistence increased considerably as the proportion of trees removed
increased.

4. Discussion

Here, we have demonstrated a novel approach for modelling how
the removal of TOWs can affect the connectivity between woodlands in
a fragmented landscape. A number of approaches have been used to
assess and model landscape connectivity, ranging from simple pattern
based metrics (e.g. nearest neighbour), to more complex techniques to
model potential connectivity (e.g. graph theory) and the use of in-
dividual-based models to capture the process of dispersal (Calabrese
and Fagan, 2004). We demonstrate that using a spatially explicit in-
dividual-based model provides advantages over other approaches, as it
allows for greater detail in the dispersal process so that inter-patch
dispersal rates become an outcome of context and behaviour-dependent
dispersal decisions rather than deterministic connectivity metrics or a
fixed distribution (O'Brien et al., 2006; Saura et al., 2011). Using
RangeShifter, there were clear indications that the removal of roadside
trees would lead to loss of connectivity in our case study landscapes.
While roadside trees accounted for< 2% of land cover, removing 60%
of these roadside trees (~1.2% of land cover) nevertheless decreased
the number of successful dispersers by up to 17%. For some species, this
could represent substantial degradation to ecological and/or genetic
function. The impact of removing roadside trees on dispersal success
was greatest where these trees represented a greater proportion of total
canopy cover in the landscape. The effect of roadside tree removal on
the mean proportional reduction in the total number of successful dis-
persers per year was roughly linear, i.e. for each successive 20% of trees
removed; there was a consistent reduction relative to the baseline.

The relative proportion of successful dispersers decreased slightly
with increasing carrying capacity and per-step mortality risk but in-
creased slightly with increasing directional persistence and perceptual
range, although in all cases there was less than a 10% change compared
with the baseline landscape. At higher levels of tree removal, the
modelled species suffering greater risk when crossing open terrain were
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likely to experience the greatest reduction in connectivity, whereas
species with better sensory abilities and those that tended to move more
directly through the landscape, regardless of tree availability, were to
some extent able to compensate during dispersal. In a recent study of
connectivity in European forests, using a network based approach with
theoretical species, results similarly indicated that more mobile species
would be better able to cope with changing spatial forest patterns and
increasing forest cover increased connectivity overall (Saura et al.,
2011).

The effect of roadside tree removal on patch isolation was more
complex than its effect on overall disperser success. In most cases,
roadside tree removal resulted in increased patch isolation; both

empirical and theoretical studies have similarly found that maintaining
habitat between breeding patches reduces the risk of patch isolation
and is also important for facilitating range expansion (Aben et al., 2016;
Conlisk et al., 2014; Rossi et al., 2016; Roy and de Blois, 2008; Saura
et al., 2014). However, in some simulations individual patches became
better connected when roadside trees were removed. An explanation for
this result is that some roadside trees made certain pairs of patches well
connected, and thus their removal encouraged dispersers away from
those patches and into patches that would have otherwise remained
poorly connected. Effectively, in the baseline, some of the non-wood-
land trees acted to direct dispersers in particular directions and away
from routes linking patches that are less attractive due to an absence of

Table 3
Mean, minimum and maximum proportion of successful dispersers relative to the baseline landscape for each tree removal scenario on each square and the proportion of variance
explained by the main model parameters LR (landscape replicate). PR (perceptual range). DP (directional persistence). K (carrying capacity). HM (matrix per step mortality risk). Variance
values s > 0.2 are highlighted in bold.

Proportion of variance explained by

Square % of trees removed Mean Min Max LR PR DP K HM

TM18 20 0.979 0.964 0.991 0.210 0.023 0.063 0.090 0.128
TM18 40 0.959 0.934 0.979 0.202 0.013 0.090 0.321 0.088
TM18 60 0.941 0.913 0.967 0.030 0.015 0.151 0.427 0.064
TL96 20 0.979 0.953 0.994 0.166 0.048 0.107 0.274 0.038
TL96 40 0.959 0.926 0.984 0.081 0.084 0.147 0.344 0.096
TL96 60 0.941 0.896 0.973 0.086 0.077 0.157 0.302 0.148
TL54 20 0.979 0.965 0.992 0.124 0.025 0.123 0.185 0.197
TL54 40 0.959 0.933 0.981 0.077 0.042 0.162 0.254 0.230
TL54 60 0.938 0.900 0.967 0.052 0.037 0.182 0.282 0.253
TM17 20 0.979 0.954 0.999 0.163 0.051 0.111 0.212 0.068
TM17 40 0.959 0.925 0.989 0.045 0.038 0.158 0.381 0.064
TM17 60 0.940 0.901 0.977 0.040 0.028 0.139 0.496 0.019
TL74 20 0.982 0.959 1.003 0.141 0.024 0.083 0.277 0.017
TL74 40 0.967 0.936 0.996 0.048 0.026 0.110 0.408 0.052
TL74 60 0.952 0.909 0.984 0.063 0.023 0.084 0.496 0.032
TL90 20 0.974 0.940 1.018 0.178 0.015 0.001 0.045 0.068
TL90 40 0.944 0.897 0.983 0.102 0.033 0.011 0.336 0.062
TL90 60 0.916 0.832 0.962 0.302 0.029 0.009 0.280 0.025

Fig. 4. Examples of (a) the number of times each cell of the baseline landscape of square TL96 was traversed by a dispersing individual during the course of 20 years and (b) the change in
visit frequency for a single landscape replicate following removal of 60% of the roadside trees (red – fewer visits; blue – more visits). RangeShifter parameter values were as shown in
Table 2, varied parameters being set to their intermediate values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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non-woodland trees on route. A similar dichotomous result arose in a
modelling study of the European Lynx (Lynx lynx) (Kramer-Schadt
et al., 2011). The introduction of stepping stones had a positive effect
on lynx populations but in some cases could also distract dispersers
from more suitable breeding habitat patches. Such contrasting potential
outcomes indicate that conservation planning needs to consider trade-

offs that may arise when considering the functional connectivity of
landscapes (Kramer-Schadt et al., 2011).

The squares used in the study all had similar proportions of trees.
Furthermore, tree cover only accounted for< 16% of the landscapes,
this being typical of many UK landscapes, and the proportion of road-
side trees accounted for on average 17.2% of canopy cover. Our results

Fig. 5. Least squares mean proportion of successful dispersers illustrating the effect of carrying capacity (a), matrix per step mortality risk (b), SMS perceptual range (c), and SMS
directional persistence (d) in the 20% (blue), 40%(pink) and 60%(green) removal scenarios for each square. For each factor of interest, results were averaged over the levels of the
remaining factors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Mean, minimum and maximum increase in the number isolated patches relative to the baseline landscape and the proportion of variance explained by the main model parameters LR
(Landscape Replicate), PR (perceptual range), DP (directional persistence), K (carrying capacity), HM (matrix per step mortality risk). Variance values > 0.2 are highlighted in bold.

Proportion of variance explained by

Square % of trees removed Mean Min Max LR PR DP K HM
TM18 20 0.148 −1.9 2.6 0.019 0.000 0.017 0.023 0.020
TM18 40 0.383 −1.3 3.4 0.016 0.001 0.072 0.031 0.092
TM18 60 0.501 −1.2 2.8 0.034 0.003 0.085 0.016 0.126
TL96 20 0.223 −1.9 3.2 0.026 0.024 0.029 0.006 0.066
TL96 40 0.450 −1.4 3.4 0.034 0.007 0.161 0.011 0.152
TL96 60 0.531 −1.4 3.9 0.027 0.018 0.165 0.011 0.198
TL54 20 −0.036 −1.9 1.2 0.013 0.013 0.042 0.012 0.001
TL54 40 −0.037 −1.4 1.7 0.020 0.009 0.046 0.008 0.007
TL54 60 0.011 −1.6 1.9 0.055 0.009 0.018 0.009 0.081
TM17 20 0.228 −2.1 2.7 0.015 0.007 0.062 0.015 0.042
TM17 40 0.366 −1.3 2.9 0.014 0.003 0.120 0.001 0.096
TM17 60 0.596 −1.2 3.1 0.027 0.003 0.147 0.002 0.132
TL74 20 0.023 −2.1 1.9 0.009 0.000 0.001 0.005 0.009
TL74 40 0.075 −1.9 2.4 0.008 0.000 0.001 0.022 0.006
TL74 60 0.034 −1.7 2.6 0.012 0.000 0.015 0.010 0.011
TL90 20 0.160 −1.6 1.9 0.012 0.032 0.003 0.001 0.055
TL90 40 0.404 −1.3 2.3 0.009 0.021 0.029 0.009 0.167
TL90 60 0.610 −1.2 3.1 0.017 0.007 0.050 0.013 0.256
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highlight that the loss of a small proportion of trees can have a sub-
stantial impact on connectivity, but on our case study landscapes the
non-roadside matrix trees may have somewhat buffered the loss of
roadside trees. In the worst case, for 60% tree removal in square TL90,
the number of successful dispersers was reduced to 83% of its mean in
the baseline landscape. TL90 had the lowest tree cover of all the
squares, and a smaller proportion of woodland trees, whereas roadside
trees accounted for a greater proportion of trees than in other squares.
In the current study, we chose to investigate the targeted removal of
trees close to infrastructure, and did not model the loss of matrix trees
or woodland trees that may occur due to increasing natural mortality
caused by disease outbreaks and/or climate change. Furthermore, while
we model the loss of up to 60% of roadside trees, the true extent future
road- and rail-side trees loss is uncertain and it could be greater. Thus,
the combined loss of roadside, matrix and woodland trees due to the
combined effect of felling and natural mortality may lead to greater
losses in connectivity.

In this study, we made simplifying assumptions about the spatial
patterns of tree removal; roadside trees were randomly removed.
However, it may be that trees will be felled in spatially aggregated
patches for a number of reasons. For example, individuals of the same
species may tend to be clustered and thus, depending on disease epi-
demiology, clusters may need be felled if all become diseased.
Furthermore, when a dying tree is identified along a roadside, it is
economically more efficient to remove all potentially dangerous road-
side trees in close proximity at the same time. In our study, between 3
and 30% of the variance in the proportion of successful dispersers was
explained by landscape replicate, and therefore the location of tree
removal was clearly important. An interesting extension of this study

would be to investigate explicitly the spatial pattern of tree removal. In
particular, when tree loss is driven by tree disease, combining models of
disease spread (Gilligan and Van Den Bosch, 2008; Meentemeyer et al.,
2011; Potter et al., 2011) with models describing human decision
making in terms of tree felling (Gullick et al., 2017) could predict
realistic patterns of tree loss when estimating connectivity. Moreover,
although our selected squares reflected a range of canopy coverage
typical of an area of the South East of the UK, the scope of this initial
limited study was such that inferences for individual UK counties or for
the wider UK landscape cannot be drawn. Future work should randomly
sample a greater number of locations from across counties of interest or
indeed, across the UK, to draw county/country level conclusions.
Nevertheless, results here demonstrate the utility of modelling ap-
proaches for addressing pressing landscape ecological questions.

We considered only the impact of tree loss on connectivity, but
spatially explicit population models could also be used to investigate
the impact of tree loss and the loss of linear woody features on the
genetic health of populations. Indeed, Athayde et al. (2015) found that
scattered trees held between 64 and 85% of the total functional and
phylogenetic diversity in agricultural landscapes, and functional and
phylogenetic diversity levels were higher in agricultural landscapes
with scattered trees than expected for random assemblages of species.
The use of models can also be extended to investigate mitigation op-
tions for tree disease. For example, Gibbons et al. (2008) used a model
to explore management options to mitigate the decline of scattered
trees in an agricultural landscape, identifying key variables that can be
manipulated to reduce the impact. In terms of connectivity, modelling
efforts investigating the costs/benefits of alternative management
strategies, such as maintaining selected ecologically important trees to

Fig. 6. Least squares mean change in the number of isolated patches illustrating the effect of carrying capacity (a), matrix per step mortality risk (b), SMS perceptual range (c), and SMS
directional persistence (d) in the 20% (blue), 40%(pink) and 60%(green) removal scenarios for each square. For each factor of interest, results were averaged over the levels of the
remaining factors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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maintain ecological connectivity, would be a worthy future step. There
is clearly much scope for models to address key ecological and man-
agement questions related to tree loss, particularly if models can be
parameterised to reflect local conditions.

In general, while the model here was parameterised to represent a
range of dispersers, if none of the actual species present in the study
area possesses any of the factor combinations leading to poor dispersal,
then it is possible that there would be no decline in connectivity.
Alternatively, if such combinations of factors are common in real spe-
cies, then the decline may be much more severe than predicted.
Ultimately, better dispersers may be less affected by tree loss, while
highly sensitive species, suffering higher mortality risks when crossing
hostile habitat, may fare poorly in landscapes without scattered trees
(Prevedello et al., 2017). Virtual species explorations such as those
presented here provide valuable general insights; however, for most
studies, ours included, there remain insufficient data to parameterise
models for multiple species of interest (Saura et al., 2011). Yet this
modelling framework could yield more robust management re-
commendations, for maintaining connectivity, when combined with
high quality field-based estimation of parameters and/or a trait space
approach (Aben et al., 2016; Santini et al., 2016). Furthermore, by
identifying factors that make species vulnerable to tree loss, this type of
virtual study could be used as an early indicator of risk for species found
to possess those traits. Increasing and maintaining landscape con-
nectivity is widely recognised as an essential component of biodiversity
conservation, preventing population declines and facilitating adapta-
tion to climate change. TOWs are vital landscape components that
maintain connectivity and their loss, not only in areas close to infra-
structure but also in the wider landscape, threatens ecosystems. There is
clearly a pressing need to combine models of realistic tree loss with real
species data quantifying traits, to ensure that future conservation ac-
tions are based upon robust evidence to deliver real biodiversity ben-
efits.
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