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Abstract: 

Genome-wide association studies (GWAS) of late-onset Alzheimer’s disease risk 

have previously identified genes primarily expressed in microglia that form a 

transcriptional network.  Using transgenic mouse models of amyloid deposition we 

previously showed that many of the mouse orthologues of these risk genes are co-

expressed and associated with amyloid pathology. In this new study, we generate an 

improved RNA-seq-derived network that is expressed in amyloid-responsive mouse 

microglia and we statistically compare this with gene-level variation in previous 

human Alzheimer’s disease GWAS to predict at least four new risk genes for the 

disease (OAS1, LAPTM5, ITGAM/CD11b and LILRB4). Of the mouse orthologues of 

these genes Oas1a is likely to respond directly to amyloid at the transcriptional level, 

similarly to established risk gene Trem2, because the increase in Oas1a and Trem2 

transcripts in response to amyloid deposition in transgenic mice is significantly higher 

than both the increase of the average microglial transcript and the increase in 

microglial number. In contrast, the mouse orthologues of LAPTM5, ITGAM/CD11b 

and LILRB4 (Laptm5, Itgam/CD11b and Lilra5) show increased transcripts in the 

presence of amyloid plaques similar in magnitude to the increase of the average 

microglial transcript and the increase in microglia number, except that Laptm5 and 

Lilra5 transcripts increase significantly quicker than the average microglial transcript 

as the plaque load becomes dense. This work suggests that genetic variability in the 

microglial response to amyloid deposition is a major determinant for Alzheimer’s 

disease risk, and identification of these genes may help to predict the risk of 

developing Alzheimer’s disease. These findings also provide further insights into the 

mechanisms underlying Alzheimer’s disease for potential drug discovery. Data 

available at: www.mouseac.org 
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Introduction 

All the known mutations in genes causing early-onset Alzheimer’s disease alter 

amyloid precursor protein (APP) processing such that amyloid deposition becomes 

more likely (Hardy and Selkoe, 2002). In contrast, despite some rare variants in APP 

processing enzymes (Kim et al., 2009; Marioni et al., 2018; Jansen et al., 2019; 

Kunkle et al., 2019), the majority of the risk in late-onset disease has been shown to 

be due to sequence variability in genes expressed in the innate immune system 

(largely microglial genes; Jones et al., 2010). We and others identified the microglial 

gene TREM2 as a potent risk gene for late-onset disease (Guerreiro et al., 2013; 

Jonsson et al., 2013), and identified that its expression was strongly increased by 

amyloid deposition in APP transgenic mice (Guerreiro et al., 2013; Matarin et al., 

2015; Cheng-Hathaway et al., 2018; Song et al., 2018). We previously reported a 

microarray analysis of genome-wide expression of a range of transgenic mice 

expressing mutant human APP and/or PSEN1 (Matarin et al., 2015). The different 

lines of mice analysed in this study developed amyloid plaques at different rates and 

so, by analysis of plaque deposition and gene expression in the same animals, plaque 

deposition could be correlated with gene expression across the life of a mouse, 

independent of age. We noted that Trem2 was one of the genes whose expression was 

up-regulated the most in relation to amyloid deposition. Trem2 expression also 

showed a strong correlation with the expression of a network of genes in the innate 

immune system suggesting Trem2 is a ‘hub’ gene, and may regulate the expression of 

the entire network. This immune module of genes showed a remarkable positive 

correlation to amyloid deposition (Matarin et al., 2015), and contained orthologues of 

other already established Alzheimer’s disease risk genes such as Abca7 and Ms4a6d 

(Lambert et al., 2013). Notably, two genes, ABI3 and PLCG2, that were identified 



subsequently as being associated with Alzheimer’s disease risk loci (Sims et al., 

2017), were also present in this network. Hence, mouse microglia clearly respond to 

plaques in a manner where the genes co-expressed within these microglia relate 

closely to the genes that are relevant in human disease. These observations also 

suggest that this innate immune network that is expressed by these amyloid-

responsive microglia may be used to predict future risk genes for Alzheimer’s disease. 

 

An important outstanding question is whether progression of late-onset Alzheimer’s 

disease to the point of neurodegeneration and diagnosis is largely due to an 

inadequate innate immune response to rising amyloid beta (Aβ) deposition, resulting 

in accelerated amyloid-induced damage (Edwards, 2019). This hypothesis is difficult 

to study in human post-mortem tissue because during pathogenesis the proportion of 

cell types in the brain changes and the remaining cells show extensive compensatory 

changes in gene expression. With this in mind, for this new work we developed the 

approach outlined below to use the gene expression network that is present within 

amyloid-responsive microglia in mouse models during pathology progression and 

tested for significant overlap with human gene variation associated with Alzheimer’s 

disease. We then surveyed the gene expression network in mouse amyloid-responsive 

microglia to investigate if we could identify further Alzheimer’s disease risk loci. 

Initially, we took advantage of the increased resolution provided by performing RNA-

seq to improve the gene expression analysis we had previously undertaken with 

microarray technology in the same mice. The new higher-resolution transcriptional 

network containing the co-expressed mRNA that most strongly correlated to amyloid 

deposition again featured primarily microglial genes. This confirmed the previous 

analysis in the same mice (Matarin et al., 2015), but the mouse RNA-seq analysis 



revealed many additional genes not detectable with microarray, and included yet more 

genes previously identified as human risk genes for Alzheimer’s disease from GWAS. 

We then investigated whether the genes included in the novel co-expression network 

present in amyloid-responsive mouse microglia are also significantly associated with 

Alzheimer’s disease in human GWAS data. We used the data from the International 

Genomics of Alzheimer’s Projects (IGAP; Lambert et al., 2013; Kunkle et al., 2019) 

to identify the genes which are present in the mouse network and also significantly 

associated with Alzheimer’s disease risk. The significance of each human gene was 

assessed using a gene-based approach, applied to the summary statistics of the IGAP 

datasets (Brown, 1975; Moskvina et al., 2011; Escott-Price et al., 2014; de Leeuw et 

al., 2015). The gene-based analyses employed here account for the strength of the 

association of multiple adjacent SNPs restricted to the exon boundaries of genes. This 

approach has important implications for predicting disease risk in people at the gene 

level (rather than SNP-level), with the potential of providing mechanistic insights into 

the cellular and molecular processes underlying disease progression. 

 

  



Materials and methods 

Mouse models of Alzheimer’s disease 

The RNA samples used for this study were from the same mice we used previously, 

described in detail in Matarin et al., (2015), therefore no further mice were bred for 

this study. The mouse lines used are stated in the Supplementary material. The mice 

procedures used for Matarin et al., (2015), were performed in agreement with the UK 

Animals (Scientific Procedures) Act, 1986, with local ethical agreement. 

 

Human GWAS data 

The original IGAP (Lambert et al., 2013) summary statistics calculated for each SNP 

with 17,008 Alzheimer’s disease cases and 37,154 controls (Stage 1) were used to 

derive the gene-based p-values, described further below and in Escott-Price et al., 

(2014). The updated IGAP (Kunkle et al., 2019) summary statistics, derived from 

21,982 clinically confirmed Alzheimer’s disease cases and 41,944 controls (Stage 1) 

were used to repeat the procedure and generate gene-based p-values to determine if 

the associations identified from the original IGAP data remained. 

 

Mouse transcriptome work 

For this study, RNA-seq library preparation and sequencing was performed by 

Eurofins Genomics (Ebersberg, Germany), details given in Supplementary material 

together with processing of FASTQ files. Supplementary Fig. 1 shows how the new 



RNA-seq data and new comparison to IGAP GWAS data for Alzheimer’s disease, 

relates to total RNA samples collected previously in Matarin et al., (2015). 

 

Weighted gene co-expression network analyses (WGCNAs) were performed as 

described in Matarin et al., (2015), using the recommended parameters from the 

original analysis developers (Zhang and Horvath, 2005; Horvath et al., 2006; Oldham 

et al., 2006; Langfelder and Horvath, 2008). Further details in Supplementary 

material.  

 

Gene-based human GWAS data analysis 

The significance of the association to Alzheimer’s disease of human genes was 

assessed using a gene-based approach as introduced in Brown (1975), Escott-Price et 

al., (2014), and implemented in de Leeuw et al., (2015; MAGMA software 

ctg.cncr.nl/software/magma). Briefly, the updated IGAP (Kunkle et al., 2019) 

summary statistics calculated for each SNP in a sample of 21,982 Alzheimer’s disease 

cases and 41,944 controls were used to derive gene-based p-values. SNPs were 

assigned to genes if they were located within the genomic sequence corresponding to 

the start of the first and the end of the last exon of each transcript. Previous analyses 

including the 10 kb sequence flanking the first and last exons of genes, which may 

contain potential regulatory SNPs, did not cause substantial differences to the gene-

based p-values (Escott-Price et al., 2014).  Gene locations were as Build 37, 

Assembly Hg19 of the National Center for Biotechnology Information (NCBI) 

database as provided as part of the MAGMA software package.  Phase 3 of 1,000 

Genomes data were used as a reference panel for calculation of linkage disequilibrium 



(LD) between markers (Genomes Project et al., 2015). The gene-wide analysis was 

performed based on the summary p-values while controlling for LD and different 

numbers of SNPs per gene using a statistical approach by Brown (1975), and adopted 

for set-based analysis of genetic data by Moskvina et al., (2011) and de Leeuw et al., 

(2015). Prior to the gene-based analyses all individual SNP p-values were corrected 

for the genomic inflation factor (λ; to normalise for unaccounted variation, due to 

factors such as population stratification; Devlin and Roeder, 1999). 

 

Statistical analysis comparing human genes with co-expression network of 

amyloid-responsive mouse microglia 

The lists of mouse genes in the co-expression networks were converted to lists of 

human gene names using convertMouseGeneList() function, library biomaRt in R 

downloaded from https://bioconductor.org/biocLite.R. We tested whether the number 

of Alzheimer’s disease associated genes (at significance thresholds alpha = 0·05, 0·01 

and 0·001) in the mouse co-expression network was greater than that expected by 

chance given the number of human orthologues present in the mouse network. For 

that we counted the observed number of independent significant human genes in the 

mouse network and compared this with the expected (by chance) number of genes 

calculated as N*alpha, whilst accounting for the variance (var=N*alpha*(1-alpha)), 

where N was the total number of independent human genes in the mouse network. To 

account for LD, the genes within 0·5 Mb of each other were conservatively counted 

as one. The p-value of the excess of significant genes in the mouse network, between 

observed and expected, was calculated using a Z-test comparing the number of 

observed significant genes with the expected number. The observed number of 

significant genes was significantly higher than the expected at all gene p-value 



thresholds (0.05, 0.01, 0.001) for the amyloid-associated network. We report the 

genes at the gene-based p-values at threshold alpha = 0·01. 

 

Data availability statement 

RNA-seq expression data have been deposited in NCBI’s Gene Expression Omnibus 

(GEO; Series accession number GSE137313; 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137313), and are available 

at: www.mouseac.org 

  



Results 

High-resolution co-expression network using RNA-seq in amyloid-responsive 

microglia  

Although mouse models for dementia have clear limitations in that they do not show 

tau tangles or neuronal loss solely in response to rising Aβ, they allow us to study the 

time-course response of a healthy innate immune system reacting to Aβ, leading to 

the possibility that the innate immune cells of the mouse may ultimately be preventing 

Aβ killing neurons. We previously constructed a transcriptional network using 

expression arrays that was present in microglia that respond to plaques (Matarin et al., 

2015). As microarrays are limited by their probe content and their dynamic range, for 

this new study we have now sequenced the transcriptome of the same mice, 

expressing one or two copies of the APP (Swedish) and/or PSEN1 (M146V) 

transgenes alongside wild-type controls, using RNA-seq to construct a new higher 

resolution expression network. Similar to our findings with the initial microarray 

analysis, the RNA-seq analysis revealed a microglial module of genes that showed a 

strong correlation with Aβ deposition (correlation = 0·94; p < 3e-41), and contained 

the mouse orthologues of the identified GWAS loci TREM2, ABI3, CD33, INPP5D, 

MS4A6D, SPI1/PU.1, PLCG2, GAL3ST4, RIN3, HLA and APOE (Supplementary 

Table 1), verifying the relevance of this gene network to the human condition. Our 

hypothesis is that this network contains most of the genes that the microglia need to 

respond to amyloid plaques, including genes necessary for increases in cell number 

and activation (thus many cellular responses including proliferation, survival, 

metabolism, activation into a variety of states, and phagocytosis). The genes showing 

the tightest expression correlation within the module associated with microglia 

reacting to plaques form the network shown in Fig. 1 and Supplementary Table 2 (top 



147 genes from a total of 1,584 genes expressed as part of the innate immune module 

based on the topological overlap measure, TOM, connectivity values). This network 

is broadly similar to the network derived from the analysis of the same RNA by 

microarray methods (Matarin et al., 2015), and shows common features with 

microglial networks published by other groups using other amyloid mouse models 

(Wang et al., 2015; Castillo et al., 2017; Keren-Shaul et al., 2017; Lee et al., 2018; 

Nam et al., 2018), suggesting this is a conserved core network of genes that can be 

reliably identified using different methodologies. Trem2 forms a hub gene in our 

network, using either technique, indicating that Trem2 expression is highly correlated 

to many other genes in the network, and may drive the response of this network. In 

line with this idea, Trem2 has been shown to regulate at least part of this immune 

module (Wang et al., 2015; Keren-Shaul et al., 2017; Lee et al., 2018). The network 

we identified is also broadly similar to a human network of innate immune genes 

containing TYROBP, TREM2, MS4A family genes, C1Q members and CD33, 

identified from human post-mortem tissue bearing in mind the caveats discussed 

above for human tissue (Forabosco et al., 2013; Zhang et al., 2013). Again this 

suggests that this gene network expressed by Aβ-responsive mouse microglia behaves 

similarly in humans. 

 

Enrichment of human Alzheimer’s disease genes in the mouse gene network 

expressed by amyloid-responsive microglia  

Traditionally, GWAS projects have focused on single SNPs because single locus tests 

are the easiest to test and interpret, but these have limitations. For example, if disease 

risk is conferred by several (semi) independent SNPs within a locus with moderate 

effect sizes, this locus (gene) will be overlooked by the genome-wide analyses, as the 



statistical significance of each individual SNP will not pass the Bonferroni correction. 

Therefore, if only single SNPs are considered, useful disease associations may be lost, 

despite apparently high sample sizes (Escott-Price et al., 2014). To identify genes 

associated with Alzheimer’s disease at the gene-based level we initially used the 

summary statistics from the original IGAP (Lambert et al., 2013), and then re-ran the 

gene-based analyses using the larger updated IGAP data (Kunkle et al., 2019). We 

considered multiple SNPs within individual human genes to generate gene-level p-

values in order to assess whether multiple SNPs together constitute a significant risk 

factor, using a gene-based approach applied to the Alzheimer’s disease GWAS 

summary statistics (Brown, 1975; Escott-Price et al., 2014; de Leeuw et al., 2015). 

Within our mouse innate immune network, we first confirmed the significance of 

several members of the network that were orthologues of established Alzheimer’s 

disease loci variants using the gene-level p-values, including genes such as Trem2 and 

Abi3 (Table 1). We then asked whether the other members of the mouse network 

expressed by amyloid-responsive microglia might predict additional risk for 

Alzheimer’s disease. To this end we identified orthologues of human genes in the 

mouse network and tested whether this set of genes is enriched for the genes which 

contain variants significantly associated with Alzheimer’s disease. As this set of 

genes was defined by our biological experiment in contrast to genome-wide analyses, 

which by their nature are exploratory rather than hypothesis driven, we considered a 

nominal statistical significance threshold of p = 0.05 for human Alzheimer’s disease 

gene-based associations. We also explored more stringent significance thresholds (p = 

0.01 and p = 0.001), for selection of the genes for the gene enrichment analysis. To 

ensure that our enrichment analysis results were not inflated by the correlated genes 

due to linkage disequilibrium (i.e. in close proximity to one another), the genes within 



0.5 MB of each other were counted as one. We found a significant enrichment of 

orthologues of human genes associated with Alzheimer’s disease at the p = 0.01 

significance threshold within this mouse network expressed by amyloid-responsive 

microglia over and above that expected by chance (p = 8.86x10-6). The enrichment 

remained significant even after the established GWAS loci were excluded (p = 

1.66x10-4 for highly connected network of 147 genes (Fig. 1) and similarly p = 

3.68x10-4 for the entire module of 1,584 genes (Supplementary Table 1)). GWAS loci 

boundaries were defined as 0·5 Mb from either side of the most significant SNPs of 

previously identified GWAS genes with exclusion of APOE and HLA which we 

defined as chromosome 19: 44,500,000 – 46,500,000 and chromosome 6: 32,200,000 

– 32,800,000, respectively.  

 

In contrast to the mouse gene network expressed by amyloid-responsive microglia, 

the innate immune network expressed by microglia responding to tau pathology in 

mice transgenic for tau (P301L), was not significantly enriched for human genes 

associated with Alzheimer’s disease using the same methods (p = 0·78), although 

Apoe is part of this module and this module also contained genes largely expressed by 

microglia (Supplementary Fig. 2, top 137 genes from a total of 2,299 genes in the 

module based on the TOM). When the entire module of innate immune genes 

expressed by tauopathy-responsive microglia (2,299 genes) was considered there was 

a modest significant enrichment, p = 1.74x10-2, suggesting that a proportion of genes 

associated with Alzheimer’s disease through multiple SNPs are microglial genes that 

have mouse orthologues, but are expressed by microglia that are less responsive to tau 

pathology compared to Aβ deposition.   

 



The analysis of the genetic network expressed by amyloid-responsive microglia 

identified five genes within the central portion of mouse microglial network whose 

human orthologues were associated with Alzheimer’s disease from the original IGAP 

data (described in Salih et al., (2018), using the IGAP data from Lambert et al., 

(2013)). When we repeated the analysis using the updated IGAP data (Kunkle et al., 

2019) containing 29.2% more cases and 12.9% more controls, and 62.7% more SNPs 

as compared to Lambert et al., (2013), four of the five identified genes from the 

centre of the co-expression network in mice were still strongly associated with the 

orthologues containing variants in human Alzheimer’s disease. These four genes, 

OAS1, LAPTM5, ITGAM/CD11b and LILRB4, have not been previously reported as 

having variants significantly associated with Alzheimer’s disease using traditional 

GWAS approaches (Table 1, Supplementary Figs S3–4). In addition, amongst the 

entire genetic network expressed by amyloid-responsive microglia (Supplementary 

Table 1; 1,584 genes), a further 12 mouse genes have orthologues associated with 

human Alzheimer’s disease (p < 0.01) from the updated IGAP study (Supplementary 

Table 3). We emphasise that the goal of this comparison between the genetic network 

in mouse amyloid-responsive microglia versus human genes associated with 

Alzheimer’s disease combining multiple SNPs in a given gene was not to identify 

new single SNPs with genome-wide significant p-values ≤ 5x10-8. Instead, the 

alternative approaches we describe here were used to survey for more complex 

relationships between DNA variation and coding genes associated with Alzheimer’s 

disease by: 1) selecting a network of biologically relevant genes to Alzheimer’s 

disease genes (which reduces dramatically the number of genes being surveyed, to 

1,584 genes in our amyloid-associated network), 2) considering all SNPs together 

bounded by the coding region of a given gene (the gene-based analysis), and 3) 



looking at the network as a whole rather than individual genes (the enrichment 

analysis). Hence the individual gene significance is modest as compared to the 

genome-wide levels, but the genes are statistically significant and, together with 

previously identified Alzheimer’s disease genes, form the core of a transcriptional 

gene network (Fig. 1 and Table 1).  

 

If we consider a sub-network of genes expressed by amyloid-responsive microglia 

that contains these four novel putative risk genes with the established GWAS loci 

TREM2, ABI3, CD33, INPP5D, SPI1/PU.1, MS4A6D and GAL3ST4 present in Fig. 1, 

this sub-network is not highly connected in an innate immune gene network 

associated with tauopathy (Supplementary Fig. 2), suggesting this sub-network is 

expressed by microglia that are more responsive to amyloid deposition than other 

pathological features. Furthermore, in common with the existing seven known 

GWAS-associated genes in Fig. 1, the four novel risk genes we identify that are 

expressed by microglia that respond to Aβ deposition show transcript levels rising 

from four months of age in the homozygous APP/PSEN1 mice and after four months 

of age in the hemizygous APP/PSEN1 mice (Supplementary Fig. 5), in line with the 

increase in microglial numbers as amyloid plaques begin to deposit (Medawar et al., 

2019). To investigate whether the transcriptional changes we observed here are due to 

the increased microglial numbers in response to amyloid plaques we observed 

previously (Medawar et al., 2019), and to determine which genes are directly up-

regulated or down-regulated by amyloid at the mRNA level beyond the changes in 

microglial number, we calculated fold change of each gene in the homozygous and 

hemizygous APP/PSEN1 mice relative to its expression in age-matched wild-type 

mice (Supplementary Fig. 6). The expression levels of our putative risk genes relative 



to expression in age-matched wild-type mice shows a range (Oas1a, 10.0-fold 

increase in homozygous APP/PSEN1 mice relative to wild-type at 18 months of age; 

Laptm5, 4.1-fold increase; Lilra5, 3.8-fold increase; Itgam/CD11b, 2.3-fold increase; 

compared to Trem2, 9.2-fold increase, and Aif1, 3.3-fold increase; Supplementary Fig. 

6). Genes showing higher relative transcript levels such as Oas1a and Trem2 

compared to the average transcript level relative to wild-type mice for the entire 

innate immune network throughout disease progression, thus are likely to be directly 

up-regulated in response to amyloid by the reacting microglia, considering the 

number of microglia (3.7-fold increase in microglia at 18 months of age in 

homozygous APP/PSEN1 mice compared to wild-type; Medawar et al., 2019). In 

contrast, Laptm5 and Lilra5 relative expression are only significantly increased 

relative to average transcript level of the entire network when the plaque load starts to 

become heavy (8 months of age), but returns to the average relative transcript level of 

the network as disease progresses, suggesting a role in the initial response to Aβ 

(Supplementary Fig. 6). Itgam/CD11b shows a similar change in relative expression 

to the average relative transcript level of the entire immune network, and to the 

increase in microglia numbers, comparable to relative Spi1/PU.1 expression, 

suggesting that Itgam/CD11b and Spi1/PU.1 transcription is unlikely to be directly 

regulated by Aβ, but may play a role in regulating the change in microglia number in 

response to amyloid plaques because of the strong correlation between pathology and 

Itgam/CD11b expression. The expression patterns for Oas1a, Lilra5 and 

Itgam/CD11b are similar in both the homozygous and hemizygous APP/PSEN1 mice 

(Supplementary Fig. 6), whereas Laptm5 shows an expression pattern in the 

hemizygous APP/PSEN1 mice that is more similar to Itgam/CD11b. The similarity of 

the expression profiles of Laptm5, Itgam/CD11b and Spi1/PU.1 in the hemizygous 



APP/PSEN1 mice suggests that these three genes may play a role in regulating 

microglial number in response to amyloid deposition.  

  

Transcriptional network expressed by amyloid-responsive microglia containing 

risk genes is conserved in humans 

Aspects of the transcriptional network associated with amyloid that we identified in 

our analysis, containing the four predicted risk genes with the existing seven GWAS 

loci, are broadly similar to microglial networks we and others have previously 

identified in human brain analyses.  Zhang and colleagues identified an Alzheimer’s 

disease-relevant network centred on TYROBP and TREM2, which contained 

ITGAM/CD11b and LAPTM5 (Zhang et al., 2013), and we described a human 

microglial network containing LAPTM5, ITGAM/CD11b and LILRB4 (Forabosco et 

al., 2013). We then determined whether these novel Alzheimer’s disease risk genes, 

derived from a mouse transcriptional network expressed by amyloid-responsive 

microglia were present in independent datasets of human brain co-expression 

networks. Cross referencing our network with the data from the ROS/MAP project 

(Bennett et al., 2012a; Bennett et al., 2012b; De Jager et al., 2018), revealed that 

LAPTM5, ITGAM/CD11b and LILRB4 clustered together with many of the GWAS 

risk genes for Alzheimer’s disease (Supplementary Fig. 7; Fisher’s Exact test 

Bonferroni corrected p = 1·34x10-13 showing a significant overlap between the genes 

in the mouse amyloid-associated module and human genes in the ROS/MAP module 

associated with Alzheimer’s disease). Interestingly, SPI1/PU.1, the myeloid cell 

transcription factor and a newly discovered GWAS risk gene (Huang et al., 2017) was 

also in the same ROS/MAP module as LAPTM5, ITGAM/CD11b and LILRB4. We 

confirmed these module memberships in the BRAINEAC data for non-Alzheimer’s 



disease control human brains generated in our own lab (Ramasamy et al., 2014). 

Interestingly, we found that SPI1/PU.1 binds to the regulatory regions of Laptm5 and 

Itgam/CD11b, as well as established Alzheimer’s disease risk gene orthologues 

Trem2, Abi3, Inpp5d, Ms4a6d and Spi1/PU.1 itself, by searching data from a 

chromatin immunoprecipitation experiment against SPI1/PU.1 in mouse microglial-

like BV-2 cells (Satoh et al., 2014). This finding was supported by mining for 

regulatory features and cis-regulatory modules in the gene network expressed by 

microglia that respond to plaques using i-cisTarget that uses a library of regulatory 

data (Imrichova et al., 2015). Together, these findings suggest that several of the 

predicted and established Alzheimer’s disease risk genes may be regulated by 

SPI1/PU.1, which itself alters Alzheimer’s disease risk by coordinating a program of 

microglial-expressed genes (Huang et al., 2017). 

 

Colocalization between Alzheimer’s disease-related loci and eQTLs for gene 

OAS1 

Since most GWAS loci are thought to operate by regulating the expression of 

neighbouring genes (Bradshaw et al., 2013; Griciuc et al., 2013; Huang et al., 2017), 

for each of the four potential Alzheimer’s disease-associated genes we performed a 

colocalization analysis to test the association between Alzheimer’s disease-related 

loci located within these genes and loci regulating the expression of these genes 

(eQTLs) (Giambartolomei et al., 2014). eQTLs were obtained from two previously 

published datasets using baseline and stimulated human-derived monocytes and iPSC-

derived macrophages (Kim-Hellmuth et al., 2017; Alasoo et al., 2018). In these 

studies, macrophages and monocytes were stimulated with various immunostimulants 

to activate distinct, well-characterized immune signalling pathways, including those 



broadly associated with bacterial and viral responses. Interestingly, we identified 

three colocalizations between Alzheimer’s disease loci and eQTLs regulating OAS1 

gene expression, all of which were identified in stimulated states, suggesting that this 

association is only active in certain environmental conditions (Fig. 2 and 

Supplementary Figs 8-9), in particular those designed to model 

monocyte/macrophage priming or more chronic inflammation.   

 

  



Discussion 

A decade of GWAS projects for Alzheimer’s disease has provided key and initially 

surprising insights into the progression of late-onset Alzheimer’s, particularly the 

dependence on the innate immune system, with the identification of genes such as 

TREM2 and SPI1/PU.1 (Guerreiro et al., 2013; Jonsson et al., 2013; Huang et al., 

2017; Sims et al., 2017). The latest GWAS studies published during 2019 mark the 

largest of their kind for Alzheimer’s disease featuring 71,880 Alzheimer’s disease 

cases to identify 9 novel risk loci (Jansen et al., 2019), and 35,274 clinically assessed 

Alzheimer’s disease cases to identify 5 novel risk loci from the updated IGAP study 

(Kunkle et al., 2019). Despite all the risk genes that have been discovered by GWAS, 

they still do not account for all of the heritability of late-onset Alzheimer’s disease. 

Finding further risk genes will become increasingly difficult due to the sheer number 

of patients required and associated costs, as the remaining risk genes are likely to be 

of rare mutation frequency or lower effect size. Here we describe a new approach to 

identify further risk genes by intersecting transcriptome data from a functional 

cellular response to rising amyloid with a gene-based statistical approach to identify 

genes significantly associated with Alzheimer’s disease from the updated IGAP 

project. We identify four further potential risk genes, OAS1, LAPTM5, 

ITGAM/CD11b and LILRB4, alongside confirming the importance of seven 

established GWAS hits TREM2, ABI3, CD33, INPP5D, SPI1/PU.1, MS4A6D and 

GAL3ST4. Together these new and established genes form a transcriptional network 

that is conserved in mice and humans, and so suggests that this sub-network of genes 

are regulated together, in part by the SPI1/PU.1 transcription factor, and may function 

together. 



Surveying the literature on our genes of interest revealed that OAS1 (2-prime, 5-prime 

oligoadenylate synthetase 1) is involved in the regulation of cytokine expression (Lee 

et al., 2019). OAS1 is induced by interferons (Donovan et al., 2013), which supports 

our eQTL analysis showing that one of the best SNPs we identified for OAS1 appears 

in a locus which acts as an eQTL in response to interferon-γ (IFNγ; Fig. 2 and 

Supplementary Figs 8-9). OAS1 can additionally activate ribonuclease L, which 

degrades viral RNA and inhibits viral replication (Donovan et al., 2013). Interferons 

are cytokines that are thought to trigger a key response to viral and other pathogens. 

In addition to the mouse orthologue of OAS1 (Oas1a), a number of other genes 

involved in interferon signalling are also present in our co-expression network from 

amyloid-responsive microglia, including other Oas family members, Ifit members, 

and transcription factors such as Irf7, Trp53 and the Stat family (Supplementary 

Tables 1 and 2). Recent studies have also shown that interferon-related genes are 

expressed in ageing control mice, and that the expression of interferon-related genes 

is further elevated in mouse models with amyloid pathology (Friedman et al., 2018; 

Sala Frigerio et al., 2019), leading to the identification of a population of ‘interferon 

response microglia’ (Sala Frigerio et al., 2019). The role of OAS1 and the other 

interferon-related genes in ageing animals and Alzheimer’s disease is not clear, they 

may be involved in limiting viral infections, recruiting immune cells to sites of 

damage and/or regulating cytokine production.   

 

LAPTM5 (lysosome-associated protein, transmembrane 5) is associated with amyloid 

deposition in transgenic mice (Nam et al., 2018). LILRB4 (leukocyte 

immunoglobulin-like receptor, subfamily B, member 4), orthologues have also been 

shown to be increased with amyloid deposition and specifically associated with 



amyloid plaques (Wirz et al., 2013; Kamphuis et al., 2016; Castillo et al., 2017). A 

paralogue of LILRB4, named LILRB2, and its mouse orthologue Pirb have been 

shown to bind Aβ, and this interaction with Aβ in mice mediates synapse elimination, 

and deficits in synaptic plasticity and memory (Kim et al., 2013). The functions of 

LAPTM5 and LILRB4 have not been well characterised, but are thought to suppress 

the activation of a variety of immune cells. ITGAM/CD11b (or CR3A), is a cell 

surface receptor involved in activation, migration and phagocytosis of immune cells, 

so much so that ITGAM/CD11b is used as a marker of activated microglia (Matsuoka 

et al., 2001; Heneka et al., 2013; Kamphuis et al., 2016). ITGAM/CD11b was 

highlighted in recent genetic and functional analyses as likely being important for the 

progression of Alzheimer’s disease, whose expression was driven by SPI1/PU.1, and 

related to amyloid deposition in mice and humans (Zhang et al., 2013; Hong et al., 

2016; Kamphuis et al., 2016; Olmos-Alonso et al., 2016; Huang et al., 2017; Nam et 

al., 2018). Most recently, inhibiting the interaction between the blood protein 

fibrinogen and ITGAM/CD11b reduced synaptic elimination and cognitive decline in 

a mouse model of Alzheimer’s disease (Merlini et al., 2019), providing strong 

evidence that ITGAM/CD11b function contributes to disease development. Given the 

previous studies for ITGAM/CD11b, LAPTM5 and LILRB4, it is tempting to speculate 

that they are involved in phagocytic processes involving synapses which are known to 

be reactivated during Alzheimer’s disease progression. More work is necessary to 

understand the molecular mechanisms of all four of these putative risk genes in the 

progression of Alzheimer’s disease.  

 

It is also useful to consider how microglial proliferation in response to amyloid 

plaques relates to expression of the four putative risk genes. We have previously 



shown that microglial number is increased in these homozygous APP/PSEN1 mice, 

by around 3.7-fold in the CA1 region of the hippocampus (Medawar et al., 2019), and 

an elegant study by Srinivasan et al., (2016), delineates the difference between 

expression changes in bulk tissue versus the influence of increased microglial 

numbers in response to amyloid by cell sorting to analyse expression changes in 

purified microglia alone. The expression levels of our putative risk genes relative to 

expression in age-matched wild-type mice shows a range, with Oas1a showing the 

greatest relative expression (10.0-fold increase relative to wild-type), and 

Itgam/CD11b showing the lowest relative expression (2.3-fold increase), suggesting 

that these genes may fulfil different purposes in microglia in the presence of amyloid 

plaques. Genes showing higher relative transcript levels such as Oas1a and Trem2 are 

likely to be directly up-regulated by microglia in response to amyloid, and may be 

promoting a protective response to amyloid e.g. as described by Lee et al., (2018). 

Oas1a shows increased expression in purified microglia from a number of different 

mouse models of Alzheimer’s disease, using the Myeloid Landscape datasets 

suggesting Oas1a is directly up-regulated by amyloid (http://research-

pub.gene.com/BrainMyeloidLandscape/#; Friedman et al., 2018). Laptm5 and Lilra5 

relative expression are only significantly increased in homozygous APP/PSEN1 mice 

when the plaque load starts to become heavy (8 months of age), suggesting direct 

regulation by amyloid only as the plaque load increases, implying a specific role for 

these genes in microglia at this stage. Instead, Itgam/CD11b shows a similar change 

in relative expression to the average relative transcript level of the entire immune 

network, and to the increase in microglia number, comparable to relative Spi1/PU.1 

expression. This suggests that Itgam/CD11b and Spi1/PU.1 genes may play a role in 



regulating the change in microglia number in response to amyloid plaques, given the 

strong correlation between the expression of these genes and amyloid pathology.  

 

The study by Huang et al., (2017) shows that a common SNP in the population delays 

onset of Alzheimer’s disease, purportedly via reduced expression of SPI1/PU.1. 

However, in our study we see a positive correlation between Spi1/PU.1 and candidate 

genes Laptm5 and Itgam/CD11b, as well as established risk genes Trem2 and Abi3, 

which all have binding sites in their promoters for SPI1/PU.1, suggesting that 

SPI1/PU.1 is a positive regulator of these genes in this mouse model where heavy 

amyloid load does not lead to tangles and neurodegeneration. This discrepancy may 

be due to differences in the increase in microglial number between mice and humans; 

our data suggests that Spi1/PU.1 may be regulating microglial number, and it is 

possible that the level of microglial proliferation that can be tolerated by mice and 

humans is different (particularly given the long course of Alzheimer’s disease in 

humans). Not all Alzheimer’s disease risk genes have SPI1/PU.1 binding sites; thus, 

while this core transcription factor plays a substantial role in the progression of 

disease, there are likely to be auxiliary, environment-dependent transcription factors 

that modify disease development. In future work, it would be good to complement the 

bulk RNA-seq analysis here with isolated microglia and single-cell work for 

microglia to determine how Spi1/PU.1 expression and the transcriptome is different 

for microglia proximal to plaques versus those away from plaques, and in different 

regions of the brain. In studies where microglia are isolated, the limitations associated 

with purifying microglia should be borne in mind, in that the procedure may alter 

some transcripts, and it is also important to consider the heterogeneity of microglia 

seen from single-cell work (Sala Frigerio et al., 2019). Further work is required to 



understand how the putative risk genes respond to amyloid within microglia, both at 

the transcriptional level, and at the post-translational level. Notably, while there is 

evidence that these putative risk genes have been coincidentally linked with amyloid 

plaques, there is no published evidence to date that DNA variation in these genes in 

the human population is linked to risk for Alzheimer’s disease. 

 

Our data also show that microglia respond differently to amyloid deposition versus 

tauopathy, with around 29% of transcripts in amyloid-responsive microglia showing a 

stronger correlation to amyloid pathology. A recent study also presents related data, 

identifying a co-expression module within microglia that respond more robustly to 

amyloid pathology compared to tauopathy (Sierksma et al., 2019). In both studies, 

established and putative Alzheimer’s disease risk genes are more strongly enriched in 

the amyloid-responsive microglia compared to tauopathy-responsive microglia. These 

data collectively provide compelling evidence that the microglial response to amyloid 

pathology determines whether the disease progresses to neurodegeneration and 

cognitive problems. Further work is required to understand how the microglial 

response to tauopathy is different, and why mouse models with heavy amyloid plaque 

loads do not lead to tau tangles and neurodegeneration. It may be that other triggers, 

in addition to amyloid deposition, are required to push microglia to a state that 

permits amyloid-dependent tau pathology, such as blood-brain barrier breakdown or 

priming of the immune system by exposure to environmental pathogens. 

Alternatively, it may be due to microglial genes expressed more abundantly in human 

microglia compared to mouse. 

 



This work focuses on the commonality between mice and humans, specifically how 

expression of mouse microglial genes overlap with human genes showing DNA 

variation associated with Alzheimer’s disease. It is worthwhile to bear in mind that a 

number of important studies have compared gene expression in microglia from mice 

and humans, and while they have shown a significant overlap between the 

transcriptomes of the two species, they have also seen a number of genes are 

expressed selectively more abundantly in human microglia (Miller et al., 2010; 

Galatro et al., 2017; Gosselin et al., 2017). Our four putative risk genes, OAS1, 

LAPTM5, LILRB4 and ITGAM/CD11b are expressed abundantly in the human 

microglia (Galatro et al., 2017; Gosselin et al., 2017), and more generally there is a 

substantial overlap in the human orthologues expressed by the mouse amyloid-

responsive microglia compared to the transcripts expressed abundantly by human 

microglia from Galatro et al., (2017) and Gosselin et al., (2017). Genes expressed 

more abundantly in human microglia and not present in our mouse microglial network 

are given in Supplementary Table 5. Thus, in future studies it is important to select 

the appropriate model for the study of specific microglia genes. 

 

The importance of this work is two-fold.  First, by identifying more genetic loci 

involved in amyloid deposition, we derive a more complete insight into the cellular 

processes and molecular mechanisms underlying the disease.  In this regard this work 

is complementary to that of Huang and colleagues (2017), showing that microglial 

SPI1/PU.1-driven transcription is a common feature of many Alzheimer’s disease 

loci.  These findings are also consistent with previous work on Trem2 (Wang et al., 

2015; Keren-Shaul et al., 2017; Mazaheri et al., 2017; Cheng-Hathaway et al., 2018; 

Lee et al., 2018), and CD33 (Bradshaw et al., 2013; Griciuc et al., 2013), suggesting 



these risk genes are crucial in controlling the microglial response to amyloid-induced 

damage. Understanding the mechanisms of function of TREM2 and the sub-network 

of genes expressed by amyloid-responsive microglia identified here may be useful for 

leveraging therapeutic opportunities. Second, and perhaps of greater importance, this 

work implies that, overall, how well an individual responds to amyloid deposition at 

the cellular and gene expression level plays a part in determining one’s risk of 

disease, and understanding the genes that control this may be used to predict the 

chances of developing Alzheimer’s disease and to develop preventative or disease-

delaying treatments before irreversible neurodegeneration sets in.   
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Figure Legends 

 

Figure 1 An innate immune network of genes expressed by amyloid-responsive 

microglia, featuring several orthologues of established GWAS genes associated 

with Alzheimer’s disease, predicts the importance of four new risk genes that 

may influence the risk of developing Alzheimer’s disease 

Network plot using VisANT reveals key drivers of an innate immune module from 

RNA-seq derived gene expression from the hippocampus of wild-type and amyloid 

mice. Red circles show orthologues of established GWAS genes associated with 

Alzheimer’s disease including Trem2, Abi3, Cd33 and Spi1/PU.1. Blue underline 

shows gene orthologues predicted to confer altered risk of Alzheimer’s disease by 

overlapping a gene co-expression network present in mouse microglia that show a 

strong response to amyloid in transgenic mice with individual human genes 

significantly associated with Alzheimer’s disease by analysing combinations of 

adjacent SNPs (see Materials and methods; Escott-Price et al., 2014). Genes shown in 

this network are transcribed and co-expressed in amyloid-responsive microglia. 

Larger red spheres represent ‘hub’ genes, those showing the greatest number of 

connections to other genes in the network, and include Trem2, Tryobp, Lilrb4a, 

P2ry13, Ctss, Ctsz, Mpeg1 and Plek, which are likely to play important roles in 

driving microglial function.  

 

Figure 2 Colocalization of Alzheimer’s disease GWAS loci with eQTLs derived 

from baseline and stimulated iPSC-derived macrophages  



Colocalization of Alzheimer’s disease loci and eQTLs targeting OAS1 in baseline and 

stimulated states (IFNγ and Salmonella, 18 and 5 hours respectively). In the eQTL 

panels, grey and red data points represent macrophages at baseline or stimulated with 

both IFNγ and Salmonella, respectively. The eQTL data is from Alasoo et al., (2018). 

The best Alzheimer’s disease locus in OAS1 from the IGAP data (Lambert et al., 

2013) is highlighted with the black line. IFNγ, interferon-γ. Numerical results are 

reported in Supplementary Table 4. 

 

Table 1 The genes predicted to contain variants associated with Alzheimer’s 

disease together with established loci from GWAS  

Genes predicted to confer altered risk of Alzheimer’s disease by overlapping gene 

expression data transcribed by microglia that show a strong response to plaques in 

amyloid mice (Fig. 1) with individual human genes significantly associated with 

Alzheimer’s disease by analysing combinations of adjacent SNPs (see Materials and 

methods; Escott-Price et al., 2014). The SNP data were from the updated IGAP study, 

using Build 37, Assembly Hg19 (Kunkle et al., 2019). The SNP with the most 

significant p-value within each gene is denoted as ‘Best SNP,’ and is stated for 

completion from the updated IGAP stage 1 dataset, but was not used for any statistical 

calculations in this manuscript. The effect size (coefficient of the logistic regression) 

is provided for the best reported SNP from IGAP data; a positive number indicates 

that the allele increases risk of Alzheimer’s disease, and so a negative number 

indicates the allele is protective. The allele frequency from the IGAP study is also 

provided. The established genes altering risk for Alzheimer’s disease from GWAS are 

given for comparison. 

 



 

Mouse 
symbol 
(MGI) 

Human 
symbol 
(HGNC) 

NCBI 
ID 

Human 
Chromosome 

Start 
Location 

End Location 
Number 
of SNPs 

Gene p-value 
(adj for GC) 

Best SNP 
Best SNP 
Location 

Best SNP 
p-value 

Effect size 
Risk 
Allele 

Frequency 

Predicted genes 

Laptm5 LAPTM5 7805 1 31205316 31230667 71 6.62E-05 rs7549164 31224193 4.15E-04 0.0655 T 0.1935 

Oas1a OAS1 4938 12 113344582 113371027 126 1.58E-03 rs4766676 113365581 6.16E-04 0.0518 T 0.6209 

Itgam ITGAM 3684 16 31271288 31344213 168 4.92E-03 rs79113991 31273662 4.48E-03 0.0656 A 0.1308 

Lilra5 LILRB4 11006 19 55155340 55181810 148 8.96E-03 rs731170 55176262 1.72E-03 0.0513 A 0.3023 

Established GWAS genes 

Inpp5d INPP5D 3635 2 233924677 234116549 720 9.81E-06 rs10933431 233981912 2.55E-07 0.1001 C 0.7774 

Trem2 TREM2 54209 6 41126244 41130924 5 1.47E-08 rs7748513 41127972 1.81E-03 -0.1175 A 0.9617 

Gal3st4 GAL3ST4 79690 7 99756867 99766373 21 4.68E-03 rs34130487 99759205 3.47E-03 -0.0474 T 0.2811 

Spi1 SPI1 6688 11 47376411 47400127 87 8.96E-12 rs3740688 47380340 9.70E-11 0.0935 T 0.5524 

Ms4a6d MS4A6A 64231 11 59939487 59952139 33 2.10E-12 rs7935829 59942815 6.78E-15 0.1134 A 0.5979 

Abi3 ABI3 51225 17 47287589 47300587 47 4.93E-02 rs9896800 47293329 8.62E-03 0.0417 T 0.6772 

Cd33 CD33 945 19 51728320 51747115 34 1.09E-06 rs12459419 51728477 4.51E-07 -0.0800 T 0.3076 

 
Table 1. The genes predicted to contain variants associated with Alzheimer’s disease together with established loci from GWAS. 
 



 

 

 


