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Abstract

Venous disease of human lower limbs can cause a range of disorders that have a significant
impact on the quality of life of patients. The sheer prevalence of varicose veins and its
associated costs of treating late complications, such as chronic ulcers, contribute to a higher
burden on health care resources as well as affecting the quality of life of people in the western
world. The established gold standard of treatment is the application of graduated compres-
sion, applied mostly by medical compression bandages (MCB) and graduated compression
stockings (GCS). Both systems are passive treatment methods as the pressure is generated by
the component of the tangential force created due to the fabric tension resulted by the fabric
stretch, which fails to provide uniform pressure around the leg circumference.

This thesis presents the fundamental research of design, development, and evaluation of an
active compression system consisting of an array of silicone based inflatable mini-bladders,
which can provide a better solution for the treatment of venous disease and also lymphoedema.
The mini-bladders were designed with two elastomeric layers; however, the mini-bladder
inflation was limited only to one layer when the mini-bladder was filled with air. The mini-
bladders could apply a radial force on to the treated surface when inflated, and the pressure
in mini-bladders could be determined by measuring the back pressure, thus providing the
ability to inflate mini-bladders to a predefined pressure. An array of mini-bladder can be
used to apply pressure over a large area with a pre-determined resolution in order to create
a graduated pressure profile. The 3-D deformation profile of mini-bladders was analysed
using Finite Element Modelling and the simulations showed a good agreement with the
experimental results within the pressure region which of interest for the compression therapy.
The pressure transmission characteristics of the mini-bladders were investigated, initially
on hard surfaces and then extended to a biofidelic leg surrogate. The hexagonal shaped
mini-bladders provided the best pressure transmission properties. As a higher packing density
can be achieved with hexagonal shaped mini-bladders in a honeycomb structure, a prototype
active compression device was designed with hexagonal shape mini-bladders. Moreover, the
interface pressure generated by the mini-bladders demonstrated a good linear relationship
with the mini-bladder inflation pressure, which could be used as a calibration curve for

the mini-bladders to inflate the mini-bladders to apply a predefined pressure. The second



phase of the experiments, were conducted with a biofidelic lower leg surrogate covered with
artificial skin and fat layers of different Young’s modulus values. To the best of the author’s
knowledge this type of validation was the first of its kind in compression therapy research.
The research has proved that mini-bladders can be used to apply a uniform circumferential
pressure irrespective of the position of the lower leg surrogate; which proves the validity
of the research hypothesis. The pressure propagation through the fat layers were around
35%-45% of the mini-bladder inflation pressure. Moreover, the propagation of the pressure
through the fat layers varied with the modulus of the fat layers; the fat layer having lowest
modulus recorded the highest pressure transmission percentage.

A prototype of an active compression system was designed with mini-bladder arrays inte-
grated within a silicone layer, in which the mini-bladders were directly in-contact with the
skin. The laboratory experiments demonstrated that the developed active compression system
was capable of delivering the required graduated pressure profiles.
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Chapter 1

Introduction

1.1 Introduction

The focus of the research documented in this thesis was to investigate the design and
development of a wearable active compression system capable of providing a graduated
pressure profile for the treatment of venous disease, using inflatable mini-bladders. The
research has created the fundamental knowledge base necessary to create inflatable mini
bladder units using low modulus Silicones, and to evaluate the suitability of the system in
providing a graduated compression profile necessary for the treatment of venous disease and
lymphedema. The mini- bladders were designed such that they could apply a radial force
when inflated instead of the traditional method of stretching a textile fabric over a human
limb to generate the pressure required to ensure venous return; the fabric tension resulting
due to stretching acts as the tangential force which generates a radial pressure depending on
the radius of curvature of human limb.

The advantage of using mini-bladders is that they are capable of providing a more accurately
controlled pressure profile using multiple mini-bladders in a network of discrete points
instead of using single bladder cuffs. The designed mini-bladders would also be able to
provide a controllable pressure profile, independent of the variation of radius of curvature of
the human limb. The use of mini-bladders would make the system wearable and enable to

achieve a better pressure resolution than current treatment methods.

1.2 Motivation

This research was motivated by the severity and the prevalence of the venous disease and
associated complications among the adult populations, global market requirements for better
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treatment devices and the inadequacy of the current treatment systems in meeting the required
standards. The intention of the research was to address the drawbacks of the existing treatment
methods by proposing a novel concept of active compression for the treatment of venous
disease and lymphoedema.

1.2.1 Severity of the problem

Venous diseases of human lower limbs, including varicose veins and chronic venous insuffi-
ciency, are common chronic medical conditions, affecting around 5-30% of adult population
in the developed countries (Beebe-Dimmer et al., 2005; Callam, 1994; Evans et al., 1994;
Kaplan et al., 2003; Kurz et al., 2001; Ruckley et al., 2002). The estimated prevalence of such
conditions among adult population in the United Kingdom (UK) is around 20-40% (Michaels
et al., 2006) and prevalence of varicose veins among the United States’ adult population is
reported to be around 23%, mainly affecting the age group of 40-80 years (Hamdan, 2012).
Chronic leg ulcers which is a late complication of the venous insufficiency, is found to be
affecting around 1% of the adult population in the developed countries (Al Khaburi, 2010;
Beebe-Dimmer et al., 2005; Crane and Cheshire, 2004; Criqui et al., 2003; Ruckley et al.,
2002). A study carried out in 2007 estimated that around seven million people in the world
suffer some form of chronic venous problem in the lower limb, out of which around three
million would evolve to venous ulcers (van Gent et al., 2010).

The sheer prevalence of chronic venous disease is often associated with high treatment costs,
making significant impacts on healthcare systems of many countries. In the United States
the estimated annual treatment costs ranges between USD 1.9-3.5 billion, where one patient
demands USD 40,000 per year for treatment (Borges et al., 2016). The annual costs to UK’s
National Health Service (NHS) attributed to managing venous disease, venous leg ulcers
and associated commodities is estimated as £596.6 - £921.9 million (Guest et al., 2017). In
categorizing the venous leg ulcer management costs in the UK, according to the 2015 and
2016 statistics, the highest percentage was due to the community nurse visits, which was
78% of the cost of patient management(Guest et al., 2018).

1.2.2 Existing treatment methods and market size

Compression therapy is considered as the mainstay of treatment for the chronic venous
disease; the concept is to apply an external pressure against the hydrostatic pressure to
improve the venous return (Eberhardt and Raffetto, 2005; Flour et al., 2013; Lim and Davies,
2014; Mosti, 2014; O’Meara et al., 2012). Graduated compression is considered as the

most effective form of compression, where the highest pressure is applied at the ankle



1.2 Motivation 3

and gradually reduced towards the knee. Effective graduated compression would squeeze
blood from superficial veins, through perforators back into the deep veins, and push the
blood back into the heart. This effective external graduated compression, helps to increase
the blood flow velocity, reduce the venous reflux, reduce the swelling, prevent and treat
lymphedema/oedema, reduce the risk of deep venous thrombosis and reduce the recovery
time from extreme sport activities.

In the medical literature the optimum pressure profile is most commonly describes as 40-
45mmHg at the ankle, reducing gradually up to 15-20mmHg towards the knee(Al Khaburi,
2010; Coull et al., 2006; Nelson, 2001; Stemmer et al., 1980). There are five main methods
presently using for compression therapy, including medical compression bandaging (MCBs),
"graduated compression stockings" (GCSs), "self-adjustable fabric hook and loop fastener
devices", "intermittent pneumatic compression (IPC) devices", and hybrid devices (Latz
et al., 2015; Partsch, 2014). However, the most common forms of graduated compression
treatment systems are four-layer bandaging and graduated compression stockings.

The global market for compression therapy devices is USD 2.4 billion in 2012, and is
expected to rise to USD 3.4 billion by 2019 (GBI-Research, 2013). It was found that United
States was the largest market for compression therapy devices in 2012, having a 49% of
market share for the revenue, and is expected to grow at a compound annual growth rate of
6% in 2019(GBI-Research, 2013). The European market is expected to have 35% market
share by 2019, while Asia pacific regions are supposed to have 13% (GBI-Research, 2013).
As described in section 1.2.1, besides the high incidence of venous disease the adoption of
compression therapy in the treatment of lymphedema and amputations can also be a market
driver (GBI-Research, 2013).

1.2.3 Shortcomings of the existing treatment methods

Despite the many studies investigating the effectiveness of different methods of compression
therapy, the underpinning physics of how compression therapy works is not yet clearly
understood. Compression therapy employing compression bandages, and compression
stockings work based on the principle of generating pressure on the surface by a component
of the tangential tension developed in the fabric, due to the stretch of the fabric (Fernando,
2010). The generated pressure is proportional to the tension of the fabric, and inversely
proportional to the radius of curvature and width of the fabric as described by the Laplace’s
law (Moffatt, 2005, 2008; Thomas, 1990, 2003; Thomas and Fram, 2003). Human limbs do
not have a perfectly circular cross section (Fernando, 2010; Liu et al., 2017), therefore even
if compression bandage provides a uniform tension the pressure applied will be different
from point to point over the limb circumference due to the changes of radius of curvature.
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Due to this indirect application of pressure both the compression bandaging and compression
stockings are classified as passive treatment systems capable of providing a static compression.
Recent research has demonstrated the advantage of applying a variable compression (time-
dependent). Intermittent pneumatic compression (IPC) has been used to create variable
compression effectively in the treatment of lymphedema. The systems used in IPC have
consequently ranged from large single bladder cuff to complex multi chamber systems
employing sequential compression (Feldman et al., 2012; Morris, 2008). However, the size
of these pneumatic cuffs makes these devices bulky and less wearable. Many times these are
used under the clinical supervision. There have been few other attempts towards developing
active compression products, by using electro-active polymers and shape memory alloys.
However, these methods could not overcome the effect of radius of curvature variability over
the limb circumference, which is one of the main scientific knowledge gaps addressed in this
study.

1.3 Research plan

The ambition of this research was to address the above shortcomings of existing compression
systems for the treatment of venous disease by creating the scientific knowledge base required

to develop an active compression system based on inflatable mini-bladders.

1.3.1 Research Aim:

The aim was to create the fundamental science of utilising the radial force generated by
inflatable mini-bladders to generate a graduated compression, and design and development

of a wearable active compression system for medical applications.

1.3.2 Research Questions

The concept of creating an active compression system was based on the use of inflatable
mini-bladders which could be integrated into a wearable bandage. The research questions
which had to be addressed are summarised below.

* Formulation of a conceptual design of an active compression system;
The intent was to develop an inflatable bladder preferably in miniature scale, which
could be better adopted to the changes of the radius of curvature of the leg and
effectively transmit the pressure on to the treated surface.
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* Investigation of materials which could be used to craft the inflatable mini-bladders and,
parameterise the material characteristics;
In order to select the most appropriate material for the application the stress-strain
behaviour, hysteresis, and bio-compatibility of the materials had to be studied and
understood. The hyperelastic behaviour of low modulus silicones and the material

parameters required for the numerical modelling had to be calculated.

* Investigation of the suitable shape, size and the design of the mini-bladders:
In order to select the most appropriate shape and the size of the mini-bladders, a

geometrical analysis together with experimental study was carried out.

* To characterise the inflation behaviour of the mini bladders;
The focus was to study the inflation characteristics of the mini-bladders experimentally
and using finite element analysis. Test methods had to be designed to study the
inflation/deflation cyclic characteristics of the inflation surface of mini-bladders in
order to analyse the performance of the mini-bladders in recurring usage cycles, and

hysteresis effects.

» New test rigs had to be developed to study the effectiveness of the mini bladders;
A series of experiments had to be designed to evaluate the pressure transmittance
characteristics of the mini-bladders. A suitable interface pressure measuring system
need to be selected and experiments had to be extended for flat and curved surfaces.

* Testing of the developed active compression system on a biofidelic leg surrogate and
analyse its effectiveness.
The idea was to test the mini-bladders on a biofidelic leg surrogate to study the
effectiveness of the designed mini-bladders to transmit pressure on to a human limb.
The study should be extended to understand how the applied pressure is propagated
through the skin and fat layers using an artificial skin and fat layer.

1.4 Structure of the thesis

The following flow chart summarises the structure of this thesis.
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Chapter 2

Literature review

2.1 Chronic Venous Disorder

2.1.1 Definition

Chronic venous disorder (CVD) refers to morphological and functional abnormalities of the venous
system of long duration, like telangiectasias, blue veins, varicose veins, oedema, pigmentation, eczema,
lipodermatosclerosis, and venous ulcers (Al Khaburi, 2010; Bergan et al., 2006; Eberhardt and Raffetto,
2005; Eklof, 2007; Eklof et al., 2009; Langer et al., 2005). Some of these abnormalities are graphically
illustrated in the Figure 2.1. CVD is normally caused by primary abnormalities of venous wall and
the valves and secondary abnormalities due to previous venous thrombosis that can lead to reflux,
obstruction or both (Bergan et al., 2006; Nicolaides, 2000; Nicolaides et al., 2014). Chronic venous
insufficiency (CVI) is a term reserved for advanced CVD due to functional abnormalities of the venous
system producing oedema, skin changes and venous ulceration (Nicolaides et al., 2014). Varicose
veins are a common symptom of CVD and results from the abnormal distensibility of connective
tissue in the venous wall (Nicolaides et al., 2014). Varicose veins are subcutaneous dilated veins which
equal to or more than 3mm in diameter in the upright position and are usually tortuous (Nicolaides
et al., 2014). A venous ulcer is a full thickness defect (open wound) in the epidermis and have a long

healing tendency (more than four weeks)(Crane and Cheshire, 2004; Nicolaides et al., 2014).

2.1.2 Epidemiology

Venous disease of human lower limb including varicose veins and chronic venous insufficiency has
been one of the most common chronic medical condition reportedly affecting the quality of life of
people in the western world (Beebe-Dimmer et al., 2005; Callam, 1994; Evans et al., 1994; Kaplan
et al., 2003; Kurz et al., 2001). Early epidemiological studies have shown that CVD has a considerable
socio-economic impact in most of the western countries due to its high prevalence, high treatment

and investigation costs, along with loss of working days affecting the quality of life (Abenhaim
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et al., 1999; Kurz et al., 1999). Chronic leg ulcers which is a common condition developed due to
venous disease, estimated to be affecting 0.3% of the adult population in the developed countries,
and this number increases to 1% when both healed and active ulcers are considered (Beebe-Dimmer
et al., 2005; Crane and Cheshire, 2004; Criqui et al., 2003; Magnusson et al., 2001; Ruckley et al.,
2002). The same studies have showed that the leg ulcers are more common in women, of older age
groups and there is a noticeable increase with the age. Venous ulcers are considered to be chronic and
recurrent, where more than 50% of ulcers require therapy for more than one year (Scott et al., 1995)

and around 67%-75% of patients experience recurrent ulcers (Baker et al., 1991; Callam, Harper, Dale
and Ruckley, 1987).

Lipodermatosclerosis
Oedema Venous ulcers

Fig. 2.1 CVD abnormalities (Heller and Evans, 2015)(Alguire and Mathes, 1997)(Karadi et al.,
2011)(Valencia et al., 2001)

The most common estimates of the prevalence of varicose veins are between 5% and 30% in the
adult population, but reports have estimated values ranging from <1% to >70% (Beebe-Dimmer et al.,
2005). The varicose veins are present in 25-33% of female and 10-40% of male adult population
(Allan et al., 2000; Bradbury et al., 1999; Evans et al., 1999; Fowkes et al., 2001; Ruckley et al., 2002).
The sheer prevalence of varicose veins and associated substantial costs of treating late complications
such as chronic ulcers contribute to a high burden on healthcare resources. Normally this accounts for
1-3% of total healthcare budget of most western countries with developed healthcare systems (Piazza,
2014).

The socioeconomic impact of CVD could be associated with the substantial number of individuals
affected, increased healthcare costs, considerable economic effects reflected in terms of work lost days
and diminishing quality of life (Bachoo, 2009; Bergan et al., 2006). Millions of people seek medical
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attention annually due to varicose veins, related to the cosmetic appearance or other associated chronic
conditions leading to diminishing quality of life. This leads to significant impacts on the healthcare
systems, where it is estimated as $3 billion per year being spent in the USA for treating venous
wounds (McGuckin et al., 2002). In the UK, the Healthcare Commission has estimated that chronic
venous ulcers cost the NHS £300-600 million per year (O’Meara, Tierney, Cullum, Bland, Franks,
Mole and Scriven, 2009).

CVD and venous ulceration can be considered a condition that deteriorate the quality of life, which
require long term care, and lifelong need for medical intervention. There are several risk factors
associated with CVD, such as family history (genetics), age, standing occupation, gender, pregnancy,
obesity, ankle mobility (Bergan, 2007; Bergan et al., 2006; Criqui et al., 2007). The age and the family
history (genetics) were supposedly the strongest risk factors for CVD irrespective of the sex. The
likelihood of developing varicose veins increases with getting older, as wear and tear on the veins
causes the vein walls to weaken and allowing them to enlarge. The peak occurrence age period for
venous ulcers is estimated to be between 60 and 80 years (Callam, Harper, Dale and Ruckley, 1987).
The hours spent standing or walking is also favourably associated with the formation of varicose veins

in both men and women.

2.1.3 The human lower limb venous system

In order to study the pathophysiology of various venous disorders and to understand the treatments
required, it is necessary to identify the normal anatomy of the venous system of lower extremities,

along with the normal functionalities of its elements and mechanisms.

Composition of the venous system: Veins and venous valves

The peripheral vein system act as a reservoir to store blood and as a channel to carry the deoxygenated
blood from the extremities back into the heart. It is estimated that 60 to 75% of the blood in the body
is found to be in the veins which are less than 200 u m in diameter (Bergan and Pascarella, 2007).
The venous valves play an important role in this transportation of blood from the lower extremities,
back into the heart. The venous blood flow is not steady state but pulsatile and the venous valves
undergo opening and closing cycles (Bergan and Pascarella, 2007). The venous valves are cusps
attached with their convex edges to the venous wall, and their concave margins lie against the wall
when the blood flow is towards the heart (Al Khaburi, 2010; Standring and Wigley, 2005). When the
blood flow reverses, the valves close restricting the blood flowing back into the vein compartments.

The veins of the lower extremities are divided into three main categories namely, superficial, deep and

perforator veins.
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Superficial veins

Superficial veins are located between the skin and the superficial fascia. As depicted in Figure 2.2,
the two main superficial veins in the lower extremities are the great saphenous vein (GSV) and small
saphenous vein (SSV). GSV begins on the dorsum of the foot as a dorsal venous arch and runs along
the tibial internal edge (Ricci, 2011). The GSV receives multiple tributaries along its course, and these
veins usually lie in a less supported, more superficial plane above the membranous fascia (Goldman
and Weiss, 2016; Ricci, 2011). The SSV is the most prominent superficial vein below the knee, which
begins at the lateral aspect of the foot and ascend posterior to the lateral malleolus, heads to popliteal
fossa and enters the popliteal vein (Goldman and Weiss, 2016; Ricci, 2011; Standring and Wigley,
2005). Communicating veins, which are located in the same compartment connect veins either deep
to deep or superficial to superficial (Liu et al., 2017), therefore the communicating veins between
GSV and SSV direct the blood flow from SSV to the GSV (Mozes and Gloviczki, 2007).

Femoral Vein

Popliteal
Vein

Great r
Saphenous
Vein

Small
Saphenous
Vein

Fig. 2.2 Superficial veins (GSV and SSV)

Deep veins

The venous blood flows from the superficial veins into the deep veins, while the deep veins primarily
drain blood flows from muscles (Liu et al., 2017). The unidirectional valves present in the superficial,
perforating and deep veins prevent the back flow of the blood supporting the venous return (Caggiati
et al., 2002; Kachlik et al., 2012). The deep venous system is located below the muscular fascia
and consists of three sets of paired tibial veins : the anterior tibial vein, posterior tibial vein and
peroneal vein that merge to become popliteal vein (Eberhardt and Raffetto, 2005, 2014; Meissner,
2005; Standring and Wigley, 2005). Deep veins play a key role in the calf muscle pump function.
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Popliteal segment
of femoral vein

Anterior tibial veins

Peroneal veins

k Posterior tibial veins

Plantar metatarsal
vein

Fig. 2.3 Deep veins

Perforator veins

These veins begin from the superficial veins and connects the superficial veins and deep veins, with
one to three valves, directing the flow towards the deep veins from superficial (Figure 2.4) (Meissner,
2005). The calf contains four groups of perforators: the para-tibial perforators which connects
the GSV and posterior tibial veins, the posterior tibial perforators and the lateral and anterior leg

perforators (Meissner, 2005).
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Fig. 2.4 Perforator veins
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Venous return

Blood pressure is defined as the force per unit area exerted on a vessel wall by the blood contained
inside the vessel(Al Khaburi, 2010). When the blood flows inside a vessel, there exists a resistance to
the flow which is a measure of the amount of friction blood encounters as it passes through. The blood
flow is directly proportional to the difference in the blood pressure (A P) and inversely proportional to
the peripheral resistance (R) (this depends on the blood vessel diameter).

Unlike arterial pressure which pulsates, venous blood pressure is steady and subjects to minute
changes during the cardiac cycle. According to the Figure 2.5, the pressure gradient in the veins
from venules to the venae cavae is about 15mmHg (Marieb and Hoehn, 2007), which is very low and
not adequate to promote venous return. For venous return three functional adaptions are critically
important, namely the muscular pump, respiratory pump, and sympathetic venoconstriction (Marieb
and Hoehn, 2007).
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Fig. 2.5 Blood pressure variation in different blood vessels (Marieb and Hoehn, 2007)

Muscular pump: The muscular pump consists of skeletal muscle activity, on contraction and
relaxation of the muscles which surrounds the deep veins, they squeeze blood towards the heart and
once the blood passes each successive compartment, it doesn’t allow to flow back (Figure 2.6) (Marieb
and Hoehn, 2007; Moore et al., 2013). The human lower limb consists of three muscular pumps;
foot, calf, and thigh out of which calf muscle pump is the most important which has the largest blood
capacitance and generates highest pressures (around 200 mmHg) during contraction (Meissner et al.,
2007). During the normal motion,foot pump, distal and proximal calf pumps join in to pump the
blood back to the heart.

Respiratory pump: This moves the blood upward as the pressure changes in the ventral body cavity
during breathing. Upon inhale the pressures in the abdominal increases squeezing the veins and
forcing the blood towards the heart, while the pressure in the chest decreases allowing thoracic veins
to expand and speeding blood into the right atrium (Al Khaburi, 2010; Marieb and Hoehn, 2007).
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Fig. 2.6 Muscular pump action (Marieb and Hoehn, 2007)

Capillary dynamics

Capillaries are the smallest blood vessels that form a network throughout the bodily tissues, through
which the nutrients and gas exchanges occurs. The fluid is deposed from the capillaries at the arterial
end and returned back to the bloodstream at the venous end via the lymphatic system (Al Khaburi,
2010; Marieb and Hoehn, 2007). The amount of fluid and the direction of the flow across the capillary
walls will depend upon the hydrostatic and osmatic pressures as shown in Figure 2.7. Hydrostatic
pressure in the capillaries is identical to the capillary blood pressure and is referred to as capillary
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