
DTD 5 ARTICLE IN PRESS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57
58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

 P

ROOF

Extracting finite structure from infinite language

T. McQueen, A.A. Hopgood, T.J. Allen, J.A. Tepper*

School of Computing and Informatics, Nottingham Trent University, Burton Street, Nottingham NG1 4BU, UK

Received 26 October 2004; accepted 30 October 2004

Abstract

This paper presents a novel connectionist memory-rule based model capable of learning the finite-state properties of an input language

from a set of positive examples. The model is based upon an unsupervised recurrent self-organizing map [T. McQueen, A. Hopgood,

J. Tepper, T. Allen, A recurrent self-organizing map for temporal sequence processing, in: Proceedings of Fourth International Conference in

Recent Advances in Soft Computing (RASC2002), Nottingham, 2002] with laterally interconnected neurons. A derivation of functional-

equivalence theory [J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computation, vol. 1, Addison-Wesley,

Reading, MA, 1979] is used that allows the model to exploit similarities between the future context of previously memorized sequences and

the future context of the current input sequence. This bottom-up learning algorithm binds functionally related neurons together to form states.

Results show that the model is able to learn the Reber grammar [A. Cleeremans, D. Schreiber, J. McClelland, Finite state automata and

simple recurrent networks, Neural Computation, 1 (1989) 372–381] perfectly from a randomly generated training set and to generalize to

sequences beyond the length of those found in the training set.

q 2005 Published by Elsevier B.V.

Keywords: Artificial neural networks; Grammar induction; Natural language processing; Self-organizing map; STORM
T
88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

ORREC

1. Introduction

Since its inception, language acquisition has been one of

the core problems in artificial intelligence. The ability to

communicate through spoken or written language is

considered by many philosophers to be the hallmark of

human intelligence. Researchers have endeavoured to

explain this human propensity for language in order both

to develop a deeper understanding of cognition and also to

produce a model of language itself. The quest for an

automated language acquisition model is thus the ultimate

aim for many researchers [5]. Currently, the abilities of

many natural language processing systems, such as parsers

and information extraction systems, are limited by a

prerequisite need for an incalculable amount of manually
UNC

0950-7051/$ - see front matter q 2005 Published by Elsevier B.V.

doi:10.1016/j.knosys.2004.10.010

* Corresponding author. Tel.: C44 1604 779 109; fax: C44 1604 716

247.

E-mail addresses: thomas.mcqueen@ntu.ac.uk (T. McQueen), adrian.

hopgood@ntu.ac.uk (A.A. Hopgood), tony.allen@ntu.ac.uk (T.J. Allen),

jonathan.tepper@ntu.ac.uk (J.A. Tepper).

URL: www.ntu.ac.uk.

KNOSYS 1489—26/5/2005—08:42—CSARAVANAN—150149—XML MODEL 5 – pp. 1

104

105

106

107

108

109

110

111

112
EDderived language and domain-specific knowledge. The

development of a model that could automatically acquire

and represent language would revolutionize the field of

artificial intelligence, impacting on almost every area of

computing from Internet search engines to speech-recog-

nition systems.

Language acquisition is considered by many to be a

paradox. Researchers such as Chomsky argue that the input

to which children are exposed is insufficient for them to

determine the grammatical rules of the language. This

argument for the poverty of stimulus [2] is based on Gold’s

theorem [7], which proves that most classes of languages

cannot be learnt using only positive evidence, because of the

effect of overgeneralization. Gold’s analysis and proof

regarding the unfeasibility of language acquisition thus

forms a central conceptual pillar of modern linguistics.

However, less formal approaches have questioned the

treatment of language identification as a deterministic

problem in which any solution must involve a guarantee

of no future errors. Such approaches to the problem of

language acquisition [10] show that certain classes

of language can be learnt using only positive examples if

language identification involves a stochastic probability of

success.
Knowledge-Based Systems xx (xxxx) 1–7
www.elsevier.com/locate/knosys
–7

http://www.elsevier.com/locate/knosys

KN

T. McQueen et al. / Knowledge-Based Systems xx (xxxx) 1–72

DTD 5 ARTICLE IN PRESS

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189
Language acquisition, as with all aspects of natural

language processing, traditionally involves hard-coded

symbolic approaches. Such top-down approaches to cogni-

tion attempt to work backwards from formal linguistic

structure towards human processing mechanisms. However,

recent advances in cognitive modelling have led to the birth

of connectionism, a discipline that uses biologically inspired

models that are capable of learning by example. In contrast

to traditional symbolic approaches, connectionism uses a

bottom-up approach to cognition that attempts to solve

human-like problems using biologically inspired networks

of interconnected neurons. Connectionist models learn by

exploiting statistical relationships in their input data,

potentially allowing them to discover the underlying rules

for a problem. This ability to learn the rules, as opposed to

learning via rote memorization, allows connectionist

models to generalize their learnt behaviour to unseen

exemplars. Connectionist models of language acquisition

pose a direct challenge to traditional nativist perspectives

based on Gold’s theorem [7] because they attempt to learn

language using only positive examples.
T

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224
UNCORREC

2. Connectionism and determinacy

Since the early nineties, connectionist models such as the

simple recurrent network (SRN) [6] have been applied to the

language acquisition problem in the form of grammar

induction. This involves learning simple approximations of

natural language, such as regular and context-free gram-

mars. These experiments have met with some success [6,7],

suggesting that dynamic recurrent networks (DRNs) can

learn to emulate finite-state automata. However, detailed

analysis of models trained on these tasks show that a number

of fundamental problems exist that may derive from using a

model with a continuous state-space to approximate a

discrete problem.

While DRNs are capable of learning simple formal

languages, they are renowned for their instability when

processing long sequences that were not part of their

training set [8,9]. As detailed by Kolen [12], a DRN is

capable of partitioning its state-space into regions approxi-

mating the states in a grammar. However, sensitivity to

initial conditions means that each transition between regions

of state-space will result in a slightly different trajectory.

This causes instability when traversing state trajectories that

were not seen during training. This is because slight

discrepancies in the trajectories will be compounded with

each transition until they exceed the locus of the original

attractor, resulting in a transition to an erroneous region of

state-space. Such behaviour is characteristic of continuous

state-space DRNs and can be seen as both a power and a

weakness of this class of model. While this representational

power enables the model to surpass deterministic finite

automata and emulate non-deterministic systems, it proves

to be a significant disadvantage when attempting to emulate
OSYS 1489—26/5/2005—08:42—CSARAVANAN—150149—XML MODEL 5 – pp. 1–7
ED P
ROOF

the deterministic behaviour fundamental to deterministic

finite state automata (DFA).

Attempts have been made to produce discrete state-space

DRNs by using a step-function for the hidden layer neurons

[16]. However, while this technique eliminates the instability

problem, theuseofanon-differentiable functionmeans that the

weight-update algorithm’s sigmoid function can only approxi-

mate the error signal. This weakens the power of the learning

algorithm, which increases training times and may cause the

model to learn an incorrect representation of the DFA.

The instability of DRNs when generalizing to long

sequences that are beyond their training sets is a limitation

that is probably endemic to most continuous state-space

connectionist models. However, when finite-state extraction

techniques [16] are applied to the weight space of a trained

DRN, it has been shown that once extracted into symbolic

form, the representations learnt by the DRN can perfectly

emulate the original DFA, even beyond the training set.

Thus, while discrete symbolic models may be unable to

adequately model the learning process itself, they are better

suited to representing the learnt DFA than the original

continuous state-space connectionist model.

While supervised DRNs such as the SRN dominate the

literature on connectionist temporal sequence processing,

they are not the only class of recurrent network. Unsuper-

vised models, typically based on the self-organizing map

(SOM) [11], have also been used in certain areas of

temporal sequence processing [1]. Due to their localist

nature, many unsupervised models operate using a discrete

state-space, and are therefore, not subject to the same kind

of instabilities characteristic of supervised continuous state-

space DRNs. The aim of this research is, therefore, to

develop an unsupervised discrete state-space recurrent

connectionist model that can induce the finite-state proper-

ties of language from a set of positive examples.
3. A Memory-rule based theory of linguistics

Many leading linguists, such as Pinker [17] and Marcus

[14], have theorized that language acquisition, as well as

other aspects of cognition, can be explained using a

memory-rule based model. This theory proposes that

cognition uses two separate mechanisms that work together

to form memory. Such a dual-mechanism approach is

supported by neuro-biological research, which suggests that

human memory operates using a declarative fact-based

system and a procedural skill-based system [4]. In this

theory, rote memorization is used to learn individual

exemplars, while a rule-based mechanism operates to

override the original memorizations in order to produce

behaviour specific to a category. This memory-rule theory

of cognition is commonly explained in the context of the

acquisition of the English past tense [17]. Accounting for

children’s over-regularizations during the process of

learning regular and irregular verbs constitutes

T

FConnectionist FSM Reber grammar FSM

TInput
symbol

Context
vector

S

V X

E

V

P T

X

S

P

B

Fig. 1. Diagram showing conceptual overview of model. The left side shows STORM’s representation of a FSM, while the right side of the diagram shows the

FSM for the Reber grammar.

T. McQueen et al. / Knowledge-Based Systems xx (xxxx) 1–7 3

DTD 5 ARTICLE IN PRESS

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316
a well-known battlefield for competing linguistic theories.

Both Pinker [17] and Marcus [14] propose that irregular

verbs are learnt via rote-memorization, while regular verbs

are produced by a rule. The evidence for this rule-based

behaviour is cited as the over-regularization errors produced

when children incorrectly apply the past tense rule to

irregular verbs (e.g. runned instead of ran).

The model presented in this paper is a connectionist

implementation of a memory-rule based system that extracts

the finite-state properties of an input language from a set of

positive example sequences. The model’s bottom-up

learning algorithm uses functional-equivalence theory [8]

to construct discrete-symbolic representations of gramma-

tical states (Fig. 1).
 C

XB

T S E

B T X S E

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

NCORRE4. STORM (Spatio Temporal Self-Organizing

Recurrent Map)

STORM is a recurrent SOM [15] that acts as a temporal

associative memory, initially producing a localist-based

memorization of input sequences. The model’s rule-based

mechanism then exploits similarities between the future

context of memorized sequences and the future context of

input sequences. These similarities are used to construct

functional-relationships, which are equivalent to states in

the grammar. The next two sections will detail the model’s

memorization and rule-based mechanisms separately.
Fig. 2. Diagram showing STORM’s input representation. The model’s

weight vector consists of a 7-bit orthogonal symbol vector representing the

terminal symbol in the grammar, along with a 6-bit Gray code context

vector, representing the column and row of the previous winning neuron.

332

333

334

335

336
U
4.1. STORM’s memorization mechanism

As shown in Figs. 1 and 2, STORM extends Kohonen’s

SOM [11] into the temporal domain by using recurrent
KNOSYS 1489—26/5/2005—08:42—CSARAVANAN—150149—XML MODEL 5 – pp. 1
ED P
ROOconnections. The recurrency mechanism feeds back a

representation of the previous winning neuron’s location

on the map using a 10-bit Gray-code vector. By separately

representing the column and row of the previous winning

neuron in the context vector, the recurrency mechanism

creates a 2D representation of the neuron’s location. Further

details of the recurrency mechanism, along with its

advantages, are provided in [15].

The method of explicitly representing the previous

winner’s location as part of the input vector has the effect

of selecting the winning neuron-based not just on the current

input, but also indirectly on all previous inputs in the

sequence. The advantage of this method of recurrency is that

it is more efficient than alternative methods (e.g. [19]),

because only information pertaining to the previous winning

neuron’s location is fed back. Secondly, the amount of

information fed back is not directly related to the size of the

map (i.e. recursive SOM [19] feeds back a representation of
–7

T

XB

T S E
1. B T X S E

2. B T S X S E

S

X

S

E

Fig. 3. Diagram showing the memorized winning neurons for two

sequences that end with the same sub-sequence ‘XSE’.

Table 1

Orthogonal vector representations for input symbols

Grammatical symbol Orthogonal vector

B 1 0 0 0 0 0

T 0 1 0 0 0 0 0

P 0 0 1 0 0 0 0

S 0 0 0 1 0 0 0

X 0 0 0 0 1 0 0

V 0 0 0 0 0 1 0

E 0 0 0 0 0 0 1

KN

T. McQueen et al. / Knowledge-Based Systems xx (xxxx) 1–74

DTD 5 ARTICLE IN PRESS

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448
UNCORREC

each neuron’s activation). This allows the model to scale up

to larger problems without exponentially increasing com-

putational complexity.

The model uses an orthogonal input vector to represent

the grammar’s terminal symbols. Each of the seven terminal

symbols are represented by setting the respective binary

value to 1 and setting all the other values to 0 (Table 1). For

example, in Fig. 2 the input vector that would be applied

when the symbol ‘T’ is presented would be 0 1 0 0 0 0 0 0 0

1 1 1 0. The first 7 bits of this vector represent the input

symbol, while the remaining six bits represent the context

vector.

STORM maintains much of the functionality of the

original SOM [11], including the winning-neuron selection

algorithm (Eq. (1)), weight-update algorithm (Eq. (2)) and

neighbourhood function (Eq. (3)). The model’s localist

architecture is used to represent each element of the input

sequence using a separate neuron. In this respect, STORM

exploits the SOM’s abilities as a vector quantization system

rather than as a topological map. Eq. (1) shows that for

every input to the model (X), the neuron whose weight

vector has the lowest distance measure from the input vector

is selected as the winning neuron (Y). The symbol d denotes

the distance between the winning neuron and the neuron in

question. As shown in Fig. 1, each input vector consists of

the current input symbol and a context vector, representing

the location of the previous winning neuron. The winning

neuron is, therefore, the neuron whose overall weight vector

is the closest to the combination of the input symbol vector

and context vector.

yi Z arg miniðdðx;wiÞÞ (1)

The weight-update algorithm (Eq. (2)) is then applied to

bring the winning neuron’s weight vector (W), along with

the weight vectors of neighbouring neurons, closer to the

input vector (X) (Eq. (2)). The rate of weight change is

controlled by the learning rate a, which is linearly decreased
through training.

wijðtC1ÞZwijðtÞCahijðxðtÞKwijðtÞÞ (2)

The symbol h in Eq. (2) denotes the neighbourhood

function (Eq. (3)). This standard Gaussian function is used

to update the weights of neighbouring neurons in proportion

to their distance from the winning neuron. This weight-

update function, in conjunction with the neighbourhood
OSYS 1489—26/5/2005—08:42—CSARAVANAN—150149—XML MODEL 5 – pp. 1–7
function, has the effect of mapping similar inputs to similar

locations on the map and also minimizing weight sharing

between similar inputs. The width of the kernel s is linearly

decreased through training.

hij Z exp
Kd2ij

2s2

 !
(3)
ED P
ROOF

4.2. STORM’s rule-based construction mechanism

The model’s location-based recurrency representation

and localist architecture provide it with a very important

ability. The sequences learnt by STORM, unlike conven-

tional artificial neural networks, can be extracted in reverse

order. This makes it possible to start with the last element in

an input sequence and work backwards to find the winning

neurons corresponding to the previous inputs in any stored

sequence. STORM uses this ability, while processing input

sequences, to find any existing pre-learnt sequences that end

with the same elements as the current input sequence. For

example, Fig. 3 shows that the winning neuron for the

symbol ‘T’ in sequence 1 has the same future context

(‘XSE’) as the winning neuron for the first symbol ‘S’ in

sequence 2.

Functional-equivalent theory [8] asserts that two states

are said to be equivalent if, for all future inputs, their outputs

are identical. STORM uses the inverse of this theory to

construct states in a bottom-up approach to grammar

acquisition. By identifying neurons with consistently

identical future inputs, the model’s temporal Hebbian

learning mechanism (THL) mechanism binds together

potential states via lateral connections. By strengthening

the lateral connections between neurons that have the same

future context, this THL mechanism constructs functional-

relationships between the winning neuron for the current

input and the winning neuron for a memorized input

(referred to as the alternative winner) whose future-context

matches that of the current input sequence (Fig. 4). In order

to prevent lateral weight values from becoming too high, a

negative THL value is applied every time a winning neuron

is selected. This has the effect of controlling lateral weight

TE

XB

T S E1. B T X S E

2. B T S X S E

S

XT

S

E

Fig. 4. Functional override in winning-neuron selection algorithm. The

functional relationship (shown in grey) between the third symbol ‘S’ in the

second sequence and the second symbol ‘T’ in the first sequence, forces the

model to process the remaining elements in the second sequence (namely

‘XSE’) using the same winning neurons as for the first sequence.

Table 2

Generalization example

Training sequence symbols/number of corresponding

winning neuron

1 B T X S E

4 10 14 20 25

2 B T S X S E

4 10 8 14 20 25

3 B T X X V V E

4 10 14 2 12 18 23

4 B T S X X V V E

4 10 8 14 2 12 18 23

When trained on the first three sequences, STORM is able to construct a

state between the ‘T’ in sequence 1 and the first ‘S’ in sequence 2. By

generalizing this learnt state to its memorization of sequence 3, STORM is

able to correctly process sequence 4 by activating the same winning

neurons for the sub-sequence ‘X X V V E’ as would be activated in

sequence 3.

T. McQueen et al. / Knowledge-Based Systems xx (xxxx) 1–7 5

DTD 5 ARTICLE IN PRESS

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560
UNCORREC

growth and also breaking down old functional relationships

that are no longer used.

Once states have formed, they override the recurrency

mechanism, forcing the model to use a single representation

for the future inputs in the sequence rather than the original

two representations (Fig. 4). The advantage of forming

states in this manner is that it provides the model with a

powerful ability to generalize beyond its original memor-

izations. The model’s THL mechanism conforms to the

SOM’s winner-take-all philosophy by selecting the alterna-

tive winner as the neuron whose future-context is the best

match to that of the current input sequence. Given that

tracing back through the future-context may identify

multiple alternative winners, the criteria of best matching

winner classifies the strongest sequence stored in the model

as the winner. Furthermore, THL is only used to enhance the

functional relationship between the winner and the alterna-

tive winner, if the future-context for the alternative winner

is stronger than that of the winner itself. Thus, the model has

a preference for always using the dominant sequence and it

will use the THLmechanism to re-wire its internal pathways

in order to use any dominant sequence.

Constructing the lateral connections between functionally

related neurons is equivalent to identifying states in a

grammar. Once the strength of these lateral connections

exceeds a certain threshold they override the standard

recurrency mechanism, affecting the representation of the

previous winning neuron that is fed back (Fig. 4). Instead of

feeding back a representation of the previous winning neuron,

the lateral connections may force the model to feed back a

representation of the functionally related neuron. The

consequence of this is that the rest of the sequence is processed

as if the functionally related neuron had been selected rather

than the actual winner. For example, Fig. 4 shows that when

the first ‘S’ symbol in sequence 2 is presented to STORM, its

winning neuron is functionally linked to the winner for the ‘T’

symbol from sequence 1. As the latter winning neuron is the

dominant winner for this state, its location is fed back as

context for the next symbol in sequence 2.
KNOSYS 1489—26/5/2005—08:42—CSARAVANAN—150149—XML MODEL 5 – pp. 1
D P
ROOF

While a state is formed based on similarities in future

context, there may be cases, where the future context, for the

respective input symbols that make up the state, is dissimilar

(Table 2). However, once a state been constructed, the

future context in subsequent sequences containing that state

will be processed in an identical manner, regardless of the

future context itself. For example, when trained on the

sequences in Table 2, the ‘T’ symbol from sequence 1 will

form a state with the first ‘S’ symbol from sequence 2. This

will result in both sequences 1 and 2 sharing the same

winning neurons for their final three inputs (X S E). STORM

will then be able to generalize this learnt state to its

memorization of sequence 3, resulting in the same winning

neurons being activated for the ‘X X V V E’ in test sequence

4 as in training sequence 3.
5. Experiments

In order to quantify STORM’s grammar induction

abilities, the model was applied to the task of predicting

the next symbols in a sequence from the Reber grammar

(Fig. 1). Similar prediction tasks have been used in [6] and

[3] to test the SRN’s grammar-induction abilities. The task

involved presenting the model with symbols from a

randomly generated sequence that was not encountered

during training. The model then had to predict the next

possible symbols in the sequence that could follow each

symbol according to the rules of the grammar. STORM’s

predictions are made by utilizing the locational represen-

tational values used in its context vector. As further

explained in [15], the winning neuron for an input is the

neuron whose weight vector best matches both the input

symbol and the context representation of the last winning

neuron’s location. STORM predicts the next symbol by

finding the neuron whose context representation best

matches that of the current winning neuron (i.e. the symbol

part of the weight vector is ignored in the Euclidean distance
–7

T

O

Table 3

Experimental parameters for the first experiment

Parameter Value

Number of epochs 1000

Learning rate a (linearly decreasing) 0.1

Initial neighbourhood s (linearly decreasing) 5

Positive/negative temporal Hebbian learning rate 0.5/0.005

Number of training sequences 21

Number of test sequences 7

Maximum recursive depth (RD) of sequences 6

Model size 10!10

KN

T. McQueen et al. / Knowledge-Based Systems xx (xxxx) 1–76

DTD 5 ARTICLE IN PRESS

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657
EC

calculation). This forces the model to find the neuron that is

most likely to be the next winner. The symbol part of this

neuron’s weight vector provides the next predicted symbol

itself. This process is then repeated to find the second-best

matching winner and the corresponding second predicted

next symbol. In accordance with established training criteria

for artificial neural network models [9], the experiments

were conducted on randomly generated separate training

and test sets (i.e. sequences were unique with respect to all

other sequences in both sets). Such an approach ensures that

the model’s performance, assessed from the test set, is a true

measure of its generalization abilities because the test

sequences were not encountered during training. The

experiment was run ten times using models with randomly

generated initial weights, in order to ensure that the starting

state did not adversely influence the results.

The recursive depth parameter, as listed in Table 3,

denotes the maximum number of sequential recursive

transversals a sentence may contain (i.e. how many times

it can go around the same loop). In order to ensure that the

training and test sequences are representative of the

specified recursive depth, the sets are divided equally

between sequences of each recursive depth (i.e. a set of six

sequences with a recursive depth (RD) of 2 will contain two

sequences with an RD of 0, two sequences with an RD of 1

and two sequences with an RD of 2).

As shown in Fig. 5, six models learnt the grammar with

over 89% accuracy during training and three of them

became perfect grammar recognizers. However, this
UNCORR

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

Test number

Pr
ed

ic
tio

n
ac

cu
ra

cy

Highest prediction accuracy during training
Prediction accuracy after training

Fig. 5. Results from ten models trained on randomly generated separate

training and test sets.

OSYS 1489—26/5/2005—08:42—CSARAVANAN—150149—XML MODEL 5 – pp. 1–7
OF

number fell by the end of training, with only two perfect

models and an additional two models with over 90%

performance accuracy. This equates to an average post-

training performance of 71%. While less than half the

models successfully learnt the grammar, it is worth noting

that this is significantly better than for SRNs, where Sharkey

[18] showed that only two out of 90 SRNs became finite-

state grammar recognisers in a similar experiment using the

Reber grammar.

One of the proposed advantages of a discrete state-space

model (page 3), is its ability to generalize to sequences

longer than those encountered during training without the

instabilities characteristic of standard DRN models. In order

to test this proposition, a perfect finite-state recognizer (i.e.

a model that scored 100% prediction accuracy) from the first

experiment (Fig. 5) was tested on a further three test sets.

These sets contained sequences with recursive depths of 8,

10 and 12 and should constitute a much harder problem for

any model trained only on sequences with a recursive depth

of 6. These models that achieved 100% performance

accuracy in the original experiments also achieved 100%

accuracy on training sets with higher recursive depths. This

proves that these models act as perfect grammar recognizers

that are capable of generalizing to sequences of potentially

any length.
658

659

660

661

662

663

664

665

666

667

668

669

670

671

672
ED P
R6. Conclusions and future work

We have presented a novel connectionist memory-rule

based model capable of inducing the finite-state properties

of an input language from a set of positive example

sequences. In contrast with the majority of supervised

connectionist models in the literature, STORM is based on

an unsupervised recurrent SOM [15] and operates using a

discrete state-space.

The model has been successfully applied to the task

of learning the Reber grammar by predicting the next

symbols in a set of randomly generated sequences. The

experiments have shown that over half the models

trained are capable of learning a good approximation of

the grammar (over 89%) during the training process.

However, by the end of training, only a fifth of the

models were capable of operating as perfect grammar

recognizers. This suggests that the model is unstable and

that partial or optimal solutions reached during training

may be lost by the end of the training process. Despite

this instability, a comparison between STORM and the

SRN, when applied to a similar problem [3], shows that

STORM is capable of learning the grammar perfectly

much more often than its counterpart. Furthermore,

experiments show that STORM’s discrete state-space

allow it to generalize its grammar-recognition abilities to

sequences far beyond the length of those encountered in

the training set, without the instabilities experienced in

continuous state-space DRNs.

T. McQueen et al. / Knowledge-Based Systems xx (xxxx) 1–7 7

DTD 5 ARTICLE IN PRESS

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741
Future work will involve analyzing the model to find,

where it fails. Once the model’s abilities have been

explored, its stability will be improved to increase the

number of models that successfully become perfect

grammar recognizers. STORM will then be enhanced to

allow it to process more advanced grammars. Given that

regular grammars are insufficient for representing natural

language [13], the model must be extended to learn at least

context-free languages if it is to be applied to real-world

problems. However, despite such future requirements

STORM’s current ability to explicitly learn the rules of a

regular grammar distinguish its potential as a language

acquisition model.
742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757
References

[1] G. Baretto, A. Arajo, Time in self-organizing maps: an overview of

models, International Journal of Computer Research: Special Edition

on Neural Networks: Past, Present and Future 10 (2) (2001) 139–179.

[2] N. Chomsky, Aspects of the Theory of Syntax, MIT Press,

Cambridge, MA, 1965.

[3] A. Cleeremans, D. Schreiber, J. McClelland, Finite state automata and

simple recurrent networks, Neural Computation 1 (1989) 372–381.

[4] N.J. Cohen, R. Squire, Preserved learning and retention of pattern-

analyzing skill in amnesia: Dissociation of knowing how and knowing

that, Science 210 (1980) 207–210.

[5] R. Collier, An historical overview of natural language processing

systems that learn, Artificial Intelligence Review 8 (1) (1994).

[6] J.L. Elman, Finding structure in time, Cognitive Science 14 (1990)

179–211.
UNCORRECT

KNOSYS 1489—26/5/2005—08:42—CSARAVANAN—150149—XML MODEL 5 – pp. 1
ROOF

[7] E.M. Gold, Language identification in the limit, Information and

Control 10 (1967) 447–474.

[8] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages

and Computation, vol. 1, Addison-Wesley, Reading, MA, 1979.

[9] A.A. Hopgood, Intelligent Systems for Engineers and Scientists, 2nd

ed., CRC Press LLC, Florida, 2001. pp. 195–222.

[10] J.J. Horning, A study of grammatical inference, Ph.D thesis, Stanford

University, California, 1969.

[11] T. Kohonen, Self-Organizing Maps, vol. 1, Springer, Germany, 1995.

[12] J. Kolen, Fool’s gold: extracting finite state machines from recurrent

network dynamics in: J. Cowan, G. Tesauro, J. Alspector (Eds.),

Advances in Neural Information Processing Systems vol. 6, Morgan

Kaufmann, San Francisco CA, 1994, pp. 501–508.

[13] S. Lawrence, C. Giles, S. Fong, Natural language grammatical

inference with recurrent neural networks, IEEE Transactions on

Knowledge and Data Engineering 12 (1) (2000) 126–140.

[14] G.F. Marcus, Children’s overregularization and its implications for

cognition in: P. Broeder, J. Murre (Eds.), Models of Language

Acquisition: Inductive and Deductive approaches, Oxford University

Press, Oxford, 2000, pp. 154–176.

[15] T. McQueen, A. Hopgood, J. Tepper, T. Allen, A recurrent self-

organizing map for temporal sequence processing, in: Proceedings of

Fourth International Conference in Recent Advances in Soft

Computing (RASC2002), Nottingham, 2002.

[16] C. Omlin, Understanding and explaining DRN behaviour in: J. Kolen,

S. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks,

IEEE Press, New York, 2001, pp. 207–227.

[17] S. Pinker, Words and Rules: The Ingredients of Language, Phoenix,

London, 2000.

[18] N. Sharkey, A. Sharkey, S. Jackson, Are SRNs sufficient for

modelling language acquisition? in: P. Broeder, J. Murre (Eds.),

Models of Language Acquisition: Inductive and Deductive

Approaches, Oxford University Press, Oxford, 2000, pp. 33–54.

[19] T. Voegtlin, Recursive self-organizing maps, Neural Networks 15 (8–

9) (2002) 979–991.
ED P

–7

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

	Extracting finite structure from infinite language
	Introduction
	Connectionism and determinacy
	A Memory-rule based theory of linguistics
	STORM (Spatio Temporal Self-Organizing Recurrent Map)
	STORMs memorization mechanism
	STORMs rule-based construction mechanism

	Experiments
	Conclusions and future work
	References

