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Abstract

Technology-assisted physical rehabilitation interventions (TAPRI) have the potential
to offer patients a safe, motivating and always accessible platform for undergoing
rehabilitation. The emergence of compact and affordable depth sensors provide
an opportunity to realise such interventions in a home environment. These types
of depth sensors can run pose estimation algorithms that track full-body human
joint positions in real-time. TAPRIs that provide real-time patient performance
assessment and feedback require sufficiently accurate algorithms to ensure a correct
assessment.

The research presented in this thesis aims to overcome some of the algorithmic
challenges in enabling real-time patient performance assessment and feedback. This
research focuses on two algorithms: real-time tracking of human joint positions
and real-time segmentation of exercise repetitions. This research targets stroke
rehabilitation as a challenging use case for achieving real-time patient exercise
assessment as stroke patients often have varying levels of mobility.

Research contributions. The first contribution of this thesis is a quantitative
and clinical evaluation of a state-of-the-art pose estimation algorithm (human joint
tracking) to determine if the joint position estimations are sufficiently accurate for
correctly assessing stroke rehabilitation exercises. This evaluation also determines
what the limitations are and propose recommendations for future pose estimation
algorithms intended for clinical applications. The second contribution is an
evaluation of the inter-rater reliability of clinicians assessing the suitability of
the pose estimation algorithm, to quantitatively determine where the clinicians are
in agreement and propose more robust criteria for the assessment of new clinical
technologies. The final contribution is the proposal of a real-time segmentation
algorithm that requires only a single exemplar repetition of an exercise to segment
repetitions from other subjects, including those with impaired mobility.

Main research findings and results. The accuracy of current state-of-the-art
pose estimation algorithms are insufficient for correctly assessing patient perfor-
mance. There was a low inter-rater agreement between clinicians evaluating the
accuracy of the individual joints of a state-of-the-art pose estimation algorithm,



however overall the accuracy was found to be insufficient. Our proposed segmenta-
tion algorithm correctly segments ≈90% of stroke patient exercise repetitions from
our own rehabilitation exercise dataset and is capable of segmenting a 20 second
window at 30Hz in real-time on a desktop computer.
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1
Introduction

Physical rehabilitation is the action of restoring functional movement and mobility

lost due to disability, disease or injury. Contact time with physiotherapists can often

be limited with patients expected to continue their exercise program daily at home

unsupervised. In order to solve the problem of unsupervision during exercising this

thesis investigates the challenges in enabling technology-supervised rehabilitation.

Solutions to algorithmic and design challenges are required to enable practical

real-time automatic assessment of patient exercises for technology-assisted physical

rehabilitation interventions (TAPRI). This research concentrates on upper-body

stroke rehabilitation as a challenging use case for TAPRI, as stroke patients can have

a low range of motion, diverse levels of impairment and communication problems

(aphasia). Upper-body rehabilitation is targeted because upper limb weakness is the

most common impairment after stroke [5]. This chapter discusses the background

15



1. Introduction 16

and impact of stroke, and provide a research overview including the aims, objectives

and contributions of the thesis.

1.1 Background and societal impact of stroke

Stroke was the third most common cause of disability worldwide in 2010 [6], ranked

by disability-adjusted life years. Only 31% of stroke patients adhere to their exercise

program [7] even though evidence suggests that they could recover significant

motor control through high-intensity and repetitive task-specific practice [8], [9].

Depression, boredom and perceived lack of benefit [10] have been reported by

patients as reasons for low adherence of exercise programs. Although exercises

need to be performed on a daily basis, contact time with physiotherapists is often

limited with NHS care usually ceasing within 6 months [11]; even though gains

in motor function can occur years after stroke, given an appropriately structured

rehabilitation program [12]. During rehabilitation it is important to exercise in a

correct manner to encourage positive motor recovery - incorrect rehabilitation can

lead to reduced range of motion and pain [13]. Many of these incorrect movements

are known as compensatory movements whereby the correct muscle groups are not

being activated due to abnormal movement patterns. Consistant and effective stroke

rehabilitation interventions would improve recovery and increase the likelyhood of

regaining independence; thus reduce the cost of care (£23,315 per stroke patient [14])

and improve quality of life.

TAPRIs have the potential to offer patients an engaging platform for safely

performing their rehabilitation exercise programs at home or in the community.

The following list presents the key aspects that a TAPRI could provide:

• A dynamic exercise program that adapts the challenge to the patients perfor-

mance and functional movement requirements.
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• Real-time automatic assessment of patient exercises to enable timely feedback

for encouraging correct functional movements.

• An interface that engages the patient in a manner that improves adherence

and responsiveness to feedback.

• Load-balancing of physiotherapists’ time to target patients with low adherence

and/or recovery.

1.2 Research overview

Several technological and algorithmic advances have led to a promising avenue

for realising technology-supervised rehabilitation. Specifically the introduction of

commercial depth sensors, such as Microsoft Kinect, Intel RealSense and Occipital

Structure, that offer an affordable, practical and compact sensor for generating depth

maps in real-time. These depth maps can be used as input into a pose estimation

algorithm to predict human joint positions. This was first shown in Jamie Shotton’s

seminal paper [15] that proposes a real-time pose estimation algorithm requiring

only a single depth map generated from a depth-sensor. This approach provides a

promising avenue for practical clinical applications that require human joint position

tracking, but it is important that the accuracy of the joint positions are clinically

validated. TAPRIs that aim to provide real-time automatic assessment of patient

exercises and feedback require accurate joint position estimations and segmentation

of exercise repetitions. The research presented in this thesis has concentrated on

evaluating and resolving some of these algorithmic challenges for enabling real-time

automatic assessment of patient exercises. The research questions addressed in this

thesis are:

• Are depth-sensor-based state-of-the-art pose estimation algorithms accurate

enough for assessing the quality of an exercise and what are the limitations?
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• What is the inter-rater agreement of physiotherapists assessing the suitability

of a pose estimation algorithm for clinical use?

• Can exercise repetitions from subjects with impaired mobility be accurately

segmented in real-time?

1.3 Research aims and objectives

The following research aims and objectives relate to the algorithmic requirements for

enabling accurate real-time automatic assessment of patient exercises for TAPRIs.

This research aims to:

• Discover the accuracy and limitations of current state-of-the-art pose estima-

tion algorithms (PEA) for the clinical assessment of exercises.

• Determine the inter-rater agreement among clinicians evaluating the accuracy

of a PEA in terms of performing an accurate clinical assessment.

• Propose a real-time segmentation algorithm capable of segmenting exercise

repetitions from subjects with diverse levels of impairment.

The following objectives were identified to accomplish these aims:

• Collect a dataset containing joint position data of stroke patients performing

rehabilitation exercises captured from a consumer depth sensor.

• Evaluate the results of a clinical evaluation (from several physiotherapists)

on the current state-of-the-art PEA to determine whether the accuracy is

suitable for correctly assessing the quality of stroke rehabilitation exercises

and determine what the limitations are.

• Evaluate the physiotherapists’ analyses of the PEA’s joint tracking accuracy

to determine the inter-rater agreement and find areas of agreement and

disagreement.
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• Design, develop and evaluate a real-time segmentation algorithm on real stroke

patient exercise data and a public dataset.

• Evaluate the performance of the segmentation algorithm against other pro-

posed algorithms. Determine the strengths and weaknesses of the proposed

approach.

1.4 Research contribution

The main research contributions are:

• A clinical and quantitative analysis of a depth-sensor based state-of-the-art

PEA to determine whether the joint position estimations are accurate enough

to correctly assess an exercise and what the limitations are, published in [1].

• An analysis of the inter-rater agreement among physiotherapists rating the

accuracy of joint position estimations in the context of assessment of exercises,

published in [3].

• A real-time segmentation algorithm that requires only a single exemplar

repetition to segment repetitions from other subjects including those with

impaired mobility, published in [2].

1.5 Thesis outline

The following chapters are summarised as follows:

• Chapter 2 Background and Related Work: This chapter reviews: different

compact and cost-effective depth sensors; current and proposed TAPRIs;

different data representations/descriptors of human motion; analyses of PEAs;

inter-rater agreement of clinicians; algorithms for segmenting human motion;
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and publicly available action/exercise datasets.

• Chapter 3 New Ideas - This chapter discusses in more detail the research

undertaken in this thesis.

• Chapter 4 Clinical Evaluation of Kinect’s PEA: This chapter describes: the

experimental set-up of the evaluation; the methodology of the clinical evalua-

tion; the methodology of the quantitative analysis; describes the methodology

for evaluating the inter-rater agreement among the physiotherapists clinically

evaluating the joint position estimations; presents and evaluates the results of

the clinical and quantitative analysis; and evalutes the inter-rater agreement

among the physiotherapists clinically evaluating the joint position estimations.

• Chapter 5 Segmentation Algorithm: This chapter describes the methodology

for collecting patient exercise data, including the experimental set-up, justi-

fication for the selected exercises and the type of data collected; proposes a

segmentation algorithm; describes the motion features; pre-processing steps

for the exermplar; feature extraction of the salient points; segmentation

of a repetition; and lists the main parameters of the algorithm; evaluates

the algorithm against a public dataset; evaluates the execution performance

including the time complexity; performs a detailed evaluation on our stroke

rehabilitation exercise dataset; and performs a parameter evaluation to show

how the algorithm changes with respect to different parameter combinations.

• Chapter 6 Conclusion and Future Work: This chapter reiterates the find-

ings and contributions; and discusses future work, including a clinical pose

estimation algorithm in development intended to overcome the limitations

highlighted in this thesis.



2
Related work and background

This chapter explores different types of depth-sensors; reviews existing and proposed

technology-assisted physical rehabilitation interventions (TAPRI), and discusses the

current limitations; explores different data representations/descriptors of human

motion; reviews literature analysing the accuracy of state-of-the-art pose estimation

algorithms (PEA), with emphasis on papers targeting a clinical evaluation; reviews

and discusses algorithms for the segmentation of human motion; and discuss different

public datasets of human exercises.

2.1 Related work

This literature review focuses on papers that meet the overall aim of the research,

that is a practical TAPRI for stroke patients that can be used in a home setting. It

21
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Table 2.1: Summary of compact and cost-effective depth sensors.

Depth sensor Depth
resoltuion

RGB
resolution Has microphone? Type

Microsoft
Kinect v2

512× 424 1920× 1080 Yes Time-of-Flight

Microsoft
Kinect 1

320× 240 640× 480 Yes Structured Light

Occipital
Structure

640× 480 N/A No Structured Light

Asus
Xtion PRO

640× 480 1280× 1024 Yes Structured Light

iPhone X 1280× 720 3840× 2160 Yes Structured Light
Intel D435 1280× 720 1920× 1080 No Stereo Vision
ZED Mini 3840× 1080 3840× 1080 No Stereo Vision

is assumed exercises are presented to the patient, given a patient’s exercise program,

therefore the literature review targets approaches to segmentation where the exercise

is known. Given that rehabilitation exercises often have repetitive motions, papers

on activity segmentation, whereby the activity can be performed in many different

ways, is of less relevance but still considered.

2.1.1 Depth sensors

Compact and cost-effective depth-sensors have made an appearance in the last

decade, providing a promising avenue for home-based rehabilitation. The depth

data from these sensors can be used as input data to a pose estimation algorithm

to determine human joint positions or other human landmarks in real-time; for

example full body joint tracking [16], hand joint tracking [17], tracking of facial

landmarks [18]. Table 2.1 details the specification of popular depth sensors. These

devices mainly use three methods for calculating depth; Time-of-Flight, structured

light and stereo vision, described in this list:

• Time-of-Flight [19]: Time-of-Flight depth-sensors produce infrared light pulses

that are detected by a sensor, by calculating the time that the pulse takes to

return to the sensor, the depth of the scene can be determined.
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• Structured Light [20]: This method projects an infrared pattern into the scene,

this pattern is deformed based on the surfaces it reflects off and a sensor

detects the deformed pattern allowing the depth of the scene to be calculated.

• Stereo Vision [21]: By using two RGB cameras with a known distance apart,

the pixel data from both images can be evaluated to calculate the depth of a

scene.

2.1.2 Technology-assisted physical rehabilitation interven-

tions

Numerous TAPRIs have been proposed in literature and/or developed for healthcare

providers [22–33]. This section reviews different technological approaches to

delivering a rehabilitation intervention.

Non-wearable interventions

This section reviews TAPRIs that require no wearable sensors to detect human

motion such as depth-sensors.

A game-based rehabilitation system was proposed by Chang, et al. [23]. This

approach used a Kinect depth sensor to track the patient’s joint positions and

provided auditory and visual feedback to the patient. The intervention was evaluated

on two patients with motor impairments. During rehabilitation a baseline session was

conducted whereby the patient would perform their exercises without assistance, then

a second session was performed with the proposed intervention. During both sessions

the number of correct movements were logged. It was found that the intervention led

to a statistically significant increase in the number of correct movements performed

during rehabilitation when compared against the baseline.

MindMotion GO [34] provides patients with a virtual environment for performing
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their exercise program, the system uses a depth sensor to track the patient and

provides feedback on compensatory movements. However, there is no public

information on the accuracy of the joint position estimations.

Kim, et al. [27] developed and evaluated a Kinect 1 game-based rehabilitation

intervention, similar to other approaches the patient would sit in front of a monitor

displaying a game based activity to deliver the exercise program. They evaluated the

system against a control group whereby each group performed their rehabilitation

program for 10 consecutive days for 30 minutes per session. The outcomes were

assessed using the Fugl-Meyer Assessment (FMA). However, they found that their

Kinect intervention was not more efficacious than the control group.

A balance rehabilitation intervention for people with cerebral palsy was proposed by

Jaume-I-Capó, et al. [31]. They reported a significant improvement in patient scores

from their initial score, but the study did not have a control group and therefore

can not be compared against conventional therapy.

A virtual game that uses Kinect’s pose estimation algorithm to detect incorrect

body postures for the elderly was proposed by Saenz-De-Urturi, et al. [32]. The

game encourages correct posture during use. They report a detection of incorrect

posture to 95.20% accuracy. Although they do not mention to what level of accuracy

the system detected the incorrect posture.

Another Kinect game based rehabilitation system was proposed by Roy, et al. [33],

the system included a website for doctors to view their patients’ performances. How-

ever, sufficient evaluation of the system and intervention was not performed.

These interventions usually consist of a depth-sensor that observes the patient, with

the exercise program delivered via a monitor. The advantages to this approach are

that the set-up only requires the patient to be within the range of the sensor, it is

affordable and can be used in a home environment. However, these methods for

tracking human motion can be susceptible to occlusion, fail to track joints when
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objects are used for exercises and may struggle to track fine motor skills.

Wearable interventions

This section reviews TAPRIs that use wearable-sensors to detect human motion

such as gloves with infrared emittters or Inertial Measurement Units (IMU).

Standen, et al. proposed a game-based rehabilitation intervention that uses a virtual

glove that tracks the position of the patient’s fingers. This approach can be used

to rehabilitate fine and gross hand movements. However it requires the patient to

wear a glove and does not include information on other joints that are required to

assess compensatory movements.

Panagiotis, et al. [35] and Borghetti, et al. [36] have proposed gloves that can

measure the pose of the hand and fingers. Panagiotis’s glove includes actuators for

applying force to guide a patient’s movements and for reinforcement feedback.

A wearable soft sensing garment was proposed and developed by Menguc, et al. [37]

for human gait measurement. The garment consists of pressure sensors embedded

in the fabric to track leg motion.

With these interventions the patient may struggle to put on the required wearables

in a home environment and unless sufficient wearables are placed on relevant areas

of the body, an analysis of the human motion may be rudimentary when compared

against a depth-sensor PEA approach which detects many joint positions. Although

the accuracy of a wearable sensor may be more accurate in tracking human motion

than non-wearable interventions.

Robot-assisted interventions

This section reviews TAPRIs that use robots to deliver the intervention such as a

robotic arm that is grasped by the patient or a socially-assitive robot.
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Chang, et al. [26] reviewed evaluations of upper limb robot-assisted interventions

to determine if they improve upper limb motor function. This approach typically

involves a robotic arm that is grasped by the patient, a monitor displays an

interactive game requiring the patient to perform upper body movements to

achieve success. They conclude that the present evidence supports these types of

interventions for improving motor function.

Lotfi, et al. [29] proposed a socially assistive robot for delivering an exercise program

for the elderly population. The Double robot has a tablet for demonstrating the

exercise and for visual feedback to the patient, speakers provide audio feedback for

encouragement. Another socially assitive robot was developed by Yinbei, et al. [38],

this humanoid robot performs the exercise in front of the patients.

Currently robot-assisted interventions are impractical for home-based rehabilitation

given the size and cost and therefore they will likely be used for group-based

rehabilitation sessions. Socially assistive robots offer patients an engaging platform

for rehabilitation. Where a robotic arm is grasped by the patient, this can provide

the patient with force feedback.

2.1.3 Human motion descriptors

This section reviews different data representations/descriptors of human motion.

Human motion can be captured from various modalities such as depth-sensors, IMUs

and RGB cameras. This review concentrates on descriptors that use joint position

estimations for the task of segmentation and/or exercise/action recognition. For

these tasks the requirements for a human motion descriptor are typically invariance

to scale, rotation, translation and deviation while remaining selective to the exercise

or action. The processing time for producing the descriptor from raw joint position

data may need to be considered for real-time applications.
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Hussein, et al. [39] use a sequence of the covariance of 3D joint positions to represent

human motion, the joint coordinates were normalised to a range from 0 to 1 to

achieve scale invariance before computing the covariance matrix. The human motion

representation was combined with a linear Support Vector Machine (SVM) and

evaluated on three public datasets on the task of human action recognition. The

approach outperformed state-of-the-art methods in multiple datasets.

Ofli, et al. [40] proposed a representation called Sequence of the Most Informative

Joints (SMIJ), this approach ranks the joints by the most informative i.e. the metric

with the highest value e.g. variance of the joint. This metric is calculated and

ranked for each joint over N time segments. This shows the evolution of each joint,

ranked by a metric, over time. This human motion representation was evaluated

on the task of human activity recognition. This approach requires a time segment

parameter to be set.

Vemulapalli, et al. [41] have proposed an approach that models the 3D spatial

relationships between groups of joints within a Lie group. Using this descriptor,

actions are modelled as curves. This requires manually choosing sets of joints to

represent body parts.

An approach by Wang, et al. [42] uses the pairwise relative position of joints, this

produces a set of direction vectors between each joint. A Fourier Temporal Pyramid

(FTP) is used to capture the temporal dynamics of each joint. This approach

was extended by Hu, et al. [43] to include the FTP of the gradient of the joint

direction vectors. This extension encodes the velocity of the groups of joints into

the descriptor.

An approach that uses histograms of 3D joint positions was proposed by Xia, et

al. [44]. A spherical coordinate system is used with the hip centre as the origin.

The 3D joint positions are partitioned into bins. These approaches require manually

selecting informative joints.
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2.1.4 Evaluation of pose estimation algorithms

A number of studies have been undertaken on Kinect 1 and Kinect 2, though

within different scenarios. Generally, these studies used marker based motion

capture systems to establish a ground truth. Fernández-Baena et al. [45] examined

Primesense’s NITE pose estimation algorithm using depth data from Kinect 1.

They claimed that joint accuracy could be improved by imposing a fixed length on

the bones, and indicated that “Kinect can be a very useful technology in present

rehabilitation treatments”, though they performed no clinical evaluation.

Obdrzalek et al. [46] examined Kinect 1 for elderly coaching exercises and concluded

that measurements “could be used to assess general trends in the movement”,

though they made no clinical claims. Kurillo et al. [47] found that Kinect 1’s pose

estimations were sufficiently accurate for reachable workspace analysis.

Xu et al. [48] compared the quality of Kinect 1 and 2 for poses within activities

of daily living, and interestingly found that Kinect 1 produces lower errors. In

contrast, Wang et al. [49] considered that Kinect 2 was superior over a range of 12

exercises particularly when occlusion and body rotation occurred.

In terms of clinical assessment, Yeung et al. [50] found that Kinect 1 could achieve

acceptable accuracy for total body centre of mass movements, but performed better

for medial and lateral movements than anterior and posterior movements. In terms

of stroke rehabilitation, Webster et al. [51] evaluated the joint accuracy of Kinect 1

on 13 gross movements. They found that Kinect 1 accuracy is sufficient for gross

movement-based rehabilitation systems for clinical and in-home use. However, there

was no assessment within standard rehabilitation exercises or clinical evaluation for

the possibility of detecting compensatory movement.

Mobini et al. [52] evaluated the accuracy of the flexible action and articulated

skeleton toolkit [53] using Kinect 1 for upper body stroke rehabilitation applications.
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They found that lateral variations in position did not significantly impact joint

accuracy, though horizontal distance had some effect.

These previous studies concentrated on absolute joint accuracy as compared with a

ground truth provided by motion capture systems. The comparison with a clinical

study, where expert clinicians provide analysis on significant aspects of the poses

calculated by the equipment, was not performed. During rehabilitation, clinicians

stress the importance of ensuring that the patients avoid compensatory movements,

and so the evaluation and assessment of the pose algorithms needs to emphasise

this aspect.

2.1.5 Inter-rater agreement of clinicians

This section provides a brief overview of literature evaluating the inter-rater

agreement among clinicians assessing patient performance.

Barth et al. [54] reviewed studies on inter-rater agreement in evaluation of disability

assessed by medical experts. They found that there was an indication of high

variation in judgement. They highlighted a need for the development and testing of

instruments and structured approaches to improve the reliability in expert evaluation

of disability. Our results support this conclusion and highlight a need for more

reliable evaluation methodologies for technology intended for clinical use.

Ageberg et al. [55] measured the inter-rater reliability of the clinical assessment

of single limb mini squats. They found the medio-lateral motion of the knee

can be reliably assessed. However only two examiners were compared and both

examiners discussed the scoring of the knee position before deciding whether there

was agreement. The examiners did not assess the exercises in isolation. They state

that the examiners received explicit guidelines and thorough training prior to study

start, likely contributing to the achieved high reliability.
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Blackburn et al. [56] evaluated the inter-rater reliability of scores from two physio-

therapists using the Modified Ashworth Scale to assess patient muscle tone during

stroke rehabilitation. They found the inter-rater reliability of the physiotherapists

to be poor. Chmielewski et al. [57] investigated the inter-rater reliability of

two methods used for the evaluation of movement quality during rehabilitation.

Three clinicians assessed twenty-five healthy subjects performing exercises. They

found that agreement was better than chance but neither method used for clinical

assessment produced high agreement. They conclude that the results indicate a

need to develop more explicit criterion for rating movement deviation severity.

A common theme within the literature is that inter-rater agreement is often low

and that there is a need for a more objective criterion to support raters, including

the use of instruments for testing.

2.1.6 Segmentation of human motion

This section introduces published research relating to the temporal segmentation of

actions and exercises.

Gong, et al. [58] have proposed an approach that segments multivariate time series

data of temporal joint positions (or angles). The algorithm was trained and tested

on a subset of data of 15 people performing 10 actions once. However there was no

evaluation using clinical data of patients with physical disability that commonly

show low range of motion and instability.

Kohlmorgen, et al [59] proposed a Hidden Markov Model (HMM) approach that

calculates multiple probability density functions (PDF), which act as the segmenta-

tion features, over a moving window over the observation data. These PDFs are

used to train the model, generating the state transitions from the PDFs which act

as the segment points. Lin and Kulic [60] proposed using zero-velocity crossings
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(ZVC) as segment candidates with a HMM based template matching method to

segment points, these HMM approaches require multiple samples for training.

A multimodal approach was proposed by Wu, et al. [61] that segments gestures

from joint positions, depth and RGB data. This approach requires training data for

different modalities. Chaun-Jun, et al [62] have proposed a Dynamic Time Warping

(DTW) approach for segmenting rehabilitation exercises. The system was tested on

three shoulder exercises performed by four healthy people. They use DTW to align

the joint data but no dimensionality reduction methods are used.

De Souza Vicente, et al. [63] have proposed using latent-dynamic conditional random

fields. A filtering technique based on key poses is used to reduce the number of

frames prior to segmentation. They tested their algorithm on Taekwondo moves

which are relatively fast compared to general actions. This approach was tested

on data from athletes where the authors state that there is little variation of each

Taekwondo move and therefore the approach may be insufficient for segmenting

exercises from subjects with impaired mobility.

Krüger, et al. [64] proposed a kd-tree-based nearest-neighbor-search that is said to

be a fast alternative to subsequence DTW alignment. This approach was used by

Baumann, et al. [65] and extended to enable its use for action recognition. This

approach was not tested on clinical subjects with limited mobility.

Krüger, et al. [66] have proposed an unsupervised approach that identifies action

repetitions and further decomposes the actions into atomic motion primitives.

However, the segmentation algorithm was tested on non-clinical data from "fairly

constrained settings".

Wang, et al. [67] have proposed an unsupervised approach to segmentation. Joint

trajectories are converted to a kinematic model using an unscented Kalman filter

and the most representative kinematic parameters for the segmentation of an

action repetition are selected. ZVC are detected to produce a list of segmentation
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candidates. Finally, k-means clustering is used to determine the boundaries of each

repetition. The algorithm was tested on joint data from healthy subjects performing

non-clinical actions.

Lin, et al. [68] have proposed a two-class classifier to classify each data point as

either a segment or non-segment point. Dimensionality reduction is performed prior

to data point classification. However, the classification stage requires training data.

The top performing classifiers used Principal Component Analysis (PCA) prior to

classification. Support Vector Machine (SVM), Artificial Neural Network (ANN)

and k-Nearest Neighbour (k-NN) provided the highest accuracy in segmentation.

They mention high processing costs of k-NN making it unsuitable for real-time

applications.

Devanne, et al. [69] have proposed a segmentation algorithm that jointly analyses the

shape of the human pose and motion in a Riemannian manifold. The approach was

tested on temporal skeleton data of healthy participants performing actions.

Shan, et al. [70] identify key poses by analysing the joint data for minimal changes

in kinetic energy, a parameter that must be tuned. Then atomic action templates

(AAT) are produced from the key poses and temporal midway points. Multiple

AATs can form an action template. Finally, a classifier is used to classify the AATs

and determine a label for the action. Four classification models were tested; HMM,

k-NN, SVM and Random Forest. The classifiers obtain similar recognition results

suggesting the feature representations of an action are sufficiently discriminative,

although this was tested on healthy subjects performing non-clinical actions. This

approach also requires training data.

Many of these approaches are limited in that they either require multiple samples for

training and/or were evaluated using healthy subjects, or are too computationally

expensive to run in real-time.
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2.1.7 Public exercise datasets

This section describes different human motion datasets consisting of joint positions

of subjects performing activities, actions and exercises captured from marker-based

motion capture systems or depth-sensors.

A stroke rehabilitation dataset (TRSP) was published by Dolatabadi, et al. [71]. This

contains two stroke rehabilitation exercises (Reach Side-to-Side and Reach Forward-

Backward) from 9 stroke survivors and 10 healthy subjects captured by a Kinect

depth-sensor. Another recently published rehabilitation dataset, UI-PRMD [72],

contains physical rehabilitation exercises from 10 healthy subjects captured from a

marker-based motion capture system.

Carnegie Mellon University Motion Capture Database (CMU) [73] consists of

various activities, actions and exercises performed by 144 different subjects. HDM05

dataset [74] contains about 70 different motion classes of exercises and actions

such as squats, sitting, walking. Berkeley’s MHAD dataset [75] consists of 11

actions/exercises such as jumping jacks, waving and punching. The actions were

performed by 7 males and 5 female subjects. These datasets were captured by

marker-based motion capture systems.

The Microsoft Research (MSR) Cambridge-12 dataset(MSRC-12) [76] contains 12

actions performed by 30 subjects. The dataset include 6,244 gesture instances

with 20 joints tracked. The MSR Daily Activity [77] dataset consists of activities

such as drink, eat and use laptop performed by 10 subjects. The MSR Action3D

dataset [78] contains 20 actions from 10 subjects. The CAD-60 and CAD-120

activity datasets [79] contain 12 and 10 activities respectively from 4 subjects. The

UTK Action dataset [80] contain 10 actions such as walk, throw, wave from 10

subjects. The UCFK Dataset [81] contains 16 actions such as kick, duck, run,

which were performed by 13 males and 3 females each 5 times. These datasets were
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captured from a Kinect depth-sensor.

Except for [71], which was published after we had collected our own data and only

contain two exercsies, the publicly available datasets lacked real-world patient data

of rehabilitation exercises captured on a compact depth-sensor, for this reason we

collected our own stroke rehabilitation dataset described in Chapter 5.

2.2 Background

This section reviews existing clinical assessments of stroke and describes determin-

istic and probabilistic/stochastic techniques for human action/exercise segmenta-

tion.

2.2.1 Clinical assessments of stroke

The Fugl-Meyer Assessment (FMA) [82] is a common assessment criteria specifically

designed for evaluating stroke survivors. FMA assesses motor function, balance,

sensation and joint function. Each dimension of the assessment is scored with points

and the FMA total motor score provides a classification of impairment, ranging

from severe to slight. The assessment is carried out by a physiotherapist observing

the patient.

The Chedoke-McMaster [83] stroke assessment consists of a two-part measure using

a physical impairment inventory and disability inventory. This contains a six

dimensions each measure on a 7-point scale relating to stages of motor recovery.

Each dimension measures shoulder pain, postural control, arm, hand, leg and foot

movement.

The Stroke Rehabilitation Assessment of Movement (STREAM) [84] consists of

30 test movements which fall into three dimensions of upper-limb, lower-limb and
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basic mobility movements. 3 and 4 point scales are used to measure each dimension.

The assessment is scored by direct observation from a physiotherapist.

Two upper-arm assessments, Action Research Arm Test (ARAT) [85] and the Box

and Block Test (BBT) [86], provide a measure of arm mobility. ARAT measures a

larger variety of movements whereas BBT measures the number of blocks that are

moved between two compartments within 1 minute.

All these assessments have a degree of subjectivity due to measurements being

performed by a direct observation from physiotherapists and are not designed with

quantifiable performance measures carried out by technology.

2.2.2 Approaches to segmentation of human motion

Dynamic time warping

The Dynamic Time Warping (DTW) algorithm [87] is a template matching technique

that aligns two signals that minimises some distance metric. This approach

normalises the alignment in the time dimension, providing a time invariant alignment.

This is especially useful in action segmentation as repetitions can be performed

at different speeds. DTW has been applied to a variety of applications: aligning

gene expression data [88–90]; voice recognition [91–93]; recognising hand written

words [94–96]; audio matching for music retrieval [97]; classifying disturbance in

electric power systems [98]; protein fold recognition [99]; and action recognition and

segmentation [62,100,101].

With classical DTW [87] the problem formulation is as follows, given two time-series

signals, a query sequence Q and a candidate sequence C , find the an alignment

called the warping path W that minimises the total distance.

A distance measure needs to be defined, the type of distance measure to use depends

on the type of data. It is important a suitable distance measure is used for a
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Table 2.2: Definitions of common distance measures. Where k is an index of W of
length K , Wk contains a pair of indices (i, j) indexing an element in Q and C respectively.
Dist(W ) is the total distance/cost of the warping path W . p is a the order parameter for
Minkowski distance, where p ≥ 1 .

Measure Equation

Euclidean Dist(W ) =
√∑K

k=1 (Wki −Wkj)2

Manhattan Dist(W ) = ∑K
k=1 |Wki −Wkj |

Minkowski Dist(W ) = (∑K
k=1 |Wki −Wkj |p)1/p

Chebyshev Dist(W ) = max(|Wki −Wkj |)

Figure 2.1: Grey squares indicate pairs of indices of the sequences that can exist in the
warping path, white squares are not evaluated. Sakoe-Chiba window (left) and Itakura
Parallelogram window (right).

given problem as DTW finds the optimal warp path that minimises this distance

measure. Here we describe several common distance measures and present the

equations in Table 2.2. The Euclidean distance calculates the distance between two

points as a straight line. Manhattan/taxicab distance [102] calculates the absolute

difference between two values. Minkowski distance is a generalisation of Euclidean

and Manhattan distance in a normed vector space, e.g. a p-norm of 1 equals the

Manhattan norm and 2 equals the Euclidean norm. Chebyshev distance is the

maximum value between two vector spaces in any given dimension/coordinate.
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The original DTW implementation came with conditions that the warping path

must meet to be eligible, such as the boundary condition whereby the first pair

in the warping path must be first elements in Q and C , likewise the last pair in

the warping path must be the last elements. The monotonic condition ensures the

warping path cannot go back on itself. The step size condition ensures no indices in

Q and C are skipped in the warp path. Window constraints can also be used to

limit the number of possible warping paths and improve performance, but it should

be noted that in doing so finding the optimal warping path is not guaranteed. Two

common window constraints are Sakoe-Chiba and Itakura Parallelogram, shown in

Figure 2.1.

A variant to classical DTW is subsequence DTW where a query sequence is matched

to a subsequence within the candidate. This requires several subsequences of the

candidate to be evaluated. This approach is especially useful for action segmentation

from a continuous input stream, as the candidate action sequence will likely contain

human motion outside of the segmentation envelope of the action.

Hidden markov models

A Hidden Markov Model (HMM) aims to model a system that is a Markov process

with hidden states. The process learns state transition and emission probabilities

that best move between states to map a given set of observations to a desired

output.

In terms of human motion segmentation, various HMM approaches have been

used to model segmentation points [70, 103,104]. On-line HMM variants exist that

processes only the latest data points given the previous state.

This approach consists of a training stage whereby the exemplar exercise repetitions

are used to create HMM motion templates. A general HMM consists of a sequence

of unobservable states. A state transition probability matrix is used to determine
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the probability a state will transition to another state. An observation probability

matrix represents, for example in human segmentation, human motion from the

observation, usually consisting of informative motion such as zero velocity crossings

or other key poses. An initial state distribution representing the probability of an

observation beginning in a state, for left-right HMMs (described in this section) it

can be assumed the initial observation begins in the first state.

The number of states differ depending on the exercise, but there must be enough

states to accurately model the motion, as too few states may lead to under fitting.

If too many states are used the model may over fit and struggle to segment similar

motions. The more states there are the higher the computational costs.

Within fully connected HMMs, the states can transition to any other state, while

with left-right HMMs, the state transition can only transition to its current state or

advance to the next state. The latter approach is usually used for segmentation

algorithms as it is expected that the motion states of the query template are

sequential.

This approach requires tuning the transition probabilities to ensure examples that

deviate from a ground truth example are correctly segmented.

Support vector machines

Support Vector Machines (SVM) attempt to find the maximum-margin hyperplane

that maximally separates a set of data points into their classes, this hyperplane

acts as the decision boundary between two classes. Kernels can be used to map the

data points to a subspace where a suitable linear maximum-margin hyperplane can

be found which can result in a non-linear decision boundary when mapped back to

original space.

SVM have been used in human action segmentation to classify segment and non-
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segment points [105]. An SVM is a supervised learning model that trains a two-class

classifier. A full explanation of SVM is presented [106].

An SVM can be supplied with a kernel function for measuring the distance between

all data points. The standard SVM implementation uses a linear function that

attempts to find the linear separation, called the hyperplane, that maximises the

margin between the two classes. Non-linear kernels map the data points to a high

dimensional space where a suitable linear hyperplane may be found, this decision

boundary becomes non-linear when mapped back to the original feature space.

K-nearest-neighbour-search

A k-d tree nearest neighbour search was proposed by [64] for similarity searches,

this approach can be used for the segmentation of human actions. Like DTW

this approach uses a distance metric for the local distance measure between two

sequences.

Here we describe the four main stages of Krüger’s nearest-neighbour-search approach

[64] for the segmentation of human motion. During the pre-processing stage, a

k-d tree [107] is built from a dataset of motion features. Other types of trees can

be used such as R-trees, as shown by Keogh, et al [108]. The following stage is

performed for each query sequence. A search stage finds the nearest neighbours,

defined by the distance measure, using k-nearest-neighbour-search resulting in sets

of similar poses. A parameter must be defined to limit the number of neighbours

evaluated. A graph is constructed given the sets of poses following similar rules for

traversing DTW cost matrices whereby steps between neighbours can advance by at

most one step, the resulting graph is a directed acyclic graph. Finally path search

can be performed by following the nodes with the shortest path, giving a global

accumulated distance between the exemplar repetition and the observation data.

This approach finds the optimal alignment, if all the ground truth frame alignments
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are in the neighbourhood of the query motion.



3
Research proposal

From the review of literature on proposed TAPRIs, proposed systems usually have

a component for automatic assessment and feedback of exercises. Such components

could measure the patient’s exercise performance such as range of motion, stability in

movements and compensatory movements. Proposed components and the underlying

algorithms that enable the assessment of exercises need to be clinically evaluated

to determine the accuracy of the assessment and the limitations. Evaluating the

state-of-the-art algorithms that underlie these proposed components and proposing

improvements form the basis of the research and contributions in this thesis. This

chapter proposes the research undertaken in this thesis and details the rationale for

why this work is needed.
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3.1 Clinical evaluation of pose estimation algo-

rithm

Based on the literature review, all the proposed TAPRIs use out-of-the-box algo-

rithms, such as Kinect’s pose estimation algorithm. Therefore, the first contribution

of this thesis is a clinical evaluation of Kinect V2’s state-of-the-art pose estimation

algorithm that has been used by several proposed TAPRIs such as [34], [27], [31], [32]

and [33]. Current published work on the evaluation of PEAs are either not targeted

towards clinical applications, have not been evaluated by clinicians or lack a rigorous

evaluation on the accuracy of the individual joint positions of stroke rehabilitation

exercises, including repetitions performed with common compensatory movements.

The overall findings from this research found Kinect’s PEA to be insufficiently

accurate for correctly assessing most of the exercises and compensatory movements

which differs from the findings in several research papers. This research has been

published in [1].

Furthermore, we evaluated the inter-rater agreement between the physiotherapists’

evaluations to determine the level of agreement on the accuracy of a new technology

for clinical use. Although there has been research into the inter-rater agreement

of clinicians performing a clinical assessment, to the best of our knowledge there

has not been an evaluation on the inter-rater agreement of clinicians evaluating

whether a new clinical technology is accurate enough for clinical use. This research

has been published in [3].

3.2 Segmentation algorithm

Accurate joint position estimations are required for accurately assessing patient

exercises, but the segmentation of exercise repetitions, i.e. finding the start and end
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of a repetition, is also required to ensure each repetition is assessed correctly. Many

proposed segmentation algorithms have not been designed or evaluated on stroke

patient exercise data, which is important for ensuring the approach is robust to

subjects with impaired mobility. As it is intended that TAPRIs present the patient

with an exercise to perform, the segmentation algorithm can exploit this knowledge

by evaluating against a single exemplar repetition. For this reason approaches that

combine action segmentation and recognition, which are usually machine learning

approaches with large training datasets, are not necessarily required.

Thus, the final contribution of this thesis is a segmentation algorithm that requires

only a single exemplar repetition from a healthy subject to subsequently segment rep-

etitions from other subjects including those with impaired mobility. This approach

uses Dynamic Time Warping (DTW) to measure the distance between an exemplar

repetition and a patient’s movements, which achieves accurate segmentation results

when combined with a robust human motion descriptor. DTW has been used

in segmentation algorithms before but there are many different modifications to

DTW and DTW forms one component of our proposed approach. Many proposed

DTW segmentation approaches also lack evaluation against stroke subjects. The

methodology and results of the algorithm are described in chapter 5. This research

has been published in [2].



4
Clinical evaluation of kinect’s pose

estimation algorithm

This chapter describes the methodology for clinically and quantitatively evaluating

Kinect V2’s pose estimation algorithm (PEA) and presents the results. Specifically

it describes: the experimental set-up of the evaluations; the methodology and

results of the clinical evaluation; the methodology and results of the quantitative

evaluation; the methodology and results of the inter-rater agreement between the

clinicians evaluating Kinect’s PEA; and finally summarises the findings.

44
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Figure 4.1: The human joint positions tracked by Kinect V2’s pose estimation algorithm
with the joint labels annotated.

Figure 4.2: A 3D representation of the depth data (Left). A 2D greyscale representation
of the depth data (Centre). The RGB colour image (Right). These images are all captured
from a single time step from the Xbox One Kinect.

4.1 Experimental set-up

Our evaluation is based upon version 2.0.1410.19000 of the pose estimation algorithm

of the Kinect for Windows SDK for the Kinect V2 (Xbox One Kinect). This provides

pose estimations for 25 joints at 30Hz, the joint positions that are tracked are shown

in Figure 4.1. Joint locations were recorded while seated. Kinect produces a depth

image with a resolution of 512 × 424 pixels [109], as shown in Figure 4.2. This

depth image is then used as input to the Kinect Software Development Kit’s (SDK)

pose estimation algorithm, which is based on the approach presented by Shotton
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Figure 4.3: The five exercises selected from the GRASP manual [4] for evaluation.
Arm to Side (Top Left): Shoulder joint is abducted to 90 degrees and then adducted
back to 0 degrees. Arm to Front (Top Middle): Shoulder joint is flexed to 90 degrees
and then extended back to 0 degrees. Shoulder Shrug (Top Right): Shoulder joints are
elevated and then depressed. Twist (Bottom Left): Shoulders are flexed to 90 degrees and
hands are clasped, thorax is rotated towards 90 degrees in one direction then returned to
starting position and rotated towards 90 degrees in the opposite direction. Drying off
(Bottom Right): Towel is grasped and placed behind the neck, arm extension and flexion
is performed along the frontal plane.

et al. [15] to infer the joint positions. The PEA maps a depth image consiting of

217088 pixel values per frame to a set of 25 joint positions consiting of only 75

position values per frame. Given that Kinect’s pose estimation algorithm runs in

under 5ms on an Xbox 360 graphical processing unit (GPU) [15], further in-depth

analysis of human motion can more efficiently take place on this reduced feature

space. It should be noted that when Kinect is tracking a body, joints are classified

as either tracked or inferred. A joint is classed as tracked when confidence in the

data is high i.e. there is little or no occlusion of the point cloud data surrounding

the joint. If there is full or significant occlusion of the point cloud data surrounding

the joint, its coordinates are classed as inferred.
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Figure 4.4: The video and depth data available to the physiotherapists when performing
an evaluation of the estimated joint positions.

Table 4.1: List of exercises the physiotherapists observed including the associated
common compensatory movements.

Exercise Associated Common Compensatory Movements
Arm to side Trunk lateral flexion, Shoulder elevation, Thorax rotation, Arm flexion
Arm to front Trunk backward flexion, Shoulder elevation, Thorax rotation, Arm flexion
Shoulder shrug Head side flexion, Shoulder abduction
Twist Trunk lateral flexion, Arm flexion
Drying off Trunk lateral flexion, Shoulder elevation, Dipped arm, Head side flexion

4.2 Clinical/qualitative analysis

4.2.1 Qualitative analysis methodology

The following gross upper-body exercises selected for analysis were taken from

GRASP [4], a stroke rehabilitation exercise manual: Arm to Side, Arm to Front,

Shoulder Shrug, Twist and Drying Off (Figure 4.3). They range from relatively

simple exercises, e.g. Arm to Side, to more difficult exercises, e.g. Drying Off, which

requires motion from multiple limbs and a towel to be grasped. All exercises were

recorded from a frontal view as this is the expected view for observing patients. As

we are investigating the pose estimation accuracy in the context of upper-body stroke

rehabilitation applications, pose positions below the hips and on the hands were
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Table 4.2: Evaluation criterion used by the physiotherapists for the evaluation of the
joint position estimations in Table 4.3

Evaluation criterion

Acceptable
Tracking
(AT)

A joint’s estimated positions’ result in an acceptable difference
from the true position. The error in the position does not lead to
misclassification in the assessment, e.g. a limb is showing no flexion when
no flexion is occurring.

Moderately
Acceptable
Tracking
(MT)

A joint’s estimated positions’ result in a moderately acceptable
difference from the true position. The error in the position leads to a minor
misclassification in the assessment, e.g. a limb is showing minor flexion
when no flexion is occurring.

Unacceptable
Tracking
(UT)

A joint’s estimated positions’ result in an unacceptable difference
from the true position. This change in position leads to a significant
misclassification in the assessment, e.g. a limb is showing severe flexion
when no flexion is occurring.

not considered. To perform a clinical evaluation of the pose estimations, recordings

of a participant performing the GRASP exercises were captured in Kinect Studio.

The physiotherapists viewed video and depth recordings of the exercises with the

estimated joint positions overlaid, as shown in Figure 4.4. Each exercise was first

performed correctly, and then repeated with each of the common compensatory

movements, as listed in Table 4.1. For example, the Drying Off exercise was

performed 5 times; correctly and then 4 separate versions with each compensatory

movement. The physiotherapists made observations and were asked to give their

expert opinion on the accuracy of the pose estimations using the evaluation criterion

in Table 4.2, noting the accuracy of the joint position estimations for assessing

the performance of the participant. This evaluation criterion differs from clinical

assessment criteria as the evaluation is performed on the accuracy of a technology

for clinical use rather than the evaluation of a stroke patient’s performance. To

guide the rater, the categories of tracking accuracy are delineated by the severity of

misclassification of compensatory movements.
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Table 4.3: Physiotherapists’ evaluation of Kinect’s pose estimation for each GRASP exercise. See definitions of AT, MT and UT in Table 4.2.

Description P1 P2 P3 P4 M SD Comments
ElbowRight joint
‘Arm to Side’
All versions

MT AT AT AT AT 0.43 P1: Jitter occurs along the
axis of the bone, resulting in variable limb lengths.

WristRight joint
‘Arm to Side’
All versions

MT AT AT AT AT 0.43 P1: Jitter occurs along the
axis of the bone, resulting in variable limb lengths.

SpineMid joint
‘Arm to Side’
Trunk lateral flexion

AT MT AT AT AT 0.43 P2: Angle around SpineMid joint
is represented as a straight line when trunk flexion is occurring.

Hip joints
‘Arm to Side’
Trunk lateral flexion

UT AT AT MT MT 0.83

P1: Hip joints give the
impression that one hip is being lifted from the seat.
P4: Hip joints showing
exaggerated movements than is true.

Shoulder joints
‘Arm to Side’
Shoulder elevation

UT MT AT MT MT 0.71

P1: Roughly a quarter of the vertical
movement is reported in the joint.
P2: Shoulder position not
accurately portraying severity of shoulder elevation.
P4: Shoulder elevation is
visible but not to the extent that is true.

ShoulderRight joint
‘Arm to Front’
All versions except
trunk backward
flexion and
shoulder elevation

MT AT AT AT AT 0.43
P1: As the arm reaches 90
degrees the shoulder joint drops to the axilla this gives the
impression the arm is at a higher angle than is true.

ElbowRight joint
‘Arm to Front’
All versions except
elbow flexion

MT AT UT MT MT 0.71

P1: Jitter occurs when joint is
occluded resulting in elbow flexion when the arm is straight.
Joint also reports different limb lengths.
P3: Incorrectly displaying
elbow flexion when the arm is raised.
P4: Jitter can cause confusion
with knowing whether the patient kept their arm straight
during the exercise.
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WristRight joint
‘Arm to Front’
All versions

MT AT UT MT MT 0.71

P1: Jitter occurs when joint is
occluded resulting in elbow flexion when the arm is straight.
Joint also reports different limb lengths.
P3: Incorrectly displaying
elbow flexion when the arm is raised. Incorrectly showing
flexion extension in the wrist.
P4: Jitter can cause confusion
with knowing whether the patient kept their arm straight
during the exercise.

Shoulder joints
‘Arm to Front’
Trunk backward
flexion

UT UT UT UT UT 0

P1: The shoulders track inwards
severely when this is not the case, thus falsely reporting
elbow flexion.
P3: Visually looks like the
shoulder joints move towards the torso as trunk backward
flexion occurs.

SpineMid joint
‘Arm to Front’
Trunk backward
flexion

AT MT AT AT AT 0.43 P2: Angle around SpineMid joint
is represented as a straight line when trunk flexion is occurring.

Shoulder joints
‘Arm to Front’
Shoulder elevation

UT UT UT UT UT 0

P1: UT occurs when the arms
occlude the shoulder.
P2: Shoulder dips down as the arms
occlude the shoulder.
P3: Initially elevates but when
the shoulder is occluded by the arm, the shoulder joint depresses.
P4: Not clear shoulder
elevation is occurring.

Elbow
joints
‘Arm to Front’
Elbow
flexion

UT AT AT MT MT 0.83

P1: When the elbow is flexed,
jitter occurs even when the joint is not occluded.
P4: Jitter can cause confusion
with knowing whether the patient kept their arm straight
during the exercise.
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Shoulder joints
‘Shoulder Shrug’
All versions

UT UT MT MT MT/UT 0.5

P1: Only a minor vertical
movement when elevating the shoulders.
P2: Minor shoulder elevation
tracked when significant shoulder elevation occurring.
P3: Not showing elevation to
the degree the shoulders are.
P4: Can see some elevation but
not showing the range.

Wrist joints
‘Shoulder Shrug’
All versions

MT AT AT AT AT 0.43 P1: Jitter occurs when joint
becomes occluded by the legs.

Hips and SpineBase
joints
‘Shoulder Shrug’
All versions

AT AT AT MT AT 0.43

P1: Acceptable jitter can be
seen, they also slightly elevate as the shoulders are lifted
even though the true joint positions remain still.
P4: Hips elevate with the
shoulders.

Neck joint
‘Shoulder Shrug’
Head Flexion

MT MT UT AT MT 0.71

P1: Reporting only minor head
lateral flexion when severe.
P2: Not correctly showing the
severity of head flexion.
P3: Not able to interpret the
head and neck markers as flexion.

Head joint
‘Shoulder Shrug’
Head Flexion

MT MT UT MT MT 0.43

P1: When severe head lateral
flexion occurs, the joint has MT, resulting in reporting
a minor head lateral flexion.
P2: Not correctly showing the
severity of head flexion.
P3: Not able to interpret the
head and neck markers as flexion.

SpineMid joint
‘Shoulder Shrug’
Shoulder abduction

MT MT UT MT MT 0.43 P1: Falsely reporting minor
trunk lateral flexion, when no trunk lateral flexion occurring.

Shoulder joints
‘Twist’
All versions

UT AT MT UT MT 0.83

P1: Joints
track around the axilla as the arms are raised to 90 degrees.
P4: When
arms raised shoulders become depressed down to the rib cage.
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Elbow joints
‘Twist’
All versions

MT AT MT AT AT/MT 0.5 P1: Joint showing jitter and
variable limb lengths during the exercise.

Wrist joints
‘Twist’
All versions

MT AT UT AT MT 0.83 P1: Joint showing jitter and
variable limb lengths during the exercise.

SpineShoulder, Head
and Neck joints
‘Twist’
All versions

UT AT MT UT MT 0.83

P1: Joints incorrectly track
vertically as the joints are occluded by the arms.
P3: Rotation is inferred by arm
joint positions.
P4: Joints elevated when
occlusion occurs.

SpineMid joint
‘Twist’
Trunk lateral flexion

AT UT AT AT AT/MT 0.87 P2: Angle around SpineMid joint
is represented as a straight line when trunk flexion is occurring.

Elbow joint
‘Twist’
Trunk lateral flexion

UT MT MT MT MT 0.43

P1:Unacceptable jitter.
P2: Jitter occurring.
P4: Shows more flexion than is
occurring during some of the exercise.

Wrist joint
‘Twist’
Trunk lateral flexion

UT MT MT AT MT 0.71 P1: Unacceptable jitter.
P2: Jitter occurring.

Shoulder joints
‘Drying Off’
All versions

UT UT MT UT UT 0.43

P1: Unacceptable jitter and
tracking on the towel.
P2: Joint incorrectly tracks on
towel.
P3: Joint positions briefly
glitch onto the towel.
P4: Unacceptable because the
joint occasionally tracks on the towel.
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Elbow joints
‘Drying Off’
All versions

UT UT MT MT MT/UT 0.5

P1: Unacceptable jitter and
tracking on the towel.
P2: Joint incorrectly tracks on
towel.
P3: Joint positions briefly
glitch onto the towel.
P4: Unacceptable because the
joint occasionally tracks on the towel.

Wrist joints
‘Drying Off’
All versions

UT AT AT MT MT 0.83 P1: Unacceptable jitter and
tracking on the towel.

Hip and SpineBase
joints
‘Drying Off’
All versions

UT AT MT UT MT 0.83

P1: The hips and SpineBase
joints show UT in the vertical axis.
P4: Joints move around during
the exercise.

SpineMid joint
‘Drying Off’
Trunk lateral flexion

UT UT UT UT UT 0

P2: Angle around SpineMid joint
is represented as a straight line when trunk flexion is occurring.
P4: SpineMid does not move. Not
showing any side flexion.
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4.2.2 Qualitative analysis results

Four practising physiotherapists analysed the accuracy of the joint position esti-

mations for each GRASP exercise. Their assessments are presented in Table 4.3.

For video samples from the clinical evaluation sessions see [110]. Physiotherapists

were free to comment on any joint, using their clinical judgement to decide what

was worthy of comment. Because of time constraints, only P1 watched all of the

variants for all of the five exercises, which consisted of a total of 16 repetitions

containing correct movements and compensatory movements. Where P1 made

no comment on a repetition, they confirmed that it was because they considered

the pose tracking to be acceptable for assessing the exercise with regards to the

compensatory movements. However they did explicitly comment on some of the

repetitions that were wholly acceptably tracked, and these are shown in the table.

The repetitions where P1 had made some comment about the tracking quality, these

were presented individually to the other physiotherapists (without any indication

of each other’s views) to determine whether they also considered the tracking to

have some problems. To calculate the mean (M) and standard deviation (SD),

the categories AT, MT and UT from Table 4.2 were given a value of 1, 2 and 3

respectively.

As can be seen from Table 4.3, each of the exercises resulted in some undesirable

aspects in the tracking. Even the more straightforward exercises such as Arm to

Side, which would have little or no occlusion, caused some issues. Problems occurred

with jitter at the elbow and wrist joints, which could give rise to variable bone

lengths. Fernández-Baena et al. [45] commented that fixed bone lengths might

improve the joint accuracy. Trunk flexion caused problems throughout, partly due

to occlusion. It was noted by several physiotherapists that to perform a correct

analysis of the exercise, joint rotational information is required. This was noted

when assessing trunk flexion during the twist exercise. Of more clinical interest
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Figure 4.5: Seated T-Pose posture used as Kinect’s ground truth for determining the
SD and mean error of joint positions over an exercise.

is the variation between the opinions of the physiotherapists. This may partly be

due to familiarity, as P1 spent much longer analysing the results. The highest

variation came from the SpineMid joint for the twist exercise while trunk lateral

flexion occurred, where P2 rated the joint unacceptable, noting that the spine was

not showing flexion, while the others rated it acceptable. The mean categorisation

shows that exercises with objects or substantial occlusion leads to unacceptable or

moderately acceptable tracking and therefore can be difficult to correctly assess. On

occasions joint position estimations would result in an anatomically impossible pose,

for example shoulder joints tracking inwards towards the spine as trunk backwards

flexion occurs.

4.3 Quantitative analysis

4.3.1 Quantitative analysis methodology

For the quantitative assessment 1, the ground truth (GT) was provided by a passive

retro-reflective marker based motion capture system [111]. This system captured
1See appendices for code snippets of the quantitative analysis program.
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the exercises at 240Hz simultaneously with Kinect. The participants sat in an

armless chair ≈2 metres from the Kinect. Previous work has indicated that at this

distance, Kinect has an average depth accuracy error of less than 2mm [112]. 14mm

passive reflective markers were placed on the centre of the anatomical joints to be

tracked. Where Kinect’s counterpart anatomical joint is unclear, e.g. SpineMid,

the markers were placed over the top of the Kinect joint while the user was in a

seated T-pose posture, as shown in Figure 4.5. Multiple markers were used on

certain joints to determine the location of the centre of the joint. For example,

two markers were placed on the front and back of each shoulder and the position

between the two markers were calculated to get the joint centre. The Kabsch

algorithm [113] was used for rotational alignment of the datasets in the X and Y

axes. This approach minimises the root mean square deviation between the HipLeft,

HipRight and SpineShoulder joints for both datasets at the T-pose posture frames.

As the markers are visually placed on top or near their counterpart Kinect joints,

rotational alignment is accurate for the X and Y positions. To find a good rotational

alignment for the datasets in the Z position, a reference frame was defined when the

user’s arms were by their side, and the Qualisys dataset rotated around the X axis

by 0.5 degrees to find the minimum difference in WristLeft Z position between the

Kinect dataset and Qualisys dataset on the reference frame and T-pose frame. After

the alignment of the two datasets, to accurately calculate the standard deviation

(SD) and mean error of Kinect’s joint positions, a seated T-pose posture was selected

as the GT frame of Kinect’s joints (see Figure 4.5); this posture presents Kinect’s

pose estimation with little difficulty. The joint SDs were modelled as ellipsoids to

enable visualisation of the variance/jitter of each joint in all axes [49]. The exercises

were performed by 5 volunteers, and the calculated results averaged.
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Table 4.4: Table showing the error and SD for each joint position estimation averaged
over all repetitions. The right arm was used for the arm to side and arm to front exercises.

Joint Arm to Side Arm to Front Shoulder Twist Drying Off
Error SD Error SD Error SD Error SD Error SD

Spine
base

1.14 0.34 1.18 0.34 2.42 1.19 6.80 3.51 3.09 0.98

Spine
mid

1.13 0.33 1.78 0.37 2.73 1.00 8.39 5.15 4.62 1.60

Neck 0.77 0.24 1.12 0.27 1.27 0.45 6.53 3.75 2.78 1.17
Head 0.61 0.15 0.57 0.21 1.36 0.66 4.80 2.55 3.71 1.72
Shoulder
left

1.47 0.23 1.56 0.38 2.71 0.97 8.21 5.48 4.90 1.91

Elbow
left

4.58 0.45 3.69 0.24 3.89 1.11 15.44 5.41 5.78 1.99

Wrist
left

6.77 0.98 5.61 0.28 6.21 1.54 18.11 5.63 10.80 3.39

Shoulder
right

1.18 0.47 2.37 1.02 3.06 1.47 10.91 6.13 4.99 2.48

Elbow
right

2.35 1.15 11.48 6.19 3.75 1.12 16.84 6.58 5.99 2.67

Wrist
right

3.27 1.57 15.45 6.69 5.60 1.53 20.47 7.09 14.84 5.20

Hip left 1.36 0.39 1.51 0.28 2.81 1.04 7.90 4.10 3.58 0.98
Hip right 1.31 0.52 1.99 0.38 2.83 0.83 7.90 4.00 3.46 1.01
Spine
shoulder

1.08 0.28 1.79 0.33 2.30 1.01 6.48 3.51 3.35 1.45
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Figure 4.6: Depiction of the SD of the error for all repetitions of each exercise modelled
as ellipsoids. Exercise order from top left; Arm to Side, Arm to Front, Shoulder Shrug,
Twist, Drying Off.

Figure 4.7: Plots showing a participant’s WristRight joint deviation from the ground
truth joint position. Arm to side (left) and arm to front (right).
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Figure 4.8: Plot showing a participant’s ShoulderRight joint position in the Y axis when
performing the shoulder shrug exercise.

4.3.2 Quantitative analysis results

The joint names described in this section are taken from Kinect SDK. The ‘Twist’

exercise had a relatively high SD, as shown in Table 4.4 and Figure 4.6, and shows

how the pose estimation algorithm struggles with poses with limited depth data

of the joint and surrounding areas, such as when the arms were extended towards

the depth sensor. When comparing the exercises Arm to Side and Shoulder Shrug

against the exercises Arm to Front and Twist, limb joint positions, for exercises

performed along the Y and Z axes, are more inaccurate than along the X and Y

axes. This appears to be due to occlusion.

In Figure 4.7, the error of the joint positions are larger for the Arm to Front exercise

than the Arm to Side, this is understandable, as there would be limited depth data

for the arm as it is raised to 90 degrees.

Figure 4.8 shows the algorithm struggling to track the true movement of the shoulder

joint even though there is no occlusion in the depth data around the shoulder joint.
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Figure 4.9: Exercise repetition errors of the ShoulderRight joint.

This could be due to the pose estimation algorithm being trained on a dataset

containing no or limited data of correctly labelled elevated shoulder joints.
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Figure 4.10: Exercise repetition errors of the ElbowRight joint.

Figure 4.11: Exercise repetition errors of the WristRight joint.
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Figures 4.9, 4.10 and 4.11 show the errors for each exercise repetition for the

shoulder, elbow and wrist joints; as these are considered the most important joints

for assessing these exercises. Figure 4.9 shows the shoulder joint has a relatively

large error when being tracked during the Twist exercise. Figure 4.10 shows the

elbow joint with relatively large error on the Arm to Front and Twist exercise.

Figure 4.11 shows the wrist joint has the largest mean error when compared to the

elbow and shoulder joint. It also has a relatively large error during the Arm to

Front, Twist and Drying Off exercises. Interestingly in Figure 4.9 the ShoulderRight

joint does not appear to be relatively erroneous for the Shoulder Shrug exercise,

but the physiotherapists reported UT and MT for this joint on this exercise. This

suggests absolute joint error is not a definitive measure of acceptability.

4.4 Inter-rater agreement of clinical analysis

4.4.1 Inter-rater agreement methodology

In order to determine the inter-rater agreement among the physiotherapists, their

ratings on the accuracy of the joint position estimations, shown in Table 4.3,

were statistically evaluated. The statistical measure used was the krippendorff’s

alpha [114], this measure shows the level of agreement among multiple raters, can

handle different levels of measurements and handles missing data. Reasons for

choosing Krippendorff’s alpha over other reliability measures is discussed in more

detail in [115]. This metric could be used to improve and compare criteria used to

rate technology for clinical use.

Further to the statistical measure, we graphed the physiotherapists’ ratings for

each observation, showing the observations with the least and most agreement.

Finally, the number of ratings for each category in the criterion are summed for each
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Figure 4.12: Observations with the most divergence in opinion. See Table 4.2 for the
definitions of AT, MT and UT.

Figure 4.13: Observations with the most agreement in opinion. See Table 4.2 for the
definitions of AT, MT and UT.

physiotherapist and presented in a table to show the individual physiotherapist’s

acceptability in the joint position estimations.

4.4.2 Inter-rater agreement analysis

Figure 4.12 shows the observations with the most divergence of opinion i.e. the

observations with a standard deviation of 0.71 and above. The first observation

shows that physiotherapist 1 believed the estimated joint position led to a significant

misclassification in the assessment, whereas physiotherapists 2 and 3 believed the

estimated joint position did not lead to a misclassification in the assessment.
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Table 4.5: The number of ratings for each category each physiotherapist has rated the
estimated joint positions for all observations.

AT MT UT
P1 4 11 15
P2 15 8 7
P3 12 9 9
P4 11 12 7

Figure 4.13 shows the observations with the most agreement in opinion. Of

all the thirty observations only three were found to have agreement by all four

physiotherapists and these observations were rated as unacceptable tracking.

Krippendorff’s alpha [115] provides a statistical measure of inter-rater agreement.

These observations have a Krippendorff alpha of 0.28. Landis, et al [116] stated

that an alpha of 0.21-0.4 suggests a fair level of agreement, however they state

that this strength of agreement is somewhat arbitrary. Krippendorff [117] suggests

that conclusions can be tentatively made for values between 0.67 and 0.8, but

states cut-offs can vary. Zapf, et al [118] warn against making interpretations solely

on simple generalised cut-offs. When used relatively, the Krippendorff’s alpha

can be used as a measure of improvement to the raters’ criterion e.g. rerunning

the assessment given a new criterion that achieves a higher Krippendorff alpha,

this would indicate that the criterion has improved as raters have a higher level

of agreement. It should also be considered that our criterion has two categories,

MT and UT, that are given when there is a misclassification in the assessment,

so borderline MT and UT ratings given by two different physiotherapists would

decrease Krippendorffs alpha, and therefore the level of agreement, but still suggest

the accuracy of the joint position estimations are unsuitable.

Table 4.5 shows the number of ratings each physiotherapist gave to each category.

P1 tends to be much harsher, flagging more observations as showing ’unacceptable

tracking’ than the other physiotherapists. Of all the 120 ratings, only 42 (35%)
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Table 4.6: Example of an updated criterion from the original in Table 4.2, incorporating
objective measures to guide the rater. The 2 and 8 cm of error are examples that would
come from an objective measure of the technology.

Evaluation criterion
Acceptable
Tracking
(AT)

The joint’s estimated positions’ have less than 2cm of error.
The error in the position does not lead to misclassification in the
assessment, e.g. a limb is showing no flexion when no flexion is occurring.

Moderately
Acceptable
Tracking
(MT)

The joint’s estimated positions’ have between 2cm and 8cm of error.
The error in the position leads to a minor misclassification in
the assessment, e.g. a limb is showing minor flexion when no flexion is
occurring.

Unacceptable
Tracking
(UT)

The joint’s estimated positions’ have above 8cm of error.
This change in position leads to a significant misclassification in
the assessment, e.g. a limb is showing severe flexion when no flexion is
occurring.

were considered acceptable tracking, thus the majority of joint position estimations

are not suitably accurate enough to make a correct assessment on the performance

of the exercise.

It should be noted that only a subset of joints considered important for assessing

the exercise were observed by the physiotherapists, for example limb joints. These

results highlight the difficulty for clinicians to accurately assess the suitability of

technology intended for clinical use. However, this was a small study. It remains

inconclusive whether the raters’ variability in assessment was for example due to

the medium of visualising the data, limited training on the task and/or the criterion

they followed.

To aid raters’ in the clinical assessment of technology, we propose the incorporation

of objective measures within the rater criterion to ensure a more structured and

objective approach to evaluation. For example, when assessing whether joint position

estimations, tracking a human skeleton, from a depth sensor is sufficiently acceptable

for clinical use, the joint estimations from a more robust technology could be used

as a ground truth, such as a motion capture studio, in order to measure the accuracy

of the depth sensor. This would provide the assessors with error distance measures

of estimated joints helping guide their final decision. Table 4.6 shows an example
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of an updated criterion, incorporating the objective measures the raters could use

to guide their assessment.

Furthermore, due to the literature indicating high inter-rater variability in expert

clinical assessments, objective measures from technological tools could aid in

the objective assessment of patient performance. For example, within stroke

rehabilitation, tracking the patient’s joint positions would provide measures such

as arm flexion, by calculating the angle around the elbow joint, or calculating the

range of motion. This approach could provide a fair assessment using calculated

performance measures to determine the range of motion, severity of compensatory

movements and stability in movements, etc.

We have evaluated the inter-rater reliability of clinicians rating the suitability of

a new technology intended for clinical use without objective measures to guide

opinion. The results indicate a low level of inter-rater agreement suggesting

that relying solely on the opinions of clinical experts for determining the clinical

validity of new technology may be insufficient. It is still unclear what factors

may have contributed to the inter-rater variability, such as the medium used for

assessment, insufficient training on the new task and/or an inadequate grading

criterion. However, we hypothesise that the introduction of technological tools that

provide objective measures can be incorporated into the assessment criterion to

guide clinicians’ decision making, encourage an objective evaluation and improve

inter-rater agreement. Further research is required to validate this hypothesis.

4.5 Summary

Based on the clinical evaluation supported by the quantitative measures we conclude

that the pose estimations are mostly inadequate for correctly assessing stroke

rehabilitation exercises. When performing upper-body gross exercises the shoulder
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joints act as indicators for incorrect movement of limbs. For example, elevated

shoulders are a common compensatory movement among stroke patients and needs to

be detected during rehabilitation exercises. However, the pose estimation algorithm

failed to accurately track the true movement of the shoulder joints even when

the joints were in a tracked state. This could be improved by retraining the pose

estimation algorithm with correctly labelled shoulder joints that contain training

data with elevated shoulders. Partial or full occlusion in the depth data surrounding

a joint causes unacceptable jitter and tracking. The pose estimation algorithm can

misclassify depth pixels of objects that are required for an exercise, e.g. a towel used

in Drying Off, as body parts, resulting in unacceptable jitter and tracking error.

Similarly, for seated exercises it is recommended a user be seated on a perching stool

to eliminate the chances of seat arms being tracked as limb joints. When assessing

the suitability of a pose estimation algorithm intended for rehabilitation applications,

solely performing a quantitative analysis does not provide conclusive answers, a

clinical evaluation supported by a quantitative analysis is required to determine

suitability. This is because the measured accuracy of the joint estimations does not

take into account that joints require a varying degree of accuracy to correctly assess

a given exercise. This is evident by the shoulder joints for the Arm to Front and

Shoulder Shrug exercises, whereby the ShoulderRight joint displays similar error

in Figure 4.9 for these exercises but has a mean classification of AT and MT/UT

respectively from the clinicians, as presented in Table 4.3. Future pose estimation

algorithms should consider using temporal information to infer joint positions that

have full or partial occlusion. This could reduce the possibility of inferred joint

positions displaying sudden and extreme changes in position. We are currently

working on techniques that use temporal information in a scalable way to improve

joint tracking. Estimating joint rotation should be considered for a more in-depth

and correct assessment of a patent’s performance. Constraining joint estimations to

within the anatomical limits of the human body should ameliorate severe tracking
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error and solve the issue of anatomically impossible poses. In order to make the

task of automatically assessing the quality of an exercise easier, clinicians should

be consulted on selecting exercises that are useful for rehabilitation but provide

fewer or easier challenges for pose estimation algorithms. For example, clinicians

highlighted using less obtrusive objects such as a rod or walking stick to perform

the Drying Off exercise, to reduce the chance of severe tracking error.



5
Segmentation of the signals from depth

sensors for stroke exercises

This chapter proposes a segmentation algorithm that requires only a single exemplar

exercise repetition from a healthy participant to segment subsequent repetitions

from other subjects, including those with impaired mobility. The accuracy of this

segmentation algorithm was evaluated on a public exercise dataset and our own

stroke rehabilitation dataset containing real stroke patient exercise data captured

on Kinect V2.

69
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Figure 5.1: Example of the joint data of stroke patients performing rehabilitation
exercises stored as comma-separated values. Each frame contains a timestamp, 3D
coordinates of each joint and the tracking state of each joint.

5.1 Stroke rehabilitation dataset

This section describes the methodology for collecting patient exercise data, including

the experimental set-up, justification for the selected exercises and the type of data

collected.

This research required a dataset containing movement data of stroke patients

performing rehabilitation exercises captured from a commercial depth sensor. A

suitable dataset was not publicly available and thus we collected and produced a

suitable dataset.

Ethical approval was obtained from the University’s ethical approval board. A

participant recruitment pack 1 was created and distributed at Nottingham CityCare’s

stroke group rehabilitation sessions.

5.1.1 Data collection methodology

A data collection tool was developed in C# 2 to record depth, RGB and joint

position data in real-time from a Kinect sensor. All Kinect V2’s joints, as shown in

Figure 4.1, are recorded, this includes the X, Y and Z coordinates and a timestamp.

The tracking state of each joint is also recorded for each frame. The tracking state

categorises the confidence of each joint position estimation as tracked when the

confidence is high and inferred when the confidence is low. An example of the

recorded joint data is shown in Figure 5.1.
1See appendices for the participant information pack.
2See appendices for a snippet of the code.
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Figure 5.2: Depiction of the data collection set-up performed within the home.

Five stroke participants, as shown in Figure 5.3, were visited at home. The set-up of

the experiment is depicted in Figure 5.2. The Kinect depth sensor was attached to

a tripod and setup facing the participant. They were asked to perform at least three

repetitions of five exercises from the GRASP manual [4], a stroke rehabilitation

exercise manual. The exercises were selected by a physiotherapist with the aim of

selecting a set of upper-body exercises with a range of difficulty. An exercise requiring

a towel to be grasped was included to test the depth sensor’s pose estimation

algorithm (PEA) when an object is held by the participant. The five exercises the

participants were asked to perform were, as labelled in the GRASP manual, Arm to

Side, Arm to Front, Shoulder Shrug, Twist and Drying Off. Physiotherapists from

Nottingham CityCare categorise the absolute performance of stroke patients into

three levels. Level one categorises stroke patients with severe levels of impairment,

level two categorises patients with moderate impairment and level three categorises

patients with minor impairment. Of the five stroke participants, four participants

were considered level one and one participant was considered level two. All data

collection sessions were observed by a physiotherapist.

The initial development did not include the ability to record the RGB data, this

resulted in the first participant’s data not being used in the dataset as this data
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Figure 5.3: Four of the stroke patients participating in the data collection. Note, the
fifth participant did not have RGB data recorded and therefore was not included in the
final dataset.

medium was required for humans to validate, for example, the video data can be

used to find the ground truth start and end of an exercise repetition to verify the

accuracy of the segmentation algorithm.
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Figure 5.4: Flowchart of the segmentation algorithm and how it fits into a proposed rehabilitation system.
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5.2 Segmentation algorithm

5.2.1 Algorithm overview

Figure 5.4 depicts a high-level flowchart of a proposed rehabilitation system to

incorporate the segmentation algorithm.

The challenge is to find the start and end of an exercise repetition in real-time,

thus enabling analysis of the repetition and responsive feedback to the user. This

approach requires only a single exemplar repetition from a single subject for each

exercise. This approach assumes that the exercise being performed is known; this

follows current rehabilitation exercise regimes where the exercises are presented to

the patient in a specified order. The term exemplar refers to the motion data of a

single repetition of an exercise performed correctly and the term observation refers

to the motion data collected in real-time of a patient or other subject.

Our proposed algorithm is the combination of several components, inspired from

literature, to solve the challenge of real-time segmentation of repetitions from

subjects with impaired mobility. This approach evaluates a subset of sequences in

the observation using subsequence dynamic time warping (SDTW) on a 1-D human

motion feature ranked as the most informative. If the alignment is similar, the

warping path is used to measure the similarity of the other 1-D motion features in the

human motion descriptor to determine if a repetition of an exercise was performed,

meaning SDTW is only performed on the most informative 1-D feature.

The following list provides a brief overview of the key aspects of the proposed

algorithm:

• Exercise repetitions represented as a temporal array of unit direction vectors

between joints rotated to a local coordinate system. These features make the

system invariant to skeleton size, position and plane while remaining selective
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to the exercise. Detailed in section 5.2.2.

• Pre-processing of the exemplar repetition to rank features by importance and

find the total cost threshold for each motion feature. Detailed in section 5.2.3.

• Fitting a spline to the DTW feature using cubic spline interpolation, as

proposed by [119]. This improves invariance to noise and instability in

movements by capturing the general trend of the movement. Detailed in

section 5.2.4.

• Feature extraction, achieved by extracting key features from the spline, such

as zero-velocity crossings. This ensures the algorithm can run in real-time.

Detailed in section 5.2.4.

• Normalisation of the DTW motion feature to zero-mean and unit variance, as

proposed in [120]. This scales the DTW features to comparable ranges before

performing DTW alignment. Detailed in section 5.2.5.

• Alignment of the exemplar to the observation using SDTW. This ensures the

segmentation is invariant to speed as rehabilitation subjects tend to perform

repetitions slowly. Detailed in section 5.2.5.

• Segmentation confirmation/rejection is performed using the DTW warping

path on other motion features to quickly calculate their total cost and compare

against the total cost threshold. This reduces false positive segmentations.

Detailed in section 5.2.5.

5.2.2 Human motion descriptor

The human motion descriptor consists of a set of 1-D human motion features. A

single motion feature is a temporal array of a single component of a unit direction

vector between joints e.g. the X axis of a unit direction vector between the shoulder

joint and the elbow joint. This motion feature is more selective, when compared to
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Figure 5.5: Depiction of the global coordinate system used in this paper, this follows
the same coordinate system used by Kinect.

angles, as they describe the direction in which a bone is moving, as well as its speed

along the given axis. The motion feature is invariant to body size and selective

to direction. A set of these motion features are used to perform a segmentation

but only one of these motion features is used for finding the warping path using

SDTW.

To achieve viewpoint invariance, a local coordinate system is used as proposed

by [41]. For each frame in the features, the direction vector between the hip joints is

aligned parallel to the X axis of the global coordinate system, shown in Figure 5.5.

Then, given this rotation, each of the features is rotated around the Y (vertical)

axis by the same rotation.

5.2.3 Pre-processing of exemplar repetition

Given an exemplar repetition of an exercise and a set of joints, suitable sets of

joints are selected to become candidates for the automatic generation of motion

features e.g. the squat exercise may use the sets {{HipLeft, KneeLeft}, {HipRight,

KneeRight}}. Using an approach similar to [40], the motion features are ranked

based on the most informative i.e. most change over time. The motion features taken

from the exemplar exercise are ranked by their change over time, as follows:
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FR =
len(F )∑

i=2
|Fi − Fi−1| (5.1)

where FR is the feature rank and F is the motion feature. The FR of each F is

stored in a set FRS ordered by FR. The motion feature with the most change over

time is used as the DTW feature for alignment.

Total cost thresholds for each motion feature are defined as follows:

TCT = ((FR/max(FRS)) ∗DM) +DB (5.2)

where TCT is the total cost threshold that the same motion feature in the

observation must be lower than to be considered a segmentation, DM is the distance

multiplier and DB is the distance base. DM and DB are parameters that need

setting for each exercise. This ensures motion features taken from joints with more

movement have a higher TCT . This approach reduces the number of parameters

that require setting for each exercise. The FR and TCT are calculated once from

the exemplar repetition of the exercise.

Given that the exemplar represents a repetition of the exercise with complete range

of motion, a minimum scale parameter is calculated to reject subsequences of the

observation with a small range, calculated as follows:

MinScale = (max(DF )−min(DF )) ∗MinScalePerc (5.3)

where MinScalePerc is the percentage of the range, DF is the DTW feature of

the exemplar and MinScale is the minimum scale attained by a subsequence to be

considered for segmentation.
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Figure 5.6: Plot showing a cubic spline fitted to the DTW feature and the segment candidates selected for DTW alignment.
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5.2.4 Feature extraction

The motion features will likely contain superfluous information for the task of

segmentation as joint data is captured many times a second, e.g. Microsoft Kinect

captures joint data at 30Hz. Feature extraction enables a real-time implementation

and improves accuracy of segmentation by selecting the most informative motion

features which we define in this section. The feature extraction occurs on the

DTW feature, chosen using the feature ranking method in section 5.2.3, of both

the exemplar and observation. This results in a subset of values from the DTW

feature consisting of only the key motion features, these features will be referred to

as segment queries and segment candidates respectively and collectively referred to

as segment points; these concepts are explained in detail in this section.

Before extracting the segment points, the general trend of the DTW feature is

calculated by fitting a cubic spline to produce a DTW spline, as shown in Figure 5.6.

The first derivative of the DTW spline is also calculated to retrieve the velocity.

Segment queries are then extracted using the first two methods while segment

candidates are extracted using all of the following methods:

1. Zero-velocity crossings. Given the spline representing the velocity, extract the

DTW spline values where the velocity crosses zero, as proposed in [121].

2. The first and last values in the DTW spline. As we are dealing with real-time

segmentation, when new joint data arrives, the very latest value is a potential

repetition end segment candidate. The oldest value is a potential repetition

start segment candidate. The first and last values of the exemplar will of

course be segment queries that represent the start and end of a repetition.

3. Values in the observation’s DTW spline that cross through the first value in

the exemplar’s DTW spline. This is required because if movement occurs

before the repetition starts then method 1 will miss a potential segment
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Algorithm 1 Pseudocode to find the optimal warp path for a single time step.
One-based indexing.
Input: C {Segment candidates}
Input: Q {Segment queries}
1: m← len(Q)
2: l← len(C)
3: Q ← Normalise(Q) {Normalise query to zero-mean and unit variance. This

step can be performed once and stored as the query does not change}
4: OW ← [] {Optimal warp path i.e. path with lowest total cost}
5: OTC ←∞ {Total cost of OW}
6: for i← l; i > 0; i← i− 1 do
7: S ← C[ci, ..., cl] {Subsequence of candidate}
8: if max(S)−min(S) < MinScale then
9: continue
10: end if
11: S ← Normalise(S)
12: W,A← GetWarpPath(Q,S) {A is costs matrix}
13: TC ← GetTotalCost(W,A,m)
14: if TC < OTC then
15: OTC ← TC
16: OW ← W
17: end if
18: end for
19: return OW, OTC

candidate or will segment early.

The segment points are further reduced by removing segment points that have

similar values to surrounding segment points with the latest segment point kept.

Explicitly, a rolling absolute difference of the segment points is calculated, and if

this difference is below a threshold then the oldest segment points are removed.

This can be seen in Figure 5.6 between ≈43 to ≈45 seconds where multiple segment

points would have been proposed at the peak but only the latest segment point was

kept. These segment points become the DTW features for alignment.

5.2.5 Segmentation

Algorithm 1 presents the pseudocode for finding the DTW warping path and is
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Table 5.1: Glossary of the main variables presented in this section.

Variable/s Definition
Q,m Query sequence with length m
C , l Candidate sequence with length l
S , n Subsequence of C with length n
A DTW costs matrix with length m × n
D DTW cumulative costs matrix with length m × n
i, j Indices referring to an element in a one or two dimensional array

e.g. Di,j refers to the ith row and jth column of D
W , k DTW warping path with length k. Each element consists of a

pair of indices relating to elements in Q and S that are aligned,
e.g. Wk containing a pair of indices (i, j) = Wki,j = the alignment
between Qi and Sj

described in more detail in this section.

The problem formulation is as follows. Given two sequences, a query sequence

Q with length m and a candidate sequence C with length l, find an alignment

between Q and a subsequence S with length n, of C that minimises the DTW cost

between Q and S . Q consists of the segment queries and C consists of the segment

candidates described in section 5.2.4. Note that the segment points in C and Q

will likely have differing distances temporally, e.g. Ci−1 and Ci may be temporally

closer together than Ci and Ci+1 , when mapped back to the original motion feature.

Further definitions are used in this section. W refers to the warping path, of length

k, consisting of the indices of the segment points from Q and S that are aligned. A

and D refer to the costs and cumulative costs matrices between Q and S respectively.

i and j are indices referring to an element in a one or two dimensional array, e.g.

Di,j would refer to the ith row and jth column of D. Note that the indices are

stored in W instead of the values of the segment points, e.g. W1 = (1 , 1 ) instead

of W1 = (Q1 , S1 ), this allows us to map the warping path indices to other motion

features in order to calculate their total cost. These variables are defined in table

5.1.

This approach uses SDTW for the sequence matching between Q and a suitable
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Healthy participant repetition (zero mean)
Stroke patient repetition (zero mean)

Healthy participant repetition (zero mean & unit variance)
Stroke patient repetition (zero mean & unit variance)

Figure 5.7: The top graph shows a repetition of a healthy and stroke patient DTW
motion feature scaled to zero mean. The bottom graph shows the result of normalising
the same features to zero mean and unit variance.

subsequence of C that meets the conditions described in this section.

Sequences Q and S are normalised to zero-mean and unit variance, using the

following equation defined in [120]:

T̂ = {t̂1, ..., t̂end} where t̂i = (ti − µ)
σ

(5.4)

Given input sequence T = {t1, ..., tend} where µ and σ are the mean and standard

deviation of T respectively. This step is shown on lines 3 and 11 in algorithm 1.

Sart, et al. [120] note that some researchers suggest normalising between a range of

[0,1] or [-1, 1] but state that this approach is sensitive to noise. Figure 5.7 shows

the result of normalising a Twist repetition from a healthy subject and a repetition

from a stroke patient to zero mean and unit variance. It can be seen that this

normalisation step brings the motion feature of the healthy subject and stroke
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patient subject into a comparable range.

Before performing DTW on Q and S , the scale of S must meet a minimum scale

threshold. Specifically, the distance between the minimum and maximum value

in S is checked against the minimum scale value calculated in equation 5.3. This

ensures the motion was significant enough to be considered as a repetition and is

performed before normalising S , see line 8 in algorithm 1.

For each iteration in the for loop on line 6 algorithm 1; a new subsequence is created

on line 7, DTW alignment between Q and S is performed on line 12 and the total

cost of the warp path is calculated on line 13. It can be seen that for each iteration,

the length of S increases by one, starting with the latest segment candidate in C ,

this approach finds the latest repetition.

The DTW presented here follows the original implementation [87] with modifications

and conditions as follows:

• Start and end boundary condition [87]: The first and last indices of Q and S

are respectively placed in the first and last element in the warping path e.g.

W1 = (1, 1) and Wk = (m,n). Note that DTW aligns Q to S instead of C .

• Continuity condition [87]: The indices in the warp path advance at most one

index, i.e. step size is 1, this ensures all indices of the segment points in Q

and S are in W ; e.g. Wk −Wk−1 ∈ {(1, 0), (0, 1), (1, 1)}

• Normalisation to zero-mean and unit variance, as proposed in [122]. Q and S

are normalised to zero-mean and unit variance before alignment. This step

ensures segment candidates from a patient with a low range of motion are

correctly aligned to the segment queries from a healthy subject by normalising

the peaks and troughs.
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• Early abandoning of subsequence alignment [122]. By storing the total cost

of the best subsequence so far, we can abandon the calculation of the new

subsequence if the total cost has gone higher than the best so far.

• The total cost of the warp path between Q and S differs from the original

DTW algorithm [87], later defined in this section.

As proposed in [87], to find the optimal warp path W, the costs, i.e. distances,

between each segment point in Q and S needs to be calculated. The Manhattan

distance is used to calculate the difference. A and D are m × n matrices that

store the costs and cumulative costs respectively. A, D and W are calculated as

follows:

Ai,j = |Qi − Sj | (5.5)

Di,j =



Ai,j if i = 1 and j = 1,

Ai,j + Di,j−1 if i = 1 and j > 1,

Ai,j + Di−1 ,j if i > 1 and j = 1,

Ai,j + min(Di−1 ,j−1 ,

Di−1 ,j ,

Di,j−1 ) otherwise

(5.6)
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Windex = (i, j) =



(1, 1) if i = 1 and j = 1,

(m,n) if i = m and j = n,

(i, j − 1) if i = 1 and j > 1,

(i− 1, j) if i > 1 and j = 1,

indices otherwise

indices =



(i− 1, j) if Di−1 ,j ≤ Di,j−1∧

Di−1 ,j < Di−1 ,j−1

(i, j − 1) if Di,j−1 < Di−1 ,j∧

Di,j−1 < Di−1 ,j−1

(i− 1, j − 1) otherwise

(5.7)

These calculations are performed on line 12 in algorithm 1. Note, W is calculated

backwards starting with (m, n) until (1, 1) is appended to W .

The total cost TC , i.e. DTW distance, between Q and S given W , is calculated

differently from the original DTW proposal. TC is calculated as follows:

TC =
∑m

p=1 {Ai,j|(i, j) ∈ W ∧ i = p}
m

(5.8)

The average Manhattan distance of all segment candidates in S that align to a

segment query in Q is calculated, this occurs for each Qi and the averages summed.

Finally, the result is normalised by m. This calculation occurs on line 13 in algorithm

1.

Window constraints, such as the Sakoe-Chiba band [87] and Itakura parallelogram

[123], should be used with caution as there can be large and varying differences in

time between segment points.
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Algorithm 2 Pseudocode to confirm a segmentation of a repetition after performing
subsequence DTW.
Input: OW {Optimal Warp Path for this time step, see Algorithm 1}
Input: OTC {Optimal Warp Path Total Cost for this time step, see Algorithm 1}
Input: Paths {Optimal Warp Paths for the last NT time steps. Global variable

initialised to empty set}
Input: Costs {Optimal Warp Path Total Cost for the last NT time steps. Global

variable initialised to empty set}
Input: WRE {Wait for Repetition End boolean. Global variable initialised to

FALSE}
1: if WRE = TRUE or OTC < SegmentThreshold then
2: if WRE = FALSE then
3: for all F ∈ Features do
4: TC ← GetFeatureTotalCost(OW,F,Q) {Subsequence of F is retrieved

using indices in OW}
5: if TC > TCT then
6: return
7: end if
8: end for
9: WRE ← TRUE

10: end if
11: Paths.append(OW )
12: Costs.append(OTC)
13: if len(Costs)− argmin(Costs) > MaxLookAhead then {MaxLookAhead is

the number of future time steps to check for a lower DTW cost}
14: RWP = Paths[argmin(Costs)] {Repetition Warp Path}
15: WRE ← FALSE
16: Paths.clear()
17: Costs.clear()
18: return RWP {Segmentation confirmed, RWP can retrieve joint positions

for the repetition.}
19: end if
20: end if
21: return

When the optimal warp path has been found for a single time step, its total cost is

checked against a minimum total cost parameter. If it is below this parameter then

the subsequence can be considered for segmentation.

Finally, as DTW alignment has only been performed on one motion feature,

confirmation of the segmentation is performed as follows. Several motion features
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with the highest feature ranks, as described in equation 5.1, have their total cost

calculated using the indices in the optimal warp path. If any of these values are

above their total cost threshold, calculated in equation 5.2, then the segmentation

is rejected. Otherwise the segmentation is confirmed for this time step. The

pseudocode for confirming a segmentation is presented in Algorithm 2.

Future joint information is required to determine if this is in fact the very end of

the exercise repetition. Thus, the trend of the DTW motion feature’s total cost is

measured over several time steps to check if it is still decreasing. Once the total

cost begins to rise the segmentation of the observation occurs on the time step with

the lowest total cost.

5.2.6 Parameters

The following list describes the key parameters of the segmentation algorithm:

• Minimum Scale Percentage: When performing DTW, the scale of the subse-

quence must be at least this percentage of the query scale to be considered

for segmentation, see equation 5.3.

• Segmentation Threshold (ST): The optimal warp path’s total cost must be

less than this threshold to be considered for segmentation.

• DTW Distance Multiplier (DM): A multiplier to give motion features with

more change over time a higher total cost threshold, see equation 5.2.

• DTW Distance Base (DB): A base value each motion feature is given when

calculating the total cost threshold, see equation 5.2.
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5.3 Segmentation algorithm results

5.3.1 General evaluation against public dataset

Three exercises were selected from the CMU Graphics Lab Motion Capture Database

(CMU) [73] based on their similarity to rehabilitation exercises which tend to have

repetitive motions. Thus, actions that were more activity based were ignored as

they are out of scope of the proposed algorithm. During rehabilitation, patients

follow an exercise regime presenting them with exercises to perform. Therefore,

unlike the following papers [58,60,61,63,66,69,70] that deal with the recognition and

segmentation of actions, our proposed algorithm is aimed at segmenting repetitions

of a known exercise given a correct repetition of the exercise.
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Figure 5.8: Segmentation performance of side twist exercise using query from subject 13.
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Figure 5.9: Segmentation performance of squat exercise using query from subject 13.
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Figure 5.10: Segmentation performance of jumping jack exercise using query from subject 86.
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Table 5.2: Summary of CMU segmentation results using a single exemplar repetition
from a single subject.

Exercise
No. of

Candidate
Subjects

No. of
GT

Segments

TP
Segments

FN
Segments

FP
Segments

Exemplar
Sub_Trial

Side
Twist

1 4 2 2 0

13_29

Squat 5 19 13 6 4

13_29

Jumping
Jacks

4 26 21 5 0

86_05

Figures 5.8, 5.9 and 5.10 show the segmentation performance on the CMU database.

The grey bars represent the segmentation of a repetition and white spaces represent

no repetition. The bars are in pairs with the ground truth segmentations at the

top and the algorithmic segmentations on the bottom. Most of the trials contained

more than one exercise/action which occurred during the large white spaces in the

bars. The algorithm was tested on all frames of the trials to test the algorithm on

its ability to avoid false positives. Where the ground truth grey bars do not have

an algorithmic grey bar below, this is a false negative. Likewise, algorithmic grey

bars without a ground truth grey bar above is a false positive.

Table 5.2 summarises the results of the segmentations. The jumping jacks, squat

and side twist exercises achieved 21/26, 13/19 and 2/4 correct segmentations from

4, 5 and 1 candidate subjects respectively.
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Table 5.3: Reasons for failures of CMU segmentations using a single exemplar repetition
from a single subject.

Exercise
Subject_Trial Failure Comment

Side Twist
14_14

False Negative

Side twists are performed with arm extension and leaning.

Squat
86_02

False Positive

When performing a jump on the spot, a squat action is
performed before jumping.

Squat
69_70, 69_71,
69_75

False Negative

Tracking is lost at the knees and feet joints, causing them
to rise up and align along the X axis.

Squat
23_14

False Negative

Tracking loss of the leg joints.

Squat
14_14

False Negative

Tracking loss of knee joints.

Jumping Jacks
22_16

False Negative

Recording starts after the first repetition has begun,
subsequent repetitions are correctly segmented.

Jumping Jacks
13_29, 13_31

False Negative

The repetitions are performed incorrectly, with the legs
moving together as the arms are raised.
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Figure 5.11: Execution performance of the segmentation algorithm when finding the
latest repetition. This includes: pre-processing the motion features, feature extraction,
finding the optimal warp path and segmentation rejection/confirmation using the highly
ranked motion features.

It should be noted that the segmentation algorithm was not the cause of most of

the failures, as shown in table 5.3. The reason for the false negative segments on the

squat exercise was poor joint tracking e.g. squat 14_14, 23_14 and 69_70/71/75.

Jumping jacks and side twist exercises failed due to the exercise being incorrectly

performed e.g. side twist 14_14 and jumping jacks 13_29/31, and one case of the

recording starting after the repetition had begun e.g. jumping jacks 22_16. One set

of false positive segments occurred on the squat exercise, 86_02, where the subject

performed a squatting action before a jump. This is the only case of false positive

segments although many other exercises and actions were performed during the

trials. This demonstrates that the segmentation algorithm can achieve suitable

results from a single exemplar repetition.
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5.3.2 Execution performance evaluation

Figure 5.11 shows the execution performance of the whole segmentation algorithm

segmenting the latest repetition of an exercise as the number of frames increases.

The exercises squat, jumping jacks and side twists were evaluated. The DTW query

of each exercise consisted of 3, 3 and 6 segment queries respectively.

The time complexity for the worst case scenario of the whole segmentation algorithm

is O(ml2 ) as multiple subsequences are evaluated using SDTW. The function

GetWarpPath in algorithm 1 on line 12 performs DTW which has a time complexity

of O(mn) and GetTotalCost on line 13 has a time complexity of O(m).

The runtime performance on real-world examples of CMU exercises is depicted in

Figure 5.11. The processing time taken does not increase as much as the O(ml2 )

term would suggest, this is because a subsequence must meet a minimum scale to

be considered for segmentation, and the DTW alignment is abandoned when the

total cost goes above the lowest total cost so far.

Considering a worst case scenario of segmenting stroke patient repetitions, where

the movements are often slow. The longest repetition performed by a stroke patient

was ≈13 seconds. Thus, segmenting the latest repetition given a 20 second window

consisting of 600 frames, from a device with a 30Hz capture rate, would take

≈5ms given Figure 5.11. Although the algorithm can be run more infrequently,

the processing time ≈5ms is well within the real-time capture rate of 33ms. If an

exercise repetition was to be performed beyond the window size then the repetition

will likely be missed or segment the start of the exercise late. To resolve this every

nth frame could be dropped until it is able to process the repetition in real-time at

the expense of segmentation accuracy, however, the evaluation shows the algorithm

maintained real-time processing well beyond the sequence length of real exercise

repetitions.
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The performance evaluation took place on a Intel Core i7 4790K at 4.00GHz using

a single threaded Python implementation. Note that this execution performance

evaluation is an example of the worst-case performance as certain optimisations

have been left out such as: DTW window constraints; online normalisation [122];

compilation to native machine code; and clearing the buffer when a repetition

is detected. But for the purposes of a real-world implementation of a system

designed to segment exercises in real-time, it can be seen that even an unoptimised

implementation is sufficiently fast.

5.3.3 Detailed evaluation on rehabilitation exercises

Evaluation technique

The dataset used for evaluation contains three exercises performed by four stroke

patients undergoing rehabilitation at home. Ethical approval for this study was

obtained via the University’s ethical approval board. The three exercises within the

dataset are arm to side, arm to front and twist exercise. The exercises were taken

from the Graded Repetitive Arm Supplementary Program (GRASP) manual [124],

an exercise program developed for stroke patients. Each subject performed three

repetitions of each exercise. For evaluation, the data passed to the segmentation

algorithm simulates a real-time implementation, i.e. the algorithm receives data

frame by frame and cannot see future data. For each exercise being evaluated,

joint data of all exercises were included in the evaluation to ensure the algorithm

was robust to false positives. We follow the methodology presented in [60] as

they evaluated a similar clinical population as ours, thus allowing an almost direct

comparison of the effectiveness of both algorithms. The evaluation methodology is

as follows:

1. Simulate a real-time implementation by sending observation motion data
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frame by frame to the segmentation algorithm. Once the full observation

has been processed, a list of segments is returned. This approach tests the

segmentation algorithm for early segmentation.

2. The following definitions are used in the evaluation of the segmentation

algorithm’s accuracy:

(a) Ground truth segment (GT): Ground truth segment envelopes are added

to the observations to represent the ground truth of the start and end

of an exercise repetition. A GT has an envelope of acceptability with

varying sizes as the start and end of an exercise repetition is often

ambiguous, as mentioned in [60]. For this evaluation, video data was

used to determine the start and end of an exercise, timestamps were

used to temporally align the video data and joint data.

(b) Time Error (TE): Time error is a variable that increases the temporal

width of the GT envelopes by X time. This is to allow algorithmic

segmentations that were close to a GT without a TE to be considered a

true positive segment.

(c) True positive segment (TP): If an algorithmic segment is within the TE

of a GT then it is classed as a TP; e.g. if TE is set to 1 second and an

algorithmic segment is within 1 second of a GT, then the number of TPs

is incremented by 1.

(d) False positive segment (FP): If an algorithmic segment exists where there

should not be a segment; e.g. an algorithmic segment is not within a TE

of a GT, then the number of false positive segments is incremented by 1.

(e) False negative segment (FN): If no algorithmic segment exists where

there should be one; e.g. no algorithmic segment is within the TE of a

GT, then the number of false negative segments is incremented by 1.
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Note that if an algorithmic segment is just outside of the TE envelope to a

TP segment then the number of FP and FN segments are incremented by one.

Algorithmic segments that represent the start of a repetition cannot be classed as

TP if they fall within the TE of a GT representing the end of a repetition. Similarly,

algorithmic segments that represent the end of a repetition cannot be classed as TP

if they fall within the TE of a GT representing the beginning of a repetition.
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Table 5.4: Kinect Exercise 1

TE (s) TP (%) FP (%) FN (%) ESS LSS EES LES

% MAE (m) % MAE (m) % MAE (m) % MAE (m)

0.0 54.2 54.2 45.8 0.0 0.0000 0.0 0.0 0.0 0.000 0.0 0.0000
0.1 75.0 33.3 25.0 11.1 0.0016 0.0 0.0 11.1 0.012 5.6 0.0009
0.2 83.3 25.0 16.7 10.0 0.0016 0.0 0.0 15.0 0.022 10.0 0.0029
0.3 87.5 20.8 12.5 14.3 0.0021 0.0 0.0 14.3 0.022 9.5 0.0029
0.4 91.7 16.7 8.3 13.6 0.0021 0.0 0.0 18.2 0.042 9.1 0.0029
0.5 95.8 12.5 4.2 13.0 0.0021 0.0 0.0 21.7 0.048 8.7 0.0029

Table 5.5: Kinect Exercise 2

TE (s) TP (%) FP (%) FN (%) ESS LSS EES LES

% MAE (m) % MAE (m) % MAE (m) % MAE (m)

0.0 75.0 25.0 17.9 0.0 0.0000 0.0 0.0 0.0 0.0 0.0 0.0000
0.1 82.1 17.9 10.7 4.3 0.0021 0.0 0.0 0.0 0.0 4.3 0.0017
0.2 85.7 14.3 7.1 4.2 0.0021 0.0 0.0 0.0 0.0 8.3 0.0020
0.3 89.3 10.7 3.6 4.0 0.0021 0.0 0.0 0.0 0.0 12.0 0.0180
0.4 89.3 10.7 3.6 4.0 0.0021 0.0 0.0 0.0 0.0 12.0 0.0180
0.5 89.3 10.7 3.6 4.0 0.0021 0.0 0.0 0.0 0.0 12.0 0.0180
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Table 5.6: Kinect Exercise 3

TE (s) TP (%) FP (%) FN (%) ESS LSS EES LES

% MAE (m) % MAE (m) % MAE (m) % MAE (m)

0.0 45.5 45.5 45.5 0.0 0.0 0.0 0.000 0.0 0.000 0.0 0.000
0.1 59.1 31.8 31.8 0.0 0.0 15.4 0.083 0.0 0.000 7.7 0.037
0.2 81.8 9.1 9.1 0.0 0.0 22.2 0.130 5.6 0.018 16.7 0.120
0.3 86.4 4.5 4.5 0.0 0.0 26.3 0.160 5.3 0.018 15.8 0.120
0.4 90.9 0.0 0.0 0.0 0.0 25.0 0.160 10.0 0.046 15.0 0.120
0.5 90.9 0.0 0.0 0.0 0.0 25.0 0.160 10.0 0.046 15.0 0.120

Table 5.7: Qualisys Exercise 1

TE (s) TP (%) FP (%) FN (%) ESS LSS EES LES

% MAE (m) % MAE (m) % MAE (m) % MAE (m)

0.0 81.0 19.0 19.0 0.0 0.0 0.0 0.0000 0.0 0.0 0.0 0.000
0.1 88.1 11.9 11.9 0.0 0.0 2.7 0.0037 0.0 0.0 5.4 0.044
0.2 95.2 4.8 4.8 0.0 0.0 2.5 0.0037 0.0 0.0 12.5 0.043
0.3 97.6 2.4 2.4 0.0 0.0 2.4 0.0037 0.0 0.0 14.6 0.045
0.4 97.6 2.4 2.4 0.0 0.0 2.4 0.0037 0.0 0.0 14.6 0.045
0.5 100.0 0.0 0.0 0.0 0.0 2.4 0.0037 0.0 0.0 16.7 0.048
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Table 5.8: Qualisys Exercise 2

TE (s) TP (%) FP (%) FN (%) ESS LSS EES LES

% MAE (m) % MAE (m) % MAE (m) % MAE (m)

0.0 45.0 55.0 55.0 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000
0.1 80.0 20.0 20.0 12.5 0.027 12.5 0.024 6.2 0.023 12.5 0.044
0.2 100.0 0.0 0.0 10.0 0.027 10.0 0.024 5.0 0.023 30.0 0.054
0.3 100.0 0.0 0.0 10.0 0.027 10.0 0.024 5.0 0.023 30.0 0.054
0.4 100.0 0.0 0.0 10.0 0.027 10.0 0.024 5.0 0.023 30.0 0.054
0.5 100.0 0.0 0.0 10.0 0.027 10.0 0.024 5.0 0.023 30.0 0.054

Table 5.9: Qualisys Exercise 3

TE (s) TP (%) FP (%) FN (%) ESS LSS EES LES

% MAE (m) % MAE (m) % MAE (m) % MAE (m)

0.0 65.0 35.0 35.0 0.0 0.0 0.0 0.00 0.0 0.00 0.0 0.00
0.1 95.0 5.0 5.0 0.0 0.0 21.1 0.11 10.5 0.06 0.0 0.00
0.2 100.0 0.0 0.0 0.0 0.0 20.0 0.11 10.0 0.06 5.0 0.03
0.3 100.0 0.0 0.0 0.0 0.0 20.0 0.11 10.0 0.06 5.0 0.03
0.4 100.0 0.0 0.0 0.0 0.0 20.0 0.11 10.0 0.06 5.0 0.03
0.5 100.0 0.0 0.0 0.0 0.0 20.0 0.11 10.0 0.06 5.0 0.03
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Figure 5.12: Plot showing the algorithmic segmentations of a stroke patient performing the Arm to Side exercise taken from GRASP, a
stroke rehabilitation manual.
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Figure 5.13: Plot showing the algorithmic segmentations of a stroke patient performing the Arm to Front exercise taken from GRASP, a
stroke rehabilitation manual.
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Figure 5.14: Plots showing the algorithmic segmentations and DTW alignments of a stroke patient performing the Arm to Side and Twist
exercise taken from GRASP, a stroke rehabilitation manual. The exemplar repetition was performed by a healthy subject.
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Figure 5.15: A stroke patient performing the twist exercise.

Figure 5.16: A stroke patient performing the arm to front exercise.
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Segmentation performance on rehabilitation exercises

Tables 5.4, 5.5, 5.6, 5.7, 5.8, 5.9 show the performance of the segmentation algorithm

at different Time Errors (TE) starting at 0 seconds and incrementing by 0.1 up

to 0.5 seconds. The results of the segments are represented as a percentage of the

total GT. The mean average error (MAE) is displayed, where error is the minimum

difference in the algorithmic segment direction to the GT segment direction.

The patient dataset we have evaluated is challenging due to the common low range

of motion, instability and variance of the patient movements, as shown in Figures

5.15 and 5.16. The accuracy of the joint positions can be unreliable due to occlusion

and contain a lot of jitter.

Tables 5.4, 5.5, 5.6 shows the performance of the segmentation algorithm on the

Kinect patient dataset, where it manages to achieve correct segmentation for 90%

of the data with a time error of ≈0.3 seconds. There are more false positives in the

arm to side and arm to front exercises than the twist exercise. This is due to the

similar arm movements performed during these exercises. The MAE of all exercises

are negligible which suggests a time error of at least 0.5 seconds and likely larger

are acceptable.

Tables 5.7, 5.8, 5.9 show the performance of the segmentation algorithm segmenting

joint exercise data of healthy participants performing the same exercises captured

by Qualisys, a marker-based motion capture system with a reported sub-millimetre

accuracy [125]. The algorithm achieves 100% correct segmentation on all exer-

cises within 0.5 seconds. The MAE for all exercises at different time errors is

negligible.

Figure 5.16 depicts a patient performing the arm to front exercise with the

accompanying plot depicted in Figure 5.13. The left image in Figure 5.16 shows the

patient’s starting position; this is captured at ≈30 seconds in Figure 5.13. The right
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image in Figure 5.16 shows the patient’s arm extended to the highest achievable

height, captured at ≈34 seconds in Figure 5.13. This demonstrates the robustness

of the algorithm as the exercise query expects the arm to be extended to 90 degrees

in the sagittal plane. Each of these repetitions has a low range of motion but still

achieves good segmentation. Note that at ≈25 seconds the algorithmic segment is

early to segment, due to a segment candidate being produced as the arm’s velocity

slows down. The ground truth repetition start and end rectangles have different

widths because the start and end of a repetition is often ambiguous [60]; faster and

smoother movements usually result in a smaller ground truth rectangle.

Figure 5.15 shows a patient performing the twist exericse. Smoother motions and

a larger range of motion are generally found in this exercise as the paretic limb is

grasped with the healthy limb.

Figure 5.12 plots the direction of the arm in the Y axis for the arm to side exercise,

at ≈10 seconds the algorithm incorrectly segments the repetition as the patient’s

arm dips down during the exercise.

Figure 5.14 shows the alignment between the candidate and query sequences for

exercises arm to front (top) and twist (bottom). In the top image the range of

motion of the candidate is lower than the query but DTW still finds a suitable

alignment.

The results show that even for people with limited movement, we have achieved

good segmentation accuracy of exercise repetitions. All but one of the segmentation

algorithms highlighted in the literature review have tested their algorithms only on

healthy participants [58, 61–63,66–70]. Lin and Kulic [60] tested their algorithm on

4 total joint replacement patients undergoing lower-body rehabilitation and they

achieved 79% segmentation accuracy whereas our approach achieved 86.4-89.3%

accuracy within the same 0.3 seconds time error threshold. We also found the

MAE of late and early segmentations to be negligible even with a 0.5 second TE,
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which gave a correct segmentation percentage of 89.3%-95.8%. They mention that

“DTW provides an accurate method of segmentation that is robust against temporal

variations, but is too computationally expensive to be employed on-line.”, however

we have presented a real-time DTW segmentation algorithm. Chaun-Jun, et al. [62]

tested their algorithm on rehabilitation exercises but with healthy participants. Due

to the variability of stroke patient movements, it is important that segmentation

algorithms are tested on real clinical data of rehabilitation exercises.
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Table 5.10: Parameter evaluation results presenting the top 5 parameter combinations.

Row F1 TP FP ST DM DB
1 0.77 0.85 0.36 0.1 0.1 0.3
2 0.77 0.85 0.36 0.2 0.1 0.3
3 0.75 0.85 0.4 0.3 0.1 0.3
4 0.75 0.85 0.4 0.1 0 0.4
5 0.75 0.85 0.4 0.2 0 0.4
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Figure 5.17: Plot showing the change in the F1 score with respect to the ST parameter
and given the best (highest F1 score) DM and DB parameter combination.

5.3.4 Parameter evaluation

The parameters described in section 5.2.6 were set via the following process. The

range of motion of stroke patient repetitions were measured and compared with

healthy subjects to establish an appropriate baseline. It was found that setting the

minimum scale percentage to 0.08, i.e. 8%, was required to ensure that stroke patient

repetitions with the lowest range of motion could be adequately segmented. The

segmentation threshold (ST) is the maximum value the total cost of a normalised

subsequence can be from the normalised query to be considered for segmentation.

This total cost is essentially a measure of the abnormality in the movements between

the subsequence and query; therefore a total cost below the segmentation threshold
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Figure 5.18: Plot showing the change in the F1 score with respect to the ST parameter
and given an average (mean F1 score) DM and DB parameter combination.
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Figure 5.19: Plot showing the change in the F1 score with respect to the ST parameter
and given the worst (lowest F1 score) DM and DB parameter combination (excluding
combinations with an F1 score of zero).

indicates that the patient’s movements are an attempted repetition of the exemplar

exercise. The distance multiplier (DM) and distance base (DB) adjust the total

cost thresholds, as described in equation 5.8, for each of the motion features based

on their rate of change, i.e. motion features that exhibit the most movement. The
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total cost of each motion feature in a subsequence must be lower than their total

cost threshold to be considered for segmentation.

A parameter evaluation was performed on parameters ST, DM and DB (described

in Section 5.2.6) using grid search with a step size of 0.1 within the range 0 to

1. By evaluating the parameter space using a linear step size we can see how the

algorithm’s accuracy changes with respect to the changes in the parameter values.

Each parameter combination was cross-validated over CMU exercises: jumping jacks,

squat and side twist. To determine accuracy we use F1 (AccF1 ) score presented

in [126] and expressed as:

2 · TP
2 · TP + FN + FP (5.9)

The parameter combinations with the highest F1 accuracy are presented in Table

5.10. TP and FP segments are presented as percentages of the total GT segments.

Given the top five combinations, the ST values range from 0.1 to 0.3, DM range

from 0 to 0.1 and DB range from 0.3 to 0.4. To further understand how the F1

accuracy changes with respect to these parameters, we have graphed three plots

(Figures 5.17, 5.18 and 5.19) with each plot showing a representative DM and DB

value combination that achieves the best, average and worst accuracy respectively,

and plotted the F1 accuracy with respect to the ST parameter value.

A greater value of ST results in candidate sequences that are less similar to the

query sequence being treated as a potential segmentation, but with suitable DM

and DB values potential segmentations that would be considered as a FP are mostly

rejected. This can be seen in Figure 5.17 whereby the F1 accuracy does not decrease

much as ST increases to a value of 1. As greater values are used for DM and DB

the number of FP segments increases resulting in a lower F1 accuracy, as can be

seen in Figure 5.18. Using very low values for DM and DB results in fewer FP
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segments but also fewer TP segments and thus a low F1 accuracy, as can be seen

in Figure 5.19.

5.4 Summary

We have presented an algorithm for segmenting exercise repetitions in real-time.

This approach addresses the limitations of previous approaches in that it requires

only a single exemplar and has shown robustness to repetitions with low range of

motion, instability in the movements and noise in the sensor data. The algorithm

was evaluated on 10 subjects performing 3 exercises from a publicly available dataset

(CMU) and we showed that it was capable of segmenting the repetitions. Further

evaluation was performed on our own datasets of a healthy population and a stroke

population performing stroke rehabilitation exercises. We showed that the algorithm

correctly segments all the healthy population exercise repetitions within 0.5 seconds

and the stroke patient exercise repetitions to 90% TP segments within 0.3-0.4

seconds. Our next step is to develop a pose estimation algorithm designed for

clinical use to combine with this new segmentation algorithm, in order to enable

accurate real-time feedback for stroke patients undergoing rehabilitation.



6
Conclusions and future work

6.1 Conclusions

This thesis has contributed the following:

• A quantitative and clinical evaluation of a state-of-the-art pose estimation

algorithm from a compact and cost-effective depth sensor (Kinect v2). To

determine if the accuracy of the joint position estimations are good enough

for correctly assessing patient exercises and what the limitations are. The

findings and highlights were:

– The joint position estimations are mostly inadequate for correctly assess-

ing stroke rehabilitation exercises.

– A quantitative evaluation on its own is not sufficient for determining the

113
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suitability of joint position estimations for clinical applications, a clinical

evaluation is required as each joint for different exercises does not have

the same level of importance.

– Joint rotations are required for a more in-depth and correct assessment.

– Exploiting temporal information may ameliorate joint tracking issues

caused by occlusion.

– Joint position estimations should be constrained within the anatomical

limitations of the human body.

– Clinicians should be consulted to select exercises that provide the pose

estimation algorithm with fewer challenges but still achieve correct

functional improvements for the patient.

• Evaluated the inter-rater agreement between the physiotherapists’ clinical

evaluation. The findings and highlights were:

– The results indicate the physiotherapists had a low level of inter-rater

agreement.

– Introducing objective measures to the grading criterion may help guide

raters.

– Further research required to determine factors that may have contributed

to the low agreement as the medium used for assessment, insufficient

training on the new task and/or an inadequate grading criterion.

• Proposed a segmentation algorithm for segmenting exercise repetitions that

requires only a single exemplar repetition from a healthy subject to segment

subsequent repetitions from other subjects, including those with impaired

mobility. This algorithm was evaluated on our own stroke rehabilitation

dataset of stroke patients performing upper-body rehabilitation exercises, and

a publicly available dataset CMU [73]. The findings and highlights were:
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Figure 6.1: Visualisation of our pose estimation algorithm currently in investigation and
design stage. Left image is the 2D depth map representation, middle and right images
are the 3D point cloud visualisation.

– 90% of the stroke patient exercise repetitions were correctly segmented

within 0.3-0.4 seconds of the ground truth envelope.

– The parameter combinations that achieved a high accuracy were robust

across different exercises.

– The algorithm is capable of being run in real-time on a modest computer,

achieving segmentation of a 20 second window at 30Hz in ≈ 5ms.

6.2 Future work

6.2.1 Pose estimation algorithm

Based on our research on the accuracy and limitations of current state-of-the-art

pose estimation algorithms (PEA) intended for clinical use, we are designing a PEA
1 that overcomes these limitations. An early prototype can be seen in Figure 6.1

whereby the centre of the head is being tracked. Like Kinect V2’s pose estimation
1See appendices for code snippets of the pose estimation algorithm program.
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algorithm [15] a decision tree is trained for each joint position but instead of

classifying each pixel in the depth map into body part categories, the tree is trained

on the probability distribution towards a ground truth joint position. The white

line represents the walk through the depth map to the white sphere that represents

the final predicted joint position for the centre head joint, the two black spheres

represent the ground truth SpineMid (bottom) and centre head (top) joints. Spatial

and temporal constraints are then intended to ensure anatomically correct poses

and realistic motion.

6.2.2 Automatically assessing patient exercise performance

Replacing conventional assessment criteria, such as the Fugl-Meyer Assessment [82],

with automatic quantifiable measures to evaluate physical performance. By tracking

patient joint positions and possibly joint rotations, the assessment of physical

performance can be quantified. Research should investigate suitable performance

metrics that can be use to baseline a patient’s physical performance and track

improvements, such as range of motion, deviation from desired motion, stability

and the severity of compensatory movements.

6.2.3 Maximising adherence

Technology-assisted stroke rehabilitation interventions often focus on the physical

aspects of recovery, but reasons for low adherence are likely a result of mental

challenges that are faced by patients experiencing the sudden and debilitating

conditions from stroke. Further research should investigate these mental challenges

and design technology-assisted solutions that can maximise adherence, such as

developing game-based rehabilitation sessions that provide patients with an engaging

and suitably challenged exercise program. Positive forms of feedback should be
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investigated such as displaying the patients functional improvements.
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A Participant information pack

The participant information pack handed out at Nottingham CityCare’s stroke

community groups to recruit stroke patients for data collection.
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B Data collection tool code

Code snippets from the C# data collection tool used to record data of stroke

participants performing rehabilitation exercises.
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C Quantitative analysis code

Code snippets of the quantitative analysis of Kinect’s pose estimation algorithm

written in Matlab.

D Segmentation algorithm code

Code snippets of the segmentation algorithm developed in Python.
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E Pose estimation algorithm code

Code snippets of a pose estimation algorithm currently in development - developed

in Python.
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