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Deepfakes: Trick or Treat? 

ABSTRACT 

Although manipulations of visual and auditory media are as old as the media themselves, the 

recent entrance of deepfakes has marked a turning point in the creation of fake content. Powered 

by latest technological advances in AI and machine learning, they offer automated procedures to 

create fake content that is harder and harder to detect to human observers. The possibilities to 

deceive are endless, including manipulated pictures, videos and audio, that will have large 

societal impact. Because of this, organizations need to understand the inner workings of the 

underlying techniques, as well as their strengths and limitations. This article provides a working 

definition of deepfakes together with an overview of the underlying technology. We classify 

different deepfake types: photo (face- and body-swapping), audio (voice-swapping, text to 

speech), video (face-swapping, face-morphing, full body puppetry) and audio & video (lip-

synching), and identify risks and opportunities to help organizations think about the future of 

deepfakes. Finally, we propose the R.E.A.L. framework to manage deepfake risks: Record 

original content to assure deniability, Expose deepfakes early, Advocate for legal protection and 

Leverage trust to counter credulity. Following these principles, we hope that our society can be 

more prepared to counter the deepfake tricks as we appreciate its treats. 

 

Keywords: deepfakes; fake news; artificial intelligence (AI); machine learning (ML); deep 

neural networks (DNN) 
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Deepfakes: Trick or Treat? 

1. WHAT ARE DEEPFAKES? 

Analog and digital fakes are not new, and methods for media manipulation are likely as old as 

the media themselves. But, did you watch the 2019 video of President Obama swearing during a 

public service announcement? How about the one of Mark Zuckerberg announcing that he’s 

deleting Facebook, which attracted 72 million views and led to outrage among viewers who 

believed the content to be authentic? Or the Willy Wonka & the Chocolate Factory clip in which 

Ryan Reynolds, the Deadpool star, takes Gene Wilder’s place? If you did, and even for a 

moment you believed their surprising content to be genuine, then you were tricked. Welcome to 

deepfakes - the newest in fakes.  

Deepfakes leverage powerful techniques from machine learning and artificial intelligence  

to manipulate or generate visual and audio content with a high potential to deceive. 

The phenomenon gained its name from an anonymous user of the platform Reddit, who went by 

the name “deepfakes” (deep learning + fakes), and who shared the first deepfakes by placing 

unknowing celebrities into adult video clips. By sharing the necessary code, widespread interest 

spawned in the Reddit community and led to an explosion of fake content. The first targets of 

deepfakes were famous people (we will explain later why), including actors (e.g., Emma Watson 

and Scarlett Johansson), singers (e.g., Katy Perry) and politicians (e.g., US presidents Obama 

and Trump), whose faces were transposed, without their permission, onto others. For example, 

one of the early deepfakes that showcased the power of AI and deep learning was 2017’s 

“Synthesizing Obama” (Suwajanakorn, Seitz, & Kemelmacher-Shlizerman, 2017), an impressive 

use of lip-syncing technology based on existing audio footage (for the curious reader, all videos 

referenced in this paper are listed and hyperlinked in Table 2). Today, we could be watching the 

leader of one country convincingly deliver a speech by the leader of another country, or vice 

versa. Deepfakes work for two main reasons: 

Believability: fake content is becoming more believable 
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The impact of deepfakes is significant because, although trust in photography has eroded over 

the past few decades thanks to image-editing technology (Westling, 2019), we still put a lot of 

stock into photographic evidence (Granot, Balcetis, Feigenson, & Tyler, 2018; Porter & 

Kennedy, 2012). We tend to put even more trust into the voices we know and the videos we 

watch (Brucato, 2015). The brain’s visual system, despite being largely robust in natural settings, 

can be targeted for misperception. Classic examples include optical illusions and bistable figures 

(e.g., the well-known Jastow rabbit-duck and Rubin vase-faces that can be viewed in two 

different ways – see Figure 1) (Kietzmann, Geuter, & König, 2011). The surprise and disbelief 

upon the ‘reveal’ of sleight-of-hand tricks confirms how much we trust our eyes – even if we 

know we are about to be fooled. If we see something with our own eyes, we believe it to exist or 

to be true, even if it is unlikely, as was the case with the deepfake examples at the beginning of 

this article.  

Insert Figure 1 about here 

Discerning viewers of early deepfakes could often tell that the content had been altered. Today, 

only two years after the term deepfakes was coined, authentic and artificially-created videos are 

becoming harder and harder to distinguish. To illustrate deepfakes, a video referenced 

throughout this article is “Jim Carrey GLOWS”. The original shows an interview with Alison 

Brie, the lead actor from the Netflix series Glow, that originally aired on “Late Night with Seth 

Meyers”. In the deepfake, comedian Jim Carrey's face is imperceptibly replaced for Brie’s. In the 

ensuing discussions online, Carrey, despite having no part in the creation of this video, was even 

credited for his knack of impersonating others. Deepfakes are becoming much better and much 

more believable, fast.  

Accessibility: creating deepfakes is becoming easier 

Post-production work of a movie has long made fakes appear very realistic at the cinema. For 

example, “The Curious Case of Benjamin Button” won the 2009 Academy Award for Visual 

Effects. The movie relied on computer-generated imagery (CGI) to help tell the story of a baby 

born with the appearance and maladies of an elderly man, who then spends 84 years getting 

younger, metamorphizing into an infant. Creating such fakes requires expertise, extensive 

training, expensive hardware and special software, and each project (despite what the term CGI 
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suggests) is the result of labor-intensive work. However, tools of today, and certainly those of 

tomorrow, increasingly allow all of us to create fakes that appear real, without a significant 

investment into training, data collection, hardware and software. As a result, people without a lot 

of skill will soon be able to manipulate existing media or generate new content with relative 

ease. In 2018, the popular face-swapping program FakeApp still required large amounts of input 

data to generate deepfakes. In 2019, similar applications were already less demanding and more 

accessible. Zao, the popular Chinese app for mobile devices let users place their faces into scenes 

from hundreds of movies and TV shows, for free. All Zao required as source material was a 

series of selfies with specific facial expressions and head postures. A few clicks and seconds 

were all that was needed to put one’s face into a famous movie scene. Or, for those who disliked 

what someone said, products like Deepmind’s WaveNet can be used to generate realistic speech 

from text input. This can later be integrated with automated video editing to change the words 

coming right out of somebody’s mouth. Relatedly, Stanford researchers demonstrated text-to-

speech (TTS) editing of a talking-head video by changing Apple’s price per share in a video 

announcement simply by substituting a number in the text transcript (Fried et al., 2019). We can 

expect that the creation and distribution of such videos, and the resulting confusion and uproar, 

will only increase because the accessibility of technology necessary for creating high quality 

deepfakes continues to improve quickly. Likewise, social media platforms that provide 

organizations and individuals with the tools and technology to create and post content 

(Kietzmann, Hermkens, McCarthy, & Silvestre, 2011; Kietzmann, Silvestre, McCarthy, & Pit, 

2012) make it very easy to distribute deepfakes – one of the many dark sides of social media 

(Baccarella, Wagner, Kietzmann, & McCarthy, 2018). 

In combination, these developments drive the popularity and impact of deepfakes. Soon, 

everyone can choose to be the star of their favorite movie, possibly choosing their spouses, 

friends or colleagues as their romantic partners, allies or enemies in AI-manipulated movies. Or 

we can be placed, unwillingly, within highly undesirable movies, as keeps happening to 

celebrities, or can be seen and heard saying things we never said (e.g., sharing fake news about 

the companies we work for). Whether we want to or not, more and more deepfake images, audio 

and video will be created and shared. This is very alarming, and appropriate technological and 

societal countermeasures will be increasingly important and necessary, yet there are also 

potential benefits offered by deepfakes. In the following section, we provide a brief tour of the 
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most commonly used deepfake technique, before we highlight different types of deepfakes and 

how these impact individuals, organizations and governments. We conclude by suggesting the 

R.E.A.L. framework to manage deepfake risks. 

 

2. HOW DEEPFAKES WORK 

Before we embark on a discussion on how deepfakes work, we need to make clear that existing 

deepfake techniques and technologies are continuously changing, and entirely new ones are 

already emerging. The majority of current deepfakes in the visual domain follow a procedure in 

which the real face of a person is exchanged with a fake image showing somebody else. As an 

example of this, consider the images from the “Jim Carrey GLOWS” deepfake video mentioned 

above. Figure 2 shows a screenshot with Alison Brie from the original talk show interview on  

the left, and on the right is a frame from the resulting deepfake video featuring Brie’s body with 

Carrey’s face. We have chosen to use this example for three reasons. First, it shows a female and 

a male celebrity, both likely known to many readers. Second, the deepfake actually exists and 

readers can look at the original video and the deepfake output, to see for themselves how 

convincing the deepfake is. We ask the reader to do this so that our explanation of autoencoders 

is easier to follow. Third, compared to political deepfakes, this video’s content is not deeply 

controversial, and thus does not distract the reader’s attention from the process of creating a 

deepfake.  

Insert Figure 2 about here 

 

To create this fake, three steps are taken (Figure 3). First, the image region showing Brie’s face 

is extracted from an original movie frame (Step 1). This image is then used as input to a deep 

neural network (DNN), a technique from the domain of machine learning and AI, which is used 

to automatically generate a matching image showing Carrey instead (Step 2). This generated face 

is then inserted into the original reference image to create the deepfake (Step 3). As can be seen 

from this three-step procedure, the central technical advance to deepfakes lies in Step 2, the 
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automated creation of fake facial images that match the original in all elements but the identity of 

the person shown. The process by which this is accomplished is explained next. 

Insert Figure 3 about here 

 

2. 1 Deep Learning for Deep Fakes 

As the name suggests, the main technological ingredient in creating deepfakes is deep learning, a 

machine learning technique from AI that can be used to train deep neural networks. Reminiscent 

of neurons in the brain, deep neural networks consist of a large set of interconnected artificial 

neurons, commonly referred to as units. Much like neurons in the brain, while each unit itself 

performs a rather simple computation, all units together can perform complex nonlinear 

operations, such as recognizing a specific person from seeing pixels on a screen (Kietzmann, 

McClure, & Kriegeskorte, 2018).  

In the brain, information flow (e.g., from seeing pixels on a screen to identifying a specific 

person) is regulated by the strength of the connections among neurons. To get better at a given 

task, the brain’s learning mechanisms operate on these connections, strengthening or weakening 

them as required to improve our task performance over time. Likewise, the computations of 

DNNs are dictated by the strength of the connection of their respective units. These connections, 

too, need to be trained. Untrained DNNs have random connections among units, which will lead 

to random information flow through the network and thereby to random output. For an untrained 

DNN operating on images of faces, all facial expressions are thereby arbitrary and 

indiscriminate, and correctly identifying a facial expression would only happen by chance. A 

trained DNN, on the other hand, will have improved the connection strength of the units and 

learned the underlying characteristics of a face. 

The goal of deep learning is therefore to update the connection strengths, or weights in DNN 

terminology, to optimize the information flow and output. This progressively drives the network 

output to minimize the errors that it makes. It achieves this by defining how the network should 

ideally respond in a variety of known conditions. For instance, when shown known input images, 

DNNs can be trained to adjust their weights to reduce detection errors, so they can eventually 
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identify and properly detect objects in the real world, estimate 3D depth from 2D images, and 

recognize digits and letters on bank cheques, license plates, tax forms, letters and so on. While 

the training process can lead to unprecedented task performance, it is data-hungry. Today’s deep 

learning requires millions of connection weights to be learned, which in turn necessitates large 

sets of training data. It is for this reason that, for the time being at least, mainly celebrities are 

targeted by deepfakes, of whom lots of images and videos exist to train the networks. 

2.2. The Autoencoder 

Now that the general procedure and the basic concepts of deep learning are explained, we can 

take a closer look at the process of creating deepfake content. To illustrate this process, we 

juxtapose what a DNN does when it creates a deepfake of facial image to what artists do when 

they draw a picture of a face. 

After looking at a number of photographs, artists often ‘get’ the people depicted and are able to 

draw pictures of them in novel scenarios. For this to succeed, artists learn to generate key 

characteristics of their photo reference, such as the smile, or the eye expressions (e.g., raising of 

eyebrows, or lowering of the head while looking up). This compression of the image into 

patterns and characteristics of the input is a result of the limited capacity of our brains to store 

visual information, and is needed for artists to create novel images beyond existing pictures. 

A deep network architecture that mimics a similar process to an artist making sense of a human’s 

face is an autoencoder (auto referring to the self, as in autobiography, not to automatic, as in 

autofocus). Based on a given, large set of input images, for example all showing Alison Brie, it is 

trained to recognize key characteristics of her face and subsequently recreate input images as its 

output. This process of first recognizing a comparably small number of facial characteristics in 

the input and from there to generate real-looking faces as output is accomplished in three 

subparts of autoencoders: an encoder, a latent space, and a decoder (see Figure 4). 

Insert Figure 4 about here 
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Encoder: Much like an artist drawing an image, the encoder goes through a similar process of 

compressing an image, from originally tens of thousands of pixels into a few hundred (typically 

around 300) measurements. These measurements relate to particular facial characteristics. They 

encode whether the eyes are open or closed, the head pose, the emotional expression, the eye 

expressions, ambient light, or skin colour, similar to the types of characteristics to which an artist 

may pay attention. The job of a successful encoder is to transfer an input image into these 300 

measurements. Put differently, the encoder part of an autoencoder network enables information 

to flow from a very detailed input image into what is known as a compressed information 

bottleneck, comprised of just 300 network units. The joint activity of these units signals the 

presence or absence of facial features in the input image. As an illustrative example, let us 

consider an encoder compressing the input into only two measurements and let us assume 

furthermore that they express the horizontal angle of the head and indicate whether a person is 

smiling or looking surprised. Provided with an input image, the encoder will yield two 

measurements (jointly encoding head orientation and emotion). These can be visualized as a 

point in a two-dimensional space where the intercept of the x- and the y-axis represent the two 

measurements. The space of all possible combinations of measurements of facial characteristics 

is known as latent space. For illustrative purposes, we explained a case of two measurements, but 

autoencoders for deepfakes use a far larger space of a few hundred measurements. 

Latent space: Latent spaces are often compared to information bottlenecks. For the autoencoder, 

this bottleneck is needed so that the network can learn more general facial characteristics rather 

than memorizing all input examples of specific people. The compression achieved by the 

encoding of an input image into the latent space is remarkable. If the latent space consisted of 

300 measurements, it would only require 0.1% of the memory needed to store the original input 

image. As noted previously, the latent space represents different facial aspects of the person on 

which it is trained. An autoencoder trained on images showing Alison Brie’s face, for instance, 

will learn to map a given input image of her into a latent space specifically representing her.  

Decoder: The path from the information bottleneck to the output has the task of re-creating an 

image from the latent space. It is known as the decoder. While the encoder’s job is to compress 

an input image into a set of only 300 measurements (a specific point in the latent space), the 

purpose of the decoder is to decompress this information to re-construct an image as truthfully as 
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possible. In our example, its job is to reconstruct the input image of Alison Brie from its 

representation in the latent space. The performance of the whole autoencoder network is 

measured by how much the input and generated (output) images resemble each other. 

In summary, the autoencoder (encoder, latent space and decoder) moves beyond existing image 

material and learns a generative model of a person’s face. As mentioned above, every point in the 

latent space corresponds to an image of a given person. An autoencoder trained on Brie includes 

a ‘Brie Decoder’ that can generate fake but eerily real-looking Brie images. The trouble, 

however, is that while the autoencoder can generate different faces from select points in latent 

space, we cannot simply instruct this ‘Brie Image Generator’ to create a smiling Brie, as we 

could instruct an artist to draw one. While all faces are points in the latent space (see Figure 5 for 

a 2D illustration), we don’t actually know which point in this vast space of nearly infinite 

possibilities will correspond to the image we desire. Solving this problem is the trick that makes 

deepfakes seem to be works of magic. 

2.3. The Deepfake Trick 

To identify specific images, we need a way to find the corresponding points in the latent space. 

The trick for creating deepfakes is to set up the structure of the autoencoder in a way that an 

image of another person can act as a guide to help find the specific combination of 300 

measurements that yields the desired image. If the trick works, one can use an image of Alison 

Brie as a guide, and subsequently generate a previously non-existent picture of Jim Carrey 

showing the same facial expression and head pose. Put differently, the input image acts as a 

reference point, similar to telling an artist to draw a picture of you but with the asymmetrical 

grin of actor Andy Samberg from sitcom Brooklyn Nine-Nine, or with Elvis Presley’s low riding 

eyelids and his slightly quizzical raised eyebrows.  

The trick that makes this possible lies in using the same ‘shared encoder’ for both people. In the 

encoding process, the DNN selects 300 measurements it deems meaningful based on the training 

images for each person. If images of two people are compressed on separate encoders (Figure 5), 

different features would be seen as meaningful and we could not combine them in a valuable 

way (the red and blue dots in Figure 5 do not line up). 
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The autoencoder trick is to train two autoencoders, each with a person-specific decoder, but both 

using the exact same encoder. This encoder will learn to use general features that the faces of 

both people have in common (Figure 5, right panel). This allows for similar pictures of two 

different people to be positioned in a similar location of the latent space. For example, pictures 

showing either a smiling Carrey or Brie will lead to very similar measurements, or unit 

activations, in the latent space. 

Insert Figure 5 about here 

Similar measurements resulting from images of two separate people are the key to understanding 

deepfakes. They allow us to transform a picture showing the face of one person (e.g., Brie) into 

showing somebody else (e.g., Carrey). The resulting image will be 100% fake, but the generated 

face will exhibit the same emotional expression, head posture, etc. as shown in the original input 

image. This new image can then be doctored back into the original image to create a fake scene. 

 

3. TYPES OF DEEPFAKES 

AI-based tools to create fake content, like all technologies, will progress sharply from their early 

incubation stage to a period of rapid growth and increased performance. As summarized in Table 

1, a variety of deepfakes and potential business applications will emerge as their underlying 

techniques approach maturity.  

Insert Table 1 about here 

 

4. THE IMPACT OF DEEPFAKES ON INDIVIDUALS, ORGANIZATIONS AND GOVERNMENTS 

Most of the examples discussed in this article present a very gloomy look at society and how we 

are currently using deepfakes to fool and potentially exploit others. Unfortunately, that’s how 

technology is often first used. Technological progress, it seems, promotes the good and bad in 

people - moving us forward and backward at the same time. Deepfakes are no exception, and like 

other technologies, will have a bright side and a dark side (see: Baccarella et al., 2018). Thus, we 
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next balance our discussion by outlining several bright and dark opportunities that deepfakes 

offer to individuals, organizations and government. We then present a framework for how 

decision-makers, technologists, leaders of social media platforms and policymakers could deal 

with the challenges of the dark side of deepfakes. 

As individuals, we might soon enjoy injecting ourselves into Hollywood movies, and be the 

hero(ine) in the games we play on our phones or game consoles. Instead of going to the store, we 

might ‘deepfake ourselves’ by sharing our photos (and eventually, our personal decoders) in 

order to create virtual mannequins that model different outfits on us. It’s the ultimate 

personalization (Dietmar, 2019). We might like the entertaining side of deepfakes, too, for 

instance the Brie/Carrey face-swap or the many deepfakes featuring Nicolas Cage in various 

Hollywood scenes. In these early days of deepfakes, their quality and believability and their 

strangeness and newness make these videos engaging and enjoyable. 

While these examples of deepfakes are not inherently malicious or created with the intention of 

causing harm, they are also not victimless crimes. After all, celebrities did not consent to being 

portrayed in the deepfakes and might object to them strongly. The same technology that made 

the Carrey/Brie face-swap entertaining, for instance, was used, time and again, to transplant the 

face of Scarlett Johansson and many of her famous colleagues onto the bodies of actors in adult 

videos. The harm this can do to us all becomes even clearer in the case of then-18-year old 

Noelle Martin, an ordinary, non-famous citizen, who one day discovered hundreds of explicit 

deepfake images and videos with her face on the bodies of porn actresses (Melville, 2019). These 

deepfakes not only put her reputation at risk, but also her emotional well-being, her career 

prospects as an aspiring lawyer and her physical safety. With such a powerful technology, and 

the increasing number of images and videos of all of us on social media, everyone can become a 

target for online harassment, defamation, revenge porn, identity theft and bullying – all using 

deepfakes.  

For organizations, deepfakes have pros and cons, too. The upsides can, once again, be found in 

the entertainment and fashion industries where celebrities can simply make their personal deep 

network models available so that deepfake footage can be created without the need for travel to a 

video shoot, for example. Hollywood will be an early adopter. Certainly, face-swapping (aka 
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face-leasing) and voice dubbing will be popular, so that movie or advertising producers can fix 

misspoken lines or make script changes without re-recording footage, and create seamless dubs 

of actors speaking different languages. More realistic stunt doubles can be created and actors can 

look older or younger with the use of deepfakes instead of time-consuming make-up. 

In terms of the negative impact of deepfakes for organizations, technological advancements 

often make incumbents redundant. For example, the entire dubbing and re-voicing industry, 

which has long translated movies so that the new words match the original lip movement of the 

actor, is endangered and at risk of becoming extinct now that languages and lips can be changed. 

Such industry developments are evolutionary. In terms of dark sides of deepfakes, we predict 

that in the early days, many unsuspecting firms will fall victim to trickery. There will likely also 

be many organizations that will suffer from deepfake news releases. Videos deliberately stating 

false earnings estimates will hurt stock prices and deepfake videos showing CEOs in 

compromising situations will impact their firms’ reputation, and put stakeholder agreements at 

risk, to name just a couple of examples. Then of course there are lots of opportunities for 

‘algorithmic blackmail’, where managers are offered a choice to either pay a fee to stop a 

deepfake from being shared or suffer the very public consequences.  

For governments, the bright potential of deepfakes lies in the ability to communicate with 

various stakeholders in a way that is accessible to them. For instance, a public service 

announcement can be broadcast in a number of different languages, much like a consensual 

deepfake in which football celebrity David Beckham advocates in nine different languages and 

voices to end malaria. At the same time, the dark side of deepfakes is undeniably powerful, with 

the potential to give the average person the ability to create and distribute well-timed acts of 

sabotage. A government leader could be shown covering up a misdeed or making racist remarks 

just before an election or a major decision. Further, deepfake technology “will be irresistible for 

nation states to use in disinformation campaigns to manipulate public opinion, deceive 

populations and undermine confidence in […] institutions.” (Riechmann, 2018). Deepfake 

propaganda and election meddling, and the disinformation they seed threaten efficient 

governance for all democracies, if not democracy itself. 
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5. THE R.E.A.L. FRAMEWORK FOR MANAGING DEEPFAKE RISKS 

As this article showed, the potential for dark, malicious, deceptive and destructive potential of 

deepfakes for individuals, organizations (and brands) and governments outweighs the bright 

opportunities for thoughtful, sincere and constructive applications today. We hope we motivated 

managers to think about how deepfakes can transform their businesses in positive ways. More 

importantly, we urge all decision-makers, including technologists, leaders of social media 

platforms, and policymakers to help organizations, and in turn society, prevent and mitigate the 

dark side of content manipulation. With this goal in mind, we propose a R.E.A.L. framework for 

managing deepfake risks: Record original content, Expose deepfakes early, Advocate for legal 

protection and Leverage trust (See Figure 6). 

Insert Figure 6 about here 

 

Record original content to assure deniability 

As dark deepfakes often seek to falsely portray somebody doing or saying something and being 

somewhere, the exposure of such fakes would require evidence to the contrary. Providing this 

data is referred to as an ‘alibi service’ or a ‘life log’ (Chesney & Citron, 2019). It involves a form 

of technology tracking and logging a person’s life in terms of location, communications and 

activities. Despite the potentially negative impact on privacy, from a technology perspective, the 

availability of mobile, wearable and smart Internet-of-Things devices makes collecting such data 

possible to some extent. The data could then be encrypted, stored and used to help identify and 

expose the posting of dark deepfakes. A related technological approach to managing and limiting 

the dark deepfakes is to develop ways and practices for authenticating genuine content. Consider 

for example a technology called Amber Authenticate, which works on devices that produce 

genuine photographic, audio and video content in real time, as the content is recorded. It creates 

a 'truth layer' that is original content, cryptographically stamped with numerous digital 

fingerprints and then archived on a public blockchain. This fingerprinting of digital content is 

used to track its provenance as it is distributed and to help detect and respond to attempts to 

produce unwanted manipulations of the original content. 
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Expose dark deepfakes early  

The international professional services firm KPMG advises that “establishing a governance 

framework that embraces disruptive technologies and encourages innovation while ensuring risks 

are identified and managed is essential to an organization’s ability to survive and thrive in a 

digital world” (Lageschulte, 2019). Thus, just as we adopt and develop the technological 

innovations that gave us deepfakes, there are technological innovations being developed to detect 

and classify deepfakes. This includes using AI techniques to identify resolution inconsistencies, 

the scaling, rotation and splicing of content that is often central to the creation of a deepfake and 

the eye blinking patterns of the human images. Such detection innovation is helped by national 

institutions such as the US’s Defense Advanced Research Projects Agency (DARPA) which has 

a Media Forensics program, as well as fake-spotter services like Truepic (Hatmaker, 2018). 

Facebook, too, is investing significant resources into deepfake identification and detection 

(O'Brien, 2018). Yet, despite such initiatives, it is important to recognize that this a game of cat 

and mouse with improvements in detection technology having to keep pace with improvements 

in deepfake production technology. 

Advocate for legal protection 

With deepfakes, deepfake instigators could include ex-partners or bullies (for social impacts), 

disgruntled employees or competitors (for organizations), and politically-motivated actors and 

even nation-state attackers (for governments), among others. Social media networks, and their 

involvement in deepfakes needs to be revisited in this light, too. Are Facebook, YouTube and the 

like merely technology platforms, or in fact publishers that should be held liable for the content 

on their sites, including deepfakes? Are they willingly supporting deepfakes? As informed 

distributors, are they (or should they be) seen as guilty themselves? The underlying legislation 

(e.g., Section 230 of the US Communications Decency Act) currently does not offer such 

provisions for distributor liability for technology platforms, even in cases when platforms 

possess direct knowledge of the illegal comments and fail to act once made aware of them. Point 

in case, in response to the 2018 doctored video that made House Speaker Nancy Pelosi appear to 

be slurring her speech (not a deepfake), Facebook said: “We don’t have a policy that stipulates 

that the information you post on Facebook must be true” (Chu, 2019). In contrast, when 

bookstores are credibly informed that a book they sell includes libelous content but fail to act, 

they can be held liable (Candeup, 2019). At a time of deepfakes, such statements by social media 
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executives and the existing laissez-faire approach of today’s legal frameworks should concern us 

all. Victims should have legal recourse in instances of defamation, malice, breaches of privacy or 

emotional distress from a deepfake, and in cases of copyright infringements, impersonation and 

fraud involving deepfakes. However, there are few legal tools that address these deepfake threats 

today, and we hope that this article motivates many to advocate and lobby for legal changes that 

reflect the most recent technological threats.  

Leverage trust 

As managers who want to act proactively, the best way forward might be to strengthen brands 

and the relationships between brands and their customers. This means ensuring products perform 

well and are consistent with what their brands promise. While this advice may sound simplistic, 

how many brands do we know that promise more than they deliver? We posit that, in the chase 

for market share and visibility, some brands have forgotten these fundamentals. Likewise, brands 

that provide superior value build trust and commitment in their customer relationships, with 

customers establishing lasting emotional bonds with them (Morgan & Hunt, 1994; Sashi, 2012). 

Such strong brands will be better positioned to weather deepfake assaults, as their stakeholders 

will defend the brand (Pongsakornrungsilp & Schroeder, 2011; Punjaisri & Wilson, 2017) or at 

least put more trust into the brand than into what they see or hear from a suspect video. When 

brands that are built on strong ethics are portrayed in an unfavorable light in deepfakes, the hope 

is that stakeholders will not simply believe their eyes and ears, but be more critical and think for 

themselves.  

 

6. CONCLUSION 

As noted at the beginning of this article, analog and digital content manipulations are not new, 

and the act of doctoring content is as old as the media industry itself. However, recent 

developments in the use of deep learning mark the beginning of a next phase of content 

doctoring. Novel and publicly available tools now enable the semi-automated creation of much 

improved and more convincing fakes. We provided a working definition of deepfakes and 

explained how they function. This involved explaining how deepfakes are currently produced 

using a deep network structure called an autoencoder which, much like an artificial artist, learns 
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to concentrate on key characteristics of a person’s face to generate previously non-existent 

images. We then provided a typology including image, audio, video, and audio/video deepfakes 

and described possible business applications for each. Deepfakes have a bright and dark side and 

we identified their implications for individuals, organizations and governments. Finally, we 

presented the R.E.A.L. framework to help decision-makers, technologists, leaders of social 

media platforms and policymakers understand how to counter the dark side of deepfakes. This is 

an important contribution for, as Amara’s law states, we tend to overestimate the effect of a 

technology in the short run and underestimate the effect in the long run. Certainly, in the short 

run, we are likely going to see a wave of deepfake videos, movies and apps. The timing is perfect 

- at a time of much-touted fake news, deepfakes will add a very powerful tool to fool voters, 

buyers, and competitors, among others. Some might be intended for entertainment purposes, 

while others might impact the outcome of an election or the stock market. As more of our lives is 

constantly being captured and shared, e.g., through social media, we provide more and more data 

about ourselves, which will also be used to train DNNs, with or without our explicit permission. 

With this greater understanding of deepfakes, our hope is that we will all be more prepared to 

counter the deepfake tricks as we appreciate its treats. 
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Figure 1: Bistable figures: your brain decides what you perceive 
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Figure 2: A deepfake featuring Jim Carrey and Alison Brie 

  

Original showing Alison Brie Deepfake showing Jim Carrey instead of Brie
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Figure 3: Three-step procedure to creating deepfakes 
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Figure 4: Autoencoder: a DNN architecture commonly used for generating deepfakes 
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Figure 5: Illustrative example of an autoencoder latent space trained on faces. 
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Figure 6: The R.E.A.L. Framework for managing deepfake risks 
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Type Description Current example Business application 
Ph

ot
o 

de
ep

fa
ke

s 
 

Face and body-swapping 
Making changes to a face, 
replacing or blending the 
face (or body) with someone 
else’s face (or body) 

 
FaceApp’s aging filter alters 
your photo to show how you 
might look decades from now 
(Kaushal, 2019). 

 
Consumers can virtually 
try on cosmetics, eye 
glasses, hairstyles or 
clothes. 

A
ud

io
 d

ee
pf

ak
es

 

Voice-swapping 
Changing a voice or 
imitating someone else’s 
voice 

 
Fraudsters used AI to mimic a 
CEO’s voice and then tricked a 
manager into transferring 
$243,000 (Supasorn 
Suwajanakorn, 2017). 

 
The voice of an audio 
book narration can sound 
younger, older, male, or 
female and with different 
dialects or accents to take 
on different characters.  

Text to Speech  
Changing audio in a 
recording by typing in new 
text 

 
Users could make 
controversial Dr. Jordan B. 
Peterson a famous professor of 
psychology and author say 
anything they wanted, until his 
threat of legal action shut the 
site NotJordanPeterson down 
(Cole, 2019).  

 
Misspoken words or a 
script change in a 
voiceover can be replaced 
without making a new 
recording. 

V
id

eo
 d

ee
pf

ak
es

 

Face-swapping  
Replacing the face of 
someone in a video with the 
face of someone else 

 
Jim Carrey’s face replaces 
Alison Brie’s in “Late 
Night with Seth Meyers” 
interview. 

 
Face-swapped video can 
be used to put the leading 
actor’s face onto the body 
of a stunt double for more 
realistic-looking action 
shots in movies. 

Face-morphing 
A face changes into another 
face through a seamless 
transition 
 

 
Former “Saturday Night Live” 
star Bill Hader imperceptibly 
morphs in and out of Arnold 
Schwarzenegger in the talk 
show Conan.  

 
Video game players can 
insert their faces onto that 
of their favorite 
characters. 

Full body puppetry 
Transposing the movement 
from one person’s body to 
that of another  

 
 “Everybody dance now” 
shows how anyone can look 
like a professional dancer. 

 
Business leaders and 
athletes can hide physical 
ailments during a video 
presentation. 
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Lip-syncing 
Changing the mouth 
movements and words 
spoken in a talking head 
video  

 
In “You Won’t Believe What 
Obama Says In This Video!” 
Jordan Peele edits Obama to 
use profanity in a Public 
Service Announcement. 

 
Ads and instructional 
videos can be ‘translated’ 
into other languages in the 
same voice used in the 
original language. 

 

Table 1: Types and examples of Deepfakes 

  



29 
 

Video Title  URL 

Original: Alison Brie Snagged Her GLOW Role by 
Freestyling about Lady Parts 

https://www.youtube.com/watch
?v=QBmYDzLhWoY 

Deepfake: Jim Carrey GLOWS https://www.youtube.com/watch
?v=b5AWhh6MYCg 

A world without Facebook https://www.facebook.com/watc
h/?v=343812022777503 

Bill Hader impersonates Arnold Schwarzenegger 
[DeepFake] 

https://www.youtube.com/watch
?v=bPhUhypV27w&feature=yo
utu.be 

David Beckham speaks nine languages to launch Malaria 
Must Die Voice Petition https://youtu.be/QiiSAvKJIHo  

Everybody Dance Now https://youtu.be/PCBTZh41Ris  

Ryan Reynolds & the Chocolate Factory https://www.youtube.com/watch
?v=3qTXIwjAUZM 

Synthesizing Obama: Learning Lip Sync from Audio https://youtu.be/9Yq67CjDqvw 

Text-based Editing of Talking-head Video (SIGGRAPH 
2019) 

https://www.youtube.com/watch
?v=0ybLCfVeFL4&feature=you
tu.be  

You Won’t Believe What Obama Says In This Video! https://youtu.be/cQ54GDm1eL0 

 

Table 2: Links to the videos referenced in this article 

 

 


