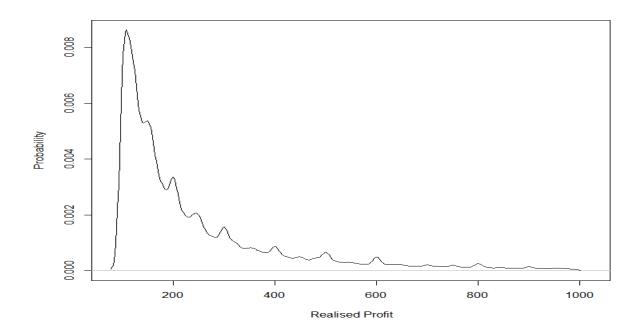
1. Appendix 1

1.1 The Rightmost Digit


We needed to decide which digit or digits related to realised profit and closing price were those that most influenced an individual's trading decision. Profits are displayed to investors including up to two decimal places. However, in order to examine to what extent investors may be subject to the LDE, we took the view that investors are unlikely to focus on the digits after the decimal point. Rapidly changing prices in these markets would prevent investors from determining precisely what realised profit they achieved. Therefore, we concentrated only on realised profit before the decimal point.

According to Lin and Wang (2017) the psychological boundary for the LDE in price is three digits. The LDE is extremely weak or non-existent if the numbers are four digits or more. They explain this by adapting the Weber-Fechner law on stimulus which states – based on loglinear modelling – that the perceived difference between the preceding numbers and round numbers becomes negligible as the absolute magnitude increases. Given that a substantial number of our trades had a three-digit profit or loss we needed to confirm whether the digit of focus for traders was the rightmost digit or the middle digit. We conducted this analysis (see details in Section 1.2) and found that in this case it was the rightmost digit. In addition, as the vast majority of trades resulted in profits of two digits or less, we only explore the LDE associated with the rightmost digit in realised profit and closing price.

1.2 Three Digit Profit

Out of 7,314,570 trades, 672,326 had a realised profit of three digits. We sought to determine whether for these trades, the middle digit or the rightmost digit is the centre of traders' focus. The three digit profits have an inter-quantile range of 165 and median value of 173. This implies that the majority of trades are closed with realised profit closer to the lower bound of 100 than to the upper bound of 999, suggesting a non-uniform asymmetric distribution. This is

confirmed by the Kernel probability density plot shown in figure 1. In order to employ a contingency table, we had to generate expected frequency values tailored to our distribution. Figure A1:1. Probability distribution plot of three digit-realised profit.

To achieve this, the data was categorised into 900 realised profit points and the number of trades closed in each category was determined. Our data appears to resemble a decaying horizontal asymptote, underlining a curvilinear relationship. Furthermore, our model has two variables – a dependent variable of frequency and the independent variable of profit. With only one independent variable, polynomial regression to the nth degree provided a flexible and ideal solution to estimating the relationship, within the linear only least square (OLS) estimation framework for uncomplicated coefficient estimation.

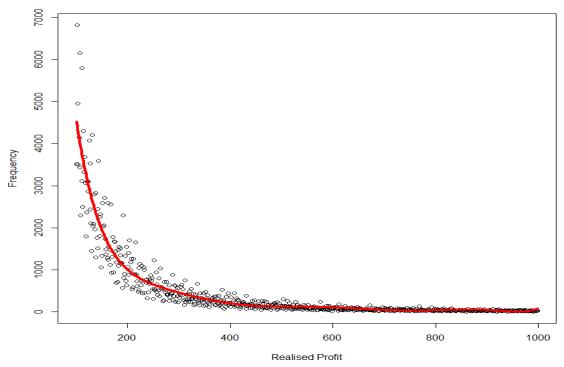
However, as polynomial regression utilises the least squares (OLS) estimation framework, it struggles to provide an accurate estimate when the data sample has numerous outliers (Barros and Barreto 2013). As can be seen in Figure A2: 1, there appear to be visible spikes on round numbers for realised profit. We also expect there to be a LDE or overrepresentation at these data points when the rightmost digit is a round number. Therefore, for the sake of simplification, we discard known outliers. Thus, all realised profit points ending with 0 and 5 were removed from our sample resulting in 720 values of three digit-realised profit. We substituted the 180 excluded price points with predictions made from our model as expected frequency values.

In a polynomial model defining a nonlinear relationship, traditional units of measures such as R^2 or adjusted R^{2} , although important for determining goodness of fit, are not ideal. Consequently, to see how well our model predicted missing round values we utilise a metric known as Predictive R^2 (Hopper 2014). While R^2 is determined via calculating residual sum of squares (RSS), Predictive R^2 is determined by predictive residual error sum of squares or the PRESS statistic. It calculates the RSS of the missing values within or outside the modelbuilding sample (Tarpey 2000). Research has relied on the PRESS statistics for cross-validation purposes to determine the fit of models with significant amounts of missing or extrapolated data (Noordin et al, 2004). Predictive R^2 will always be smaller than R^2 as it is a more conservative statistic ensuring the model is not over fitted. The model we fitted was as follows:

$Frequency = \beta_0 + \beta_1 ProfitPoint + \beta_2 ProfitPoint^2 + \beta_3 ProfitPoint^3 + \beta_4 ProfitPoint^4$

+ $\beta_5 ProfitPoint^5$ + $\beta_6 ProfitPoint^6$ + $\beta_7 ProfitPoint^7$ + $\beta_8 ProfitPoint^8$ + \mathcal{E} (1),

where *Frequency* is the number of trades realised at that particular *ProfitPoint* (e.g. 100). β_n indicates the coefficients of the polynomial terms of *ProfitPoint*, and \mathcal{E} is the OLS error term. Table A1:1. Value of β_n coefficients and their standard errors obtained from estimating Equation (1).


Variable	Coefficient	Std. Error	p-value	Variable	Coefficient	Std. Error	p-value
Intercept	406.62	10.22	<0.001**	<i>ProfitPoint</i> ⁵	-3,353.11	274.12	<0.001**
ProfitPoint	-13,533.97	274.12	<0.001**	ProfitPoint ⁶	2,117.49	274.12	<0.001**
ProfitPoint ²	11,133.44	274.12	< 0.001**	ProfitPoint ⁷	-1,360.49	274.12	< 0.001**

ProfitPoint ³	-7,911.15	274.12	<0.001**	ProfitPoint ⁸	993.95	274.12	<0.001**
ProfitPoint ⁴	5,237.66	274.12	<0.001**				

F-statistic: 691.3 ,DF=8 .Significant at 99% confidence interval**

The results of estimating Eq. 1 are shown in table A2: 1. All independent variables based on the p-values obtained from the t-tests are highly significant, suggesting they are robust in predicting the frequency of expected trades at each price point. Our model consists of polynomials to the order 8 in a hierarchy. This is a preferable outcome as they are invariant or unchanged under linear transformation, which occurs during OLS estimation of polynomials, thereby improving the robustness of the results (Montgomery et al, 2012). Equation (1) generates an R² of 0.8861, adjusted R² of 0.8848, and predictive R² of 0.8778. Such minor differences between these suggests that, due to ideal variable selection, our model is robust in its estimation of missing round number values and is neither under- or over-fitted. In addition, the predicted values generated from Equation (1) are strongly and positively correlated to observed values (Pearson's correlation coefficient= 0.9413). The resulting predicted frequency of observations of trades associated with each of the three-digit profit values are shown in figure A1:2.

Figure A1: 2. The curve generated by Equation (1), fitted over 720 points of realised profit, with round number profits ending in 0 and 5 discarded.

Three Digit Profit, 0 & 5 Removed

Using Equation (1) to predict the missing data points when the rightmost digits are round numbers, we construct the contingency table shown in table A2: 2.

No. Data Points	Middle Digit/Rightmost Digit	Expected Frequency	Observed Frequency
9	0/0	12,034.64	93,480
		(1.79%)	(13.90%
9	5/0	6,050.93	37,595
		(0.90%)	(5.59%)
90	Other/0	52,912.06	166,761
		(7.87%)	(24.80%)
9	0/5	11,160.61	13,688
		(1.66%)	(2.04%)
9	5/5	5,714.77	5,675

Table A1: 2. Contingency	Table generated f	rom expected values	estimated by Equation (1)

5

		(0.85%)	(0.84%)
90	Other/5	49,752.12	62,363
		(7.40%)	(9.28%)
90	0/Other	89,688.29	52,098
		(13.34%)	(7.75%)
90	5/Other	45,852.63	25,689
		(6.82%)	(3.82%)
504	Other/Other	3,99,159.95	214,977
		(59.37%)	(31.96%)

Pearson's goodness of fit test for table, $\chi^2(8, N = 672,326) = 1,074,000.00, p < 0.001^{**}$ rightmost digit. *Post hoc* two-sided proportions test of the combinations *Other/0 and Other/5* have an observed frequency more than the expected frequency ($\chi^2(1, N = 672,326) = 70,524.00, p = <0.001$ and $\chi^2(1, N = 672,326) = 1,547.3, p = <0.001$). By contrast, *0/Other* and *5/Other* have an observed frequency less than the expected frequency ($\chi^2(1, N = 672,326) = 11,140.00, p = <0.001$) and $\chi^2(1, N = 672,326) = 6,001.08, p = <0.001$).

The results of the two-sided proportion tests suggest that the rightmost digit being a round number is more salient than the middle digit in determining when a trade is realised. In particular, the combinations *0/Other* and *5/Other* represent potential round-number bias in the middle digit, while the combinations *Other/0* and *5/Other* represent round-number bias in only the rightmost digit. Our results tell us that, when given a choice between the middle digit or the rightmost digit of realised profit being a round number, investors primarily focus on the latter. Given this evidence, and the fact that the vast majority of trades end in only a two digit (or less) profit, we focus all our analysis for the entire dataset of 7,314,570 trades on the rightmost digit of profit.

2. Appendix 2

Table A2:1. Distribution of Rightmost Digit of Profit and Associated Two-sided Proportion	S
Tests.	

Rightmost Digit	Expected Frequency	Profit Observed	χ^2	DF	Adjusted p-value
0	731,457	1,561,368	356,6230.00	1	0.000**
	(10%)	(21.35%)			
1	731,457	821,214	5,804.60	1	0.000**
	(10%)	(11.23%)			
2	731,457	899,110	19,400.00	1	0.000**
	(10%)	(12.29%)			
3	731,457	631,272	8,121.80	1	0.000**
	(10%)	(8.63%)			
4	731,457	690,524	1,305.10	1	0.000**
	(10%)	(9.44%)			
5	731,457	850,132	9,984.10	1	0.000**
	(10%)	(11.62%)			
6	731,457	598,615	14,594.00	1	0.000**
	(10%)	(8.18%)			
7	731,457	436,336	81,052.00	1	0.000**
	(10%)	(5.97%)			
8	731,457	482,366	55,741.00	1	0.000**
	(10%)	(6.59%)			
9	731,457	343,633	151,000.00	1	0.000**
	(10%)	(4.70%)			

Pearson's goodness of fit test for Table 1, $\chi^2(9) = 460,000.00$, p =<0.001**, N = 7,314,570. Adjusted p-values obtained from the Holm-Bonferroni method. Significant at 99% confidence interval **

Table A2:2. Distribution	of Rightmost	Digit of	Closing	Price	and	Associated	Two-sided
Proportions Tests							

Rightmost Digit	Expected Frequency	Closing Price Observed	χ²	DF	Adjusted p-value
0	731,457	849,882	9,943.40	1	0.000**
	(10%)	(11.62%)			
1	731,457	691,509	1,242.30	1	0.000**
	(10%)	(9.45%)			

2	731,457	714,251	2,27.21	1	0.000**
3	(10%) 731,457	(9.76%) 710,305	344.21	1	0.000**
U	(10%)	(9.71%)			
4	731,457 (10%)	713,334 (9.75%)	252.21	1	0.000**
5	731,457	787,727	2,325.70	1	0.000**
6	(10%) 731,457	(10.77%) 713,369	251.23	1	0.000**
0	(10%)	(9.75%)	231.23	1	0.000**
7	731,457	713,576	245.49	1	0.000**
8	(10%) 731,457	(9.75%) 716,756	165.61	1	0.000**
0	(10%)	(9.80%)	599.05	1	0 000**
9	731,457 (10%)	703,861 (9.62%)	588.25	1	0.000**

Pearson's goodness of fit test for Table 2, $\chi^2(9) = 29,370.00$, p =<0.001**, N= 7,314,570. Adjusted p-values obtained from the Holm-Bonferroni method. Significant at 99% confidence interval **

Table A2:3. Contingency Table for Profit and Closing Price Rightmost Digit Combinations and Associated Two-sided Proportions Tests Based on 10% Samples of the Whole Sample (731,457 trades per sample: rudimentary bootstrapping)

Digit Profit / Price	Expected Frequency	Frequency Observed ¹	χ²	DF	Adjusted p-value
0/0	7,314.57	18,579	4,987.80	1	0.000**
	(1%)	(2.54%)			
0/5	7,314.57	16,897	3,855.50	1	0.000**
	(1%)	(2.31%)			
0/Other	58,516.56	118,862	23362.00	1	0.000**
	(8%)	(16.25%)			
5/0	7,314.57	10,900	714.27	1	0.000**
	(1%)	(1.49%)			
5/5	7,314.57	9,143	205.22	1	0.000**
	(1%)	(1.25%)			
5/Other	58,516.56	65,319	408.10	1	0.000**
	(8%)	(8.93%)			

Other/0	58,516.56	55,737	73.30	1	0.000**
	(8%)	(7.62%)			
Other/5	58,516.56	53,542	239.06	1	0.000**
	(8%)	(7.32%)			
Other/Other	468,132.48	382,478	20607.00	1	0.000**
	(64%)	(52.29%)			

Pearson's goodness of fit test for Table 1, $\chi^2(8) = 111,360.00$, p =<0.001** N= 731,457. Adjusted p-values obtained from the Holm-Bonferroni method. Significant at 99% confidence interval **.

¹ Observed frequencies are the mean values ten fundamental bootstrapping random samples.

Table A2:4. Distribution of Rightmost Round Digits *0* and *5* for Profit and Closing Price for Traders with the Least and Greatest Number of Trades, with Associated Two-sided Proportions Tests.

Trader	Rightmost	Rightmost	Rightmost	Rightmost	
Classification by Number of	Digit 0	Digit 5	Digit 0	Digit 5	
Trades	Profit	Profit	Price	Price	
Bottom Quartile	Frequency Expected:	Frequency	Frequency Expected:	Frequency	
6,425 traders who	-	Expected:	-	Expected:	
made between	2,634.20 (10%)	2,634.20 (10%)	2,634.20 (10%)	2,634.20 (10%)	
1 to 9 trades				× /	
Total trades: 26,342	Frequency Observed:	Frequency Observed:	Frequency Observed:	Frequency Observed:	
20,312	7,057	2,642	3,367	2,869	
	(26.79%)	(10.03%)	(12.78%)	(10.89%)	
	$(\chi^2(1))$	$(\chi^2(1)$	$(\chi^2(1)$	$(\chi^2(1))$	
	=2,472.30,	=0.001,	=100.71,	=11.09,	
	p =<0.001**.	p =0.9214	p =<0.001**.	p =<0.001**	
	N=26,342)	N=26,342)	N=26,342)	N=26,342)	
Top Decile	Frequency Expected:	Frequency Expected:	Frequency Expected:	Frequency Expected:	
2,570 traders who made between	526,471.10	526,471.10	526,471.10	526,471.10	
	(10%)	(10%)	(10%)	(10%)	
607 to 61,999 trades	Frequency	Frequency	Frequency	Frequency	
Total Trades:	Observed:	Observed:	Observed:	Observed:	
5,264,711	1,177,716	618,603	614,918	569,115	
	(22.37%)	(11.75%)	(11.68%)	(10.81%)	
	$(\chi^2(1))$	(χ ² (1)	(χ ² (1)	(χ ² (1)	
	=29,6930.00,	=8,317.20,	=7,686.90,	= 1,852.50,	
	p =<0.001**.	p =<0.001**.	p =<0.001**.	p =<0.001**	
	N=5,264,711)	N=5,264,711)	N=5,264,711)	N=5,264,711)	
Top One Percent of	Frequency Expected:	Frequency Expected:	Frequency Expected:	Frequency Expected:	
Traders	202,163.70	202,163.70	202,163.70	202,163.70	
257 traders who made between	(10%)	(10%)	(10%)	(10%)	
4,024 to 61,999 trades					

Frequency Observed:	Frequency Observed:	Frequency Observed:	Frequency Observed:
408,573 (20.21%)	219,145 (10.84%)	229,254 (11.34%)	208,835 (10.33%)
(χ ² (1)	(χ ² (1)	(χ ² (1)	(χ ² (1)
=82,171.00,	= 763.98,	=1904.00,	=120.50,
p =<0.001**.	p =<0.001**.	p =<0.001**.	p =<0.001**.
N=2,021,637)	N=2,021,637)	N=2,021,637)	N=2,021,637)
	Observed: 408,573 (20.21%) ($\chi^2(1)$ =82,171.00, p =<0.001**.	Observed:Observed:408,573219,145(20.21%)(10.84%) $(\chi^2(1))$ $(\chi^2(1))$ =82,171.00,= 763.98, $p = < 0.001^{**}$. $p = < 0.001^{**}$.	Observed:Observed:Observed:408,573219,145229,254(20.21%)(10.84%)(11.34%) $(\chi^2(1))$ $(\chi^2(1))$ $(\chi^2(1))$ =82,171.00,= 763.98,=1904.00,p =<0.001**.

Adjusted p-values obtained from the Holm-Bonferroni method. Significant at 99% confidence interval **

Total Trades	Expected Frequency	Frequency Observed	χ²	DF	Adjusted p-value
Realised	451,722.90	892,403	16,7930.00	1	0.000**
Profit:Profit	(10%)	(19.76%)			
4,517,229 trades (61.76%)					
Realised	279,734.10	668,965	192,300.00	1	0.000**
Profit:Loss	(10%)	(23.91%)			
2,797,341 trades (38.24%)					
Closing	451,722.90	495,303	2,240.20	1	0.000**
Price:Profit	(10%)	(10.96%)	2,210.20	1	0.000
4,517,229 trades (61.76%)					
Closing Price:Loss	279,734.10 (10%)	354,579 (12.66%)	9960.30	1	0.000**
2,797,341 trades (38.24%)					

Table A2:5. Comparing the LDE when an Individual Trade is in Profit or Loss for the Metrics of Profit and Closing Price, , Alongside the Two-sided Proportions Tests.

Adjusted p-values obtained from the Holm-Bonferroni method. Significant at 99% confidence interval ** .Results based on the sample of 7,314,570 trades.

Year	Total Trades	Rightmost Digit Profit 0 Expected Frequency	Rightmost Digit Profit 0 Frequency Observed	χ²	DF	Adjusted p-value
2006	9,873	987.30	2,733	1,008.20	1	0.000**
2007	587,044	(10%) 58,704.40 (10%)	(27.68%) 148,112 (25.23%)	46,914.00	1	0.000**
2008	1,050,533	105,053.00 (10%)	214,413	44,148.00	1	0.000**
2009	1,279,137	(10%) 127,913.70 (10%)	(20.41%) 271,491 (20.93%)	61,161.00	1	0.000**
2010	1,546,982	(10%) 154,698.20 (10%)	(20.95%) 352,442 (22.78%)	92,219.00	1	0.000**
2011	1,576,274	(10%) 157,627.40 (10%)	318,250 (20.19%)	63,853.00	1	0.000**
2012	1,058,449	(10%) 105,844.90 (10%)	(19.97%) (19.97%)	41,292.00	1	0.000**
2013*	206,278	20,627.80 (10%)	42,555 (20.63%)	8,985.10	1	0.000**

Table A2:6. Distribution of Rightmost Digit *0* in the Closing Profit of Trades, for each Year Represented in the Sample of 7,314,570 Individual Trades, and Associated Two-sided Proportions Tests.

*The year of 2013 includes trades till March 2013. Adjusted p-values obtained from the Holm-Bonferroni method. Significant at 99% confidence interval **

Table A2:7. Distribution of Rightmost Digit *0* in the Closing Price of Trades, for each Year Represented in the Sample of 7,314,570 Individual Trades, and Associated Two-sided Proportion Tests.

Year Total Rightmost Rightmost Trades Digit Price Digit Price 0 0	χ ² DF	Adjusted p-value
---	-------------------	---------------------

		Expected Frequency	Frequency Observed			
2006	9,873	987.30	1,266	38.63	1	0.000**
		(10%)	(12.82%)			
2007	587,044	58,704.40	71,561	1,427.00	1	0.000**
		(10%)	(12.19%)			
2008	1,050,533	105,053.00	118,009	841.73	1	0.000**
		(10%)	(11.23%)			
2009	1,279,137	127,913.70	156,625	3,259.40	1	0.000**
		(10%)	(12.24%)			
2010	1,546,982	154,698.20	175,428	1,457.00	1	0.000**
		(10%)	(11.34%)			
2011	1,576,274	157,627.40	182,217	1,994.00	1	0.000*:
		(10%)	(11.56%)			
2012	1,058,449	105,844.90	121,192	1,161.90	1	0.000**
		(10%)	(11.45%)			
2013*	206,278	20,627.80	23,584	221.24	1	0.000**
	,	(10%)	(11.43%)			

*The year of 2013 includes trades till March 2013. Adjusted p-values obtained from the Holm-Bonferroni method. Significant at 99% confidence interval **

Table A2:8. Distribution of Rightmost Digit Closing Profit/Price Combinations *0/Other*, for each Rightmost Digit of Closing Price (with Combinations *0/O* and *0/5* provided for Comparative Purposes), and Associated Two-sided Proportion Tests.

Profit/Price 0/Other	Expected Value	Observed Value	χ²	DF	Adjusted p-value
 0/0	73,145.70 (1%)	183,845 (2.51%)	48,536.00	1	0.000**
0/1	73,145.70 (1%)	146,018 (1.99%)	24,598.00	1	0.000**
0/2	73,145.70	152,151	28,138.00	1	0.000**

	(1%)	(2.08%)			
0/3	73,145.70 (1%)	151,494 (2.07%)	27,751.00	1	0.000**
0/4	73,145.70 (1%)	152,262 (2.08%)	28,203.00	1	0.000**
0/5	73,145.70 (1%)	169,769 (2.32%)	39,082.00	1	0.000**
0/6	73,145.70 (1%)	151,990 (2.08%)	28,043.00	1	0.000**
0/7	73,145.70 (1%)	151,870 (2.08%)	27,972.00	1	0.000**
0/8	73,145.70 (1%)	152,618 (2.09%)	28,413.00	1	0.000**
0/9	73,145.70 (1%)	149,351 (2.04%)	26,403.00	1	0.000**

Adjusted p-values obtained from the Holm-Bonferroni method. Significant at 99% confidence interval **. Percentages have been rounded to two digits.

Table A2:9. Distribution of Rightmost Digit Closing Profit/Price Combinations *Other/0*, for each Rightmost Digit of Closing Profit (with Combinations *0/0* and *5/0* provided for Comparative Purposes), and Associated Two-sided Proportion Tests.

Profit/Price Other/0	Expected Value	Observed Value	χ²	DF	Adjusted p-value
0/0	73,145.70 (1%)	183,845 (2.51%)	48,536.00	1	0.000**
1/0	73,145.70 (1%)	89,205 (1.12%)	1,606.20	1	0.000**
2/0	73,145.70 (1%)	101,112 (1.38%)	4,542.00	1	0.000**

3/0	73,145.70 (1%)	71,500 (0.98%)	18.89	1	0.000**
4/0	73,145.70 (1%)	80,155 (1.10%)	323.78	1	0.000**
5/0	73,145.70 (1%)	99,680 (1.37%)	4,122.30	1	0.000**
6/0	73,145.70 (1%)	70,950 (0.96%)	33.76	1	0.000**
7/0	73,145.70 (1%)	52,387 (0.72%)	3462.10	1	0.000**
8/0	73,145.70 (1%)	59,038 (0.81%)	1,519.20	1	0.000**
9/0	73,145.70 (1%)	42,000 (0.57%)	8490.90	1	0.000**

Adjusted p-values obtained from the Holm-Bonferroni method. Significant at 99% confidence interval ** Percentages have been rounded to two digits.

3. References

1. Barros, A.L.B., and G.A. Barreto. 2013. "Building a robust extreme learning machine for classification in the presence of outlier" *International Conference on Hybrid Artificial Intelligence Systems*, *Springer*, *Berlin*, *Heidelberg*:588-597

2. Hopper, T.2014. "Can WE do Better than R-squared?". Accessed, 30 May, 2018 https://tomhopper.me/2014/05/16/can-WE-do-better-than-r-squared/

3. Lin, C.H., and J.W. Wang.2017." Distortion of price discount perceptions through the leftdigit effect". *Marketing Letters* 28: 99-112. **4.** Montgomery, D.C., E.A. Peck, and G.G. Vining.2012. "Introduction to linear regression analysis". *John Wiley and Sons* 821: 223-260

5. Noordin, M.Y., V.C. Venkatesh, S. Sharif, S. Elting, and A. Abdullah.2004. "Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel". *Journal of materials processing technology* 145: 46-58

6. Tarpey, T.2000. "A note on the prediction sum of squares statistic for restricted least squares". *The American Statistician* 54:116-118.