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Pesticides have underpinned significant improvements in global food security, albeit with associated environmental costs.
Currently, the yield benefits of pesticides are threatened as overuse has led to wide-scale evolution of resistance. Despite this
threat, there are no large-scale estimates of crop yield losses or economic costs due to resistance. Here, we combine national-
scale density and resistance data for the weed Alopecurus myosuroides (black-grass) with crop yield maps and an economic
model to estimate that the annual cost of resistance in England is £0.4 billion in lost gross profit (2014 prices) and annual wheat
yield loss due to resistance is 0.8 million tonnes. A total loss of herbicide control against black-grass would cost £1 billion and
3.4 million tonnes of lost wheat yield annually. Worldwide, there are 253 herbicide-resistant weeds, so the global impact of
resistance could be enormous. Our research supports urgent national-scale planning to combat resistance and an incentive for

increasing yields through food-production systems rather than herbicides.

and pesticides), caused by high frequency of application'™, is

a severe and growing economic®, food security’® and public
health crisis*’. In the past, pesticides enabled increases in food pro-
duction but they are increasingly less efficient'®. This is a threat to
B8 global food security. However, there are no large-scale estimates of
the effects of pesticide resistance on crop yields._

Future food security will rely on sustainable intensification”",
which aims to boost yields from the same area of land but with
reduced environmental impact. Pesticide resistance threatens both
these goals: yields are threatened by higher pest densities® and
the environment is threatened because the usual response to resis-
tance has been increased pesticide use'"'>—despite the knowledge
that pesticides harm water and soil quality and biodiversity'*'°.
Increasing population and extreme competition for land are strong
motivations to investigate food security. As pesticide resistance is
implicated in three elements of the United Nation’s water-food-
energy—ecosystems nexus, there is an incentive to assess its effects.

National- and global-scale economic costs of ):(enobiotic resis-
tance are poorly quantified but, where this has been attempted in
human healthcare settings for antimicrobial resistance, costs run
into billions'® or trillions'” of US dollars and even these enormous
numbers are thought to be underestimates’. In agriculture, large-
scale cost estimates are lacking but anecdotal evidence'® com-
bined with crop areas suggests that, in the United States, increased
chemical costs due to glyphosate resistance may exceed US$10
billion annually. Costs due to yield loss would further increase
this figure.

j"he likely sizes of the social, economic and environmental costs
mean that a coordinated global policy response, driving governance
integration across sectors is needed”. In healthcare, the World
Health Organization endorsed a Global Action Plan for antimi-
crobial resistance in 2015; however, there is no equivalent in ani-
mal and crop production. This is despite the fact that agriculture
accounts for 37% of land use globally (World Bank Open Data,
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Q R esistance to xenobiotics (for example, antibiotics, antimycotics

2018), an estimated 4 million tonnes of pesticides are applied world-
wide each year (FAOStat, 2019), resistance to pesticides is well-
documented®-* and there is a long-term upward trend in pesticide
use?. United Nations resistance advice (Guidelines on Prevention
and Management of Pesticide Resistance, FAO 2012) and a hand-
ful of informal, largely agrochemical industry-led, groups exist (for
example, CropLife International, IRAC, AHDB resistance action
groups) but the lack of government involvement means that prob-
lems of resistance continue. Even in healthcare where a global plan
exists, creation of national action plans is hampered by a lack of
evidence, particularly on the true costs of resistance and the cost-
effectiveness of policies”. Determining the national costs associated
with xenobiotic resistance is a critical first step in creating a national
action plan.

We address this issue for herbicide resistance in the United
Kingdom. Mirroring the global state of affairs, the United Kingdom
has a national Antimicrobial Resistance Strategy but no national
resistance policy in place for other classes of xenobiotic such as pes-
ticides. This is despite (1) a éontinuing upward trend in the area to
which pesticide is applied (FERA PUS stats, 2019), (2) evidence that
resistance is affecting output' and (3) UK government awareness
of the issue (POSTnote 501, 2015). Here, we combine a national-
scale:dataset of the density and resistance status of the most eco-
nomically significant weed in western Europe®, black-grass (BG,
Alopecurus myosuroides), with 10 years’ worth of past management
history, corresponding yield data (Fig. 1) and an economic model
(Supplementary Methods) to estimate the economic and food-
production effects of herbicide-resistant BG in England. Using
this approach, we provide a national-scale estimate i)f yield losses Bl
and the full economic costs due to herbicide resistance. We dis-
tinguish between losses due to weed infestation, T (both resistant
and susceptible plants) and losses due to resistant plants, ‘R. Our
results suggest a pressing need for governmental action to address
resistance issues and for other countries to undertake their own
national-scale assessments.
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Costing resistance at the field scale

Estimated yield loss due to BG infestation in winter wheat was, on
average, 0.4 tha™' (Table 1), or 5% of the average estimated potential
wheat yield (8.3tha™") in the absence of BG. We estimated this by
applying yield penalties due to BG infestation (Fig. 1) to the crop
yield estimation component in our economic model (details in
Methods and Supplementary Information). Resistance frequencies
were then used (Methods) to calculate that most of this lost yield
(0.38tha™") was due to resistant plants. At low densities of BG the
yield loss was negligible, whereas at the highest weed densities mean
yield loss was 1.8tha™", 100% of which was due to resistant plants
(Table 1 and Fig. 3).

The mean economic cost of resistance (Cy, defined as the produc-
tion losses and additional costs due to resistant BG) in winter wheat
was £75ha™! at low BG density and £450ha™" at very high density
(Table 1 and Fig. 2c). Estimates of Cy will vary, potentially greatly,
according to the input and output prices used. The costs calculated

here using 2014 prices fepresent 7% and 37%, respectively, of poten-

tial gross profit from winter wheat in these fields in the absence
of resistant BG and compare to average total agricultural costs
(English cereal farms, 2014) of £1,076ha™" (Farm Business Survey
Region Reports, 2019). Across all density states, the mean Cy in win-
ter wheat was £155ha™" (Table 1) or 14% of potential gross profit.
Cy within density states varied widely, ranging from £0-493ha~' in
winter wheat fields with low BG density to £355-773ha™" in fields
with very high densities (raw data not shown). At very high density
states, 100% of the total costs of BG infestation came from resistant
plants (Table 1 and Fig. 3).

Across a rotation, the mean Cy in low density fields was £58ha™’,
and £280ha™' in very high density fields (Table 1). Again, 100% of
the costs were due to resistant plants in fields with very high BG
density, whereas in low density fields just under 70% of costs came
from resistant plants. The per hectare Cy in winter wheat was higher
than the per hectare Cy across a rotation (Table 1 and Fig. 2¢,d) due
to the negative impact of the weed on wheat yield (no yield penal-
ties were applied to other crops in the rotation). Overall, as average
BG density increases, so does the proportion of the cost or yield
loss that is due to resistant plants (Table 1), in line with previous
findings' that resistance drives weed abundance. Field-scale resis-
tance impacts are thus greater in regions with higher BG densities,
especially in winter wheat crops (Fig. 2), and resistance impacts in
the United Kingdom reduce along a gradient from south to north
(see Fig. 4). See Methods for a discussion of the assumptions that
underpin these estimations.

The use of herbicides targeting BG in winter wheat did not dif-
fer across different final (preharvest) densities of weed infestation
(r*,=0.0982, P=0.754; Fig. 3b and Supplementary Fig. 5). Thus, in
fields with low final BG density, herbicide costs constituted 82% of
total costs (this applies to both the cost of infestation C; and to Cy),
whereas in fields with high and very high final BG densities, the big-
gest source of lost income was yield loss (60% and 77% respectively,
Fig. 3). In some of the low density fields, relatively intense herbicide
use will be justified where high levels of susceptibility remain in
the weed population and, therefore, where these herbicides are still
effective in reducing yield loss potential. However, in low density
fields with high levels of herbicide resistance (in our data, 75% of
fields with low and medium BG density had high resistance (>60%
survival) to Atlantis), intense herbicide application may be counter-
productive as (1) herbicide costs will outweigh benefits of BG con-
trol, (2) it will impose an unnecessary environmental burden'>”~*
and (3) it will have the unwanted effect of selecting for even higher
frequencies of resistance within populations"*. In these situations,
areduction in herbicide use may bring economic benefits but would
need to be accompanied by cultural and physical control methods
to maintain low weed population sizes as part of an integrated weed
management programme. We expand on this in the discussion.
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Fig. 1| Estimating yield penalties using black-grass density and winter
wheat yield data. a, The average effect of black-grass density on the yield
of winter wheat. Black points are model-estimated average yields, bars
show 95% Cls generated from 10,000 parametric bootstrap resamples
(some Cls are narrow enough to be obscured by the point; all values and
Cls given in Supplementary Table 2). Grey points show observed yield

for each 20 x 20 m? plot from 17 fields over 4 yr. See Supplementary
Information for individual field estimates across years. b, Average yield
loss of winter wheat relative to the reference state, calculated on the basis
of yield estimates and bootstrap resamples. Reference state, low density
(note the estimate for low density is fixed at O). Percentage reduction for
subsequent density states as follows: medium 0%; high 7.45%; very high
25.60% (Supplementary Table 2). The y axis of b is reversed so that the
direction of the effect of black-grass density is the same between a and b.
Further details in Supplementary Information.

The impact of resistance at a national scale

Total annual wheat yield loss for England was 0.86 million tonnes
(mt; Supplementary Table 5), almost all of which (0.82mt) was due
to resistant plants (Fig. 4a and Supplementary Table 6). Sensitivity
analyses suggest that annual wheat yield losses due to resistant
BG (YLy) in England may be as low as 0.3 mt or as high as 3mt
(Supplementary Table 11) given uncertainties in our yield pen-
alty estimates (further details in Supplementary Information).
Whichever figure we accept, our estimates run counter to global
goals of increased yields’~* and are particularly concerning in view
of the current wheat yield stagnation in northwestern Europe™.
United Kingdom annual domestic wheat consumption hovers
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Fig. 2 | Field-scale costs and yield loss due to resistant black-grass. These estimates were generated by running empirical field management and black-
grass density data (number of fields =66) through BGRI-ECOMOD. a,b, Yield loss due to resistant black-grass (YL, tha="): average field-scale yield losses
in winter wheat (a); maximum field-scale yield loss in winter wheat in the event of total loss of herbicide control (b). c-e, Cost of resistance (G, £ per ha):

average field-scale C; for years in winter wheat crops (c) and all years' data across a rotation (d); maximum field-scale C; in the event of total loss of
herbicide control (e). Fields are overlaid on a map of modelled density (square root) of A. myosuroides averaged over 2015-2017. This density map was
generated by fitting a generalized additive model to the data reported in Hicks et al.', with spatial covariates representing latitude and longitude.

around 15mt (DEFRA); the highest yield loss values from our sen-
sitivity analyses represent nearly a fifth of this.

In terms of economics, the total annual cost of BG infestation
in England was £0.44 billion across all crops (termed rotation
cost from now on; Supplementary Table 5), £0.38 billion per year
of which was due to resistant plants (Fig. 4b and Supplementary
Table 6). In winter wheat crops, C; was £0.35 billion per year, of
which C was £0.31 billion (Fig. 4c and Supplementary Table 6). At
a regional scale, some rotation costs are higher than those in winter
wheat. This is because, although field-scale rotation costs are lower
than those in winter wheat, the total cereal crop area is much larger
than the winter wheat area and so the scaled-up rotation costs are
relatively higher. In the West Midlands (WM) and South East (SE)
of England, the average C; per ha in winter wheat crops was particu-
larly high compared to other regions (WM £387ha™!, SE £270ha™",
EM £159ha~!, EE £206 ha™!, YH £88 ha~!, abbreviations as in Fig. 4);
as a result, the scaled-up costs in these two regions remained higher
in winter wheat than across rotations. Values for the SE region
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should be treated with caution as we used just eight fields from this
region in our analysis and all of them were concentrated in one area
(where there are high densities of resistant BG'; see Supplementary
Fig. 3). The estimates for this region are therefore unlikely to be
representative of the entire region.

Sensitivity analyses showed that annual rotation C, might be
as low as £0.3 billion per year or as high as £0.8 billion per year
(Supplementary Table 11). Nevertheless, even at the lower end, the
costs are large. To put these figures into perspective, total income
from all types of farming in England was £3.9 billion in 2014.
Herbicide resistance is therefore having a severe impact on English
arable farming and these results underscore the need to manage
resistance through coordinated action at a national level.

Potential costs and crop losses

Because resistance is increasing over time and driving BG den-
sity’, we also estimated yield losses and costs in winter wheat under
a total loss of herbicide control (Fig. 2b,e) by assuming that all
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Table 1| Field-scale yield loss and economic costs due to black-grass infestation (I) and resistant plants (R) at different densities of

black-grass in England

Average black-grass Average yield loss in winter wheat? (tha™)

Average cost?® (£ per ha)

density state of field

in winter wheat across rotations

R I R/IP R | R/I R | R/I
Absent/low 0.0(=01,01) 0.0(-01,01) ND 75(56,93) 106 (90, 07 58(44,72) 85(73,98) 0.68
123)

Medium 0.3(0.2,04) 0.4(0.2,04) 0.75 135 (120, 158 (148, 0.85 103 (91,115) 123 (114, 0.84
149) 168) 132)

High 0.8(0.7,09) 0.9(0.8,1.0) 0.89 264 (249, 276 (261, 0.96 185 (173, 193 (182, 0.96
280) 291) 197) 204)

Very high 1.8 (1.7,1.9) 1.8(1.7,1.9) 1.00 450 (434, 450 (434, 1.00 280 (263, 280 (263, 1.00
466) 466) 297) 297)

Mean across all densities 0.38 (0.2, 0.6) 0.41(0.2, 0.6) 0.93 155 (135,174) 178 (152, 0.87 12(92,132) 131(114,148) 0.85

204)

Values are means, estimated by running empirical field management and black-grass density data (number of fields = 66) through BGRI-FCOMOD, see Methods. 95% Cls (generated by bootstrapping) in
brackets. °R/I gives the proportion of the cost of infestation that is due to resistance. “Infestation = resistant + susceptible plants. ND, not Qetermined,
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Fig. 3 | The relative contribution of herbicide costs, lost yield and operations costs to total costs in winter wheat crops. Values are average per hectare
costs estimated by running empirical field management and black-grass density data through BGRI-ECOMOD (number of fields=66). a,b, Costs due to
resistant black-grass plants (a) and costs due to infestation (b). Herbicide costs consider only those herbicide applications targeting black-grass. (Error
bars intentionally omitted as the purpose is to illustrate the contribution of component parts and, when data are presented in this way, error bars of

individual components influence each other and are misleading).

quadrats in every field were in a very high density state and that
100% of costs and yield losses were due to resistant plants (Methods).
Under this scenario of ubiquitous very high BG density, wheat YL
ranged from 1.4 to 2.3tha™" and on average was 2tha™’, represent-
ing over a quarter (28%) of average potential estimated wheat yield
(8.3tha™) in the absence of BG. The C; in winter wheat under this
scenario ranged from £294ha™! to £904ha™!, and on average was
£467ha™'. This means that, if the problem continues unchecked, the
costs of infestation in winter wheat could approach half of the aver-
age agricultural costs on English cereal farms (£1,076ha™"). We do
not suggest that such a scenario will occur; however, it is worth esti-
mating these impacts (1) to illustrate the potential consequences of
inaction and loss of glyphosate and/or pre-emergence BG herbicides
and (2) to present a frame of reference, allowing the extent of the
current situation to be assessed in relation to the worst possible case.

Scaling up these ‘worst-case’ estimates we find that poten-
tial YL, in English winter wheat under a scenario of total loss of

herbicide control is 3.4mtyr~" (95% CI 3.3-3.6 mt; Supplementary
Table 7), representing just under a quarter of UK domestic wheat
consumption. Potential annual rotation Cy is £1 billion (95% CI
£0.9 billion-£1.0 billion; Supplementary Table 7). To present a
more conservative worst-case estimate, we also estimated YL, and
Cy using just those fields in the top quintile and top decile of the
BG density range: these gave potential annual yield losses in winter
wheat of 2.1 mt and 2.6 mt respectively, and rotation Cy of £0.8 bil-
lion (Supplementary Table 8).

A comparison of current and potential yield loss (Supplementary
Tables 6 versus 7) shows that yield loss in the worst-case scenario
could be four to six times greater than it is now, except towards the
northern edge of the BG range where it is seventeen times higher,
reflecting the fact that herbicide-resistant BG is not yet such a
pressing problem in this area. The only region in which current
resistance impacts are closer to potential impacts is in SE England,
where a large proportion of fields have very high average BG
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Fig. 4 | Annual impacts of herbicide-resistant black-grass at regional and national scales. a, Annual winter wheat yield losses due to resistance (YLg).
National YL, given in million tonnes (mt); regional figures in thousand tonnes. b,¢, Annual economic cost of resistance (C) across all crops (b) and in
winter wheat crops (c). National Cy in billion (bn) £s, regional C, in million (m) £s. Figures in brackets are 95% Cls. Regions are UK Government Office
regions: EE, East of England; SE, South East; YH, Yorkshire and the Humber; EM, East Midlands; WM, West Midlands. For each region, the mean per
hectare Cy and YL, at each black-grass density state were multiplied by the crop area estimated to have that density state. For full details of scaling-up

process see Methods and Supplementary Information.

density (Supplementary Fig. 3); however, as previously mentioned,
estimates for the SE are unlikely to be representative of the region
and should be viewed with caution.

Under the worst-case scenario, C; is around two-and-a-half
to three times the current Cy, except in winter wheat in northern
regions: here, potential Cy in winter wheat is around nine times cur-
rent Cy, again reflecting the fact that resistance is not yet so wide-
spread in northern areas of England. To contextualize these costs izn
terms of the agrochemicals market, in 2014 herbicides contributed
£0.2 billion to the United Kingdom National Agrochemical Market,
the total value of which was £0.6 billion (ECPA Industry Statistics,
2018). Some of our estimates of the costs of resistance in England
are greater than the entire value of herbicides to the UK agrochemi-
cals market.

Our estimates indicate that low BG densities currently account
for just over half of England’s wheat-producing area (Supplementary
Fig. 3) so there is a strong incentive to prevent densities increasing.
In Europe, resistant BG has been recorded in 14 countries, includ-
ing Europe’s top wheat producers (Germany and France; Eurostat,
2018). European wheat consumption is forecast to increase slightly
over the next 10yr, so we urge wheat-producing countries to under-
take their own national-scale resistance impact assessments.

Discussion

Here we report a national-scale estimate of the impacts of human-
induced evolution of herbicide resistance. The scale of our findings
illustrates that pesticide resistance has implications for national

NATURE SUSTAINABILITY | www.nature.com/natsustain

food security and economics. Annual potential losses of the order
of 3mt and £1 billion are large enough that national-scale policy
measures are needed to reduce the impact and spread of resistance.

Resistance management is currently the responsibility of indi-
vidual practitioners, whose collective actions constitute a national
response. However, when pesticides are effective, there is an eco-
nomic incentive for individual practitioners to use them and to crop
mostly high-value crops such as winter wheat. This behaviour is
unsustainable as it drives resistance*, which we show has a negative
impact on crop yields and income nationally. Our results suggest
that leaving resistance management to individual practitioners is
inadequate and that a national, targeted response is required. There
is precedent for regulating pesticide use through environmental and
health policies: there is now an urgent need for national-scale policy
to regulate pesticide use in relation to resistance impacts on yield
and economics.

When designing resistance management policy, governments
should explicitly link economic, agricultural, environmental and
health aspects. Joined-up legislation could encourage ihis: in
Europe, for example, resistance management could be incorporated
into existing legislation such as the EU Directive on the Sustainable
Use of Pesticides (Directive 2009/128/EC), which already legislates
to reduce pesticide risk to human health and the environment.
Integration of these different policy arenas could ensure that legis-
lation for reduced pesticide use based on environmental or health
concerns also delivers resistance management benefits, and vice
versa. From environmental and sustainability policy perspectives,
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the impacts estimated here could be used to further justify, in food
security and economic terms, reduced pesticide use through prac-
tices like integrated pest management (IPM).

Resistance management policy via a national action plan should
aim to (1) reduce the spread of resistance into unaffected areas and
(2) find and communicate, non-chemical ways of reducing high
weed populations in regions that have high resistance. A key aspect
will be to reduce use of, and reliance on, pesticides because use is
driving resistance. Reduced use has been recommended for other
classes of xenobiotics, such as in the management of insect vectors
of human disease and has been implemented for prostate cancer”.
Pesticide use could be reduced by improving crop rotation and
using other IPM practices such as seedbed sanitation, careful choice
of sowing dates and densities, direct sowing, physical control meth-
ods, field hygiene measures and regular monitoring®-*.

Because resistance management could be a contentious issue, a
national action plan should be formulated after public consultation,
consensus-building and collaboration*’. Providing the public with
high-quality evidence and information is crucial to the success of
these consultations: an assessment of the economic outcomes of
reducing herbicide use and of the cost-effectiveness of a range of
potential policies or mitigation strategies, would be a useful next
step, both for the consultation process and subsequent policy design.

Statutory limits on pesticide use will probably be necessary and
incentives and enforcement will be required to change behaviour.
Agricultural policy could be used to incentivize and support farmers
to change their management practices, for example, by stipulating
improved crop rotation to qualify for income support or by provid-
ing support payments during the initial phase of reducing pesticide
use and increasing IPM. This would be especially important where
resistance is not currently a problem and it would be useful to esti-
mate the short-term opportunity cost to individual practitioners of
reducing pesticide use in areas with low resistance. Alternatively,
governments could incorporate resistance management into
Payments for Ecosystem Services schemes (or set up schemes where
none exist) whereby farmers are rewarded for outcomes such as
improved water quality or biodiversity, or maintenance of pesticide
susceptibility in pest populations. Governments could also leverage
commercial interest, for example, by introducing tax incentives for
water companies to set up farmer advisory or support schemes to
reduce pesticide use. Enforcement could take the form of caps on
pesticide use and fines for breaking those limits or for spreading
resistant weed seeds. Additionally, governments could legislate for
disincentives to the herbicide manufacturing industry—for exam-
ple, by higher taxation rates on sales over a threshold volume—and
could reduce the influence of the agrochemicals industry by allocat-
ing public money to fund farm advisory services as well as research
and development.

Finally, any pesticide resistance policy must also target glypho-
sate resistance. Glyphosate-resistant weeds are found on most con-
tinents® but are not yet in the United Kingdom. However, English
farmers are increasingly reliant on glyphosate to control herbicide-
resistant BG and there has been a dramatic increase in its use®,
ramping up the evolutionary pressure on BG to develop resistance
to glyphosate, too™. In the United States, glyphosate resistance is
widespread and the problem dwarfs that being faced with BG in
England. A US-wide assessment of resistance-related costs and yield
losses would inform national food-security planning. Worldwide
there are many pesticide-resistant species’*>*!. Our findings should
be a catalyst to other countries to develop national-scale estimates
of the impacts of resistance as a first step in assessing the need for
their own pesticide resistance strategies.

Methods

Field data. Field management data was obtained for years 2004-2014. Black-grass
density and resistance, and winter wheat yield, were sampled from 2014-2017. For

details see ref. '. Black-grass density states are given in Supplementary Table 10.
To estimate costs of resistance, we used a subset of 66 fields from the full dataset
(138 fields) and field management histories up to 2014. This subset comprised
fields with >3-yr management history and with complete historical data on
tillage operations and herbicide applications. Where soil type was not specified
by the farmer, we extracted soil type from the National Soil Resources Institute
NATMAP1000 database (Soils Data, Cranfield University (NSRI) and for the
Controller of HMSO, 2016). We used BG density data from all 138 fields in the
scaling-up process.

The cost of BG infestation (C;) comes mainly from two factors: (1) the direct
impact of BG on wheat yield through competition; (2) the cost of herbicides
targeting BG (which may also be applied in crops other than wheat) and their
application. There are also some additional, lesser costs, for example those incurred
for an inversion plough. With respect to herbicides, we were interested only
in calculating costs related directly to BG infestation: in the field management
dataset, we therefore identified all herbicide applications specifically targeting
BG. For all other herbicide costs (adjuvants, desiccants and applications not
specifically targeting BG) we calculated an average value per crop from our
dataset and incorporated this into the sundry costs in BGRI-ECOMOD. For the
13 observations where farmers had grown crops not included in BGRI-ECOMOD,
we used proxy crops. Spring oilseed rape was the proxy for borage, millet and
mustard (one observation of each); ware potatoes were the proxy for onions (one
observation); and barley was the proxy for oats (seven observations) and triticale
(two observations).

Economic model. We custom-built an economic model, BGRI-ECOMOD,
capable of incorporating a wide range of farm management options and including
a user-specified yield penalty for varying levels of weed infestation. The model
code supplied incorporates the mean yield penalties from our data (see Fig. 1 and
Supplementary Information); however, we enable users to specify yield penalties
so that BGRI-ECOMOD can be used for different weed species, or be updated

in light of new BG yield penalty data, or for running sensitivity analyses on the
yield loss-weed density function. The model performs gross margin analysis (see
equations (3-16) Supplementary Methods) and incorporates the effect of variables
such as soil type, sowing date, tillage practices and yield penalties associated with
crop sequences. This allows us to estimate the costs associated with a range of
management practices aimed at reducing BG populations. It is built in R (ref. *)
and uses a simple data-entry system. For further details see Supplementary
Information and Code availability.

The baseline for this analysis was harvest 2014 because this was the first year
in which we undertook field surveys of BG density and crop yield. All costings
were therefore made using 2014 prices**” (for example, we assumed a wheat price
of £164t~!, which was the average for feed wheat (£155t™") and milling wheat
(£173t7") in 2014). Prices given on GitHub, see Data availability. For herbicide
prices we calculated mean values from our dataset: selective herbicides targeting
BG=£19.501"", glyphosate =£2.431"". Estimates of the cost of resistance will
vary, potentially greatly, as input prices (especially herbicide) and output prices
(especially winter wheat) change each year.

The model can be run for multiple fields and years. This makes it useful for
estimating economic impacts of current and historical weed infestations, for
working with very large datasets—thereby enabling more reliable up-scaling to
policy-relevant scales—and for aiding within-year decision-making at the field
scale or multiyear planning at a farm or landscape scale.

Estimating yield loss due to black-grass. High-resolution yield data, available for 17
fields from years 2014-2017 (Supplementary Fig. 1), were used to estimate the BG
density-wheat yield relationship (Fig. 1 and Supplementary Table 1) using a mixed
effects model fitted using the Imer() function in the Ime4 library* in R (ref. **;

model details in Supplementary Methods and Supplementary Fig. 2). From this
model we predicted mean yield at each density state in an ‘average’ field (Fig. la

and Supplementary Table 2). Parametric bootstrap 95% confidence intervals (Cls)
around these means were estimated from 10,000 resamples® from the model
posterior with the ‘bootMer()’ function from Ime4. We calculated the percentage
reduction in yield (Fig. 1b) from the reference state (‘low’) for the other three density
states using 1 - (predicted yield for state D/ reference state yield). These estimates

of yield loss are in line with published yield losses due to BG in controlled plot
experiments (Supplementary Table 3). We generated 95% ClIs on the percentage
reduction (used to inform limits in sensitivity analyses) by calculating the percentage
reduction for each density state for each of the 10,000 bootstrap samples, then taking
the 95% quantiles of those distributions of estimated percentage reductions. The
resultant yield penalties applied in BGRI-ECOMOD are given in Supplementary
Table 2. Further methodological details in Supplementary Information.

Estimating field-scale Cy and YL;. Our aim was to estimate the average cost and
yield loss per hectare for different densities of resistant BG at a baseline point in
time (2014, see above). Costs were calculated using 2014 prices (and so will differ if
using prices from other years).

Stage 1 was to estimate costs and yield losses due to BG infestation (I). First,
we derived a yield penalty for each weed density state as described above and
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applied them as parameters in BGRI-ECOMOD. We then ran the historical

field management data and BG density data from the 66 fields through BGRI-
ECOMOD to estimate (1) yield loss due to BG infestation (YL,), and (2) costs due
to yield loss and herbicide application (chemical + operations costs) resulting from
BG infestation (C)), for every field in every year (maximum date range 2004-2014).
We did this by running the model both with and without BG infestation, then
subtracting the estimated gross profit or yield obtained in the presence of BG from
that estimated in the absence of BG (the potential profit or yield).

For wheat, running the model with BG infestation involved four model runs
because different BG density states resulted in different wheat yield penalties,
so we had to run our field management history through the model once for
each density state: in subsequent model runs, BG density for all fields was set at
absent/low, then medium, then high and then very high states, each time using
the observed herbicide and spraying data. For each field we then calculated mean
gross profit and yield weighted by the proportion of each density state in the field
(see Supplementary Fig. 3). Finally, the model was run without BG infestation,
so the density state of all fields was set to absent/low and herbicide applications
and spraying operations targeting BG were set to zero. The weighted mean gross
profit (or yield) was then subtracted from the potential profit (or yield) to give a
cost and yield loss due to BG infestation in winter wheat crops for each field. For
other crops the process was simpler as BG density and yield were not surveyed.
Therefore, to estimate C; across all crops (which, for any given field, is effectively C,
across a rotation), the model was run only twice, with and without BG infestation,
and then the calculated costs were averaged over the number of year’s management
history for each field, giving a mean rotation C, for each field.

Stage 2 was the estimation of costs and yield losses due to resistant (R) plants.
For each field, the frequency of resistance to mesosulfuron was then used to
calculate the proportion of the costs or yield losses that were due to R plants,
giving a cost of resistance (Cy) and yield loss due to resistance (YLy). We chose
the frequency of resistance to mesosulfuron because, of three actives tested,
mesosulfuron (an ALS inhibitor) was the strongest driver of BG abundance in our
fields in 2014 (D.C. et al., manuscript in preparation). Furthermore, ALS target-site
resistance was identified as a particular concern back in 2007*.

Using these field-scale estimates, for both winter wheat crops and rotations,
we derived an average Cy and YL, per hectare for each of the four weed density
states. This was our baseline Cy and YL,. Further methodological details given in
Supplementary Fig. 3.

To estimate the worst-case scenario in winter wheat crops (cost and yield loss
under a total loss of herbicide control), we used the methodology described in
(2) above but assumed in the second model run that all quadrats in every field
were in a very high density state. Because at very high density 100% of costs and
yield losses were due to resistant plants, we assumed 100% of costs and yield loss
were due to resistance. Herbicide applications remained unchanged—we used the
herbicide application data from the management history—although, in reality,
where BG was initially absent herbicide applications would have been likely to
increase. The resulting per hectare costs differ very slightly to those calculated
previously for very high density states because the management history data of all
fields was used in this worst-case estimate, rather than the data from just those
fields with very high average density states. We also made two more-conservative
estimates of a worst-case scenario by scaling up the average costs and yield losses
from fields in the top decile and top quintile of observed BG density states.

The relative contribution of herbicide application, yield loss and operations
costs to overall cost in winter wheat crops (Fig. 3) was assessed by extracting
individual components from ECOMOD output (output generated by running
empirical field management data from 66 fields through ECOMOD, as described
above). The effect of weed density on herbicide use in winter wheat crops
was assessed using a generalized linear mixed effects model and performing a
likelihood ratio test using maximum-likelihood simplification of the minimal
adequate REML model. The model was fit with the Imer function in package Ime4
(ref. **) and included farm as a random effect to account for multiple fields on the
same farm. Model fit was assessed by visual inspection of residual plots, which
indicated no signs of heteroscedasticity or non-normality.

Scaling up the cost of resistance. Fields were chosen to be representative of
UK arable farming. Farms were predominantly arable, the geographic range
(Oxfordshire to Yorkshire) encompassed the main winter wheat-growing areas
of the United Kingdom, and a range of farm sizes was included. Within farms,
field selection was based on those that were in winter wheat in the first survey
year. Farmers were asked to select their ‘best’ and ‘worst’ fields in terms of BG
infestation. We therefore assumed fields to be representative of both arable
farming and BG resistance and density distributions within our wider study area
and in England as a whole (evidence for which can be seen in that ECOMOD
provides similar gross profit estimates to those in the Farm Business Survey™,
Supplementary Table 4). We scaled up the costs of resistance accordingly.

In winger wheat, Cy and YL were scaled up to regional winter wheat areas
(DEFRA, %014). For each region, we estimated the area of wheat at each BG density
state by taking the proportion of that region’s surveyed fields at each density state,
then multiplying the regional wheat area by these proportions (Supplementary
Fig. 3; all 138 fields in the dataset were used in this process). Next, for each density
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state and region, these wheat cropping areas were used to scale up the per hectare
Cg and YLy (Supplementary Methods, equation (1)). For each region, costs for
each density state were summed to give a regional total (Supplementary Methods,
equation (2)). This methodology ensures that the up-scaling of costs and yield
losses in winter wheat better reflects regional differences in BG density'. The costs
across rotations were scaled up directly to regional cereal cropping areas (DEFRA,
2014) as we have no data on BG density in crops other than wheat. Further details
in Supplementary Methods.

Assumptions. We assume that the herbicide-resistant BG phenotype is present
in every field, based on previous work' which found that only 1% of fields in
our dataset had no resistance to any of the three herbicides tested. Furthermore,
of the 126 fields from our dataset with the best-quality phenotyping data (these
include northern fields, where resistance is less of a problem), only one field had
<10% survival when fenoxaprop was applied at field rate. We are confident that
that there is some level of herbicide survival in almost every field. In terms of the
effect of herbicide, we assume that resistant (R) plants survive a field-relevant
dose of herbicide. At the individual scale this means that R is binary (0|1) after
herbicide. At the population scale it is more continuous (0-1): herbicide reduces
BG abundance by the proportion of susceptible (S) individuals.

We assume that herbicide does not drive the BG seedbank to zero before the
field evolves resistance. Weed eradication using herbicide alone is almost always
impossible due to spatial and temporal refuges from herbicide treatments (for
example, field margins, seedbank, asynchronous germination and transfer of
weed seed between fields on machinery), so there are almost inevitably herbicide
‘escapes’ capable of maintaining a population. More broadly, feasibility studies
of general weed eradication programmes have highlighted the concerted and
prolonged effort required for eradication to be successful’'. Despite relatively small
field sizes, this degree of effort is unlikely to be met for most farms, particularly
using herbicide alone.

We assume that the resistant BG phenotype has the same impact on yield
as the susceptible wildtype. There is good evidence illustrating how limited
the effects of both non-target-site resistance (NTSR) and some predominant
target-site resistance (TSR) mutations are on relative performance of R and S BG
biotypes™~>* and thus any influence on competition with the crop is likely to be
negligible. Comparisons of NTSR and susceptible BG found no consistent fitness
costs, either when grown alone or in competition with winter wheat™"*. In a study
of three ACCase TSR mutations in BG™, one mutant allele (Gly-2078) did result
in a small reduction in biomass and seed production; however, this mutation
is rare, with a frequency of only 0.34% based on previous genotyping of 8,256
haplotypes from UK BG*. Additionally, there is some evidence that the small
fitness costs associated with this mutation are rapidly lost in BG populations due
to compensatory evolution®. Two mutations (Leu-1781 and Asn-2041), which
are considerably more common in UK BG™, had no effect on vegetative biomass,
height or seed production compared to S wildtype plants. We are thus confident
in our assumption that R phenotypes of BG have the same impact on yield as
the S wildtype.

To calculate Cy across the time span of our dataset (2004-2014) we assumed
that the density state of a field as recorded in 2014 also applied to all the preceding
years for which we had management history data (we had no density data pre-
2014). Hicks et al.' found slight evidence for a within-field increase in density
between 2014 and 2016, and showed that resistance is driving BG density.
However, this increase in density is not at a magnitude to change the categorical
density state of a field unless over a fairly long timescale and could well simply
represent normal inter-annual fluctuations. To test the validity of using the entire
time span, we re-ran the analysis on just the later part of the time series (2010-
2014 inclusive). Although this gave slightly higher costs (Supplementary Table 9),
the costs estimated using 2010-2014 data fell within the 95% CIs estimated using
2004-2014 data, indicating that the assumption holds here.

To estimate the worst-case scenario in winter wheat crops, we assumed all
quadrats in every field were at very high density state and that resistant plants were
responsible for 100% of costs and yield losses. This scenario would arise only if no
action were taken to address current problems of herbicide resistance and assumes
that farmers keep applying herbicide even once its efficacy is limited. Although
there is evidence for these types of behaviours"”*, this scenario is not anticipated
and we present it only to highlight the worst possible effects of inaction.

Model testing and evaluation. Model tests were carried out on yield and gross
margin. For evaluation of yield estimates, we first removed from the dataset

any observations (n=13) where a farmer grew a crop not modelled by BGRI-
ECOMOD. The model accurately estimated yield both with (R?=0.91, slope =1.05;
Supplementary Fig. 4) and without (R?=0.97, slope=1.05, Supplementary Fig. 4)
failed crops in the dataset (BGRI-ECOMOD is unable to predict crop failure).
We also evaluated yield estimates without the heavy crops (potatoes, sugar beet)
to remove their influence on the relationship: the model still estimated yield well
(R?=0.74, slope=1.01). Estimated regional gross margin fell within the 95% Cls
for the regional values obtained from Farm Business Survey data (Supplementary
Table 4). Furthermore, the model was robust to sensitivity testing on tractor work
rates during different tillage operations, which was the management variable for
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which published data were lacking. We varied the proportions used to calculate
tillage work rates in relation to ploughing work rate: the range tested was +30% to
—30% (£5%, +10%, +20% and +30%) of initial values. There was no effect on the
per hectare C; (results not shown).

The model was, however, sensitive to the yield penalty applied for BG
infestation. We observed considerable variability in the yield loss-weed density
relationship (Supplementary Fig. 1), especially at the highest density, and so
ran a sensitivity analysis based on the extremes from our data and the literature
(Supplementary Table 10). The consequences of using different yield penalties are
given in the results and in Supplementary Table 11. Full details of model tests and
sensitivity analyses are given in Supplementary Methods.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Model data and input template are available at https://github.com/alexavarah/
BGRI-ECOMOD. Data used to generate the yield penalty can be accessed at https://
github.com/alexavarah/BGcosts. The field management dataset has been deposited
in the University of Sheffield Online Research data archive (ORDA) and can be
accessed at https://figshare.com/s/eb21f4d1862741d50ceb.

Code availability
Model code is available at https://github.com/alexavarah/BGRI-ECOMOD.
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Ecological, evolutionary & environmental sciences study design
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Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

We used large-scale farm management data and black-grass (Alopecurus myosuroides) density survey data, plus a small yield loss
survey dataset which was partly from a previously published study (Hicks, H. L. et al. Nat. Ecol. Evol. 2, 529-536 (2018)), and a dataset
of resistance frequencies in the black-grass populations used in the study. From the yield loss survey data we estimated a yield
penalty due to black-grass and used this, together with the farm management and weed density data, to estimate the costs and yield
losses due to black-grass infestation using a custom-built economic model. We then applied resistance frequencies to model output
to calculate the proportion of losses due to herbicide-resistant black-grass in England.

As in Hicks et al. (2018, Nature Eco & Evo): The sample sizes for the survey work were based on previous surveys of similar size and
scope. The sample size for the experiments were based on previous experiments in other species that yielded reliable results.
FARM MANAGEMENT DATA: we used a subset of 66 fields on 35 farms from a previously published study (Hicks et al. 2018, Nature
Eco & Evo).

WEED DENSITY SURVEYS: 138 fields. See Hicks et al. (2018, Nature Eco & Evo) for details.

YIELD LOSS DUE TO BLACK-GRASS: 17 fields over 4 years (2014-2017) for which high resolution yield data was available - for each of
these fields the entire field was surveyed.

RESISTANCE FREQUENCY DATA: frequency of resistance to mesosulfuron was assessed for the black-grass population in each of the
66 fields used.

FARM MANAGEMENT DATA: from Hicks et al (Nature Eco & Evo, 2018): "Study sites were selected to cover a large geographic range,
and to include a variety of farm sizes, crop rotations and management strategies within each region. Two fields were selected on
each farm, one known to have large black-grass populations and one with a smaller weed population. For accurate comparison, all
fields selected were cropped with winter wheat for harvest in 2014.... "

WEED DENSITY SURVEYS: from Hicks et al (Nature Eco & Evo, 2018): "One hundred and thirty-eight fields with black-grass present
were censused in a six-week period from 1 July 2014.....Fields were divided into contiguous 20 x 20 m grid squares and weed density
was estimated in each grid square. The surveys followed a density-structured approach, recording the density state of black-grass
rather than numerical abundance."

YIELD LOSS DUE TO BLACK-GRASS: Entire field sampled by obtaining yield maps from combine harvester data, plus black-grass density
surveys as described above. See Hicks et al. (2018, Nature Eco & Evo).

RESISTANCE TESTING: from Hicks et al (Nature Eco & Evo, 2018): "Black-grass seeds were collected from ten different locations
within each field surveyed in 2014, using a semi-random seed collection strategy..."

FARM MANAGEMENT DATA: from Hicks et al (Nature Eco & Evo, 2018): "Historical field management data were requested for each
of the 138 fields that we surveyed for weed density. Data were available for 96 fields and up to 10 years of data were collated for
each field. For each year, we recorded the following: crop, first cultivation type and herbicide applications (product name and date of
application)." We extracted soil type for each field from the National Soil Resources Institute NATMAP1000 database.

WEED DENSITY SURVEYS: From Hicks et al (Nature Eco & Evo, 2018): "Fields were divided into contiguous 20x20 m grid squares and
weed density was estimated in each grid square. The surveys followed a density-structured approach, recording the density state of
black-grass rather than numerical abundance. Each grid square was assigned to 1 of 5 density states that correspond to the number
of plants per 20mx20m square: O (absent), 1 (1-160 plants), 2 (160-450 plants), 3 (450-1,450 plants) and 4 (1,450+plants). These
density states have been shown to accurately capture the variation within field populations and the 20x20 m grid size sufficient to be
representative of 1 m2 subplots where black-grass plants were physically counted. Areas within fields that were sprayed off or cut
early were classified as state 4, to reflect management for very high levels of black-grass infestation."

YIELD LOSS DUE TO BLACK-GRASS: combine harvester data. See Hicks et al. (2018, Nature Eco & Evo).

RESISTANCE ASSAYS: from Hicks et al (2018, Nature Eco & Evo): "A. myosuroides seedlings were germinated and allowed to grow for
18-21 days until reaching the 3-leaf stage before spraying with herbicide. We tested for resistance to 3 herbicides at the following
rates: Atlantis (mesosulfuron + iodosulfuron at 300 g ha-1), Cheetah (fenoxaprop at 1.25 | ha-1) and Laser (cycloxydim at 0.75 | ha
-1)....Plants remained in the glasshouse for three weeks following herbicide treatment, at which point plant mortality was recorded
before harvesting above-ground biomass from each pot. Plant material was dried at 80 °C for 48 h before weighing..."

138 fields from across England were surveyed during a six-week period from 1 July 2014. Field management history ranged from 3
years to 10 years. Yield penalty was estimated from data from 17 fields, from 2014-2017, across counties from Oxfordshire to
Yorkshire in the north and Norfolk in the east.

Of the fields for which we obtained management history, those with fewer than 3 years' management history and those lacking yield,
tillage or herbicide application data were excluded from the modelling. Density data from all 138 fields were used in the scaling-up

process.

Not relevant.
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Randomization Observational study: we did not assign to groups.

Blinding As above: this is an observational study.

Did the study involve field work?  [X]Yes [ ] No

Field work, collection and transport

Field conditions Wheat fields, summers of 2014-2017
Location 138 wheat fields across England, exact locations not available for privacy reasons.
Access and import/export not applicable

Disturbance none
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Reporting for specific materials, systems and methods

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

}X{ |:| Unique biological materials |:| ChIP-seq

}X{ |:| Antibodies |:| Flow cytometry

}X{ |:| Eukaryotic cell lines |:| MRI-based neuroimaging
& |:| Palaeontology

|:| Animals and other organisms

% |:| Human research participants
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