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Abstract   

Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. TGF-β1/Smad3 

signalling plays a major pathological role in DN; however, the contribution of Smad4 has not 

been examined. Knock-down of Smad4 expression in the kidney using an anti-Smad4 locked 

nucleic acid halted progressive podocyte damage and glomerulosclerosis in mouse type 2 DN, 

suggesting a pathogenic role of Smad4 in podocytes. We identified up-regulation of Smad4 in 

podocytes in human and mouse DN. Next, conditional Smad4 deletion in podocytes was 

shown to protected mice from type 2 DN independent of obesity. Mechanistically, 

hyperglycaemia induces Smad4 localisation to mitochondria in podocytes resulting in 

reduced glycolysis and oxidative phosphorylation, and increased production of reactive 

oxygen species. This operates, in part, via direct binding of Smad4 to the glycolytic enzyme 

PKM2 to reduce the active tetrameric form of PKM2. In addition, Smad4 interacts with 

ATPIF1, causing a reduction in ATPIF1 degradation. In conclusion, we have identified a 

novel mitochondrial-based mechanism by which Smad4 causes diabetic podocyte injury.  
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Introduction 

Type 2 diabetes is the most common cause of end-stage renal disease (ESRD) in developed 

countries. Current therapies rely upon treatment of hyperglycaemia and control of 

hypertension, focusing on inhibition of the renin-angiotensin-aldosterone system (RAAS) [1]. 

Despite attempts at optimal blood glucose and blood pressure control, diabetic nephropathy 

(DN) develops in many patients [2, 3], indicating that additional approaches are needed to 

halt the development and progression of DN. 

TGF-β1 regulates a diverse range of cellular responses [4], including proliferation, wound 

healing, differentiation, fibrosis, apoptosis and metabolism. Studies in human and 

experimental DN have identified a key role for TGF-β1 in the development and progression 

of DN [5]. However, systemic targeting of TGF-β1 carries significant risks as demonstrated 

by the severe organ inflammation and early lethality seen in mice lacking Tgfb1 [6], Tgfbr1 

[7], or lacking Tgfbr2 in T cells [8]. Therefore, approaches are need to target factors 

downstream of TGF-β1 and its receptor to suppress disease development. 

TGF-β1 exerts its major biological effects through its cell surface receptors; TGF-βRI and 

TGF-βRII [4]. Upon TGF-β1 binding, the TGF-βRI phosphorylates Smad2 and Smad3 which 

then oligomerize with Smad4 to form a complex that translocates into the nucleus. Smad3 

and/or Smad4 can directly bind to DNA sequences or cofactors to regulate transcription of 

their target genes [4]. Global deletion of Smad2 or Smad4 is lethal, whereas Smad3 deficient 

mice are viable [9], leading to a major focus on TGF-β1/Smad3 signalling. Mice lacking 

Smad3 are resistant in many models of tissue fibrosis [10]. In particular, Smad3 deficient 

mice are protected from albuminuria and renal fibrosis in type 1 DN [11], and are resistance 

to high fat diet (HFD) induced obesity, insulin resistance and diabetes [12, 13]. In addition, 

Smad3 deficiency protects mice from HFD-induced kidney disease [14]. By contrast, little is 
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known about Smad4 in diabetes or DN. Blockade of Smad4 in pancreatic beta cells 

attenuated HFD-induced glucose intolerance, but not insulin resistance [15], while Smad4 

protein levels in skeletal muscle are up-regulated in the obese subjects compared to the lean 

subjects [16]. Of note, activation of AMP-activated protein kinase (AMPK) inhibits nuclear 

translocation of Smad4, reduces mesangial matrix accumulation and early DN [17]. In 

addition, studies in colon cancer cells show that Smad4 deficiency increases aerobic 

glycolysis and enhances cell migration [18]. Taken together, these lines of evidence suggest 

that Smad4 may play a distinct role in metabolism which could be relevant to obesity and 

type 2 diabetes. Therefore, the aim of the current study was to determine whether Smad4 

plays a pathologic role in type 2 DN.   

We investigated Smad4 function in kidney disease in a well validated mouse model of 

accelerated type 2 diabetes which employs HFD and a single low dose streptozotocin (STZ) 

injection [19-28]. The HFD/STZ model was performed in hypertensive eNOS deficient mice 

which have increased susceptibility to diabetic kidney disease [29-31]. Knock-down of 

Smad4 expression in the kidney halted the progression of DN. Furthermore, conditional 

Smad4 deletion in podocytes was sufficient to protect against DN, without affecting obesity. 

Under diabetic conditions, Smad4 was present in podocyte mitochondria in association with 

reduced glycolysis and oxidative phosphorylation (OXPHOS), and increased production of 

reactive oxygen species. We show that Smad4 interacts directly with the rate-limiting 

glycolytic enzyme PKM2 and with ATPase Inhibitory Factor 1 (ATPIF1) to regulate 

glycolysis and OXPHOS in podocytes, respectively. In summary, our study uncovers both a 

pathologic role and a novel mechanism of action by which Smad4 in podocytes promotes 

kidney disease in type 2 diabetes. 
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Results 

Knock-down of Smad4 in the kidney improves renal function and halts progression of 

type 2 DN 

To investigate the role of Smad4 in the progression of type 2 DN, we used systemic 

administration of a Locked Nucleic Acid (LNA) to knock-down Smad4 mRNA and protein 

expression in the kidney. LNA are nucleic acid analogues in which the ribose ring is “locked” 

by a methylene bridge [32,33], resulting in increased target specificity and resistance to both 

exonucleases and endonucleases, giving excellent stability in vivo[34-36]. In particular, LNA 

anti-sense oligonucleotides exhibit preferential uptake by the kidney[37, 38]. 

 

First, we validated efficient Smad4 knock-down in cultured podocytes 4 days after the 

addition of Smad4 LNA, while control LNA did not affect Smad4 expression (Fig. 1A). Next, 

we sought to knock-down Smad4 in type 2 diabetes with established kidney disease. In this 

model, hypertensive eNOS-/- mice on the C57BL/6J background are placed on a high fat diet 

(HFD) for 30 weeks with a single STZ injection on week 8 to further increase blood glucose 

levels to diabetic state while remaining hyperinsulinaemia, a characteristic of type 2 diabetes 

[19-31]. This regimen results in hyperglycaemia, hyperinsulinaemia, albuminuria, 

glomerulosclerosis and reduced kidney function (Suppl. Fig 1). Groups of 8 mice were 

treated with 10mg/kg Smad4 LNA or control LNA (CTL LNA) by once weekly 

intraperitoneal injection from week 24 until being killed at week 30 (Fig. 1B). Smad4 LNA 

efficiently down-regulated Smad4 protein levels in the kidney, without affecting protein 

levels of Smad3 or the glycolysis enzyme, PKM2 (Fig. 1C&D). In addition, we demonstrated 

efficient knock-down of Smad4 in podocytes isolated from these mice (Fig. 1E). By contrast, 

Smad4 expression in liver, lung and spleen was unaffected by Smad4 LNA treatment (Fig 
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1F-H). Body weight, glucose intolerance and hyperglycemia were equivalent in the LNA 

treated groups as shown by HbA1c levels (Fig. 1I & Suppl. Fig 2). CTL LNA treated mice 

exhibited substantial podocyte damage at week 30 as shown by a reduction in the number of 

podocytes (defined by p57 immunostaining) and by a reduction in the area of staining for the 

podocyte marker, synaptopodin (Fig 1J&K and Suppl. Fig 3A-C). Smad4 LNA treatment 

also significantly reduced the severity of glomerulosclerosis compared to CTL LNA 

treatment as illustrated by PAS staining and quantified using collagen IV deposition (Fig. 1L-

O and Suppl. Fig 3D-F). In addition, Smad4 LNA treatment significantly reduced 

albuminuria (urine albumin to creatinine ratio) and improved renal function (serum cystatin C 

levels) in established DN compared to CTL LNA (Fig. 1P&Q). Taken together, these data 

demonstrate that administration of Smad4 LNA can selectively target Smad4 expression in 

the kidney and halt the progression of established DN, independent of the diabetic state. 

 

Upregulation of Smad4 in podocytes in type 2 DN 

The protective effects of Smad4 LNA in type 2 DN could be accounted for, at least in part, by 

protecting podocytes from injury. Therefore, we examined podocyte Smad4 expression in 

human and mouse DN. Confocal microscopy showed Smad4 staining in glomerular cells, 

including WT1+ podocytes, in normal human kidney, with relatively little co-localisation of 

Smad4 with the mitochondrial marker Tom20 (Fig 2A, C and E). Note that the WT1 

antibody used recognizes an isoform of WT1 present in the cytoplasm, not in the nucleus, of 

podocytes [39, 40]. A marked increase in Smad4 expression was evident in glomerular 

podocytes in diabetic nephropathy, with co-localisation of Smad4 and Tom20 evident in 

some cells (Fig 2B, D and F).  
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Smad4 staining is also evident in some podocytes in normal mouse kidney, with little co-

localisation of Smad4 with Tom20 (Fig 2G, I and K). However, diabetic kidneys exhibited 

up-regulation of Smad4 in glomeruli, with some Smad4 protein clearly co-localising with 

Tom20 in some glomerular cells, including podocyte-like cells (Fig 2H, J and L). Up-

regulation of Smad4 in podocytes is a relatively early event in mouse DN, with Western 

blotting of isolated podocytes showing increased Smad4 protein levels after 4 weeks of 

diabetes (Fig 2M-O). These findings suggest a potential role for Smad4 in podocyte 

metabolism.  

 

Smad4 deficiency in podocytes preserves renal function and protects mice from 

glomerulosclerosis in type 2 DN 

To specifically address the question of whether Smad4 affects podocyte function in type 2 

DN, we generated eNOS
-/-

 mice with Smad4 deletion in podocytes (eNOS
-/-

;PodCre-

Smad4
flox/flox

 mice) on the C57BL/6J background. Mice lacking Smad4 in podocytes have a 

normal phenotype. We then induced type 2 DN using the 30 week HFD/STZ model in eNOS
-

/-
;PodCre-Smad4

-/-
 and eNOS

-/-
;PodCre littermate controls. Both mouse genotypes developed 

equivalent obesity, elevated blood glucose and HbA1c levels, hyperinsulinaemia and glucose 

intolerance (Suppl Fig 4A-F). To validate conditional Smad4 deletion, podocytes were 

isolated from diabetic and non-diabetic control kidneys by flow cytometry. Western blot 

analysis confirmed efficient Smad4 deletion in podocytes from eNOS
-/-

;PodCre-Smad4
-/-

 

mice (Fig 3A). Compared to control diabetic mice, diabetic eNOS
-/-

;PodCre-Smad4
-/-

 mice 

were substantially protection against podocyte damage in terms of loss of p57+ podocytes 

and down-regulation of the podocyte specific protein, nephrin (Fig 3B-D). Control diabetic 

mice exhibited glomerular hypertrophy, mesangial matrix expansion (PAS staining), 

glomerulosclerosis (increased glomerular collagen IV deposition), reduced renal function 
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(increased serum cystatin C) and albuminuria (increased urine albumin/creatinine ratio) (Fig 

3E-I). By comparison, diabetic eNOS
-/-

;PodCre-Smad4
-/-

 mice showed marked protection 

against mesangial matrix expansion and glomerulosclerosis, although glomerular hypertrophy 

was still evident (Fig 3E-G). In addition, diabetic eNOS
-/-

;PodCre-Smad4
-/-

 mice showed 

improved renal function and reduced albuminuria (Fig 3H&I). Thus, Smad4 deficiency in 

podocytes preserved renal function and protected mice from kidney injury despite unaltered 

diabetes and obesity (Suppl Fig. 4). 

 

Smad4 deficiency in podocytes promotes glycolysis and OXPHOS activity under high 

glucose conditions 

Ozawa et al [41] demonstrated that glycolysis is a major contributor to intracellular ATP 

production in podocytes and that phosphofructokinase, a rate limiting enzyme for glycolysis, 

is expressed in podocyte foot processes. This suggests an important role for glycolysis in 

normal podocyte function, leading us to investigate whether the protective effects of Smad4 

deletion in podocytes are related to glycolysis.  

 

The Seahorse Glycolysis Stress Test demonstrated that glycolysis, glycolytic capacity, 

glycolytic reserve and non-glycolytic acidification were increased in Smad4
-/-

 compared to 

wild type podocytes under both normal (NG, 1g/L D-glucose) and high glucose (HG, 4.5g/L 

D-glucose) conditions (Fig 4A&B). The Seahorse Cell Mito Stress Test demonstrated that 

Smad4 deficiency increased basal, maximal and ATP-linked respiration, but not proton leak, 

in podocytes under both normal and high glucose conditions (Fig 4C&D), indicating that 

Smad4 deficiency increases OXPHOS activity. Electron microscopy showed that Smad4 

deficiency did not alter mitochondrial morphology (Fig 4E&F). Smad4 deficiency in cultured 
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podocytes did not alter mitochondrial copy number (Fig 4G), or change protein levels of 

three rate-limiting glycolytic enzymes or PGC-1α, the mitochondrial biogenesis marker (Fig 

4H). Compared to wild type podocytes, Smad4 deficient podocytes have a greater capacity 

for lactate production (Fig 4I&J), and have reduced reactive oxygen species (ROS) 

production under both normal and high glucose conditions (Fig 4K-M). In addition, Smad4 

deficiency prevented high glucose-induced up-regulation of NOX4 expression and down-

regulation of synaptopodin (Fig 4N). NOX4 is the main source of ROS in the kidney and 

Nox4 is increased in DN and in podocytes in response to high glucose [42-44].  Podocyte-

specific Nox4 deletion protects mice from diabetic nephropathy and this protection is 

associated with reduced renal ROS production [44]. Our studies demonstrated that Smad4 

deletion promotes glycolysis, modulates OXPHOS activity, reduces NOX4 expression and 

ROS production, and prevents high glucose-induced injury in podocytes.  

 

Smad4 modulates glycolysis in podocytes through interaction with PKM2  

Next, we investigated the mechanism by which Smad4 regulates glycolysis in podocytes. 

Protein levels of the glycolytic enzyme, PKM2, were increased in the kidney of mouse type 2 

DN compared to age-matched, non-diabetic controls (Fig 5A&B). In isolated podocytes, 

immunoprecipitation studies identified binding between Smad4 and PKM2 in non-diabetic 

cells, and this interaction was increased in podocytes from diabetic mice (Fig 5C and D). A 

time-course study showed that lactate production falls as the interaction between Smad4 and 

PKM2 increases during the culture of podocytes under high glucose conditions (Fig 5E). 

Podocytes isolated from age-matched PodCre-Smad4
-/-

 mice did not show a difference in 

PKM2 expression (Fig 4G). However, compared to wild type podocytes, cultured Smad4
-/-

 

podocytes showed increased PKM2 activity under both normal and high glucose conditions 
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(Fig 5F), suggesting that Smad4 may modulate PKM2 activity. The active form of PKM2 has 

a tetramer structure, whereas dimer and monomer forms are inactive [45]. Cross-linking 

studies showed that high glucose stimulation of podocytes caused a reduction in the active 

form of PKM2 (tetrameter), while Smad4 deficient podocytes exhibited significantly greater 

levels of the PKM2 tetramer under both normal and high glucose conditions (Fig 5G and H). 

This led us to hypothesize that Smad4 may interact with PKM2 to inhibit the formation of 

PKM2 tetramer. 

 

To further investigate the Smad4/PKM2 interaction, 293T cells were co-transfected with 

Flag-tagged PKM2 and HA-tagged Smad4 expression plasmids and cross-linking studies 

performed. Decreasing HA-Smad4 expression (upper panel) resulted in a decrease in the 

interaction between HA-Smad4 and Flag-PKM2 (middle panel) and the increase in the 

tetramer form of PKM2 and the ratio of the tetramer to dimer + monomer forms (lower panel) 

(Fig 5I). This findings provides direct evidence that Smad4 interacts with PKM2 to inhibit 

PKM2 tetramer formation.  

 

Canonical TGF-β1/Smad4 signalling involves Smad4 translocation to the nucleus to regulate 

gene transcription [4]. Indeed, mutations of the key amino acids (R100T and L43S) that 

facilitate Smad4 nuclear translocation prevent transcription of the Smad-binding element 

(SBE) [46]. If Smad4 modulation of podocyte metabolism operates via a non-canonical 

pathway, then it should be unaffected by blocking Smad4 nuclear localisation. To address 

this question, Smad4
-/-

 podocytes were transduced with retroviral vectors expressing wild 

type (Smad4
WT

) or the mutants, Smad4
R100T

 or Smad4
L43S

, which prevent Smad4 entry into 

the nucleus [46]. First, we confirmed that Smad4
R100T

 and Smad4
L43S

 expressing cells had a 
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greatly diminished response to TGF-β1 stimulation in the SBE4-luciferase assay compared to 

Smad4
WT

 cells (Fig 5J), a response that depends upon Smad4 nuclear localisation [46]. Next, 

we used immunoprecipitation to show that Smad4
R100T

/PKM2 and Smad4
L43S

/PKM2 

interactions are comparable to that of Smad4
WT

/PKM2 (Fig 5K). In addition, cells transduced 

with Smad4
R100T

 or Smad4
L43S

 were comparable to Smad4
WT

 transduced cells in terms of: 

PKM2 tetramer formation (Fig 5L), lactate and ROS production (Fig 5M&N), synaptopodin 

expression (Fig 5O) and NOX4 expression (Fig 5P). These data show that Smad4 regulation 

of glycolysis is independent of a Smad4 nuclear function. 

 

Quantitative proteomic analysis identifies downregulation of ATPIF1 in Smad4 

deficient podocytes 

Smad4 deficiency increased OXPHOS activity in podocytes, but did not alter mitochondrial 

morphology (Fig 4E&F). To investigate molecular mechanism(s) by which Smad4 regulates 

mitochondrial OXPHOS activity, we performed Mass Spectrometry (MS)-based quantitative 

proteomic analysis in mouse podocytes. First, we treated Smad4 deficient and WT mouse 

podocytes with normal or high glucose. Then, the protein was digested, labeled with TMT 

reagents and analyzed by MS for proteome quantification. We identified 5228 protein groups 

in the four experimental groups with three biological replicates. We defined significantly 

different (p<0.05 by two tailed t-test) proteins and used a criterion of 1.3-fold change or 

greater between two groups as differential protein candidates. Subsequently, the numbers of 

downregulated and upregulated proteins in the four groups were identified (Fig 6A & Suppl 

Table 1,). Bioinformatics enrichment analysis with gene ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) databases by the ClueGO tool [47] revealed 

that metabolic process, binding and catalytic activity are the most highly enriched pathways 

involving Smad4 (Fig 6B & Suppl. Fig 5). MS revealed that Smad4 deficiency markedly 
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reduces protein levels of ATPase Inhibitory Factor 1 (ATPIF1), the inhibitor of ATP synthase 

and the regulator of the activity of OXPHOS in mammalian tissues [48, 49], compared to WT 

podocytes under both normal and high glucose conditions (Fig 6C). MS also identified 

downregulation of Mitochondrial Pyruvate Carrier 1 (MPC1), which controls the influx of 

pyruvate into mitochondria for OXPHOS, and proteins involved in the Mitochondrial 

Respiratory Chain, such as Ndufs4, Ndufb10, Uqcrb, Cox7a21 and Cox5a (Fig 6C). The 

increase in ATP synthase activity caused by severe inhibition of ATPIF1 and the limitation of 

pyruvate influx into mitochondria attributable to downregulation of MPC1, prompted us to 

investigate whether Smad4 deficiency may increase mitochondrial OXPHOS efficiency and 

therefore decrease mitochondrial ROS production and ultimately contribute to the protection 

of Smad4 deficient podocytes from high glucose-induced injury.   

 

Smad4 binds to ATPIF1 and reduces ATPIF1 degradation 

We investigated the mechanism by which Smad4 deficiency in podocytes caused down-

regulation of ATPIF1. Western blotting confirmed a significant reduction of ATPIF1 and 

MPC1 protein levels in Smad4 deficient podocytes under both normal and high glucose 

conditions (Fig 7A). Smad4 deficiency significantly protected podocytes from high glucose-

induced loss of ATP production (Fig 7B), suggesting that Smad4 deficiency increases the 

activity of ATP synthase through down-regulation of ATPIF1.  

 

To investigate how Smad4 deletion alters ATPIF1 expression, we examined both mRNA and 

protein stability. Smad4 deficiency did not change ATPIF1 mRNA levels in mouse podocytes 

(Fig 7C). Next, we analysed whether Smad4 affects ATPIF1 mRNA half-life using 

Actinomycin-D to shut-off transcription. Similar decay curves were seen for ATPIF1 mRNA 



15 

 

in both Smad4 deficient and wild type cells (Fig 7D), suggesting that Smad4 regulates 

ATPIF1 at the posttranscriptional level. We examined ATPIF1 protein stability in mouse 

podocytes finding a very rapid accumulation of ATPIF1 protein in response to o-

phenanthroline (O-Phe), an inhibitor of mitochondrial proteases (Fig 7E) [49]. After removal 

of O-phe and addition of cycloheximide to stop de novo protein synthesis, cells were 

followed for varying periods of time. Western blot decay curves demonstrated that Smad4 

deficiency decreased the half-life of ATPIF1 protein (Fig 7E&F). Immunoprecipitation 

showed an interaction between Smad4 and ATPIF1 which was increased in podocytes 

isolated from type 2 DN compared to age-matched mouse kidneys (Fig 5C&D).  

 

To investigate whether Smad4 is required for ATPIF1 protein stability, we employed 

titratable, doxycycline (dox)-inducible sgRNA cassette/cas9 system to delete the Smad4 gene 

in a mouse podocyte cell line. Immunoprecipitation studies showed a dose-dependent knock-

down of Smad4 with increasing dox concentration. This caused a reduction in ATPIF1 

protein levels in association with a reduction in Smad4 binding to ATPIF1 (Fig 7G), 

suggesting that the interaction of Smad4 with ATPIF1 may protect ATPIF1 from degradation.  

Seahorse analysis demonstrated a dose-dependent increase in basal respiration, maximal 

respiration and ATP-linked respiration with down-regulation of Smad4 and ATPIF1 (Fig 7H-

J), suggesting that Smad4 regulates mitochondrial OXPHOS activity through ATPIF1. To 

demonstrate that this effect was independent of Smad4 nuclear localization, we used 

retroviral-mediated Smad4
WT

, Smad4
R100T

 and Smad4
L43S

 expression in Smad4 deficient 

podocytes as previously above. Immunoprecipitation studies showed that the 

Smad4
R100T

/ATPIF1 and Smad4
L43S

/ATPIF1 interactions are comparable to the 

Smad4
WT

/ATPIF1 interaction (Fig 7K). There is no significant difference in basal, maximal 

and ATP-linked respiration, proton leak, or ATP levels between podocytes expressing 



16 

 

Smad4
WT

, Smad4
R100T

 or Smad4
L43S

 (Fig 7L-N). Taken together, our data suggests that 

Smad4 may interact with ATPIF1 to modulate OXPHOS activity. The decreased expression 

level of MPC1 (Fig 7A) further suggests that Smad4 deficiency may increase OXPHOS 

efficiency through limitation of pyruvate influx into mitochondria and augmentation of 

OXPHOS activity in mouse podocytes. 

 

Discussion   

The present study demonstrates that Smad4 deficiency protects podocytes from high glucose-

induced injury through enhanced glycolysis and maintenance of mitochondrial OXPHOS, 

which consequently decreases NOX4 expression and ROS production. This is attributed to a 

non-canonical action of Smad4 in regulating glycolysis and OXPHOS via direct interactions 

with the rate-limiting glycolytic enzyme, PKM2, and with ATPIF1. Conditional Smad4 

deletion in podocytes protects against the development of DN, while Smad4 LNA halted the 

progression of established DN, identifying Smad4 as a therapeutic target in DN. 

 

Podocyte foot processes form slit diaphragms which are part of the glomerular filtration 

barrier that limits albumin filtration into the urinary space. Movement of foot processes in 

response to environmental changes requires the redistribution of actin filaments which is 

dependent upon phosphorylation-mediated signaling. This requires high levels of ATP to 

maintain normal podocyte structure and function [41, 50]. Mitochondria and glycolysis 

maintain energy homeostasis in podocytes [41, 51], with glycolysis responsible for the 

intracellular ATP distribution in the cortical area of podocytes [41]. Mitochondrial 

dysfunction with insufficient ATP production may contribute to the development of DN [52-

54]. We identified direct interactions between Smad4 and PKM2 and ATPIF1; key enzymes 
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in glycolysis and OXPHOS. These interactions were associated with reduced glycolysis and 

lactate production in podocytes under high glucose conditions, indicating that podocyte 

glycolysis is diminished in DN. The enhancement of glycolysis in Smad4 deficient podocytes 

may compensate for the loss of ATP due to mitochondrial injury, thus preventing podocyte 

damage and podocyte loss in the diabetic milieu. 

 

The mitochondrial H
+
-ATP synthase is the master of OXPHOS that catalyzes the synthesis of 

ATP using the proton gradient generated by the respiratory chain [55]. ATPIF1 is the 

biological inhibitor of the H
+
-ATP synthase [56, 57]. Overexpression of ATPIF1 leads to the 

inhibition of the ATP synthesis and the switch to an increased aerobic glycolysis in cancer 

cells [58]. By contrast, inhibition of ATPIF1 can ameliorate severe electron transport chain 

dysfunction due to reversal of the F1-F0 ATP synthase, thus maintaining mitochondrial 

membrane potential [59].  In our study, Smad4 deficiency increased pyruvate production 

through enhancement of glycolysis, but the reduction of MPC1 decreases the pyruvate influx 

into mitochondria for OXPHOS, thus reducing the ROS production. On the other hand, the 

reduced levels of ATPIF1 seen with Smad4 deletion increased activity of the H+-ATP 

synthase, resulting in the augmentation of OXPHOS efficiency and an increase in ATP 

production. Thus, Smad4 deficiency protects podocytes from high glucose-induced injury 

through this fine tuning of mitochondrial activity by positive and negative regulators.   

 

Hyperglycaemia plays an essential role in the pathogenesis of DN. Increased intracellular 

glucose results in accumulation of toxic glucose metabolites which exacerbates the 

development of DN [60, 61]. Podocyte injury and loss are early pathological changes in the 

pathogenesis of DN [62, 63]. Qi et al [64] found that enzymes in the glycolytic and 



18 

 

mitochondrial pathways are increased in individuals with long duration of diabetes but are 

protected from DN. They further demonstrated that TEPP-46, a PKM2 activator, protected 

mice against DN by increasing glucose metabolic flux, inhibiting the production of toxic 

glucose metabolites and inducing mitochondrial biogenesis to restore mitochondrial function. 

We showed that Smad4 deficiency in podocytes enhances glycolysis and lactate production, 

decreases NOX4 expression and ROS production, and protects against high glucose-induced 

injury in vitro. Importantly, mice with Smad4 deletion in podocytes exhibited significant 

protection against podocyte damage and the development of glomerulosclerosis, albuminuria 

and impaired renal function despite unaltered obesity and diabetes. These in vivo findings 

further support the hypothesis that an increase in glycolysis and lactic acid production may 

decrease intracellular free glucose and toxic glucose metabolites, thus reducing high glucose-

induced injury and providing salutary effects in DN.  

 

In canonical TGF-β/Smad signalling, Smad4 enters the nucleus as part of a complex with 

phosphorylated Smad2 and Smad3 which binds to promoter regions of target genes to 

regulate transcription [4]. However, recent studies demonstrate that Smad4 may directly 

translocate to mitochondria and interact with the mitochondrial protein cytochrome c oxidase 

II to promote apoptosis [65]. CHCHD2, a mitochondrial protein, interacts with Smad4 to 

repress TGF-β signalling in human induced pluripotent stem cells [66]. Our study 

demonstrated that Smad4 expression is increased in the podocyte cytoplasm in both human 

and mouse DN. The interactions between Smad4 and the rate-limiting glycolytic enzyme 

PKM2, and between Smad4 and ATPIF1, were increased in mice with DN. The interaction 

between Smad4 and PKM2 reduced the tetramer form of PKM2 and PKM2 activity, thus 

reducing glycolysis and lactate production under high glucose conditions in podocytes. The 

Smad4/ATPIF1 interaction protects ATPIF1 from degradation. Notably, using Smad4 R100T 
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and L43S mutations, we identified that nuclear localisation was not required for Smad4 

interactions with PKM2 and ATPIF1 in mitochondria, or for Smad4 modulation of glycolysis 

and ATP production. Thus, cytoplasmic Smad4 regulates glycolysis and OXPHOS via a 

novel, non-canonical pathway. 

  

LNA technology is currently being used in clinical trials [67]. The substantial renal 

accumulation of LNA at pharmacologically active levels makes it a feasible strategy for the 

treatment of kidney disease [37, 38]. Delivery of the Smad4 LNA reagent significantly 

decreased Smad4 expression in kidneys, but not in the liver, spleen or lung. This selective 

effect upon the kidney in experimental DN was supported by the lack of effect of Smad4 

LNA on body weight, hyperglycaemia, hyperinsulinaemia and impaired glucose tolerance. 

While the findings of Smad4 LNA treatment are consistent with the protective effects of 

Smad4 deletion in podocytes, clearly the beneficial effects of this treatment could also 

involve actions on other cell types. 

 

There are a number of limitations in these studies. The overall effects of Smad4 deletion in 

podocytes reported here may not be solely attributed to the changes observed in glycolysis 

and mitochondrial OXPHOS. It is feasible that other mechanisms such as fatty acid oxidation 

may have influenced the overall phenotype in Smad4 deficient podocytes. In addition, Smad4 

shuttles to the nucleus as a transcription factor to regulate gene transcription which could also 

have contributed to the effects seen with Smad4 deletion [46]. How signalling pathway(s) 

induce interactions between Smad4 and rate-limiting glycolytic enzymes PKM2 and ATPIF1 

were not investigated. Finally, mitochondrial measures such as citrate synthase activity were 

outside of the scope of this manuscript but certainly warrant further investigation. 
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In conclusion, these results provide new insights into the role of Smad4 in the pathogenesis of 

diabetic nephropathy. Specifically, we describe a previously unrecognised action of 

cytoplasmic Smad4 in the regulation of glycolysis and OXPHOS. These observations suggest 

that pharmacological approaches to inhibit Smad4 activity in the kidney could represent a 

therapeutic strategy for the treatment of type 2 DN. 

 

Methods 

Experimental animals and diets 

Breeding pairs of eNOS
-/-

 mice,
 
Smad4

fl/fl
 mice, tamoxifen-inducible Tg(CAG-cre/ 

Esr1)5Amc/J mice (ER-Cre), and 2.5P-Cre;Tg(NPHS2-cre)1Lbh mice were purchased from 

Jackson Laboratories (Bar Harbor, ME) and maintained at Monash Animal Services. Mice 

were fed a ND or a HFD (Specialty Feeds, Glen Forrest, WA, Australia) for 8 weeks first, 

followed by a single low dose of STZ injection (Sigma, St Louis, MO) and continued with 

HFD treatment for another 16 weeks. ND provided 1.68MJ/kg of energy from lipid (20% 

protein and 4.8% total fat). HFD provided 8.17MJ/kg of energy from lipid (22.6% protein 

and 23.5% total fat). In all experimental procedures, mice were housed in a controlled 

environment and food and water were available ad libitum. Body weights were measured 

weekly. To delete Smad4 gene, tamoxifen (20mg/kg) was given to eNOS
-/-

:ErCre-Smad4
fl/fl 

mice through intraperitoneal injection for 5 days consecutively. All experiments were 

approved by the Monash University Animal Ethics Committee and adhered to the Australian 

Code of Practice for the Care and Use of Animals for Scientific Purposes. 
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Human Renal Biopsy Specimens 

Studies using human tissue were approved by the Human Ethics Committee of Monash 

Medical Centre, and written informed consent was obtained from the patients. Paraffin 

sections of renal biopsies, excess to that required for diagnosis, were examined in four cases 

of diabetic nephropathy. Normal kidney tissue was obtained from the noninvolved pole of 

nephrectomies performed as the result of renal carcinoma. 

LNA intervention study 

Smad4 LNA and CTL LNA were designed by and purchased from Exiqon, Denmark. Smad4 

LNA: 5’-TTGATGCGCGATTACT-3’; negative control LNA (CTL LNA): 5’- 

AACACGTCTATACGC-3’.  Smad4 LNA potency  was confirmed in cultured differentiated 

podocytes and 8 weeks old normal adult C57BL/6 J mice. Smad4 LNA and CTL LNA were 

dissolved in 1X PBS and directly added to cultured podocytes at final concentration of 1, 5 

and 10 μM respectively. Cultured medium were changed and Smad4 LNA or CTL LNA was 

added every day. Cells were harvested for protein analysis 4 days after the initial treatment. A 

preliminary experiment was performed to determine the effective dose range of Smad4 LNA 

in type 2 DN. A dose curve of Smad4 LNA or CTL LNA ranging from 5 to 20 mg/kg was 

administered to normal 8 weeks old C57BL/6J mice (7 groups/n = 2 mice each). Mice were 

killed after Smad4 LNA or CTL LNA administration; kidney tissues were collected to detect 

expression levels of Smad4 by Western blotting. Based on the results from this study, 

10mg/kg Smad4 LNA or CTL LNA dissolved in 1X PBS was intraperitoneally injected into 

eNOS deficient type 2 DN mice once a week for 6 weeks.  Mice were killed. Blood, urine, 

organs/tissues were collected for further analysis. No obvious side effects were observed 

during the experiments and in the organs/tissues examined. 

 

Lactate levels in cell culture supernatant 
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The concentration of lactate in podocytes, the end product of glycolysis, was determined 

using the lactate colorimetric assay kit (Abcam, Cambridge, United Kingdom). The OD was 

measured at 450 nm and the standard curve plot (nmol/well vs. OD 450 nm) was then 

generated. Finally, the lactate concentrations were determined as follows: C = La/10
6
 cells in 

a period time (mmol/l/10
6
 cells). 

 

Microalbuminuria, serum cystatin C and HbA1c  

Twenty-four-hour urine samples were collected each week after the beginning of HFD 

treatment. Microalbumin and urinary creatinine levels were measured with Albumin Mouse 

ELISA Kit (Abcam, Cambridge, MA) and Creatinine Assay Kit (Cayman Chemical, Ann 

Abor, MI), according to instructions supplied. Results are expressed as the urine 

microalbumin to creatinine ratio (μg/mg). The concentration of cystatin C in serum was 

determined using the mouse DuoSet ELISA kit (R&D Systems) according to the 

manufacturer’s instructions. The percentage of serum HbA1c level was determined by 

A1CNow
®

 (BHR Pharmaceuticals, UK) according to the manufacturer’s instructions.  

Glucose tolerance test 

For glucose tolerance test, after 6 h fasting, blood glucose was measured using a glucometer 

(Accu-chek; Roche Diagnostic Corporation, Indianapolis, IN) at 0, 15, 30, 60, and 120 min 

after an intraperitoneal injection of glucose (1 mg/g). 

Histological assessment and confocal microscopy 

A coronal slice of kidney tissue was fixed in 4% paraformal- dehyde and embedded in 

paraffin. Tissue was cut at 4 μm and stained with hematoxylin, PAS, and Masson’s trichrome. 

The degree of glomerulosclerosis and interstitial fibrosis were measured using Image J 
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software (http://rsb.info.nih.gov/ij/). The percent- age of glomerulosclerosis was calculated 

by dividing the total area of PAS positive staining in the glomerulus by the total area of the 

glomerulus. The following antibodies were used: rabbit anti-Tom20 conjugated with Alexa 

Fluor 647 (Abcam, UK), guinea-pig anti-synaptopodin antibody (Synaptic Systems, GmbH, 

Goettingen, Germany), followed by goat anti-guinea pig Alexa Fluor 488 (Invitrogen, Mount 

Waverley, VIC, Australia) and goat anti-Collagen IV (SouthernBiotech, Birmingham, AL) or 

rabbit anti-fibronectin (Sigma-Aldrich), followed by rabbit-goat Alexa Fluor 488 or goat anti-

rabbit Alexa Fluor 488 (Invitrogen). Sections were counterstained with DAPI (4, 6-

diamidino-2-phenylindole; Sigma-Aldrich, St Louis, MO) to visualize nuclei. Sections were 

analyzed with an Olympus Fluoview 1000 confocal microscope (Olympus, Tokyo, Japan), 

FV10-ASW software (version 1.3c; Olympus), and oil UPLFL × 60 objective (NA 1.25; 

Olympus). Image J (http://rsb.info.nih.gov/ij/) measured the area of staining within the 

glomerulus tuft. All scoring was performed on blinded slides. 

Immunoprecipitation and Western blotting 

Kidney tissues, cell culture samples and isolated cells from FACS were sonicated and lysed 

in 0.4 ml RIPA lysis buffer. The tissue and cell extracts were centrifuged at 3000 rpm at 4C 

for 30 minutes to remove cell debris. The protein concentrations were measured by modified 

Lowry protein assay using BSA as a protein standard (DC protein assay kit, Biorad). Cell 

lysates (1 mg) were added rabbit anti-Smad4, mouse or rabbit control IgG (Cell Signaling 

Technology) with gentle rocking overnight at 4°C then immune complex was 

immunoprecipitated using protein A/G agarose beads (Santa Cruz Biotechnology). In western 

blotting, proteins were electrophoresed through a 10% SDS-PAGE gel before transferring to 

A PVDF membrane. After blocking for 30 minutes at 4C in blocking buffer (5% skim milk 

powder in PBS with 0.1% Tween 20), the membrane was incubated over night with rabbit 

anti-synaptopodin, anti-nephrin, anti-PKM2 (Cell Signal Technology), anti-ATPIF1 (Abcam), 
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MPC-1 (Abcam) or anti-Smad4. The membrane was washed and incubated for 30 minutes at 

room temperature with a goat anti-rabbit or anti-mouse antibody conjugated with HRP (Cell 

Signal Technology). After further washing, the membrane was detected with ECL kit 

(Amersham Pharmacia Biotech, Arlington, IL, USA). α-tubulin and GAPDH were used as 

internal controls and detected by mouse anti-α-tubulin antibody conjugated with HRP and 

mouse anti-GAPDH antibody conjugated with HRP.  

Isolation of podocytes from mouse kidneys 

Kidney tissue from WT or Smad4
-/-

 mouse kidneys was digested with collagenase (Sigma). 

Single-cell suspensions were sequentially labeled with rabbit anti-nephrin (Bioss-USA, 

Woburn, MA) conjugated with Alexa Fluor 488 fluorophore. Renal nephrin+ cells were 

sorted using BD influx (BD Biosciences) [68]. A total of 8×10
5
 to 1.5 × 10

6
 cells/each type 

were harvested per kidney and analysis with qPCR, western blotting and Seahorse assay. 

 

Lentiviral CRISPR/Cas9 constructs.  

For the inducible Smad4 sgRNA constructs, the previously described FgH1tUTG plasmid 

was modified to contain the Smad4 sgRNA (Smad4 exon4 5’ 

AAACAGGTCAGCCGGCCAGTATTC3’ and 

5’ TCCCGAATACTGGCCGGCTGACCT3’) cassette, which was inserted into bi-directional 

Bsmb1 sites linked to the GFP fluorescent protein [69].  The constitutive Cas9 expression 

vectors were derived from the pFUGW, Cas9 protein linked via the T2A peptide to the 

mCherry fluorescent reporter protein [70].  

Smad4 expression retroviral vector constructs 

The plasmids encoding Flag-Smad4WT, Flag-Smad4L43S and Flag-Smad4R100T were 

obtained from the Addgene plasmid repository (Addgene Plasmid #80888. #80889 and 
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#80891 were gifts from Aristidis Moustakas) [44]. Retroviral vector plasmid encoding Flag-

Smad4WT, Flag-Smad4L43S and Flag-Smad4R100T were subcloned into pMSCV-IRES-

Puro vector.  

Virus Production and Transduction of Podocytes 

Viral particles were produced by transient transfection of 293T cells grown in 75cm culture 

flask with 10 μg of vector DNA along with the packaging constructs pLP1 (5 μg), pLP2 

(2.5 μg), and pLP/VSVG (3 μg) (Thermo Fisher) for lentivirus, or Platinum-E packaging 

cells with 10 µg of vector DNA for retrovirus, using standard calcium phosphate precipitation 

method. Virus-containing supernatants were collected at 48 hr after transfection and passed 

through a 0.45-μm filter. Virus were concentrated by precipitation using PEG-6000 [71]. For 

transduction of podocytes, cells were plated with virus and polybrene (4µg/ml), and 

incubated overnight at 33°C. Lentivirus-transduced cells were sorted using BD FACSAria™ 

III by sorting double positive (GFP+/mCherry+) cells. To induce Smad4 sgRNA expression, 

doxycycline hyclate (Sigma) was dissolved in sterile water at a stock concentration of 10 

mg/ml and added to cell culture medium for a final concentration of 1 μg/ml for 24 hours. 

Retrovirus-transduced cells were selected with 0.6 µg/ml of puromycin in culture media. 

 

Seahorse assay 

A Seahorse Bioscience XFe24 Extracellular Flux Analyzer (Seahorse Bioscience, Billerica, 

MA) was used to measure oxygen consumption rates in real time from podocytes cultured in 

XFe24 FluxPak Mini cell culture microplates (Seahorse Bioscience) coated with rat tail 

collagen I (Sigma).  

Isolated mouse podocytes were seeded in XF
e
24 FluxPak Mini cell culture microplates at a 

density of 5 × 10
5
 in 300 μl of growth media and differentiated for 7 days. After incubation 

for a total of 7 days, growth medium was removed and replaced with 500μl of FAO assay 
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medium prewarmed to 37 °C, supplemented with or without Etomoxir (1μM), cultured at 

37°C anaerobic incubator. Measurements of oxygen consumption rates were performed after 

equilibration in assay medium for 0.5 to 1h. XF Cell Mito Stress Test Kit (Seahorse 

Bioscience) was used to measure oxygen consumption rates according to the instructions 

supplied. 

Conventional EM sample preparation 

Cultured cells were fixed according standard procedures in 2 % glutaraldehyde in sodium 

cacodylate buffer. Post-fixed with 1% OsO4, 1.5% K3Fe(III)(CN)6. Cells were scraped, 

pelleted and embedded in 4% ULMP-agarose. Dehydration was done with ethanol and cells 

were embedded in Epon 812. Ultrathin sections of 70nm were cut on a Leica Ultracut UCT7 

and stained with uranyl acetate and lead citrate. EM imaging was done on a Hitachi 7500 

TEM. 

Measurement of intracellular ROS accumulation 

CellROX Deep Red Reagent was from Invitrogen (Carlsbad, CA).Podocytes were treated 

with normal glucose (1g/L D-glucose) or high glucose (4.5g/L D-glucose) the indicated time 

intervals, and CellROX Deep Red Reagent was added at a final concentration of 5 μM to the 

cells and then incubated for 30 min at 37°C. Subsequently, medium was removed, and the 

cells were washed three times with PBS. The resulting fluorescence was measured using a 

fluorescence microscope (Axiovert 200M; Zeiss). 

SBE4-luciferase reporter assay 

One day after SBE4-luciferase plasmid was transfected into Smad4
-/-

 podocytes expressing 

Flag-tagged Smad4 wild type, Smad4 R100T or Smad4 L43S mutant by lipofectamine 2000. 
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Cells were treated with or without 2ng/ml TGF-β1 for 8 hours. Then cells were harvested and 

luciferase assay was performed according to the instruction in luciferase assay kit (Promega). 

RNA Extraction and Real-Time RT-qPCR 

Total RNA from cultured podocyte samples were isolated and one-step real-time RT-PCR 

and real-time qPCR performed using SYBR Green PCR Reagents (Sigma), the Thermoscript 

RT-PCR system (Invitrogen), and the Opticon DNA Engine (MJ Research Inc., South San 

Francisco, CA), according to manufacturer’s instructions. In each reaction, 0.5 μg of total 

RNA was reverse transcribed before the following PCR conditions: 94°C for 2 minutes 

followed by 40 cycles at 94°C for 15 seconds, 58°C for 30 seconds, 72°C for 30 seconds, 

with final extension at 72°C for 10 minutes. Primers used in this study were: mouse NOX4, 

fwd 5′- 'cctcctggctgcattagtct-3′, rev 5′- ctccgcacaataaaggcaca-3′; collagen IV, fwd 5′-

TGACCCTGGTGATGTTCTCA-3′, rev 5′-GCCACACCTTGTATGCCTTT; and β-actin, 

fwd 5′- agacttcgagcaggagatgg -3′, rev 5′- caatgcctgggtacatggtg -3′. Amplicon sizes were 225 

bp (NOX4) and 266bp (β-actin). The relative amount of mRNA was calculated using the 

comparative Ct (ΔCt) method compared with β-actin and expressed as the mean ± SD. 

Cross-linking to determine tetramers, dimers and monomers of PKM2 

Isolated cells by FACS or cultured cells were treated with 500-μM DSS (disuccinimidyl 

suberate; Thermo Scientific #PI21658), as per the manufacturer’s instructions, to cross-link at 

room temperature [64]. Cell number was counted. Equal numbers of cells were lysed in 4X 

Bolt LDS Sample Buffer (Invitrogen), boiled for 5 min then western blotting was performed.  

Effect of Smad4 deficiency on ATPIF1 mRNA stability 

Wild type or Smad4 deficient mouse podocytes were cultured 24 h to normalize PKM2 

mRNA expression. Thereafter, 1640 medium was changed and cells were treated with 
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actinomycin D (5 µg/ml) for 1hr and subsequently incubated with 1640 medium for further 

30, 60, 120 and 240 min. Cells were collected and RT-qPCR was performed to quantify 

ATPIF1 mRNA levels.  The following forward (F) and reverse (R) primers were used to 

amplify mouse ATPIF1 cDNA and β-actin cDNA, respectively.  ATPIF1_F: 

5’ggttcggtgtctggggtatg, mouse ATPIF1_R: 5’tcatggtgtttcctcagggc, amplicon=193bp; mouse 

β-actin_F: 5’ ccaccatgtacccaggcatt, mouse β-actin_R: 5’ actcctgcttgctgatccac, 

amplicon=177bp. 

Quantitative proteomic analysis 

The quantitative proteomic analysis was performed according to following procedures. 1. 

Protein Extraction; 2. Trypsin Digestion; 3. TMT/iTRAQ Labeling; 4. HPLC Fractionation;  

5. LC-MS/MS Analysis; 6. Database Search; and 7. Bioinformatics Methods: Gene Ontology 

(GO) annotation proteome was derived from the UniProt-GOA database (www. 

http://www.ebi.ac.uk/GOA/). Encyclopedia of Genes and Genomes (KEGG) database was 

used to annotate protein pathway. 

Statistical analysis 

Data are mean ± SD with statistical analyses performed using Student’s t-test, one way or 

two-way ANOVA from GraphPad Prism 7.0 (GraphPad Software, San Diego, CA) and 

posthoc Tukey analysis when appropriate. P<0.05 was considered statistically significant. 
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Figure legends 

Figure 1. Smad4 LNA decreases Smad4 expression and halts the progression of type 2 

diabetic nephropathy. (A) Western blotting demonstrated Smad4 expression levels in mouse 

podocytes 4 days after Smad4 LNA or CTL LNA treatment. (B) Schema illustrating 

administration of Smad4 LNA or CTL LNA in model of type II diabetic nephropathy in eNOS 

deficient mice. (C)Western blotting demonstrated expression levels of Smad4, Smad3, PKM2 

and α-Tubulin after 6-week Smad4 LNA or CTL LNA treatment in age-matched kidney or type 

2 diabetic nephropathy. (D) Western blotting demonstrated expression levels of Smad4 in WT, 

Smad4 KO (KO), control LNA-treated WT and Smad4 LNA-treated WT podocytes. (E) 

Quantification of expression levels of Smad4, Smad3, PKM2 and α-Tubulin after 6-week 

Smad4 LNA or CTL LNA treatment in age-matched kidney or type 2 diabetic nephropathy. 

Western blotting demonstrated expression levels of Smad4 and GAPDH in lung (F), spleen 

(G) and liver (H) in age-matched mice, 6-week Smad4 LNA-treated or CTL LNA-treated 

mice. (I) HbA1C after Smad4 LNA or CTL LNA treatment. (J) Quantification of p57+ cells 

per Glomerular Cross Section (GCS) in age-matched, 6-week Smad4 LNA-treated or CTL 

LNA-treated mouse kidneys. (K) Quantification of staining area of synaptopodin in glomeruli 

in age-matched, 6-week Smad4 LNA-treated or CTL LNA-treated mouse kidneys. (L-N) PAS 

staining demonstrating age-matched kidney, CTL LNA treated diabetic nephropathy and 

Smad4 LNA-treated diabetic nephropathy.  Quantification of collagen IV staining (O), 

urinary albumin/creatinine ratio (P) and; serum Cystatin C levels (Q) in age-matched mice, 

CTL LNA treated or Smad4 LNA-treated mice with type 2 diabetic nephropathy. Two-way 

ANOVA, data are mean ± s.d. from groups of eight mice. *P<0.05; ***P<0.01; 

****P<0.001; N.S, not significant, P>0.05.  
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Figure 2.  Smad4 expression is increased in human and mouse diabetic nephropathy. (A&B) 

Confocal microscopy demonstrated WT1 (green), Smad4 (red), Tom20 (green), DAPI (blue) 

and merged images in normal human kidney (A), renal biopsy with diabetic nephropathy (B). 

Digital enlargement of normal human kidney (C, E) and diabetic nephropathy (D, F). Of 

note, localization of WT1 and Smad4, and Smad4 and Tom20. Confocal microscopy 

demonstrated synaptopodin (green), Smad4 (red), Tom20 (green), DAPI (blue) and merged 

images in normal mouse kidney (G) or diabetic nephropathy (H). Digital enlargement of age-

matched mouse kidney (I, K) and diabetic nephropathy (J, L). Of note, localization of 

synaptopodin and Smad4, and Smad4 and Tom20.    (M) Nephrin (+) cells were isolated by 

FACS from mouse kidneys. Western blotting demonstrated Smad4 expression in isolated 

nephrin (+) cells (N, O).  

  

Figure 3. Smad4 deficiency in podocytes reduces kidney injury in type 2 diabetic 

nephropathy. (A) Western blotting demonstrating expression levels of Smad4, synaptopodin 

and GAPDH in nephrin (+) cells isolated from eNOS
-/-

PodCre ND, eNOS
-/-

PodCre 

HFD+STZ, eNOS
-/-

PodCre-Smad4
-/-

ND and eNOS
-/-

PodCre-Smad4
-/-

HFD+STZ treated 

mouse kidneys. (B) Quantification of p57+ cells per Glomerular Cross Section (GCS) in 

eNOS
-/-

PodCre ND, eNOS
-/-

PodCre HFD+STZ, eNOS
-/-

PodCre-Smad4
-/-

ND and eNOS
-/-

PodCre-Smad4
-/-

HFD+STZ treated mouse kidneys. (C) Western blotting demonstrating 

expression levels of nephrin and α-Tubulin in eNOS
-/-

PodCre ND, eNOS
-/-

PodCre HFD+STZ, 

eNOS
-/-

PodCre-Smad4
-/-

ND and eNOS
-/-

PodCre-Smad4
-/-

HFD+STZ treated mouse kidneys.  

(D) Quantification of ratios of nephrin/α-Tubulin in western blotting. (E) Periodic acid–

Schiff (PAS) staining of sections from ND-treated or HFD+STZ-treated eNOS
-/-

PodCre or 

eNOS
-/-

PodCre-Smad4
-/-

 mouse kidneys. (F) Confocal microscopy demonstrated collagen IV 
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expression in ND-treated or HFD+STZ-treated eNOS-/-PodCre or eNOS-/-PodCre-Smad4-/- 

mouse kidneys. Quantitation of collagen IV staining area/glomerular cross-section (G),  

serum Cystatin C levels (H) and urinary albumin/creatinine ratio (I) in ND-treated or 

HFD+STZ-treated eNOS
-/-

PodCre mouse or eNOS
-/-

PodCre-Smad4
-/-

 mouse kidneys. Data 

are mean ± s.d. from groups of eight mice. *P<0.05, **P<0.01, ***P<0.001. 

  

Figure 4. Smad4 deficiency increases glycolysis and lactate production, decreases reactive 

oxygen species and protects podocytes from high glucose-induced injury. Wild type (WT) and 

Smad4 KO mouse podocytes were treated with normal glucose (NG, 1g/L D-glucose) or high 

glucose (HG, 4.5g/L D-glucose) for 24 hrs then Seahorse was performed. Seahorse 

demonstrated real-time changes of ECAR in WT and Smad4 KO podocytes after treatment 

with glucose, oligomycin and 2-Deoxy-D-glucose (2-DG) (A). Quantification of non-

glycolytic acidification, glycolysis, glycolytic capacity and glycolytic reserve (B). Seahorse 

demonstrated real-time changes of oxygen consumption rate (OCR) after treatment with 

oligomycin, FCCP and rotenone in WT and Smad4 KO podocytes (C). Quantification of 

basal, maximal, ATP-linked respiration and reserve capacity (D).  All values are means ± SD 

of at least three independent experiments. N.S, Not Significant, P>0.05; *P< 0.05; **P< 

0.01; ***P< 0.001; ****P< 0.0001. Electron Microscopy demonstrated mitochondria 

morphology in WT (E) and Smad4 KO (F) podocytes. (G) PCR demonstrated relative 

mitochondrial copy number in WT and Smad4 KO podocytes. (H) Western blotting 

demonstrated expression of Smad4, HK1, PKM2, FPKL, PGC-1α and α-tubulin in WT and 

Smad4 KO podocytes.  Lactate production in WT or Smad4 KO podocytes under high glucose 

(HG) and normal glucose (NG) conditions (I, J). Relative fluorescence intensities of reactive 

oxygen species (ROS) under normal glucose (NG) or high glucose (HG) condition in 

podocytes (K). Relative fluorescence intensities of ROS after 24-hour NG, HG or NG+ D-
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manitol treatment in podocytes (L). Relative fluorescence intensities of ROS after 24-hour NG 

or HG treatment in WT or Smad4 KO podocytes (M). Western blotting demonstrated NOX4 

and synaptopodin expression after 24-hour NG or HG treatment in WT or Smad4 KO 

podocytes (N). All values are means ± SD of at least three independent experiments. *P < 

0.05, **P < 0.01, ***P < 0.001, ****P <.0.0001. 

  

Figure 5. Smad4 interacts with rate-limiting glycolytic enzyme PKM2 to modulate PKM2 

tetramer formation and regulate lactate production in podocytes. WB demonstrated 

expression levels of ATPIF1 and PKM2 in age-matched kidneys and 16-week type 2 diabetic 

nephropathy (A). Quantitation of arbitrary ratios of ATPIF1 and PKM2 to α-Tubulin (B). 

Immunoprecipitation (IP)/WB demonstrated the interactions between Smad4 and ATPIF1 and 

PKM2 in nephrin+ podocytes isolated from age-matched kidneys and 16-week type 2 diabetic 

nephropathy (C). Quantitation of arbitrary ratios of ATPIF1 and PKM2 to Smad4 (D). 

Lactate production in different periods of under high glucose treatment in podocytes (upper 

panel), IP/WB demonstrated interaction between Smad4 and PKM2 after 4-, 12- and 24-hour 

HG treatment in podocytes (lower panel) (E). PKM2 activities in wild type (WT), Smad4 KO 

(KO) mouse podocytes under normal glucose (NG), high glucose (HG) or D-manitol (D-M) 

treatment for 24 hours (F). Western blotting demonstrated PKM2 tetramer, dimer and 

monomer after normal glucose (NG), high glucose (HG) or D-manitol (D-M) treatment for 

24 hours in wild type (WT) or Smad4 KO (KO) mouse podocytes after cross-linking treatment 

(G). Quantification of ratios of Tetramer/Dimer+Monomer. *P<0.05; **P<0.01 (H). 293T 

cells were transduced with FlagPKM2, HASmad4 and empty vector with various dosages. 

After 48 hours, cells were collected for Western blotting (upper panel), 

Immunoprecipitation/Western blotting (middle panel) and cross-linking/Western blotting 

(lower panel). Western blotting demonstrated expression levels of HA-Smad4 (upper panel), 
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interactions of FlagPKM2 with HASmad4 (middle panel) and FlagPKM2 tetramer, dimer and 

monomer (lower panel) (I). Smad4 KO podocytes were transduced with an empty retroviral 

vector, or retroviral vectors over-expressing Smad4 WT, Smad4 R100T, or Smad4 L43S. 

SBE4-Luciferase assay demonstrated transcription activities in Smad4 KO, Smad4 WT, 

Smad4 R100T and Smad4 L43S podocytes with or without TGF-β1 treatment (J). IP/WB 

demonstrated interaction between Smad4 and PKM2 after 24-hour NG or HG treatment in 

WT, R100T and L43S podocytes (K). Cross-linking/Western blotting demonstrated PKM2 

tetramer, dimer and monomer after 24-hour NG or HG treatment in WT, R100T and L43S 

podocytes (L). Lactate production in WT, R100T, L43S and Smad4 KO podocytes after 24-

hour NG or HG treatment (M). CellRox Deep Red test demonstrated relative fluorescence 

intensity in WT, R100T, L43S and Smad4 KO podocytes treated with NG or HG for 24 hrs 

(N). WB demonstrated expression levels of Synaptopodin, Smad4 and GAPDH in WT, R100T, 

L43S and Smad4 KO podocytes treated with NG or HG for 24 hrs (O).  RT-qPCR 

demonstrated ratios of Nox4/β-actin in WT, R100T, L43S and Smad4 KO podocytes treated 

with NG or HG for 24 hrs (P). One-way ANOVA, all values are means ± SD of at least three 

independent experiments.  **P<0.01; ****P<0.0001; *P<0.05 vs WT or vs R100T or L43S 

under HG condition; ***P<0.0001 vs WT or vs R100T or L43S under NG or HG condition. 

N.S, not significant, P>0.05. 

  

Fig 6. Quantitative proteomic profiling for wild type (WT) and Smad4 knockout (KO) mouse 

podocytes under normal glucose (NG) or high glucose (HG) treatment. (A) Volcano plot of 

the protein abundance changes in response to NG or HG in WT or Smad4 KO podocytes. 

Average protein expression ratio of 3 replicates (log 2 transformed) between KO+NG vs 

WT+NG and KO+HG vs WT+HG. Different treatment groups were plotted against p-value 

by t-test (−log 10 transformed). Cutoff of p= 0.05 and 1.3-fold change were marked by blue 
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and red dots, respectively. (B) Functional annotation of altered proteome in four 

experimental groups. A GO analysis of the significantly changed proteins identified in 

proteomic analysis for biological process, molecular function, and KEGG pathway. (C) The 

figure shows protein access number, gene name, ratio and p value in four experiment groups 

in quantitative Mass Spectrometry. 

  

Figure 7. Smad4 interacts with ATPIF1 to regulate the activity of mitochondrial oxidative 

phosphorylation in mouse podocytes. (A) Western blotting (WB) demonstrated the expression 

levels of Smad4, Synaptopodin, ATPIF1, MPC1 and α-Tubulin in Smad4 deficient and wild 

type mouse podocytes under normal glucose (1g/L D-glucose, NG) or high glucose (4.5g/L 

D-glucose HG) condition. (B) Relative ATP levels in Smad4 WT, Smad4 R100T, Smad4 L43S 

or Smad4 KO podocytes treated with NG or HG for 24 hours. All values are means ± SD of at 

least three independent experiments. *P< 0.05, **P< 0.01, ***P< 0.001. N.S, P>0.05. (C) 

RT-qPCR demonstrated relative mRNA levels of ATPIF1 in WT or Smad4 KO mouse 

podocytes treated with NG or HG for 24hrs. (D) Decay curves demonstrated ATPIF1 mRNA 

half-life 30, 60, 120 and 140 mins after wild type (WT) or Smad4 knockout (KO) mouse 

podocyte were treated with 5µg/ml actinomycin D. (E) Western blotting demonstrated 

ATPIF1 expression levels in wild type or Smad4 KO mouse podocytes after treatment with 0.5 

mM o-phe for 1hr, or treatment with o-phe then removal of o-phe and treatment with 20µg/ml 

cycloheximide for different periods of time as indicated.  (F) Decay curves demonstrated 

ATPIF1 protein half-life after wild type (WT) or Smad4 knockout (KO) mouse podocyte were 

treated with 0.5 mM o-phenanthroline (o-phe) for 1 hr then o-phe was replaced with 20µg/ml 

cycloheximide for different periods of time. (G) Doxycycline (Dox) inducible sgRNA 

cassette/cas9 system to delete Smad4 gene was employed in mouse podocytes. WB and IP/WB 

demonstrated that expression of Smad4 and ATPIF1 and the interaction between Smad4 and 
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ATPIF1 decrease following Dox treatment. Seahorse demonstrated oxygen consumption rate 

(OCR) in Basal (H), Maximal (I) and ATP-linked Respiration (J) in WT or Dox-inducible 

sgRNA cassette/cas9 system in podocytes treated with different dosages of Dox. (K-N) Smad4 

KO podocytes were transduced with an empty retroviral vector, or retroviral vectors over-

expressing Smad4 WT, Smad4 R100T, or Smad4 L43S. Western blotting demonstrated 

expression levels of Smad4, ATPIF1 and β-actin (K). IP/WB demonstrated interaction 

between Smad4 and ATPIF1 in Smad4 WT, Smad4 R100T, and Smad4 L43S podocytes (K). 

Seahorse demonstrated OCR in Basal (L), Maximal (M) and ATP-linked Respiration (N) in 

Smad4 WT, Smad4 R100T, Smad4 L43S or Smad4 KO podocytes. All values are means ± SD 

of at least three independent experiments. *P< 0.05, **P< 0.01, ***P< 0.001. N.S, P>0.05. 

  

Suppl. Fig 1. (A) Schema illustrating mouse model of type II diabetic nephropathy using high 

fat diet (HFD) and a single dose streptozotocin (50mg/Kg) intraperitoneal injection. (B) 

Increment change of body weight in eNOS
+/+

 ND, eNOS
+/+

 HFD+STZ, eNOS
-/-

ND and eNOS
-

/-
 HFD+STZ. (C, D) HbA1c% (C) and plasma insulin level (D) change in eNOS

+/+
 ND, 

eNOS
+/+

 HFD+STZ, eNOS
-/-

ND and eNOS
-/-

 HFD+STZ after 24 weeks of treatment. (E) 

Periodic acid–Schiff (PAS) staining of sections from eNOS
+/+

 ND, eNOS
+/+

 HFD+STZ, 

eNOS
-/-

ND and eNOS
-/-

 HFD+STZ mouse kidneys. (F) Urinary albumin/creatinine ratio 

changes from eNOS
+/+

 ND, eNOS
+/+

 HFD+STZ, eNOS
-/-

ND and eNOS
-/-

 HFD+STZ mouse. 

(H) Serum cystatin C changes from eNOS
+/+

 ND, eNOS
+/+

 HFD+STZ, eNOS
-/-

ND and eNOS
-

/-
 HFD+STZ mouse. Data are mean ± s.d. from groups of eight mice. *P<0.05, **P<0.01, 

***P<0.001. 
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Suppl. Fig 2. Smad4 LNA administration retards the progression of mouse type 2 diabetic 

nephropathy. (A-C) changes in body weight, fasting blood glucose levels, and plasma insulin 

in age-matched, control-LNA (CTL-LNA)-treated or Smad4 LNA-treated in type 2 diabetic 

eNOS
-/-

 mice. Glucose tolerance test (E) and quantification of Glucose tolerance test (D) in 

age-matched, control-LNA (CTL-LNA)-treated or Smad4 LNA-treated in type 2 diabetic 

eNOS
-/-

 mice.  Data are mean ± s.d. from groups of 6 mice.   One way ANOVA.   

  

Suppl. Fig 3. Smad4 LNA treatment decreases podocyte injury and glomerulosclerosis in type 

2 diabetic nephropathy.  Confocal microscopy demonstrated synaptopodin (red, A-C) 

collagen IV expression (green, D-F) in age-matched kidney, CTL LNA treated diabetic 

nephropathy and Smad4 LNA-treated diabetic nephropathy.  

  

Suppl. Fig 4. Smad4 deficiency in podocytes protects mice from type 2 diabetic nephropathy. 

(A-D) changes in body weight, fasting blood glucose levels, HbA1c and plasma insulin in 

ND-treated or HFD+STZ-treated eNOS
-/-

PodCre mice or eNOS
-/-

PodCre-Smad4
-/-

 mice. 

Glucose tolerance test (E) and quantification of Glucose tolerance test (F) in ND-treated or 

HFD+STZ-treated eNOS
-/-

PodCre mice or eNOS
-/-

PodCre-Smad4
-/-

 mice. Data are mean ± 

s.d. from groups of eight mice. N.S, P>0.05; *P<0.05; **P<0.01; ***P<0.001.  

  

  

Suppl. Fig 5. Encyclopedia of Genes and Genomes (KEGG) database annotates protein 

pathways in wild type or Smad4 deficient podocytes treated with normal glucose or high 

glucose.  
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Figure 1. Smad4 LNA decreases Smad4 expression and halts the progression of type 2 diabetic 

nephropathy. (A) Western blotting demonstrated Smad4 expression levels in mouse podocytes 4 

days after Smad4 LNA or CTL LNA treatment. (B) Schema illustrating administration of Smad4 

LNA or CTL LNA in model of type II diabetic nephropathy in eNOS deficient mice. (C)Western 

blotting demonstrated expression levels of Smad4, Smad3, PKM2 and α-Tubulin after 6-week 

Smad4 LNA or CTL LNA treatment in age-matched kidney or type 2 diabetic nephropathy. (D) 

Western blotting demonstrated expression levels of Smad4 in WT, Smad4 KO (KO), control LNA-

treated WT and Smad4 LNA-treated WT podocytes. (E) Quantification of expression levels of 

Smad4, Smad3, PKM2 and α-Tubulin after 6-week Smad4 LNA or CTL LNA treatment in age-

matched kidney or type 2 diabetic nephropathy. Western blotting demonstrated expression levels 

of Smad4 and GAPDH in lung (F), spleen (G) and liver (H) in age-matched mice, 6-week Smad4 

LNA-treated or CTL LNA-treated mice. (I) HbA1C after Smad4 LNA or CTL LNA treatment. (J) 

Quantification of p57+ cells per Glomerular Cross Section (GCS) in age-matched, 6-week Smad4 

LNA-treated or CTL LNA-treated mouse kidneys. (K) Quantification of staining area of 

synaptopodin in glomeruli in age-matched, 6-week Smad4 LNA-treated or CTL LNA-treated 

mouse kidneys. (L-N) PAS staining demonstrating age-matched kidney, CTL LNA treated diabetic 

nephropathy and Smad4 LNA-treated diabetic nephropathy. Quantification of collagen IV 

staining (O), urinary albumin/creatinine ratio (P) and; serum Cystatin C levels (Q) in age-

matched mice, CTL LNA treated or Smad4 LNA-treated mice with type 2 diabetic nephropathy. 

Two-way ANOVA, data are mean ± s.d. from groups of eight mice. *P<0.05; ***P<0.01; 

****P<0.001; N.S, not significant, P>0.05.
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Figure 2.  Smad4 expression is increased in human and mouse diabetic nephropathy. (A&B) 

Confocal microscopy demonstrated WT1 (green), Smad4 (red), Tom20 (green), DAPI (blue) and 

merged images in normal human kidney (A), renal biopsy with diabetic nephropathy (B). Digital 

enlargement of normal human kidney (C, E) and diabetic nephropathy (D, F). Of note, localization 

of WT1 and Smad4, and Smad4 and Tom20. Confocal microscopy demonstrated synaptopodin

(green), Smad4 (red), Tom20 (green), DAPI (blue) and merged images in normal mouse kidney (G) 

or diabetic nephropathy (H). Digital enlargement of age-matched mouse kidney (I, K) and diabetic 

nephropathy (J, L). Of note, localization of synaptopodin and Smad4, and Smad4 and Tom20.   

(M) Nephrin (+) cells were isolated by FACS from mouse kidneys. Western blotting demonstrated 

Smad4 expression in isolated nephrin (+) cells (N, O). 
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Figure 3. Smad4 deficiency in podocytes reduces kidney injury in type 2 diabetic 

nephropathy. (A) Western blotting demonstrating expression levels of Smad4, synaptopodin

and GAPDH in nephrin (+) cells isolated from eNOS-/-PodCre ND, eNOS-/-PodCre

HFD+STZ, eNOS-/-PodCre-Smad4-/-ND and eNOS-/-PodCre-Smad4-/-HFD+STZ treated 

mouse kidneys. (B) Quantification of p57+ cells per Glomerular Cross Section (GCS) in 

eNOS-/-PodCre ND, eNOS-/-PodCre HFD+STZ, eNOS-/-PodCre-Smad4-/-ND and eNOS-/-

PodCre-Smad4-/-HFD+STZ treated mouse kidneys. (C) Western blotting demonstrating 

expression levels of nephrin and α-Tubulin in eNOS-/-PodCre ND, eNOS-/-PodCre HFD+STZ, 

eNOS-/-PodCre-Smad4-/-ND and eNOS-/-PodCre-Smad4-/-HFD+STZ treated mouse kidneys.  

(D) Quantification of ratios of nephrin/α-Tubulin in western blotting. (E) Periodic acid–Schiff 

(PAS) staining of sections from ND-treated or HFD+STZ-treated eNOS-/-PodCre or eNOS-/-

PodCre-Smad4-/- mouse kidneys. (F) Confocal microscopy demonstrated collagen IV 

expression in ND-treated or HFD+STZ-treated eNOS-/-PodCre or eNOS-/-PodCre-Smad4-/-

mouse kidneys. Quantitation of collagen IV staining area/glomerular cross-section (G),  

serum Cystatin C levels (H) and urinary albumin/creatinine ratio (I) in ND-treated or 

HFD+STZ-treated eNOS-/-PodCre mouse or eNOS-/-PodCre-Smad4-/- mouse kidneys. Data 

are mean ± s.d. from groups of eight mice. *P<0.05, **P<0.01, ***P<0.001.
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Figure 4. Smad4 deficiency increases glycolysis and lactate production, decreases reactive 

oxygen species and protects podocytes from high glucose-induced injury. Wild type (WT) and 

Smad4 KO mouse podocytes were treated with normal glucose (NG, 1g/L D-glucose) or high 

glucose (HG, 4.5g/L D-glucose) for 24 hrs then Seahorse was performed. Seahorse 

demonstrated real-time changes of ECAR in WT and Smad4 KO podocytes after treatment 

with glucose, oligomycin and 2-Deoxy-D-glucose (2-DG) (A). Quantification of non-

glycolytic acidification, glycolysis, glycolytic capacity and glycolytic reserve (B). Seahorse 

demonstrated real-time changes of oxygen consumption rate (OCR) after treatment with 

oligomycin, FCCP and rotenone in WT and Smad4 KO podocytes (C). Quantification of 

basal, maximal, ATP-linked respiration and reserve capacity (D).  All values are means ± SD 

of at least three independent experiments. N.S, Not Significant, P>0.05; *P< 0.05; **P< 

0.01; ***P< 0.001; ****P< 0.0001. Electron Microscopy demonstrated mitochondria 

morphology in WT (E) and Smad4 KO (F) podocytes. (G) PCR demonstrated relative 

mitochondrial copy number in WT and Smad4 KO podocytes. (H) Western blotting 

demonstrated expression of Smad4, HK1, PKM2, FPKL, PGC-1α and α-tubulin in WT and 

Smad4 KO podocytes.  Lactate production in WT or Smad4 KO podocytes under high glucose 

(HG) and normal glucose (NG) conditions (I, J). Relative fluorescence intensities of reactive 

oxygen species (ROS) under normal glucose (NG) or high glucose (HG) condition in 

podocytes (K). Relative fluorescence intensities of ROS after 24-hour NG, HG or NG+ D-

manitol treatment in podocytes (L). Relative fluorescence intensities of ROS after 24-hour NG 

or HG treatment in WT or Smad4 KO podocytes (M). Western blotting demonstrated NOX4 

and synaptopodin expression after 24-hour NG or HG treatment in WT or Smad4 KO 

podocytes (N). All values are means ± SD of at least three independent experiments. *P < 

0.05, **P < 0.01, ***P < 0.001, ****P <.0.0001.
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Figure 5. Smad4 interacts with rate-limiting glycolytic enzyme PKM2 to modulate PKM2 tetramer 

formation and regulate lactate production in podocytes. WB demonstrated expression levels of ATPIF1 and 

PKM2 in age-matched kidneys and 16-week type 2 diabetic nephropathy (A). Quantitation of arbitrary 

ratios of ATPIF1 and PKM2 to α-Tubulin (B). Immunoprecipitation (IP)/WB demonstrated the interactions 

between Smad4 and ATPIF1 and PKM2 in nephrin+ podocytes isolated from age-matched kidneys and 16-

week type 2 diabetic nephropathy (C). Quantitation of arbitrary ratios of ATPIF1 and PKM2 to Smad4 (D). 

Lactate production in different periods of under high glucose treatment in podocytes (upper panel), IP/WB 

demonstrated interaction between Smad4 and PKM2 after 4-, 12- and 24-hour HG treatment in podocytes 

(lower panel) (E). PKM2 activities in wild type (WT), Smad4 KO (KO) mouse podocytes under normal 

glucose (NG), high glucose (HG) or D-manitol (D-M) treatment for 24 hours (F). Western blotting 

demonstrated PKM2 tetramer, dimer and monomer after normal glucose (NG), high glucose (HG) or D-

manitol (D-M) treatment for 24 hours in wild type (WT) or Smad4 KO (KO) mouse podocytes after cross-

linking treatment (G). Quantification of ratios of Tetramer/Dimer+Monomer. *P<0.05; **P<0.01 (H). 293T 

cells were transduced with FlagPKM2, HASmad4 and empty vector with various dosages. After 48 hours, 

cells were collected for Western blotting (upper panel), Immunoprecipitation/Western blotting (middle panel) 

and cross-linking/Western blotting (lower panel). Western blotting demonstrated expression levels of HA-

Smad4 (upper panel), interactions of FlagPKM2 with HASmad4 (middle panel) and FlagPKM2 tetramer, 

dimer and monomer (lower panel) (I). Smad4 KO podocytes were transduced with an empty retroviral 

vector, or retroviral vectors over-expressing Smad4 WT, Smad4 R100T, or Smad4 L43S. SBE4-Luciferase 

assay demonstrated transcription activities in Smad4 KO, Smad4 WT, Smad4 R100T and Smad4 L43S 

podocytes with or without TGF-β1 treatment (J). IP/WB demonstrated interaction between Smad4 and 

PKM2 after 24-hour NG or HG treatment in WT, R100T and L43S podocytes (K). Cross-linking/Western 

blotting demonstrated PKM2 tetramer, dimer and monomer after 24-hour NG or HG treatment in WT, R100T 

and L43S podocytes (L). Lactate production in WT, R100T, L43S and Smad4 KO podocytes after 24-hour NG 

or HG treatment (M). CellRox Deep Red test demonstrated relative fluorescence intensity in WT, R100T, 

L43S and Smad4 KO podocytes treated with NG or HG for 24 hrs (N). WB demonstrated expression levels of 

Synaptopodin, Smad4 and GAPDH in WT, R100T, L43S and Smad4 KO podocytes treated with NG or HG 

for 24 hrs (O).  RT-qPCR demonstrated ratios of Nox4/β-actin in WT, R100T, L43S and Smad4 KO 

podocytes treated with NG or HG for 24 hrs (P). One-way ANOVA, all values are means ± SD of at least 

three independent experiments.  **P<0.01; ****P<0.0001; *P<0.05 vs WT or vs R100T or L43S under HG 

condition; ***P<0.0001 vs WT or vs R100T or L43S under NG or HG condition. N.S, not significant, 

P>0.05.
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Fig 6. Quantitative proteomic profiling for wild type (WT) and Smad4 knockout (KO) mouse 

podocytes under normal glucose (NG) or high glucose (HG) treatment. (A) Volcano plot of the 

protein abundance changes in response to NG or HG in WT or Smad4 KO podocytes. Average 

protein expression ratio of 3 replicates (log 2 transformed) between KO+NG vs WT+NG and 

KO+HG vs WT+HG. Different treatment groups were plotted against p-value by t-test (−log 10 

transformed). Cutoff of p= 0.05 and 1.3-fold change were marked by blue and red dots, respectively. 

(B) Functional annotation of altered proteome in four experimental groups. A GO analysis of the 

significantly changed proteins identified in proteomic analysis for biological process, molecular 

function, and KEGG pathway. (C) The figure shows protein access number, gene name, ratio and p 

value in four experiment groups in quantitative Mass Spectrometry.
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Figure 7. Smad4 interacts with ATPIF1 to regulate the activity of mitochondrial oxidative 

phosphorylation in mouse podocytes. (A) Western blotting (WB) demonstrated the expression levels of 

Smad4, Synaptopodin, ATPIF1, MPC1 and α-Tubulin in Smad4 deficient and wild type mouse podocytes 

under normal glucose (1g/L D-glucose, NG) or high glucose (4.5g/L D-glucose HG) condition. (B) Relative 

ATP levels in Smad4 WT, Smad4 R100T, Smad4 L43S or Smad4 KO podocytes treated with NG or HG for 24 

hours. All values are means ± SD of at least three independent experiments. *P< 0.05, **P< 0.01, ***P< 

0.001. N.S, P>0.05. (C) RT-qPCR demonstrated relative mRNA levels of ATPIF1 in WT or Smad4 KO mouse 

podocytes treated with NG or HG for 24hrs. (D) Decay curves demonstrated ATPIF1 mRNA half-life 30, 60, 

120 and 140 mins after wild type (WT) or Smad4 knockout (KO) mouse podocyte were treated with 5µg/ml 

actinomycin D. (E) Western blotting demonstrated ATPIF1 expression levels in wild type or Smad4 KO 

mouse podocytes after treatment with 0.5 mM o-phe for 1hr, or treatment with o-phe then removal of o-phe

and treatment with 20µg/ml cycloheximide for different periods of time as indicated.  (F) Decay curves 

demonstrated ATPIF1 protein half-life after wild type (WT) or Smad4 knockout (KO) mouse podocyte were 

treated with 0.5 mM o-phenanthroline (o-phe) for 1 hr then o-phe was replaced with 20µg/ml cycloheximide

for different periods of time. (G) Doxycycline (Dox) inducible sgRNA cassette/cas9 system to delete Smad4 

gene was employed in mouse podocytes. WB and IP/WB demonstrated that expression of Smad4 and ATPIF1 

and the interaction between Smad4 and ATPIF1 decrease following Dox treatment. Seahorse demonstrated 

oxygen consumption rate (OCR) in Basal (H), Maximal (I) and ATP-linked Respiration (J) in WT or Dox-

inducible sgRNA cassette/cas9 system in podocytes treated with different dosages of Dox. (K-N) Smad4 KO 

podocytes were transduced with an empty retroviral vector, or retroviral vectors over-expressing Smad4 WT, 

Smad4 R100T, or Smad4 L43S. Western blotting demonstrated expression levels of Smad4, ATPIF1 and β-

actin (K). IP/WB demonstrated interaction between Smad4 and ATPIF1 in Smad4 WT, Smad4 R100T, and 

Smad4 L43S podocytes (K). Seahorse demonstrated OCR in Basal (L), Maximal (M) and ATP-linked 

Respiration (N) in Smad4 WT, Smad4 R100T, Smad4 L43S or Smad4 KO podocytes. All values are means ±

SD of at least three independent experiments. *P< 0.05, **P< 0.01, ***P< 0.001. N.S, P>0.05.
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Suppl. Fig 1. (A) Schema illustrating mouse model of type II diabetic nephropathy using high fat 

diet (HFD) and a single dose streptozotocin (50mg/Kg) intraperitoneal injection. (B) Increment 

change of body weight in eNOS+/+ ND, eNOS+/+ HFD+STZ, eNOS-/-ND and eNOS-/- HFD+STZ. 

(C, D) HbA1c% (C) and plasma insulin level (D) change in eNOS+/+ ND, eNOS+/+ HFD+STZ, 

eNOS-/-ND and eNOS-/- HFD+STZ after 24 weeks of treatment. (E) Periodic acid–Schiff (PAS) 

staining of sections from eNOS+/+ ND, eNOS+/+ HFD+STZ, eNOS-/-ND and eNOS-/- HFD+STZ 

mouse kidneys. (F) Urinary albumin/creatinine ratio changes from eNOS+/+ ND, eNOS+/+

HFD+STZ, eNOS-/-ND and eNOS-/- HFD+STZ mouse. (G) Serum cystatin C changes from 

eNOS+/+ ND, eNOS+/+ HFD+STZ, eNOS-/-ND and eNOS-/- HFD+STZ mouse. Data are mean ±

s.d. from groups of eight mice. *P<0.05, **P<0.01, ***P<0.001.
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Suppl. Fig 2. Smad4 LNA administration retards the progression of mouse type 2 diabetic 

nephropathy. (A-C) changes in body weight, fasting blood glucose levels, and plasma insulin in 

age-matched, control-LNA (CTL-LNA)-treated or Smad4 LNA-treated in type 2 diabetic eNOS-/-

mice. Glucose tolerance test (E) and quantification of Glucose tolerance test (D) in age-matched, 

control-LNA (CTL-LNA)-treated or Smad4 LNA-treated in type 2 diabetic eNOS-/- mice. Data 

are mean ± s.d. from groups of 6 mice.   One way ANOVA.  
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Suppl. Fig 3. Smad4 LNA treatment decreases podocyte injury and glomerulosclerosis in type 2 

diabetic nephropathy.  Confocal microscopy demonstrated synaptopodin (red, A-C) collagen IV 

expression (green, D-F) in age-matched kidney, CTL LNA treated diabetic nephropathy and 

Smad4 LNA-treated diabetic nephropathy. 
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Suppl. Fig 4. Smad4 deficiency in podocytes protects mice from type 2 diabetic nephropathy. (A-

D) changes in body weight, fasting blood glucose levels, HbA1c and plasma insulin in ND-

treated or HFD+STZ-treated eNOS-/-PodCre mice or eNOS-/-PodCre-Smad4-/- mice. Glucose 

tolerance test (E) and quantification of Glucose tolerance test (F) in ND-treated or HFD+STZ-

treated eNOS-/-PodCre mice or eNOS-/-PodCre-Smad4-/- mice. Data are mean ± s.d. from groups 

of eight mice. N.S, P>0.05; *P<0.05; **P<0.01; ***P<0.001. 
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Suppl Fig 5. Encyclopedia of Genes and Genomes (KEGG) database annotates protein pathways in 

wild type or Smad4 deficient podocytes treated with normal glucose or high glucose.
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