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Abstract  

Accurately quantifying species’ area requirements is a prerequisite for effective area-

based conservat ion. This typically involves collect ing tracking data on species of interest 

and then conducting home-range analyses. Problematically, autocorrelation in tracking 

data can result in space needs being severely underestimated. Based on previous work, 

we hypothesized the magnitude of underest imation varies with body mass, a relationship 

that could have serious conservat ion implicat ions. To evaluate this hypothesis for 

terrestrial mammals, we estimated home-range areas with GPS locations from 757 

individuals across 61 globally distributed mammalian species with body masses ranging 

from 0.4 to 4,000 kg. We then applied block cross-validat ion to quantify bias in empirical 

home-range estimates. Area requirements of mammals <10 kg were underestimated by a 

mean ~15%, and species weighing ~100 kg were underest imated by ~50% on average. 

Thus, we found area estimation was subject to autocorrelat ion-induced bias that was 

worse for large species. Combined with the fact that extinction risk increases as body 

mass increases, the allometric scaling of bias we observed suggests the most threatened 

species are also likely to be those with the least accurate home-range estimates. As a 

correction, we tested whether data thinning or autocorrelation-informed home-range estimation 

minimized the scaling effect of autocorrelation on area estimates. Data thinning required a 

~93% data loss to achieve statistical independence with 95% confidence and was therefore 

not a viable solution. In contrast, autocorrelation-informed home-range estimation resulted in 

consistently accurate estimates irrespective of mass. When relating body mass to home range 

size, we detected that correcting for autocorrelation resulted in a scaling exponent 

significantly >1, meaning the scaling of the relationship changed substantially at the upper 

end of the mass spectrum. 
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Introduction 

Globally, human-altered landscapes are restrict ing animal movement (Fahrig 2007; Tucker 

et al. 2018), and habitat loss and fragmentation are the principal threats to terrestrial 

biodiversity (Brooks et al., 2002; Wilson et al., 2016). A key component to conserving species 

in increasingly human-dominated landscapes is understand ing how much space is required 

to maintain stable, interconnected populat ions (Brashares et al., 2001; Pe’er et al., 2014). 

Area requirements are typically quantified via home-range analysis (Burt, 1943). This 

routinely involves collect ing tracking data on species of interest (Kays et al., 2015) and 

then applying a home-range estimator to these data (Fleming et al., 2015; Noonan et al., 

2019). These range estimates can then be used to inform recommendations on reserve sizes 

(Linnell et al., 2001), to advocate for specific land-tenure systems (Johansson et al., 2016; 

Farhadinia et al., 2018), and to make conservation policy recommendations (Bartoń et al., 

2019). However, tracking data are often strongly autocorrelated, whereas conventional 

home-range estimators are based on the assumption of independent and identically 

distributed data (Noonan et al., 2019). 

When data are autocorrelated, the total number of data points does not reflect the 

total amount of information in the data set (i.e., effective sample size) (Fleming & 

Calabrese, 2017). Although the idea that autocorrelat ion may affect home-range 

estimates is not new (e.g., Swihart & Slade, 1985; Fieberg, 2007; Fleming et al., 2015), 

only recent analyses have demonstrated the seriousness of the problem. Using the largest 

empirical tracking data set assembled to date, Noonan et al. (2019) found conventional 

estimators significant ly negatively biased when used on autocorrelated data. While any 

form of bias is undesirable, the systematic underestimation of home-range areas is a 

worst-case scenario from a conservat ion perspect ive. Any policy or management 
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decisions informed by underestimated home-range estimates could result in failed 

conservation initiatives (Brashares et al., 2001; Gaston et al., 2008) or exacerbate 

negative human-wildlife interact ions at reserve boundaries (Van Eeden et al., 2018). 

Noonan et al. (2019) noticed that large-bodied species tended to exhibit more 

negatively biased conventional home-range estimates than small-bod ied species. 

However, the species included in their study were not selected to provide the broad range 

of body masses required to investigate allometric trends. We compiled an extensive 

empirical data set of GPS locations from 757 individuals across 61 terrestrial 

mammalian species with body masses ranging from 0.4 to 4,000 kg. We used these data 

to investigate whether the underestimation of home-range size scales with body mass. 

To see the potential for this, consider that large species have large home ranges (Jetz et 

al., 2004) that tend to take longer to cross than smaller home ranges (Calder, 1983). In 

addition, range crossing time (τp) interacts with the sampling interval (dt) in determining 

the amount of autocorrelat ion in tracking data (Fleming & Calabrese, 2017; Noonan et al., 

2019). When dt ≲ τp, the resulting data are autocorrelated, while dt ≫ τp results in 

effectively independent data. Finally, the magnitude of the negative biases in conventional 

home-range estimates increases in proportion to the strength of autocorrelation in the data 

(Noonan et al., 2019). Combining these facts, we arrived at the hypothesis that an allometry 

in τp drives autocorrelation and negative estimation bias to scale with body size. 

We examined this hypothesis in two ways. First, we tested whether the chain of 

relationships that would drive bias to scale with mass holds for empirical tracking data. 

Second, we explored how well 2 methods of home-range estimation for autocorrelated 

data eliminate the scaling of home-range estimation bias. These methods were model-

informed data thinning, which removes autocorrelat ion from the data prior to home-
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range estimation, and autocorrelation-informed home-range estimation, which 

statistically accounts for autocorrelat ion in movement data. We then used model 

selection to determine whether significant allometry bias remains in the data for each 

approach and identified whether one of these correct ions offers improved performance 

over the other. Finally, in light of our findings, we revisited the concept of home-range 

allometry (e.g., McNab, 1963; Jetz et al., 2004; Tucker et al., 2014). Mammalian home-

range area (H) scales positively with body mass (M) as H = B0Mb , where B0 is a 

normalizat ion constant and b the scaling exponent (McNab, 1963). Despite decades of 

research, however, there has been little consensus on whether the allometry is linear 

(i.e., M1), or superlinear (i.e., M>1). Historically, this scaling relationship has been 

calculated by compiling home-range areas estimated via conventional estimators, which 

are subject to varying levels of autocorrelat ion-induced bias (Noonan et al., 2019), 

whereas no one has assessed this relationship directly from tracking data. While 

consistent bias across the mass spectrum would lead only to a change in the 

normalizat ion constant, differential bias across the mass spectrum could alter the scaling 

exponent, fundamentally changing the propert ies of the relationship. As such, we tested 

for any significant deviations from linear (M1) scaling. 

 

Methods 

All analyses were based on precollected tracking data sets obtained under appropriate 

permits and that were based on Institutional Animal Care and Use Committee (IACUC) 

approved protocols. 

 

Data compila tion 
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To investigate whether biases in home-range estimation scale with body size, we 

compiled GPS tracking data for 61 globally distributed terrestrial mammalian species, 

comprising 6.94 × 106 locations for 757 individuals collected from 2000 to 2019 (Fig. 

1). Individual data sets were selected based on the criterion of range resident behavior 

(i.e., area-restricted space use), as evidenced by plots of the semivariance in positions as a 

function of the time lag separating observations (i.e., variograms) with a clear asymptote at 

large lags (Calabrese et al., 2016). When data do not indicate evidence of range residency, 

home-range estimation is not appropriate (Calabrese et al., 2016; Fleming & Calabrese, 

2017), so we excluded data from migratory or non-range resident individuals. The visual 

verification of range residency via variogram analysis was conducted using the R package 

ctmm (version 0.5.3) (Calabrese et al., 2016). Further details on these data are in 

Supporting Information. 

For each of the species in our data set, we compiled covariate data on that species’ mean 

adult mass in kilograms. We also identified the main food source for each species and classified 

them as carnivorous or omnivorous or frugivorous or herbivorous. Data from these two dietary 

classes were analyzed separately. Mass and dietary data were from the EltonTraits database 

(Wilman et al., 2014). 

 

Tracking-data analyses 

Our conjecture that the underestimation of home-range areas increases as body size 

increases was based on two well-established biological and one methodological relationship: 

the positive correlation between body mass and home-range area (Jetz et al., 2004); the positive 

correlation between home-range area and range crossing time, τp (Calder, 1983); and 

the negative correlation between range crossing time and the effective sample size for area estimation, 
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Narea (i.e., equivalent number of statistically independent locations [Noonan et al., 2019]). We 

hypothesized that these conspired to drive 2 previously untested relationships: a potential negative 

correlat ion between body mass and Narea and a potential negative correlat ion between body mass and 

home-range estimator accuracy. 

Testing for these relationships first required estimating the autocorrelation structure in 

each of the individual tracking data sets. To accomplish this, we fitted a series of range-

resident, continuous-time movement models to the data with the estimation methods 

developed by Fleming et al. (2019). The fitted models included the independent and 

identically distributed process, which features uncorrelated positions and velocities; the 

Ornstein-Uhlenbeck (OU) process, which features correlated positions but uncorrelated 

velocities (Uhlenbeck & Ornstein, 1930); and an OU-foraging (OUF) process, featuring 

both correlated positions and velocit ies (Fleming et al., 2014). We used model selection 

to identify the best fitting model given the data (Fleming et al., 2014) from which τp and 

Narea were extracted. To fit and select the movement models, we used the R  package ctmm 

and  applied the workflow described by Calabrese et al. (2016).  

We estimated home-range areas for each of the 757 individuals in our tracking 

database via kernel density estimation (KDE) with Gaussian reference function bandwidth 

optimization because this is one of the most commonly applied home-range estimators in 

ecological research (Noonan et al., 2019). The KDE home ranges were estimated via the 

methods implemented in ctmm, and the further small-sample-size bias correction that was 

introduced in area-corrected KDE (Fleming & Calabrese, 2017). 

Our primary aim was to determine the extent to which autocorrelat ion-induced bias in 

conventional home-range estimation might increase with body size. This required an 

objective and statistically sound measure of bias. We applied the well-established 
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technique of block cross-validat ion (Noonan et al., 2019) to quantify bias in empirical 

home-range estimates. By determining the extent to which the results of an analysis 

generalize to a statistically independent data set, cross-validat ion is an effective tool for 

quantifying bias (Pawitan, 2001). For this approach, each individual data set was split in 

half, and a home-range area was estimated from the first half of the data only (i.e., 

training set). Next, the percentage of observat ions in the second half of the data (i.e., 

held-out set) that fell within the specified contour (here 50% and 95%) of the estimated 

home range was calculated. If the percentage of points included came out consistent ly 

higher or lower than the specified contour, then it would suggest positive or negative bias 

respect ively. As a further measure of bias, we identified the contour of the home range 

estimated from the training set that contained the desired percentage of locations in the 

held-out set (i.e., 50% and 95%) and compared the area within that contour to the 

estimated area at the specified quantile. For example, consider that the 95% area estimated 

on the training data contained only 90% of the locations in the held-out set, whereas the 

97% contour contained 95% of the locations. To measure bias, we would take the ratio 

between the 97% area and the 95% area. Cross-validat ing home-range estimates in this 

way can also be seen as providing a measure of how well a home-range estimate can be 

expected to capture an animal’s future space use, assuming no substant ial changes in 

movement behavior. 

Block cross-validation is based on the assumption that data from the training and held-

out sets are generated from the same processes. To confirm this assumption, we used the 

Battacharryya distance implementat ion in ctmm (Winner et al., 2018) as a measure of 

similarity (range 0 – ∞) between the mean area and covariance parameters of 

movement models fitted to the training and held-out data sets and determined whether 
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the confidence intervals on this distance contained 0 (details in Appendix S1 in Noonan 

et al. [2019]). Using this method, we determined that 160 of 757 individuals had 

movement models with significant ly different parameter estimates between the first and 

second halves of the data, so we excluded these from our cross-validation analyses. We 

found no significant relationship between whether or not a data set was excluded from 

our analyses and which species the data were from (p = 0.52) or be t w een  

exc lu s ion  and  how long an individual was tracked (p = 0.39). This confirmed that 

the subsampling required to meet the assumptions of half-sample cross-val idat ion 

did not bias our sample. 

 

Correction factors 

We explored two potential solutions to the allometric scaling of autocorrelation and home-

range estimation bias: thinning data to minimize autocorrelation and using autocorrelation-

informed home-range estimation. 

Conventional kernel methods are based on an assumption of independence; 

however, they can provide accurate estimates for autocorrelated processes when the 

sampling is coarse enough that the data appear uncorrelated over time (Hall & Hart, 

1990). Thus, data thinning presents a potentially straightforward solution to 

autocorrelat ion-induced bias, but requires a balance between reducing autocorrelat ion 

and retaining sample size. We therefore explored model-informed data thinning as a 

means of mitigat ing size-dependent home-range bias. As noted above, the parameter τp 

relates to an individual’s range-crossing time and quantifies the timescale over which 

positional autocorrelat ion decays to insignif icance. More specifically, because positional 

autocorrelat ion decays exponentially at rate 1/τp, the time required for the percentage of 
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the original velocity autocorrelation to decay to α is τα = τpln(1/α). Conventionally, data 

are thinned to independence with a 95% level of confidence, and ~3τp is the time it takes 

for 95% of the positional autocorrelation to decay. Consequently, we thinned each 

individual’s tracking data to a sampling frequency of dt = 3τp. We then used 

autocorrelat ion functions to quantify how much autocorrelation remained in the thinned 

data and evaluated the performance of KDEs on these thinned data. 

As opposed to manipulat ing the data to meet the assumptions of the estimator, the 

second potential solution was to use an estimator that explicit ly modeled the 

autocorrelat ion in the data. Autocorrelated -KDE (AKDE) is a generalizat ion of 

Gaussian reference function KDE that cond it ions upon the autocorrelation structure of 

the data when optimizing the bandwidth (Fleming et al., 2015). Following the workflow 

described by Calabrese et al. (2016), AKDE home-range areas were estimated 

conditioned on the selected movement model for each data set, via the methods 

implemented in ctmm, with the same small-sample-size bias correction applied to the 

conventional KDE area estimates (Fleming & Calabrese, 2017). The AKDE is available 

via the web-based graphical user interface at ctmm.shinyapps.io/ctmmweb/ (Dong et 

al., 2017). 

 

Correction factor performance  

To test for body-size-dependent biases in cross-validat ion success, we fitted three regression 

models to the cross-validation results as a function of log10-scaled mass. The models 

included an intercept only model (i.e., no change in bias with mass); linear model; and 

logistic model. We then identified the best model for the data via small-sample-size 

corrected quasi-Akaike information criterion (QAICc) (Burnham et al., 2011). 
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Species may exhibit similarities in traits due to phylogenetic inertia and the constraints 

of common ancestry; thus, controlled comparisons are required (Harvey & Pagel, 1991). 

Accordingly, we did not treat species data records as independent; rather, we used the 

phylogenetic distances among species to construct a variance-covariance matrix and defined 

the correlation structure in our allometric regressions with the R package nlme (version 3.1-

137) (Pinheiro et al., 2018). Phylogenetic relationships between eutherian mammalian 

orders were based on genetic differences and taken from Liu et al. (2001). Intraorder 

relationships were taken from more targeted studies aimed at resolving species-level 

relationships, including Price et al. (2005) for Artiodactyla, Matthee et al. (2004) for 

Lagomorpha, Steiner and Ryder (2011) for Perissodactyla, Barriel et al. (1999) for 

Proboscidea, Perelman et al. (2011) for Primates, and Agnarsson et al. (2010) for Carnivora. 

For Canidae, however, we took relationships from Lindblad-Toh et al. (2005), due to better 

coverage of the species in our data set. The phylogenetic tree was built with the R package 

ape (version 5.2) (Paradis & Schliep, 2019), and branch lengths were computed following 

Grafen (1989). Phylogenies are in Supporting Information. 

 

Results 

Allometric scaling of bias 

Out of 757 data sets, only one was independent and identically distributed and free from 

significant autocorrelation. Conventional KDE 95% home-range areas cross-validated at a 

median rate of 88.3% (95% CI 87.2% – 90.1%), which was below the target 95% quantile 

and demonstrated a tendency to underest imate home-range areas on average. Similarly, 

KDE 50% home-range areas cross-validated at a median rate of 41.5% (95% CI 39.4% – 

43.3%), which was again below the target 50% quantile. The magnitude of KDE’s 
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underest imation worsened as body mass increased (t = 2.30, p = 0.02) (Fig. 2a) 

carnivores and herbivores did not differ significantly (t = 0.31; p = 0.75). Cross-validation 

success of 50% home-range areas across the mass spectrum was best described by a 

linear decay model with an intercept of 47.2 (95% CI 39.9 – 54.5) and a slope of -3.9 

(95% CI -7.0 – -0.8). In other words, for every order of magnitude increase in body mass, 

home-range estimates captured ~4% less of an individual’s future space use. 

When comparing the 95% area estimates with the area estimates for the contours 

that contained 95% of locations, KDE accuracy across the mass spectrum was best 

described by linear decay (Fig. 2b). Consequently, whereas the home-range areas of 

mammals weighing <10 kg were underest imated by 13.6% (95% CI: 6.3% – 18.6%), 

those of species weighing >100kg were underestimated by 46.0% on average (95% CI: 

36.7% – 51.4%). 

Mechanisms driving body size-dependent estima tion bias 

We found significant positive relationships between body mass and home-range area 

(regression parameter: β = 1.18, 95% CI = 0.92 – 1.43, t = 9.09; p <0.0001) (Fig. 3a) 

and between home-range area and range crossing time, τp (β = 7.09, 95% CI = 4.78 – 

9.41, t = 6.00; p < 0.0001) (Fig. 3b) and a negative relationship between τp and the 

effective sample size, Narea (β = −0.65, 95% CI = -0.70 – -0.60, t = 25.46, p <0.0001) 

(Fig. 3c). The former two scaling relationships differed significant ly between 

carnivorous and herbivorous mammals (t = 3.08, p <0.005 and t = 2.37, p = 0.02, 

respect ively). Carnivores tended to have larger home ranges and shorter range crossing 

times than comparably sized herbivores, and herbivores tended to have longer range 

crossing times. The relationship between Narea and mass did not differ between dietary 

classes (t = 0.82; p = 0.06). The Narea was governed by both τp and sampling duration, T, 
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such that Narea ≈ T/τp. Although we noted a positive correlat ion between body mass and 

T in the studies we sampled (β = 0.24, 95% CI = 0.09 – 0.39, t = 3.17; p <0.005), this 

was not enough to counter the positive correlat ion between mass and τp. Consequently, 

the net result was a negative relationship between body mass and Narea (β = -0.23, 95% 

CI = -0.39 – -0.08, t = 2.98; p < 0.005) (Fig. 3d). 

 

Correction factors 

Model-informed data thinning served to reduce the mean autocorrelat ion at lag 1 from 

0.96 (95% CI: 0.96– 0.97) to 0.32 (CI: 0.30 – 0.35) (Fig.  4).  Hence, an independent and 

identically distributed model was the best fit for 167 of the 463 individuals for which 

sufficient data (>2 locations) remained after data thinning. The remaining individuals were 

best described by OU and OUF processes whose autocorrelation parameters were not 

significant.  Although thinning mitigated the correlation between bias and body mass (β = -

2.41, 95% CI -6.08 – 1.26, t = 1.29; p = 0.20), the median cross-validat ion rate of 95% 

home ranges estimated using the thinned data was only 85.1% (95% CI: 83.6% – 86.5%). 

This ~3% decrease in performance, as compared with conventional KDE on the full data, 

was likely the result of the small sample size. Model-informed data thinning resulted in a 

mean data loss of 93.2% (95% CI: 92.1%– 94.3%), and the median number of 

approximately independent locations left in each data set after thinning was only 23 (95% 

CI: 18 – 26). Furthermore, in ~20% of the individuals ≤2 locations remained after 

thinning, making it impossible to estimate a home-range area on the thinned data. 

 

Autocorre lation -inform ed home-range estimatio n 

Like model-informed data thinning, autocorrelat ion-informed home-range estimation via 
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AKDE also eliminated the correlat ion between cross-validat ion success and body mass 

(β = - 0.51, 95% CI = -1.88 – 0.86, t = 0.73; p = 0.47). However, without the data loss 

required by the thinning approach, AKDE resulted in a median cross-validat ion rate of 

95.2% (95% CI: 94.2% – 95.9%) for 95% home ranges and 51.3% (95% CI 49.26% – 

54.36%) for 50% home ranges. In other words, AKDE exhibited consistent accuracy across 

species, irrespect ive of the allometries in autocorrelat ion timescales and effective sample 

sizes. 

 

Scaling of mammalian space use 

When regressing home-range area against mass with conventional KDE estimates, we 

documented no significant difference from linear scaling for either herbivores or carnivores 

(Table 1). For AKDE derived area estimates, however, we detected that the scaling exponent 

was significantly >1 for both taxonomic groups, suggesting home-range area scales with 

mass according to a power function. 

 

Discussion 

The importance of autocorrelation in animal-tracking data has been an active area of 

research for decades (Swihart & Slade, 1985; Fieberg, 2007; Fleming et al., 2015). We, 

however, are the first to demonstrate that mass-specif ic space requirements driven by 

autocorrelat ion-induced underestimation of home-range areas is worse for larger 

species. From a fundamental perspect ive, the continuous nature of animal movement 

means quantities such as positions, velocit ies, and accelerat ions are necessarily 

autocorrelated (Fleming et al., 2014). Autocorrelat ion timescales (τ ) should therefore be 

viewed as explicit attributes of an animal’s movement process (Gurarie & Ovaskainen, 
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2015) that are revealed when the temporal resolut ion of measurement becomes ≲ τ . As 

technological advances continue to permit ever-finer sampling (Kays et al., 2015), 

persistent autocorrelat ion is likely to become the norm in animal-tracking data. Pairing 

data from inherently autocorrelated processes with statistical approaches that ignore 

autocorrelat ion not only risks biasing any derived quantities, bu t  a lso  effectively 

negates the technological advances that are improving data quality. Unless analyses 

that are informed by autocorrelat ion become adopted by movement ecologists and 

conservationists, the issue of autocorrelat ion-induced bias will only worsen. Conversely, 

properly harnessing the wealth of information provided by autocorrelat ion can 

dramatically improve the accuracy of tracking-data derived measures (see also Fleming 

& Calabrese, 2017; Winner et al., 2018; Noonan et al., 2019). Our findings therefore 

highlight the need for more statistical estimators that can handle biologically induced 

variance without introducing bias. 

 

Implications of size-dependent bias 

From a conservation perspect ive, the underest imation of home-range areas is a worst-

case scenario. When reserves are too small, relative to their target species’ area 

requirements, the probability of local populat ions undergoing declines or extirpations 

increases significant ly (Brashares et al., 2001; Gaston et al., 2008). Undersized 

protected areas resulting from poorly estimated space needs also risk exacerbat ing the 

issue of negative human wildlife interact ions at reserve boundaries (Van Eeden et al., 

2018) as animals move beyond reserve boundaries to meet their energetic requirements 

(Farhad inia et al., 2018). It is thus of critical importance that policy actions be well 

informed about species’ spatial requirements. To this end, we analyzed a broad 
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taxonomic and geographic range of data and identified a strong correlation between 

home-range underest imation and body size when autocorrelat ion was ignored ; average 

bias was ~50% at the upper end of the mass spectrum. In this regard, the majority of 

home ranges are estimated via methods based on the assumption of statistically 

independent data (Noonan et al., 2019). Combined with the facts that humans are the 

dominant mortality source for terrestrial vertebrates globally (Hill et al., 2019), that this 

mortality is higher for larger-bodied species (Hill et al., 2020), and that megafauna are 

experiencing more severe range contractions (Tucker et al., 2018) and extinction risk 

(Cardillo et al., 2005), the most threatened species are also likely to be those with the 

least accurate home-range estimates, a worrying combinat ion. 

Based on these findings, we suggest that any conservat ion initiatives or policy based 

on home-range estimates derived from estimators based on the assumption of 

statistically independent data be revisited, especially where large-bodied species are 

involved. To facilitate this, we developed HRcorrect, an open-access application that allows 

users to correct a home-range area estimate for their focal species’ body-mass-specific-

bias with a correction factor calculated from our cross-validat ion regression models. The 

current version of HRcorrect is freely available from 

https://hrcorrect.shinyapps.io/HRcorrect/. However, there are numerous factors beyond 

body mass that influence an individual’s home-range size. For instance, mammalian 

home-range areas are well known to covary with the spatial distribut ion of resources 

(Litvait is et al., 1986; Boutin, 1990), social structure (Lukas & Clutton-Brock, 2013), 

sex (Cederlund & Sand, 1994; Lukas & Clutton-Brock, 2013; Noonan et al., 2018), age 

(Cederlund & Sand, 1994), populat ion density (Adler et al., 1997), and reproductive 

status (Rootes & Chabreck, 1993; Noonan et al., 2018). Furthermore, if an individual’s 
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space use changes over time (e.g., interseasonal, -annual variation), a home-range area 

estimated from a single observat ion period may not be representat ive of its long-term 

area requirements. As such, the determinist ic trend-based correction provided by 

HRcorrect  is not a substitute for more rigorous data collect ion and home-range 

estimation and should only be used for cases where the underlying tracking data are not 

accessible. 

 

Allometries and conservation theory 

The metabolic theory of ecology (West et al., 1997) suggests body mass represents a 

super trait that governs a wide range of ecological processes. Prime among these is the 

relationship between body mass and home-range area, an allometry that has guided 

ecological theory for more than 50 years (McNab, 1963; Calder, 1983; Jetz et al., 2004). 

More recently, attempts have been made to integrate this allometry into conservat ion 

theory. For instance, Hilbers et al. (2016) incorporated the home-range allometry into a 

method for quantifying mass-specif ic extinction vulnerability, and Hirt et al. (2018) 

highlighted how allometries in movement and space use can be used to make testable 

predictions of movement and biodiversity patterns at the landscape scale. Similarly, 

Pereira et al. (2004) used allometries of space use and movement rates to predict species 

level vulnerability to land-use change. If the underlying allometries are biased, however, 

hypothesis testing and conservat ion planning in this context can fail even if the logic 

behind the experimental design is perfectly sound. While the earliest derivation of the 

home-range allometry proposed a metabolically determined M0.75 allometry (McNab, 

1963), subsequent revisions showed no support for a purely energet ic basis for home-

range scaling (Calder, 1983; Kelt & Van Vuren, 2001; Jetz et al., 2004; Tucker et al., 
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2014; Tamburello et al., 2015). Although all these studies concluded that home-range 

area should scale with an exponent greater than the 0.75 predicted by metabolic 

requirements alone, there has been little consensus on whether the allometry is linear 

(M1) or superlinear (M>1). Our results suggest that at least part of the confusion can be 

attributed to the increasing bias in underest imating home ranges with increasing body 

size. Ours is the first study to estimate this relationship directly from tracking data by 

applying a consistent estimator across all individuals and, crucially, correcting for any 

potential autocorrelat ion-induced bias (Noonan et al., 2019). In doing so, we 

documented a super-linear relationship between body mass and home-range area 

(exponent of ~1.25 for M). This shift from linear to power-law scaling fundamentally 

changes the behavior of the relationship, particularly at the upper end of the mass 

spectrum. Although we did not investigate the mechanisms behind the deviation from the 

metabolically determined M0.75, we encourage future work on this subject be based on 

the assumption of a superallometry, as opposed to linear allometry. Accurately 

quantifying species’ area requirements is a prerequisite for successful, area-based 

conservation planning. Our results highlight an important yet hitherto unrecognized 

aspect of home-range estimation: autocorrelat ion-induced negative bias in home-range 

estimation that is systematically worse for large species. Crucially, however, our findings 

also outline a readily applicable solution to the problem of size-dependent bias. We 

demonstrated that home-range estimation that properly accounts for the autocorrelat ion 

structure of the data is current ly the only consistent ly reliable solution for eliminat ing 

allometric biases in home-range estimation (see also Noonan et al., 2019). We emphasize 

that the differential scaling of autocorrelat ion across the mass spectrum be a key 

considerat ion for movement ecologists and conservat ion practitioners and suggest 
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avoiding home-range estimators that assume statistically independent data. 
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Table 1: Estimates of the scaling exponent (b) of mass to home-range area relationship.* 

 

 

 

 

*Abbreviations: KDE, Kernel Density Estimation; AKDE, autocorrelated-Kernel Density Estimation.

 KDE (95% CI)  AKDE (95% CI) 

All mammals 

Herbivores and frugivores 

Carnivores and omnivores 

1.20 (0.95 – 1.45) 

1.26 (0.99 – 1.52) 

1.23 (0.95 – 1.50) 

 1.28 (1.01 – 1.54) 

1.38 (1.09 – 1.66) 

1.27 (1.01 – 1.56) 
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Figure 1: Distribut ion of study sites for the empirical GPS tracking data set 

spanning 757 individuals across 61 mammalian species. 
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Figure 2: Cross-validat ion of conventional Kernel Density Estimation (KDE) across 

the mammalian body-mass spectrum: (a) percentage of locat ions from the second 

half of the data (held -out set) included in KDE 50% home ranges estimated from the 

first half of the data (training set) as a function of body mass (dashed line, target 

50% quantile ; solid line, phylogenetically controlled regression model fit to cross-

validat ion results; shading, 95% CI of the fit) and (b) regression model describing 

the accuracy of 95% KDE area estimates across the mass spectrum. Accuracy was 

quantif ied as the ratio between estimated 95% area of the training set and the area 

contained within the contour that encompassed 95% of locat ions in the held-out set. 

The horizontal dashed line represents an unbiased area estimate. The x-axes in (a) 

and (b) are log scaled . 
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Figure 3: Mechanisms driving body-size-dependent estimation bias: (a) positive 

allometry of home-range areas, (b) correlation between home-range area and 

range-crossing time (τp), (c) negative correlation between τp and effective sample 

size (Narea) governed by duration of observation period (T) and τp such that Narea ≈ 

T/τp , and (d) resulting negative allometry of Narea (axes, log scaled; lines, 

phylogenetically controlled fitted regression models). From (a) to (d), 1 axis is 

preserved from the previous panel to demonstrate the inherent link between each of 

these relationships (arrows, visual aid of link; top-left arrow, end of the chain). 
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Figure 4: Frequency of amounts of autocorrelat ion at lag 1 in the full tracking data sets for each 

of the 757 individuals used to estimate home ranges via conventional Kernel Density Estimation 

(KDE), compared with the thinned data sets for individua ls for which sufficient data remained 

after thinning to apply KDE. 
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