
1

Application Domains in the Research Papers at
BENEVOL: A Retrospective

Andrea Capiluppi Dept of Computer Science
Brunel University London (UK)

Nemitari Ajienka Dept of Computer Science
Edge Hill University (UK)

Bilyaminu Auwal Romo Dept of Engineering and Digital Technologies
Coventry University (UK)

Abstract—Research on empirical software engineering has
increasingly used the data that is made available in online repos-
itories, specifically Free/Libre/Open Source Software projects
(FLOSS). The latest trends for researchers is to gather “as much
data as possible” to (i) prevent bias in the representation of a
small sample, (ii) work with a sample as close as the population
itself, and (iii) showcase the performance of existing or new tools
in treating vast amount of data.

The effects of harvesting enormous amounts of data have been
only marginally considered so far: data could be corrupted;
repositories could be forked; and developer identities could be
duplicated. In this paper we posit that there is a fundamental flaw
in harvesting large amounts of data, and when generalising the
conclusions: the application domain, or context, of the analysed
systems must be the primary factor for the cluster sampling of
FLOSS projects.

This paper presents two contributions: first, we analyse a
collection of 100 BENEVOL papers that appeared showing
whether (and how much) FLOSS data has been harvested, and
how many times the authors flagged an issue in their different
application domains. Second, we discuss the implications of using
‘application domain’ as the clustering factor in FLOSS sampling,
and the generalisations within and outside the clusters.

Index Terms—FLOSS, application domains, BENEVOL papers

I. INTRODUCTION

The use of open, available data has been a welcomed
accelerator in the software engineering research field. Data
on the processes and products available via an Open Source
approach has led to an increasingly large number of work-
shops, conferences, papers and research attempts to describe
the phenomenon. Researchers gathered initially in 2001 around
the Open Source Software (OSS) workshops, held annually in
co-location with the ICSE series of conferences. Before the
OSS workshop spawned into the OSS conference in 2005, the
BENEVOL community started to group together researchers
from the Software Evolution domain. Its initial focus was
‘(...) to bring researchers to identify and discuss important
principles, problems, techniques and results related to software
evolution research and practice’1.

While the goal of a few BENEVOL papers has been to
achieve the generality of the results [1], the domain, context
and uniqueness of a software system have not been considered

1https://smartcare.be/events/benevol-04-workshop

very often by empirical software engineering research. As
in the example reported in [2], the extensive study of all
JSON parsers available would find similarities between them
or common patterns. That type of study would focus on one
particular language (JSON), one specific domain (parsers)
and inevitably draw limited conclusions. On the other hand,
considering the “parsers” domain (but without focusing on
one single language) would show the common characteristics
of developing that type of systems, and irrespective of their
language.

The underlying vision of this paper is to open a proper
debate on the importance of context for any software system,
and the uniqueness of its application domain. This position
paper stems from the work of several prominent researchers
who called the community to ‘go deeper, not wider’ (Michael
Godfrey at MSR 2017) and ‘minding the mine, mining the
mind’ [3]. We posit that past empirical investigations using
FLOSS systems have been mostly blind to these aspects (i.e.,
context and domain), establishing similarities between vastly
different systems if they shared a common pattern in one
measured attribute. Using an extreme example, one could
establish a similarity between the coupling of a ‘hammock‘
and a ‘bridge’ due to the fact that both are held at the sides.

The purpose of this paper is to share some findings about
a selection of papers discussed during the last few years of
BENEVOL workshops. The focus is specifically based on
BENEVOL papers that have used FLOSS data. The context of
our analysis is the diversity of FLOSS projects under study,
and how that was reflected by researchers in their findings.
Some 100 papers are analysed in terms of whether FLOSS
projects are used, how many, and whether considerations of
application domains have been used to inform the sampling of
FLOSS projects, or the validity of the conclusions. We assume
that domains are relevant as a fundamental construct for any
empirical software engineering research [4].

II. RELATED WORK

The vast literature on FLOSS systems of the last 10 years
has been possible also due to a series of guidelines on how to
perform quantitative, empirical analysis on FLOSS processes
and products. When SourceForge2 was considered as the de-

2https://sourceforge.net/



2

facto FLOSS forge, a well received research paper shared
more than one insight on the most common mistakes to
avoid when mining data and results from the projects hosted
there [5]. Among other more technical issues of mining this
specific forge, this paper actively warned against an inaccurate
‘screening’ of projects into samples: reducing a population
to, say, ‘FLOSS projects with more than 7 developers’ would
inevitably reduce the variables for the analysis, but the ‘num-
ber of developers’ variable cannot be used as a dependent or
independent variable for any model or analysis.

The acknowledgement of GitHub as the newly established
central focus for FLOSS development generated a similar
requirement, in terms of shared guidelines to avoid common
mining mistakes [6]. Differently from [5], the 2014 paper
mostly focused on the technical aspects of GitHub, and how
the collected metrics could skew the results, due to the
inner workings of the Git toolset, and the different approach
to FLOSS development observed on GitHub (forking, non-
software development, inactivity of projects). Neither [5] or [6]
warned about the variability of FLOSS projects, the impor-
tance of their context, or the uniqueness of their domains.

Outside of the FLOSS literature, the diversity and context
of software systems have received some attention in the
past [4], [7]. The phrase “large scale” has been frequently
used in empirical software engineering research to denote the
magnitude of the analyzed case study or studied software
sample. Notwithstanding, Nagappan et al. argue that analyzing
a high number of projects is not always necessary [2]. But
what is even more important is the selection of the projects
studied.

Interesting patterns valuable to researchers and practitioners
are often identified in domain-based analysis of software
projects. Results from one domain might not be applicable in
another. As such, it is important for results to be representative.

Software categorization or domain clustering has gained
importance over the years. For example, the knowledge of
software trends in a particular domain can assist developers
in the search for domain-specific reusable components [8].
Tian et al. [9] proposed a technique based on Latent Dirichlet
Allocation for automatic software categorization in open-
source software repositories.

According to Haefliger et al. [10], “domain analyses,
documentation, and quality standards enhance the ability to
reuse software components”. However, our survey of past
BENEVOL papers that have analyzed OSS projects demon-
strates that software domains have not been considered in most
of the past software engineering studies.

III. A SURVEY OF BENEVOL PAPERS: 2012 TO 2018

In order to show how FLOSS data has been used and
analysed by the BENEVOL community, we report here an
investigation of the research papers appeared in the last 5
years of the BENEVOL event. An overall 101 papers have
been considered in this study: we share the raw data in the
spreadsheet at https://tinyurl.com/y69wkadr.

Each paper was read by one of the co-authors, and sum-
marised along the following points:

• Use of FLOSS systems (yes/no): at first we checked
whether FLOSS projects are used in the paper at all. This
served as an indicator of the pervasiveness of FLOSS
projects in the literature produced by BENEVOL papers.

• Number of FLOSS systems used: in second instance, we
trawled through the paper, annotating where the authors
mentioned how many FLOSS systems were used. In the
case of full papers, the abstract, introduction, methodol-
ogy and conclusion were read for that purpose.

• Analysis of application domains: thirdly, we considered
the methodology, results and conclusion of each paper,
along with the threats to validity, looking for consid-
erations of application domains. We checked if the au-
thors considered this attribute in the sampling of FLOSS
projects, whether they limited their results against this
axis, or whether it was considered a specific threat to
validity. This attribute was coded as either {yes — no}.

The contributions to the 2016 edition of BENEVOL are
not available online, so they had to be excluded from our
analysis. The spreadsheet with the categorisation of the papers
has been made available for inspection under the following
link: https://tinyurl.com/y69wkadr.

A. BENEVOL use of FLOSS Systems

In this section we provide the first point of our analysis:
‘how many BENEVOL papers have used FLOSS systems in
their analyses?’. As visible in the two plots of Figure 1,
researchers (and accepted BENEVOL papers) have steadily
used FLOSS systems for their papers. The first plot shows the
absolute numbers of accepted BENEVOL submissions that use
one or more FLOSS projects.

The bottom plot of Figure 1 shows the ratio of FLOSS
and non-FLOSS papers in the BENEVOL sample of papers.
It is getting increasingly more common to use one or more
commercial software systems, or a combination of FLOSS and
non-FLOSS projects.

B. Number of FLOSS systems used in BENEVOL

In this section we report on the number of FLOSS systems
evaluated by BENEVOL papers. For this purpose, we analysed
the methodology description, or the empirical approach, of
each paper to determine how many FLOSS systems were
reported in the study. Figure 2 displays the cumulative number
of FLOSS systems used in BENEVOL papers, per year. The
median number of systems has increased from one analysed
OSS system in 2012 to 1,127 systems in 2018.

The exponential number of FLOSS systems being used by
BENEVOL papers has been accelerated by many factors: (i)
availability of open forges (FreshMeat, SourceForge, Savan-
nah, Apache FSF, GitHub and many others); (ii) common,
shared toolsets to perform the analyses; (iii) guidelines on how
to effectively use forges.

Below we give a summary of findings to assess the trends
observed in the number of FLOSS systems analysed by the
BENEVOL papers.



3

Fig. 1. Papers using FLOSS (above) and use of FLOSS and non-FLOSS
projects (below) in the BENEVOL (between 2012 and 2018)

Fig. 2. Cumulative number of FLOSS projects per year

a) Growth of sample sizes: The trend that we observed
throughout the subsequent years of the BENEVOL contribu-
tions is, fundamentally, summarised as ‘the more the better’.
Authors have started to include larger and larger FLOSS
samples to their papers. We can assume that this pattern
has been followed in order to achieve the generality of a
paper’s findings. At the last edition of available BENEVOL
contributions (BENEVOL 2018), over one million FLOSS
systems were considered for investigation, jointly by the
accepted papers.

b) Uncertainty on sample sizes: Several BENEVOL
papers use ecosystems [11], or umbrella projects [12], as their
cases studies, whereas other papers either take a subset of
those super-projects, or explicitly declaring the number of

subprojects (e.g., Scala [13] or Python [14] projects) that they
analysed. This means that our final figures are mostly lower
bounds of the actual number of FLOSS systems being used
by the BENEVOL community.

c) Ecosystems vs time of analysis: Several BENEVOL
papers have used umbrella projects (for example, Gnome). In
most cases we considered them as single FLOSS systems:
depending on the time of the analysis, these larger projects
can contain a variable number of sub-projects. This makes it
difficult to define the status of the super-project, in terms of
number of its sub-projects, as well as their domains. This also
makes it difficult to replicate those studies, as well as their
results and conclusions.

d) Sampling and Pruning: Throughout the editions of
BENEVOL, sampling of a few systems (see for instance [15]
or [16]) has given way to whole-forge analyses. Also, there
seems to be a general view that ‘pruning’ a sample is a good
idea for removing outliers, or for promoting quality. This has
an effect on the sample studied, and the representativeness of
the population as a whole.

C. Application domains and FLOSS projects
The third analysis was based on the application domains

of the systems considered in the empirical study. For all
the papers (not only for those using FLOSS projects), we
tried to establish whether the authors considered the results,
findings or discussion as constrained by the type of system
(e.g., its domain). This included checking how the threats to
external validity (if any) addressed limited the conclusion to
the domain(s) under investigation.

We grouped the papers into two categories (and plotted them
accordingly per year):

1) papers that directly considered application domains as
drivers in the variability of the results (stack ”YES” in
Figure 3);

2) papers that didn’t considered application domains as
drivers (stack ”NO” in Figure 3).

The results of this analysis are shown in Figure 3: a ratio
(%) is used to separate the papers in the two categories. It
is clear from the visualisation that BENEVOL papers do not
generally acknowledge the variability of results as driven by
the domains of the systems involved. Earlier papers (especially
from the 2012 batch) have a good cover of domains in the
evaluation of the results, but this is not reflected in the later
editions of BENEVOL.

As visible in the Figure, the majority of findings on FLOSS,
as reported by BENEVOL papers, do not mention application
domains. In some cases, researchers have acknowledged the
variability of the results [17], [18], and hinted that other factors
could play a role in such variability. We considered as a
“limited” acknowledgment of the relevance of the application
domain when authors mentioned the diversity of the systems
under study.

IV. BENEVOL: FLOSS AND DOMAINS

The birdseye view on the type of BENEVOL contributions
(Sections III-A, III-B and III-C above) reveals some inter-
esting trends when dealing with FLOSS projects. Below we



4

Fig. 3. Application domains in papers using FLOSS projects

discuss in more detail whether FLOSS papers were analysed
(”YES” or ”NO”), and whether domains were considered in
the analysis (”YES” or ”NO”).

A. FLOSS: YES, Domains: YES

So far in the BENEVOL series, few papers explicitly
addressed the importance of domains when analysing systems,
or when discussing findings. An interesting perspective is
given in [19], since it considers a very specific type of systems,
the ‘cross-system packages’. These systems are likely to show
similar characteristics since they are supposed to act as vectors
to an from the overarching system.

By drawing on the importance of the application domains in
this paper [20], the authors signify the importance of domain
analysis when creating a theoretical and practical framework
that supports the development and the evolution of adaptive
data-intensive software systems for ubiquitous environments
in their study. Thus, they focus on data and in particular on
the problem of finding the most suitable portion of data that
have to be provided by the application in the of context of
‘self-adaptive system’.

Likewise in the 11th edition of BENEVOL (2012), [21]
examined the impact and role of social media on software de-
velopment. The authors argued that “social media is poised to
bring about a paradigm shift in software engineering research”
particularly in OSS community.

In the 2014 edition, only one BENEVOL study focusing
on OSS projects implicitly highlighted the need to investigate
projects from various domains [22]. The authors studied an
OSS project called DrJava and implicitly mentioned domains
but did not investigate multiple projects clustered into several
domains. According to the authors, “we chose an IDE since
they contain elements of multiple domains. The IDE project
was taken from the Qualitas Corpus and it consists of 3000
revisions since 2000 and the system grew from 30K SLOC in
2003 to 200K SLOC in 2013.

We concluded that application domains are not well repre-
sented or studied in the papers that use FLOSS data.

B. FLOSS: YES, Domains: NO

The vast majority of BENEVOL contributions, based on
FLOSS systems, do not consider domains as one of the

factors to take in consideration. An interesting example of this
approach is given in [1], where the authors pose that ‘... (to)
gather as much as possible should be the aim of empirical
software engineering’.

More in general, the approach of researchers is to focus
on specific languages or source code models (see for instance
the paper in [23], focused on all available meta-models from
GitHub), hence representing convenience sampling. For ex-
ample in the study on control flow, Landman et al., [24]
focused on the Sourcerer Corpus which contains 18K (13K
non empty) Java projects. In an empirical analysis of the
maintainability of CRAN packages, Claes et al., [25] presented
early results on analysing the dependencies of the CRAN R
packages repository.

We concluded that most of the papers studied from the
BENEVOL series do not consider the application domains as
an important factor for software analysis or evolution.

C. FLOSS: NO, Domains: YES

A few of the papers that we analysed are not based on
FLOSS systems, but more in general on commercial, or in-
house software. In a few cases, we observed that the authors
actually considered the limitations of their case studies to the
one domain that was investigated.

As a few of such examples, we noted a paper based on a
banking system [26]; and one focused on the specific features
of home-automation system [27]. Both these papers clearly
acknowledged the limitations given by the chosen application
domains that their systems are based on. In other cases, the
authors specifically focused on one domain (for example, GIS
systems [28], or the larger business domain [29]).

In general, the BENEVOL papers using non-OSS software
as their case studies do not use the domains to aggregate
results. Nonetheless a few BENEVOL contributions have
shown a clear pathway into not generalising the findings to
all domains.

V. CONCLUSION

This paper analysed how open source software has been
used by the BENEVOL contributions between 2012 and 2018.
We showed the increasing number of BENEVOL contributions
that used FOSS projects for their analyses.

Although the majority of contributions do not acnowledge
the importance of domains when discussing the findings, there
is an increasing number of papers that limit the results, or
the data sampling, to specific domains. We believe that one
of the major challenges for empirical software engineering
is to better understand the role of domains, especially in the
evolution of software systems. We propose for papers that
empirically analyse software systems to acknowledge such
challenge in a ‘threat to domain validity’.



5

REFERENCES

[1] Antoine Pietri and Stefano Zacchiroli. Towards universal software
evolution analysis. In BENEVOL, pages 6–10, 2018.

[2] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. Di-
versity in software engineering research. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pages 466–476.
ACM, 2013.

[3] A. J. Ko. Mining the mind, minding the mine: grand challenges in
comprehension and mining. In Andy Zaidman, Yasutaka Kamei, and
Emily Hill, editors, Proceedings of the 15th International Conference
on Mining Software Repositories, MSR 2018, Gothenburg, Sweden, May
28-29, 2018, page 118. ACM, 2018.

[4] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela
Damian. Selecting empirical methods for software engineering research.
In Guide to advanced empirical software engineering, pages 285–311.
Springer, 2008.

[5] James Howison and Kevin Crowston. The perils and pitfalls of mining
sourceforge. In Proceedings of the International Workshop on Mining
Software Repositories (MSR 2004. Citeseer, 2004.

[6] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M German, and Daniela Damian. The promises and perils of
mining github. In Proceedings of the 11th working conference on mining
software repositories, pages 92–101. ACM, 2014.

[7] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian
Proksch, Andy Zaidman, and Harald C Gall. Context is king: The
developer perspective on the usage of static analysis tools. In 2018
IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 38–49. IEEE, 2018.

[8] Yunwen Ye and Gerhard Fischer. Reuse-conducive development envi-
ronments. Automated Software Engineering, 12(2):199–235, 2005.

[9] Kai Tian, Meghan Revelle, and Denys Poshyvanyk. Using latent
dirichlet allocation for automatic categorization of software. In 6th IEEE
International Working Conference on Mining Software Repositories,
2009. MSR’09., pages 163–166. IEEE, 2009.

[10] Stefan Haefliger, Georg Von Krogh, and Sebastian Spaeth. Code reuse
in open source software. Management Science, 54(1):180–193, 2008.

[11] Tom Mens, Bram Adams, and Josianne Marsan. Towards an interdis-
ciplinary, socio-technical analysis of software ecosystem health. arXiv
preprint arXiv:1711.04532, 2017.

[12] Maëlick Claes. Applying biological evolution to software ecosystems a
case study with gnome.

[13] Yunior Pacheco, Jonas De Bleser, Tim Molderez, Dario Di Nucci,
Wolfgang De Meuter, and Coen De Roover. Mining extension point
patterns in scala. In BENEVOL, pages 16–20, 2018.

[14] José Javier Merchante and Gregorio Robles. From python to pythonic:
Searching for python idioms in github.

[15] Ward Muylaert and Coen De Roover. Untangling source code changes
using program slicing. In BENEVOL, pages 36–38, 2017.

[16] Jie Tan, Mircea Lungu, and Paris Avgeriou. Towards studying the
evolution of technical debt in the python projects from the apache
software ecosystem. In BENEVOL, pages 43–45, 2018.

[17] Zeeger Lubsen, Andy Zaidman, and Martin Pinzger. Using association
rules to study the co-evolution of production & test code. In Mining
Software Repositories, 2009. MSR’09. 6th IEEE International Working
Conference on, pages 151–154. IEEE, 2009.

[18] Christian Rodrı́guez-Bustos and Jairo Aponte. How distributed version
control systems impact open source software projects. In Mining
Software Repositories (MSR), 2012 9th IEEE Working Conference on,
pages 36–39. IEEE, 2012.

[19] Eleni Constantinou, Alexandre Decan, and Tom Mens. Breaking the
borders: an investigation of cross-ecosystem software packages. arXiv
preprint arXiv:1812.04868, 2018.

[20] Marco Mori and Anthony Cleve. A framework to support the de-
velopment and evolution of self-adaptive data-intensive systems. In
11th edition of the BElgian-NEtherlands software eVOLution symposium
(BENEVOL 2012), 01 2012.

[21] Maëlick Claes. Applying biological evolution to software ecosystems
a case study with gnome. In 11th edition of the BElgian-NEtherlands
software eVOLution symposium (BENEVOL 2012), 01 2012.

[22] Davy Landman, Alexander Serebrenik, and Jurgen Vinju. The rela-
tionship between cc and sloc: a preliminary analysis on its evolution.
In Benevol 2014 (Seminar on Software Evolution in Belgium and the
Netherlands, Amsterdam, The Netherlands, November 27-28, 2014),
pages 29–30. Centrum voor Wiskunde en Informatica, 2014.

[23] Önder Babur, Loek Cleophas, and Mark van den Brand. Metamodel
clone detection with samos. BENEVOL, 2018.

[24] Davy Landman, Alexander Serebrenik, and Jurgen Vinju. Control flow
in the wild a first look at 13k java projects. BENEVOL 2013, page 35,
2013.

[25] Maëlick Claes, Tom Mens, and Philippe Grosjean. Towards an empirical
analysis of the maintainability of cran packages. BENEVOL 2013,
page 42.

[26] Elvan Kula, Ayushi Rastogi, Hennie Huijgens, and Arie van Deursen.
Characterizing rapid releases in a large banking company: A case study.
In BENEVOL, pages 56–60, 2018.

[27] Tim Molderez, Coen De Roover, and Wolfgang De Meuter. Towards
a domain-specific language for automated network management. In
BENEVOL, pages 39–43, 2017.

[28] Cosmin Tomozei, Iulian Furdu, and Simona-Elena Vârlan. Gis sdks
dynamics echoed by social requirements transformations. In BENEVOL,
pages 22–25, 2017.

[29] Gururaj Maddodi and Slinger Jansen. Responsive software architecture
patterns for workload variations: A case-study in a cqrs-based enterprise
application. In BENEVOL, page 30, 2017.


