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Simulation of an electrically 
actuated cantilever as a novel 
biosensor
Masoud SoltanRezaee1* & Mahdi Bodaghi2

Recently, detecting biological particles by analyzing their mechanical properties has attracted 
increasing attention. To detect and identify different bioparticles and estimate their dimensions, a 
mechanical nanosensor is introduced in this paper. to attract particles, numerous parts of the substrate 
are coated with different chemicals as probe detectors or receptors. The principal of cell recognition 
in this sensor is based on applying an electrical excitation and measuring the maximum deflection of 
the actuated cantilever electrode. investigating the critical voltage that causes pull-in instability is 
also important in such highly-sensitive detectors. the governing equation of motion is derived from 
Hamilton’s principle. A Galerkin approximation is applied to discretize the nonlinear equation, which is 
solved numerically. Accuracy of the proposed model is validated by comparison studies with available 
experimental and theoretical data. The coupled effects of geometrical and mechanical properties are 
included in this model and studied in detail. Moreover, system identification is carried out to distinguish 
bioparticles by a stability analysis. Due to the absence of a similar concept and device, this research is 
expected to advance the state-of-the-art biosystems in identifying particles.

Biosensors have been introduced to detect different characteristics of biological particles. They have numerous 
applications in biotechnology as biomass detectors1,2, thermal switches3–6, smart resonators7–12, and other bio-
medical devices13–24. Due to the important biological applications of such systems in the drug delivery, clinical 
diagnostics, measurement, and organism detection, many scientists have studied their features such as opera-
tional range, instability, and performance8,24,25. In recent decades, theoretical investigations of different micro 
and nanoscale systems have attracted much attention26–28, which can extremely be useful in this multidiscipli-
nary field. Recently, developments in precision engineering have enabled the fabrication of advanced miniature 
instruments like micro and nanoelectromechanical system (MEMS and NEMS)23,29,30. Moreover, experimental 
advances in biotechnology have demonstrated a considerable ability to recognize cells within these precise bioM/
NEMS19,31.

With high demands for ultra-sensitive biosensors, beam-based micro and nanoresonators have emerged and 
developed due to their outstanding electrical and mechanical characteristics. Studying the pull-in instability, 
which can restrict the operational range of micro and nanosystems is essential in the modeling and analysis of 
biosensors. Almost all the types of biosensors consist of a suspended conductor and a fixed plate. The adsorption 
of the target biomolecules on any of electrodes changes its stiffness and displacement. It is demonstrated that the 
sensitivity of a sensor is maximized close to its critical point (pull-in characteristics), where the effective stiffness 
vanishes. Moreover, it was illustrated that the sensitivity of the system in measuring the adherent cell mass can be 
increased by decreasing deformable electrode dimensions32.

It was experimentally demonstrated that cantilever electrodes have a dramatic potential to be used as mechan-
ical biosensors9,10,33–35. The stiffness of cantilever beams is lower than clamped-clamped ones. Therefore, their 
sensitivity is considerable, which is very important in biosensing applications. The ability of microcantilever 
arrays for selective immobilization and fast quantitative recognition of biological entities has been illustrated 
experimentally34,35. Moreover, smart piezoelectric materials have widely been used to examine mechanical behav-
iors of microdetectors7–12 and atomic force microscope probes7. A novel platform has been introduced to apply 
as an ultra-sensitive microsensor based on cantilevers patterned with crosslinked hydrogels36. Gupta et al.37 stud-
ied the detection of bacterial cells and antibodies by employing surface machined especial manipulators. Wee 

1Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran. 2Department of Engineering, 
School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom. *email: 
m.soltan@modares.ac.ir

open

https://doi.org/10.1038/s41598-020-60296-9
mailto:m.soltan@modares.ac.ir


2Scientific RepoRtS |         (2020) 10:3385  | https://doi.org/10.1038/s41598-020-60296-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

et al.9 experimentally examined the electrical detection of disease markers employing piezoresistive microcan-
tilevers due to antigen–antibody interaction. The results illustrated that the interaction produces a compres-
sive tension on the microelectrode, which results in beam bending and resistance change of the surface layer. 
Microcantilevers excited by the piezoelectric layer as both sensors and actuators have been developed to detect 
biomaterials like proteins and DNA10,12. Afterward, microfabricated detectors based on the mechanical motions 
have been studied to be used as polymer biochemical sensing tools11. Chen et al.38 studied a rapid label-free detec-
tion of disease-related proteins employing microelectrodes. The results demonstrated that the sensitivity depends 
on the electrode material and geometry. Biosensing behaviors of micro and nanocantilevers have been reviewed 
with considering the nanobiotechnology33, pathogens rapid recognition24, microfabrication39, tool platform31, 
dynamic-mode40, biomedical applications22, mechanical applications41, and disease detection20. Furthermore, 
biological purposes have been summarized with attention to biorecognition fields, surface functionalizations, 
and resonant frequency39,40,42. The results of this review indicate the important role of cantilevers in biosensors 
as a key component.

Mehdipour et al.1 developed a novel biomass detector for simulating vibrations of a cantilevered single-walled 
carbon nanotube. The sensitivity of the biosensor to the values and positions of the attached mass was calcu-
lated with consideration of the pull-in instability. An actuator was examined by Shaat and Abdelkefi16 for mass 
detection of biocells and materials characterization. Furthermore, for disease diagnosis aims, a micromechanical 
actuator was suggested to detect human immune-viruses (HIVs). Later, they2 developed a nanocrystalline silicon 
antibody-coated cantilever to investigate the pull-in instability and sensitivity of biocell nanosensors using mod-
ified couple stress theory (MCST). However, they modeled the effects of surface layer energy and material size, 
neglecting the fringing field and dispersion forces (Casimir and van der Waals (vdW)) for more simplicity. The 
lateral vibrations of rectangular microplates with applications in industrial or biological detectors were modeled 
to identify the mass and its position by obtaining eigenvalues and resonant frequencies26. Overall, investigating 
instability characteristics and frequency analysis are significant in the design of actuated biological nanosystems.

The adsorption of target particles on either the suspended electrode or the fixed one changes the mechanical 
behavior of systems. For detection purposes, two different scenarios can be considered in beam-based bioM/
NEMS. In the first case, the surface of the deformable electrode is coated with chemical detectors, probe mole-
cules, or antibodies, which can attract analytes, molecules, or other target particles37. Several systems based on 
this classical scenario have been designed and analyzed in detail, especially as biomass detectors1,2,16,26,43. In this 
condition, the main methodology is that by measuring the variation of resonance frequencies, we will be able 
to estimate the attracted mass. There is another scenario, particularly to distinguish the size of bioparicles. In 
this case, which has less been considered, the fixed conductor is coated with materials that can capture target 
components. Hence, the component will block a part of the actuated substrate leading to a decrease in the effec-
tive length of the sensing piece. This phenomenon not only affects the instability voltage, but also the electrode 
deflection. Consequently, we will be able to measure the biological particles by investigating the pull-in instability 
characteristics.

The main objective of this research is to employ actuated beam-based systems as practical biosensors, which 
can also be applied as material detectors. In order to enable simulation and analysis of such biosensors, a nano-
manipulator is developed. To maximize the sensitivity of the detector, a cantilever nanobeam is considered as a 
deformable electrode. Numerous parts of the substrate are coated with different chemicals as receptors to attract 
biological components. By applying the electric potential and analyzing pull-in characteristics, we can recognize 
adherent components and their size. This model contains contributions of mechanical properties of actuated 
nanostructures, including the material length-scale, surface layer energy, nonlinear curvature, and dispersion 
effects. Moreover, the effects of electrode dimensions, i.e. thickness, width, length, and initial gap on the perfor-
mance of biological devices are investigated. A frequency analysis of vibrating NEMS is implemented to examine 
system resonances. Owing to the absence of such concept and device in the open literature, this research would 
advance the state-of-the-art biosensors simulation with the capability of identifying biological particles.

Identifying the substance of particles in addition to their dimensions is not achievable by classical meth-
ods such as the resonance frequency analysis. Therefore, obtaining a practical approach to this end is desirable. 
Detecting biological component becomes possible by means of the introduced sensor. In addition, estimating 
dimensions of different particles is another capability of this device that is essential in biomedical researches. We 
will be able to determine the particle dimension by investigating the pull-in voltage and deflection of the electrode 
tip. Furthermore, the particle or target can be any suspended or segregated bioparticle that we want to detect and 
determine its dimensions by attracting it to the biodevice substrate. The particle size is vital because incubation 
can depend on it44. This instrument could have several biomedical applications, for example, it could be utilized 
in a variety of gas or liquid samples such as blood samples. Moreover, due to the ultra-small size of the current 
sensor, injection of a developed biocompatible one into the animal body would be accessible.

Modeling and Methodology
Figure 1(a) shows an SEM image of a cantilever microbeam composed of a deformable electrode suspended over 
the substrate as the fixed conductor45. In Fig. 1(b), a schematic of a biosensor that exists in a liquid sample is pre-
sented40, where the deformable electrode has coated with a chemical that attracts especial analytes. Figure 1(c) dis-
plays a schematic of another cantilever biodetector, where the specific molecular binding on the surface induces 
a measurable bending deflection originating from the mechanical properties change30. Figure 1(d) demonstrates 
a typical schematic of an antibody-coated tip-mass beam in a blood sample, which can detect adherent entities 
by evaluating the change in the resonance frequency16. Figure 1(e) also displays a schematic of a microfabricated 
cantilever, which can attract antigens with coated antibodies on the external surface9. The movable arm deflects 
toward the fixed conductor gradually due to the applied potential difference and deposited mass. Finally, an 
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NEMS biosensor is proposed in this work, see Fig. 1(f). It can identify different particles and their size by consid-
ering the critical applied voltage and maximum deflection of the electrode.

In the following, the nonlinear equation of motion (EOM) of the present miniature sensor is derived, by 
accounting effects of length-scale and surface layer in addition to electrostatic and Casimir attractions with con-
sideration of the nonlinear curvature. The length, width, and height of the suspended electrode are denoted by L, 
b, and h, respectively. The initial gap and electric potential difference between the substrate and the electrode are 
G and V, respectively. The mechanical properties of the bulk material are Young’s modulus E, Poisson’s ratio v, the 
moment of inertia I, and beam density ρ.

Experimental results demonstrated that the mechanical characteristics of ultra-small systems could be differ-
ent. The emergence of several substantial influences within the dimensional variation causes various new behav-
iors that are emerging in micro and nanoscales, which are not generally effective in other dimensions.

Figure 1. (a) An SEM image of a cantilever microbeam45, (b) a sensor in a liquid sample with receptors to 
attract analytes40, (c) a cantilever beam molecular detection (bending deflection changes due to binding of 
free antigen on the functionalized surface by antibodies)30, (d) an antibody-coated tip-mass beam in the blood 
sample16, (e) interaction of antigens with antibodies on different locations of the deformed vibrating electrode9, 
(f) a schematic of our proposed biosensor with an ability to detect different biological components (a biological 
particle adheres to one of the coated receptors).
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According to the modified couple stress theory46, which is a well-known nonclassical continuum elasticity the-
ory, the strain energy arising from considering the size effect for micro and nanostructures can be expressed as46
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where l and w(x, t) indicate the small length-scale parameter and the beam transverse displacement (along the 
x-axis), respectively.

In the nanoscale, it is assumed that a surface layer, which encompasses around the bulk material, has different 
properties. Due to the considerable ratio of surface area to volume of oelectrodes, surface layer effects become 
more important for nanostructures. The terms Es and τs indicate the elastic modulus and residual stress of the 
electrode surface layer, respectively. Furthermore, EI denotes the beam flexural rigidity. For a beam by consider-
ing the surface layer energy, one can obtain47
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Moreover, the effective transverse distributed force due to the residual surface tension at the surface is

q x t b x t( , ) 2 ( , ), (3)sτ ζ=

where ζ is the nonlinear curvature of the beam-based electrode. Consequently, the associated strain energy aris-
ing from this load is given by47
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When an external electric difference applies across two conductors, the conductor will undergo a relatively 
considerable deflection. As a result, the nonlinear curvature effect will become important for cantilever beams, 
where the strain at the neutral axis will remain zero. Therefore, the nonlinear curvature can be expressed as48
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Finally, the strain energy of the nanoelectrode subjected to large deformations with consideration of the 
around layer effects is written as48
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The electrical attraction by considering the fringing field correction is given by49
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where ε0 = 8.85 × 10−12F/m is the permittivity factor of vacuum.
The Casimir force is another significant effect for small-scale structures that is negligible in macroscales. 

This attraction has fundamental impacts on behaviors and responses of micro and nanosystems, which can be 
expressed as50
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where hP = 2π × 1.05457 × 10−34 J.s is Planck’s constant and c = 2.998 × 108 m/s is the light speed.
Generally, to detect biological components, the fixed conductor is able to attract different particles owing 

to different chemicals that coat its surface. Therefore, the system is partly actuated, where the adherent particle 
blocks the substrate surface. As a result, the whole area of the fixed conductor cannot pull the deformable elec-
trode and there is just a piecewise actuation in the biosensor. In this condition, the effective actuated area can be 
determined using the Heaviside function as follows

= − − + + −HS x H x a H x b L( ) 1 ( ) ( ), (9)

where a and b are the length of active pieces and the part between these pieces has been blocked due to the 
attracted particle. It should be noted that the influence of biomaterials in changing the gap dielectric could be 
considered to improve the core model in the future development efforts. In this research, since the focus is to 
investigate certain effects, we assume that the sensor is calibrated before operating.

Since the biosystem is subjected to both electrical and molecule interaction forces, the performed work with 
consideration of piecewise actuation due to the adherent mass can be derived as
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Moreover, the kinetic energy of the electrode is given by
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To establish EOM, a Hamiltonian approach is applied as
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Inserting kinetic and strain energies as well as the work performed by electrical and molecular forces into 
Eq. (12), the governing EOM of an actuated biosensor subjected to the cells by accounting size-dependency and 
surface layer under nonlinear curvature is derived as
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The nonlinear EOM is rewritten in a non-dimensional form, where the subsequent model parameters are 
arisen:
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X: dimensionless length according to beam length,
W: dimensionless beam midpoint displacement,
α: dimensionless active length from electrode base to particle edge,
β: dimensionless active length from electrode tip to particle edge,
HS: Heaviside step function,
φ: ratio of initial gap to beam width,
ξ: square ratio of initial gap to beam length,
ι: material size dimensionless parameter,
η: surface elasticity dimensionless parameter,
λ: residual surface stress dimensionless parameter,
ccas: Casimir dimensionless coefficient,
T: dimensionless time,
υ: dimensionless voltage.

After inserting the above-mentioned terms into Eq. (13), and doing a few transformations, the general EOM 
can be derived as the following non-dimensional form. Moreover, boundary conditions (BCs) of the cantilever 
beam can be found in the open literature. It should be noted that by ignoring the last term, the static equation of 
equilibrium will be obtained.
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It should be noted that the weight force is ignorable in comparison with other forces51–55. A Galerkin approxi-
mation is then applied to reorganize the partial differential equation as a set of ordinary differential equations by 
introducing appropriate basic functions. Therefore, the vertical displacement of the electrode W is defined as a 
linear combination of independent modes as
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where B is the amplitude parameter and ϕi are dimensionless eigenfunctions of cantilevers defined as
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in which the values of ϒi will be calculated by considering the transcendental relation of beams with clamped-free 
BCs.

In instability circumstances, the tangent stiffness of structures must be singular47. As a result, there is an 
instrumental way to determine instability parameters (both pull-in voltage and deflection) of manipulators. For 
numerically solving the nonlinear differential equation of motion, the SSLM technique56 will be implemented. 
Note that the term Wi is the dimensionless deflection due to the external voltage υi. By increasing the external 
excitation υi+1 → υi + δυ, the electrode tip deflection is computed as Wi+1 → Wi + δW.

Moreover, the resonance frequency must be zero, when a mechanical vibrating system collapses. In other 
words, by solving the nonlinear eigenvalue problem and looking for its non-trivial solutions, the responses of the 
dynamic problem will be calculated. Consequently, it is possible to obtain the resonance frequency by considering 
a process according to the dynamic governing equations. Determining the dynamic critical potential difference of 
electrically actuated sensors is also achievable.

parametric Study
Having the developed mathematical model of the electrically actuated ultra-small system, a parametric study of 
the present biosensor is conducted to analyze the effects of different parameters. Afterward, we will be able to 
identify and detect biological particles by investigating instability characteristics quantitatively and qualitatively.

Firstly, the system model and obtained results are verified with theoretical (Table 1) and experimental (Fig. 2) 
results. To this aim, a cantilever beam in the presence of the electrostatic attraction is considered and the pull-in 
voltage of the structure is obtained using the present model and the SSLM method. Afterward, it is compared 
with available results51–55 for two types of narrow and wide beams. It is noted that the width of cantilever beam 
for the narrow and wide cases is considered 500 nm and 50 µm, respectively. Constitutive material properties and 
geometrical dimensions of the cantilever beams are G = 2.5 µm, h = 1 µm, L = 300 µm, l = 100 nm, v = 0.33, and 
E = 77 GPa. Table 1 reveals that the results of the present model are in a good agreement with previous results and 
the difference between the results is within the range of those of other models51–55.

As another verification, the simulation results are compared with the available experimental results. In the 
following, electrode dimensions and material properties are considered as those reported in ref. 57 (G = 92 µm, 
h = 57 µm, b = 5 mm, L = 20 mm, and E = 155.8 GPa). In Fig. 2, relationships between the beam tip deflection 
and the applied voltage based on Eqs. (13) and (17) is shown. As it can be seen, the electrode deflection grad-
ually increases by applying potential difference. By increasing the voltage until the pull-in instability point, the 

Pull-in voltage (Volt)

ref. 51 ref. 52 ref. 53 ref. 54 ref. 55
Present 
work

Narrow beam 1.23 1.20 1.21 1.21 1.24 1.23

Wide beam 2.27 2.25 2.27 2.16 2.27 2.17

Table 1. Comparison the critical voltage of cantilever beams based on different theoretical studies.

Figure 2. Comparison of the electrode tip gap calculated by the proposed model with experiments57.
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electrode suddenly adheres to the substrate. Figure 2 reveals that the results of the proposed model agree with 
experimental data very well. Due to lack of experimental results from nanosystems, the researchers could just 
compare their models and simulations with available data from systems in the ranges of micro57 (Fig. 2) or micro/
nano51–55 (Table 1).

After validation study, we analyze the system parameters. In the following, a set of parametric studies is pre-
sented to investigate effects of main system parameters on the resonance frequency and instability characteristics. 
The suspended electrode size and constants selected in calculations of this biosensor are G = 18 nm, b = 18 nm, 
h = 3.5 nm, L = 90 nm, l = 2 nm, τ0 = 0.1 N/m, ES = 100 N/m, v = 0.33, and E = 176 GPa.

When considering a nanosystem, it is worth noting that a cantilever nanobeam may structurally be unstable. 
It can undergo a primary displacement due to the interactions at ultra-small scales, while no voltage is applied. 
This effect can induce undesired adhesion in freestanding during the production and operation of such miniature 
blocks, which should be considered especially when taking small gaps.

The relationships between the electrode tip gap and applied voltage at different primary distances between 
two conductors are displayed in Fig. 3(a). It can be observed that the critical potential difference decreases with 
decreasing the primary tip gap. It is also found that by considering higher gaps, the relative threshold deflec-
tion increases. Moreover, by decreasing the primary gap, the freestanding phenomenon will appear that causes 
an initial deflection in the movable electrode58. This behavior due to molecular forces, which can even result 
in an undesirable collapse, should be taken into account in the design, analysis, and operation of ultra-small 
instruments.

Figure 3(b,c) illustrate the variation of the nanoelectrode tip versus the external potential difference at dif-
ferent beam length and height, respectively. It is comprehended that the influence of electrode length and height 
on the structural stability and response is noteworthy. These figures reveal that the threshold voltage increases 
with enhancing the beam height, unlike the length. Furthermore, it can be found that by increasing the electrode 
length, achieving further deformations is possible due to an increase in the operational range of the system.

The variation of the deformable electrode width on the behavior of nanoresonators is presented in Fig. 3(d). 
The influence of electrode width on the sensitivity and operation of such actuated beams is not as considerable 
as other geometrical parameters, especially by considering the relatively large width-height ratios. Therefore, to 
obtain more realistic results, considering the coupled effects of all system parameters is essential. These are basic 
guidelines in designing mechanical manipulators that should be accounted for NEMS biosensors.

Figure 4 illustrates the relationships between the cantilever tip displacement and the applied voltage, with and 
without consideration of the fringing field correction as well as the Casimir attraction. It is found that the influ-
ence of the fringing field on the stability of electrically actuated nanobeams is noteworthy. The obtained results 
reveal that taking the fringing field into account makes the beam behave softly and result in declining the critical 
voltage. Furthermore, depositing larger bioparticles on the substrate results in increasing the differences between 
the pull-in parameters with and without considering the electric fringing correction.

In addition, the Casimir effect on structural behavior becomes greater by depositing biomaterials. Therefore, 
the differences between the threshold voltage and maximum deflection with and without modeling the Casimir 
force is enhanced. Moreover, the effect of the electric fringing correction is more dominant than the Casimir force 
on the presented biosensor. In general, ignoring the fringing field and the dispersion force lead to an incorrect 
analysis in micro and nanoscales and the predicted critical voltage will be overestimated. This point is more sig-
nificant for NEMS biosensors when they are employed to detect different materials in a biosample.

The dimension effect of the deposited biomaterial on the stability of the indicator is shown in Fig. 5 
(G = 30 nm, L = 50 nm, β = 0). By comparing the curves, it is concluded that the dimension of bioparticles plays 
an important role in the response of biosensors. In such a biosystem, the actuated area of the substrate is less than 
the deformable electrode, i.e. α or β are not zero. As a result, the electrostatic and dispersion forces are smaller 
than a substrate that is not in a biosample (more explanations about the bioparticle dimension will be given in the 
following of Table 2). Here, the pull-in phenomenon also happens with a delay, hence, the instability voltage and 
the maximum deflection become larger.

Figure 5 also illustrates the impact of nonlinear curvature on the predicted voltages is considerable, which 
makes the cantilever stiffer. As a result, the critical voltage according to the proposed nonlinear model is larger 
than that predicted by the linear model. It should be mentioned that the results according to the linear theory 
could be achieved by setting ξ = 0 in Eq. (14). Furthermore, it is deduced from the relationship of geometrical 
nonlinearity that the effect of nonlinearity on the system behavior is more apparent for short beams by accounting 
considerable gaps. Therefore, as the length decreases and/or the initial gap increases, the differences between the 
system responses in linear and nonlinear models increase. Therefore, the influence of the geometrical nonlinear 
deformation becomes more evident. Moreover, Fig. 5 shows that the effect of nonlinear curvature on the critical 
voltage increases significantly as a biological particle adheres to the substrate. Furthermore, when a larger bioma-
terial deposits on the fixed conductor, the nonlinearity effect plays a more prominent role on the system perfor-
mance. Identifying different bioparticles and estimating the dimension from accurate responses in biosensors is 
not possible without taking the nonlinear curvature into account. These are notable points to describe biosystem 
behavior, instability conditions, and sensing applications.

As illustrated in these figures, the geometrical properties of both electrodes, as well as their mechanical prop-
erties, play key roles when investigating the operating circumstances of NEMS biosensors. To improve the oper-
ational range and sensitivity, geometrical parameters also have the ability to adjust the manipulator performance. 
Furthermore, the effects of mechanical parameters change by varying the scale and size of the structure. Hence, 
consideration of the geometrical parameters and reflection of their effects in the design and simulation of min-
iature devices is vital.

Recently, stability and frequency analyses of miniature biosensors were the main objectives of numerous stud-
ies1,2,16,43. In micro and nanoscales, where the ratio of the external surface of the movable electrode to its volume 
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is relatively considerable, the surface energy effect dominates. This effect is divided into the surface elasticity and 
residual stress impacts, which perform key roles. To investigate the effect of the surface layer on the resonance 
frequency and pull-in instability phenomenon of NEMS manipulators, Fig. 6(a,b) are presented. Here, the nor-
malized frequency Ω associated with the non-dimensional voltage υ is reported with and without considering 
any of two surface layer parameters, separately. Frequency normalization is based on consideration of the exact 
fundamental frequency in the classical macroscale systems, where molecular effects are not significant. The green 
dashed line is related to the model without consideration of surface layer effects, where the resonance frequency is 

Figure 3. Effects of electrode tip gap (a), length (b), height (thickness) (c), and width (d) on the performance of 
electrically actuated NEMS biosensors.
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associated with the classical macro-cantilevers. Moreover, the applied potential difference leading to the electrode 
collapse is the dynamic voltage.

The results illustrate that the natural frequency decreases as the electrical force increases and finally approaches 
zero at the unstable point. It can be seen that neglecting influence of the surface layer leads to obtaining inaccurate 
results. The obtained results are explained by considering stiffness terms involved in Eq. (15), which contain λ or 
η dimensionless parameters induced by the surface layer. It should be noted that both surface layer parameters 
can be positive or negative depending on the constitutive materials of the movable arm59,60. In addition, it has 
recently been demonstrated that by minimizing the surface stress we are able to further improve the mass sen-
sitivity of clamped-clamped microresonators43. Using the relation of the residual surface, it can be understood 
that the influence of this parameter will increase by increasing the ratio of beam length to the beam thickness. 
Consequently, this effect is more noteworthy for biological nanodetectors with a slender electrode. The results 
also demonstrate the importance of considering the mechanical properties in modeling miniature biosensors.

The effects of attracted biological particles on the behaviors of vibrating sensors are shown in Fig. 6(c). The 
size of adherent particles is considered equal, but they are not the same because they have been attracted to dif-
ferent locations. As mentioned, several points on the substrate surface have been coated with different specific 
biomaterials as receptors. The term α (β) indicates the distance between the electrode base (tip) and particle edges 
(more explanations about α and β will be presented in the following of Table 2). Note that surface layer effects are 
neglected in Fig. 6(c) and the green dashed line are figured by considering no adherent particles. It can be found 
that by investigating the resonance frequency we can recognize the attracted particle on condition that we know 
its adhering position (α and β). However, when the substance of the suspended particle in addition to its dimen-
sions are not definite, system identification becomes impossible by applying the frequency analysis. Moreover, it 
will not be feasible to obtain dimensions of a specific particle by just measuring the system frequency because the 
adhering position is also effective. The results demonstrate that, in order to identify bioparticles and their size, 
presenting an applicable and well-organized approach is absolutely necessary.

Figure 4. Effects of fringing field correction, Casimir force, and adhering dimension on the performance of 
NEMS biosensors.

Figure 5. Effects of nonlinear curvature and adhering dimension on the performance of NEMS biosensors.
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Model Applications as a Biosensor
In this research work, the instrumental concept is that system identification is achievable by investigating the 
delay of instability. The deposition of bioentities restricts the operative actuated area of the unmovable conductor. 
Consequently, it is required to increase the relative electric potential difference. This fact provides an appropriate 
and practical method for detecting unspecified entities, adhered to the sensing zone, and their dimension. In 
practice, measuring just the critical voltage and maximum deflection of a nanosensor is feasible. Hence, it is very 
important to detect adherent bioparticles by investigating only the mentioned threshold values known as pull-in 
parameters. We are able to identify attracted particles by assessing measured values at instability conditions if the 
substrate surface has been coated with different chemicals at specific locations. Determining dimensions of the 
particle in addition to the identification of its substance is possible via the present biosensor.

The threshold voltage and deflection of the NEMS biosensor are listed in Table 2. These are based on different 
conditions due to the attraction of a particle in an unspecific location. The principal aim of this table is to detect 
the attracted particle and estimate its size. It will be performed by investigating both the instability voltage and 
maximum deflection as measurable input raw data. Furthermore, we can carry out different types of interpolation 
and extrapolation to identify particles. It should be noted that without using any of the critical voltage or deflec-
tion, accurately predicting the cell dimension is unfeasible. It is due to different conditions of adhering biological 
components.

Figure 6. Effects of system parameters on the resonance frequency of electromechanical biosensors for 
different values of (a) surface layer Young’s modulus, (b) surface residual stress, and (c) adhering position.
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The non-dimensional terms α and β indicate the length of effective zones from the base and the tip of the 
electrode until the particle edges, respectively (see Eqs. (9) and (14)). There are no adherent particles in these 
zones, so these are effective or actuated zones. Furthermore, the adherent particle blocks the length between α 
and β, so it is considered as an unactuated zone. In other words, there exist no electrostatic, fringing and Casimir 
attractions between the fixed and suspended electrodes in the ineffective zone. Increasing the difference between 
the values of α and β means adhering a larger particle on the substrate. It should be mentioned that when no 
particle adheres to the substrate (α = 1 and β = 0), the pull-in voltage and deflection are 6.83-Volt and 8.77 nm, 
respectively.

It can be realized that by adhering a particle on the electrically actuated fixed conductor, the pull-in volt-
age increases because the effective actuated length of the substrate conductor decreases. Moreover, the critical 
electric difference increases by considering a larger adherent particle (by decreasing the total value of α and β). 
It means that as the value of α or β decreases, the threshold voltage always increases. Moreover, the results are 
more obvious at small values of β, but large values of α. It is because the beam tip is more sensitive and deform-
able, so its excitation plays the greatest role in the performance of cantilever detectors. In addition, the beam tip 
deflection decreases when a particle adheres to the fixed conductor and the pull-in deflection usually decreases 
by decreasing α and β. It should be noted that considering target components on the edges of the beam (base or 
tip) can lead a bit different results, which are not generally accurate. Moreover, by increasing the blocked area, 
the pull-in phenomenon may not happen in exceptional circumstances as mentioned in ref. 61. As another instru-
mental point, the critical voltage and maximum deflection do not change linearly by adhering superior particles. 
It demonstrates the significance of implementing quantitative investigations in such nonlinear nanosystems. The 
results also provide considerable guides to the design and operation of an extensive family of highly-sensitive 
NEMS biosensors.

Next, some examples are presented to show how input raw data can be employed for system identification. 
Consider that the measured values of the instability voltage and deflection are 8.0-Volt and 8.5 nm, respectively. 
Based on the reported data in Table 1 and by employing interpolation, the values of dimensionless terms α and β 
are calculated as 0.66 and 0.17, respectively. Consequently, the length ratio of the attracted particle to the movable 
electrode is 0.17 (=1 − α − β). In addition, when different antibodies or receptors have been coated on the sub-
strate with specific distances, we are able to recognize antigens or bioparticles by investigating the pull-in voltage 
and deflection. It means that by examining coated materials, identification of the particle type (its substance) 
becomes possible. That is because we know the chemical receptors in that region. Consider that the surface of the 

β α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.10
Voltage 12.17 12.05 11.75 11.25 10.55 9.71 8.77 7.79

Deflection 7.07 7.12 7.25 7.58 7.94 8.37 8.64 8.75

0.15
Voltage 10.4 10.3 10.1 9.77 9.31 8.71 8.01 7.23

Deflection 7.25 7.35 7.49 7.68 8.08 8.39 8.66 8.76

0.20
Voltage 9.23 9.19 9.07 8.83 8.47 8.01 7.45

Deflection 7.37 7.51 7.71 7.81 7.93 8.31 8.42

0.25
Voltage 8.57 8.53 8.43 8.23 7.95 7.57 7.09

Deflection 7.72 7.74 7.82 7.83 8.08 8.37 8.51

0.30
Voltage 8.09 8.07 7.97 7.83 7.59 7.25

Deflection 7.73 7.91 7.8 7.93 8.12 8.48

0.35
Voltage 7.75 7.73 7.67 7.51 7.31 7.01

Deflection 7.88 7.97 8.13 8.1 8.24 8.62

0.40
Voltage 7.51 7.49 7.41 7.29 7.09

Deflection 8.1 8.16 8.22 8.28 8.36

0.45
Voltage 7.31 7.29 7.24 7.11 6.95

Deflection 8.15 8.21 8.27 8.29 8.71

0.50
Voltage 7.17 7.15 7.11 6.99

Deflection 8.21 8.25 8.53 8.44

0.55
Voltage 7.07 7.05 6.99 6.89

Deflection 8.31 8.31 8.36 8.48

0.60
Voltage 6.99 6.97 6.93

Deflection 8.43 8.44 8.66

0.65
Voltage 6.93 6.91 6.87

Deflection 8.47 8.47 8.66

0.70
Voltage 6.89 6.87

Deflection 8.55 8.54

0.75
Voltage 6.87 6.85

Deflection 8.72 8.71

Table 2. Pull-in voltage (Volt) and deflection (nm) by accounting attracted biological particles at different 
locations.
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substrate has been coated with four different receptors A-D (see Fig. 1(f)). The distances of all four receptors with 
each other as well as with the ends of the fixed conductor are equal. Inspection of the obtained results reveals the 
sorbent, in this case, is receptor C. Therefore, by knowing the receptor (antibody), we are able to recognize the 
adherent analyte (antigen).

As another example, assume that the measured values of voltage and deflection are 7-Volt and 8.5 nm, respec-
tively. By considering the measured values and the data in Table 1, it is realized that α = 0.37 and β = 0.52, so the 
length ratio of the bioparticle is 0.11. In this case, the critical voltage is less than the first example because the tip 
effective region of the fixed conductor (β) is longer and the particle is smaller. We can also identify the attracted 
particle by understanding its sorbent, i.e. the receptor B.

It is worth noting that determining the adhering location is essential to obtain valid results for detecting bio-
logical particles via a comprehensive model. It can also be understood that by measuring either the pull-in voltage 
or deflection, accurate detection of entities is not feasible. As shown in mentioned two examples, the pull-in 
deflections were similar, but due to different pull-in voltages, dimensions of bioparticles were not the same. 
Moreover, adhering locations of particles were not similar because their receptors were different. This conclusion 
can be obtained by investigating the locations of coated materials as receptors. Finally, it should be noticed that a 
highly-sensitive device operating as a gage in different conditions must be calibrated to avoid possible measuring 
errors. It is due to the existence of different sources, such as initial effects of the liquid sample as well as coated 
materials, which can affect the behaviors of submicron-scale actuated biosensors.

conclusions
Several miniature biosensors are recently used to detect living cells and approximate their numbers/dimensions/
locations by investigating system responses. In this research, a sensor was introduced to identify biological par-
ticles based on applying an electrical excitation. To attract bioparticles, several points of the fixed electrode were 
coated with different chemicals as receptors. By applying the electric potential and analyzing the pull-in instability 
characteristics, we are able to recognize adherent entities and their dimension. Here, the governing nonlinear 
equation was derived by means of Hamilton’s principle. A Galerkin approximation was applied to discretize the 
nonlinear equation and the SSLM was used to solve them. The accuracy of the system model was validated with 
available numerical and experimental data. Afterward, the effects of electrode dimensions like thickness, width, 
length, and initial gap on the performance of biological devices were investigated. It was found that,

•	 The sensitivity and performance of nanosensors are related to their both mechanical and geometrical 
properties.

•	 System identification is not possible by applying a resonance frequency analysis when the substance of the 
adherent particle, as well as its dimensions, is not definite.

•	 Increasing the pull-in voltage of NEMS sensors due to the attraction of bioparticles provides an appropriate 
and practical solution for system identification.

•	 Determining the dimension of the biological particle in addition to the identification of its substance is possi-
ble via the present biosensor by investigating changes in the measured threshold parameters.

•	 The critical deflection of the electrode in addition to the electric potential difference should be considered to 
detect different particles due to different conditions of adhering entities.

In practice, measuring just the critical voltage and maximum deflection of a nanosensor is feasible. Hence, it 
is important to detect adherent particles by investigating only the mentioned threshold values. Investigating the 
effect of biomaterials in changing the dielectric constant is expected to predict the effective capacitive gap more 
accurately can be carried out in the future.
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