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The tumor immune contexture plays a major role for the clinical outcome of patients.
High densities of CD45RO+ T helper 1 cells and CD8+ T cells are associated with
improved survival of patients with various cancer entities. In contrast, a higher frequency
of tumor-infiltrating M2 macrophages is correlated with poor prognosis. Recent studies
provide evidence that the tumor immune architecture also essentially contributes to the
clinical efficacy of immune checkpoint inhibitor (CPI) therapy in patients. Pretreatment
melanoma samples from patients who experienced a clinical response to anti-
programmed cell death protein 1 (PD-1) treatment show higher densities of infiltrating
CD8+ T cells compared to samples from patients that progressed during therapy.
Anti-PD-1 therapy results in an increased density of tumor-infiltrating T lymphocytes
in treatment responders. In addition, elevated frequencies of melanoma-infiltrating
TCF7+CD8+ T cells are correlated with beneficial clinical outcome of anti-PD-1-treated
patients. In contrast, a high density of tumor-infiltrating, dysfunctional PD-1+CD38hi

CD8+ cells in melanoma patients is associated with anti-PD-1 resistance. Such findings
indicate that comprehensive tumor immune contexture profiling prior to and during CPI
therapy may lead to the identification of underlying mechanisms for treatment response
or resistance, and the design of improved immunotherapeutic strategies. Here, we focus
on studies exploring the impact of intratumoral T and B cells at baseline on the clinical
outcome of CPI-treated cancer patients. In addition, recent findings demonstrating the
influence of CPIs on tumor-infiltrating lymphocytes are summarized.

Keywords: cancer immunotherapy, immune architecture, immune monitoring, immune checkpoint inhibition,
cytotoxic T lymphocyte antigen 4, programmed cell death protein 1, programmed cell death 1 ligand 1

INTRODUCTION

Accumulating evidence indicates that the tumor immune contexture plays a critical role for the
clinical outcome of cancer patients (1–4). Major components of the tumor immune architecture
are CD8+ and CD4+ T cells that can essentially contribute to tumor elimination. Activated CD8+
T cells produce large amounts of proinflammatory cytokines such as tumor necrosis factor (TNF)-α
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and interferon (IFN)-γ and exhibit a profound tumor-directed
cytotoxicity. Stimulated CD4+ T cells secrete various cytokines
that promote the differentiation of B cells into antibody-
producing plasma cells (5). They also enhance the capacity
of dendritic cells (DCs) to induce CD8+ T cell responses
and can eliminate tumor cells directly (5). When analyzing
the clinical relevance of tumor-infiltrating T cells, it has
been demonstrated that high densities of CD4+ memory
T helper (TH) 1 cells and CD8+ T cells are associated
with improved disease-free and overall survival (OS) of
colorectal cancer patients (6, 7). Recently, a multi-center
study has been initiated to assess the prognostic value of
tumor-infiltrating T cell numbers in colon cancer patients
(8). Patients with a so-called high Immunoscore, which is
characterized by a high frequency of CD3+ and CD8+ T
cells in the tumor center and the invasive margin, had
the longest survival and the lowest risk of recurrence (8).
These results suggest that the Immunoscore may represent a
reliable estimate of the risk of disease recurrence and support
its implementation in the classification of colon cancer. In
addition to colorectal cancer patients, a correlation between
high densities of TH1 cells or CD8+ T cells and good
prognosis has also been reported for patients with other cancer
entities (1, 3).

Macrophages and DCs are other key components of the
tumor immune contexture that can profoundly influence
tumor growth and spreading. Macrophages can be classified
according to their phenotype and functional properties
(9, 10). M1 macrophages, which express high levels of
proinflammatory mediators such as TNF-α, interleukin
(IL)-1β, reactive oxygen species, and nitric oxide, act in a
tumoricidal manner. Based on their tumor-directed properties,
M1 macrophages are generally associated with a favorable
clinical outcome of cancer patients (1, 3). In contrast, M2
macrophages, which are characterized by the release of pro-
angiogenic mediators such as vascular endothelial growth
factor (VEGF) and immunosuppressive cytokines such as IL-10
and transforming growth factor-β, are generally correlated
with poor prognosis among cancer patients (1, 3). DCs
display an extraordinary capacity to induce and regulate T
cell responses and efficiently enhance the immunomodulatory
and cytotoxic potential of natural killer (NK) cells (11). Due
to these functional capabilities, DCs play a major role in
antitumor immunity. When investigating the clinical impact
of blood DC subsets, it has been demonstrated that a higher
expression of specific gene signatures for myeloid DC1 and
DC2 as well as for plasmacytoid DCs are associated with a
higher probability for disease-free survival of patients with
luminal breast cancer (12). Furthermore, a higher DC1-
specific gene signature was significantly associated with
improved survival in patients with various cancer entities
(13). However, tumor-infiltrating DCs can also be defective
in their functional activity and can contribute to immune
suppression (14). For example, we have shown that a higher
density of 6-sulfo LacNAc monocytes (slanMo), representing
a subset of human non-classical blood monocytes that can
differentiate into DCs (15), is significantly associated with

a poor prognosis of clear cell renal cell cancer (RCC)
patients (16). The tumor-infiltrating slanMo displayed an
immature phenotype and expressed IL-10, which may explain
this correlation.

Recent studies revealed that the tumor immune contexture
also essentially contributes to the clinical efficacy of immune
checkpoint inhibitor (CPI) therapy that evolved as a very
promising treatment modality for cancer patients (17).
Antibody-mediated blockade of the immune checkpoint
receptors cytotoxic T lymphocyte antigen 4 (CTLA-4),
programmed cell death protein 1 (PD-1) or programmed
cell death 1 ligand 1 (PD-L1) resulted in objective clinical
responses and enhanced survival of cancer patients (18–20).
Here, the current knowledge about the impact of intratumoral
T and B cells at baseline on the clinical outcome of CPI-treated
patients and treatment-mediated effects on tumor-infiltrating
lymphocytes is summarized.

CHARACTERISTICS OF INTRATUMORAL
T CELLS PRIOR TO AND DURING
ANTI-CTLA-4 THERAPY

Function and Therapeutic Targeting of
CTLA-4
Cytotoxic T lymphocyte antigen 4 is a member of the
immunoglobulin superfamily, which is induced on the
surface of T cells by antigen binding to the T cell receptor
(21–23). CTLA-4 competes with CD28 for binding to
CD80 or CD86 on professional antigen-presenting cells
(APCs). Thereby it binds CD80 and CD86 more tightly
than CD28 and delivers a negative signal, which dampens
the early T cell activation. CTLA-4 regulates the amplitude
of CD4+ T cell priming and also the CD4+ T cell help
for the induction of CD8+ T cell responses in lymphoid
tissues. CTLA-4 is constitutively expressed on regulatory
T (Treg) cells, enhancing their immunosuppressive activity
(24). Accordingly, CTLA-4 blockade fosters the expansion,
cytokine secretion, and cytotoxic potential of T effector
cells and inhibits the immunosuppressive activity of Treg
cells, resulting in improved antitumor responses. Therefore,
CTLA-4 blockade is an attractive immunotherapeutic strategy
to significantly enhance effector T cell-mediated antitumor
immunity (25). Two phase III clinical trials have been
conducted to explore the therapeutic efficacy of the anti-
CTLA-4 monoclonal antibody ipilimumab. Melanoma patients
treated with ipilimumab with or without a glycoprotein
100 peptide vaccine showed significantly improved OS
compared to patients receiving the peptide vaccine alone
(26). Furthermore, the combination of the DNA-alkylating
agent dacarbazin with ipilimumab led to improved OS in
melanoma patients compared to dacarbazin alone (27).
Based on these clinical trials, ipilimumab was approved by
the United States Food and Drug Administration (FDA)
for the treatment of patients with metastatic melanoma in
2011 (28).
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Correlation Between Frequency and
Phenotype of Intratumoral T Cells and
Clinical Efficacy of CTLA-4 Blockade
Recently, the association between immunological parameters in
tumor tissues at baseline and the clinical activity of anti-CTLA-4
therapy has been explored. Surprisingly, Hamid et al. found a
positive correlation between clinical efficacy of CTLA-4 blockade
and a high baseline expression of either the Treg cell-associated
transcription factor FoxP3 or the immunosuppressive molecule
indoleamine 2,3-dioxygenase (IDO) in melanoma patients (29).
Whereas no correlation between the frequency of pre-existing
tumor-infiltrating T cells and clinical activity was observed,
an anti-CTLA-4 therapy-mediated increase of the intratumoral
T cell density was associated with improved clinical outcome.
Various studies further substantiate the influence of anti-CTLA-4
treatment on the frequency and phenotype of intratumoral
T cells. Thus, CTLA-4 blockade resulted in a significant
increase of CD8+ T cells regardless of clinical responses in
melanoma patients (30). Hodi et al. observed clinical responses
in the majority of metastatic melanoma patients who received
ipilimumab after vaccination with irradiated, autologous tumor
cells engineered to secrete granulocyte-macrophage colony-
stimulating factor (GM-CSF) (31). Analysis of posttreatment
biopsies from metastatic lesions revealed a relation between
the extent of therapy-induced tumor necrosis and the natural
logarithm of the ratio of tumor-infiltrating CD8+ effector T
cells to Treg cells, suggesting that ipilimumab can alter the
balance of effector T cells and Treg cells (31). When investigating
anti-CTLA-4 therapy-related effects on the density of tumor-
infiltrating Treg cells, Sharma et al. found that this treatment
does not significantly modulate the frequency of Treg cells in
patients (32).

In further studies, the impact of anti-CTLA-4 therapy on
the phenotype of intratumoral T cells has been explored.
It has been reported that this therapeutic strategy enhances
the density of tumor-infiltrating CD4+ T cells expressing the
costimulatory molecule inducible T cell costimulator (ICOS)
(33). In addition, a subset of IFN-γ-producing T cells was
detected within the ICOS+CD4+ T cell population, indicating
that anti-CTLA4 therapy can induce a TH1 polarization in CD4+
effector cells (33). Wei et al. observed an expansion of tumor-
infiltrating ICOS+ TH1-like CD4+ T cells and exhausted-like
CD8+ T cells following anti-CTLA-4 blockade in melanoma
patients (34). Moreover, an enhanced frequency of melanoma-
infiltrating ICOS+ CD4+ T cells, sustained over 3 months of
anti-CTLA-4 treatment, was associated with better OS (35).
When evaluating tissue specimens from prostate cancer patients
prior to and after anti-CTLA-4 blockade, Gao et al. detected
a higher proportion of tumor-infiltrating CD4+ T cells, CD8+
T lymphocytes, and CD68+ macrophages expressing PD-L1
or V-domain Ig suppressor of T cell activation (VISTA),
representing another inhibitory immune checkpoint receptor
(36), after treatment (37). PD-L1 and VISTA expression on these
immune cell subsets may contribute to the poor responsiveness
of prostate cancer patients to anti-CTLA-4 therapy. A summary
of immune cell characteristics that may have an impact

on the clinical efficacy of anti-CTLA-4 therapy is given
in Figure 1.

CHARACTERISTICS OF
TUMOR-INFILTRATING LYMPHOCYTES
PRIOR TO AND DURING
ANTI-PD-1/PD-L1 TREATMENT

Function and Therapeutic Targeting of
the PD-1/PD-L1 Axis
Programmed cell death protein 1 is another immune checkpoint
receptor of the immunoglobulin superfamily, which can be found
on activated T effector cells, NK cells, and B cells (18, 38). PD-1
is also expressed by Treg cells and fosters their proliferation
after ligand binding (39). PD-L1 and PD-L2 represent the
ligands for PD-1, the latter having a higher affinity to PD-1.
PD-L1 can be widely detected on tumor cells as well as
hematopoietic and non-hematopoietic cells and its expression is
inducible by proinflammatory cytokines such as IFN-γ. PD-L2
is characterized by a more restricted expression pattern, being
mainly detectable on APCs and induced mostly by IL-4 and GM-
CSF (40–43). Besides PD-1, PD-L1 can also bind to CD80 on
T cells, thereby delivering another inhibitory signal (44). The
main role of PD-1 is to modulate important functional properties
of antigen-experienced effector T cells within the peripheral
tissues. Thus, expansion, cytokine release, and cytotoxic activity
of stimulated T cells are inhibited upon interaction of PD-1
with its ligands, protecting the tissue from collateral damage
during immune response (40, 45–47). This pathway is adopted
by tumors leading to prevention from immune attack. Therefore,
anti-PD-1 and anti-PD-L1 antibodies have been developed to
enhance T cell-mediated antitumor immunity. The application
of such antibodies induced objective clinical responses and
improved survival in cancer patients (48–50). Consequently,
the FDA approved anti-PD-1/PD-L1 therapy for various tumor
entities (28, 51).

Correlation Between PD-L1 Expression
by Tumor Cells and Tumor-Infiltrating
Immune Cells and Clinical Efficacy of
PD-1/PD-L1 Blockade
Various clinical trials clearly indicated that PD-L1 expression
by tumor-infiltrating immune cells and tumor cells significantly
influences the efficacy of anti-PD-1/PD-L1 treatment.
Accordingly, an association between intratumoral PD-L1
expression in pretreatment tissue specimens and objective
clinical responses in anti-PD-1/PD-L1-treated cancer patients
has been reported (52). Herbst et al. demonstrated that a high
level of intratumoral PD-L1, particularly when detected on
tumor-infiltrating immune cells, was associated with clinical
responses in anti-PD-L1 antibody-treated cancer patients (53).
Topalian et al. observed that 9 of 25 patients with PD-L1+ tumors
experienced an objective clinical response, whereas none out of
17 patients with PD-L1− tumors achieved an objective response
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FIGURE 1 | Immunological characteristics of tumor patients receiving anti-CTLA-4 antibodies associated with improved clinical outcome or therapy resistance.
A high baseline expression of Treg cell-associated FoxP3 and IDO, and a treatment-induced increase of tumor-infiltrating T lymphocytes are associated with better
clinical efficacy of CTLA-4 blockade. Anti-CTLA-4 therapy enhances the frequency of intratumoral ICOS+CD4+ T cells that is correlated with better OS. A proportion
of these ICOS+CD4+ T cells is characterized by the production of IFN-γ. Non-responders to anti-CTLA-4 therapy show a higher percentage of PD-L1- or
VISTA-expressing CD4+ T cells, CD8+ T lymphocytes, and CD68+ macrophages in posttreatment tumor samples.

(54). In agreement with these findings, it has been reported that
PD-L1 expression in at least 50% of tumor cells correlates with
improved efficacy of anti-PD-1 therapy in non-small-cell lung
cancer (NSCLC) patients (49). Further clinical trials yielded
contradictory results (52). Motzer et al. investigated a large
cohort of RCC patients undergoing anti-PD-1 therapy and
found a reduced OS for patients with 1% or greater intratumoral
PD-L1 expression compared to patients with less than 1% (50).
Gettinger et al. did also not find a clear correlation between
PD-L1 expression and clinical response or survival in anti-PD-1-
treated NSCLC patients (55). However, the results are not always
comparable since various assays, antibodies, cut-off values, and
different scoring methods are utilized to determine PD-L1+ cells
by immunohistochemistry.

Association Between Frequency and
Phenotype of Tumor-Infiltrating T Cells
and Clinical Efficacy of PD-1/PD-L1
Blockade
Recent studies revealed that the density and phenotype of
tumor-infiltrating T cells play an essential role for the clinical
efficacy of anti-PD-1/PD-L1 therapy. Using melanoma tissue
samples collected before and during treatment with anti-PD-1
antibodies, Tumeh et al. determined the frequency of tumor-
infiltrating CD8+ T cells (56). A higher density of melanoma-
infiltrating CD8+ T cells at baseline was indicative of responding
patients, suggesting that pre-existing intratumoral CD8+ T cells
are predictors of a clinical response to anti-PD-1 therapy. This
finding was further substantiated by another study, investigating
RCC tissues from patients treated with anti-PD-L1 and anti-
VEGF antibodies (57). McDermott et al. found a correlation
between a high T effector gene signature expression at baseline

and an improved overall response rate and progression-free
survival (PFS) of the treated patients. In contrast, a high myeloid
inflammation gene signature expression was associated with
reduced PFS in patients receiving anti-PD-L1 alone or anti-
PD-L1 and anti-VEGF antibodies. When performing an in-
depth analysis of intratumoral CD8+ T lymphocytes in NSCLC
patients, Thommen et al. described three distinct CD8+ T cell
subsets based on PD-1 expression (58). In addition to CD8+
T cell subpopulations with intermediate (PD-1N) and no PD-
1 expression, a subset with high PD-1 expression (PD-1T) was
identified that displayed a markedly different transcriptional and
metabolic profile. The PD-1T CD8+ T cells are characterized
by the secretion of CXCL13 that can mediate recruitment of
follicular TH cells and B cells to the tumor microenvironment and
may also foster the formation of intratumoral tertiary lymphoid
structures (TLS). The presence of PD-1T T cells emerged as a
strong predictor for the clinical outcome of anti-PD-1-treated
NSCLC patients (58).

The impact of anti-PD-1 therapy on the phenotype and
frequency of intratumoral T cells was also explored. Melanoma
patients who responded to anti-PD-1 therapy showed an
increased intratumoral CD8+ T cell density that was associated
with radiographic reduction of tumor size (56). In another study,
two major intratumoral CD8+ T cell states that were associated
with clinical response have been identified in melanoma patients
treated with PD-1- and/or CTLA-4 blockade (59). Single-cell
RNA sequencing resulted in the identification of intratumoral
CD8+ T cells with increased expression of genes linked to
memory, activation, and cell survival that were enriched in
responding melanoma lesions. In contrast, CD8+ T cells with
increased expression of genes linked to exhaustion were enriched
in non-responding lesions. Thus, the ratio of memory-like to
exhausted CD8+ T cells was linked with clinical outcome. In
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addition, elevated levels of melanoma-infiltrating TCF7+CD8+
T cells predicted clinical benefit in anti-PD-1-treated patients
(59). By using a tumor mouse model, Siddiqui et al. showed
that intratumoral TCF7+PD-1+CD8+ T cells with stem-like
properties can mediate tumor control to CPI therapy (60).
In addition, melanoma patients treated with anti-CTLA-4
and/or anti-PD-1-antibodies showed a higher proportion of
intratumoral TCF7+PD-1+CD8+ T cells than untreated patients
(60). Furthermore, an increased density of TCF7+PD-1+CD8+
T cells at baseline was associated with prolonged survival in
melanoma patients treated with anti-CTLA-4 and anti-PD-
1-antibodies (61). Moreover, Verma et al. reported that the
status of CD8+ T cell priming essentially influences anti-PD-
1 therapeutic resistance (62). Thus, administration of anti-
PD-1 antibodies in unprimed or suboptimal primed CD8+
T cell conditions led to the generation of dysfunctional PD-
1+CD38hiCD8+ cells that contribute to PD-1 blockade resistance
and treatment failure. However, the induction of dysfunctional
CD8+ cells was prevented and treatment resistance was reversed
when anti-PD-1 therapy was applied to optimally primed
CD8+ T lymphocytes. They also found that a high density
of tumor-infiltrating PD-1+CD38hiCD8+ cells in melanoma
patients can serve as a biomarker of anti-PD-1 resistance.
Zappasodi et al. described an intratumoral accumulation of
CD4+FoxP3−PD-1hi T cells (4PD-1hi) in immunotherapy-naïve
melanoma and NSCLC patients (63). These T cells were
shown to inhibit the proliferation and activation of T effector
cells. In addition, the authors found that a lack of effective

4PD-1hi reduction after PD-1 blockade correlates with poor
prognosis (63).

Impact of the Frequency of
Tumor-Infiltrating B Cells and TLS on
Clinical Efficacy of Anti-PD-1 Therapy
Emerging evidence suggests that tumor-infiltrating B cells play
an important role for the clinical outcome of anti-PD-1-
treated cancer patients. Thus, a higher frequency of melanoma-
infiltrating B cells with a plasmablast-like phenotype before
therapy was associated with improved patient survival to anti-
PD-1 treatment (64). More recently, Petitprez et al. observed
that the sarcoma immune class E, which is characterized by
TLS containing T cells, follicular DCs, and a high density
of B cells, is correlated with an improved response rate
and survival to PD-1 blockade (65). In addition, a higher
density of tumor-infiltrating B cells and TLS has been detected
in treatment responders in a cohort of melanoma patients
receiving anti-PD-1-antibodies alone or combined with anti-
CTLA-4 antibodies in a neoadjuvant setting (66). The importance
of tumor-associated TLS for the clinical efficacy of anti-PD-
1 treatment is further supported by another clinical trial,
demonstrating that a higher TLS density at baseline was
correlated with increased survival of melanoma patients (67).
An overview about immune cell characteristics that may
influence the clinical efficacy of anti-PD-1/PD-L1 therapy is given
in Figure 2.

FIGURE 2 | Immune profile of anti-PD-1/PD-L1 antibody-treated tumor patients associated with improved clinical outcome or therapy resistance. A high T effector
gene signature expression in pretherapy tumor samples is associated with improved survival of anti-PD-L1- and anti-VEGF-treated cancer patients. In addition,
responders to anti-PD-1 treatment show a higher frequency of intratumoral CD8+ T cells at baseline and an increased frequency of tumor-infiltrating CD8+ T cells
during therapy. Furthermore, they also have a higher proportion of intratumoral memory-like CD8+ T cells. The presence of PD-1T CD8+ T cells, which are
characterized by a high PD-1 expression and by the capability to secrete CXCL13, is also correlated with improved clinical outcome of anti-PD-1-treated cancer
patients. Moreover, an increased frequency of TCF7+PD-1+CD8+ T cells in pretreatment tumor samples is associated with prolonged survival in patients treated
with anti-CTLA-4 and anti-PD-1-antibodies. An increased density of B cells and TLS, consisting of a DC-containing T cell zone and a follicular DC-containing B cell
zone, in pretreatment tumor samples is also correlated with an increased survival of anti-PD-1-treated patients. Furthermore, a higher PD-L1 expression on tumor
cells and tumor-infiltrating immune cells is correlated with better clinical responses to anti-PD-1/PD-L1 therapy. In contrast, high frequencies of exhausted CD8+ T
cells and PD-1+CD38hiCD8+ T cells in tumor tissues are associated with resistance to anti-PD-1 therapy. Non-responders to anti-PD-L1 and anti-VEGF therapy
also show a high myeloid inflammation gene expression signature.
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CONCLUSION

The location, density, and functional orientation of tumor-
infiltrating immune cells play a critical role for the clinical
outcome of cancer patients. Thus, high frequencies of CD4+
TH1 cells and CD8+ T cells in the tumor center and the
invasive margin were associated with improved OS of colorectal
cancer patients. Whereas M1 macrophages were correlated with a
favorable clinical outcome of cancer patients with various cancer
entities, M2 macrophages were generally associated with poor
prognosis. Such findings indicate that tumor-infiltrating immune
cells can significantly influence tumor growth and spreading.
Recent studies revealed that the tumor immune contexture also
essentially contributes to the clinical efficacy of CTLA-4 or
PD-1/PD-L1 blockade that induced objective clinical responses
and improved survival in patients with various tumor types.
However, a significant number of patients do not respond
to CPI therapy. Therefore, deciphering the immunogenicity
of the tumor cells and the tumor immune architecture prior
to and during CPI therapy may lead to the discovery of
novel modes of action or resistance and to the design of
improved treatment modalities for cancer patients. For example,
it has been demonstrated that a limited presentation of tumor-
associated neoepitopes by tumor cells and the lack of pre-existing

intratumoral T cells are associated with poor responsiveness
of cancer patients to CPI therapy. Therefore, other treatment
modalities that increase the expression of components of
the antigen-processing and presentation machinery and the
neoantigen load of tumor cells as well as promote T cell
trafficking to tumor tissues are required to improve the clinical
response rate to current CPI therapy. Promising treatment
options comprise radiotherapy as well as the application of
chemotherapeutic agents and epigenetic drugs that can efficiently
increase tumor cell immunogenicity and stimulate antitumor
immune responses. Vaccination strategies including neoantigens
and the administration of non-modified or engineered T cells
can increase the frequency of tumor-infiltrating and -reactive T
lymphocytes. The intratumoral application of oncolytic viruses
or adjuvants can also improve CPI-based therapies by direct
tumor cell elimination, the recruitment of DCs and T cells
to the tumor, and the activation of innate and adaptive
antitumor immunity.
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