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Abstract

Collaborative development is a paradigm shift in software development.
Loosely coupled developers coordinate their work via distributed versioning
systems (SVN, Git, and others), code reviews and priority-led bug tracking
systems. This development approach allows many different developers to
input additional source code to the same source artifact.

This article focuses on the lexical content of the source code produced in a
collaborative environment. The lexical content is described as the ‘dictionary’
of the key terms contained within a source artifact. We posit that the lexical
content of a Java class will increase as long as more developers add more
content to the same class.

We analyse the 100 top-ranked GitHub applications (at the time of the
sampling) written in Java. Each of their classes is reduced to its lexical con-
tent, its size (in LOCs) recorded, as well as the number of different developers
who contributed to its source code.

Our results show that (i) the lexical content of Java classes is bounded in
size, (ii) more developers make the size of the lexical content larger, and (iii)
the lexical content of a system’s classes might increase with more developers,
but depending on its application domain.

The implications for practitioners are two-fold: (i) classes with a large set
of lexical content should be split in multiple classes, to minimize the need for
further maintenance; and (ii) classes developed by many developers should
adhere to specific guidelines so that its lexical content does not increase
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boundlessly. We tested our results in a tailored case study and we confirmed
our findings: larger-than-threshold class corpora tend to deteriorate the class
cohesion.
Keywords:
information retrieval (IR), lexical content, clustering, distributed
development, object-oriented (OO), open-source software

1 Introduction

Global software development has long been recognised as a paradigm
shift in modern software development [1, 2, 3]. As an immediate effect, co-
location of workers in the same building or office, deemed as necessary and
unique [4], is not seen as necessary any longer [5]. Coordination in distributed
socio-technical systems is mostly achieved by means of the artifacts that are
produced by the developers part of a project’s team [6, 7, 8].

With communication becoming less frequent, the challenge is for it to be-
come more effective. This is especially complex when different nationalities,
languages and cultures are part of the same development effort [9, 10, 11]. It
has been demonstrated that the absence of a shared native language (known
as “linguistic distance”) creates further barriers to communication[12, 13].

Open source software is an example of a distributed, multi-lingual devel-
opment effort [14, 15, 16]. As such, the main resulting artefacts are online
discussions, and source code. Software developers from diverse ethnic back-
grounds and language groups usually posses different coding techniques and
approaches [17, 10], and could develop software artefacts with corpora at
varying levels of semantic or lexical richness. For example, in the source
code comments or feature identifiers.

This variety could have diverging effects on the ability to collaborate be-
tween developers: if the underlying classes are large and lexically complex,
collaboration between diverse developers would be hindered due to complex-
ity in program comprehension [18, 19]. On the other hand, lexically simpler
classes, although as large, would not be problematic to collaborate on. This
is because the content of a class lexicon is partly covered by the classic Hal-
stead metric [20], that has been linked with improved readability in various
case studies [21, 22].

In a motivating study, Host and Ostvold [23] emphasise that method
identifiers make or break abstractions: while good identifiers communicate
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the intention of the method, bad ones tend to cause confusion and frus-
tration [24]. Furthermore, the task of creating identifiers is subject to the
sudden ideas and way of thinking of the individual as programmers have
little to guide them except their personal experience. Based on this idea,
Host and Ostvold analysed method implementations taken from a corpus of
Java projects, and established the meaning of verbs in method identifiers
based on actual use. As a result, they produced an automatically generated,
domain-neutral lexicon of verbs, similar to a natural language dictionary,
that represents the common usages of many programmers.

In this study, we systematically analyse the lexical complexity of Java
classes, by parsing their source code, sifting through the language-specific
terms, and keeping the terms that make up the lexicon of each Java class.
We use a sample of 100 Java systems, selected from the most popular Java
projects hosted on GitHub.com. The aim of this study is to evaluate the lex-
ical content of Java classes, as factors for the collaboration between software
developers.

This study is based on the following research questions:

RQ1 Is the size of the lexical content an invariant among Java
classes?

Rationale: the lexical content of a class contains the unique terms that
compose the dictionary of a class. For the purpose of maintainability
and understandability, this content should be kept to a minimum, while
at the same time be as different as possible from each other. This
research question investigates whether the size of the set of such terms
is invariant (or a quasi-constant) in a large and diverse collection of
Java classes.

RQ2 Is there a correlation between the unique developers collabo-
rating on a class, and the size of its lexical content?

Rationale: the more developers working on a class, the larger that
class should become, and the more complicated the set of terms that
new developers will add. It becomes important to learn how the basic
dictionary of a class is affected by a stable (or growing) number of
developers.

RQ3 Is there a correlation between the size of the lexical content
of a class, and its maintenance needs?
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Rationale: by maintenance needs we make reference to the number
of changes or modifications made to a class [25]. Past literature has
hinted to the relationship between size of a class and its complexity.
This research question tries to establish whether the size of its lexical
content is associated with a the number of changes performed on the
same class.

The main contributions of this work are:

• we show the size distribution of the class corpora, in a large set of
successful Java projects;

• we show how the lexical content of a class changes when more develop-
ers work on the same Java class;

• we investigate the link between the size of the lexical content of a Java
class, and the likelihood that it is related to more or less changes;

• we evaluate the difference between test and non-test classes, and the
influence of the application domains in the results that we collected;

• we focus on the experience of developers as a primary factor for the
further maintenance of classes;

• we offer a qualitative case study that makes use of our findings to repair
a few of the classes that show a larger-than-average corpus size.

This paper is articulated as follows: section 2 describes the methodology
of the empirical work, with definitions, research questions and how the at-
tributes were operationalised for testing the hypotheses. Section 3 presents
the results in the order of the research questions, while section 4 discusses
the relevance of these results in a wider context. Section 5 deals with the re-
lated work, in the context of open source and distributed collaboration, and
the importance of lexical and semantic aspects within software development.
Section 6 discusses the main threats to validity, while section 7 offers our
conclusion.
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2 Empirical Approach and Methodology

The study presented here is based on the collection of Java classes, their
lexical content (i.e., corpus) and the meta-data of which developers created
or modified what classes in a system. The methodology of how to extract
such data is explained below, together with a working example. The raw
data and intermediate results are made available at https://figshare.com/
projects/Lexicon_and_Developers_in_Java_classes/56009.

2.1 Definitions
This section defines the terminology as used throughout the paper. Each

of the items described below will be operationalised in one of the subsections
of the methodology.

• Size of a class – measuring the size of software systems has been a long
tradition in empirical software engineering. The size of artefacts is al-
ways the first choice to define the extent of the functionalities contained
in a system. In this paper we consider the size of a class considering
both its physical lines of code (LOCs) and the source lines of code
(SLOCs).

• Corpus keyword (term) – given the source code contained in a class,
a term is any item that is contained in the source code. We do not
consider as a term any of the Java-specific keywords (e.g., if, then,
switch, etc.)1. Additionally, the camelCase or PascalCase notations
are first decoupled in their components (e.g., the class constructor In-
validRequestTest produces the terms invalid, request and test).

• Class corpus – with the term ‘class corpus’ we consider the set of
all the terms contained within a class. We consider two types of class
corpus, per class: the complete corpus, with all the terms contained;
and the unique set of terms, that is, purged of the duplicates.

• Committer – all the projects in the case study presented below are
taken from the GitHub.com online repository. The term ‘committer ’

1The complete list of Java reserved words that we considered is available at https:
//en.wikipedia.org/wiki/List_of_Java_keywords. The String keyword was also con-
sidered as a reserved word, and excluded from the text parsing.

5

https://figshare.com/projects/Lexicon_and_Developers_in_Java_classes/56009
https://figshare.com/projects/Lexicon_and_Developers_in_Java_classes/56009
GitHub.com
https://en.wikipedia.org/wiki/List_of_Java_keywords
https://en.wikipedia.org/wiki/List_of_Java_keywords


applies to any developer of a project who has the right to commit the
code onto the main trunk of the code base.

• Author – several developers are currently working on each of the
projects in parallel. The mechanics of the forking feature in Git facil-
itates the parallel development, and collaboration on different classes.
We term as ‘author ’ any developer who contributes code to the project,
although it might get committed to the main development trunk by an-
other committer with the right write access. For the purpose of this
paper, we have counted the number of distinct authors who have mod-
ified at some point any part of a Java class. Below, we consider author
and developer as synonyms.

• Developer cluster – a Java class might get created and modified by
one or many developers. A developer cluster is the set of all the Java
classes developed by the same number of developers. For example,
a developer cluster of 2 is the subset of all Java classes modified by
exactly two developers.

2.2 Hypotheses
From the research questions described above, we formulate the following

hypotheses:

H0,1 the size of a class corpus is quasi-constant among classes, for both
complete and unique corpora.

Test: this hypothesis will be tested by displaying the values of complete
and unique class corpora in boxplot distributions.

H0,2 the size of a class corpus does not increase as long as more developers
contribute to the same Java class.

Test: this hypothesis is tested by plotting the average and median
values of the class corpora, as clustered in developer clusters.

H0,3 There is no correlation between the size of class corpora and number
of changes of a class.

Test: this hypothesis is tested by running one Spearman test for the
overall sample of Java classes, and several additional Spearman tests
(one per project analysed). The variables tested are the size of class
corpora, and the changes incurred by each class.
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2.3 Dataset
In this study, we have investigated the link between the lexical richness

of Java classes and collaboration in OO software. Leveraging the GitHub.
com repository, we collected the project IDs of the 100 most successful Java
projects hosted on GitHub.com as case studies2. The “success” of the projects
is determined by the number of stars received by the community of GitHub
users and developers, as a sign of appreciation. We used this approach to
stratified sampling because the projects obtained by this filter are likely to be
used by a large pool of users [26], active in terms of the number of commits
[27, 28] in the last 6 months preceding the sample collection for the study
and potentially have a good intake of new developers [29]. Prior studies
have also adopted similar selection criteria [30, 31] when analysing software
repositories hosted on GitHub.

Some 83,300 Java classes are contained in these projects, overall: the
largest project of our sample is elasticsearch3, with over 9,000 classes. The
repository of each project was downloaded and stored, with its metadata
(list of revisions for each class, and for the whole project, name of develop-
ers, date and time of changes), using the CVSAnalY set of tools4,5. These
revisions do not contain files without the .java extension. A few of the stud-
ied projects have vast amounts of revisions (more than 10,000), but they
represent the outliers of the distribution. In summary, the median of the
number of revisions per project is 1,000.

We extract the metadata of each Java class change, as stored on GitHub.
Metadata comprises the unique class ID, the date and hour of each change
on this class, the developer responsible for the change and the explanation
of such change. Java classes can be developed by one or many developers,
and on one or many parallel branches of development, as allowed by the Git
technology.

This data extraction produces a list of classes and an associated number
of distinct developers. Irrespective of the projects they come from, we group
classes into ‘clusters ’ if they are developed by a similar number of developers,

2The list of projects is available at https://figshare.com/s/c627af8e9e496a9025c4
3https://github.com/elastic/elasticsearch
4http://metricsgrimoire.github.io/CVSAnalY/
5Installation steps can be found at: https://sites.

google.com/site/arnamoyswebsite/Welcome/updates-news/
howtoinstallandruncvsanaly2inubuntu1110
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resulting in the one-developer cluster, two-developer cluster and so on.

2.4 Deriving the number of Java classes
The 100 selected systems are all written in Java, but the number of classes

contained in each system varies according to the distribution shown in the
boxplot6 of Figure 1. A small number of outlier contains a number of classes
larger than 2,000, but most systems are much smaller than that. The average
number of classes in that set is 833, while the median of the set is 232 classes.

Figure 1: Distribution of number of classes in the sample (including tests)

We mined the names of the classes (and their full path) to detect which
subset composed the tests, and overall we found 31,400 classes that have
"test" or "Test" in their name (or path). A distribution of these across the
sample is given in the lower boxplot of Figure 1.

Considering the systems in our sample, the amount of tests per system
is highly correlated (ρ “ 0.78) with the number of non-test classes. Larger
systems tend to have a larger amount of tests: the subset of smaller-sized
systems (i.e., less than 100 source classes), have an average 18% of tests as
source code; systems between 100 and 1,000 classes are composed of 34%
of test classes (on average); while systems with over 1,000 classes have on

6All the boxplots shown in this paper have been produced using the online facility at
http://shiny.chemgrid.org/boxplotr/
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average 42% of test classes. These observations are important, since they
will be used to determine how the lexical complexity affects the test classes,
as compared to non-test classes.

2.5 Extracting the lexical content from Java classes
We extract the lexical content of a Java class in two ways: (i) by con-

sidering their class names; and (ii) parsing their code and considering all
identifiers including method and variable names, comments and keywords.

The code of a Java class is converted into a text corpus where each line
contains elements of the implementation of a class. The corpus in this case
(“dictionary” of terms derived from comments, keywords in source code) is
built at the class level of granularity [32].

The corpus includes the class name, variable and method names and
comments for each class. Pre-processing of the system corpus is performed
to eliminate Java keywords7, stop words, split and to stem class names [33].
The list of such terms is available in the replication package for inspection.

As per the definitions given above, for the analyses performed in this
paper, we extracted both the complete and the unique corpus of each class.
As an example, for the lines of code shown in Figure 2 (the UrSQLEntry.java
class from the UrSQL project), we derive the following complete corpus using
an information retrieval tool developed in Java: {ur sql entri kei valu kei
valu ur sql entiti entiti ur sql entri ur sql entri queri split queri split ur sql
control kei valu separ kei split valu split kei kei valu valu}. The tool can be
downloaded from Figshare8, and it uses the ninka9 project to detect a source
file’s license, that is not considered relevant for a source file’s lexicon.

In order to obtain the unique corpus, the list of keywords is later pruned
of duplicated terms, per class. From Figure 2, we derive the unique corpus as
follows: {control entiti entri kei queri separ split sql ur valu}. The complete
and the unique corpora are obviously different, the former being of size 35,
and the latter of size 10 (in the example above).

As a summary, this data extraction produces, for each class, the relative
size of both the complete and unique sets of its lexical corpus, which we also
made available for inspection (and potential replication).

7As shared on https://en.wikipedia.org/wiki/List_of_Java_keywords
8https://figshare.com/articles/Script_to_extract_the_lexical_corpus_of_

a_Java_class/9785861
9Available at https://github.com/dmgerman/ninka, as presented in [34].
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Figure 2: UrSQLEntry.java Source Code Snippet

2.6 Identification of developers
In this section we show how we extracted the distinct authors responsible

for modifications on the Java classes, and we consider them as the developers
of the classes under study. The distinction between ‘author’ and ‘committer’
is quite crucial in our study, since we clustered Java classes into developer
clusters (see section 2.6.2): we show below how using ‘committers’ could skew
the study.

In Figure 3 below, we report on the difference between committers and
authors, in terms of how atomic commits are acknowledged: work might get
committed into the main developed trunk by one committer, but developed
by a different author (i.e., the committer is not the author). For each commit
involving a Java class, we extracted the committer and author IDs, and
checked where the two refer to the same developer ID10. Figure 3 shows the
percentage of commits where the author ID is different from the committer
ID, per project.

For the outlier projects of Figure 3 (e.g., the CoreNLP project11), only a
very limited number of developers are indeed committers. On the other hand,

10The SQL query used to identify the divergence is: select files.repository_id,
scmlog.author_id, scmlog.committer_id from scmlog, actions, files
where actions.commit_id = scmlog.id and actions.file_id = files.id and
scmlog.committer_id != scmlog.author_id and file_name LIKE ’%.java%’;

11https://github.com/stanfordnlp/CoreNLP
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Figure 3: Commits where committers are not the authors of the code contribution (per
project, in percentage)

over 90% of the CoreNLP commits are contributed by other developers, and
acknowledged as authors in the commit message.

In other cases (left part of Figure 3), such difference is less visible: most
committers are indeed the authors of the code pushed onto the development
trunk. The median value of commits where committers are not authors is
5% of the total commits, per project (average is 13%).

These results show, on the one hand, how the git pull requests [28] work in
practice: authors modify and contribute new code to a project, while being
acknowledged by the core development team (committers). On the other
hand, it is clear that all the empirical analyses performed below necessitate
the use of authors as developers (instead of committers): author IDs produce
a more complete picture of who modified the code of Java classes.

2.6.1 Removing duplicate authors
An important factor for the extraction of developer metadata is to avoid

to include multiple times the same individuals. In this section we detail how
this process was performed, in a semi-automatic way.

Names in the development log typically appear in three main forms:

1. in the ‘Name Surname’ form (e.g., Adam Smith)
2. in the ‘moniker ’ form (e.g., asmith).
3. in the ‘Name Surname and Name1 Surname1 ’ form, to acknowledge

where two developers worked together (e.g., Adam Smith and John M
Keynes).
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In all the above cases, a distinct developer ID was automatically assigned
in the database. The aim of this procedural step was to reconcile cases 1)
and 2) onto the same developer ID; and to separate the two developers of
case 3) while assigning new developer IDs.

In order to merge the cases 1) and 2), we isolated the Surname field of
the former, and looked for the same pattern in the latter. In case that was
found, the two developer IDs were merged (i.e., reconciled) into one. An
example of this approach is shown in Table 1 below.

project Dev name Dev ID Reconciled dev ID
robolectric petrcermak 11136 11015
robolectric cermak 11015 11015
robolectric Travis Collins 10894 10894
robolectric travisc 11097 10894

Table 1: Reconciliation of duplicate IDs in the developers metadata

2.6.2 Mechanics of developer clustering
In this section we describe the approach we used to assign each class to a

unique developer cluster : the goal was to separate classes developed by one
developer from classes developed by two developers, three developers, and
so on. As per the definitions above, we consider authors and developers as
synonyms.

Figure 4 illustrates two examples of data extraction for presto12 and zx-
ing13: in the presto project, the StatisticsBenchmark class has been mod-
ified by 3 developers, while SlideReadFunction and TestWrappedRange
by one developer only. In the zxing project, class TelParsedResult has
also been modified by only one developer, ServletContextLogHandler and
UPCAWriter by two developers, and TitleRetriever by three developers.

We store the corpora of the SlideReadFunction, TestWrappedRange
and TelParsedResult in the same cluster since they have the same num-
ber of developers (shown in the green colored squares beside each class);
the same applies for classes ServletContextLogHandler and UPCAWriter
whose corpora are stored in the two-developer cluster. Finally, the cor-

12https://github.com/prestodb/presto
13https://github.com/zxing/zxing
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Figure 4: Assignment of class corpora to developer clusters

pora of StatisticsBenchmark and TitleRetriever are stored in the three-
developer cluster.

From the projects analysed, we observe that the size of these clusters is
heavily biased: out of an overall 83,300 classes, there are some 15,000 classes
(and corpora) that have been modified by only one developer; around 11,000
modified by 2 developers, and over 8,700 modified by 3 developers. The next
task is to compare these clusters in pairs, to detect: 1) if they come from the
same population and 2) if they contain statistically different values.

3 Results

In this section we present the results of the empirical investigation, in
the same order of the research questions. Different statistical tests were
performed for the various RQs: we illustrate which test was used, and for
each, how they were carried out, and the outcome of the tests.
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3.1 RQ1 – Analysis and Results
The first research question is as follows: Is the size of the lexical

content an invariant among Java classes? This research question ought
to establish invariants in the size of the lexical corpora, for a large sample of
Java classes. Following the definitions above, we extracted the complete and
the unique corpus, per class, and for all the systems, and collected the size of
these sets. For all the systems in the sample, we evaluated the median value
of the two corpora: we prefer this metric to the average, given the skewness
in the distribution of the corpora.

Overall sample. As an overall sample, we observed that the corpus size in
the pool has an average of 450 terms in the classes of the sample, but only
a median of 179 terms. That by itself is a proof of how skewed is the data
set. When considering the unique terms in the classes, we observed a much
smaller value: as an average, there are 65 unique terms per Java class, and
a median of 45 terms.

We collected the same basic statistics for the subset of test classes only,
and for the subset of ‘all but test’ classes. This is collected in Table 2: as
visible in the ‘median’ and ‘average’ columns, we could not detect a major
difference when considering only test classes, or the overall sample of Java
classes. Considering the unique corpus of classes, between 43 and 47 keywords
was found to be the median corpus size in any of the subsets (considering
or excluding test classes); between 60 and 68 was found to be the average of
the corpus of unique keywords. A similar result was found for the complete
lexicon corpus of Java classes (with some „180 terms as a median, and some
„450 terms as an average).

Unique corpus Complete corpus
median avg std dev median avg std dev

All classes 45 65 119.3 179 451 1,493.4
Test classes 43 60 157.8 184 468.6 1,263.31
All but test classes 47 68 88 176 440.61 1,617

Table 2: Median, average and standard deviation (in number of terms) for the unique and
complete corpora of Java classes, considering the overall sample

Project by project. Below we analyse the corpora of the Java classes, this time
considering each project on its own. We collected the median and average of
each project’s corpora, and plotted them in Figure 5.
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Figure 5: Average and median values for the complete corpora (top) and unique corpora
(bottom), per project

We observed a larger variability in both medians and averages in sin-
gle projects, than when considering the overall sample. The DiskLruCache
project, for example, is composed of only 5 Java classes, but their lexicon
complexity is much higher than the rest of the sample, with a median of
118 (unique) terms per class, and 153 terms as the average. Compared to
the other systems under study, this is clearly an outlier: these classes should
be analysed further and possibly refactored, since their level of complexity is
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clearly too large. We further analyse this outlier in the Discussion section 4.5
below.

Clustering by project’s size. Similarly to what done above, we considered
the Java classes from the ‘small’ projects (e.g., less than 100 classes), sepa-
rated from the classes of the ‘medium’ projects (e.g., between 100 and 1,000
classes14) and from the ‘large’ projects (over 1,000 classes). This was done to
check whether a significant difference could be detected in the groups. The
results shown in Table 3 do not point to a distinction between smaller or
larger projects: both the median values (46, 44 and 46) and the averages
(71, 65 and 65) of the unique corpora (as well as the complete corpora) show
similar sets of values.

Unique corpus Complete corpus
median avg std dev median avg std dev

Small projects 46 71 142.26 179 436.5 966.4
Medium projects 44 65 88.32 157 444.69 1331.315
Large projects 46 65 125.5 185 453.27 1544.03

Table 3: Median, average and standard deviation when considering small, medium and
large projects

Based on the Table 3 above, we concluded that there is virtually no rela-
tionship between the overall size of the system (as expressed in the number
of class) and the size of the unique class corpora: this was evaluated using
the correlation coefficient between the number of classes of each system, and
the median size of the unique class corpora, per system. No matter how large
or small the Java system is (relatively to our sample), the number of unique
terms of a Java class remains confined to a range with a small variance.

Hypothesis tests and results. The section above produces the following re-
sults:

1. our sample shows a limited variability in both the unique and complete
corpora of the systems sampled and their classes. For the distribution
of the median number of unique terms: µMED ˘ σMED “ 47˘ 18.

14The distribution in the size of classes shows the first quartile at 81 classes, and the
third quartile at 834 classes. We rounded up the small projects at 100 classes, the large
at 1,000 classes.
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2. Even considering the split between test and non-test classes, we did
not detect a major difference in the size of their corpora.

3. The small variability in the corpus size is irrespective of the size of the
system, as evaluated in number of classes.

Given the above observations, we cannot reject the null hypothesis ‘the
size of a class corpus is quasi-constant among classes, for both complete and
unique corpora’.

3.2 RQ2 – results
Is there a correlation between the unique developers collaborat-

ing on a class, and the size of its lexical content?
The second research question that was investigated focuses on the re-

lationship between corpora size and number of developers. The research
question is as follows: Is there a correlation between the unique de-
velopers collaborating on a class, and the size of its lexical content?
The null hypothesis states that ‘the size of a class corpus does not increase
as long as more developers contribute to it ’. We performed two tests: in the
first, we considered the complete and the unique corpora of all the classes in
the sampled pool. In the second test, we separately considered the corpora
of each project.

Overall sample –. The evaluation of the Spearman’s correlation coefficients
(e.g., ρ) produces similar values of when considering the overall sample of
classes: 0.2939 (number of developers and size of unique corpora), and 0.2931
(number of developers and size of complete corpora). These two tests should
be considered as statistically significant, since the p-values returned are lower
than our selected threshold (α < 0.05). In the categories introduced by [35],
the correlations are considered low : from the overall perspective, there is no
clear correlation between how many developers work on a Java class, and the
size of its corpus.

Project by project. We repeated the same correlation study for each project,
rather than the overall sample. We evaluated the Spearman’s ρ for the size
of the corpora and the number of developers specifically working on each
project. The value of the correlation coefficient lies in the range r´1; 1s,
where ´1 indicates a strong negative correlation and 1 indicates a strong
positive correlation. As mentioned above, we adapted the categorisation for
correlation coefficients used in [35] (r0 ´ 0.1] to be insignificant, r0.1 ´ 0.3s
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low, r0.3´0.5s moderate, r0.5´0.7s large, r0.7´0.9s very large, and r0.9´1s
almost perfect) if the rank correlation coefficient proves to be statistically
significant at the α “ 0.01 level.

We collected each project’s correlation coefficients in the summary Fig-
ure 6, but only if its Spearman’s test was deemed to be statistically signif-
icant. In the insignificant and low categories, we also experienced negative
correlations, as highlighted in the hatched patterns.

Figure 6: Spearman’s correlations and their categories: size of class corpora and number
of developers (per project)

For the DiskLruCache project the correlation between the corpora (com-
plete and unique), and the number of developers modifying the classes is
almost perfect, with the ρ value at 0.97. In this case, it is clear that a larger
number of developers is always connected with a larger corpus of terms in
the Java classes that they have worked on.

For 10 other projects (e.g., dex2jar, unirest-java) there is almost no
correlation, with ρ values lower than 0.1 (i.e., insignificant correlations). Dif-
ferently from above, there is virtually no influence of the number of distinct
developers over the size of the Java corpora. A similar evaluation can be
made for the projects in the low category.

In the discussion section below, we will study whether the application
domain (e.g., ‘mobile’, ‘gaming’, ‘desktop’ etc) of the selected projects plays
a role in the type of correlations found in Figure 6.
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Trends in Clusters. Finally, we evaluated the trends between corpora size and
number of developers, when considering developer clusters. For granularity
purposes, we used 4 developer clusters (1 developer; between 2 and 5; between
6 and 10; and over 10). For each of these clusters, we evaluated the average
and the median sizes of class corpus, and summarised the trends of their
values in Table 4.

Developer clusters Unique corpus Complete corpus
median average median average

[1] 36 53.11 124 311.72
[2 - 5] 44 60.54 173 394.10
[6 - 10] 71 90.44 367 720.97
ą 10 121 153.09 881 1629.0

Table 4: Median and average for the set of unique and complete corpora, when grouped
by developer clusters

The table shows that for the clusters of 1 and [2 to 5] developers there
are some similarities (for the unique corpora the median values are 36 and
44, respectively; average: 53 and 60 respectively). From the clusters [6 to
10], and ą 10, the values are radically higher, and they reflect a stronger
influence on the underlying source code (and its corpus) when the number of
developers increases.

Hypothesis tests and results. The section above produces three interesting
results:

1. As an overall sample, we could not detect a direct correlation between
the size of the class corpora and the number of distinct developers.

2. At the project level, there is indeed evidence that some projects show
the effects of many different developers on the underlying classes. This
effect can either be large or very large, and it is summarised by saying
that several developers produce a larger corpus in the Java classes.

3. A further interesting insight was obtained by clustering developers: up
to 5 developers do not overly alter the size class corpora, whereas the
bracket [6 - 10] developers (and over) begins to show a clear effect on
the size of the class corpora.

Considering the observations above, we cannot reject the null hypothe-
sis ‘the size of a class corpus does not increase as long as more developers
contribute to the same Java class ’ for the overall sample of Java classes.
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When considering individual projects, the median value of the correlation
distribution shows a strong correlation coefficient. We can reject the null
hypothesis, at project level. Section 4.3 below will consider the application
domain (e.g., security, desktop applications, scientific software, etc) of the
projects in our sample as one of the reasons for the observed variability.

3.3 RQ3 – Results
The third and final research question that was investigated is the rela-

tionship between corpus size and maintenance performed on a class. The
research question is as follows: Is there a correlation between the size
of the lexical content of a class, and its maintenance needs? As
"maintenance" we counted the number of changes performed on a Java class,
throughout its lifetime [25]. The null hypothesis states that ‘there is no cor-
relation between the size of class corpora and number of changes of a class ’.

Similarly to RQ2, we also performed two tests: in the first, we considered
the corpora of all the classes, while in the second we considered individ-
ual projects. We also show the correlation trends when grouping classes in
developer buckets, for both complete and unique corpora.

Overall sample –. The correlation coefficients that we obtained from the sets
‘complete corpora’ and ‘number of changes’ is 0.2549, while the ρ for the
‘unique corpora’ and ‘number of changes’ is 0.34879. These results mirror
what we obtained for the analysis of RQ2: a low (moderate) correlation
is found between complete (unique) corpora, and the amount of changes
performed on a Java class.

The similarity of the results reported for RQ2 and RQ3 implies that there
could be a significant correlation between the total number of developers al-
tering a Java class and the resulting amount of changes. This is confirmed
evaluating the correlation between "number of developers" and "number of
changes" per Java class: the Spearman’s test produces a very strong corre-
lation coefficient (ρ “ 0.72) between these two variables.

In the discussion section 4.4 below we add to this evidence, by consid-
ering the experience of developers as a factor for the further maintenance
needed: in particular, we will focus on whether less experienced developers
are responsible for more added maintenance than the more experienced ones.

Project by project. Similarly to RQ2, we focused the correlation study to each
project contained in the sample. The Spearman’s ρ values were evaluated for
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the correlation between a class "corpus size" and the "number of changes"
that it underwent. We collected each project’s correlation coefficient (when
the test was statistically significant) in a summary boxplot (Figure 7).

Figure 7: Correlation coefficients (ρ) between size of class corpora and number of changes
(per project)

Single projects have in general a strong correlation between size of the
corpus and maintenance needs of a class. As per RQ2, few of the sampled
projects show an almost perfect correlation between size of the corpora and
number of changes that they underwent. For example, the DiskLruCache
project displays 0.961 (0.963) as the correlation coefficient between the size
of the complete (unique) corpora and the number of changes.

More in general, the size of a system (in number of classes) is a good
predictor of the correlation between corpora size and maintenance: for nearly
all the projects with less than 50 Java classes, the correlation between corpora
size and changes is either very good, or almost perfect. For larger systems,
the picture is not as clear: the pinpoint project contains over 3,700 Java
classes, but there is virtually no correlation between complete (ρ “ 0.07)
or unique (ρ “ 0.22) corpora and the number of changes in Java classes.
On the other hand, the presto project (over 4,300 Java classes) displays
moderate (ρ “ 0.497) and strong (ρ “ 0.5835) coefficients for the correlations
of complete and unique corpora with the maintenance changes.

Trends in Clusters. Finally, we considered the developer clusters as the units
of analysis: Figure 8 shows the trends of the average and median values in
the number of changes (the values are normalised by the number of developer
in a cluster). As found in the trend analysis of RQ2, when more developers
work on Java classes, the number of changes increase. If, on average, Java
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classes by only one author receive 3 three changes overall, the classes with
more than 20 authors get 4 changes. Growing the developer base even larger,
classes with 40 authors get more than 10 changes on average.

developer cluster

0
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15

20

1 11 21 31 41 51

MEDIAN AVERAGE

Developer clusters and maintenance

Figure 8: Growth trends in number of changes, per developer cluster

Hypothesis testing results –. Considering the overall sample of Java classes,
we cannot reject the null hypothesis: ‘there is no correlation between the size
of class corpora and number of changes of a class.

Considering the individual projects, the median correlation value allows
to reject the null hypothesis. For smaller projects, the correlation is either
very strong or almost perfect.

4 Discussion and Further Evidence

In this section we discuss in more detail three aspects emerging from the
empirical analyses: (i) the low variance in the size of the unique corpora of
Java classes, (ii) the impact of comments and non-code portions on the cor-
pora, and (iii) the effect of multiple developers on the corpora of the affected
classes. In order to reduce the bias of the sampling, we also analysed 100
random projects extracted from GitHub, and we repeated the lexical anal-
ysis. For each of these discussion points we gathered some further evidence
to put them in a wider context, and to expand on their relevance to other
researchers and their applicability to practitioners.
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4.1 RQ1 – results
Given the findings we summarised analysing RQ1, it becomes important

to evaluate the correlation between the size (in both LOCs and SLOCs), and
the lexical corpus of the classes. The discussion moves around the question:
is the number of keywords correlated to the lines of code?

The distribution of correlation coefficients (between "size in LOCs" and
"complete corpora") is displayed in Figure 9: in terms of LOCs, over 85% of
projects show a nearly perfect correlation between lines of code and complete
corpora of their classes. On the other hand, 80% of projects in the sample
show a nearly perfect correlation between SLOCs and size of the complete
corpora.

Figure 9: Correlations between size and complete corpora. BAG refers to the corpus of a
class (i.e., bag of words)

Irrespective of the size measurement used (LOCs or SLOCs), the corre-
lation coefficients between lexical corpora and size are undoubtedly pointing
to a strong link between these two entities. The less-than-perfect relation-
ship between SLOCs and complete corpora is due to the fact that, per its
definition, SLOCs do not consider comments in their count. The terms that
appear in the comments of a class do not influence the overall size of the
class corpus, in terms of its relationship with size.

4.1.1 Comments and other non-code portions
The results that were collected as part of RQ1 show that the SLOC

measure can highlight where the corpus items are used. Figure 10 below
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illustrates this relationship graphically: the SLOCs metric (on the right hand
side), gets evaluated using only the Code blocks, while the LOCs metric (left
hand side) uses all the blocks (Code and Comments).

Figure 10: Evaluation of LOCs and SLOCs and their influence on the class corpus

The sub-corpora sC1, sC3 and sC5 contain the corpus items contained
in the source code alone: on the other hand, sC2 and sC4 contain the sub-
corpora of items contained in the comments. The relationship between the
class corpus (i.e., sC1 Y sC2 Y sC3 Y sC4 Y sC5) and the SLOCs measure is
affected by how SLOCs are evaluated.

When the relationship between SLOCs and lexical corpus becomes neg-
ligible, it implies that the amount of key terms contained in the comments
has surpassed the key terms contained in the source code. This pattern is
linked to a specific code bad smell, the excessive amount of code contained
in the class, where comments and documentation are needed to add more
explanation to the functionality of the code. In this sense, the relationship
SLOCs – corpus is a powerful pointer to highlight which classes would benefit
from refactoring.

4.1.2 Summary discussion
The analysis that we performed is not exempt from threats to external

validity, which we discuss below. Nonetheless, a sample of 83,300 Java classes,
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from different application domains, can be considered a start to shed some
significant light in the research area under RQ1.

We have established that the size of the unique corpus of a class can be
considered as a source code attribute with low variance. From a previous
work, we have also established that the content of the class corpora are
fairly distinct from each other [36]: the unique terms of one class are rarely
overlapping the ones from another class.

Combining the two findings above, we can say that Java classes encap-
sulate a limited set of terms (or concepts), that are orthogonal to those of
other classes. These findings point to further insights: when the class corpus
is much larger than any other in a specific software system; and when the
same set of terms appear in different classes. In the first case, a split-class
refactoring would help in the separation of the concepts of a class that has
grown too large, lexically. We discuss a qualitative case below, and how the
concepts and lexicon gets more complex when the corpus size of classes gets
very large.

In the second case, classes showing similar lexical concepts are most
likely linked by an overarching, shared functionality, or even requirement.
If the lexical similarity between classes was excessive, a merge-class refactor-
ing would help to coalesce lexically-similar functionalities within a smaller
number of classes.

In a prior study [37] on bridging the gap between conceptual and struc-
tural coupling to improve estimated impacts during change impact analysis,
we proposed a refactoring approach which extracts chains of textually re-
lated functionalities from classes with weak structural coupling links and a
weak internal structure (based on semantic cohesion [35] which is also an
important attribute of OO software classes) to form more cohesive classes.
Kabaili et al. [38] state that “some classes have multiple methods that share
no variables but perform related functionalities; placing each method in a
different class would be against good OO design”.

4.2 RQ2: Corpora and multiple developers
The findings from the size of the class corpora and the cohort of developers

have shown that it is not possible to reject the hypothesis of correlation be-
tween the two attributes. Larger corpora sizes drive the collaboration of more
developers, and vice-versa. Although we could not establish a cause-effect
relationship, we noticed that the relationship is not monotonically increasing:
with the further increase of developers, the corpora gets stable in size.
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As said, the directional relationship between corpora size and developer
cohort was not established. This could be related to the type of classes at
hand: simpler, smaller classes might have a simpler, smaller corpus. For
those classes, the collaboration between multiple developers is not needed,
or it will not affect the size of their corpus.

On the other hand, complex classes might require a larger, more com-
plex lexical content: the collaboration between many developers is needed to
achieve the implementation of more (lexically) complex classes. Johnson and
Foote [39] have encouraged the design of simpler classes and the splitting of
complex ones alike to ease program maintenance and comprehension. On the
other hand, comprehension will aid collaboration and contribution in OSS
development.

If the relationship is considered the other way, our interpretation of the
results changes: the presence of more developers should be considered the
cause of the increased complexity of the lexical content of a class. As above,
the lexical complexity of a class plateaus in the presence of an even large
cohort of distributed developers: in those cases, the complexity control acts
on top of the ever-growing size of the class, to maintain the corpora size
under a threshold.

Our results show that the number of distinct developers that have worked
on a class since its creation has a relationship with its lexical content: a higher
number of terms per class is observed in the classes with a larger number of
developers.

The number of terms does not increase indefinitely. With very large
pools of developers, class corpora cease to increase in size, in turn becoming
smaller, seemingly to ease the collaboration between many developers.

Open Source projects can benefit from these findings, and actively sup-
port the collaboration of large pools of developers, by monitoring the lexical
content of the Java classes. This will help reduce the required effort to de-
velop or maintain a class.

Prior research shows that on average, there are only about 5 to 10 distinct
terms per method body and 20 to 50 distinct terms per class. In addition,
arbitrary named identifiers make software comprehension and maintenance
approaches that rely on lexical content of source code ineffective as identified
in a study by Kuhn et al. [40] wherein arbitrary named identifiers were a
threat to the effectiveness of their semantic clustering technique for Object-
Oriented software feature identification.

A practical step to improving distributed development and collaboration
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is an encouraged adoption of the pool of verbs automatically identified by
Host and Ostvold [23] which can serve as a benchmark, dictionary or guide
for developers when naming or renaming method and class names in OO
software.

4.3 The Influence of Application Domains
In this section, we discuss how the results that we obtained (especially

those reported in RQ2) are being influenced by the application domains that
the projects belong to.

In order to assign a project to an application domain, we made use
of an NLP-based automatic approach to extract the topics from the soft-
ware systems, and a manual approach to assign the projects to pre-existing
categories [41]. As the list of categories, we adopted what has been his-
torically used by the SourceForge.net repository to classify the hosted
projects: {1:Communications, 2:Database, 3:Desktop Environment, 4:Edu-
cation, 5:Formats and Protocols, 6:Games/Entertainment, 7:Internet, 8:Mo-
bile, 9:Multimedia, 10:Office/Business, 11:Other/Nonlisted Topic, 12:Print-
ing, 13:Religion and Philosophy, 14:Scientific/Engineering, 15:Security, 16:So-
cial sciences, 17:Software Development, 18:System, 19:Terminals, 20:Text
Editors}.

In our sample, we found 4 appication domains that are more prominent
than others: Internet (with 27 projects), Mobile (11), Multimedia (11) and
Software Development (34). We report the Spearman’s correlation coeffi-
cients between number of developers and size of corpora, and we group the
results based on the domains. Table 5 contains the number of projects of the
different application domains, and we group the correlation coefficients based
on the categories described above. As an example, we observed 13 projects in
the Internet domain that result in a moderate correlation between developers
and corpora (e.g., research question RQ2).

For most (23 out of 27) of the projects in the Internet category the correla-
tions between developers and corpora are between insignificant and moderate;
only for 4 projects the correlations are either large or very large. Similarly,
for the projects in the Multimedia domain, most of the correlations show
low coefficients, and only one project (the uCrop project) show a very large
correlation, albeit on the lower side of the bracket (ρ “ 0.707). In a similar
fashion, the majority (22 out of 34) of projects in the Software Development
domain do not show meaningful correlations between number of developers
and size of the corpora.
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Spearman’s ρ Domains
Internet Mobile Multimedia Sw Devel

insignificant 1 1 3 3
low 9 0 1 9
moderate 13 3 3 10
large 3 5 3 10
very large 1 2 1 1
almost perfect 0 0 0 1
Total 27 11 11 34

Table 5: Summary of Spearman’s correlation coefficients, grouped in categories: number
of developers vs. size of corpora

On the other hand, and considering only the Mobile projects, most of the
correlations are high, and they group as either large or very large. Projects
in this domain show a higher chance to increase their corpora size as long as
more developers step in to work on the same Java files.

The two clusters of results can be considered as the starting point of
an interesting insight: depending on the domain, Java classes can show a
tendency to increase (or not) their corpora, as long as more developers add
content to the underlying source code.

4.4 RQ3: Corpora and Software Maintenance
The evaluation of the hypotheses H1 and H2 above pointed to an increase

in size of the Java corpora: when more developers have worked on the same
Java files, their corpora have deteriorated, according to shared guidelines in
software maintenance and evolution.

In this part of the discussion we further analyse what are the repercussions
on software maintenance, and whether more developers have an impact on the
number of changes that a Java file undergoes, hence its future maintainability.
In order to do so, we counted the total number of commits where a Java file
was modified, but discounted of the number of developers that worked on each
Java files. As an example, the Java file with ID=989965 was modified by an
overall 13 developers, and it received an overall 39 commits in its evolution.
Discounting 13 commits (one for each developer), we noted an additional
26 commits that this class received in its maintenance. We repeated this
approach for all the Java classes, but avoiding the commits where more than
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100 Java files were modified at the same time15.
Also, we considered different types of developers, based on the distribu-

tion of their Java-based commits in a specific project. Such distribution is
typically heavily skewed, with few developers responsible for the majority of
the commits (see the bottom part of Figure 11, that describes the distribution
of commits of the Android-Bootstrap project).

Based on this distribution, we divided a project’s developers in three
categories:

• Top Developers (TD) – those developers who committed a total number
of Java files larger than the third quartile (Q3) and less or equal the
maximum number of Java files;

• Middle Developers (MD) – those developers who committed a number
of Java files larger than Q1 but smaller than Q3;

• Bottom Developers (BD) – those developers who committed a number
of Java files smaller than Q1;

The results are found in Table 6 below: we separate the scenarios where all
the classes are considered; from those where only Top developers are involved;
from those where there is a majority of Middle and Bottom developers (e.g.,
MD `BD ą TD).

When considering all the Java classes in our sample (section "ALL JAVA
CLASSES" in Table 6) we observed that, on average, the classes modified
by one developer are those that needed the least further maintenance (less
than one additional commit, on average; and no further commits as a median
value). When 2 to 5 developers have worked on a Java class, the additional
commits become more than 2 on average, but only one as a median. The ad-
ditional maintenance becomes much more visible in the "6 to 10" developers
per class, and extremely high for the classes that were modified by more than
10 developers. In the former scenario, we recorded a median of 8 additional
commits; in the latter a median of 28 additional commits.

The same trend is visible when only the Top developers (section "ONLY
TOP DEVELOPERS" in Table 6) are involved, but with a difference: the

15Those commits are most likely automated commits that change the same portion of
code, or even the license, of many source files at the same time, in bulk.
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Figure 11: Extraction of developers experience: boxplot perspective (top) and its evalua-
tion on project ID = 2
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ALL JAVA CLASSES
Dev. clusters 1 2 to 5 6 to 10 >10
Further commits (AVG) 0.73 2.73 12.46 75.85
Further commits (MED) 0 1 8 28

ONLY TOP DEVELOPERS
Dev. clusters 1 2 to 5 6 to 10 >10
Further commits (AVG) 0.74 2.67 11.56 24.49
Further commits (MED) 0 1 8 17.5

MD + BD >TD
Dev. clusters 1 2 to 5 6 to 10 >10
Further commits (AVG) 0.29 2.06 16.82 59.32
Further commits (MED) 0 1 9 37

Table 6: Average and median number of additional commits per cluster of developers, and
considering experience as a factor

average and median values of additional commits are kept lower than the
general case where all developers are considered.

This second finding is confirmed by the analysis of the Middle and Bottom
developers (section "MD`BD ą TD" in Table 6). The development of Java
classes by developers with a mixed experience has a visible effect on their
future maintenance, requiring a lot more further commits (both in average
and median) than when the only Top developers work on the code.

4.5 Corpora size as an indication of class cohesion - Qualitative study
In this section we carry out an additional analysis on one specific project

in our sample (i.e., DiskLRuCache), and we focus on its class corpora, that
result in unusually large sizes. For all its classes, we carried out a manual
inspection on the frequent or reoccurring terms in them. When using the
VSM or LSI techniques, the weight (e.g. frequencies) of terms are used to
create the ‘term by document’ matrices. However, given the size of some of
the classes, we could not leverage the SVD technique in LSI to extract the
topics from the corpora of all classes. Therefore, we reverted to a manual
inspection of each class corpus.

The case study that we present below analyses whether very large class
corpora contain terms and concepts that belong to too many different do-
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mains: in other words, we investigate whether the size of a class corpus, and
the (number of) its reoccurring terms, is an indicator of its cohesion.

Table 7 shows the classes of the DiskLruCache project: we list the unique
and complete size of each class; the reoccurring terms in the corpora16; and
an indication of whether the terms indicate a cohesive class which focuses on
one domain (e.g., text processing, file reading, networking, etc.), or not.

What we found is that, as the size of a class corpora increases, its cohesion
is lost. This is linked with the results in Section 3.2, stating that the corpora
size increase as more developers have worked on the classes. We have also
identified that larger classes (in terms of their corpora) are in fact in need of
further maintenance.

These preliminary results could also be looked at from the perspective of
program comprehension. Comments and structure of source code should aid
program understanding and reduce maintenance efforts [42]. Text mining
and conceptual coupling techniques have been used to identify subtle class
dependencies not revealed by source code analysis as well as complement
source code metrics in software maintenance tasks such as software change
impact analysis and change prediction. However, arbitrary terms in the com-
ments of related classes can affect the performance of conceptual similarity
tools and techniques [43, 44]. As shown in Table 7, the larger corpora be-
gin to contain arbitrary terms not linked to a domain. On the other hand,
in some cases, the class identifiers provide an indication of the terms used
within the class which is important for program comprehension and can save
time when eyeballing class names in a project or repository. For example,
the StrictLineReader class identifier can indicate to a developer that the
contents or implementation of the class will support text processing. In prior
work, we compared the use of only class identifiers to using class corpora
for computing the semantic similarity between classes [36] and results from
the study revealed that complex corpora provide relatively similar semantic
information as class names.

Establishing a new conceptual cohesion metric (i.e., C3) for classes in
OO software, Marcus and Poshyvanyk [35] found a significant correlation
between C3 and LCOM5. The C3 of a class is based on the average concep-
tual similarity of methods implemented in a class. While LCOM5 is based

16We have used a Unix shell script to automatically identify the reoccurring terms in
the corpora.
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on counting the number of methods referencing attributes in the class. Ac-
cording to Marcus and Poshyvanyk, the idea is similar to the how LSI sums
up term frequencies in text documents, and the attribute references are like
terms in the methods.

As such, this case study has shown that the C3 metric could be related
to the sizes of the corpora of classes and invariably the number of developers
that have worked on a class. A further investigation on class corpora size and
C3 could provide more insights into the presence or absence of a significant
correlation between C3 and other cohesion metrics investigated in [35]. One
can also investigate the effect of the number of developers that have worked
on a class and the correlation between the C3 of the class and the other
cohesion metrics that rely on source code or information flow.

4.6 Representativeness of the sample
The sample that we extracted from the GitHub repository is a convenience

sample, using a stratified approach based on the number of stars received by
the projects. The results that we obtained might be biased by the type of
systems contained in the sample: also, the results might not be representative
to a random sample of Java projects.

In order to assess the extent of the threat to external validity, we analysed
a further random sample of Java projects. We considered a curated popu-
lation of 14,118 Java projects, contained in the research published in [45].
From that sample we extracted a random sample of 100 Java projects17, and
repeated the analysis that we performed above.

The random sample contains 16,077 Java files overall, and the projects
are sensibly smaller than the original sample presented above: 29 of these
projects contain less than or equal to 10 Java files. The violin plot in Fig-
ure 12 shows how the smaller projects skew the distribution, as compared to
the original sample.

The original and the new samples are statistically different: a Kolgomorov-
Smirnov directional test does not reject the null hypothesis ‘the original sam-
ple has larger corpora than the random sample’. This is further countered
by the Cohen’s effect size that we evaluated at d “ 0.1: the two samples are
indeed pooled from different distributions, but their differences are minimal.

17Each project in the population was given an ID, and we extracted 100 random numbers
between 1 and 14,118, and avoiding repeated numbers. The list of random Java projects
is made available at https://doi.org/10.6084/m9.figshare.11307005.
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Class name Corpus Terms Domain
DiskLruCache U:304

C:2,408
app, backup, buffer, builder,
cache, clean, client, close,
code, commit, count, cre-
ate, delete, current, directory,
disk, edit, entries, executor,
fail, filesystem, exist, index,
journal, length, version, write

Multiple domains (com-
mits and version history
AND deletion of files
AND new entries and
creation, backups, etc.)

DiskLruCacheTest U:231
C:3,160

aa, abc, abort, absent, ac-
tion, add, allow, backup, bb,
buffer, cache, cause, clean,
close, commit, confirm, cre-
ate, delete, directory, disk,
edit, equal, evict, except, ex-
ecutor, exist, expect, file,
fault, garbage, invalid, jour-
nal, line, rebuild, remove, set,
sink, size, snapshot, test, trim,
version

Multiple domains (com-
mits and versions (and
snapshots) AND dele-
tion of files AND new
entries and creation of
files AND cleaning AND
backups AND source
code execution AND
faults and testing, etc.)

StrictLineReader U:118
C:456

buffer, capacity, charset, code,
count, data, decode, end, ex-
cept, input, line, read, report

Same domain (text pro-
cessing)

StrictLineReaderTest U:72
C:208

ascii, buffer, builder, byte,
close, create, end, except, ex-
pect, fail, instead, length,
line, pad, read, result, span,
stream, test

Same domain (text pro-
cessing)

Util U:40
C:104

buffer, charset, close, code,
content, delete, count, file,
read, util, write

Somewhat same domain
(file reading and clos-
ing OR file reading with
some deletion of text be-
fore closing)

Table 7: Class corpora size, terms and domains (cohesion). Key - U: number of unique
terms per class, C: number of all or complete terms per class.
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Figure 12: Number of Java files contained in the projects of the random sample

The Java projects with a small number of classes tend to have larger
corpora too: as an example, the DAVILA18 project contains only one large
Java class, that contains a total of 1,605 terms, and an overall 311 unique
terms. As a further example, the JUnitSync19 project contains 4 Java files,
and the median value of the complete corpora is set at 3,365 terms, while
the median number of unique terms was found to be at 238. These are clear
examples that smaller projects tend to have larger classes, that contain a
larger lexical complexity, as measured by the terms contained in the classes
themselves.

Similarly to the original sample, we provide in Table 8 the distribution
statistics for the random sample of Java projects. All the derived values look
smaller than the original counterpart: relatively to the unique corpora, the
size of the lexicon is still comparable (42 versus 45 as the median value; 56
versus 65 as the average value). The smaller projects, and their Java classes
with large corpora, are skewing the values of the variances, that all look much
higher than the original sample.

The distribution of unique and comoplete corpora was plotted, per projects,
in the two boxplots of Figure 13.

18https://github.com/jabauer/DAVILA
19https://github.com/spring/JUnitSync
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Unique corpus Complete corpus
median avg std dev median avg std dev

All classes 42 55.78 2,738.88 150 364.09 2.77E+06
Test classes 37 44.93 1,462.42 146 348.40 9.85E+06
All but test classes 44 58.03 2,974.08 151 367.34 1.30E+06

Table 8: Median, average and standard deviation (in number of terms) for the unique and
complete corpora of Java classes, considering the overall sample

Figure 13: Average and median values for the unique and complete corpora, clustered by
project

5 Background and Related Work

Open-source software, often created voluntarily by developers located in
different parts of the world, has been compared to commercial software. This
is an unexpected accomplishment as open-source programmers infrequently
meet [46].
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However, challenges still exist with regards to collaboration between dis-
persed developers. One of such challenges is related to culture and lan-
guage: since English is traditionally considered the ‘lingua franca’ of soft-
ware development, misinterpretations and understandability issues have been
flagged [10], and practical solutions proposed. The open-source development
paradigm has not formally acknowledged the issue in handling international
developers, who could be far from native speakers. The mechanisms of such
collaboration and what role language plays in facilitating the coordination
between developers, have been vastly ignored.

Comments and keywords used by developers for names of classes, meth-
ods, or attributes in source code or other artefacts contain important infor-
mation [47, 48, 49, 50, 51] and account for approximately half of the source
code in software [32]. These names often serve as a starting point during pro-
gram comprehension. Hence, it is essential that these names clearly reflect
the concepts that they are supposed to represent, as self-documenting iden-
tifiers decrease the time and effort needed to acquire a basic comprehension
level for a programming task.

In a related study, Host and Ostvold [23] emphasise that method iden-
tifiers make or break abstractions: while good identifiers communicate the
intention of the method, bad ones tend to cause confusion and frustration
[24]. Furthermore, the task of creating identifiers is subject to the sudden
ideas and way of thinking of the individual as programmers have little to
guide them except their personal experience. Based on this notion, both
researchers analysed method implementations taken from a corpus of Java
projects, and established the meaning of verbs in method identifiers based on
actual use. As a result, they produced an automatically generated, domain-
neutral lexicon of verbs, similar to a natural language dictionary, that rep-
resents the common usages of many programmers. This lexicon of verbs can
serve as a guide for programmers when adding comments and naming or
renaming methods and classes in source code.

Seriai et al. [52] proposed a new approach of identifying functional object-
oriented software features. Their approach combines the lexical and struc-
tural similarity of classes. Based on their results, they conclude that the
proposed method outperforms using lexical similarity only for feature iden-
tification.

Aloysius and Arockiam investigated OO software complexity metrics and
proposed a Cognitive Weighed Coupling Between Objects (CWCBO) metric
which comprises of five coupling types including lexical content coupling [53].
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They defined lexical content coupling as the existence of some or all of the
contents of one module in the contents of another. In this paper, we have
presented a study on the lexical content of classes in relation to developer
collaboration.

Yamauchi et al. [46] investigated the influence of electronic media (e.g.,
todo lists and mailing lists) on disperse collaboration among open-source
software developers. Their findings suggest that spontaneous work coordi-
nated after the use of electronic media is effective, and rational organizational
culture helps achieve agreement among dispersed developers.

Language and culture can influence the way by which people interpret
messages [10]. In the open source software domain, for instance, proficient
English speakers might unintentionally intimidate non-English speakers. On
the contrary, team members who are not confident with their English lan-
guage skills may prefer instant messaging or email over telephone or video
conferencing, as text-based media provide more time to comprehend and
compose a response.

One proposed solution for language barriers is documents authored by
non-native speakers of the shared language should be reviewed by a native
speaker.

In an attempt to understand what motivates open source software devel-
opers, Ye and Kishida [54] identified that present software engineer education
and research emphasise more on program writing. However, from language
learning experience, to become good developers, we have to learn to read first.
This stresses the importance of the semantics within software artefacts as a
major factor for program comprehension which will advance collaboration.

On the naturalness of code, Hindle et al. [55] emphasise that code written
by real people shares characteristics to natural languages including regular-
ities and repetition in utterances which makes it easy for statistical models
to be able to predict and complete sentences. This hypothesis applied in
software also showed that statistical language models can be used in code
suggestion and completion. The authors presented an Eclipse plugin for
code suggestion.

Likewise, Ray et al. [56] argued that real software tends to be similar to
natural language: repetitive and predictable and prior researchers have de-
veloped code suggestion engines based on this notion. Hence code that tends
to be unnatural is possibly faulty or buggy. The authors carried out a study
on software projects to assess the naturalness of buggy code vs correspond-
ing bug-fix code. The authors identified that buggy code tends to be more
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unnatural (lacking entropy or predictability) and becomes less unnatural as
fixes are introduced. In addition, source code entropy scores could be useful
when predicting defective software components.

Linstead et al. [57] presented an approach to mine concepts from source
code using LDA (Latent Dirichlet Allocation). The authors proposed that
the probabilistic relationships between extracted topics and documents also
provides a means to measure code similarity.

Similarly, Kuhn et al. [40] proposed the use of information retrieval to
exploit linguistic information in source code, such as identifier names and
comments. The proposed technique called Semantic Clustering is based on
Latent Semantic Indexing and clustering to group source artefacts that use
similar vocabulary. According to the authors, the proposed approach is lan-
guage independent as it works at the level of identifier names.

5.1 Semantic Dependencies
Semantic coupling captures the degree to which the identifiers and com-

ments from different classes are similar to each other [58]. Thus, it is limited
to the underlying meanings of unstructured text in the source code of software
entities and how these meanings relate to each other [59]. This relationship
can also be quantified, as described in [60].

The benefits of the application of semantic technologies to software main-
tenance have been emphasized in prior research [61]. These benefits include
software comprehension and traceability recovery (connecting parts of soft-
ware documentation and source code using information retrieval (IR) tech-
niques). According to Poshyvanyk and Marcus [58], semantic coupling met-
rics can be used to “augment existing existing coupling metrics in tasks such
as change impact analysis as existing measures do not capture all the ripple
effects of changes in software. They also have direct application in reverse en-
gineering tasks like re-modularization”. Unlike structural coupling, semantic
coupling between class identifiers for example, can be computed independent
of programming languages [60].

According to Sharma and Suryanarayana [62]:

• “When A and B are constructors of classes X and Y respectively (where
Y is a sub-class of X) such that a change in A may impact the object
creation of class Y through B, then B is lexically dependent on A".

• “When A and B are overloaded methods in a class, a change in method
signature of one of the methods may change the method invocation
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order involving A and B, then A and B are lexically dependent on each
other" [62].

6 Threats to validity

In this section we identify the threats to validity of the results presented
in Section 3. Firstly, we cannot generalise our findings on a different sample
of OSS projects. Nonetheless, to make our findings more generalisable and
representative of OSS projects, we have analyzed the 100 top-ranked projects
which are from different domains (e.g., networking, databases, API, etc.)
and of different sizes in terms of number of classes, number of lines of code
and historical data (number of past revisions). We also analysed a further
sample of 100 Java projects, randomly extracted from a population of over
14,000 systems. In this way, we reduced the bias resulting from the original,
stratified sampling.

The scope of the studied sample of projects is also limited to OO projects
written in Java. This is because of the popularity of the programming lan-
guage [63], its cross-platform compatibility [64] and the availability of tools
to parse and analyse projects written in Java. We encourage investigating
projects written in other programming languages, non-object-oriented soft-
ware projects and commercial software.

Second, we established that the size of class corpora has a small variabil-
ity, claiming a semi-constant pattern for this metric. We used the median
value for this result, and the size of the first and third quartiles of the boxplot
distribution. Using the average and the standard deviation of the corpora
size distribution yields different results: we used the median value given the
skewness of such distribution.

Third, we estalished a relationship between corpora size and number of
developers: although we could not infer any direction of such a relationship,
the interpretation of such findings, and further experimentation, still needs
work to produce a better understanding of the dynamics of that relationship.

7 Conclusion and Future Work

In this paper we focused on the interplay between the lexicon of a Java
class (i.e., its dictionary made of keywords) and how that is affected by the
collaboration between developers.
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We discovered that, overall, Java classes have a similar amount of unique
terms. Larger systems, or the presence of test classes, do not appear to
modify this underlying trend. This result can serve to direct software devel-
opment into good practices, and guide and focus refactoring (in particular,
splitting classes) once the number of key terms becomes excessive. Our case
study confirmed how very large corpora indeed contain terms from different
domains and features, that could be split for reducing maintenance, enhanc-
ing conceptual cohesion and to increase comprehension.

Secondly we found that, for several projects in the sample, there is a
strong correlation between the size of the class corpora, and how many de-
velopers worked on them. Further insights were gained from considering
specific application domains as the driver of higher correlations.

Thirdly, we showed that larger corpora are linked to more maintenance
needs: more terms in a class are associated to more changes to that class.
We also showed that there is an exponential growth in number of changes,
when dividing Java classes in developer clusters, and that the experience of
developers is also linked to the further maintenance of Java classes.

We are considering a further extension of this work: we want to engage in
action research with the analysed projects: taking an example of the issues
that we uncovered in this paper, we plan to report it to the development team,
with a proposed fix. The objective is to understand whether the amendment
that we suggest can be useful for the team at large. We also encourage
researchers to replicate the study on a different sample of software projects
developed in languages other than Java.
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