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17 Abstract

18 Solution processing of amorphous metal oxides using excimer laser annealing (ELA) has been 

19 lately used as a viable option to implement large-area electronics, offering high quality 

20 materials at a reduced associated cost and process time. However, the research has been focused 

21 on semiconductor and transparent conductive oxide layers rather than on the insulator layer. In 

22 this work we present amorphous aluminum oxide (AlOx) thin films produced at low temperature 

23 (≤150 °C) via combustion synthesis triggered by ELA, for oxide thin film transistors (TFTs) 

24 suitable for manufacturing flexible electronics. The study showed that combining ELA and 

25 combustion synthesis leads to an improvement in the dielectric thin film’s densification in a 

26 shorter time (≤ 15 min). Optimized dielectric layers were obtained combining a short drying 

27 cycle at 150 °C followed by ELA treatment. High breakdown voltage (4MV·cm-1) and optimal 

28 dielectric constant (9) was attained. In general, TFT devices comprising the AlOx fabricated 

29 with a drying cycle of 15 min followed by ELA presented great TFT properties, a high 

30 saturation mobility (20.4±0.9 cm2·V-1·s-1), a small subthreshold slope (0.10±0.01 V·dec-1) and 

31 a turn-on voltage ~0 V. ELA is shown to provide excellent quality solution-based high-к AlOx 

32 dielectric, that surpass other methods, like hot plate annealing and deep ultraviolet (DUV) 

33 curing. The results achieved are promising and expected to be of high value to the printed 

34 electronic industry due to the ultra-fast film densification and the surface/area selective nature 

35 of ELA.

36 Keywords: Low temperature processing, excimer laser annealing, solution combustion 
37 synthesis, oxide thin film transistors, solution based high-к dielectric, printed electronics
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1 1. INTRODUCTION

2 Over the last decade, solution-based metal oxide (MO) materials have become excellent 

3 candidates for thin film transistors (TFTs), offering conductors, semiconductors and high-к 

4 dielectrics applicable to flexible and large area electronics.1–6 Several processing techniques 

5 have been used to fabricate the constituent layers for the TFTs, like inkjet-printing, spray-

6 coating, flexographic printing, screen printing, dip-coating and the most widely utilised spin-

7 coating.2,7–9 These techniques allow to reduce the associated fabrication costs (compared to 

8 vacuum technology) and at the same time can provide a high carrier mobility, excellent 

9 uniformity and operational stability. The high processing temperatures required to process most 

10 semiconductors and dielectric layers has been surpassed with the use of solution combustion 

11 synthesis (SCS) and deep-ultraviolet (DUV) photochemical activation. SCS provides additional 

12 thermal energy, via an exothermic reaction, resulting in a reduction of the external heating 

13 required (both in duration and temperature) for the film formation; i.e. the removal of organic 

14 solvents and film densification.10,11 The DUV concurrent treatment additionally allows for the 

15 cleavage of alkoxy groups, active metals, and oxygen atoms to promote the metal-oxide-metal 

16 (M−O−M) network formation.12–15 Overall, the combinatorial utilisation of SCS and DUV 

17 improves condensation and densification of the resultant metal oxide thin filmed, at processing 

18 temperatures ≤150 °C.2,12,16–18 However, these methods require long processing times (≥ 30 

19 min) that are not suitable for large-scale roll-to-roll (R2R) processes.12,16,19 In a R2R processing 

20 line, annealing times are restricted by the length of the in-line curing ovens. For example, for a 

21 moderate web speed of 1 m/min and a typical oven length of 5 m, the curing time for each 

22 processed layer is limited to 5 min.12,20,21 

23 Consequently, the industry demands alternative methods that can deliver a rapid annealing 

24 process.22,23 Lately, excimer laser annealing (ELA) has been introduced as a favourable 

25 alternative in the fabrication of solution-based MO thin films. This method offers ultrafast 
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1 processing (in the nanosecond regime), with precise and selective energy delivery , both in 

2 depth via critical photon energy absorption as well as  spatially (over a well-defined location), 

3 24,25 resulting in a significant improvement of the electronic properties of MO thin films, that 

4 can outperform conventional annealing.25,26 Nevertheless most effort has concentrated in  semi-

5 conductive and conductive thin films 23–32, with a notable lack of work on dielectric materials, 

6 despite its importance in the robust operation of TFTs.18 Laser annealing of sol-gel processed 

7 HfO2 has been reported by Teodorescu et al.33 demonstrating the applicability of XeCl (308 

8 nm) in the densification of amorphous hafnium oxide structure while achieving a high dielectric 

9 constant. However, a double coated layer was required (to eliminate nanoporosity, as well as a 

10 very high number of pulses (10000) and a 30 min annealing at 150 °C prior to ELA. Anodization 

11 is another promising solution process for the production of high quality dielectric thin films for 

12 application in TFTs.34–38

13 The promise of future state-of-the-art electronics (like wearable electronics) can only be 

14 enabled by low cost, easy to process, high quality dielectrics, that will allow low power 

15 consumption, as well as good mechanical and operational stability.19,20,25 High-к dielectric 

16 materials such as ZrO2, HfO2, Ta2O5, SrOx, ZrGdOx or Al2O3 increase the areal capacitance of 

17 the gate dielectric allowing low operation voltage of TFTs.2,39,40 Among these dielectrics, 

18 amorphous Al2O3 is one of the most promising due to its characteristic properties such as its 

19 high dielectric constant (∼9) combined with a large band gap (8.9 eV), low interfacial trap 

20 density with semiconductors, high breakdown electric field.18 At the same time, Al2O3 can be 

21 obtained from aluminium which is one of the most abundant materials on earth and hence it 

22 meets current demands for use of non-critical materials in the life-cycle assessment.7 

23 In this work we demonstrate the production of amorphous aluminium oxide (AlOx) thin films 

24 from solution and via a combination of SCS and ELA, and we report the performance of TFTs 

25 comprising these thin films. We applied a short drying cycle (15 min or 1 min) at low 
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1 temperature (≤150 °C) after spin coating of the solution. Subsequently the samples were 

2 irradiated with a few pulses (1 to 3) from a KrF (248 nm) excimer laser, varying the laser fluence. 

3 The dielectric quality of the AlOx layers was evaluated via metal insulator semiconductor (MIS) 

4 devices, prior to implementing them in low operation voltage TFTs.

5 2. EXPERIMENTAL SECTION

6 2.1. Precursor solution preparation

7 Aluminum nitrate nonahydrate (Al(NO3)3·9H2O, Fluka, 98%) was dissolved in 2-

8 methoxyethanol (2-ME, C3H8O2, ACROS Organics, 99%), to yield a solution with an Al3+ ion 

9 concentration of 0.1 M. Urea (CO(NH2)2, Sigma, 98%) was then added to the prepared solution 

10 was maintained under constant stirring (430 rpm) for at least 1 h after dissolving the precursors. 

11 The urea to aluminum nitrate molar proportion was 2.5:1, to guarantee the redox stoichiometry 

12 of the reaction.41 The precursor solution was filtered through a 0.20 μm hydrophilic filter before 

13 use.

14 2.2.  Dielectric deposition, processing and characterization

15 Prior to deposition all substrates (p-type silicon wafers, of 1-10  Ω·cm, with size of 2.5cm×2.5 

16 cm) were cleaned in an ultrasonic bath at 60 °C in acetone for 10 min, then in 2-isopropanol for 

17 10 min and dried under nitrogen (N2); followed by a 10 min UV/Ozone surface activation step 

18 in a PSD-UV Novascan system. Thin films were deposited by spin coating a single layer of the 

19 AlOx precursor solution for 35 s at 2000 rpm (Laurell Technologies) followed immediately by 

20 a short drying cycle (hot plate annealing) at 150 °C with two different durations, 15 min or 1 

21 min. Then, the photonic processing was performed, on different areas of the sample and with 

22 various laser conditions (fluence and number of pulses). The photonic processing station 

23 comprises a KrF excimer laser (Lambda Physik 305i, λ = 248 nm, 25 ns pulse duration) and a 

24 beam delivery system that provides the sample with a top hat profile laser spot (3x3 mm2 in 

25 size) with fluence (energy density, mJ/cm2) uniformity better than 2 % across the area of the 
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1 laser spot. The photonic processing station is described in detail elsewhere.42,43 Finally, 

2 reference layers thermally annealed on a hotplate for 1h at 300 °C (without any photonic 

3 processing) were also fabricated, for comparison.

4 The films´ structure was assessed by glancing angle X-ray diffraction (GAXRD) performed on 

5 an X’Pert PRO PANalytical powder diffractometer using the Cu Kα line radiation (λ = 

6 1.540598 Å) with an angle of incidence fixed at 0.9°. The surface morphology was investigated 

7 by atomic force microscopy (AFM, Asylum MFP3D). Spectroscopic ellipsometry 

8 measurements of the thin films deposited on silicon substrates were made over an energy range 

9 of 1.5−6.0 eV, at an incident angle of 70°, with a Jobin Yvon Uvisel system, in order to access 

10 the films´ thickness.

11 X-Ray Reflectivity (XRR) measurements were performed in a Rigaku Ultima IV diffractometer 

12 equipped with a multilayer X-ray mirror, using the Cu Ka line. The X-ray generator was 

13 operated at 40 kV and 40 mA and the reflected intensity was recorded by a scintillator detector 

14 in the range of 0.1 to 5 degrees 2 theta.

15 Fourier Transform Infra-Red (FTIR) spectroscopy characterization of the thin films was 

16 performed using an Attenuated Total Reflectance (ATR) sampling accessory (Smart iTR) 

17 equipped with a single bounce diamond crystal on a Thermo Nicolet 6700 Spectrometer. The 

18 spectra were acquired at a 45° incident angle in the range of 4500−540 cm−1 and with a 4 cm−1 

19 resolution.

20 2.3.  Electronic device fabrication and characterization 

21 Two type of devices were fabricated for the evaluation of the quality of the AlOx thin films 

22 produced: Metal-Insulator-Semiconductor (MIS) capacitors and Thin-Film-Transistor (TFTs). 

23 MIS capacitors were produced by depositing an AlOx single layer onto p-type silicon substrates 

24 as described above. Aluminum electrodes with an area of 7.85 × 10−3 cm2 (dots of 1 mm in 

25 diameter 100 nm thickness), were deposited by thermal evaporation via a shadow mask on top 
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1 of the insulators, with similar but unpatterned aluminium electrodes being also deposited on the 

2 back of the silicon wafer (after removal of the native SiO2 by scratching with a diamond tip 

3 pen). Electrical characterization was performed measuring both the capacitance−voltage and 

4 capacitance-frequency characteristics in the range of 1 kHz to 1 MHz, using a semiconductor 

5 parameter analyser (Keysight B1500A).

6 TFTs were produced in a staggered bottom-gate architecture, by depositing the single layer 

7 AlOx onto p-type silicon substrates to act as gate dielectric.

8 The indium-gallium-zinc oxide (IGZO) semiconductor film (30 nm thick) was sputtered onto 

9 the dielectric thin film via a shadow mask. The deposition was performed using a commercial 

10 IGZO ceramic target (2:1:2 In:Ga:Zn atomic ratio) by RF magnetron sputtering in an Ar+O2 

11 (14 sccm and 2 sccm respectively) atmosphere and without intentional substrate heating in an 

12 AJA 1300-F system.44 

13 Finally, source and drain aluminum electrodes (80 nm thick) were deposited by thermal 

14 evaporation via a shadow mask, forming TFTs with a channel length (L) of 90 µm and width 

15 (W) of 1000 µm, as shown in the inset of Figure 6 (a). Thereafter the IGZO TFTs were annealed 

16 at 150 °C, for 1 h in air. A back contact of 80 nm thick aluminum film was also deposited on 

17 the back of the silicon wafer to improve the ohmic contact. 

18 The current−voltage characteristics of the devices were obtained in double sweep mode in 

19 ambient conditions using a semiconductor parameter analyser (Agilent 4155C) attached to a 

20 microprobe station (Cascade M150) inside a dark box. 

21 The saturation mobility (µSAT) was determined in the saturation region of the IDS
1/2 vs VGS plot 

22 (with a linear fitting) from the following equation: 

23 𝐼𝐷𝑆 = (𝐶𝑜𝑥𝑊𝜇𝑆𝐴𝑇

2𝐿 )(𝑉𝐺𝑆 ― 𝑉𝑇)2
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1 where IDS is the drain current, Cox is the gate dielectric capacitance per unit area, L and W are 

2 the channel length and width respectively, VGS is the gate voltage and VT is the threshold 

3 voltage.

4 To assess device shelf life stability tests were performed after 1 year of storage in atmospheric 

5 conditions. Positive gate bias stress tests were performed on the TFTs using a semiconductor 

6 parameter analyzer (Keysight 4200SCS) and probe station (Janis ST-500) under atmospheric 

7 conditions by applying a constant gate voltage (corresponding to 0.5 MV/cm electric field) for 

8 one hour. The transfer characteristics were measured at fixed time intervals during the bias-

9 stress process. 
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1 3. RESULTS AND DISCUSSION

2 The combinatorial methodology (SCS and ELA) implemented in this work, to achieve ultra-

3 rapid high-quality solution-based M-O-M thin film formation, is depicted in Figure 1. At the 

4 outset, the metal precursor (Al(NO3)3·9H2O) is dissolved in 2-methoxyethanol (2-ME) and 

5 stirred for more than 12 h at room temperature (20–28 °C), where a ligand exchange reaction 

6 occurs from nitrate to hydroxide (Figure 1 (a)). Then the as-spun films are subjected to a short 

7 drying cycle (15 min or 1 min) at 150 °C (Figure 1 (b)). The choice of 150 °C, besides allowing 

8 the use of flexible substrates, was also made in order to sit roughly in the middle of the range 

9 defined by the boiling point of the solvent utilised (126 °C for 2-ME and hence some solvent 

10 removal is achieved), but below the threshold for combustion (180 °C and hence no combustion 

11 is initiated).19 

12

13 Figure 1. Illustration of the SCS and ELA combinatorial approach showing the (a) hydrolysis 
14 and (b) condensation mechanism of metal-oxide precursors; (c) Schematic representation of the 
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1 photonic processing for AlOx thin films with different fluences and number of pulses, after 15 
2 min or 1 min of hotplate drying at 150 °C immediately after spin coating.

3
4 Previous work10 has revealed that the precursor solution displays an absorption peak well in the 

5 vicinity of a KrF excimer laser emission (248 nm). Naturally, this wavelength enables the 

6 photochemical cleavage of alkoxy groups, activating oxygen and metal ions, for the facilitation 

7 of the M-O-M network formation.12 This solid-state chemical reaction is extremely fast and 

8 rapidly activates the reaction between the oxidizer (aluminium nitrate) and the fuel (urea). 

9 Additionally, the ultra-fast character of ELA enables the utilization of flexible substrates,45 

10 along with reducing the processing time drastically (as compared to DUV lamp irradiation 

11 typically requiring 30 min).10 In Figure 1 (c), the circular schematics depict (in a clockwise 

12 manner) the increasing fluence and number of pulses applied on samples of each drying cycle. 

13 The coloured coded regions indicate AlOx thin films obtained at different conditions. The colour 

14 intermixing suggests conditions where the photonic processing was either not enough to cause 

15 densification or was excessive and caused damage (red regions), and where it was suitable for 

16 the formation of AlOx thin films (green regions). 

17 3.1. Thin films structural characterization 

18 The degree of densification can be revealed by the critical angle of an X-ray Reflectivity (XRR) 

19 measurement. Figure 2 (a) shows the XRR curves around the critical angle for 5 characteristic 

20 cases: the reference thin film (hotplate treated for 1h at 300 °C), the as spun film after drying at 

21 150 °C for 15 min and for 1 min, as well as the same two dried films photonically processed 

22 with one laser pulse at 175 mJ/cm2 and 250 mJ/cm2 respectively. By qualitatively comparing 

23 the critical angles of the dried films, one can notice that both samples have the same critical 

24 angle and thus density, independently of the drying time. The additional photonic processing 

25 has resulted in a considerable densification compared to the dried thin films and notably present 

26 a similar density to the reference sample (1h at 300 °C). Therefore, it immediately educes that 
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1 the photonic processing approach can provide AlOx thin films of similar density to those 

2 produced by a long duration higher temperature thermal (hotplate) annealing, but at a 

3 considerable fraction of the time and in a macroscopically cold process. The XRR curves were 

4 fitted with a three layer model (AlOx film/SiO2/Si) using Parrat’s formalism.46 The density 

5 extracted for the dried samples was 1.6 ± 0.1 g/cm3, irrespective of the drying time. On the 

6 other hand, the density of the reference film was found to be 2.6 ± 0.1 g/cm3
, which is in 

7 agreement to values reported in the literature (~2.53 g/cm3).47 The photonically processed 

8 samples were found to have densities of 2.4 ± 0.1 g/cm3 (for the 15 min + 175 mJ/cm2) and 1.7 

9 ± 0.1 g/cm3 (for the 1 min + 250 mJ/cm2) respectively.

10
11 Figure 2. (a) XRR measurements of 5 selected samples showing the critical angle, (b) XRD 
12 diffractograms and AFM images (1×1 µm2) of two samples dried at 15 min and 1 min, 
13 combined with photonic processing at the highest fluence values in each case (200 mJ/cm2 and 
14 300 mJ/cm2 respectively) and maximum pulses (three pulses), (c) and (d) FTIR spectra of AlOx 
15 thin films before and after single laser pulse photonic processing of the 15 min and 1 min dried 
16 (at 150 °C) sample respectively.
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1 The microstructure of the solution-based AlOx thin films was investigated by grazing angle X-

2 ray diffraction (GAXRD). The absence of any diffraction peaks in Figure 2 (b) reveals that the 

3 thin films are amorphous, for both drying cycles combined with the photonic processing, even 

4 at the highest fluences and number of pulses. The insets in Figure 2 (b) are show the films’ 

5 surface morphology obtained by atomic force microscopy (AFM) measurements for the highest 

6 fluences. A surface roughness (≤ 2.8 nm) was observed for both drying cycles combined with 

7 photonic processing at the highest fluence and number of pulses. However, the surface 

8 morphology was not highly uniform, with some peak to valley values at 27.2 nm and 4.9 nm, 

9 for 15 min and 1 min drying cycle, respectively. For lower fluences the surface roughness was 

10 below 2 nm which guarantee a more uniform interface between the dielectric and the 

11 semiconductor. 

12 In order to evaluate the extent of solvent removal, the AlOx
 thin films were characterized by 

13 attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), as shown in 

14 Figure 2 (c) and (d), for the two drying cycles respectively. All samples show an absorbance 

15 peak attributed to Si-O vibration (1107 cm-1), due to the presence of native oxide on the Si 

16 wafer. Absorption bands related to O–H stretching vibrations (3700 – 3000 cm-1; 1630 cm-1; 

17 1575 cm-1) associated to water absorption and C–H (3090 – 2800 cm-1; 1500 – 1300 cm-1) due 

18 to the organic solvent, can be observed on the as-spun samples (prior to drying) and after both 

19 drying cycles at 150 °C (for both 15 or 1 min, prior to ELA). Evidently, the residuals are more 

20 prominent after the shorter drying cycle. A subsequent ELA treatment even with a single pulse 

21 seems to eliminate the residual solvent, as demonstrated by the diminishing relevant bands in 

22 the FTIR spectra, with increasing the laser fluence.  For a full set of FTIR spectra for all the 

23 samples see Figure S1 and S2 in Supplementary Information. Finally, the absorption peaks 

24 observed at, 889, 739–748 and 611–601 cm-1, are attributed to the presence of Al–O chemical 

25 bonds.48
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1
2 3.2. Dielectric thin film electrical characterization 

3 The electrical performance of the dielectric was evaluated by measuring the capacitance-

4 voltage (C-V), capacitance-frequency (C-f) and breakdown field (E) of metal-insulator-

5 semiconductor (MIS) structures. A summary of these results is shown in Figure 3, while the 

6 full measurements analytically can be found in Figures S3, S4, S5 and S6, as well as Tables S1 

7 and S2 in the Supplementary Information. Each MIS device was replicated three times for 

8 reproducibility purposes.

9
10 Figure 3. Statistical analysis of AlOx thin films’ performance: dielectric constant, breakdown 
11 voltage (E), thickness and capacitance measured at 1 kHz, for all fluences and number of pulses 
12 applied on films with initial drying of (a) 15 min and (b) 1 min. For comparison the equivalent 
13 characteristic of the reference device (thermally annealed at 300 °C for 1h) is also shown.

14 The films dried for 15 min (Figure 3a), show a considerable improvement of the dielectric 

15 constant as the fluence and the number of pulses is increased. For fluences above 150 mJ/cm2, 

16 a dielectric constant of ~9 (calculated at 1 kHz) is achieved, which is typical for Al2O3 achieved 

17 via PVD techniques.49 Interestingly, the dielectric constant of the reference MIS device 

18 (annealed at 300 °C for 1 h) was surpassed even with the lower fluence of 125 mJ/cm2 using 3 

19 pulses. These results corroborate the XRR findings, suggesting that ELA enhances 

20 condensation and densification of the AlOx thin film, providing an improved dielectric constant 
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1 in an ultra-rapid fashion and at lower processing temperatures. Conversely when the drying 

2 cycle is shorter (1min, Figure 3b), higher fluences were required in order to achieve reasonable 

3 values for the dielectric constant. The unrealistic values (>10) for the dielectric constant 

4 achieved at lower fluences are explained by the presence of ionic movement (see Figure S4 in 

5 Supplementary Information). 

6 Another important factor is the durability and stability of the AlOx dielectric thin films, as 

7 expressed by the breakdown voltage. ELA provided films with breakdown voltages up to 4.0 

8 MV/cm, closely matching the breakdown voltage demonstrated by the reference sample (3.8 

9 MV/cm). The breakdown voltage values were found to show a local maximum within the range 

10 of fluences investigated, therefore the optimum annealing conditions have been identified.

11 These are two pulses of 175 mJ/cm2 and three pulses of 250 mJ/cm2 for the 15 min and 1 min 

12 drying cycles respectively, presenting breakdown voltages of 4.0 ± 0.5 MV/cm and 3.9 ± 0.7 

13 MV/cm, whilst the reference device presented a breakdown voltage of 3.82 ± 0.03 MV/cm. The 

14 thickness required in order to calculate the breakdown voltage and the dielectric constant, was 

15 determined by UV-VIS ellipsometry, for each device. Besides Figure 3, the full results for all 

16 devices fabricated can be seen in the Supplementary Information in Tables S1 and S2 as well 

17 as Figures S5 and S6.

18 The devices’ aerial capacitance values at 1 kHz are shown in the bottom panel of Figure 3 (a) 

19 and (b) for the two drying cycles. The majority of the ELA devices present a higher aerial 

20 capacitance than the reference device (0.42 ± 0.02 μF/cm2). Full C-V characteristic curves at 

21 100 kHz and a summary of aerial capacitance vs frequency is presented in the Supplementary 

22 Information in Figures S3 and S4, respectively. The drying cycles result in a considerable 

23 difference in the dispersive character of capacitance, with the shorter drying cycle being more 

24 adversely impacted (i.e. more dispersive) potentially due to the probable incomplete conversion 

25 and removal of the precursor. 
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1 In conclusion, the combination of short drying cycles (15 or 1 min) at relatively low 

2 temperatures (150 °C) and ELA delivers in an ultra-fast manner AlOx thin films with similar or 

3 enhanced dielectric properties compared to those achieved via high temperature (300 °C) 

4 prolonged (1h) thermal annealing. 

5 3.3. Low operation voltage IGZO/AlOx TFTs 

6 Informed by the results presented above (namely the dielectric constant and breakdown voltage) 

7 a suitable selection of AlOx thin films were tested in TFT devices, with IGZO as the 

8 semiconductor.    A summary of the electrical characteristics of these devices is shown in Figure 

9 4 (a) and (b). The full set of the respective transfer curves for each device is shown in Figures 

10 S7 and S8 of the Supplementary Information. Device performance was assessed through the 

11 measurement of the hysteresis (VHyst), turn-on voltage (VON , the on-set voltage at which the 

12 drain current starts to increase), drain current on−off ratio (ION/IOFF), subthreshold slope (SS), 

13 and saturation mobility (μSAT) which was calculated using the dielectric capacitance measured 

14 in AlOx MIS devices at a frequency of 1 kHz (see Table S3 and S4 in Supplementary 

15 Information).

16
17 Figure 4. TFT parameters: hysteresis (VHyst), turn-on voltage (VON), current on-off ratio 
18 (ION/OFF), subthreshold slope (SS) and saturation mobility (µSAT), for the two drying cycles: (a) 
19 15 min and (b) 1 min followed by ELA treatment.
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1 All the devices exhibited low hysteresis (less than 0.15 V). A moderate hysteresis reduction 

2 with the increase of number of pulses and fluence was observed. Equally all of the device 

3 presented a current on-off ration of the order of 104. In the case of the 15 min drying cycle 

4 followed by ELA, the turn-on voltage presents an optimum value (closer to 0 V) at a fluence of 

5 175 mJ/cm2, whereas higher fluences and number of pulses result in a negative turn-on voltage. 

6 Below this optimum fluence some ionic species could remain in the dielectric, whereas above 

7 surface damage may occur compromising the quality of the semiconductor-dielectric interface. 

8 This is further supported by the deterioration of both the subthreshold slope and the saturation 

9 mobility. Surface damage and high density of generated defects is likely at higher fluences, 

10 since the solution combustion synthesis (SCS) is an exothermic reaction that occurs in the thin 

11 film in an ultra-rapid fashion (due to the ELA pulse lasting only a few nanoseconds). In the 

12 case of the 1 min drying cycle followed by ELA, a similar trend was found with an optimum 

13 fluence value of 250 mJ/cm2. The results above are summarised in Figure 5 (a) were the best 

14 performing ELA devices, for each drying cycle, are presented alongside the reference device 

15 (300 °C for 1h). 

16 . 
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1
2 Figure 5. (a) Transfer characteristics of IGZO TFT devices fabricated with solution-based 
3 aluminium oxide (AlOx) insulator thin films for different drying times (15 min and 1 min) 
4 followed by ELA treatment. The reference device (300 °C for 1h) is also shown for comparison. 
5 (b) Summary of TFT device characteristics using deep ultraviolet (DUV) for 30 min (previous 
6 report10) and this work using the 15 min drying followed by ELA. (c) Comparison of quality 
7 characteristics between ELA and DUV treatment for the production of solution-based oxides 
8 for the printed electronics industry.
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1 Both drying cycles provide TFTs with comparable or better properties than the reference device, 

2 however, the 1 min drying followed by ELA present a higher gate leakage current. Furthermore, 

3 we present a comparison of the best performing ELA device (15 min drying cycle and 2x175 

4 mJ/cm2) to devices with AlOx fabricated with DUV curing at low temperature10 (the IGZO layer 

5 is identical in both cases). Figure 5 (b) shows a statistical analysis revealing that ELA provides 

6 solution processed AlOx dielectric thin films for TFTs with similar electrical characteristics to 

7 the DUV devices, but with an improved saturation mobility (see also Table S5 in 

8 Supplementary Information). In general, we can conclude that the combination of ELA 

9 treatment with a short drying cycle, immediately after spin coating, can result in AlOx thin films 

10 with quality comparable, if not better, than the standard approach of high temperature thermal 

11 annealing (hot plate). The implications of this approach are considerable for the industry of 

12 flexible and plastic electronics, as it lends itself to R2R production, for a variety of reasons 

13 including: - it enables the use of plastic substrates (maximum processing temperature 150 °C) 

14 as it is a macroscopically cold process; - it is rapid enough to allow inline processing while 

15 maintaining a reasonable web speed; - it is area selective via laser writing, removing the need 

16 for extra fabrication steps for patterning; - it offers oxide thin films of high quality from solution 

17 based materials. As such, this approach could provide a significant boost to the printed 

18 electronics industry. In comparison to DUV curing (see Figure 5(c)) ELA presents similarly 

19 high performance in densification and in large area processability but offers increased overall 

20 efficiency through its excellent area selectivity and its massively faster processing time as can 

21 be seen in the Supplementary Information in Table S6. The temperature rise in the metal oxide 

22 material is far more extreme with ELA, but at the same time considerably faster, resulting in a 

23 completely macroscopically cold process, unlike DUV processing. To investigate the effect of 

24 the ambient atmosphere on the IGZO/AlOx TFTs were performed some ageing and stress 

25 measurements as depicted in Figure 6.
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1

2 Figure 6. Stability tests for the best condition achieved with ELA treatment: (a) Ageing effects 
3 of IGZO/AlOx TFTs after 1 year exposed in air environment without passivation and after a 
4 post annealing at 120 °C; inset shows the top view TFT schematic (each electrode had an area 
5 of 11.9 × 10−3 cm2). (b) Positive gate-bias stress (PBS) measurements of 0.5 MV/cm on 
6 IGZO/AlOx TFTs for 1 h in air environment.

7 Figure 6 (a) shows transfer characteristics of the same device taken a few days after full 

8 fabrication and after 1 year of storage in atmospheric conditions, to determine device ageing. 

9 In general, the device performance was preserved, however the turn-on voltage displayed a 

10 slight negative shift a year later, most probably associated to the increase of carrier density.50 

11 Also, a small increase of off-current was observed, most probably due to the humidity present 

Page 18 of 26Journal of Materials Chemistry C

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
C

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 3
0 

M
ar

ch
 2

02
0.

 D
ow

nl
oa

de
d 

by
 N

ot
tin

gh
am

 T
re

nt
 U

ni
ve

rs
ity

 o
n 

4/
7/

20
20

 1
:4

0:
05

 P
M

. 

View Article Online
DOI: 10.1039/D0TC01204A

https://doi.org/10.1039/d0tc01204a


  

19

1 in atmospheric environment (which can be surpassed by device passivation).51,52 To determine 

2 the device behaviour after one year but without the influence of surface adsorption of water 

3 molecules, a post annealing at 120 °C (30 min) was performed. As expected, the device´s on 

4 voltage recovered fully and furthermore the off current was improved by an order of magnitude 

5 compared to the initial fabrication. Following this, the device was subjected to a positive gate-

6 bias stress (PBS) of 0.5 MV/cm for 3600 s as depicted in Figure 6 (b). The IGZO/AlOx TFTs 

7 under PBS remained stable showing only a slight threshold voltage shift to a positive value of 

8 just 0.02 V, meaning that a reduced quantity of trap sites exists in the dielectric/semiconductor 

9 interface. As no deterioration was observed in the subthreshold slope under bias stress, the 

10 mechanism present is the charge trapping model.53 Optimization of production parameters is 

11 ongoing, nonetheless these tests already prove the potential of ELA treatment for solution-based 

12 oxide TFTs.
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1 4. CONCLUSIONS

2 In conclusion we have demonstrated the combustion solution synthesis alliance with ELA of 

3 AlOx dielectric thin films at low temperatures in a short drying cycle (15 min or 1 min) and 

4 their implementation in TFTs. The AlOx dielectric films revealed an amorphous nature, low 

5 roughness, high-κ (9), low leakage currents (10-6 A/cm2 at 1 MV/cm) and high breakdown 

6 voltages ~4 MV/cm. These results indicate that ELA treatment is a viable platform for the 

7 fabrication of metal-oxide dielectric thin films at low processing temperatures. Subsequently 

8 ELA treatment in combination with combustion synthesis, can be the answer to obtain high 

9 performance printed metal oxide TFTs in the R2R industry. 

Page 20 of 26Journal of Materials Chemistry C

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
C

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 3
0 

M
ar

ch
 2

02
0.

 D
ow

nl
oa

de
d 

by
 N

ot
tin

gh
am

 T
re

nt
 U

ni
ve

rs
ity

 o
n 

4/
7/

20
20

 1
:4

0:
05

 P
M

. 

View Article Online
DOI: 10.1039/D0TC01204A

https://doi.org/10.1039/d0tc01204a


  

21

1

2 ACKNOWLEDGEMENTS

3 This work is funded by FEDER funds through the COMPETE 2020 Programme and National 

4 Funds through FCT - Portuguese Foundation for Science and Technology under project number 

5 POCI-01-0145-FEDER-007688, Reference UID/CTM/50025. European Community H2020 

6 NMP-22-2015 project 1D-NEON Grant Agreement 685758. E. Carlos acknowledges FCT-

7 MCTES for a doctoral grant (Grant SFRH/BD/116047/2016) and IDS-FunMat-INNO project 

8 FPA2016/EIT/EIT RawMaterials Grant Agreement 15015. E. Fortunato acknowledges the 

9 ERC AdG grant 787410 from the project DIGISMART.

10

11 AUTHOR CONTRIBUTIONS

12 E.C., S.D., N.K., D.C.K. and R.B designed and planned the project. E.C., S.D. and N.K. 

13 fabricated and characterised the samples. L.K. performed the XRR measurements and analysis. 

14 E.C., D.C.K and R.B. analysed the data, prepared the figures and wrote the paper. All authors 

15 discussed the results and commented on the manuscript.

16

17 COMPETING INTERESTS

18 The Authors declare no Competing Financial or Non-Financial Interest.

19

20 SUPPLEMENTARY INFORMATION

21 The Supplementary Information contains the full data sets related to the production of AlOx 

22 dielectric thin films from solution, by excimer laser annealing (ELA) treatment inducing 

23 combustion synthesis, and their application in thin film transistors (TFTs). Table S1 and S2 

24 shows the statistical parameters of dielectric properties obtained from MIS devices. Figure S1 

25 and S2 depicts FTIR spectra for all ELA conditions and for both drying durations, 15 min and 

Page 21 of 26 Journal of Materials Chemistry C

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
C

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 3
0 

M
ar

ch
 2

02
0.

 D
ow

nl
oa

de
d 

by
 N

ot
tin

gh
am

 T
re

nt
 U

ni
ve

rs
ity

 o
n 

4/
7/

20
20

 1
:4

0:
05

 P
M

. 

View Article Online
DOI: 10.1039/D0TC01204A

https://doi.org/10.1039/d0tc01204a


  

22

1 1 min, respectively. Figure S3, S4 and S5-S6 show the capacitance–voltage, capacitance− 

2 frequency and breakdown voltage (E) characteristics of Al/p-type Si/(AlOx)/Al MIS capacitors 

3 for both drying durations. Tables S3 and S4 depicts the electrical characteristics summary 

4 obtained from IGZO TFTs comprising the sol-gel AlOx fabricated by all the different ELA 

5 treatments, while Figures S7 and S8 show the transfer curves of the same IGZO TFTs devices. 

6 Finally, Figure S9 depicts the typical output curves of two test TFT devices and the reference. 

7 Table S5 shows the statistical TFT parameters from a previous report using deep ultraviolet 

8 (DUV) curing for 30 min10, alongside those of the optimum devices produced in this work 

9 (using the 15 min drying cycle followed by ELA). Table S6 depicts relevant low temperature 

10 solution-based AlOx layers processed by different curing methods applied in TFTs reported 

11 previously in the literature.
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