
PHYSICAL REVIEW E 102, 043101 (2020)

Magnetically induced Rayleigh-Taylor instability under rotation: Comparison of
experimental and theoretical results
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Our theoretical work has shown that rotating a Rayleigh-Taylor-unstable two-layer stratification about a
vertical axis slows the development of the instability under gravity and can stabilize axisymmetric modes
indefinitely. Here we compare theoretical predictions directly with our experiments on a rotating two-layer
system which is made unstable by magnetic forces applied using a superconducting magnet.
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I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) occurs at the inter-
face between two layers of fluid of different density subjected
to gravity, when the denser layer lies over the lighter one. It
may also occur under acceleration of the system, when the
less dense of the two layers is accelerated in the direction
of the more dense one. A layer of salt water lying over a
layer of fresh water provides a simple example from a long
list of natural phenomena and industrial processes in which
this instability occurs [1,2]. Unless the interface is stabilized
by some means, for example, by interfacial tension, small
deviations of the interface from equilibrium grow rapidly
into larger structures, sometimes referred to as “bubbles” or
“spikes,” as the fluids interpenetrate. The ability to impose
some form of constraint or control over the RTI, beyond
setting the initial density difference or altering the interfacial
tension, would be beneficial in a number of situations where
it occurs. In particular, the difficulties arising from the RTI in
efforts to generate power from inertial confinement fusion [1]
have motivated previous researchers to seek to understand
the influence of rotation on the RTI (e.g., Refs. [3,4]). The
Coriolis force acting on fluids under rotation is known to
have a stabilizing effect on otherwise unstable fluid flows.
Theoretical studies of centrifuged fluids showed that rotation
about an axis perpendicular to the direction of acceleration
could inhibit RTI [3,4].

Here we discuss our experimental and theoretical studies
of RTI in which the rotation axis is parallel to the direction of
gravity. Previously, we studied experimentally the onset of the
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RTI in a two-layer system under rigid-body rotation around
a vertical axis [5]. We used magnetic forces to destabilize
the system in order to avoid technical difficulties in using
standard experimental techniques, such as barrier removal [6]
or linear acceleration [7], to initiate RTI in a rotating system.
A weakly paramagnetic, light liquid upper layer was floated
on a denser diamagnetic liquid layer. The liquids used were
miscible so that there was no interfacial tension between the
two liquid layers. A superconducting solenoid magnet situated
beneath the liquids exerted an attractive magnetic force on
the paramagnetic layer and a repulsive magnetic force on the
diamagnetic layer. A schematic diagram of the set-up is shown
in Fig. 1. The tank containing the liquids was lowered toward
the solenoid until the magnetic forces increased sufficiently in
magnitude for the system to become Rayleigh-Taylor unstable
as shown in the photographs in Fig. 2. These images show
the development of the instability, with “bubbles” of the
paramagnetic layer (dyed fluorescent green) intruding into
the diamagnetic layer below it (colorless). In the upper row
of images, the container is not rotating; in the lower row of
images, the cylindrical container is rotating at approximately
24 revolutions per minute, around its vertical axis. Compared
to the nonrotating system, the length scale of instability in the
rotating system is reduced.

In Ref. [8] we showed theoretically that rotation around
a vertical axis may retard the development of the RTI under
gravity (without magnetic forces) and found that axisymmet-
ric modes may be stabilized indefinitely.

Here we compare our experimental data and theoretical
results. In Sec. II we present the model. First, we consider
the effect of the magnetic forces on the dispersion relation
of interfacial oscillations in a nonrotating system, arriving at
the definition of an effective gravity. Second, we introduce the
effective gravity into the theoretical results given in Ref. [8]
and obtain a critical angular velocity for the stabilization of
axisymmetric modes in the experimental system. In Sec. III
we present the experimental set-up and summarize our ex-
perimental results. In Sec. IV, we present an analysis of
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FIG. 1. Experimental arrangement (not to scale). A gravitation-
ally stable two-layer stratification was spun-up above the magnet by
a motor. Once a holding pin was removed, the system descended
slowly (∼10 mm s−1) into the magnetic field. Slip rings allowed the
system to descend while maintaining a constant angular velocity.

the experimental results obtained in Ref. [5] in the context
of our theoretical predictions, making a direct comparison
between the calculated and experimentally observed angular
velocity required to stabilize the longest wavelength mode of
instability.

II. MODEL

A. Dispersion relation in a gradient magnetic field

In both experiment and in the theoretical model, we con-
sider a system comprising two miscible liquids (i.e., with no
interfacial tension), a layer “1” of density ρ1 lying over a
layer “2” of density ρ2, as shown schematically in Fig. 3. In
the absence of magnetic forces, the dispersion relation for an
interfacial perturbation of the form exp[i(κx + ωt )] (i.e., with
wave number κ) is [9]

ω2 = gAκ tanh (κh) (1)

for layers having equal thickness h. Here g is the standard
acceleration due to gravity (9.8 ms−2) and A is the Atwood
number, which we define as

A = ρ2 − ρ1

ρ2 + ρ1
. (2)

If A > 0, then the interface supports oscillations, with grav-
ity providing the restoring force. If A < 0, then interfacial
perturbations grow rather than oscillate, i.e., the system is
Rayleigh-Taylor unstable.

We now consider the effect on the dispersion relation of
the magnetic forces applied in our experiments. Layers 1 and

2 have volume magnetic susceptibility χ1 and χ2, respectively
(Fig. 3). We suppose that |χ | � 1, since |χ | is of order 10−5 in
both layers in our experiments. In this case, the magnetic force
f m on a volume dV of fluid subjected to a magnetic field B of
strength B = |B| is, to a good approximation [10,11],

f mdV = χ
∇B2

2μ0
dV. (3)

Note that the direction of the force is given by the gradient
of the strength of the magnetic field, not by the direction of
the vector field B. Such magnetic body forces give rise to
phenomena such as the “Moses effect” [12] and magnetically
enhanced buoyancy [13–15] (magneto-Archimedes effect)
in fluids and have also been exploited to levitate fluids in
weightlessness (see, for example, Refs. [10,13,16–19]). In our
experiments on the RTI, the magnetic field was generated by
a superconducting solenoid with a vertical axis. The solenoid
produces a cylindrically symmetric magnetic field of strength
B(r, z), where r and z are radial and vertical cylindrical
coordinates, respectively. The experiments were performed
in a region above the center of the solenoid coil where B
decreases with increasing height z (i.e., ∂B/∂z < 0) but varies
relatively weakly with radius (i.e., |∂B/∂z| � |∂B/∂r|). We
thus make the approximation that, in this region,

f m(r, z)dV ≈ χ

2μ0

∂B2

∂z

∣∣∣∣
r=0

ẑdV, (4)

i.e., neglecting the radial variation of B2. We further assume
that ∂B2

∂z can be taken to be a constant to a good approximation
in the interfacial region. In this case we approximate the Euler
equation in the interfacial region by

ρ j
Du j

Dt
≈ −∇p j + χ j

2μ0

∂B2

∂z
ẑ − ρ jgẑ (5)

for the two layers j = 1, 2, where the derivative ∂B2/∂z is
evaluated at the equilibrium position of the interface at the
origin. We assume that the liquids are incompressible so that
∇ · u j = 0. Imposing pressure continuity across the interface,
we obtain the dispersion relation for equal layer depths h =
h1 = h2 (see Appendix)

ω2 = gAκ tanh(κh)

[
1 − 1

2gμ0

(
χ2 − χ1

ρ2 − ρ1

)
∂B2

∂z

]
= �Aκ tanh(κh), (6)

defining the effective gravity acting at the interface, �, as

� = g

[
1 − 1

2gμ0

(
χ2 − χ1

ρ2 − ρ1

)
∂B2

∂z

]
. (7)

Again, the derivative is to be evaluated at the equilibrium
position of the interface at the origin. The sign of � indicates
the direction of the effective gravity; where � < 0, the effec-
tive gravitational force at the interface points in the opposite
direction to that of standard gravity, i.e., vertically upwards.

In (1) g is the magnitude of the gravitational acceleration
(i.e., unsigned) and stability is indicated by the sign of the
Atwood number. We now write (6) in a corresponding form by
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FIG. 2. Rayleigh-Taylor instability developing at the interface between a layer of 0.06 M manganese chloride solution (dyed fluorescent
green) lying above a more dense 0.4 M sodium chloride solution (colorless) in a 90-mm diameter cylindrical tank. The instability is caused
by the magnetic attraction of the weakly paramagnetic upper layer to a superconducting magnet situated beneath the tank (not visible in these
images) and by the magnetic repulsion of the colorless diamagnetic layer from the magnet. In the upper row of images, the cylindrical container
is not rotating; in the lower row, the container is rotating at 2.52 rad s−1 about its vertical axis. The images illustrate how rotation restricts the
size of the structures that form at the interface.

defining a modified Atwood number A′ such that |�|A′ = �A.
Using this definition of the Atwood number, Eq. (6) becomes

ω2 = |�|A′κ tanh (κh), (8)

which is the analog of (1) in the gradient magnetic field; i.e.,
the interface is stable for A′ > 0 and unstable for A′ < 0 [20].

B. Dispersion relation under rotation

In Ref. [8] we modelled a system consisting of two layers
of equal volume, depth h, contained in a cylindrical tank of
radius a and height 2h, rotating about its axis with angular ve-
locity �. In the initial state, the liquid layers were assumed to
be rotating as rigid bodies at the same angular velocity as the
tank. The two-layer system was subjected to standard gravity
but not magnetic forces. The stability of the model system

FIG. 3. Schematic of the flow domain.

was analyzed as a function of angular velocity and Atwood
number. We considered perturbations to the interface of the
form z = z0(r) + εζ (r, θ, t ) with normal mode solutions of
the form ζ = ζ̂ (r) exp{i(ωt + mθ )}.

1. Axisymmetric modes (m = 0)

We first focus on the axisymmetric modes, m = 0, which
we predicted in Ref. [8] could be stabilized by rotation. The
axisymmetric modes have a factor

ζ̂n(r) ∝ J0

(
k(n)r

a

)
, (9)

where J0 is a Bessel function of the first kind. The radial
impermeability boundary condition at r = a defines the pos-
sible modes of solution k(n): For m = 0, the k(n) are those
that satisfy J1(k(n)) = 0 for n = 1, 2, 3, . . .. Proceeding with
the analysis given in Ref. [8], but with the addition of the
magnetic body force (4) to the (rotating) Euler equation, leads
to the same conclusions given in Ref. [8], except that |�| is
substituted for g in the expressions, where � is as defined
in (7). The dispersion relation for the axisymmetric modes in
a nonrotating tank is (substituting |�| for g and A′ for A in
Ref. [8])

ω2 = |�|A′ k(n)

a
tanh[k(n)δ], (10)

where δ = h/a. The ratio k(n)/a may be regarded as the radial
wave number associated with the nth mode. We obtain the
dispersion relation of axisymmetric modes for small rotation
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rates, �2a/|�| � 1, by series expansion [8]:

ω2 ∼ |�|
a

A′k tanh(kδ) + 2�2

[
1 + 2kδcsch(2kδ)

− 1

24
k2A′2sech2(kδ)

]
+ |�|

a
O

([
�2a

|�|
]2

)
, (11)

where k = k(n). The form of (11) suggests that rotating the
system may suppress the growth of the RTI in an intrinsi-
cally unstable system (A′ < 0). Indeed, we found a general
expression (i.e., not asymptotic) [8] for the critical angular
velocity �c for axisymmetric modes, such that the mode k(n)
is stabilized for � > �c. In the gradient magnetic field, the
expression for the critical angular velocity is

�2
ca

|�| = 6δ

A′

(
1 − k2

48

)−1
[{

1 − k2A′2

12

(
1 − k2

48

)}1/2

− 1

]
,

(12)

where k = k(n).

2. Nonaxisymmetric modes (m �= 0)

We now consider the nonaxisymmetric modes. Similarly
to (9) the nonaxisymmetric modes have a factor

ζ̂n(r) ∝ Jm

(
k(n)r

a

)
. (13)

The radial impermeability condition forces the radial wave
number, k, to satisfy

kJm+1(k) = m

(
1 + 2�

ω

)
Jm(k). (14)

In the axisymmetric case, m = 0, (14) simplifies and k is real
and independent of ω. However, in the general nonaxisymmet-
ric case we see that k is a function of ω and may be complex.
We therefore consider simultaneous asymptotic expansions in
both the wave number k and the growth rate ω. Following the
method of Scase, Baldwin, and Hill [8] we expand the wave
number, k, and growth rate, ω, in terms of a nondimensional
rotation rate α = �2a/|�| as

k ∼ k0 + k1α
1/2 + k2α + O(α3/2), (15)

ω ∼ ω0 + ω1α
1/2 + ω2α + O(α3/2), (16)

where the nonrotating growth rate, ω0, and the real wave
number, k0, are given by

(
a

|�|
)

ω2
0 = A′k0 tanh(k0δ), (17)

k0Jm+1(k0) = mJm(k0). (18)

The first-order corrections to both the wave number and the
growth rate are given respectively by(

a

|�|
)1/2

ω0k1 = 2k0m

k2
0 − m2

, (19)(
a

|�|
)1/2

ω1 = m

k2
0 − m2

[1 + 2k0δcsch(2k0δ)]. (20)

The preceding equation, (20), shows that the first-order cor-
rection to ω is real and hence only affects the precession of
the mode, not the growth rate. The next-order correction to ω

does affect the growth rate and is given by(
a

|�|
)

ω0ω2

= 1 − m2

2
(
k2

0 − m2
)
[

5k2
0 − m2(

k2
0 − m2

)2 + A′2
]

+ 2k0δ

(
1 − m2(

k2
0 − m2

)2

{
2k2

0

k2
0 − m2

+ 2k0δ

[
coth(2k0δ) + 1

2
csch(2k0δ)

]})
csch(2k0δ)

− k2
0A′2

8

[
1 − 4k2

0

k2
0 − m2

G(m, k0)

]
sech2(k0δ), (21)

where

G(m, k) =
∫ 1

0

Jm(kx)2x3

Jm(k)2
dx. (22)

The growth rate Im(ω) of a few axisymmetric and nonax-
isymmetric modes n <= 8 has been plotted in Fig. 4, for small
values of the nondimensional angular velocity α. The general
trend shows that increasing α increases Im(ω); i.e., increasing
angular velocity slows the growth of the instability. For fixed
values of m, in general, the gradient of Im[ω(α)] is steeper for
modes with smaller n; and for fixed values of n, in general,
the gradient of Im[ω(α)] is steeper for modes with smaller
m. There are exceptions to this pattern: for n > 1 the growth
rate of m = 0 modes is approximately equal to the growth rate
of m = 2 modes, and the n = 1, m = 1, 2, 3,..., modes are
less influenced by rotation than some modes with greater n.
Nevertheless, the general trend for small angular velocity is
clear, that rotation tends to suppress modes with larger radial
and azimuthal length scale (smaller n and m) more than for
modes with smaller length scales (larger n, m). Although these
plots suggest that the growth of nonaxisymmetric modes may
be supressed by rotation at higher angular velocity than we
have considered here, it would be a mistake to extrapolate
from these results that an unstable nonaxisymmetric mode can
be stabilized fully by rotation (ω2 > 0), as was shown for the
axisymmetric modes (12).

III. EXPERIMENTAL STUDY

For the purposes of comparing our experiments with the-
ory, we first describe briefly the experimental method, in-
cluding the preparation and initial conditions of the two-fluid
system, before discussing the experimental results.
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FIG. 4. The growth rate of various axisymmetric and nonaxisym-
metric modes of instability. The azimuthal mode of instability (m) is
indicated on each solution, the radial wave number (n) is indicated
by the legend. For clarity, modes n <= 3 are shown in panel (a),
and modes n >= 2 (n even) are shown in panel (b). The parameters
chosen for this plot were A′ = −0.01, a = 1, d = 1, |�| = 1. The
effect of the rotation is to decrease the growth rate of the mode, as
shown by the positive gradient of each line.

A. Method

The RTI is known to be sensitive to initial conditions [21].
Care was taken to ensure repeatable initial conditions in
these experiments. The experimental system was prepared
by pouring a layer of dilute manganese chloride solution
(nominally 0.06 M) onto a layer of higher density sodium
chloride solution (nominally 0.4 M). The upper layer was
poured slowly through a floating sponge resulting in a gravita-
tionally stable system of two liquid layers with a well-defined
interface between the two. The paramagnetic Mn2+ ions in the
upper layer made this layer weakly paramagnetic. We note
that, although the liquids move through a strong magnetic
field, magnetohydrodynamic effects can be mostly neglected
in these experiments due to the relatively low conductivity of

the aqueous liquids (conductivity σ ≈ 4 Sm−1); this point is
discussed further in Sec. IV.

After the stable stratification was prepared, the system was
gradually spun up into rigid body rotation using a motor
drive. The process of pouring and spinning up the liquids was
performed slowly, over a period of approximately 2 h, to avoid
mixing the two miscible liquids. Although we avoided large-
scale mixing, the interface became slightly diffuse during this
time, which was unavoidable. The thickness of the diffusion
layer was approximately 2 mm after 2 h. Since the same
procedure was used each time to prepare the system, the width
of the diffusion layer was the same in each experimental
run. Once rotating at the required angular velocity, the tank
was lowered, at ∼10 mm s−1, into the strong magnetic field
generated by a superconducting solenoid magnet (Cryogenic
Ltd., London, UK); a schematic of the set-up is shown in
Fig. 1. The fall was slowed by magnetic damping resulting
from eddy currents flowing in the copper cylinder supporting
the tank, as it moved through the magnetic field (Fig. 1). The
rate of fall was set precisely by the addition of small weights
to the tank before spin-up. The tank descended at a constant
speed until reaching a buffer (Fig. 1) that halted its vertical
motion but allowed rotation to continue. The tank’s vertical
motion was stopped in a region of magnetic field in which the
effective gravity was inverted, whereupon the system became
Rayleigh-Taylor unstable as shown in the photographs in
Fig. 2. In all experiments, the depth and concentration of
the liquid layers, the strength of the magnetic field applied
by the superconducting solenoid, the initial position of the
tank above the magnet, the rotation rate, the rate of fall, and
the temperature were precisely controlled, ensuring repeatable
initial conditions.

B. Structure of the instability

The images in Fig. 5 show the development of the
Rayleigh-Taylor instability for five angular velocities between
1.0 rad s−1 and 13.2 rad s−1. At early times, t ≈ 0.5–2.0 s,
after the onset of the instability, a perturbation to the interface
can be seen in the images, which exhibits a dominant length
scale. At the lowest angular velocity, the structure of the
instability is cell-like, as can be seen, for example, in the
the images of the system rotating at � = 1.06 rad s−1. At
higher angular velocities the cell-like structures are replaced
by structures reminiscent of snake-like convection rolls (e.g.,
Ref. [22]), as seen in the images of the system rotating at � =
3.32 rad s−1 and � = 6.47 rad s−1. The lateral length scale
of the instability decreases with increasing angular velocity
as is evident if one compares, for example, the structures
in the � = 3.32 rad s−1 experiments with those of the � =
8.74 rad s−1 experiments.

A measurement of the dominant length scale of the insta-
bility was obtained by analyzing the autocorrelation of the
images of the interface, in the region r < 30 mm [5]. Figure 6
shows that the dominant length scale decreases with increas-
ing angular velocity. The largest change in length scale occurs
between 0 and approximately 2 rad s−1. At higher angular
velocity, the length scale decreases more slowly, appearing to
asymptote to a value of approximately 6 mm. Experiments
in which we added glycerol to the solutions showed that the
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FIG. 5. Images of the interface between the two liquids under
rotation, viewed from above. The images show the development
of the Rayleigh-Taylor instability with time t after the onset of
the instability, increasing from t = 0.5 s to 2.0 s left to right, and
at different angular velocities, increasing from � = 1.06 rad s−1 to
13.19 rad s−1 top to bottom. The black circles bounding each image
highlight the edge of the cylindrical tank (radius 53.5 mm in these
experiments).

asymptotic value of the length scale depends on the viscosity
of the liquid layers [5].

C. Suppression of the instability by rotation

Figure 7 shows a plot of the vertical location of the in-
terface at r = 0, relative to its equilibrium position, versus
time after the onset of the RTI, for angular velocities in the
range 0 < � < 9.06 rad s−1. In this plot the time when the
vertical motion of the tank ceased is at t = 0. The plot shows
a clear trend towards slower growth of the RTI with increasing
angular velocity.

We now examine the suppression by rotation of mode
n = 1, m = 0, i.e., the axisymmetric mode with the largest
radial length scale. The suppression of this mode can be
readily observed in Fig. 2. Figure 8 shows the proportional
contribution of this mode to the interface profile when the in-
stability has an amplitude of 0.05h. The data were obtained by
first stretching the experimental images to remove the effects
of rotation such that r �→ r, z �→ z − z0(r) so that the initial
approximately parabolic profile was rendered horizontal. The
stretched images were contoured yielding a fit to the interface
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FIG. 6. The dominant scales of perturbation after the onset of

instability. Error bars are associated with goodness-of-fit from the
spatial autocorrelation algorithm. The solid line is an empirical best
fit. Data from Ref. [5].

of the form z = ζ (r). Coefficients cn were found such that
ζ (r) = ∑

cnJ0(knr/a). The proportional contribution of the
axisymmetric n = 1 mode was then calculated as |c1|/

∑ |cn|,
as plotted in Fig. 8. The data show that the contribution
of mode n = 1, m = 0 to the instability decreased sharply
above a critical angular velocity � ≈ 1.5 rad s−1: For � �
1.5 rad s−1, the proportional contribution of this mode to the
instability is significantly greater than for � � 1.5 rad s−1.

In processing the experimental data to obtain the growth
rate, we tracked the position of the front of the dyed upper
liquid advancing into the undyed lower liquid. This method
works well for short times after the onset of the instability,
where the deviations from the initial equilibrium interface
shape are relatively small. Were we to continue the analysis
for longer times after the onset of the instability, until mixing
becomes well advanced, a more sophisticated analysis of the
mixing width would be required, as discussed recently [23].

IV. DISCUSSION

We now discuss the results of our experiments in compari-
son with the predictions of our theoretical model, and consider
the relevant assumptions. The dispersion relations derived in
the limit of small angular velocities (Sec. II B) suggest that
modes of a developing RTI may have their rate of growth
inhibited by rotation. Indeed, (12) indicates that axisymmetric
modes may be stabilized indefinitely by rotation (as long as
the interface does not intersect the base or lid of the container,
which provides an upper limit to the rotation speed in the
model).

We found that, in experiments, the length scale of the
dominant mode decreased with increasing angular velocity
(Figs. 5 and 6), and that the overall growth of the instabil-
ity was slowed by rotation (Fig. 7). These observations are
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FIG. 7. The position of the interface, relative to the tank, for 20 different angular velocities. Labels on each curve indicate the corresponding
angular velocity (rad s−1).

consistent with theory (Sec. II B) indicating that the growth
of all modes is typically inhibitted by rotation, and that the
growth of modes with larger length scales is inhibitted more
by rotation than modes with shorter length scales. Our obser-
vations are also consistent with the prediction that some larger
wavelength modes are completely stabilized by rotation. The
length scale reached a minimum of approximately 6 mm at
an angular velocity of approximately 7 rad s−1, and remained
constant for higher angular velocities. Additional experiments
showed this minimum length scale to be influenced by the
viscosity of the liquids, consistent with previous findings. For
example, it has been shown in Ref. [24] that the viscosity of
the fluid inhibits the formation of small structures in classical
nonrotating RTI: Higher viscosity in the fluid layers leads
to larger observed structures in the developing instability.
On the basis of our theoretical and experimental findings,
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FIG. 8. The proportional mode n = 1 contribution to the in-
terfacial profile, when represented as a sum of Bessel functions
J0(knr/a), versus angular velocity.

we conclude that the structure of the instability results from
competition between: (i) rotation suppressing the larger struc-
tures, and (ii) viscosity suppressing the smaller structures. The
length scale of the observed dominant mode of the instability
remains an open question. We note that there is no indication
of a minimum length scale in the theoretical model, which
treats the liquids as inviscid.

Our experimental data show that the contribution of the
axisymmetric n = 1 mode to the instability is significantly
diminished above a critical angular velocity �c ≈ 1.5 rad s−1

(Fig. 8). For comparison, we calculate the theoretical critical
angular velocity required to stabilize this mode, for these
experiments. For small Atwood number 0 < |A′| � 1 (as in
our experiments), Eq. (12) is well approximated by

�c ≈ kn

2

√
h|�A′|

a
, (23)

where k1 = 3.83. Substituting the values of the parameters �,
A′, a, and h for these experiments, given in the Appendix, we
obtain �c = (1.7 ± 0.2) rad s−1, which agrees well with the
experimental data.

We have assumed in our model that the magnetic field
gradient ∂B2/∂z at the interface can be treated as a constant;
that is, its value at the equilibrium position of the interface
at the origin. In the experiments there is some variation in this
quantity over the interface, and therefore variation in the verti-
cal component of the magnetic force on the liquids, due to the
spatial variation of the magnetic field and the curvature of the
equilibrium shape of the interface under rotation. We calculate
that the variation in ∂B2/∂z over the equilibrium surface of
the interface is ∼10% within the window that we analyzed,
r < 30 mm, at the onset of instability. At the highest angular
velocities there are some qualitative differences between the
structure in the r � 30 mm region and the structure closer to
the edge of the tank. It is possible that these differences reflect
the greater variation in ∂B2/∂z in the region r > 30 mm: we
calculate that ∂B2/∂z on-axis exceeds the value at r = 50 mm
by 25% for � = 9 rad s−1 and 40% at � = 13 rad s−1. In
all other cases the structure of the instability is remarkably
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consistent over the whole of the interface. We also calculate
that the radial gradient ∂B2/∂r never exceeds 0.1∂B2/∂z at
any point on the interface within the region r < 30 mm, so
that, to a good approximation, the radial magnetic force on the
interface may be treated as small compared with the vertical
magnetic force.

The magnetic field profile B(r, z) used in our calcula-
tions was obtained from the Biot-Savart law by numerical
integration in MATLAB, using the solenoid coil geometry
provided by the manufacturer. The numerical calculations
of the magnetic field were verified by measurement using a
Gauss meter.

In these experiments the dominant magnetic forces are
those that arise through the interaction of the magnetic field
with the spin of the Mn2+ ions and with the molecular orbitals
of the water molecules, i.e., paramagnetic and diamagnetic
forces. Electromagnetically induced forces, arising from mo-
tion of the weakly conducting aqueous fluids (conductivity,
σ ≈ 4 Sm−1) through the magnetic field, are small in com-
parison. Nevertheless, they may introduce a damping effect
on fluid motion that deviates from rigid body rotation [25].
Our experiments to determine the effect of viscosity on the
smallest observed length scale of the dominant mode sug-
gest that electromagnetic damping may make a significant
contribution to the damping of the fluids when the viscosity
is low [5]. Coriolis forces dominate electromagnetically in-
duced forces in all the experiments under rotation: The El-
sasser number El = σB2/(ρ�), the ratio of electromagnetic
to Coriolis forces, is less than 2 × 10−2 for � � 0.5 rad s−1,
which is the smallest nonzero rotation rate applied in our
experiments. We make the assumption that the magnetic field
generated by movement of the weakly conducting liquids
through the magnetic field is insignificant compared to the
imposed magnetic field since the magnetic Reynolds number
in these experiments is very small, being of order Rem =
μ0ULσ ∼ 10−7–10−8 for the largest length L and velocity U
scales in our experiments [26].

In Ref. [8] we assumed that the instability develops from
a state of unstable equilibrium, in which the equilibrium
shape of the interface is parabolic due to the rotation. In
the experimental work, the system was prepared in a state
of stable hydrostatic equilibrium and then lowered into a
region of magnetic field in which the direction of the ef-
fective gravity vector is inverted, with magnitude of order
|�| ∼ 10 ms−2. Although the equilibrium shape in this region
is an inverted parabola, the instability was observed to develop
from the initial parabolic shape formed during spin-up. Hence,
when the interface became unstable, its shape was not, in
general, the equilibrium shape calculated for the correspond-
ing effective gravity. That our theoretical predictions and
experimental results are nevertheless consistent indicates that
this difference in initial conditions between theoretical model
and experiment was relatively unimportant. One reason for
this may be because we have restricted our analysis to a
region of the interface enclosing the rotation axis where the
interface is close to horizontal so that the deviation between
the observed interfacial shape and the calculated equilibrium
shape is relatively minor.

We have compared the results of experiments with theory
for a liquid system with an Atwood number of order 10−3.

In many situations of interest, such as in inertial confinement
fusion, the Atwood number is orders of magnitude larger [2].
While we are not able to study such high Atwood number
systems experimentally using the set-up described here, our
theory remains applicable to these high Atwood number
cases [8].

V. CONCLUSIONS

We have compared our theoretical model of the classical
Rayleigh-Taylor instability under rotation about a vertical
axis with our experimental realization of this model. Exper-
iments showed that the length scale of the dominant mode in
the instability decreased with increasing angular velocity, in
agreement with our theoretical prediction that rotation tends
to have a stabilizing effect on longer wavelength modes. Our
observation that the overall growth rate of the instability is
reduced with increasing rotation is also in agreement with
the theoretical model. The measured critical angular velocity
to stabilize the n = 1 axisymmetric mode agrees well with
estimates of the predicted angular velocity from theory.

A key question is whether the interface of an intrinsically
unstable system (A < 0) could be stabilized indefinitely given
a sufficiently high rotation rate. Equivalently we could ask
whether it is possible to find a rotation rate rapid enough
to stabilize the interface for any desired length of time. It
seems reasonable to suggest that it would be possible to rotate
the system quickly enough that the large-scale structures
are completely suppressed by rotation, and any remaining
small-scale structures are suppressed by viscosity. However,
noting that the theory presented in Ref. [8] is limited to a
maximum angular velocity and that the experiments presented
are similarly limited, we conclude that while the instability
can be suppressed, it cannot be suppressed indefinitely, at least
not in the configurations considered.
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APPENDIX

1. Experimental parameters

Table I gives the parameters for the experiments on the
growth rate of the instability and the experiments to measure
the proportion of the mode 1 contribution to the growth.

The concentrations of the solutions c (mol l−1) were cal-
culated from the masses of the salts and the volume of the
solutions measured during their preparation. The difference
in density between the two solutions, �ρ, and the Atwood
number, A, were obtained using an empirical expression for
the densities of binary aqueous salt solutions [27],

ρ = ρw + (A + Bτ + Cτ 2)c + (D + Eτ + Fτ 2)c3/2, (A1)
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TABLE I. Experimental parameters.

c1 (MnCl2) (0.0614 ± 0.0004) mol l−1

c2 (NaCl) (0.433 ± 0.001) mol l−1

�χ = χ2 − χ1 (−1.14 ± 0.01) × 10−5

�ρ = ρ2 − ρ1 (11.44 ± 0.08) kg m−3

A = �ρ/(ρ2 + ρ1) (5.66 ± 0.04) × 10−3

� ≈ −7 ms−2

(� − g = −17 ms−2 ± 10%)
Tank radius a 45 mm
Layer depth h 39 mm

where τ is the temperature (degree Celsius), A–F are salt-
dependent coefficients given in [27], and ρw(τ ) is the density
of water. The difference in volume magnetic susceptibility
between the two solutions was calculated using Curie’s law,
�χ = C/T [28], where C(c) is the Curie constant for the
paramagnetic Mn2+ ions in the manganese chloride solution,
and T is the absolute temperature (kelvin). In this calculation,
the sodium chloride solution, having no paramagnetic ions,
was assumed to have the susceptibility of water. The value of
� given in the above table is the value of � at the interface
when the tank reaches the lowest point in its descent. The
value of ∂B2/∂z required in the calculation of � [Eq. (7)] was
obtained from the magnetic field profile of the solenoid coil,
which was calculated from the Biot-Savart law by numerical
integration.

2. Dispersion relation in gradient magnetic field

In this section, we calculate the dispersion relation of
interfacial waves in the nonrotating two fluid system in the
gradient magnetic field. We take z = 0 to be the vertical
position of the (horizontal) interface. With the addition of the
magnetic body force, the Euler equation is

ρ j
Du j

Dt
= −∇p j + χ j

2μ0
∇B2 + ρ jg (A2)

for the two layers j = 1, 2, where g = −gẑ. We assume that
the liquids are incompressible so that ∇ · u j = 0. We nondi-
mensionalize via

x = h0x∗, u = {gh0}1/2u∗, t = {h0/g}1/2t∗,

B = B0B∗, p = ρ0gh0 p∗, ρ = ρ0ρ
∗
j , (A3)

where ρ0 = 1
2 (ρ1 + ρ2), which forces ρ∗

1 + ρ∗
2 = 2, and h0

is a representative length scale, e.g., h0 = min{h1, h2}. This
yields the nondimensional system

∇∗ · u∗
j = 0, ρ∗

j

Du∗
j

Dt∗ = −∇∗ p∗
j + χ j

Ma

2
∇∗(B∗)2 − ρ∗

j ẑ,

(A4)

where

Ma = B2
0

ρ0gh0μ0
(A5)

is a nondimensional number that represents the ratio of mag-
netic to hydrodynamic pressures. We drop the star notation
immediately for clarity. The hydrostatic initial condition is

given by u j = 0 and so the corresponding hydrostatic pressure
field in each layer, p0 j , is given by

∇p0 j = χ j
Ma∇B2

2
− ρ j ẑ = ∇

[
χ j

Ma B2

2
− ρ j z

]
, (A6)

⇒ p0 j = f j (t ) + χ j
Ma B2

2
− ρ j z, (A7)

for some arbitrary functions f j (t ).
We now neglect the relatively small radial variation of B2

compared to its vertical variation as discussed in the main
text. In this case, pressure continuity in the unperturbed state
requires that

f1(t ) + χ1
Ma B2

2

∣∣∣∣
z=0

= f2(t ) + χ2
Ma B2

2

∣∣∣∣
z=0

. (A8)

For magnetized fluids in general, an additional term, the
magnetic normal traction pn = μ0(M2

2n − M2
1n), appears in the

boundary condition [29], where M1n and M2n are the normal
components of the magnetization at the interface in each of the
two fluids. This term has a profound effect on the behavior
of magnetized ferrofluids (see, for example, [29]). In these
experiments, the magnetization of the aqueous fluids used is
several orders of magnitude weaker than that of a ferrofluid
exposed to the same magnetic field; here M = χH with
|χ | ∼ 10−5, where H ≈ B/μ0 is the magnetic field imposed
by the solenoid. Hence we neglect the magnetic normal trac-
tion term, proportional to χ2, in comparison to the magnetic
body force which is proportional to χ .

Writing B0 = B(z = 0), we have

f2(t ) = f1(t ) − MaB2
0

2
(χ2 − χ1). (A9)

We introduce small perturbations to this background hydro-
static field and apply continuity of stress and the kinematic
condition at the interface.

Denoting the small perturbation to the interface ζ =
exp{i(kx + ly − ωt )}, we obtain the nondimensional disper-
sion relation

ω2 = κ

[
(ρ2 − ρ1) − (χ2 − χ1)

Ma

2

∂B2

∂z

]
ρ2 coth(κh2) + ρ1 coth(κh1)

, (A10)

where κ = (k2 + l2)1/2. In terms of dimensional quantities
this is

ω2 = κ

[
(ρ2 − ρ1)g − (χ2 − χ1)

1

2μ0

∂B2

∂z

]
ρ2 coth(κh2) + ρ1 coth(κh1)

= �κ
ρ2 − ρ1

ρ2 coth(κh2) + ρ1 coth(κh1)
, (A11)

where we have defined � as

� = g

[
1 − 1

2gμ0

(
χ2 − χ1

ρ2 − ρ1

)
∂B2

∂z

]
. (A12)
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