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Abstract 

 The originality of creativity measured by divergent thinking (CMDT) is a unique 

variable that is positively correlated with psychometric intelligence and other 

psychological measures. Here, we aimed to determine the associations of CMDT 

originality/fluency scores and brain activity associated with working memory (WM) and 

simple cognitive processes during the N-back paradigm in a cohort of 1221 young adults. 

We observed that originality/fluency scores were associated with greater brain activity 

during the 0-back simple cognitive task and 2-back WM task in key nodes of the ventral 

attention system in the right hemisphere. Further, subjects with higher originality/fluency 

scores showed lower task-induced deactivations in areas of the default mode network, 

especially during the 2-back task. Psychological analyses revealed the associations of 

originality/fluency scores with both psychometric intelligence and systemizing. We also 

observed the effects of interaction between sex and originality/fluency scores on 

functional activity during the 0-back task in posterior parts of the default mode network 

together with other areas as well as simple processing speed. These results indicate that 

the originality of CMDT is associated with (a) greater activation of the ventral attention 

system, which is involved in reorienting attention and (b) reduced task-induced 

deactivation of the default mode network, which is indicative of alterations in attentional 

reallocation, and (c) cognitive correlates of originality of CMDT and revealed sex 

differences in these associations.  
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Introduction 

Creativity has been essential for the development of human civilization. In 

laboratory settings, creativity is commonly measured by divergent thinking tests 

(creativity measured by divergent thinking [CMDT]). Divergent thinking involves 

information retrieval and call for a number of responses to a certain question (Guilford, 

1967). A meta-analysis demonstrated that performance on divergent thinking tests 

predicts creative achievement in real-life settings well, suggesting the validity of 

divergent thinking tests (for the meta analysis, see Kim, 2008). However, the effect size 

of the relationship between divergent thinking performance and “real-life” creative 

achievement tends to be weak in general (for review, see Kim, 2006). 

 One interesting characteristic of individuals with greater creativity is that they 

often exhibit unique associations of CMDT with attentional processes. Some of these 

associations are common to subjects with low working memory capacity (WMC), 

although there are no studies, to the best of our knowledge, showing a negative 

correlation between creativity and WMC. For example, individuals with greater 

creativity demonstrated greater difficulty with selective attention tasks (Necka, 1999), 

and subjects with higher creativity for poetry were worse at ignoring irrelevant stimuli 

(Kasof, 1997), which is also common in subjects with low WMC (Conway et al., 2001). 

Further, studies using a dichotic listening paradigm, in which subjects must attend to 

information presented to one ear and ignore the information presented to the other ear, 

have also reported subjects with greater creativity are worse at ignoring the stimuli from 

the unattended ear, which is also the characteristic of subjects with lower WMC (Dykes 

and McGhie, 1976; Rawlings, 1985). Numerous other psychological metrics have 

revealed an association between the breadth of attention and greater creativity 



 6

(Friedman et al., 2003). In addition, some clinical studies have found that attention 

deficit and/or hyperactivity are also associated with both lower WMC and greater 

creativity (Kuntsi et al., 2001; Shaw, 1992; White and Shah, 2006). In addition, 

reducing attention deficit/hyperactivity using Ritalin also reduced creativity, while 

improving WMC (Mehta et al., 2004; Swartwood et al., 2003). Yet other studies have 

reported that creative subjects show slower responses in ill-defined tasks or tasks 

requiring inhibition of irrelevant information, but faster responses in tasks without such 

requirements and on the basis of these findings, it is suggested creative subjects may be 

able to focus or defocus attention more efficiently depending on task demands (Benedek 

et al., 2012; Vartanian, 2009). . Interventional studies have also reported that training 

paradigms aimed at broadening attention can improve creative performance (Memmert, 

2007; Takeuchi et al., 2014a). In addition, our intervention study revealed that WM 

training using the mental calculation paradigm, which requires prolong focus of 

attention, can reduce creative performance (Takeuchi et al., 2011d). Moreover, genetic 

studies have found associations between a polymorphism of the neuregulin 1 gene and 

the risk of psychosis (Kéri et al., 2009), which is traditionally believed to be associated 

with selective attention deficit and dysfunction of attentional filtering (Garmezy, 1977). 

In addition, the polymorphism of neuregulin 1 gene is reportedly associated with lower 

WMC (Stefanis et al., 2007) and greater creativity (Kéri, 2009).   

On the other hand, it has been shown that subscores on divergent thinking 

tests—such as fluency, flexibility, originality, and elaboration—are highly correlated 

with one another when scoring is performed using the traditional method (Torrance, 

1966); therefore, separate interpretation of subscores may be challenging (Treffinger, 

1985). However, recent studies have shown specificities or independent contributions of 
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originality relative to other subscores, especially fluency (Jauk et al., 2014), and these 

findings focused on psychometric intelligence and certain attention-related 

psychological characteristics. For example, it has also been shown that the minimum 

level of creativity necessary for high level originality is greater than that for fluency 

(Jauk et al., 2014). Psychologically, psychometric intelligence is correlated more 

strongly with originality than with fluency of divergent thinking (Jauk et al., 2013), and 

ability associated with updating—as well as that of retrieval—are both associated with 

intelligence and originality (Benedek et al., 2014; Benedek et al., 2017). By contrast, 

performance of inhibition tasks is more closely associated with fluency than with 

originality (Benedek et al., 2012). Further, limited evidences suggested the possible 

involvement of attentional processes in this association. For example, a previous study 

found that the percentage of unique words and associations generated in poems were 

positively associated with a wider breadth of attention (lower stimulus screening) 

(Kasof, 1997). Findings in subjects with attention deficit and/or hyperactivity are 

divided, but White and Shah (2011) reported that subjects with attention deficit 

hyperactive disorder (ADHD) show greater originality, but not fluency. Priming for 

broader attention also led to the generation of original responses when subjects were 

asked to generate only single answers (Friedman et al., 2003). Subjects with the risk 

polymorphism for ADHD also demonstrated greater originality but not fluency 

(Takeuchi et al., 2015d).  

Neuroscience research also supports distinctions between originality and other 

subscores of divergent thinking, particularly fluency, as well as common neural 

correlates. For example, inhibition of the left prefrontal cortex and excitation of the 

right prefrontal cortex (particularly the inferior frontal gyrus) improved fluency and 
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flexibility, but not originality, during a divergent thinking task (Chrysikou et al., 2013). 

Lesions involving the medial prefrontal cortex, right inferior frontal gyrus, or 

temporoparietal areas reduce originality, whereas lesions involving left temporoparietal 

areas and possibly the left IFG lead to increased originality (Shamay-Tsoory et al., 

2011). Lesions of the lateral PFC and frontotemporal dementia lead to the reduction in 

fluency as well as originality (Ovando-Tellez et al., 2019). On the contrary, the 

meta-analyses of brain activity during divergent thinking indicated increased brain 

activity during divergent thinking compared with the control task in the bilateral lateral 

prefrontal areas, anterior cingulate cortex, and left temporal and parietal areas as well as 

decreased brain activity in the right inferior parietal area and precuneus (Wu et al., 

2015). Alternatively, greater average originality of divergent thinking tasks were 

associated with reduced deactivation in the right temporoparietal junction and posterior 

cingulate cortex (Fink et al., 2014). Further, studies of individual differences in 

structural connectivity (Kenett et al., 2018) and functional connectivity (Vartanian et al., 

2018) have revealed the importance of right inferior frontal junction connectivity for 

divergent thinking; the former  (Kenett et al., 2018) showed that both originality and 

fluency scores associated with structural connectivity measures.  

Taken together, these findings suggest common as well as unique effects of 

originality of divergent thinking compared with other subscores of divergent thinking. 

These unique aspects appear to be associated with cognitive mechanisms related to 

intelligence and attention. In a previous study involving a WM task, we found that the 

total score of CMDT was associated with reduced task-induced deactivation of the 

posterior part of the default mode network, which is typically deactivated during 

externally directed attention-demanding tasks (Takeuchi et al., 2011b). However, the 
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unique associations of individual differences in originality and fluency with 

attention-related brain activity patterns have not yet been elucidated. Thus, the purpose 

of the present study was to investigate this issue. For this purpose, we investigated the 

association between brain activity during an attention-demanding task and 

originality/fluency score, which have been used for originality-specific effects 

(additional details of the rationale for using this task is provided in the Methods 

section).  

In this study, we utilized the N-back task during functional magnetic resonance 

imaging (fMRI) to examine unique brain activity patterns associated with CDMT for 

following reasons. (1) First, creativity is uniquely related to attentional processes as 

discussed above and the N-back task is a widely used externally directed 

attention-demanding task. (2) Second, deactivation in the default mode network (DMN) 

during the N-back task is widely considered to reflect the efficiency of attentional 

reallocation (Whitfield-Gabrieli et al., 2009) and its neurochemical correlates are well 

investigated (Hu et al., 2013). (3) Subjects with ADHD and psychosis, which are 

traditionally associated with greater creativity and possibly greater originality than 

fluency, show differences in task-induced deactivation (Ko et al., 2013). (4) The total 

CMDT score is correlated with task-induced deactivation during the 2-back task, which 

gives relevance this task to CMDT (Takeuchi et al., 2011b). (5) Psychometric 

intelligence, which was shown to be more strongly associated with originality than 

fluency, influences brain activity during the N-back task, including task-induced 

deactivation (Takeuchi et al., 2018).  

On the basis of the relevant above-mentioned lesions studies, we hypothesized 

that greater activity in the medial prefrontal cortex, right inferior frontal gyrus, and right 
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temporoparietal areas would be associated with originality of CMDT. In addition, given 

the associations between originality and intelligence, we hypothesized that brain activity 

patterns characteristic of high intelligence (i.e., lower activation and deactivation 

change in response to task demand (Takeuchi et al., 2018)) would be observed in 

subjects with greater originality.  

More specifically, we hypothesized that greater originality is characterized by 

(a) a lower activation increase in areas of the lateral prefrontal cortex and parts of the 

lateral parietal cortex showing increased activation during externally directed 

attention-demanding tasks as well as (b) lower task-induced deactivation in areas of 

medial prefrontal cortex, precuneus, hippocampus, and temporoparietal junction that are 

deactivated during externally directed attention-demanding tasks, as in the case of the 

association between general intelligence and brain activity (Takeuchi et al., 2018).  

Further, evidences have also revealed sex differences in neurocognitive 

correlates of CMDT (Takeuchi et al., 2017b). First, a psychological study reported sex 

differences in the associations between CMDT and psychopathology, with males 

showing stronger associations (Martín-Brufau and Corbalán, 2016). Further, males and 

females use different strategies and cognitive styles during divergent thinking tasks (for 

review, see Abraham, 2016). For example, males show greater systemizing and a more 

analytical style, while females tend to show a more empathizing style. Similarly, males 

and females generate different outputs during free drawing and when generating lyrics 

to songs. An electrophysiological study also revealed that females show stronger 

reactivity of α2 rhythm during verbal divergent thinking than males (Matud et al., 2007), 

while fMRI during divergent thinking revealed that males recruit regions involved in 

declarative memory than females, while females recruit regions involved in theory of 
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mind and self-referencing (for review, see Abraham et al., 2014). Further, structural 

studies have shown substantial sex differences in connectivity and gray matter structural 

correlates of CMDT (Ryman et al., 2014; Takeuchi et al., 2017b). Our previous 

huge-sample study also revealed robust sex differences in the associations between 

resting-state functional connectivity measures and CMDT (Takeuchi et al., 2017a). 

Collectively, these neuroimaging, neurophysiological, and neuropsychological studies 

suggest robust sex differences in neurocognitive correlates of CMDT over a wide range 

of measures.  

However, so far, sex differences in the brain activation correlates of originality 

compared with fluency have not yet been examined. Thus, we investigated this issue in 

a large sample. We also assessed the psychological correlates of originality compared 

with fluency. Specifically, we investigated if representative psychological correlates of 

CMDT total score observed in our previous studies were associated with originality 

and/or fluency subscores to reveal distinct psychological correlates of originality versus 

fluency (originality/fluency) compared with the total CMDT score. Given the important 

roles of creativity and originality in human culture, we believe that revealing their 

neural bases is an important topic. 

 

Material and Methods 

Subjects 

The present study is a part of an ongoing project for investigating the associations 

among brain imaging, cognitive function, and aging. Data include relevant cognitive 

measures and neuroimaging data from 1221 healthy right-handed individuals (700 

males, 521 females). The mean subject age was 20.7 years (standard deviation [SD], 1.8 
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years; age range, 18–27 years). For detailed subject information, see Supplemental 

Methods. See the Supplemental Discussion for the limitations conferred by this cohort. 

Written informed consent was obtained from all participants or their guardians. This 

study was approved by the Ethics Committee of Tohoku University. 

 This study included data from the 63 subjects also included in our previous 

study investigating the association between total CMDT score and brain activity during 

the N-back task across males and females (Takeuchi et al., 2011b).  

Divergent thinking assessment  

The descriptions in this subsection are largely reproduced from our previous 

study using the same methods (Takeuchi et al., 2017b). 

The S-A creativity test (Minds, 1969) was used for assessing CMDT. J.P. 

Guilford generated the draft plan of this test. He also supervised the development of the 

test (Minds, 1969). The test was standardized for Japanese speakers (Minds, 1969). 

The test is used for evaluating verbal CMDT (Minds, 1969), and it involves 

three types of tasks: Practice (and real) tasks were administered in the following order: 

(1) practice of the first task (2 min), (2) first task (5 min), (3) practice of the second task 

(2 min), (4) second task (5 min), (5) practice of the third task (2 min), and (6) third task 

(5 min). Each task involves two questions. In total, the test takes 30 min. How subjects 

divided their time (5 min in total) for two questions was not determined. The 2 

questions were presented on 2 facing pages, and on each page there were also 10 lines 

under the question on which subjects were required to write down self-generated 

answers. 

 This test was administered in a group setting. The first task requires subjects 

to generate unique ways of using typical objects (e.g., “Other than for drinking milk, 
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how can we use milk bottles?” Example answer: “We can use them as saving boxes.”). 

The second task requires subjects to imagine desirable functions of ordinary objects 

(e.g., “What are the characteristics of a good TV? Write down as many characteristics as 

possible.” Example answer: “A TV can receive broadcasts from all over the world.”). 

The third task requires subjects to imagine the consequences of “unimaginable things” 

happening (e.g., “What would happen if all the mice in the world disappeared?” 

Example answer: “The world would become more hygienic.”). For each task, subjects 

are required to generate as many answers as possible. Note that these tasks correspond 

with the three tasks (unusual use, product improvement, just suppose) of the Torrance 

test of creative thinking (TTCT; Torrance, 1966), which is used in other countries.  

Scoring was performed by the Tokyo Shinri Corporation. In addition to a total score, the 

S-A creativity test provides subscores for the following dimensions of creativity: (a) 

Fluency: Fluency is measured by the number of relevant responses to questions and is 

related to the ability to produce and consider several alternatives. Fluency scores are 

determined by the total number of questions answered after excluding inappropriate 

responses or responses that are difficult to understand. (b) Flexibility: Flexibility is the 

ability to produce responses from a wide perspective. Flexibility scores are determined 

by the sum of the (total) number of category types to which the responses are assigned 

based on a criteria table or similar judgment. (c) Originality: Originality is the ability to 

produce ideas that differ from those of others. For originality scoring, each answer was 

assigned to an idea category from a criteria table or similar judgment. Each category 

received different originality points based on appearance frequencies, and originality 

score was calculated as the sum of all these points. In the case of the first task, answers 

categorized to “containers” had high appearance frequencies (>5%) and so were 
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awarded 0 points. Alternatively, the answers categorized as “alternatives for musical 

instruments” had lower appearance frequencies (1%−5%) and so were awarded 1 point, 

while rarer answer categories or answers that could not be categorized were awarded 2 

points. (d) Elaboration: Elaboration is the ability to produce detailed ideas (Society for 

Creative Mind, 1969). Elaboration scores are determined by the sum of responses 

weighted based on a criteria table or similar judgment. In the case of the first task, 

answers that were classified as the lowest level of elaborateness, “unclear answers” such 

as “musical instruments” (within the “alternatives for musical instruments” category), 

were awarded 0 points, while answers classified to the middle level of elaborateness, 

which have typically only means or purposes such as “beat and make sounds” were 

awarded 1 point, and answers classified as the highest level of elaborateness, which 

have typically both means and purposes and/or more details such as “arrange milk 

bottles in a row and put different amounts of water in each bottle and beat to use as 

instruments” were awarded 2 points. Again, these four dimensions correspond to the 

TTCT (TTCT; Torrance, 1966). Scoring of the tests was performed by the Tokyo Shinri 

Corporation.  

In the present study, total score and originality/fluency score were used. The total score is 

the sum of the originality score and elaboration in the S-A creativity test (Minds, 1969) 

used here (as stipulated by the manual of this test) and is also called as overall score. 

Strong correlations were noted among fluency, elaboration, and flexibility (r > 0.78, in 

this study), while originality score exhibited a slightly distinctive pattern, with simple 

correlation coefficients of 0.57−0.72, consistent with the distinctive psychological 

characteristic of originality/fluency score (see Results). Also, elaboration score tended to 

be approximately three times higher than the originality score. The average z scores of 
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the four dimensions and this total score (originality + elaboration) were highly correlated 

(r = 0.97). Originality/fluency score has been used by other researchers (Eisenman, 1969) 

and represents the originality of answers after adjusting for the number of responses 

(infrequency of each generated idea). Since the originality score itself is the sum of the 

originality score of each generated idea, it is directly affected by fluency. Therefore, 

originality/fluency score was used in this study, consistent with our previous work 

(Takeuchi et al., 2015d). We used this score also because originality/fluency because this 

score represents ratio of originality to fluency which corresponds to comparison of 

originality with fluency and investigating the neural correlates of originality when 

compared with fluency is the purpose of this study. Further, this score has been used in 

previous studies conducted at both ours and other labs (Eisenman, 1969; Takeuchi et al., 

2015d). This score shows substantial correlation with originality but little correlation with 

fluency as described in the Results (meaning this score reflects components specific to 

originality, and does not reflect components specific to fluency), thereby simplifying 

interpretation. While these are strengths of this score compared to other measures such as 

z score of originality – z score of fluency, originality/fluency score is strongly correlated 

with z score originality – z score fluency (r = 0.87), so the difference in neural correlates 

of these two variables are minor. Other methods such as comparing neural correlates of 

originality with neural correlates of fluency involve the added difficulty of showing that 

these neural correlates are statistically different in whole brain analyses.  

 Please refer to the appendix of our previous study for a sample test and 

additional details on scoring (Takeuchi et al., 2010a). 

Each subfactor of the S-A creativity test scores was significantly correlated 

with other external measures, such as personality factors and problem-solving abilities, 
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suggesting its ability to predict performance in everyday situations (Shimonaka and 

Nakazato, 2007). Furthermore, S-A creativity test scores (total score) are significantly 

correlated with the frequency of visual hypnagogic experiences, which in turn is 

correlated with the vividness of mental imagery (Watanabe, 1998). Our previous study 

(Takeuchi et al., 2013a) showed that S-A creativity test scores (total score) were 

positively correlated with extraversion, novelty seeking, motivational state, and daily 

physical activity level, which are consistent with reports for other measures of CMDT 

(Chavez-Eakle et al., 2006; King et al., 1996). The total score on the S-A creativity test 

was positively correlated with trait creative attitude as measured by self-report in 

children (Nish and Niwase, 2003), with scores on a modified version of the figure 

completion test of figural TTCT in children (Ogata, 1976), and with performance on a 

novel problem-solving task (Ogata, 1976). Each subfactor of the two S-A creativity test 

tasks was positively correlated with each subfactor of each originally developed 

chemical divergent thinking creativity test task (e.g., How can you prevent ice which is 

taken from the refrigerator from melting?) (Wulanqiqige, 2014).  

 

Assessment of psychometric measures of general intelligence. We used Raven’s 

Advanced Progressive Matrix (RAPM) to assess intelligence as well as to adjust for the 

effect of general intelligence on brain function. For more details on how RAPM was 

used in our study, please see our previous works (Takeuchi et al., 2010a, b). 

 

Assessment of other psychological measures. We also investigated if representative 

psychological correlates of CMDT total score revealed in our previous studies were also 

associated with originality/fluency score and if this score has psychological correlates. 
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A number of personality traits measured by the Temperament and Character Inventory 

show robust correlations with CMDT performance, but we found that all of these 

CMDT correlates were also strongly correlated with the motivation component [in this 

previous study we used the vigor subscale of the profile of mood states 

(POMS)](Takeuchi et al., 2015b); therefore, we used the vigor subscale of POMS for 

the simplicity of the analysis. The descriptions in this subsection are mostly reproduced 

from our previous studies (Takeuchi et al., 2015a). Psychological measures previously 

shown to be associated with CMDT are as follows: 

(a) Psychometric intelligence. Originality of CMDT is associated with psychometric 

intelligence (Jauk et al., 2013). In addition to RAPM, we used the Tanaka B-type 

intelligence test (TBIT) type 3B (Tanaka et al., 2003) to assess intelligence. This is a 

nonverbal intelligence test that does not include story problems, but uses figures, 

single numbers, and letters as stimuli. In all subtests, subjects completed as many 

problems as possible within a certain time (a few minutes). For details, see 

Supplemental Methods. 

(b) Simple processing speed. CMDT is positively associated with simple processing 

speed (Preckel et al., 2011). As a measure of simple processing speed, we used the 

perception factor of the TBIT (Tanaka et al., 2003) type 3B. For details, see 

Supplemental Methods. 

(c) Working memory. WM was assessed using a (computerized) digit span task. For 

details, see Supplemental Methods. 

(d) Motivational state. While a number of personality traits (such as harm avoidance) 

related to affect are associated with CMDT, motivational state plays an important 

role in these associations (Takeuchi et al., 2015b). Thus, we focused on motivational 
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state. We used the vigor subscale of the shortened Japanese version (Yokoyama, 

2005) of the Profile of Mood States (POMS) (McNair et al., 1992) to measures 

participants’ motivation during the preceding week. 

(e) Empathizing and systemizing. Empathizing and systemizing are positively 

associated with CMDT (Takeuchi et al., 2014b). To measure systemizing and 

empathizing, we used the Japanese versions (Wakabayashi et al., 2007) of the 

systemizing quotient (SQ) and empathy quotient (EQ) questionnaires (Baron-Cohen 

et al., 2003; Baron-Cohen and Wheelwright, 2004). EQ score was used as an index 

of empathizing (drive to identify the mental status of other individuals), while SQ 

score was used as an index of systemizing (drive to analyze a system). For details, 

see Supplemental Methods. 

 

fMRI task. Functional magnetic resonance imaging (fMRI) was used to map brain 

activity during cognitive tasks. The descriptions of this task are reproduced from our 

previous study using the same methods (Takeuchi et al., 2015d). We used the N-back 

task, which is commonly used in fMRI studies, with conditions of 0-back (simple 

cognitive processes) and 2-back (WM). We used a simple block design and the N-back 

WM task (Callicott et al., 1999) to map brain activity during WM. The N-back task was 

performed during fMRI scanning as previously described (Takeuchi et al., 2011a; 

Takeuchi et al., 2011b).  

Participants received instructions and practiced the tasks before entering the scanner. 

During scanning, they viewed stimuli on a screen via a mirror mounted on a head coil. 

Visual stimuli were presented using Presentation software (Neurobehavioral Systems, 

Inc., Albany, CA, USA). A fiber optic light-sensitive key press interface with a button 
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box was used to record participants’ responses during the tasks. 

Two conditions were used: 0-back and 2-back. Each condition comprised six blocks, and 

all N-back tasks were performed in one session. Subjects were instructed to recall 

visually presented stimuli (four Japanese vowels) presented “n” letters before the 

currently presented stimulus (e.g., two letters previous for the 2-back task or the currently 

presented letter for the 0-back task). Two buttons were used during the 0-back task: 

subjects were asked to push the first button when the defined target stimuli were 

presented and the second button when non-target stimuli were presented. During the 

2-back task, subjects were asked to push the first button when the currently presented 

stimulus and the stimulus presented two letters previously were the same and to push the 

second button when the currently presented stimulus and the stimulus presented two 

letters previously were different. Since the four stimuli were presented randomly, the 

ratio of matched trials to unmatched trials was 1:3 on average. Our version of the N-back 

task was designed to require individuals to push buttons continuously during the task 

period. The task level of the memory load was shown above the stimuli for 2 s before the 

task started, and remained visible and unchanged during the task period (cue phase). Each 

letter was presented for 0.5 s and a fixation cross was presented for 1.5 s between items. 

Each block consisted of 10 stimuli. Thus, each block lasted 20 s. A baseline fixation cross 

was presented for 13 s between the last task item and the presentation of the next task 

level of the memory load (start of the cue phase). Thus, the rest period lasted for 15 s (13 

s + 2 s). There were six blocks for each condition (2- and 0-back). The descriptions in this 

subsection are mostly reproduced from another study within the same project that used 

the exact same methods (Takeuchi et al., 2018).  

Sufficient practice was allowed, and we ascertained that subjects understood the tasks 
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and the strategy of updating items to remember two by two during the 2-back task 

(Takeuchi et al., 2012a). Reaction time (RT) and accuracy on the 0-back and 2-back 

tasks were used in the analyses. 

We designed the task difficulty so that the subjects would make few errors because as 

task difficulty increases, brain activation changes become larger, but when the task 

becomes too difficult, and accuracy substantially drops from 100%, such activation 

changes become smaller, and the resulting inverted u-curve association between 

task-load and brain activity (Callicott et al., 2003; Jansma et al., 2004) can make linear 

analyses difficult. 

  

Image acquisition. MRI data acquisition was conducted using a 3T Philips Achieva 

scanner. Forty-two transaxial gradient-echo images (echo time, 30 ms; flip angle, 90°; 

slice thickness, 3 mm; FOV, 192 mm; matrix, 64 × 64) covering the entire brain were 

acquired at a repetition time of 2.5 s using an echo-planar sequence. For the N-back 

session, 174 functional volumes were obtained. Diffusion-weighted data were acquired 

using a spin-echo echo-planar imaging (EPI) sequence according to a previously 

described protocol (Takeuchi et al., 2015b). From the collected images, fractional 

anisotropy (FA) and mean diffusivity (MD) maps were calculated (Takeuchi et al., 

2011c). In this study, these FA and MD maps were used during preprocessing of BOLD 

images as described in the following sections. The descriptions of this subsection are 

mostly reproduced from our previous study using the exact same methods (Takeuchi et 

al., 2015d). 

 

Preprocessing of imaging data 
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Preprocessing and analysis of functional activation data were performed using SPM8 

implemented in MATLAB. A summary is provided here; see the Supplemental 

Methods for more details. Before analysis, individual BOLD images were realigned 

and re-sliced to the mean BOLD image and corrected for slice timing. The mean BOLD 

image was then realigned to the mean b = 0 image as previously described together with 

slice timing corrected images (Takeuchi et al., 2011b). As the mean b = 0 image was 

aligned with the FA image and MD map, the BOLD image, b = 0 image, FA image, and 

MD map were all aligned. All images were normalized using a previously validated 

two-step “new segmentation” algorithm of diffusion images and the previously 

validated twisted diffeomorphic anatomical registration through exponentiated lie 

algebra (DARTEL)-based registration (Takeuchi et al., 2013b). The voxel size of the 

normalized BOLD images was 3 × 3 × 3 mm3. The descriptions in this subsection are 

mostly reproduced from our previous study using the exact same methods (Takeuchi et 

al., 2018). 

 This preprocessing procedure utilizes the information of both FA and MD maps 

for segmentation and the FA signal distribution within white matter for the DARTEL. 

The reasons for utilizing FA and MD maps for preprocessing are as follows. The 

diffusion tensor images have similar anatomical characteristics as BOLD images but 

more detailed anatomical information. Further, MD maps are suitable for dissociating 

cerebrospinal fluid from tissue and gray from white matter, while FA maps are suitable 

for dissociating gray and white matter areas. Also, by accounting for FA signal 

variability within white matter areas in the DARTEL, misalignment of the tracts was 

prevented. For the validation of these issues, see our previous study (Takeuchi et al., 

2013b).  
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First-level analysis of functional activation data 

Individual-level statistical analyses were performed using a general linear 

model. A design matrix was fitted to each participant with one regressor in each N-back 

task condition using the standard hemodynamic response function. The cue phases of 

the N-back task were modeled in the same manner, but were not analyzed further. Six 

parameters obtained by rigid body correction of head motion were regressed out by 

inclusion in the regression model. The design matrix weighted each raw image 

according to its overall variability to reduce the impact of movement artifacts 

(Diedrichsen and Shadmehr, 2005). We removed low-frequency fluctuations using a 

high-pass filter with a cut-off value of 128 s. After estimation, beta images of the 0-back 

task, 2-back task, and the contrast of (2-back – 0-back) were smoothed (8 mm 

full-width at half-maximum) and taken to the second level of analysis. The descriptions 

in this subsection are mostly reproduced from our previous study using the exact same 

methods (Takeuchi et al., 2015d). 

 Image smoothing was performed after estimation (instead of before estimation) 

because the abovementioned method (Diedrichsen and Shadmehr, 2005) works slightly 

better on unsmoothed data, so that it has more independent data points to estimate the 

variance of the images. And the developers recommend not smoothing the raw data 

before estimation, but instead to smooth the beta-weights before submitting them to the 

second-level analysis (see the page for the distribution, 

http://www.diedrichsenlab.org/imaging/robustWLS_spm8.html). 

 

Statistical analysis of psychological variables 
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Behavioral data were analyzed using SPSS 22.0 (SPSS Inc., Chicago, IL). The 

correlations among basic variables (total scores, subscores, originality/fluency scores, 

RT of the 0-back task, RT of the 2-back task, and RT difference between the 2-back task 

and the 0-back task) in each sex were analyzed by simple correlation analyses.  

The main effects as well as interaction effects between sex and 

originality/fluency score on cognitive measures were analyzed using analysis of 

covariance (ANCOVA). Sex was a fixed factor and the additional covariates were age, 

RAPM score, and originality/fluency score on the S-A creativity test. The 

abovementioned covariates and the interaction between sex and originality/fluency 

score were included in the model. The dependent variables were the seven 

psychological variables listed in Table 1. We also conducted ANCOVAs of the same 

models, except that the originality/fluency score was replaced by the total score on the 

S-A Creativity test, and the results are provided in the Supplemental Results section and 

in the Supplemental Table 2. In total, 14 ANCOVAs (7 dependent variables × 2 CMDT 

scores [total score and originality/fluency score] = 14) were performed in this study (the 

analyses that were presented in the main text and the Supplemental Online Material 

section). In the psychological variable analyses, results with a threshold of p < 0.05, 

corrected for false discovery rate (FDR) using the two-stage sharpened method 

(Benjamini et al., 2006), were considered statistically significant. Correction for 

multiple comparisons using this method was applied to the results for main effects and 

interaction effects with sex in the abovementioned 14 ANCOVAs (28 p values). The 

descriptions in this subsection were largely reproduced from our previous study using 

similar methods (Takeuchi et al., 2015c).  
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Group-level whole-brain imaging data analyses.  

At the group level, we tested the effects of originality/fluency score on regional brain 

activity during the 0-back and 2-back tasks, as well as WM-specific regional activity 

(2-back–0-back contrast). Group-level whole-brain imaging analyses were performed 

using SPM8. In these analyses, we used voxel-wise ANCOVA with sex difference as a 

grouping factor (using the full factorial option in SPM8). The covariates were age, 

RAPM score, accuracy, RTs on the 2-back task and 0-back task, and volume-level mean 

framewise displacement during the scan for the N-back task (Power et al., 2012) and 

originality/fluency score. We also conducted voxel-wise ANCOVAs of the same models, 

except that the originality/fluency score was replaced by total S-A Creativity test score 

and results were provided in the Supplemental Results section and in the Supplemental 

Table 3 and 4 and Supplemental Fig. 2 and 3. In total, six brain analyses were conducted 

(3 contrasts [0-back task, 2-back task, and 2-back–0-back] × 2 scores [total score and 

originality/fluency score] = 6) in this study (The analyses that were presented in the 

main text and the Supplemental Online Material section). All contrasts involving the 

task conditions were used in this study. The 0-back task contrast represents simple 

cognitive processes, the 2-back task contrast represents activity during WM, and the 

2-back to 0-back task contrast represent WM-specific cognitive activity. All the 

conditions involve continuous externally directed attention (in accordance with the 

study purpose), but the two-back condition involves WM and attention demand. Task 

performance and movement during the scan were added as covariates to rule out the 

possibilities of behavioral differences affecting the correlations between brain activity 

patterns and target psychometric variables. See the Supplemental Methods for an 

explanation on adding RAPM score as a covariate and the influences of removing 
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RAPM from the covariate set on the results.   

The covariates were modeled such that each had a unique relationship with 

functional activity for each sex (using the interactions option in SPM8), except for 

framewise displacement during scanning, which enabled investigation of the effects of 

interaction between sex and each covariate. Framewise displacement during scanning 

was not modeled in this manner as a common effect on functional activity was assumed 

for both sexes. 

The main effects of S-A creativity test scores (contrasts of [effect of S-A 

creativity test score for males, females] were [1 1] or [−1 −1]) and the interaction 

between sex and S-A creativity test scores (contrasts of [effect of S-A creativity test for 

males, females] were [−1 1] or [1−1]) were assessed using t contrasts.  

Correction for multiple comparisons was performed using the threshold free cluster 

enhancement (TFCE) score with randomized (5,000 permutations) nonparametric 

testing using the toolbox (http://dbm.neuro.uni-jena.de/tfce/). We applied a voxel 

threshold of family-wise error (FWE) corrected at P < 0.05. 

The areas of activation and deactivation under the corresponding task condition 

(i.e., in the case of 0-back analyses, activity/deactivation during the 0-back task) were 

defined through the lenient threshold of P < 0.05 (false discovery rate (FDR)-corrected 

at the voxel level among the analyses of one-sample t tests using the whole subjects. 

This threshold was used to classify voxels to areas of significant effects of CMDT 

scores on activation and deactivation.  

 

Results 

Psychological scores 
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Table 1 presents the correlations among basic variables, including total score, 

originality/fluency scores, subscores of S-A creativity test, RTs on the 0-back and 

2-back tasks, and difference in the RT of 0-back task and 2-back task for each sex. 

Distributions of originality/fluency scores and total scores on the S-A creativity test are 

presented in Fig. 1 and Supplemental Fig. 1. Originality/fluency score showed little 

correlation with fluency subscores (r = 0.033 in males, r = -0.007 in females), while 

showing substantial correlations with originality scores (r = 0.719 in males, r = 0.783 in 

females). Response accuracies on the 2-back and 0-back tasks showed ceiling effects 

(>99.0% correct on average). 

Mean (±SD) age, RAPM score, total score, subscores, originality/fluency score on the 

S-A creativity test, accuracies and RTs for the 0-back and 2-back tasks, and 

volume-wise framewise displacement are presented in Supplemental Table 1.  

 

Psychological main effects and interactions of originality/fluency score 

 ANCOVA revealed significant main effects of originality/fluency score on 

RAPM, total score on TBIT, perception factor score on TBIT, and SQ score. The 

correlation of originality/fluency with psychometric intelligence score is consistent with 

a previous study reporting that psychometric intelligence is correlated more strongly 

with originality than with fluency of divergent thinking (Jauk et al., 2013). However, 

originality/fluency score showed little correlation with empathizing and vigor subscales 

of the POMS, suggesting the unique characteristics of originality/fluency score 

compared with the total CMDT score (See Supplemental Table 2 for the results found in 

this study).  

ANCOVA also revealed a significant interaction between sex and 
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originality/fluency on perception factor score of TBIT (stronger positive correlation in 

females than males). See Table 2 for full results.  

 

Main effects of originality/fluency score on the S-A creativity test on functional 

activation  

ANCOVA revealed an overall positive main effect (regardless of sex) of 

originality/fluency score on the S-A creativity test on functional activity during the 

0-back task in a cluster mainly around the right angular gyrus, right calcarine cortex, 

right cuneus, right fusiform gyrus, right occipital lobe, parahippocampal gyrus, right 

parietal cortex, precentral and postcentral gyrus, right precuneus, right supramarginal 

gyrus, right superior, and middle and inferior temporal gyrus (54.5% and 36.5% of this 

large cluster belong to areas activated and deactivated during the 0-back task, 

respectively), and in a cluster involving the right fusiform gyrus and right cerebellum 

(all of this cluster belongs to areas deactivated during the 0-back task) (Fig. 2a).  

In addition, ANCOVA revealed an overall positive main effect (regardless of sex) of 

originality/fluency score on the S-A creativity test on functional activity during the 

2-back task in a cluster mainly around the bilateral amygdala, bilateral calcarine cortex, 

bilateral posterior and middle cingulate gyrus, bilateral cuneus and precuneus, right 

superior, middle, and inferior orbital frontal gyrus, bilateral fusiform gyrus, right 

Heschl’s gyrus, bilateral hippocampus, parahippocampal gyrus, right insula, bilateral 

lingual gyrus, bilateral inferior, middle, and superior occipital lobe, bilateral paracentral 

lobule, bilateral superior parietal lobe, bilateral postcentral gyrus, right precentral gyrus, 

right putamen, right rolandic operculum, right supplemental motor area, bilateral middle 

and inferior temporal gyrus, right superior temporal gyrus and temporal pole, bilateral 
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thalamus, and bilateral cerebellum (24.1% and 70.4% of this large cluster belong to 

areas activated and deactivated during the 2-back task, respectively); a cluster mainly 

around the dorsomedial prefrontal cortex and contingent anatomical areas (all voxels in 

this cluster belong to areas deactivated during the 2-back task); and small clusters in the 

left middle frontal gyrus and left precentral gyrus (Fig. 2b).  

ANCOVA revealed an overall positive main effect (regardless of sex) of 

originality/fluency score on the S-A creativity test on functional activity of the contrast 

(2-back – 0-back) in a cluster mainly around the dorsomedial prefrontal cortex and 

contingent left middle and superior frontal gyrus (all areas in this cluster belong to areas 

deactivated in the corresponding contrast); a cluster spread around the middle and 

posterior cingulate gyrus, precuneus, cuneus, and bilateral calcarine cortex (all areas in 

this cluster belong to areas deactivated in the corresponding contrast); a cluster spread 

around the right hippocampus, parahippocampal gyrus, and right lingual gyrus (23.9% 

and 43.5% of this large cluster belong to areas activated and deactivated in the 

corresponding contrast, respectively); and clusters spread around the anterior cingulate 

gyrus, middle cingulate gyrus, and medial frontal gyrus (all areas in these clusters 

belong to areas deactivated in the corresponding contrast) (Fig. 2c). For full statistical 

results, see Table 3. 

 

Interaction effect of sex and originality/fluency scores on functional activation  

ANCOVA revealed an interaction effect between sex and originality/fluency 

score on the S-A creativity test on functional activity during the 0-back task in a cluster 

that mainly spread around the left angular gyrus, bilateral calcarine cortices, bilateral 

middle and posterior cingulate gyrus, bilateral precuneus and cuneus, bilateral lingual 
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gyrus, bilateral occipital lobes, bilateral paracentral lobule, bilateral postcentral gyrus, 

bilateral supplemental motor area, left supramarginal gyrus, left middle and superior 

temporal gyrus, right superior parietal lobule, and left rolandic operculum (19.0% and 

71.9% of this large cluster belong to areas activated and deactivated during the 0-back 

task, respectively); a cluster spread mainly around the left temporal pole and middle 

temporal gyrus (25.6% and 41.1% of this large cluster belong to areas activated and 

deactivated during the 0-back task, respectively); a cluster spread mainly in the 

hippocampus and left parahippocampal gyrus (19.1% and 55.3% of this large cluster 

belong to areas activated and deactivated during the 0-back task, respectively); and a 

cluster spread mainly in the left thalamus (most voxels in this cluster belong to areas 

activated during the 0-back task). These interactions were formed with the positive 

correlation in males and negative correlations in females (Fig.3).  

ANCOVA also revealed an interaction effect between sex and originality/fluency score 

on the S-A creativity test on functional activity of the contrast [2-back – 0-back] in a 

cluster spread mainly around the left inferior and superior parietal lobules, left angular 

gyrus, and left precuneus (most voxels in this cluster belong to areas activated in this 

contrast). These interactions were negatively correlated in males and positively 

correlated in females.  

For full statistical results, see Table 4. 

 

Discussion 

The present study has revealed new associations between originality/fluency 

score and functional activity, as well as sex differences in the associations between 

originality/fluency scores and functional activity. Although there were numerous 
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contrasts and some of the findings were sporadic, the major results can be summarized 

as follows. Partly consistent with our first hypothesis, originality/fluency scores were 

significantly positively correlated with activity in the right temporoparietal area during 

the 0-back and 2-back tasks, activity in the right inferior frontal gyrus during the 2-back 

task, and activity in the medial prefrontal cortex during the 2-back task and the contrast 

of (2-back – 0-back). Partly consistent with our hypothesis, subjects with greater 

originality/fluency scores showed lower task-induced deactivation in areas deactivated 

during the task, including the right precentral gyrus (0-back, 2-back), medial prefrontal 

cortex, posterior cingulate cortex, precuneus, right medial temporal lobe, (2-back, 

2-back – 0-back), and right temporal area (2-back). However, in contrast with our 

hypothesis, associations between greater originality/fluency scores and lower 

task-related activation increases were not observed. Further, there were significant 

interaction effects between sex and originality/fluency scores, on activity during the 

0-back task (mediated by positive correlations in males and negative correlations in 

females) in the left precentral and postcentral gyrus. Further, interactions between sex 

and originality/fluency scores on activity during the 0-back task were observed in 

extensive deactivated areas, including the posterior cingulate cortex, precuneus, left 

temporoparietal junction and, left temporal pole. Across the sexes, greater total CMDT 

scores were associated with lower task-induced deactivation in the posterior part of the 

DMN, which was consistent with our previous study, and were also associated with 

greater activity in extensive areas of the right temporoparietal junction and right inferior 

frontal gyrus during the 0-back task and 2-back task. Lastly, across the sexes, 

originality/fluency scores were positively correlated with measures of psychometric 

intelligence, simple processing speed, and systemizing (although the association with 
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simple processing speed was female-specific). The lower correlation coefficients 

between brain activity and CMDT scores, as shown in the figures, are not indicative of 

the low importance of the observed associations; low correlations are typical in studies 

of associations between cognitive variables and neuroimaging measures with large 

sample sizes (Takeuchi and Kawashima, 2019). See the Supplemental Discussion for 

more on this issue.  

Brain activity in the anterior part of the right temporoparietal junction, right 

superior temporal gyrus, and ventral prefrontal cortex was positively correlated with 

originality/fluency score on the CMDT across the 0-back simple cognitive task and 

2-back WM task, and also the total CMDT score showed similar patterns (see 

Supplemental Results section). These areas of the right hemisphere form the ventral 

attention system (Corbetta et al., 2008) and are involved in reorienting attention to 

outside events or switching attention between different matters and networks (Corbetta 

et al., 2008). Suppression of this network is thought to reflect a filtering signal that gates 

sensory responses by behavioral relevance (Corbetta et al., 2008). When subjects focus 

on a task, deactivation of this network is thought to prevent reorientation to unimportant 

objects (Corbetta et al., 2008). Therefore, relatively greater activity in these areas 

reflects conditions where subjects are easily distracted and reoriented to unimportant 

objects and one are not filtering the unimportant objects completely. These findings may 

be consistent with previous studies reporting that creative subjects have insufficient 

selective attention (Necka, 1999) and insufficient ability to ignore irrelevant external 

stimuli (Kasof, 1997). Hyperactive children, who are characterized by a decreased 

ability to easily focus their attention, tend to show greater creativity (Kuntsi et al., 2001) 

and administration of the drug Ritalin reduces ADHD symptoms and creativity 
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(Swartwood et al., 2003). It has been suggested that greater creativity might be achieved 

using different brain networks, which represent knowledge in one domain to help 

organize a quite different domain that might, nevertheless, share some attributes 

(Heilman et al., 2003). Tendency to frequently switching attention between different 

networks or incorporate seemingly unimportant matters may lead one to rare ideas, 

thereby achieving originality and creativity. However, this study did not utilize 

measures of behavioral distractibility. As these ideas are reverse inference and 

speculations, confirmatory studies are needed. 

Besides the right ventral attention network, originality/fluency scores showed 

positive correlation with brain activity in areas deactivated during externally-directed 

attention-demanding tasks (meaning greater originality/fluency scores were associated 

with smaller task-induced deactivation in the DMN). Although total creativity score was 

positively correlated with a part of the posterior DMN, which is consistent with our 

previous study (Takeuchi et al., 2011b), originality/fluency scores showed clear and 

widespread correlations. We previously suggested that reduced TID in the DMN in 

creative subjects (based on total score) reflected inefficient reallocation, partly because 

the magnitude of TID in the DMN is characteristic of subjects with reduced WMC, such 

as relatives of schizophrenia patients and the elderly (Sambataro et al., 2010; 

Whitfield-Gabrieli et al., 2009), whereas schizotypy is characterized by facilitated 

creativity and impaired WM capacity (Fisher et al., 2004; Horan et al., 2008; Matheson 

and Langdon, 2008). Low TID of the DMN is reportedly underlain by brain 

excitability/inhibition mediated by glutamate and GABA (Hu et al., 2013), which are 

characteristics of patients with schizophrenia (Lewis et al., 2012). However, in the 

present study, originality/fluency scores were positively correlated with psychometric 
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intelligence (and tended to be positively correlated with WM performance). Our 

previous study showed an association between greater psychometric intelligence and 

reduced TID in the DMN (Takeuchi et al., 2018). Considering that TID is smaller in 

tasks with low cognitive demand (McKiernan et al., 2003), from this perspective, 

reduced TID in the DMN may be indicative of lower cognitive demand being 

experienced by subjects, and thus greater cognitive competence. Consistent with this 

notion, we previously reported that the risk allele of the dopamine receptor D4 gene for 

ADHD was associated with reduced TID in the DMN and, specifically, greater 

originality among CMDT subscales (Takeuchi et al., 2015d). However, brain activity of 

intelligent subjects was also characterized by lower activation increases in areas 

activated during the tasks, which was not observed in subjects with greater 

originality/fluency score in this study (Takeuchi et al., 2018). Considering that 

characteristics of subjects with specifically greater originality in CMDT may not be 

same as those of schizotypy (low TID, signs of worse performance and excitability) nor 

subjects with greater intelligence (low TID, low activation, better performance). Other 

factors, such as greater cognitive speed (as confirmed in the present study), could 

compensate for inefficient attentional reallocation underlain by greater neural 

excitability in such subjects.  

These correlations of divergent thinking performance with brain activity 

patterns in the DMN during the externally directed attention-demanding task are 

consistent with previous neuroimaging findings showing associations between CMDT 

and changes in DMN activity patterns. For example, Beaty et al. (2015) reported 

coupling of the DMN and executive control network during the alternate uses divergent 

thinking task compared to the control task condition. Further, resting-state fMRI studies 
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have reported that the functional connectivity of various areas involving the DMN are 

associated with higher creativity as measured by alternate uses tasks and other divergent 

thinking tasks (Beaty et al., 2014), the S-A creativity test employed in the present study 

(Takeuchi et al., 2012b), and the verbal TTCT test (Beaty et al., 2014). Jung et al. 

(2010) also reported that cortical thickness at the temporoparietal junction, which is part 

of the DMN, is negatively associated with greater CMDT performance as measured by a 

composite creativity index composed of three divergent thinking task scores. Further, 

reduced task-induced deactivation in precuneus and right temporoparietal junction 

during a divergent thinking task (alternate uses task) was associated with greater 

originality on the task (Fink et al., 2014). Also, Mayseless et al. (2015) reported that 

brain activation in the ventral anterior cingulate areas of the DMN was positively 

correlated with average originality in the alternative uses task compared with a control 

task. The present results further extent this finding of greater activity in the DMN 

among subjects with greater originality (relative to fluency) during an externally 

directed attention-demanding task that does not involve divergent thinking, and supports 

the specific involvement of originality and the attentional process itself (rather than 

cognitive processes recruited for divergent thinking) in the associations between DMN 

and divergent thinking.  

In psychological analyses, although the psychological correlates of total CMDT 

scores that were previously reported and are presented in Supplemental Table 2, and 

psychological correlates of originality/fluency scores overlapped, the psychological 

correlates of originality/fluency scores are limited to “cognitive” aspects (cognitive 

functions and systemizing, which is a drive to analyze a system), and did not include 

empathizing (social components) or motivational states (affective components). The 
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specific association of originality with psychometric intelligence was consistent with 

previous studies (Jauk et al., 2013). Interestingly, originality/fluency scores did not 

correlate with fluency of CMDT, but did show significant positive correlations with 

cognitive speed (total score and perception factor score on TBIT, although the latter 

correlations seem to be specific to females), which is an advancement of the present 

study. Thus, while the ADHD risk was specifically associated with originality (Takeuchi 

et al., 2015d), superior basic cognitive abilities, including psychometric intelligence 

measured by nonverbal reasoning and cognitive speed, may also contribute to generate 

original ideas in CMDT. Furthermore, associations of originality/fluency score with 

systemizing suggest that by analyzing a system, subjects with higher systemizing may 

be able to generate original ideas. This relationship could explain the creative 

achievements by individuals with autistic characteristics in certain areas (Baron-Cohen, 

2003). 

Furthermore, interaction effects between sex and CMDT scores on brain 

activity were observed, especially during the 0-back task. The mechanisms underlying 

these associations are not clear. However, our psychological analyses revealed 

significantly greater associations between originality/fluency scores and simple 

processing speed among females, who also tended to show greater associations between 

total CMDT scores and simple processing speed (Supplemental Table 2). These findings 

may coincide with female-specific positive correlations between total CMDT scores and 

regional white matter volume (Takeuchi et al., 2017b), which is in turn associated with 

simple processing speed (Magistro et al., 2015). The significant interaction between sex 

and originality/fluency scores and total CMDT scores in the left precentral and 

postcentral gyrus (Supplemental Fig. 3) may be due to the greater speed in subjects with 
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greater originality, which may be associated with greater neural efficiency in females in 

sensorimotor areas. On the other hand, in addition to differences in precentral and 

postcentral areas, females with greater originality/fluency scores showed lower TID in 

extensive areas of the posterior part of the DMN in the 0-back task. Given that the 

0-back task is simple enough for highly-educated young adult samples, greater TID in 

the DMN may reflect efficient attentional reallocation (Whitfield-Gabrieli et al., 2009). 

It is possible that subjects with greater originality/fluency scores tend to focus on simple 

cognitive tasks and thus achieve better performance on simple cognitive tasks (but not 

cognitively-demanding WM tasks). However, the present study lacks data to confirm 

these speculations.  

The present brain imaging results of the total CMDT score offered an 

opportunity to compare the neural correlates of CMDT with the neural correlates of 

fluid intelligence as measured by nonverbal reasoning (RAPM). In our previous study 

(Takeuchi et al., 2018) including almost the same cohort, the associations between high 

RAPM score and brain activity were generally characterized by (a) lower task-induced 

deactivation in areas normally deactivated during 0-back, 2-back, and 2-back − 0-back 

tasks (which did not include temporoparietal junction areas), (b) a lower activation 

increase in areas normally activated during these same tasks, and (c) a greater increase 

in the pre-supplementary motor area during the 2-back task. These patterns are similar 

regardless of whether the total CMDT score is added as a covariate, and total CMDT 

score was not significantly correlated with RAPM score (Table 2). The present results 

showing correlations between brain activation patterns and total CMDT score are in 

accord with our previous findings of correlations between RAPM and brain activity (see 

(a) above) as both correlates involve lower task-induced deactivation in areas close to 
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the posterior cingulate cortex. However, the two correlates are otherwise distinct, 

consistent with the notion that CMDT and psychometric intelligence are mainly 

independent (Sternberg, 2005). 

Another interesting psychological finding is that originality/fluency score did not show 

any correlation with fluency, indicating that there is no trade-off with fluency and that 

the more one tends to generate ideas, the more original ideas are generated. This finding 

appears consistent with the “equal-odds rule” of creativity, suggesting that the more 

output one produces, the better the chance that one idea generates impacting products 

and the most prolific ones have the same likelihood of success as do the least productive, 

on a product-for-product basis (Simonton, 1994). The application to this rule to 

divergent thinking productions was suggested by Jung et al. using another scoring 

method (Jung et al., 2015); they used the holistic score obtained by the Consensual 

Assessment Technique (Amabile, 1982) and snapshot scoring method (Silvia et al., 

2009) wherein all six subject responses were given a single holistic score by three 

judges and yielded a positive linear relationship between fluency and holistic score. 

Although we used different scoring methods and originality (reflecting statistical 

infrequency) as described in Methods, our present findings may be in line with these 

previous findings of the “equal-odds rule” of creativity. 

This study is subject to several limitations. First, like many studies in this field, 

we used a sample of highly-educated young adults (Jung et al., 2010; Li et al., 2014). In 

such highly-educated samples, associations among higher-order cognitive abilities (such 

as intelligence) tend to be lower (Engle et al., 1999; Takeuchi et al., 2018). However, it 

is known that creativity is associated with psychometric intelligence under a certain 

threshold of intelligence (Sternberg, 2005), and focusing on a highly-educated sample 
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may be necessary to disentangle the complex relationship between CMDT and 

higher-order cognitive abilities. Future studies focusing on the general population may 

be necessary to determine if the present findings are generalizable. Further, it is known 

that the psychometric characteristics of CMDT are affected by the task instructions 

(Benedek et al., 2013; Niu and Liu, 2009; Silvia et al., 2013). In the present study, we 

focused on the traditional instruction of “generate as many ideas as possible”. Future 

studies may be required to determine if other types of instructions, such as focusing on 

the quality of the ideas, generate other psychological profiles of CMDT.  

 Among relevant studies in diverse fields, previous studies have revealed that 

originality of CMDT is specifically associated with psychometric intelligence. The 

present study not only confirmed these findings, but further revealed that 

originality/fluency score is positively correlated with systemizing and simple processing 

speed (the latter relationship in females only). From the perspective of brain activity 

during externally-directed attention-demanding tasks, our previous study revealed that 

total CMDT score was associated with reduced TID in the DMN with a cluster size test 

shown to be anticonservative. The present study used more than 1200 subjects and 

permutation-based statistics which are shown to properly control false positives to 

reveal the brain activity correlates of originality/fluency scores. We also confirmed 

interaction effects between sex and CMDT scores on neural activity using this large 

sample size, consistent with the growing body of literature reporting interactions 

between sex and CMDT scores on neural mechanisms. These represent important 

contributions of the present study over previous work.  

Originality/fluency scores were associated with greater brain activity during the 

0-back simple cognitive task and 2-back WM task in key nodes of the ventral attention 



 39

system (Corbetta et al., 2008), which is located in the right hemisphere and is involved 

in reorienting attention. Like subjects with greater psychometric intelligence, subjects 

with greater originality/fluency scores showed lower task-induced deactivation in areas 

of the DMN, especially during WM performance. However, unlike subjects with greater 

psychometric intelligence, subjects with greater originality/fluency scores did not show 

lower task-related increases in areas activated during externally-directed 

attention-demanding tasks. Furthermore, interaction effects between sex and 

originality/fluency scores, on functional activity during the 0-back task were 

observed—especially in sensorimotor areas. This finding may be ascribed to greater 

associations between simple processing speed and CMDT scores in females than in 

males. Lastly, psychological analyses showed that originality/fluency scores were 

associated with psychometric intelligence and systemizing, but not with social and 

affective correlates of total CMDT scores.  
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Table 1. Matrix of statistical results (simple correlation coefficients and P values) of simple correlation analyses performed for basic psychological 

variables of males (upper side) and females (lower side). 

 1 2 3 4 5 6 7 8 9 

1, S-A creativity test 

total - 

0.245 

4.80×10−11 

0.782 

9.65×10−146 

0.885 

1.46×10−233 

0.856 

4.25×10−202 

0.968 

0* 

-0.046 

0.227 

-0.012 

0.745 

0.009 

0.814 

2, S-A creativity 

Originality/fluency 

0.281 

6.46×10−11 - 

0.719 

1.86×10−112 

0.033 

0.390 

0179 

1.92×10−6 

0.026 

0.485 

0.008 

0.831 

0.008 

0.827 

0.006 

0.873 

3, S-A creativity 

originality 

0.751 

1.36×10−95 

0.783 

3.44×10−109 - 

0.627 

7.09×10−78 

0.736 

3.53×10−120 

0.603 

2.07×10−70 

0.002 

0.956 

0.018 

0.630 

0.022 

0.566 

4, S-A creativity 

fluency 

0.886 

6.15×10−175 

-0.007 

0.865 

0.579 

6.01×10−48 - 

0.874 

2.67×10−221 

0.883 

3.71×10−231 

-0.032 

0.400 

0.002 

0.952 

0.020 

0.600 

5, S-A creativity 

flexibility 

0.825 

1.63×10−130 

0.236 

1.96×10−8 

0.697 

6.73×10−77 

0.853 

6.51×10−149 - 

0.803 

9.94×10−159 

-0.057 

0.133 

-0.032 

0.391 

-0.010 

0.783 

6, S-A creativity 

elaboration 

0.963 

2.24×10−298 

0.040 

0.362 

0.549 

2.48×10−42 

0.888 

1.44×10−177 

0.761 

8.94×10−100 

- -0.059 

0.116 

-0.023 

0.542 

0.003 

0.942 

7, 0-back RT 

-0.022 

0.615 

-0.024 

0.578 

-0.043 

0.329 

-0.007 

0.868 

-0.046 

0.294 

-0.010 

0.812 

- 0.640 

5.99×10−82 

0.269 

4.45×10−13 
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8, 2-back RT 

-0.071 

0.106 

-0.045 

0.306 

-0.015 

0.016 

-0.078 

0.074 

-0.078 

0.075 

-0.049 

0.246 

0.580 

3.89×10−48 

- 0.912 

1.06×10−272 

9, 2-back RT  

– 0-back RT 

-0.074 

0.091 

-0.042 

0.344 

-0.015 

0.017 

-0.091 

0.038 

-0.070 

0.108 

-0.054 

0.221 

0.184 

2.27×10−5 

0.908 

7.25×10−198 

- 

*P values are too small and the software returns a value of “0”.  

This matrix table was constructed to reveal distinct correlation patterns among variables between males and females.  
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Table 2. Main and interaction effects of ANCOVAs for originality/fluency scores on psychological measures. 

 Originality/fluency score 

 Main effect 

[F score, 

P value (unc), 

P value (FDR)] 

Interaction 

[F score, 

P value (unc), 

P value (FDR)] 

Male 

correlation 

(r) 

Female 

correlation 

(r) 

RAPM 

(M:700, F:521) 

5.28 

0.022 

0.046* 

0.35 

0.553 

0.460 

0.086 0.046 

TBIT-Total score 

 (M:635, F:468) 

7.56 

0.006 

0.016* 

1.69 

0.194 

0.217 

0.044 0.126- 

TBIT-Perception 

speed factor 

(M:635, F:468) 

7.46 

0.006 

0.016* 

5.73 

0.017 

0.040* 

0.010 0.162 
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Digit span 

(M:635, F:468) 

3.91 

0.048 

0.084 

3.37 

0.067 

0.101 

0.004 0.117 

Vigor scale of 

POMS 

(M:656, F:486) 

0.76 

0.385 

0.368 

1.64 

0.200 

0.217 

0.064 -0.006 

Empathizing 

(M:700, F:521) 

0.26 

0.613 

0.460 

0.63 

0.428 

0.391 

0.009 -0.024 

Systemizing 

(M:700, F:521) 

14.02 

1.89 × 10−4 

6.62 × 10−4* 

1.60 

0.207 

0.217 

0.139 0.084 

 

  



 59

Table 3. Brain regions showing significant main effects of originality/fluency scores on the S-A creativity test on brain activity. 

Including gray matter areas* x y z 
TFCE 
score 

Corrected P 
value (FWE, 
TFCE) 

Cluster 
size 
(voxels) 

activated/ 
deactivated 

** 

r*** 
(male/ 
female) 

Positive main effect of originality/fluency on activity during the 0-back task  
Angular gyrus (R)/Calcarine Cortex (R)/Cuneus (R)/ Inferior 
parietal lobule (R)/Superior parietal lobule (R)/Postcentral 
gyrus (R)/Precentral gyrus (R)/Precuneus (R)/ Supramarginal 
gyrus (R)/ Middle temporal gyrus (R)/ Superior temporal gyrus 
(R)/ 

36 -57 9 816.83 0.0054 2938 1601/1073 0.163/0.111 

Fusiform gyrus (R)/Cerebellum (R)/ 27 -69 -21 459.23 0.0466 26 26/0 0.087/0.079 

Positive main effect of originality/fluency on activity during the 2-back task 
Calcarine Cortex (B)/ Middle cingulum (B)/Posterior cingulum 
(B)/Cuneus (B)/Inferior frontal orbital area (R)/Fusiform gyrus 
(B)/Heschl’s gyrus (R)/Hippocampus (B)/Insula (R)/Lingual 
gyrus (B)/Inferior occipital lobe (B)/Middle occipital lobe 
(B)/Superior occipital lobe (B)/Paracentral lobule 
(B)/Parahippocampal gyrus (B)/Superior parietal lobule 
(B)/Postcentral gyrus (B)/Precentral gyrus (R)/Precuneus (B)/ 
Supplemental motor area (B)/Inferior temporal gyrus 
(B)/Middle temporal gyrus (B)/Temporal pole (R)/Superior 
temporal gyrus (R)/Thalamus (B)/Cerebellum (B)/ 

-3 -63 24 826.33 0.002 5686 1368/4001 0.161/0.137 

Anterior cingulum (B)/ Superior frontal medial area (B)/ 
Superior frontal other areas (B)/ 

-15 51 24 575.83 0.017 448 2/445 0.152/0.067 

Middle frontal other areas (L)/ -30 60 6 438.42 0.046 1 1/0 0.061/0.065 

Precentral gyrus (L)/ -18 -27 60 438.42 0.046 2 0/2 0.049/0.065 

Positive main effect of originality/fluency on activity of the contrast (2-back – 0-back) 
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Superior frontal medial area (B)/Superior frontal other areas 
(B)/ 

-15 51 24 616.04 0.0142 350 0/350 0.128/0.135 

Calcarine Cortex (B)/ Posterior cingulum (L)/Cuneus (B)/ 
Precuneus (B)/ 

0 -66 24 559.27 0.0206 291 0/291 0.110/0.152 

Hippocampus (R)/Lingual gyrus (R)/Parahippocampal gyrus 
(R)/ 

21 -18 -18 482.89 0.0356 46 11/20 0.076/0.181 

Anterior cingulum (B)/ 3 36 18 475.2 0.0388 46 0/46 0.039/0.161 

Middle frontal medial area (L)/ 0 60 -6 454.31 0.0442 1 0/1 0.082/0.104 

Middle cingulum (L)/ -15 -45 36 444.22 0.047 3 0/3 0.035/0.157 
*Labeling of the anatomical regions of gray matter is based on the WFU PickAtlas Tool 

(http://www.fmri.wfubmc.edu/cms/software#PickAtlas/) (Maldjian et al., 2004; Maldjian et al., 2003) and the PickAtlas automated 

anatomical labeling atlas option (Tzourio-Mazoyer et al., 2002). In this atlas, temporal pole areas and some other areas include all 

subregions. Areas of the superior frontal other areas include areas of the superior frontal gyrus other than the medial, orbital, and 

medial-orbital parts of the superior frontal gyrus. Only areas with significant voxels comprising 10% or more of the cluster or areas with 

50 or more significant voxels that existed in the cluster were reported. 

**Percentage of voxels activated or deactivated during the corresponding condition (i.e., in the case of 0-back analyses, 

activity/deactivation during the 0-back task) among the whole sample (P < 0.05, FDR corrected at the voxel level). 

*** Simple correlation coefficients between mean beta estimates of significant clusters and psychological scores. Note that due to 

overfitting in whole-brain analyses (Vul et al., 2009), the correlation coefficients of significant areas are overestimated to a degree 
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depending on the sample size and number of comparisons. 
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Table 4. Brain regions showing significant interactions between originality/fluency scores and sex on brain activity. 

Including gray matter areas* x y z 
TFCE 
score 

Corrected 
P value 
(FWE, 
TFCE) 

Cluster 
size 
(voxels) 

activated/ 
deactivated 

** 

r*** 
(male/ 
female) 

Interaction between originality/fluency and sex on 0-back activity (positive effects in males and negative effects in females) 
Angular gyrus (B)/Calcarine Cortex (B)/Middle cingulum 
(B)/Posterior cingulum (B)/Cuneus (B)/Lingual gyrus 
(B)/Middle occipital lobe (B)/Superior occipital lobe 
(B)/Paracentral lobule (B)/ Superior parietal lobule 
(B)/Postcentral gyrus (B)/ Precuneus (B)/Rolandic operculum 
(B)/Middle temporal gyrus (L)/Superior temporal gyrus (L)/ 

-42 -57 27 652.04 0.0118 3100 589/2229 0.181/-0.085 

Middle temporal gyrus (L)/Temporal pole (L)/ -45 6 -24 491.86 0.0348 129 33/53 0.085/-0.138 

Hippocampus (L)/Parahippocampal gyrus (L)/ -27 -21 -24 490.78 0.0352 47 9/26 0.101/-0.107 

Thalamus (L)/ -9 -18 0 483.07 0.0374 61 59/1 0.123/-0.077 

Interaction between originality/fluency and activity of the contrast (2-back – 0-back) (positive effects in males and negative effects in females) 

Inferior parietal lobule (L)/Superior parietal lobule (L)/ -30 -57 39 488.67 0.0378 61 60/0 -0.143/0.126 
*Labeling of the anatomical regions of gray matter is based on the WFU PickAtlas Tool 

(http://www.fmri.wfubmc.edu/cms/software#PickAtlas/) (Maldjian et al., 2004; Maldjian et al., 2003) and the PickAtlas automated 

anatomical labeling atlas option (Tzourio-Mazoyer et al., 2002). In this atlas, temporal pole areas and some other areas include all 

subregions. Areas of the superior frontal other areas include areas of the superior frontal gyrus other than the medial, orbital, and 

medial-orbital parts of the superior frontal gyrus. Only areas with significant voxels comprising 10% or more of the cluster or areas with 
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50 or more significant voxels that existed in the cluster were reported. 

**Percentage of voxels activated or deactivated during the corresponding condition (i.e., in the case of 0-back analyses, 

activity/deactivation during the 0-back task) among the whole sample (P < 0.05, FDR corrected at the voxel level). 

*** Simple correlation coefficients between mean beta estimates of significant clusters and psychological scores. Note that due to 

overfitting in whole-brain analyses (Vul et al., 2009), the correlation coefficients of significant areas are overestimated to a degree 

depending on the sample size and number of comparisons.
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Figure legends 

Fig. 1. Distribution of the originality/fluency scores from the S-A creativity test in our 

sample. 

Fig. 2. Regions with a significant positive main effect of originality/fluency test score 

on the CMDT on brain activity. (Left panels) Originality/fluency score on the S-A 

creativity test showed a significant positive main effect on brain activity during the 

0-back task (a), and that during the 2-back task (b) and activity of the contrast of 2-back 

– 0-back. Results were obtained using a threshold of P < 0.05, corrected for multiple 

comparisons based on 5000 permutations using TFCE scores. (Middle panels) 

Scatterplots of the associations between originality/fluency score on the S-A creativity 

test and mean beta estimates of significant clusters. (Right panels) Areas deactivated 

during the corresponding conditions. All results are displayed at a height threshold of 

0.05, FDR corrected. (Left and right panels) Results are rendered on a “render” image 

or a “single-subject T1” image (in the case of section images) in SPM8. 

Fig. 3. Regions with significant interaction effects between sex and scores on the 

CMDT on brain activity. (Left panels) Originality/fluency score on the S-A creativity 

test showed significant interaction effects with sex on brain activity during the 0-back 

task. This interaction was moderated by a positive correlation in males and negative 

correlation in females. Results were obtained using a threshold of P < 0.05, corrected 

for multiple comparisons based on 5000 permutations using TFCE scores. (Middle 

panels) Scatterplots of the associations between scores on the S-A creativity test and 

mean beta estimates of significant clusters. (Right panels) Areas activated (red) and 

deactivated (blue) during the corresponding conditions. All results are displayed at a 

height threshold of 0.05, FDR corrected. (Left and right panels) Results are rendered on 
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a “render” image or a “single-subject T1” image (in the case of section images) in 

SPM8. 
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Figure 1. 
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Figure 2. 
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Figure 3. 

 


