Increasing intensities of Anisakis simplex third-stage larvae (L3) in Atlantic salmon of coastal waters of Scotland

Kent, A.J. ORCID: 0000-0003-0336-2894, Pert, C.C., Briers, R.A., Diele, K. and Rueckert, S., 2020. Increasing intensities of Anisakis simplex third-stage larvae (L3) in Atlantic salmon of coastal waters of Scotland. Parasites & Vectors, 13 (1): 62. ISSN 1756-3305

1325494_Kent.pdf - Published version

Download (1MB) | Preview


Background: Red Vent Syndrome (RVS), a haemorrhagic inflammation of the vent region in Atlantic salmon, is associated with high abundance of Anisakis simplex (s.s.) third-stage larvae (L3) in the vent region. Despite evidence suggesting that increasing A. simplex (s.s.) intensity is a causative factor in RVS aetiology, the definitive cause remains unclear.

Methods: A total of 117 Atlantic salmon were sampled from commercial fisheries on the East, West, and North coasts of Scotland and examined for ascaridoid parasites. Genetic identification of a subsample of Anisakis larvae was performed using the internal transcribed spacer (ITS) region of ribosomal DNA. To assess the extent of differentiation of feeding grounds and dietary composition, stable isotope analysis of carbon and nitrogen was carried out on Atlantic salmon muscle tissue.

Results: In the present study, the obtained ITS rDNA sequences matched A. simplex (s.s.) sequences deposited in GenBank at 99–100%. Not all isolated larvae (n = 30,406) were genetically identified. Therefore, the morphotype found in this study is referred to as A. simplex (sensu lato). Anisakis simplex (s.l.) was the most prevalent (100%) nematode with the highest mean intensity (259.9 ± 197.3), in comparison to Hysterothylacium aduncum (66.7%, 6.4 ± 10.2) and Pseudoterranova decipiens (s.l.) (14.5%, 1.4 ± 0.6). The mean intensity of A. simplex (s.l.) represents a four-fold increase compared to published data (63.6 ± 31.9) from salmon captured in Scotland in 2009. Significant positive correlations between A. simplex (s.l.) larvae intensities from the body and the vent suggest that they play a role in the emergence of RVS. The lack of a significant variation in stable isotope ratios of Atlantic salmon indicates that diet or feeding ground are not driving regional differences in A. simplex (s.l.) intensities.

Conclusions: This paper presents the most recent survey for ascaridoid parasites of wild Atlantic salmon from three coastal regions in Scotland. A significant rise in A. simplex (s.l.) intensity could potentially increase both natural mortality rates of Atlantic salmon and possible risks for salmon consumers due to the known zoonotic role of A. simplex (s.s.) and A. pegreffii within the A. simplex (s.l.) species complex.

Item Type: Journal article
Publication Title: Parasites & Vectors
Creators: Kent, A.J., Pert, C.C., Briers, R.A., Diele, K. and Rueckert, S.
Publisher: BioMed Central
Date: 12 February 2020
Volume: 13
Number: 1
ISSN: 1756-3305
Rights: © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Divisions: Schools > School of Animal, Rural and Environmental Sciences
Record created by: Linda Sullivan
Date Added: 14 May 2020 15:28
Last Modified: 17 Jun 2020 16:36

Actions (login required)

Edit View Edit View


Views per month over past year


Downloads per month over past year