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ABSTRACT 

 A reduced blood lactate concentration ([lac
-
]B) is commonly observed during 

whole-body exercise following inspiratory muscle training (IMT). However, whether the 

inspiratory muscles are, in part, the source of these reductions remains unknown. 

Accordingly, this thesis investigated: (I) the contribution of the respiratory muscles to the 

systemic [lac
-
]B and (II) the effects of IMT upon inspiratory muscle lactate exchange and 

clearance. In addition, the thesis also evaluated the determinants of inspiratory muscle 

strength (maximal inspiratory mouth pressure; MIP). All subjects were healthy, active and 

free of pulmonary and respiratory muscle disease. 

Under resting conditions, 10 min intense volitional hyperpnoea at 85% of maximal 

exercise minute ventilation ( EV max) increased [lac
-
]B by 0.96 mmolL

-1
. This was 

attenuated by 25% following 6 wks IMT. 8 min volitional hyperpnoea at 90% EV max 

imposed upon exercise at the maximal lactate steady state (MLSS) increased [lac
-
]B by 0.99 

mmolL
-1

. Following 6 wk IMT, the steady state and hyperpnoea-mediated increase in [lac
-
]B 

were lower by 8 and 26%, respectively. Relative to pre-IMT, loading the trained inspiratory 

muscles using a low-intensity pressure threshold resistance (15 cmH2O) immediately 

following maximal exercise accelerated both lactate exchange and clearance capacities by 

~70%. Collectively these findings support the notion that the respiratory muscles are capable 

of net lactate production and are the first to suggest that IMT increases their capacity for 

lactate clearance. This thesis also demonstrates that the respiratory muscles are responsible, 

in part, for the reductions observed in [lac
-
]B during whole-body exercise following IMT.  

Finally, baseline MIP was positively correlated with the strength of the chest wall 

inspiratory muscles. The IMT-mediated increase in MIP was negatively correlated with the 

relative increase in chest wall muscle strength. Therefore, these findings are the first to 

demonstrate that the lower the initial strength of the chest wall inspiratory muscles, the 

lower the MIP and the greater the improvement in global inspiratory muscle strength 

following IMT. 
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1.1 THE RESPIRATORY SYSTEM  

1.1.1 INTRODUCTION 

The respiratory system comprises the lung parenchyma across which gases are 

exchanged between the alveoli and the pulmonary capillaries and the respiratory pump 

(which includes the rib cage [also referred to as the thorax] and the respiratory muscles) 

which powers pulmonary ventilation. The primary function of the respiratory system is to 

preserve the partial pressure of arterial blood gases including oxygen (O2: PO2) and carbon 

dioxide (CO2: PCO2) and thus a large proportion of acid-base homeostasis. At rest and 

during even heavy exercise, the pulmonary system achieves this with exceptional precision 

despite a reduction in the transit time of the red blood cell in the pulmonary capillary and 

the marked increase in venous PCO2 and decrease in PO2. This unique function requires 

the co-ordination of central motor output from the autonomic nervous system to the 

inspiratory and expiratory respiratory muscles to match breathing pattern with the ever 

changing feedforward (motor output) and feedback (afferent discharge) stimuli. However, 

all of this must take place with a minimal energy cost to the body (Dempsey et al. 2006a). 

 

1.1.2 THE LUNG PARENCHYMA 

Although the lung is not the focus of the thesis a brief summary of its structure and 

function are essential for a holistic understanding of the pulmonary system in the healthy 

human. The lungs are elastic structures and comprise approximately 300 million small 

sacks of tissue called alveoli (Figure 1.1). Within the alveoli gases are exchanged by 

passive diffusion across the blood-gas barrier into the myriad of pulmonary capillaries. The 

total surface area of the alveoli is approximately 50 to 100 m
2
 (West 2000) and since the 

blood gas barrier is extremely thin (around 0.3 μm) and the diameter of a pulmonary 

capillary is similar to that of a red blood cell (~10 μm), the alveoli wall may be described 

as a sheet of blood exposed to alveolar gas.  

 



 3 

 

Figure 1.1 Cross sectional illustrations of the lungs and airways which terminate at the alveoli; it is here 

where gas exchange occurs by passive diffusion (adapted from Griesenbach et al. 2004)  

 

 

Typically in healthy exercising humans, the pulmonary system does not limit 

maximal oxygen consumption ( 2OV max; Demspey 1986). However, with chronic 

endurance training, almost all components of the O2 transport and metabolic systems 

(cardiac muscle, circulation and skeletal muscle) demonstrate progressive functional 

adaptation whereas the lung does not. Interestingly, the lung only demonstrates plasticity 

during hypoxia immediately after birth or with surgical denervation of up to 50% of the 

lungs (Wagner 2005). As a consequence, many other systems overtake the capacity of the 

pulmonary system. Therefore, in this instance the pulmonary system may occupy a critical 

link in the O2 transport system (Dempsey 1986; Wagner 2005). 
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1.1.3 THE THORAX  

The thorax is a semi-rigid elastic structure to which the respiratory muscles attach 

permitting changes in lung volume through an increase or decrease in thoracic volume 

(Cappello and De Troyer 2002). The chest wall and lung are separated by the pleural space 

which contains the pleural fluid (Lai-Fook 2004). The pleural fluid acts as a lubricant 

which facilitates the slide of the lung against the posterior surface of the chest wall and the 

conduction of intra-thoracic pressure changes which permit lung expansion (Agostoni 

1986). At functional residual capacity (FRC) the elastic recoil of the lung and the tendency 

for rib cage expansion balance one another and thus pleural pressure (Ppl) remains 

constant at approximately -5 cmH2O.  

  

1.1.4 FUNCTIONAL ANATOMY OF THE THORAX 

 The thorax comprises 12 pairs of ribs, which articulate with the thoracic vertebrae 

and the sternum; this is known as the costochondral junction (Figure 1.2). The 1
st
 rib is 

relatively flat and articulates with the manubrium sterni in an immovable cartilaginous 

joint. Ribs 2 to 10 are relatively fixed during the breath cycle at their origin: the vertebrae 

(costovertebral joints) and transverse processes (costotransverse joints) such that 

movement of these ribs occur through rotation of the long axis of its neck (De Troyer et al. 

2005). Ribs 11 and 12 are known as floating ribs and interact directly with the inner 

surface of the abdominal wall.  
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Figure 1.2 Anatomical illustration of the thorax (adapted from Stone and Stone 2000) 

 

 

 During inspiration, the displacement of individual ribs varies. The upper ribs are 

more rigid due to their connection with the sternum and throughout inspiration they 

become more horizontal, the anterior ends move up and outward with minimal lateral 

displacement. These ribs follow the direction of the sternum; this is known as the pump 

handle action (Figure 1.3A). The hinging of the middle ribs carries them more lateral and 

cranial; this is referred to as the bucket handle action (Figure 1.3B). Finally, the lower ribs 

are susceptible to rib-cage distortion because they have a freely moveable, cartilaginous 

connection with the sternum; this is known as the calliper-like action (Figure 1.3C).  
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Figure 1.3 The functional action of the ribs showing A) pump handle action of the upper ribs; B) bucket 

handle motion of the middle ribs and C) calliper-like motion of the lower ribs (De Troyer et al. 2005). 

 

 

1.2 THE RESPIRATORY MUSCLES 

 Respiratory muscle mass is approximately 3% of total body mass (Robertson et al. 

1977) and although small relative to other skeletal muscles (e.g. quadriceps: 50% of total 

body mass) they are active throughout life and are considered the only essential skeletal 

muscles (Poole et al. 1997). As a consequence, their functional demands are 

uncompromised even during and possibly following intense exercise. Primary inspiratory 

muscles are active during quiet breathing and accessory inspiratory muscles are recruited 

to achieve high inspiratory flow rates. Primary expiratory muscles are recruited at the onset 

of exercise (Aliverti et al. 1997) whereas accessory expiratory muscles are recruited when 

very high expiratory flow rates are required. The precise co-ordination and recruitment of 

inspiratory and expiratory muscles in response to systemic metabolic demand is 

fundamental to arterial blood gas homeostasis, whole-body energy expenditure and 

potentially, exercise performance.  
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1.2.1 DIAPHRAGM 

The physical characteristics of the human diaphragm were investigated in 70 

human cadavers (age range: 16 - 91 yr). Mean mass of the diaphragm was 283  53 g 

which represented approximately 0.5% of total body mass. The mass and thickness of the 

diaphragm was also proportional to both the height and body mass of the cadaver with the 

thickness greater in those that performed manual / physical tasks throughout their life 

(Arora and Rochester 1982).  

The diaphragm is an elliptical cylinder capped by a dome: similar to a parachute. It 

separates the thoracic and abdominal cavities and is solely innervated by the phrenic 

nerves. The diaphragm has a non-contractile central tendon that projects to the anterior 

contractile costal hemidiaphragm and the posterior crural hemidiaphragm. Figure 1.4A 

illustrates the cross section of a rat diaphragm which is anatomically similar to the human 

diaphragm (Figure 1.4B). 

 

 

                                 

Figure 1.4 A) Schematic of the rat diaphragm (Poole et al. 1997); B) the human diaphragm at FRC 

(Rochester et al. 1981). The costal margin inserts in to the xiphoid process and the upper margins of the 

lower six ribs. The crural hemidiaphragm inserts in to the first three and two lumbar vertebrae on the left and 

right sides of the vertebral column, respectively (De Troyer and Estenne 1988).  
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At rest, the muscle fibres of the costal diaphragm run cranially such that during 

resting breathing approximately 30% of the lower rib cage is directly apposed to the 

diaphragm; this is known as the area of apposition (Figure 1.4B). During a quiet inspiration 

at rest, the zone of apposition is reduced, as the costal muscle fibres shorten (De Troyer 

and Estenne 1988). Here, the diaphragm may account for up to 90% of the total change in 

lung volume (Poole et al. 1997).  

 

1.2.2 SCALENES 

The scalenes anterior, medial and posterior (Figure 1.5) are often overlooked as 

primary inspiratory muscle (e.g. Sheel et al. 2002). Their total mass is approximately 0.1% 

total body mass (Legrand et al. 2003). Using computed topographic scanning and needle 

EMG, it has been shown that the scalenes contract in synchrony with the diaphragm (De 

Troyer and Estenne 1984; Gandevia et al. 1996; Legrand et al. 2003). Scalene muscle 

activation displaces the sternum cranially through rotation of the long axis of the ribs‟ neck 

(De Troyer and Kelly 1984) and apposes the dorsal displacement of the upper ribcage 

throughout inspiration (Legrand et al. 2003).  
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Figure 1.5 Anterior view of the upper rib cage and the anterior, medial and posterior scalenes (De Troyer and 

Estenne, 1988). The scalenes originate at the transverse processes of C1 to C6 and insert on to the upper 

surface of the first (scalenes anterior and medial) and second ribs (scalene posterior). 

 

 

 

1.2.3 PARASTERNAL INTERCOSTALS 

The parasternal intercostals (Figure 1.6) are located ventrally between the lateral 

borders of the sternum and the costochondral junctions (De Troyer et al. 2005) and have a 

mass <0.1% total body mass (De Troyer et al. 1998). Parasternal shortening causes rotation 

of the chondrosternal junction and elevates the ribs (De Troyer and Estenne 1998), this 

action occurs in synchrony with the scalenes and the diaphragm (Gandevia et al. 1996).  
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Figure 1.6 Functional anatomy of the parasternal intercostals which are located between the lateral borders 

of the sternum and the chondrosternal junctions (De Troyer and Estenne, 1988). 

 

 

1.2.4 ACCESSORY INSPIRATORY MUSCLES 

During exercise, tidal volume (VT) plateaus at approximately 50 to 60% of vital 

capacity (VC) and the elastic resistance of the thorax becomes increasingly restrictive 

(Wetter and Dempsey 2000). Therefore, further increases in minute ventilation ( EV ) are 

brought about by an increase in breathing frequency (R; Sheel 2002). The increase in R is 

achieved by recruiting accessory respiratory muscles (and expiratory muscles). Some of 

these accessory respiratory muscles have an extra-thoracic origin and may only assist 

breathing during exercise where near maximal flow rates are generated. These include the 

pectoralis major and minor, trapezius, serratii and muscles of the upper airway. The 

external intercostals, sternocleidomastoids and the levator costae are directly involved in 

the cranial and ventral displacement of the rib cage and are considered the most important 

accessory respiratory muscles in humans (De Troyer and Estenne 1998), thus a brief 

synopsis of their function follows. 
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The muscle fibres of the external intercostals are orientated obliquely in the caudal-

ventral direction from the rib above to the rib below (De Troyer et al. 2005; Figure 1.7). 

The total muscle mass of the external intercostals is <0.01% total body mass and is reduced 

from the 2
nd

 to the 8
th
 intercostal space in a dorsal-ventral (back to front) direction. Wilson 

et al. (2001) demonstrated that due to the differences in rib rotation mechanics (See Figure 

1.3) toward the top and back of the rib cage the external intercostals are inspiratory and 

toward bottom and front of the rib cage they are expiratory. Despite this, evidence for their 

direct respiratory function is limited since they are activated following the onset of 

inspiration when the gain of parasternal and scalene activation is increasing.  

 

 

Figure 1.7. Functional anatomy of (A) external intercostals and (B) internal interosseous intercostals (De 

Troyer and Estenne, 1988). The muscle fibres of the external intercostals extend from the dorsal tubercles of 

the ribs to the ventral costochondral junctions. The internal interroseous intercostals extend from the 

sternocostal junctions to the tubercles of the ribs. 

 

 

  

 

 

A  
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 The sternocleidomastoids run parallel to the scalenes (Figure 1.8). Limited research 

has focused on this muscle group in humans. In anaesthetised dogs, electrical stimulation 

of the sternocleidomastoid indicates that it facilitates the pump-handle cranial displacement 

of the upper ribs (De Troyer and Kelly 1984) and increases the dorso-ventral diameter of 

the rib cage (Legrand et al. 2003).  

 

 

 
Figure 1.8  Anterior view of the sternocleidomastoids (Stone and Stone 2000). The sternocleidomastoids 

insert proximally in to the mastoid process of the occipital bone and originates distally at the manubrium 

sterni, and the clavicle. 

 

 

The levator costae (Figure 1.9) are thin triangular shaped muscles which elevate the 

ribs. However they are recruited secondary to the parasternal intercostal (De Troyer and 

Farkas 1989). The levator costae are located in the dorsal intercostal spaces adjacent to the 

transverse processes of the vertebrae (De Troyer et al. 2005).  

 

     Sternal Head 

  Clavicular Head 
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Figure 1.9 Posterior view of the levator costae (Stone and Stone 2000). The levator costae is a thin triangular 

shaped muscle that originates from both sides of the transverse processes of the vertebrae (C7 to T11) and 

inserts into the caudal portion of the ribs adjacent to the external intercostal. 

 

 

1.2.5 ABDOMINAL MUSCLES 

 The primary expiratory muscles are the rectus abdominals, the transverse 

abdominals and the internal and external obliques (Figure 1.10). Activation of the rectus 

abdominals reduces the anterior-posterior diameter of the rib cage and also decreases the 

distance between the pubis and the xiphoid process (Mier et al. 1985). The transverse 

abdominis is recruited ahead of the superficial muscles of the abdominal cavity due to its 

shape and therefore role in compressing the abdominal contents (De Troyer and Estenne 

1988; De Troyer et al. 1990). The internal and external obliques may also serve to 

compress the abdominal viscera (De Troyer and Estenne 1988).  
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Figure 1.10 Muscles of the anterior abdominal wall (Stone and Stone 2000): A) external oblique which 

originates at the lower 8 ribs and the external surfaces of ribs 5 to 12 and inserts into the linea alba, pubic 

tubercle and the anterior half of iliac crest; B) internal oblique which originates at the thoracolumbar fascia, 

the anterior two thirds of the iliac crest, and the lateral half of the inguinal ligament and inserts to the costal 

margin and inferior borders of ribs 10 to 12, the linea alba, and the pubic pecten; C) transverse abdominus 

whose origin is the internal surfaces of the 7
th
 to 12

th
 costal cartilages, thoracolumbar fascia, iliac crest, and 

lateral third of the inguinal ligament and inserts in to the linea alba and the aponeurosis of the internal 

oblique as well as the pubic crest and pecten pubis and D) rectus abdominus which originates at the pubic 

symphysis and pubic crest and inserts in to the xiphoid process and 5th-7th costal cartilages. 

 

 

1.2.6 ACCESSORY EXPIRATORY MUSCLES 

Of the accessory expiratory muscles, the internal interosseous intercostal muscles 

and the triangularis sterni are considered the most important. The internal interosseous 

intercostal muscles are located in the ventral intercostal spaces (Figure 1.7B). The fibres 

run in a caudal-dorsal direction from the rib above to the rib below (De Troyer et al. 2005) 

and are superficial to the external intercostals. The total muscle mass of the internal 

interosseous intercostals is approximately 0.05% of total body mass. They are 

preferentially recruited from the bottom to the top of the chest wall. 
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 The triangularis sterni (Figure 1.11)  lies deep to the parasternal intercostals and the 

sternum. They may be activated in concert with the abdominal muscles below FRC which 

may promote the passive ascent of the chest wall during subsequent inspiration (De Troyer 

and Estenne 1988). 

       

 

Figure 1.11 Anterior view of the trunk illustrating the triangulairs sterni (Stone and Stone, 2000). The 

triangularis sterni originates at the dorsal aspect of the caudal half of the sternum and inserts into the inner 

surface of the costal cartilages of ribs 3 to 7.   

 

 

1.3. PHYSICAL CHARACTERISTICS OF THE RESPIRATORY MUSCLES 

1.3.1 RESPIRATORY MUSCLE MORPHOLOGY  

 Few studies have determined the morphology of human respiratory muscles. 

Muscle fibre type distribution determined in male human cadavers indicate 60% type I 

muscle fibres in the internal and external intercostals and 49% in the diaphragm (Mizuno 

and Secher 1989; Figure 1.12). This is similar to findings recently observed in the healthy 

living human diaphragm (Nguyen et al. 2000). Type IIa distribution was similar between 

the internal intercostals and diaphragm (~30%) yet only 17% in the external intercostals. In 

contrast, Type IIx was similar between the external intercostals and diaphragm (~25%) and 

only 1% in the internal intercostals. It is interesting to note that the distribution of myosin 

heavy chain isoforms is remarkably similar to that of the vastus lateralis (Figure 1.12). 
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Indeed, it appears that the superior oxidative capacity of the diaphragm is not explained by 

muscle architecture, but rather its vascular supply, enzyme activity and mitochondrial 

density. These additional morphological adaptations are not present in the accessory 

respiratory muscles. 

 

 

 

Figure 1.12 Relative distribution of human slow twitch (type I), fast twitch a (type IIa) and fast twitch x 

(type-IIx) muscle fibres for the expiratory and inspiratory intercostals, the costal diaphragm and the vastus 

lateralis (Adapted from Mizuno and Secher 1989).  

 

 

1.3.2 RESPIRATORY MUSCLE VASCULATURE 

Data from ponies shows that diaphragm blood flow increases from 11.5  2.8 

mlmin
-1
100g

-1
 at rest to 265  35.9 mlmin

-1
100g

-1
 during maximal exercise which was 

greater than all other respiratory and non-respiratory skeletal muscles (Manohar 1986). 

Harms et al. (1998) estimated that during maximal exercise 14 to 16% of total cardiac 

output ( Q ) was directed to the respiratory muscles. Using the thermodilution technique, 

Harms and colleagues measured locomotor muscle blood flow during maximal cycling 

exercise (control condition) and also when the respiratory muscles were unloaded using a 

proportional assist ventilator (PAV). PAV forces air into the lungs during inspiration with 

a positive pressure, thus partially unloading or reducing the work of the inspiratory 
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muscles by 40 to 50%. Leg blood flow (20.3  0.5 Lmin
-1

) was unchanged when the 

respiratory muscles were unloaded yet total Q  decreased. Therefore, the reduction in total 

Q  with PAV was assumed to be equal to the respiratory muscle blood flow (4.2  0.1 

Lmin
-1

); however, since the work of breathing was unloaded by only ~50%, this was 

likely to underestimate the true respiratory muscle blood flow. Of the total Q  available 

during maximal exercise, 77% was directed to the locomotor muscles, 16% to the 

respiratory muscles and 7% to other metabolically active tissues.  

The large blood flow to the respiratory muscles is achieved by the vast vascular 

supply which more closely reflects the vascular supply of the brain rather than other 

skeletal muscles (Comtois et al. 1987). Unlike locomotor skeletal muscles which have a 

single arterial supply, the diaphragm has multiple. These include the superior and inferior 

phrenic arteries, intercostal artery and internal mammary artery which originate from the 

thoracic branch of the descending aorta (Comtois et al. 1987). This multiple arterial supply 

provides an amazing protective arrangement against ischemia. Although the morphology 

of the diaphragm and the vastus lateralis are similar, the number of capillaries per muscle 

fibre in the human diaphragm is much greater. The area and circumference of diaphragm 

muscle fibres are also smaller than all other skeletal muscles (Mizuno and Secher 1989). 

This results in a significantly lower diffusion distance in the diaphragm and a 2 to 3 times 

larger capillary bed than that found in locomotor skeletal muscles (Mizuno and Secher 

1989; Hoppeler et al. 1981). However, following specific strength training of the 

inspiratory muscles, an 8 to 12% increase in diaphragm thickness is observed (Chiappa et 

al. 2008a; Downey et al. 2007; Enright et al. 2008). Whether this may increase the 

diffusion distance and / or reduce the number of capillaries per muscle fibre is unknown.   
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1.4 RESPIRATORY MUSCLE MECHANICS DURING EXERCISE 

1.4.1 BREATHING MECHANICS 

Ward et al. (1992) proposed that the volumes of the chest wall are described by 

three distinct compartments including 1) the upper rib cage apposed to lung (Vrc,p) and 

therefore exposed to Ppl, 2) the rib cage apposed to the diaphragm (Vrc,a, i.e. the zone of 

apposition) where Ppl is equal to Pab and 3) the abdomen (Vab) which is equal to gastric 

pressure (Pga). Kenyon et al. (1997) used a geometric optical reference system („ELITE‟, 

ELaboratore di Immagini TElevisive, Milan Polytechnic, Milan, Italy; see Figure 1.13) to 

quantify the pressure and volume characteristics of the different compartments during 

exercise. Four digital cameras tracked 86 surface hemispherical reflective markers (Cala et 

al. 1996) and provided 3D real-time changes in the volume of a respective chest wall 

compartment (Figure 1.13). Using this novel method, the authors demonstrated that during 

submaximal exercise of increasing intensity (0, 30, 50 and 70% maxW ) the precise 

coordination of the respiratory muscles was shown to maximise chest wall compliance and 

minimise the elastic work of breathing.  

 

                  

Figure 1.13 Placement of the 86 reflective markers on the thorax (Cala et al. 1996; Kenyon et al. 1997) 
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However, the relative contribution and interactions between the diaphragm, chest 

wall and abdominal muscles in achieving this co-ordinated action are less well understood. 

Aliverti et al. (1997) used the optoelectronic plethysmography motion analysis system to 

determine the relative contributions of the chest wall muscles, the diaphragm and the 

abdominal muscles to the changes in compartmental volumes and pressures at rest and sub-

maximal cycle ergometry exercise (0, 30, 50 and 70% maxW ). The contribution of each 

muscle to changes in force (pressure) and velocity (flow) were also determined. At rest, 

diaphragm shortening accounted for the majority of the increase in lung volume. This 

increased Vrc,p, Vrc,a and since the abdominal compartment is virtually incompressible, 

Vab also increased (Figure 1.14). At the onset of exercise and with increasing intensities, 

the increase in VT was achieved by a large increase in end inspiratory Vrc,p (+1.0 L) and 

Vrc,a (+0.5 L). During expiration due to the increase in abdominal muscle recruitment a 

significant decrease in Vab was observed (-0.98 L; Figure 1.14). By utilising the 

inspiratory and expiratory reserve volumes the chest wall utilises the most compliant 

compartments of the system which reduces the elastic work of breathing and unnecessary 

forces to restore the geometry of the thorax (Kenyon et al. 1997). By increasing the end-

inspiratory Vrc,p throughout exercise the parasternal intercostals are placed at a more 

efficient position on their length-tension curve since the optimal length of the parasternal 

intercostal is shorter than the diaphragm at FRC (Decramer and De Troyer 1984). 
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Figure 1.14 Changes in volume of the abdomen (Vab), the rib cage apposed to the diaphragm (Vrc,a) and the 

rib cage apposed to lung (Vrc,p) at rest with quiet breathing (QB) and during exercise (Aliverti et al. 1997). 

 

Aliverti et al. (1997) demonstrated that as the exercise intensity increased up to 

70% maxW , non-diaphragmatic respiratory muscle recruitment increased. This is 

demonstrated clearly in Figure 1.15A where the pressure developed by the diaphragm, the 

expiratory intercostals and the abdominal muscles are plotted as a fraction of the pressure 

developed by inspiratory intercostals. As exercise intensity increases, the diaphragm 

relative to the inspiratory rib cage muscles (illustrated by ■) contributed less over time to 

changes in inspiratory pressure. Figure 1.15B shows that this was because of an increase in 

the passive work performed by the diaphragm during inspiration (illustrated by Δ). The 

greater passive work performed by the diaphragm was achieved by a gradual relaxation of 

the abdominal muscles throughout inspiration which minimises the change in Pdi and is in 

stark contrast to resting breathing where Pga increases throughout inspiration. Thus during 

exercise the gradual relaxation of the abdominal muscles essentially unloads the diaphragm 

and permits it to achieve the high flow rates required during intense exercise. The total 

work of each muscle group was calculated as the area contained within the individual 

pressure-volume loops (see Figure 1.16B) and divided by time to calculate power. Since 

the pressure was known, the power output of each muscle group was partitioned into the 

relative contributions of force and velocity of shortening. Despite a similar increase in 

power output by the diaphragm, abdominal muscles and the rib cage muscles, in the 

diaphragm this was achieved primarily by an increased velocity of shortening. In contrast, 
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the increase in abdominal and rib cage muscle power output was achieved by large 

increases in pressure which act to displace the abdomen and rib cage (Aliverti et al. 1997).  

In addition to minimising the change in Pdi throughout inspiration during exercise, 

the abdominal muscles also assist the function of the diaphragm in other ways. An increase 

in Pab reduces end-expiratory lung volume (EELV) to achieve a required VT and prevents 

excessive shortening of the diaphragm, thus placing it at a more advantageous position on 

its length-tension curve (Martin et al. 1982). Also, by reducing EELV, the diaphragm is 

stretched, thus storing elastic energy. The abdominal muscles act as a fulcrum for 

subsequent diaphragm contraction (Dempsey et al. 1996) and at the onset of inspiration 

promotes an initial passive descent of the diaphragm. 

The findings of Aliverti et al. (1997) and Kenyon et al. (1997) demonstrate that the 

diaphragm acts primarily as a flow generator during exercise and other inspiratory muscles 

generate pressure which displaces the chest wall. This action unloads the diaphragm and 

promotes high flows rates whilst minimising chest wall distortion. If this interaction was 

not present, Pdi would increase in order to displace the rib cage rather than produce 

changes in inspiratory air flow. This would significantly increase the work performed by 

the diaphragm during exercise and increase the likelihood of diaphragm fatigue. 
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Figure 1.15 A) Peak pressure of the expiratory rib cage muscles (Prc,e), the diaphragm (Pdi) and the 

abdominal muscles (Pab) normalised to inspiratory rib cage muscle pressure (Prcm,i) and B) pressure 

generation in the inspiratory and expiratory rib cage muscles (○) and the diaphragm () from the start of 

inspiration to the end of inspiration and in abdominal muscles (▲) from end inspiration to the end of 

expiration. The change in Pdi is the difference between the passive Pdi at the start of inspiration and the 

active Pdi at the end of inspiration (Aliverti et al 1997). 

 

 

 

1.4.2 THE WORK OF BREATHING 

The work of breathing reflects the respiratory muscle metabolic and / or energetic 

cost of pulmonary ventilation. This can be determined directly by integrating the change in 

intra-thoracic pressure generated by the respiratory muscles for a given change in lung 

volume. The area subtended by the resultant pressure:volume loop represents the total 

work performed over a specific time interval (Figure 1.16B). Indirectly the work of 

breathing can be measured by calculating the difference between the whole-body 2OV  

with and without specific breathing tasks which mimic the breathing pattern and minute 

ventilation ( EV ) achieved during exercise (Milic-Emili 1991).  

During exercise the respiratory muscles must perform elastic and resistive work. 

Elastic work is the energy required to expand the lung and chest wall and overcome the 

natural elastic recoil force; operating at a greater lung volume will elevate the elastic work 

done. Resistive work describes the energy required to increase inspiratory and expiratory 

flow rates (Dempsey et al. 2006a). Of these, the former is minimised during exercise as the 

 

A B 

P
ea

k
 P

re
ss

u
re

 /
 P

rc
m

,i
 

Δ
 P

re
ss

u
re

 (
cm

H
2
O

) 

Workload (% W max) Workload (% W max) 

 ●  Prcm,e / Prcm,i 

 ■  Pdi / Prcm,i 

▲ Pab / Prcm,i 

 ○  Expiratory rib cage  

   Diaphragm 

▲ Abdominals 



 23 

respiratory system typically follows the minimal work trajectory by utilising the most 

compliant part of the chest wall (Kenyon et al. 1997), however, the latter is increased 

during intense exercise when pulmonary air flow becomes turbulent and during expiration 

the internal diameter of the airways is reduced. Airway narrowing occurs because the 

intrathoracic pressure exceeds the critical expiratory pleural pressure (Wetter and Dempsey 

2000). Elastic work may be further increased with exercise modalities where the caudal 

displacement of the diaphragm is restricted by the abdominal cavity such as the catch 

position of the rowing stroke or in the crouched position during a cycling time-trial 

(Steinacker et al. 1993). 

Previous studies determined the work of breathing of dynamic whole-body cycling 

exercise at 70 and 100% maxOV 2
  by mimicking the transpulmonary pressure (Ptp):VT 

loop, EELV and R achieved during exercise under resting conditions. Ptp was used as an 

estimate of the total respiratory muscle work required to expand the chest wall and lungs 

(where Ptp = oesophageal pressure [Poe] – mouth pressure [Pm]) and EELV was 

measured using inductance plethysmography to control respiratory muscle length (Aaron et 

al. 1992a, b). The rigorous control of these parameters is fundamental to accurate work of 

breathing assessment during volitional hyperpnoea since a self-selected spontaneous 

breathing pattern to attain a given EV  is more costly and the respiratory muscle 2OV  can 

be up to 25% greater than that of exercise with an identical breathing pattern (Coast et al. 

1993). The higher 2OV  throughout volitional hyperpnoea is likely due to a faster R 

(tachypnoea) and recruitment of less efficient accessory (chest wall) respiratory muscles 

(Coast et al. 1993), which may also affect the dynamic EELV. 

Respiratory muscle 2OV  was calculated as the change in pulmonary 2OV  for a 

given change in EV  ( E2 V/OVΔ   ) during the mimic trial (Aaron et al. 1992a). During 

volitional hyperpnoea, the O2 cost of breathing was 1.8 ml O2 per Lmin
-1

 of EV  at 70% 

maxOV 2
  which increased to 2.9 ml O2 per Lmin

-1
 of EV  at 100% maxOV 2

 (Aaron et al. 
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1992a). This equated to 4.6  0.4% and 10.0  0.5% of the total whole-body 2OV  at 70 

and 100% maxOV 2
 , respectively (Aaron et al. 1992b). In subjects where EV  exceeded 

150 L·min
-1 

during exercise, which from anecdotal evidence is common in healthy active 

males, the O2 cost of breathing increased substantially to 15.4% of the total 2OV  (Aaron et 

al. 1992b). These data suggest that the energetic demands of the respiratory muscles can be 

profound during exercise when a high EV  is attained. Given that the increase in Pdi during 

exercise is achieved by a large increase in the velocity of shortening suggests that the 

substantial increase in 2OV  is likely due to the increased recruitment of accessory muscles 

which illustrates that these muscles are far less economical. Thus delaying the recruitment 

of these muscles and / or improving their functional efficiency may serve to reduce the 

work of breathing and improve exercise tolerance. 

 

1.4.3 DETERMINANTS OF THE WORK OF BREATHING 

The work of breathing is not solely attributable to the absolute EV  attained during 

exercise but rather the proportion to which the inspiratory pressure developed and 

expiratory flow rates encroach upon the boundaries of individual maximal flow:volume 

and pressure:volume loops determined under resting conditions (Figure 1.16A and B; Klas 

and Dempsey 1989). The respiratory muscles display both force:velocity (pressure:flow) 

and length:tension (lung volume:pressure) relationships similar to other skeletal muscles 

(Hyatt and Flath 1966). For example, the pressure generating capacity is reduced with an 

increase in EILV (greater inspiratory muscle length) and when the velocity of shortening is 

increased (high inspiratory flow rates). Thus, it appears that the work of breathing during 

exercise is dependent upon the proportion to which the tidal pressure and flow 

characteristics approach / converge with the boundaries of their maximal capacities. 
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Conceptually, it is difficult to appreciate the mechanical limits imposed upon 

exercise hyperpnoea and how this may exacerbate the work of breathing. During exercise 

inspiratory muscle length is dependent upon a number of factors which include antagonist 

shortening, expiratory flow rates and the magnitude of expiratory flow and expiratory 

pressure generation (i.e. the Pga). For example, the transition from rest to light exercise 

increases expiratory muscle recruitment, Pga and expiratory flow rates. As a result, EELV 

is reduced and VT increases (Henke et al. 1988). With increasing exercise intensities EELV 

is further reduced until the expiratory flow rate approaches or exceeds the maximal 

capacity to produce expiratory flow (Figure 1.16A: grey area); here, any further increases 

in expiratory pressure generation (Figure 1.16B, grey area) fail to increase expiratory flow 

and results in dynamic airway compression as the critical pressure of the airways is 

exceeded (Klas and Dempsey 1989). To avoid expiratory flow limitation, the operating 

lung volume is increased. This is achieved by increasing EELV and EILV (see also: Figure 

1.15, specifically Vrc,a and Vab) and subsequently shifts the VT to a greater percentage of 

TLC; a process known as dynamic hyperinflation. Thus, despite maintaining expiratory 

flow rates and EV , increasing EILV places the diaphragm at a greater (more inefficient) 

operating length and reduces the inspiratory pressure generating capacity (Figure 1.16B: 

red area). This series of events throughout exercise is known to increase the sensations of 

breathlessness during incremental cycle ergometry (Kayser et al. 1997) possibly due to an 

increase in R (McClaran et al. 1999). The increase in expiratory intrathoracic pressure 

swings may also affect both cardiac output and O2 delivery to the working muscles 

(Aliverti et al. 2005). The heart and the vessels of the within the thorax are exposed to such 

pressure swings. In the face of expiratory flow limitation and increased expiratory 

pressures, ventricular transmural pressure is reduced, thereby reducing decrease the rate of 

ventricular filling during diastole; this reduces both cardiac output and stroke volume 

(Dempsey et al. 2008). Furthermore, venous return is reduced despite an active locomotor 
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muscle pump when positive expiratory pressures are generated within the abdominal 

compartment (Miller et al. 2005).  

  

            (A)  Flow:volume loop                                     (B)  Pressure:volume loop 

 

 

 

Figure 1.16 (A) Flow:volume loop. Grey area: portion of tidal breathing meeting the maximal limits for 

expiratory flow, indicating expiratory flow limitation; (B) Pressure:volume loop. Grey and red areas: the 

maximal capacity to generate expiratory and inspiratory pressure for a given lung volume, respectively.  

 

 

The magnitude to which the flow:volume and pressure:volume characteristics of 

the tidal breath encroach upon their maximal limits determines the severity of expiratory 

flow limitation, dynamic hyperinflation and thus the work of breathing. This hypothesis 

was supported by Johnson et al. (1992) who described the flow and pressure:volume 

responses during maximal exercise in well trained endurance athletes. Eight healthy males 

( maxOV 2
 : 73.0  1.0 mlkg

-1
min

-1
) performed an incremental exercise test followed by 

repeated 3 min bouts of maximal exercise on a motorised treadmill. During sub-maximal 

exercise ( EV : 117.3  6.7 Lmin
-1

) expiratory flow rates reached the limits of the maximal 

flow:volume loop only towards the very end of expiration and inspiratory pressure 
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development was sub-maximal. During maximal exercise however ( EV : 168.7  5.4 

Lmin
-1

), up to 61 and 46% of the tidal volume encroached on the maximal capacity for 

expiratory flow and pressure, respectively. Furthermore, the inspiratory muscles utilised up 

to 89% of the maximal pressure generating capacity; this was due to the increase in EILV 

and inspiratory flow rates. Thus dynamic whole-body exercise weakens the inspiratory 

muscles by reducing their pressure generating capacity (LeBlanc et al. 1988).  

These findings were supported by McClaran et al. (1999) who prevented expiratory 

flow limitation during maximal exercise in six well trained male cyclists ( maxOV 2
 : 65.0 

 8.0 mlkg
-1
min

-1
) by substituting the inspired air with a less dense gas mixture 

comprised of helium (He) and O2 (heliox; FIO2: 0.26-balance He). Inspiring heliox reduces 

the pressure generated to forcefully expire a given volume of air since airway resistance is 

attenuated, thereby increasing the maximal flow-volume loop performed at rest. Relative to 

the control trial (FIO2: 0.26-balance N2) when breathing heliox EILV was not different. 

However, maximal expiratory flow rates and VT were increased and EELV was reduced. 

Consequently, flow limitation was also reduced from 43% to less than 10% of the VT and 

the reduced capacity of the inspiratory muscles to generate pressure was attenuated. It is 

interesting to note that inspiratory flow limitation does not occur since increases in 

inspiratory pressure would serve to increase rather than decrease the internal diameter of 

the airways. Collectively, the findings of Johnson et al. (1992) and McClaran et al. (1999) 

show the importance of expiratory flow limitation in determining EELV and the pressure 

generating capacity of the inspiratory muscles. Although expiratory flow limitation inhibits 

the mechanical advantage of the inspiratory muscles, without such an evolutionary 

mechanism and progressive hyperinflation, excessive intrathoracic pressures would be 

routinely developed to overcome the narrowing of airways in order to preserve expiratory 

flow rates. As a consequence, the severity of flow limitation would exacerbate respiratory 

motor output for a given expiratory flow rate which may intensify the sensations of 

dyspnoea. It has also been shown that an increase in thoracic pressure resulting from 
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expiratory flow limitation reduces venous return (Miller et al. 2005) by cuffing the inferior 

abdominal vena cava which exceeds the driving pressure from locomotor skeletal muscle 

pump and recoil pressure generated by distension of the locomotor veins. A reduction in 

venous return attenuates cardiac output by reducing the transmural pressure gradient across 

the walls of the heart and inhibits left ventricular preload (Miller et al. 2007). These 

mechanisms are important since they reduce limb muscle perfusion and O2 delivery which 

attenuates endurance performance (Miller et al. 2006), since locomotor force output is 

particularly sensitive to even small changes in SaO2 (Romer et al. 2006b).   

Whole-body endurance training does not affect the maximal flow:volume loop 

(Johnson et al. 1992), thus a mechanism related directly to this is unlikely to attenuate 

expiratory flow limitation. Recent studies have illustrated that short-term whole body 

training (exercise, 2 sessions·day
-1

 for 7 days) enhances vasorelaxation of porcine 

pulmonary arteries due to acute augmented sheer-stress on the vessel walls (Johnson et al. 

2001). Such an adaptation may promote greater pulmonary blood flow, O2 exchange and 

delivery to the working muscle which may well improve locomotor tolerance (Romer et al. 

2006b). However, given the occurance of pulmonary shunt and ventilation-perfusion 

inequality (West 2000) that exists during human whole-body exercise, questions the 

ergogenic effect of such an adaptation, particularly in light of expiratory flow limitation. 

Notwithstanding this, following whole-body endurance training for a given absolute 

exercise intensity and thus EV , the work of breathing may be attenuated as respiratory 

compensation is typically reduced. Although this is unlikely to influence the work of 

breathing for a given relative exercise intensity (Babcock et al. 1996). It is important to 

note that the occurrence of flow limitation was highly variable: despite having a similar 

endurance training status, some participants in the study by Johnson and colleagues (1992) 

experienced severe flow limitation whilst for a similar EV  others did not. This was despite 

similar pulmonary function and is likely due to inter-individual differences in the exercise 

ventilatory response to feedback (chemical and mechanical) and feedforward stimuli 
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(peripheral chemoreflex sensitivity). Recently however, studies have reported a genetic 

link between chronic aerobic training and pulmonary adaptation during exercise. In a series 

of elegant studies, Kirkton et al. (2009) and Howlett et al. (2009) reported that 15
th
 

generation rats selective bred for either their high or low endurance running ability in the 

same environmental conditions demonstrated markedly different pulmonary and 

cardiovascular responses during exercise. The endurance selective group showed around a 

50% increase in maxOV 2
  (measured in absolute units; Howlett et al. 2009) attributed 

largely to an increased conductive O2 transport and ~30% increase in alveolar ventilation 

during maximal exercise (Kirkton et al. 2009). Such unique genetic adaptations achieved in 

rats does lend support to the notion that endurance athletes may well have an advantage 

over their sedentary counterparts (assuming their ancesters were also well trained). Such 

selective pulmonary adaptations may well pre-dispose an athlete to a lower EV  at maximal 

exercise and thus attenuate the potential debilitating effects of flow limitation on exercise 

tolerance.  

It is unlikely that expiratory muscle training would attenuate flow limitation since 

increasing the pressure generating capacity of this muscle group would merely exacerbate 

dynamic airway compression. Whether increasing the strength of the inspiratory muscles 

would reduce the work of breathing is unknown. Increasing the strength of the inspiratory 

muscles would increase their maximal pressure generating capacity and possibly reduce 

the absolute pressure generated during exercise for a given EV . Specific inspiratory muscle 

training (IMT) may also alter the duty cycle (TI/Ttot), by speeding inspiration. The 

reduction in duty cycle would prolong expiratory duration, reducing mean expiratory flow 

rates and possibly flow limitation. This may offset the transient increase in EELV and 

EILV. Whether such a mechanism is present or would have a detectable effect upon 

exercise performance and breathing mechanics is unknown. However, it was reported that 

following IMT, during maximal incremental exercise despite a similar relative exercise 

intensity, a non-significant increase in VT was observed which was achieved by an increase 
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in EILV (Romer et al. 2002c) suggesting that flow limitation or indeed hyperinflation was 

attenuated. 

 

1.5 PHYSIOLOGICAL CONCEQUENCES OF THE WORK OF BREATHING 

1.5.1 RESPIRATORY MUSCLE FATIGUE: VOLITIONAL MEASURES 

 Fatigue can be defined as “a condition in which there is the loss in the capacity of a 

muscle for developing force and / or velocity, resulting from muscle activity under load 

and which is reversible by rest” (NHLBI 1990). One of the most common measurements 

used by respiratory physiologists to assess global respiratory muscle fatigue (McConnell 

and Romer 2004a) is the maximal inspiratory and / or expiratory mouth pressure (MIP and 

MEP respectively). MIP and MEP are quasi-static efforts which reflect the global pressure 

generating capacity of the respiratory muscles contracting in synergy; they are, however, 

dependent on participant motivation and task learning. Such measurements also lack 

specificity and fail to provide an indication to the underlying mechanism(s) of fatigue. 

Furthermore fatigue of an individual inspiratory muscle, for example, the diaphragm, is not 

always reflected by volitional measures (Johnson et al. 1993). 

 Decreases in MIP and MEP have been reported following different exercise 

intensities and durations. Loke et al. (1982) reported significant reductions in MIP and 

MEP following a 3 hr and 24 min marathon (MIP rest: 166  11 cmH2O, post-exercise: 

139  8 cmH2O, P<0.05; MEP rest: 240  20 cmH2O, post-exercise: 173  23 cmH2O, 

P<0.05). Similar data are reported for a simulated marathon on a motorised treadmill with 

reductions in MIP from 118  20 cmH2O at rest to 100  22 cmH2O. No changes were 

observed however in MEP (Ross et al. 2008). In agreement with this, Chevrolet et al. 

(1993) also observed a 25% decrease in MIP but not MEP following a marathon. 

 Inspiratory and expiratory muscle fatigue has been observed following high-

intensity, short duration exercise. Bye et al. (1984) observed a significant reduction in 

volitional Pdi max during a maximal inspiratory effort following 5.9  1.3 min of 
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exhaustive cycling exercise at 80% W max. Similar reductions in MIP (~10%) were 

observed following a 6 min all out rowing ergometer test (Volianitis et al. 2001), a 200 m 

race pace swim (29%; Lomax and McConnell 2003) and following maximal incremental 

exercise (17%; Ozkaplan et al. 2005). Reductions in MIP are also noted after 20, 25 and 40 

km cycling time trials (12 to 18%; Johnson et al. 2007; Romer et al. 2002c). In contrast to 

these findings, Perret et al. (1999) detected no evidence of inspiratory or expiratory muscle 

fatigue assessed by MIP and MEP measurements, respectively, following whole-body 

exercise to volitional failure at 85% 2OV max. Measurements in this study were performed 

5 min post-exercise whereas in previous studies measurements were performed within 2 to 

3 min of end exercise (Johnson et al. 2007; Romer et al. 2002c). This suggests that subjects 

are either unable to perform the manoeuvre correctly immediately post-exhaustive exercise 

likely due to post-exercise hyperventilation and the overwhelming drive to breathe and / or 

that the generation of volitional force recovers very quickly (< 5 min). Despite this, these 

findings suggest that volitional measures of inspiratory and less frequently, expiratory 

muscle strength, are reduced following intense exercise. This is in stark contrast to non-

volitional measures of respiratory muscle fatigue which can be depressed for up to 70  4 

min following exhaustive exercise (Johnson et al. 1993). Differences in post-exercise 

reductions in MIP and MEP are not explained by training status as MIP is not different 

between athletes and non-athletes (Coast et al. 1990; Eastwood et al. 2001). However, 

McConnell et al. (1997) illustrated that the reduction in MIP following exhaustive exercise 

was greater in participants with a lower baseline MIP. 

 Reductions in respiratory muscle endurance have also been observed following 

exercise. This may reflect a reduction in central respiratory muscle motor drive. Loke et al. 

(1982) report a 10% reduction in maximal voluntary ventilation (MVV) following a 

marathon. Boussana et al. (2001) observed a lower inspiratory pressure threshold (75% 

MIP) breathing time following 20 min intense mixed cycle-run exercise. Similarly, 

following whole-body exercise to volitional failure at 85% 2OV max, inspiratory resistive 
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breathing time at 79  9% MIP was reduced from 364  88 s at rest to 219  122 s post-

exercise (Perret et al. 1999). These latter findings were also confirmed following exercise 

to volitional tolerance at 65, 75, 85, and 95% 2OV max (Perret et al. 2000). Changes in 

post-exercise respiratory muscle endurance may however be affected by endurance training 

status. Martin and Stager (1981) indicate that ventilatory endurance (MVV12 to exhaustion) 

is greater in athletes vs. non-athletes. Also 20 wk endurance training has been shown to 

improve ventilatory function (maximal sustainable ventilation for 20 min; Robinson and 

Kjeldgaard 1982). Evidence also suggests that training status affects respiratory muscle 

endurance and the breathing pattern adopted during a progressive inspiratory pressure 

threshold loading test. Relative to their untrained counterparts, endurance trained 

participants (marathon runners training 10  6 hwk
-1

) achieved a greater peak inspiratory 

pressure at the cessation of the test (90% vs. 78% MIP) which was achieved through a 

larger VT, lower R and TI/Ttot yet longer inspiratory and expiratory durations (Eastwood et 

al. 2001). Therefore, the breathing pattern adopted by untrained subjects may well increase 

the fraction of each breath the vessels of the inspiratory muscles are occluded (Bellemare 

et al. 1983). This may influence oxygen delivery and metabolite washout from the 

respiratory muscles, ultimately affecting respiratory muscle endurance. Thus relative to the 

untrained subject, studies recruiting well trained athletes may report smaller reductions in 

respiratory muscle endurance. In summary, volitional measures of respiratory muscle 

strength and endurance are reduced following exercise. However, the extent to which these 

are attributed to changes in central drive and / or peripheral mechanisms is unknown. 

Furthermore these techniques are fundamentally dependent upon subject motivation and 

task learning, thus their use as a quantitative measure of respiratory muscle fatigue is 

limited. 
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1.5.2 RESPIRATORY MUSCLE FATIGUE: NON-VOLITIONAL MEASURES 

 Non-volitional techniques have been developed where a supramaximal electrical or 

magnetic charge stimulates all of the nerves that innervate a muscle. For the respiratory 

muscles, the change in force output is measured by inserting balloon catheters per-nasally 

into the stomach (Pga) and lower one third of the oesophagus (Poe). By measuring the 

difference in pressure within the two compartments, the force generated by the diaphragm 

can be measured (Pdi = Pga - Poe). Bilateral phrenic nerve stimulation (BPNS) has been 

used to quantify Pdi prior to and following whole-body exercise (Johnson et al. 1993). 

Similarly, stimulation of the cervical (Similowski et al. 1998; Verges et al. 2006) and 

thoracic nerve roots (Taylor et al. 2006; Taylor and Romer 2008) has been performed to 

activate the chest wall and abdominal muscles, respectively. These techniques provide 

reliable measurements of inspiratory and expiratory muscle fatigue (within-day 

reproducibility ~5 to 10%; Taylor and Romer 2009; Johnson et al. 1993) and have the 

ability to distinguish between central and peripheral origins of respiratory muscle fatigue.  

 

1.5.3 EXERCISE INDUCED PERIPHERAL DIAPHRAGM FATIGUE 

 Peripheral or metabolic fatigue is defined as a reduction in muscle force due to 

processes at or distal to the neuromuscular junction (Allen et al. 2008; Fitts 1994). Prior to 

the early 1990s, it was generally accepted that the diaphragm did not fatigue during 

exercise based largely on the interpretation of spectral shifts in the surface diaphragm 

EMG (Bye et al. 1984). However, in 1993, exercise-induced diaphragm fatigue was 

reported for the first time using BPNS following intense exercise in well trained athletes 

(Johnson et al. 1993). This was followed up swiftly by Mador et al. (1993) in healthy, 

untrained subjects.  

 In the study by Johnson and colleagues (1993), 12 well trained subjects ( 2OV max: 

61  4 mlkgmin
-1

) performed exercise at ~85% 2OV max and ~95% 2OV max until 

volitional tolerance. Prior to and following exercise, Pdi was measured using BPNS. The 
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stimulation protocol included a single electrical pulse (twitch) and tetanic stimulation (400 

ms) at 10 and 20 Hz. Stimulating the muscle for 400 ms at frequencies of 10 and 20 Hz 

was used to ensure treppe; this refers to the summation of single twitches and more closely 

reflects the contraction characteristics of a muscle during exercise. Single twitch Pdi was 

significantly reduced after exercise at ~85% 2OV max. Following exercise at ~95% 2OV

max, twitch Pdi and the response to tetanic stimulation at 10 and 20 Hz was also reduced 

by 21  3 and 13  2% (P<0.05), respectively. Interestingly, in all trials, the work 

performed by the chest wall muscles (shown by the integration of Poe over the period of 

inspiratory flow multiplied by the R; Poe) and diaphragm (Pdi) increased from rest but 

following approximately 40% of the trial Pdi reached a plateau whereas Poe continued to 

increase. This action facilitated a continual time-dependent increase in EV  and was 

achieved by increased rib cage muscle recruitment. As a consequence, despite the presence 

of diaphragm fatigue, there was no sign of respiratory failure (i.e. a plateau or reduction in 

EV ). Johnson et al. (1993) suggest that the change in respiratory muscle motor output (i.e. 

an increase in Poe/Pdi) may indicate the onset of diaphragm fatigue since motor-output to 

the diaphragm is known to be reduced in the presence of peripheral diaphragm fatigue 

(Bellemare and Bigland-Ritchie 1987). Interestingly, the Pdi attained during exercise was 

positively correlated with the reduction in evoked Pdi post-exercise (r = 0.80, P<0.01) 

suggesting that the magnitude of diaphragm fatigue may be a consequence of the work 

performed by the diaphragm during exercise. 

 Mador et al. (1993) observed similar reductions in twitch Pdi following intense 

exercise lasting 8.2  4.1 min in healthy untrained subjects ( 2OV max: 35.6 mlkgmin
-1

). 

Twitch Pdi at rest was 28.9  3.7 cmH2O and decreased to 23.9  5.1 cmH2O following 

exercise (decrease ~17%; P<0.05) which was similar to Johnson et al. (1993) at both 10 

and 20 Hz. In agreement with Johnson et al. (1993), Mador and colleagues observed a 

plateau in the work performed by the diaphragm and a continual rise in the work of 
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accessory inspiratory muscles. In both studies Pdi was lower than rest for up to 70 min 

post-exercise, after which it was similar to baseline. Collectively, these findings 

demonstrate that the reduction in evoked Pdi was caused by low frequency fatigue (LFF). 

LFF is characterised by reductions in force at low stimulation frequencies (single twitch, 

10 and 20 Hz) and can last hours or even days (Laghi et al. 1995). The aetiology of LFF 

may be twofold: firstly by damage to the sarcomere and / or secondly, by disruption to the 

sarcoplasmic reticulum Ca
2+

 pump (SRCa
2+

 pump; Jones 1996). Damage to the sarcomere 

is unlikely to have accounted for the reduction in Pdi following exercise in these studies 

since Pdi recovered within about one hour. Rather it appears that during exercise there was 

disruption to the SRCa
2+

 pump. Data from exercising rats lends support to this notion. 

Matsunaga et al. (2002) reported that following high-intensity exercise lasting 4.79 min, 

diaphragm SRCa
2+

 pump activity was reduced with a 22 and 24% decrease in Ca
2+

 release 

and uptake, respectively. These reductions have been ascribed to either increased 

concentrations of intracellular inorganic phosphate ([Pi]) which binds to Ca
2+

, enters the 

SR and inhibits SRCa
2+

 release, or possibly due to structural changes in the ATP or 

phosphorylation bindings sites within the SRCa
2+

 pump (Matsunaga et al. 2002).  

 Exercise-induced diaphragm fatigue has also been observed following intense 

exercise at much higher stimulation frequencies suggesting that LFF is not solely 

responsible for diaphragm fatigue (50, 70 and 100 Hz; Babcock et al. 1998). Tetanic 

stimulation at these frequencies is intolerable for the subject (Polkey et al. 1997), therefore 

to avoid this a technique known as paired stimulation or „doublet‟ is used where one twitch 

is followed rapidly by a second twitch. The peak force generated by the first twitch is 

subtracted from the second and the amplitude of the resultant force is recorded (the 

resultant force is called T2; Yan et al. 1993). Measuring a reduction in T2 at high 

stimulation frequencies which returns to baseline within approximately 30 min denotes the 

presence of high frequency fatigue (HFF). 
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 In well trained participants ( 2OV max: 56.9 mLkg
-1
min

-1
), the T2 response to 

paired BPNS was measured prior to and following 9.9  0.5 min maximal exercise at 95% 

2OV max (Babcock et al. 1998). In agreement with previous findings (Johnson et al. 1993) 

VT reached a plateau whereas R continued to increase which caused a gradual rise in EV  

until exercise termination. The increase in EV  was achieved by a continual increase in 

Poe/Pdi (~0.70 to ~0.85). Following exercise, reductions in the T2 response were 

observed at 50, 70 and 100 Hz by 23.9  0.9%. After 30 min of recovery, the T2 response 

was not different to baseline. HFF is characterised by a reduction in the amplitude and 

slowing of the resultant twitch M-wave in conjunction with a reduced force output (Jones 

1996). This is caused by interference in the propagation of the action potential along or 

throughout the t-tubule system. Babcock et al. (1998) did not observe any changes in M-

wave amplitude or duration but a reduction in force was present. This suggests that the 

HFF was a result of impaired action potential transport through the t-tubule system likely 

due to an increased extracellular [K
+
]. An increase in extracellular [K

+
] may influence 

resting membrane potential, causing a depolarisation block and prolonging repolarisation 

due to Na
+
-K

+
 ATPase pump inhibition (Lindinger et al. 1995; Nielsen and Overgaard 

1996).  

 

1.5.4 PHYSIOLOGICAL INTERACTIONS DURING WHOLE-BODY EXERCISE WHICH LEAD TO 

DIAPHRAGM FATIGUE 

 Although exercise induced-diaphragm fatigue is correlated with the increase in Pdi 

during exercise, the work of the diaphragm during exercise may not be solely responsible. 

Babcock et al. (1995) measured Pdi in response to BPNS when the exercise Pdi and 

breathing pattern at 85 to 90% 2OV max were mimicked at rest. Subjects mimicked the VT, 

R, Pdi and the TI/Ttot achieved over the final third of maximal exercise for the same 

duration as the entire exercise bout (13.2  2.0 min). Prior to and following the exercise 
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and mimic trials, BPNS was performed at 1, 10 and 20 Hz and twitch stimulation of a non-

respiratory muscle was also performed (first dorsal interosseous muscle; between the 

thumb and first finger in the hand). In a sub-group of participants, a subsequent supra-

mimic trial was performed at 150% of the exercise Pdi. As expected, following exercise 

Pdi was reduced at all stimulation frequencies by approximately 25%. Following the 

mimic trial, Pdi was not different to rest and only in the supra-mimic condition was Pdi 

reduced (~22%). The force generated by stimulating the first dorsal interosseous was not 

different before or after exercise in any trial. These findings demonstrate that diaphragm 

fatigue occurs due to a unique interaction between the work performed by the diaphragm 

and the systemic environment of whole-body intense exercise.  

 These findings were supported by Babcock et al. (2002) who measured Pdi at rest 

and following maximal exercise at 85% 2OV max using BPNS (twitch, 10, 20, 50 and 100 

Hz and T2 at 50, 70 and 100 Hz). A control trial was performed for 9.6  0.6 min. In 

another trial exercise was performed for the same duration but the respiratory muscles 

were unloaded by 40 to 50% using PAV. Immediately after the control trial, Pdi was 

reduced at all stimulation frequencies. However, following exercise with PAV, Pdi 

remained unchanged from rest. A previous study from the same group indicated that 

exercise-induced diaphragm fatigue does not occur at lower exercise intensities (75% 2OV

max) performed both with and without PAV (Wetter et al. 1999). Therefore, these findings 

demonstrate that exercise-induced diaphragm fatigue is most likely caused by fatiguing 

diaphragm contractions and the competition with the exercising locomotor muscles for the 

available Q . During intense exercise, the competition for blood flow between respiratory 

and locomotor muscles may decrease O2 utilisation within and metabolite clearance from 

the diaphragm, increasing the reliance upon anaerobic processes and the potential for 

fatigue.  
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 These findings are also supported by studies that measured respiratory muscle 

blood flow during exercise and quantified the effects of the FIO2 on diaphragm fatigue. 

Vogiatzis et al. (2008) measured external intercostal and vastus lateralis muscle blood flow 

using near-infrared spectroscopy and indocyanine green dye during 5 min exercise in 

normoxia (FIO2: 0.21), hypoxia (FIO2: 0.13) and hyperoxia (FIO2: 1.00). Femoral arterial 

oxygen content (CaO2) was 196.6  4.4, 150.9  4.3 and 219.5  6.2 mlL
-1

 in normoxia, 

hypoxia and hyperoxia, respectively. The corresponding arterial oxygen saturation was 95, 

72 and 100%, respectively. In each trial the exercise intensity was adjusted to ensure a 

similar work of breathing. Following each bout of exercise, twitch Pdi was significantly 

reduced, however, the magnitude of this reduction in hypoxia (33%) was greater than that 

in normoxia and hyperoxia (~25%). This reduction was attributed to the failure of 

intercostal muscle blood flow (and possibly the diaphragm, although not measured) and O2 

delivery to significantly increase during exercise in hypoxia (53.6  8.5 ml100 mlmin
-1

) 

relative to normoxia / hyperoxia (~51 ml100 mlmin
-1

). These findings tentatively support 

the concept that exercise-induced diaphragm fatigue manifests due to a substantial 

diaphragm work combined with the competition for Q  with the locomotor muscles 

(Dempsey et al. 2006b). However, the limitations to near-infrared spectroscopy such as the 

depth of blood flow measurement (~2 cm) and failure to measure diaphragm blood flow 

suggests this requires further investigation.  

 

1.5.5 DIAPHRAGM FATIGUE AND THE POST-EXERCISE SHIELDING HYPOTHESIS 

 Previous studies suggest that diaphragm fatigue occurs during exercise most likely 

when the ratio of ∫Poe/∫Pdi increases. However, recent evidence suggests that diaphragm 

fatigue does not develop during exercise but rather only after exercise. This process has 

been termed the „post-exercise diaphragm shielding hypothesis‟ (Kabitz et al. 2007, 2008a, 

b; Figure 1.17). 
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 In a series of studies, Kabitz et al. (2007, 2008a, b) measured for the first time 

evoked Pdi during exercise using BPNS. The findings of these studies are illustrated in 

Figure 1.17. In this Figure (A and B), each grey shaded vertical bar represents a 90 s phase 

of the exercise bout. The exercise intensity of each phase is relative to 85% 2OV max 

(which in the Figure is the highest bar and defined as 100%). Figure 1.17A and B illustrate 

that as the exercise intensity increases, Pdi increases (closed circles: ). This also occurs 

when the exercise breathing pattern is mimicked at rest (Figure 1.17B; grey triangles: ▲). 

However, despite a continual rise in twitch Pdi, at the cessation of exercise only, Pdi was 

significantly reduced below baseline (Figure 1.17A, B; closed circles: ). In their final 

study, Kabitz et al. (2008b) illustrate that despite twitch Pdi increasing throughout exercise 

and decreasing below baseline after exercise, in a subsequent bout, Pdi increased once 

more to a similar level as the previous bout (Figure 1.17C; open circles: ○). 
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Figure 1.17 (A) Twitch Pdi in response to bilateral phrenic nerve stimulation during exercise and recovery; 

(B) during and following exercise and a voluntary mimic trial with an identical breathing pattern as that 

achieved during exercise and (C) throughout repeated bouts of exercise and recovery (Kabitz et al. 2007, 

2008a, b, respectively) 

 

  Collectively these findings suggest that diaphragm fatigue must not develop during 

exercise, as this would attenuate the rise in Pdi in the subsequent bout. The rise in Pdi 

throughout exercise was attributed to increased diaphragm excitability. Kabitz and 

colleagues suggest that diaphragm motor output (and thus twitch Pdi) is reduced only after 

exercise when a centrally regulated control limits diaphragm excitability in order to allow 

the diaphragm to “recover without actually resting” (Kabitz et al. 2008b, pg. 236). 

Therefore, these findings suggest that (I) diaphragm fatigue does not develop during 

exercise but rather after exercise; (II) diaphragm fatigue does not limit Pdi during 
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subsequent exercise bouts; (III) does not affect subsequent performance and (IV) post-

exercise shielding acts to protect the diaphragm, by allowing it to recover without resting. 

Such a mechanism would protect a fatigued muscle from excessive and / or deleterious 

muscle contractions which may preserve cellular integrity. However, as shown in Figure 

1.17C, post-exercise diaphragm shielding does not actually shield the diaphragm since 

subsequent, intense contractions which manifest in diaphragm fatigue are achieved in 

subsequent exercise. Furthermore, if a post-exercise shielding were achieved, the 

recruitment of non-diaphragmatic respiratory muscles (Jonville et al. 2005) would increase 

which may increase either EV  (which was similar across subsequent bouts; see Figure 

1.17C, ) or modify the breathing mechanics (neither the ratio ∫Poe/∫Pdi nor R were 

reported).  

 Recent evidence however argues against this hypothesis (Renggli et al. 2008). In 

this study, subjects (n = 14) were required to perform 8 min isocpanic volitional 

hyperpnoea (71  10% MVV) followed by 6 min rest and rerpeated this protocol until task 

failure (subjective exhaustion or 3 continous breaths below the target). Renggli and 

colleagues reported a reduction in twitch Pdi following as little as 8 min. Furthermore, 

there was a temporal increase in pressure generation of the inspiratory chest wall muscles 

(Poe) (Figure 1.18). Thus this study contradicts that of Kabitz et al. By illustrating a rapid 

and sustained depression of twitch Pdi during volitional hyperpnoea with no evidence of 

Pdi recovery between bouts. 
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Figure 1.18 Reduction in twitch Pdi (Pdi,tw; diaphragm fatigue) (Left) and gastric pressure (Pga,tw; abdominal 

fatigue) (Right) relative to rest during repeated bouts of 8 min isocapnic volitional hyperpnoea with 6 min 

recovery. 
 

 These conclusions are also in stark contrast to the hypothesis of Johnson et al 

(1993) and Babcock et al. (1995, 1998). They are also contrary to those published by 

Romer et al. (2007a). In this latter study, both potentiated and unpotentiated Pdi evoked at 

10 to 100 Hz were unchanged following maximal incremental cycling exercise. The 

incremental cycling protocol was similar to that used in the studies by Kabitz and 

colleagues. Romer et al. (2007a) suggest that exercise-induced diaphragm fatigue was 

prevented due to the brevity (4.3 min) at which exercise was performed above the critical 

intensity for diaphragm fatigue. Interestingly, this duration was markedly greater than that 

of Kabitz et al. (2007, 2008a) where subjects exercised for only 3 min at or above this 

threshold (i.e. two 90 s phases). Therefore, rather than demonstrating post-exercise 

shielding of the diaphragm, the findings of Kabitz et al. (2007, 2008a, b) are more likely 

explained by several methodological shortcomings which are explained below.  

 The methodological shortcomings include firstly, the protocol used to measure the 

resting and post-exercise twitch Pdi and secondly, the lung volume at which Pdi was 

measured. During intense exercise twitch Pdi increases due to increased motor-unit 

excitability (Rassier and MacIntosh 2000). The increased twitch force occurs due to post-

activation potentiation (PAP). PAP is caused by the phosphorylation of the regulatory 

myosin light chains as a direct consequence of the work performed in the previous 

contraction(s) (Folland et al. 2008). In the studies by Kabitz and colleagues, the precise 
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measurement of Pdi and accounting for PAP before, during and after exercise was 

fundamental to the post-exercise shielding hypothesis. In their studies, to control for PAP 

throughout exercise, the resting twitch was fully potentiated by performing 5, 5 s MIP 

efforts immediately prior, subsequently the first two twitch Pdi responses are discarded 

since Pdi is still rising (Romer et al. 2007a); this method is known to maximally potentiate 

the subsequent twitch response up to 52% (Guleria et al. 2002; Mador et al. 1994; Wragg 

et al. 1994). However, a sustained maximal Müeller manoeuvre will recruit all motor units 

of the diaphragm, including both fast and slow twitch muscle fibres (Bellemare and 

Bigland-Ritchie 1987). Since PAP is fibre-type specific, the potentiated twitch will 

increase the force generating capacity of both type I and II fibres (Sale 2002). In the 

studies by Kabitz and colleagues the peak exercise and recovery EV  was ~100 and ~20 

Lmin
-1

, respectively. At these ventilations, breathing is sub-maximal. Furthermore, since 

diaphragm muscle fibre recruitment follows the size principle (Sieck and Fournier 1989) 

only the smaller motor units would be active. Therefore, it would appear that the PAP 

conditions employed at rest i.e. following a 5 s MIP and during and following exercise 

were extremely different. Thus it is likely that the reduction in twitch Pdi observed 

following exercise: the so called „post-exercise shielding‟ may simply reflect an un-

potentiated twitch which is lower than that produced at rest.  

 The second limitation is the lung volume at which twitch pressure was measured. 

Throughout exercise from onset to termination, functional residual capacity shifts. This is 

because of a decrease in EELV and subsequent increase in EILV which facilitates an 

increase in VT and expiratory flow rates. The diaphragm is known to express functional 

length-tension relationships (Braun et al. 1982; Johnson et al. 1993; LeBlanc et al. 1988) 

where an increase in lung volume lengthens the inspiratory muscles and reduces their force 

generation capacity. In the studies by Kabitz and colleagues, prior to each twitch, 

participants were instructed to breathe in and out slowly and then hold their breath, twitch 

Pdi was then measured at the muscle length specific to that breath and ventilation. The 
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increase and decrease in Pdi during and following exercise, respectively, may simply 

reflect the transient change in EELV and thus diaphragm length. The change in diaphragm 

length would affect diaphragm force generating capacity. These methods are in contrast to 

those of Johnson et al. (1993), Babcock et al. (2002) and Romer et al. (2007a) where 

measurements of twitch Pdi at a lung volume or Poe  10% of that at resting FRC were 

excluded from subsequent analysis. 

 In summary, the recently advocated post-activation shielding hypothesis appears to 

be fundamentally flawed by methodological error. Further study is therefore required to 

identify whether such a mechanisms is indeed present following exercise. Also, why post-

exercise shielding would occur despite Pdi increasing in subsequent exercise should be 

investigated. It would seem reasonable to suspect that if the diaphragm were to be shielded 

following exercise, subsequent breathing mechanics would be affected. Finally, if a 

centrally regulated shielding is initiated following exercise, how is this identified by 

stimulating the motor nerve roots in the vertebrae where the central controller is essentially 

bi-passed? Consequently, owing to the limitations of the post-exercise shielding 

hypothesis, the remainder of this review focuses on the traditional hypothesis by Johnson 

et al. (1993) that diaphragm fatigue manifest during and not following exercise.  

 

1.5.6 SUPRASPINAL DIAPHRAGM FATIGUE 

 The origin of supraspinal fatigue is the central nervous system or higher brain 

centres. Central fatigue results in decreased voluntary muscle activation due to a reduction 

in the motor output from the brain to the motor-neuron pool (Gandevia 2001). Central 

diaphragm fatigue was first reported by Bellemare and Bigland Ritchie (1987). In this 

study Pdi was measured during repeated maximal voluntary inspiratory efforts with a 

twitch superimposed upon this effort. Using this technique a further increase in Pdi above 

that generated volitionally indicates the magnitude of central activation by the motor 

cortex. Central activation and peripheral fatigue was assessed during and between 
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inspirations, respectively, during a fatiguing flow-resistive loading task at 75% Pdi max. 

At rest, no increase in Pdi was observed during an MIP with a superimposed twitch, 

demonstrating that activation of the diaphragm was maximal. However, at task failure, the 

central and peripheral components of fatigue were 39  8% and 61  8%, respectively. 

Throughout the first 20 to 40% of the trial, peripheral fatigue (i.e. decrease in twitch Pdi) 

accounted for a 25% reduction in voluntary Pdi which therefore remained constant. A 

marked increase in the superimposed twitch (or a decrease in central activation) was 

subsequently observed. Bellemare and Bigland Ritchie (1987) demonstrated that during 

fatiguing inspiratory work, a level of peripheral fatigue was developed and following this, 

central activation of the diaphragm was reduced limiting central motor output, preventing 

the development of further peripheral failure. Therefore in the latter stages of the breathing 

test, a reduced central motor output accounted for the reduction in voluntary Pdi. 

Interestingly, the reduction in motor output was specific to the diaphragm as a rise in 

accessory respiratory muscle EMG was observed. These findings are similar to and 

supported by those recently observed during whole-body cycling exercise where the 

magnitude of peripheral locomotor muscle fatigue was regulated by a reduction in central 

motor output (Amann et al. 2008b, 2009).  

 Guleria et al. (2002) studied central fatigue of the diaphragm and the quadriceps 

during two exercise trials which targeted specifically each muscle group. Diaphragm 

loading was achieved by inspiratory pressure threshold loading which began at 30% MIP 

and increased by 10% every 3 min. Quadriceps loading was achieved using isometric 

contractions initiated at 10% MVC and increased by 10% every 3 min. Stimulation of the 

diaphragm (BPNS) and quadriceps (femoral nerve) was performed in each protocol, 

respectively, during each contraction to indicate central activation and following each trial 

to quantify peripheral fatigue. At task failure the reduction in quadriceps twitch force was 

~20% less and central activation was ~18% greater than the diaphragm. These findings 

suggest, similar to those of Bellemare and Bigland Ritchie (1987) that central motor output 
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to the diaphragm is reduced during exercise to a greater extent than other skeletal muscles, 

which limits contraction failure following exercise. The modified quadriceps response was 

suggested to suit evolutionary needs such as when hunting or escaping from predators. 

Similar findings were reported by Verin et al. (2004) following maximal incremental 

treadmill exercise. Transcranial magnetic stimulation of the motor cortex indicated 

significant reductions in both diaphragm and quadriceps motor evoked potentials (~60%). 

Following 20 min of recovery, motor evoked potentials were 45% of baseline for the 

diaphragm but had increased to 74% of baseline in the quadriceps. This suggests a 

supraspinal process within the cortex which provides a substantially greater protection of 

the diaphragm following exercise, which limits diaphragm fatigue during and following 

exercise and supports the notion that the respiratory muscles are the only essential skeletal 

muscle.  

 Therefore, when considering both peripheral and central fatigue together, the 

plateau in the work of the diaphragm relative to the chest wall muscles (Johnson et al. 

1993; Babcock et al. 1998) may be a result of peripheral fatigue and possibly a subsequent 

reduction in central motor output to the diaphragm. As a consequence, motor output to the 

chest wall and accessory respiratory muscles is increased (Bellemare and Bigland-Ritchie 

1987). The sub-conscious redistribution of respiratory motor-output may provide a 

protective mechanism against excessive peripheral diaphragm fatigue (Guleria et al. 2002; 

Verin et al. 2004). Despite this protective mechanism, a reduction in diaphragm motor 

output and increased accessory muscle recruitment would elevate the work of breathing 

and the sensations of respiratory discomfort. However, it appears that this increase in the 

work of breathing is more favourable than excessive diaphragm fatigue and possible 

respiratory failure. Indeed, accessory muscle recruitment and the large increase in 

perceived breathlessness and breathing discomfort may serve as an important protective 

signal for volitional termination of exercise. 

 



 47 

1.5.7 EXERCISE INDUCED PERIPHERAL ABDOMINAL MUSCLE FATIGUE 

 At rest abdominal muscle recruitment is minimal as the chest and lung elastic recoil 

facilitates expiration. However, almost immediately during exercise, abdominal muscle 

recruitment is increased (Aliverti et al. 1997). Abdominal muscle recruitment facilitates 

inspiration in many ways but predominantly by reducing EELV which increase VT and 

increases diaphragm length (Abbrecht et al. 1991). Despite this important function, the 

expiratory muscles have received much less attention than their inspiratory counterparts.  

 By stimulating the thoracic nerve roots which innervate the abdominal muscles and 

measuring the subsequent Pga, abdominal muscle contractile fatigue can be assessed. 

Verges et al. (2006) reported a significant 13  7% reduction in twitch Pga following 

exercise to volitional tolerance at 85% W max with no change in abdominal muscle M-

wave. Abdominal muscle force was not different to rest following 30 min of recovery. 

Similarly, Taylor et al. (2006) measured Pga in response to supramaximal stimulation of 

the abdominal nerve roots prior to and following intense exercise at 90% 2OV max (14.2  

4.2 min). Following the cessation of exercise, Pga at 1 through 25 Hz (1 s train) was 

reduced by 25  4% which persisted for 30 min post-exercise with no changes observed in 

M wave. Both of these findings provide evidence for LFF of the abdominal muscles 

following exercise; HFF has yet to be assessed. Given the important role for the abdominal 

muscles in supporting diaphragm work, the implications of expiratory muscle fatigue on 

inspiratory muscle function have not been documented during whole body exercise 

although recent findings shows that fatiguing expiratory loading promotes both expiratory 

and inspiratory muscle fatigue (Taylor and Romer 2009). Fatigue of the expiratory muscle 

prior to or during exercise may attenuate the decrease in EELV, causing excessive flow 

limitation and dynamic hyperinflation. These actions would increase the operating length 

of the inspiratory muscles throughout the breath cycle reducing their mechanical 

efficiency. This may have the potential to accelerate inspiratory muscle fatigue by reducing 

the capacity for inspiratory pressure development, increasing accessory muscle recruitment 
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and therefore the inspiratory work of breathing. Furthermore, increasing the pressure 

required by the inspiratory muscles may also intensify the sensations of breathlessness. 

However, this theorectival notion was recently contested by Taylor and Romer (2008) and 

Taylor and Romer (In Press) where following expiratory muscle loading which 

significantly reduced Pga EELV remained unchanged throughout exhaustive exercise 

relative to a control trial without prior expiratory muscle loading.   

 

1.5.8 CARDIO-RESPIRATORY INTERACTIONS DURING INTENSE EXERCISE 

 During intense-exercise in healthy adults the respiratory muscles can demand up to 

10% of the total cardiac output and oxygen consumption and up to 15% in well trained 

athletes. A consequence of the work of breathing is exercise-induced respiratory muscle 

fatigue which is mediated both centrally and peripherally. It is likely that a level of 

peripheral fatigue is developed beyond which central respiratory motor outflow is curtailed 

limiting further, possibly damaging muscle contractions. The development of exercise-

induced diaphragm fatigue can have significant implications for both locomotor blood flow 

and exercise tolerance.  

 Fatiguing diaphragm and abdominal muscle contractions elicited by inspiratory 

resistive loading at 60% MIP increase locomotor muscle sympathetic nerve activity 

(MSNA) measured from the peroneal nerve (St Croix et al. 2000; Derchak et al. 2002). In 

addition, fatiguing inspiratory muscle loading causes a time-dependent reduction in limb 

blood flow (decreased vascular conductance) secondary to an increased limb vascular 

resistance. These effects are not observed with non-fatiguing inspiratory resistive loading 

(Sheel et al. 2002). The increased locomotor MSNA and subsequent limb vascular 

resistance was attributed to the discharge of chemo-sensitive type III and IV afferent fibres 

located in the fatiguing diaphragm muscle fibres. The diaphragm has a rich supply of 

afferent nerve endings and their firing rate increases with fatigue (Hill 2000, 2001). Type 

III and IV afferent fibres are also highly sensitive to metabolites; in particular, lactate is 
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known to significantly increase the discharge of afferent fibres in the cat (Graham et al. 

1986; Rotto and Kaufman 1988; Sinoway et al. 1993). The discharge of diaphragm 

afferents increases sympathetic efferent discharge to the locomotor muscles which reduces 

limb blood flow. Although the sympathetic efferent response is general to many vascular 

beds, diaphragm perfusion may well be protected since the α1-adrenergic receptors of the 

second order diaphragm arterioles appear to be less sensitive to vasoconstrictive stimuli 

(Aaker and Laughlin 2002a). This has been termed the respiratory muscle metaboreflex 

(Figure 1.19).  

  
 

 

Figure 1.19 Schematic of the origin and consequences of the respiratory muscle metaboreflex (Dempsey et 

al. 2006b). 

 

 

 Harms et al. (1997) reported that during maximal whole-body exercise to the limit 

of volitional tolerance, increasing inspiratory muscle work by adding mesh screens to the 
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-1
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thermodilution technique) by ~0.9 Lmin
-1

 due to an increase in limb vascular resistance. 
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-1
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limb blood flow (r = 0.84 to 0.9, P<0.05) and limb 2OV  (r = 0.77, P<0.05; Figure 1.20). 

Significant correlations were also reported between the increase in leg vascular resistance 

and nor-adrenaline spillover in the limb. These physiological responses were not observed 

during sub-maximal exercise at 50 and 75% 2OV max (Wetter et al. 1999). This 

demonstrates a unique interaction between the work of breathing and locomotor blood 

flow. The increase in limb vascular resistance was correlated with nor-adrenaline spillover 

within the locomotor muscles. Nor-adrenaline spillover is reflective of sympathetic 

outflow which further suggests suggest that the respiratory muscle metaboreflex may be a 

sympathetically mediated response. 

 

 
 

Figure 1.20 Effects of the work of breathing on A) limb blood flow ( legsQ ) and B) limb 2OV  ( legsOV 2
 ; 

Harms et al. 1997).  

  

 Compelling evidence for the metaboreflex has been provided by animal studies. 

Rodman et al. (2003) injected a bolus of lactic acid in to the phrenic and deep circumflex 

arteries which supply the diaphragm and abdominals muscles, respectively. The injections 

were performed at rest and during 2 to 3 min sub-maximal steady state exercise (3.5-5.5 

km∙h
-1

). Both at rest and during exercise, lactic acid infusion increased mean arterial blood 

pressure and reduced cardiac output (due to subsequent increases in systemic vascular 
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resistance) by 21 and 6%, respectively. Limb perfusion was reduced by 20% which was 

caused by an increased locomotor MSNA. These effects were not observed when the 

experiment was repeated with pharmacological sympathetic blockade of the sympathetic 

nervous system (adrenergic receptors) using injections of phentolamine and propranolol.  

Skeletal muscle blood flow is determined by blood vessel diameter. Vessel 

diameter is affected by both vasodilator and vasoconstrictor stimuli. Therefore, the balance 

of these ensures that the resultant perfusion pressure and vascular tone is matched to the 

systemic metabolic demand. However, amazingly the increase in sympathetic output 

mediated by nor-adrenaline spillover (Harms et al. 1997) does not appear to affect 

diaphragm perfusion. Aaker and Laughlin (2002a) reported that the 1-adrenergic 

receptors of diaphragm second order arterioles are less responsive to the vasoconstrictive 

effects of nor-adrenaline. The internal diameter of these vessels was unchanged with 

progressively large doses of nor-adrenaline infusion into the individual arterioles. 

Diaphragm arterioles also responded in a dose-dependent manner to adenosine infusion (a 

potent vasodilator; Aaker and Laughlin 2002b) although evidence from ponies suggests 

that the vasodilator capacity of the diaphragm is maximal during intense exercise 

(Manohar 1986). Whether the respiratory muscle metaboreflex promotes / increases 

respiratory muscle blood flow or diaphragm O2 extraction has yet to be confirmed. Since 

the diaphragm vasodilator capacity is maximised (Manohar 1986) during intense exercise 

the metaboreflex may serve to either preserve diaphragm perfusion in light of the 

increasing metabolic demand or act to increase accessory respiratory muscle perfusion 

since the activation of the latter exceeds the former during intense exercise (Johnson et al. 

1993). Furthermore, whether the respiratory muscle metaboreflex would be activated 

during athletic competition is unknown since previous studies in humans and animals have 

lacked ecological validity. 
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1.5.9 THE WORK OF BREATHING AND EXERCISE TOLERANCE 

 Some studies have pre-fatigued the respiratory muscles prior to exercise to 

determine the effects of this muscle group upon performance. Prior respiratory muscle 

fatigue has been induced by a number of methods. 150 min volitional hyperpnoea 

(separated by a 4 min break every 15 min) at the maximal sustainable ventilation (58 to 

82% MVV12; Martin et al. 1982), 10 min volitional hyperpnoea at 80% EV max (Dodd et 

al. 1989) and 60% MVV to exhaustion in which twitch Pdi was depressed up to 120 min 

post-hyperpnoea (Mador et al. 1996). Flow resistive loading at 80% MIP has also been 

used (Mador and Acevedo 1991a, b; Sliwinski et al. 1996) until twitch Pdi fell by 20% 

relative to rest (Verges et al. 2007a) has also been employed. With the exception of a few 

studies who investigated the effects of prior respiratory muscle work on diaphragm 

contractile properties per-se (Mador et al. 1996; Sliwinski et al. 1996; Verges et al. 2007a), 

all of aforementioned studies reported a significant reduction in incremental exercise 

performance time (Martin et al. 1982) and constant power time to the limit of tolerance at 

85% (Dodd et al. 1989; Verges et al. 2006) and 90% W max (Mador and Acevedo 1991a, 

b). Interestingly, when isocapnic volitional hyperpnoea performed at 52% MVV for 15 

min, there were no changes in volitional measures of respiratory muscle strength and 

endurance performance (78% maxW , ~lactate  threshold; Spengler et al. 2000).  

 Prior-fatigue of the abdominal muscles has also been shown to limit exercise 

tolerance. Following expiratory muscle loading that caused a 20% fall in MEP, the 

distance covered and the average speed during a 12 min run were decreased by 85 m and 

0.13 ms
-1

, respectively, relative to a control (Verges et al. 2007a). Recently, using 

magnetic stimulation of the abdominal nerve roots and the femoral nerve, the effects of 

prior expiratory muscle fatigue on exercise tolerance and locomotor muscle fatigue were 

assessed (Taylor and Romer 2008). Prior-abdominal muscle fatigue was imposed by 

expiratory resistive loading at 40% Pga max. The expiratory loading task reduced twitch 
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Pga by 27  5%. Relative to a control trial, performance time was reduced by -33% and 

quadriceps fatigue was greater (28% vs. 12%). 

 These studies clearly indicate that the respiratory muscles may indeed limit exercise 

tolerance. However, all of these studies observed a significant change in breathing pattern 

during the exercise trial, specifically an increased R with no change in VT (rapid but not 

shallow breathing) and a heightened sensation of both leg and breathing discomfort 

(dyspnoea). An increase in R caused by an increased accessory muscle recruitment results 

from an increased central motor output (St. Croix et al. 2000; Sheel et al. 2001). The 

conscious awareness of central motor output via corollary discharge from the motor cortex 

to the sensory cortex increases the perceptions of breathing effort (Gandevia et al. 1981; 

McConnell and Romer 2004b) which are both important determinants of exercise tolerance 

(Jones and Killian 2000; Presland et al. 2005). Therefore it is unclear whether the impaired 

performance is a consequence of the greater sense of dyspnoea or the alteration in 

breathing pattern and / or respiratory muscle fatigue. 

 To avoid these confounding effects, Harms et al. (2000) investigated the effects of 

fatiguing diaphragm work on whole-body exercise tolerance and Romer et al. (2006a) 

quantified the effects of this on locomotor muscle fatigue using magnetic stimulation of the 

femoral nerve. Both studies used PAV to reduce the inspiratory muscle work of breathing 

that normally occurred during intense exercise therefore eliminating the potentially 

confounding effects of prior-fatigue on the responses to the subsequent exercise bout. In 

the study by Harms et al. (2000) well trained cyclists ( 2OV max: 63  5 mlkg
-1
min

-1
) 

exercised at 90% 2OV max to volitional exhaustion (control trial) and repeated this in two 

subsequent trials. One trial was performed with PAV and one with an increased inspiratory 

resistance provided by mesh screens. Unloading and loading the inspiratory muscles 

increased and decreased performance time by +1.3 and -1.0 min, respectively (Figure 

1.21). The changes in performance were associated with changes in 2OV  (increased with 
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loading and decreased with unloading) and correlated with changes in both leg and 

respiratory muscle discomfort. These findings illustrate a significant interaction between 

changes in respiratory muscle work with locomotor muscle performance and the effects 

upon both the sensations of respiratory and limb discomfort. 

  

 

Figure 1.21 Relationship between time to exhaustion (Tlim) and the experimental conditions.  Note the trend 

for the loaded breathing trial to fall below the line of identity (Harms et al. 2000). 

 

 Romer at al. (2006a) extended these findings by assessing the magnitude of limb 

muscle fatigue using magnetic stimulation of the femoral nerve following cycling exercise 

performed at 90% 2OV max (292  13 W) with PAV or loaded breathing (using mesh 

screens). In a control trial, exercise was performed to volitional exhaustion for 13.2  0.9 

min and evoked quadriceps force was reduced by 28  5% (mean of 1 to 100 Hz) 2.5 min 

post-exercise. With PAV, exercise was terminated at the same time as the control trial, 

however the reduction in evoked force was reduced to 20  5%. Inspiratory muscle loading 

is known to impair whole-body performance time relative to a control (Harms et al. 2000), 

thus an additional control trial was performed at the same exercise intensity (292  13 W) 

but which reflected the exercise duration that could be sustained with additional inspiratory 

loaded breathing (7.9  0.6 min). Following the control trial without loaded breathing 
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quadriceps muscle fatigue decreased by 12  8%. During the experimental trial with loaded 

breathing, quadriceps muscle fatigue increased to 20  7%. Increases and decreases in both 

respiratory and limb discomfort were also observed with loading and unloading the 

inspiratory muscles.  

 The reductions in locomotor muscle performance (Harms et al. 2000) and the 

exacerbated limb muscle fatigue (Romer et al. 2006a) when loading the inspiratory 

muscles was attributed to a reflex sympathetically-mediated vasoconstriction of the limb 

musculature (Sheel et al. 2001, 2002) which originated in the fatiguing inspiratory 

muscles. Therefore, during intense exercise, the respiratory muscle metaboreflex may have 

attenuated locomotor muscle blood flow and locomotor O2 transport. A reduction in O2 

transport is known to have significant effects upon skeletal muscle force output. For 

example, recently it was demonstrated that quadriceps fatigue is inversely related to CaO2 

(FIO2 = 0.15 to 1.00; CaO2: 17.6 to 24.4 mlL
-1

) in trained male cyclists ( 2OV max: 63.3 

mlkg
-1
min

-1
; Amann et al. 2006). Furthermore, Romer et al. (2006b) observed that 

attenuating the reduction in arterial oxygen saturation from 92% to 98% attenuated 

peripheral quadriceps fatigue by approximately 50%. That increasing the work of breathing 

reduced limb blood flow and limb O2 delivery with no change in O2 extraction, suggests 

that the respiratory muscle metaboreflex may have a detrimental effect on intense 

endurance performance to volitional tolerance. It is also clear that reducing the work of 

breathing which is normally incurred during intense exercise by using PAV prevents this 

response.  

 The work of breathing is considerable during intense exercise and may have 

important implications for locomotor muscle fatigue. However, the use of PAV during 

competition and training to reduce the work of breathing and improve performance is 

impractical. As a consequence, training the respiratory muscles independent to whole-body 

training to reduce the work of breathing during intense exercise may provide a unique 

alternative to potentially improve exercise tolerance.  



 56 

1.6 RESPIRATORY MUSCLE TRAINING  

1.6.1 BRIEF INTRODUCTION 

Specific training of the respiratory muscle (RMT) was first developed in clinical 

populations by Delhez et al. (1966) where repeated 3 s Müeller manoeuvres were 

performed for 8 wk. Following RMT, MIP increased 37  23%. Delhez and colleagues 

concluded that the increase in inspiratory muscle strength (which was a surprising finding 

at that time) may reduce the potential for the respiratory muscles to limit ventilatory work. 

Probably the first study to investigate whether RMT affects the strength and endurance of 

the respiratory muscles in healthy subjects was conducted by Leith and Bradley (1976). In 

their classic study, they hypothesised that known training principles would apply to the 

respiratory muscles. Following 5 wk voluntary hyperpnoea training a 19% increase in the 

maximal sustainable ventilatory capacity was observed and in another group, a 55% 

increase in MIP was observed following 5 wk RMT comprising repeated MIP efforts at 

20% intervals over the VC range for 30 minday
-1

. However, at the time of their study, 

neither respiratory muscle strength nor ventilatory endurance were known to limit exercise 

tolerance, consequently the authors suggested that the application of RMT to improve 

exercise performance was limited (Leith and Bradley 1976). 

Despite these early perspectives, it should be recognised that breathing is a form of 

muscular exercise and the physiological consequences of the work of breathing may 

exacerbate locomotor muscle fatigue and intensify the sensations of both limb and 

respiratory discomfort. Therefore, the notion that specific training of the respiratory 

muscles may attenuate some or all of these and improve performance has received 

considerable attention. 

 

1.6.2 RESPIRATORY MUSCLE TRAINING TECHNIQUES 

RMT can be performed by voluntary isocapnic hyperpnoea (VIH), flow resistive 

loading (FRL) and pressure threshold loading. Due to the high pressure and slow velocity 
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of each breath performed with FRL, this method targets the force axis of the inspiratory 

muscle force-velocity curve. Given the very high flow rates performed with VIH, this 

mode of training specifically targets the velocity axis of the respiratory muscle force-

velocity curve. Pressure threshold inspiratory muscle training (IMT) targets both axes 

(McConnell and Romer 2004a; Romer and McConnell 2003; Figure 1.22). This is 

important as the respiratory muscles are sensitive to specific training principles. It is also 

this reason which justifies the use of pressure threshold IMT in the experimental chapters 

of this thesis. For example, IMT which requires high inspiratory flow rates / pressures or a 

moderate intensity for both, results in protocol specific adaptations to the force-velocity 

characteristics of the inspiratory muscles (Romer and McConnell 2003; Tzelepis et al. 

1994; Figure 1.22).  

 

 

 

 

 

Figure 1.22 Inspiratory mouth pressure (PI) and inspiratory flow rates ( IV ) before (closed circles) and after 

(open circles) 9 wk pressure threshold IMT (Romer and McConnell 2003).  
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The respiratory muscles also show clear detraining effects with inactivity following 

specific RMT. Leith and Bradley (1976) were the first to observe this. 15 wk post-RMT, 

subjects lost approximately 50% of their initial improvements in both strength and 

endurance although there was a large amount of variability in their data (measure of 

variability not provided). Romer and McConnell (2003) reported that following 9 wk 

detraining inspiratory muscle strength was reduced, but remained above baseline for 18 

wk. Using a longer detraining period, Boutellier and Piwko (1992) reported that 

improvements in respiratory muscle endurance gained following VIH were completely lost 

after 72 wk of detraining. It is interesting to note however that a reduction in the training 

frequency of pressure threshold IMT from 2 sessions·day
-1

 6 days·wk
-1

 to 2 sessions·day
-1

 

2 days·wk
-1 

preserved inspiratory muscle function for 18 wk (Romer and McConnell 

2003). Recently, Leddy et al (2007) reported that following 4 wk VIH, performing 30 min 

2 days·wk
-1 

rather than 30 min·day
-1

 for 5 day·wk
-1

 for 3 months, also maintained 

improvements in 4 mile run time relative to baseline values. These findings clearly 

demonstrate the plasticity of the respiratory muscles, but also the sensitivity of them to 

detraining effects. 

 

1.6.3 VOLUNTARY HYPERPNOEA 

Voluntary isocapnic hyperpnoea (VIH) requires the participant to increase EV  to a 

prescribed level for a given period of time. A commercially available device for VIH is 

shown in Figure 1.23. Typical training intensities are 50 to 85% of the individual MVV 

with a R fixed at 30 to 45 breaths·min
-1

 and a and VT of 50 to 60% VC (~2.5 to 3.0 L) for 

30 minday
-1

 up to 4 wk (Boutellier et al. 1992; Boutellier and Piwko 1992; McMahon et 

al. 2002; Morgan et al. 1987; Spengler et al. 1999). The accurate monitoring of breathing 

pattern is fundamental to VIH in order to maintain the prescribed training intensity. VIH 

causes a rapid reduction in the partial pressure of CO2 in the arterial blood which can lead 

to dizziness and fainting. To avoid this, additional CO2 is added to the inspiratory 



 59 

breathing circuit using either laboratory based equipment with precise monitoring of end-

tidal and / or blood PCO2, or by using a re-breathing bag. The re-breathing bag, typically 

fixed at 50% VC, inflates during expiration (the remainder of the expirate is released into 

the atmosphere). In the subsequent inspiration, the inspirate is comprised of both 

atmospheric and CO2-enriched air from the re-breathing bag (Kohl et al. 1997; McMahon 

et al. 2002). This method is reported to maintain isocapnia during VIH at 38  4 mmHg 

(Leddy et al. 2007). 

 

 

 

Figure 1.23 Example of a commercially available voluntary isocapnic hyperpnoea respiratory muscle 

training device (www.spirotiger.com; accessed 13.02.2009). 

 

VIH can be used to improve respiratory muscle endurance (rather than strength) by 

targeting both the inspiratory and expiratory muscles. Following VIH, considerable 

improvements in ventilatory endurance have been observed. Boutellier and Piwko (1992) 

observed an increase in breathing endurance following 4 wk VIH training in sedentary 

individuals from 4.2 min to 15.3 min and from 6.1 min to 40 min (cut off time) in healthy 

trained individuals (Boutellier et al. 1992). Similar observations were observed in 

moderately trained healthy males (pre: 9.8 min, post: 36.7 min; Verges et al. 2007b) and in 

well trained competitive runners (pre: 14.7 min, post: 36.0 min; Leddy et al. 2007).  
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Although VIH can produce quite remarkable improvements in respiratory muscle 

endurance and is extremely high in ecological validity, training sessions are time 

consuming and often require supervision and specialised equipment. Furthermore, 

evaluating the changes in respiratory muscle endurance post-VIH requires prolonged 

exhaustive volitional hyperpnoea trials. McConnell and Romer (2004a) also suggest that 

due to the repeated high flow rates required by VIH, chronic drying of the airways may 

cause bronchoconstriction in some participants.   

 

1.6.4 FLOW RESISTIVE LOADING 

Flow resistive loading (FRL) is a strength training method that specifically targets 

the inspiratory muscles. During FRL participants inspire through a variable size aperture 

which provides a resistance. During inspiration, the pressure generated by the inspiratory 

muscles (i.e. training resistance) is dependent upon the inspiratory flow rate, therefore, 

monitoring breathing pattern is essential to regulate training load, i.e. it is easy to cheat. 

Training sessions require subjects to inspire repeatedly against a load of 80 to 100% MIP 

until the target pressure can no longer be maintained, typically for 3 daywk
-1

 for 4 to 10 

wk (Chatham et al. 1999; Enright et al. 2006; Gething et al. 2004a, b; Hanel & Secher 

1991). Some researchers have used a device known as the „TIRE‟ system (Test of 

Incremental Respiratory Endurance) where an inspiratory pressure (based on a percentage 

of MIP) is attained for six repetitions with 60 s recovery duration between efforts. The 

recovery time between breaths is subsequently reduced to increase the training intensity 

(Enright et al. 2006; Gething et al. 2004a, b). 

FRL has been shown to improve both inspiratory muscle strength and endurance. 

Improvements in MIP of 18 to 41% have been observed following 4 to 6 wk FRL training 

(Chatham et al. 1999; Enright et al. 2006; Gething et al. 2004a, b; Hanel and Secher 1991). 

Using ultrasonography, Enright et al. (2006) observed a 12% increase in diaphragm 

thickness at FRC following 9 wks FRL 3 days·wk at 80% MIP (pre: 4.1 mm, post 4.6 
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mm). An increase in diaphragm thickness was also reported by (Gething et al. 2004b) 

following 10 wks FRL although the authors fail to report specific data. In addition to 

improvements in inspiratory muscle strength and endurance, following FRL, increases in 

VC and TLC have been observed from 4.1 to 4.4 L and 5.7 to 6.1 L, respectively. These 

improvements were not due to increases in absolute lung volume, but rather the increased 

ability of the upper chest wall and neck inspiratory muscles to expand the thorax at greater 

lung volumes (Enright et al. 2006). Although improvements are noted with FRL, the 

reliance upon monitoring breathing pattern and perhaps PCO2 render this technique 

somewhat limited to a laboratory environment where specialist personnel and equipment 

are readily available. Furthermore the ecological validity of such techniques is 

questionable.  

 

1.6.5 PRESSURE THRESHOLD LOADING 

Pressure threshold IMT requires a negative pressure generated at the mouth which 

opens a valve. The valve may be a spring loaded solenoid valve (see Figure 1.24), resisted 

by a weighted plunger or provided by constant negative pressure. Once the threshold 

pressure is overcome, the valve opens and inspiratory flow begins. When the pressure can 

no longer be sustained, the valve closes, and passive expiration ensues. A commercially 

available device for pressure threshold IMT is shown in Figure 1.24. With pressure 

threshold IMT, each inspiratory manoeuvre is initiated from residual volume and VT is 

maximised. A rapid full inspiration followed by a protracted expiration minimises changes 

in PCO2, and negates the use of additional CO2 or a re-breathing bag. Pressure threshold 

IMT is also near flow-independent (Caine and McConnell 2000), thus monitoring of 

breathing pattern throughout a training session is not required. A typical IMT training 

regimen is 30 breaths at 50% MIP (although 70 to 80% MIP have also been used; Huang 

et al. 2002 ; Wells et al. 2004 ; Williams et al. 2002), twice daily for 4 to 6 wks. Training 

durations greater than this appear to have minor effects on inspiratory muscle strength 
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(Romer and McConnell 2003). Throughout pressure threshold IMT the valve opening 

pressure is periodically increased to accommodate for the rapid temporal improvement in 

MIP. 

 

 

 

 

 

 

 

  

Figure 1.24 Example of a commercially available pressure threshold inspiratory muscle training device 

(www.powerbreathe.co.uk; accessed 13.02.2009) 

 

 Pressure threshold IMT improves MIP by 17 to 55% (Leith and Bradley 1976; 

Romer et al. 2002a, b, c; McConnell and Sharpe 2005; Volianitis et al. 2001; Tong et al. 

2008). The large range in the relative improvements in inspiratory muscle strength may be 

due, in part, to the baseline inspiratory muscle strength. For example, Johnson et al. (2007) 

report a 17% improvement in MIP following 6 wk IMT, yet the baseline MIP of the 

subjects was 137% of the predicted value. Thus in a system with an elevated baseline 

strength, the scale of physiological adaptation available may be reduced (Åstrand et al. 

2003).  

Improvements in inspiratory muscle endurance are also noted after IMT. Inbar et al. 

(2000) used incremental pressure threshold loading in which the resistance was 

progressively increased every 2 min and observed an increase in the final pressure 

sustained from 121 to 154 cmH2O. In addition, pressure threshold IMT improves both the 

force and velocity (pressure:flow) characteristics of the inspiratory muscles (see Figure 

1.22). IMT was shown to increase the maximal inspiratory flow rate (17%), the optimal 
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pressure development (25%), optimal inspiratory flow rate (17%) and the maximal rate of 

pressure development (18%). Since MIP also increased (28%), in combination with the 

increase in the maximal inspiratory flow rate, maximal inspiratory muscle power increased 

49% (Romer et al. 2002a; Romer and McConnell 2003). Additionally, a significant 8 to 

12% increase in diaphragm thickness has been observed post-IMT (Downey et al. 2007).  

Pressure threshold IMT is portable, cheap and easy to use. It is less time consuming 

than other modes of RMT, with each session usually lasting ~5 min. The pressure 

generated (and therefore training resistance) is near independent of inspiratory flow rate 

and with the use of the tensioning load adjustment provided by the screw cap, a high 

resolution of training loads can be achieved. Other modes of RMT (VIH and FRL) are 

constrained to velocity axis and pressure axis of the pressure-flow relationship, 

respectively, whereas both are targeted and improved with pressure threshold IMT 

(McConnell and Romer 2004a, Romer and McConnell 2003; Romer et al. 2002a).  

 

1.6.6 RESPIRATORY MUSCLE TRAINING AND PERFORMANCE 

Numerous studies have investigated the effects of RMT upon whole-body exercise 

performance. Interpreting the data is confounded by the many different performance tests 

and modes of training which have been used, inappropriate sample sizes and the lack of 

appropriate controls. It is clear with the exception of two studies (Edwards and Cooke 

2004; Enright et al. 2006) that maximal incremental and constant power intense exercise to 

volitional tolerance above 90% of either 2OV max or W max are unaffected by RMT 

(Fairbarn et al. 1991; Hanel and Secher 1991; Hart et al. 2001; Inbar et al. 2000; Morgan et 

al. 1987; Riganas et al. 2008; Sonnetti et al. 2001; Wells et al. 2005). At such high 

intensities, metabolic perturbations within the locomotor muscles outweigh any beneficial 

effect which the trained respiratory musculature could offer. Furthermore, RMT is unlikely 

to affect any one component that determine maximal O2 uptake (where: 2OV max = Q

max a-vO2diff). 
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Performance was improved during sub-maximal constant power exercise at 70 to 

85% 2OV max / W max by up to 50% (Boutellier and Piwko 1992; Boutellier et al. 1992; 

Gething et al. 2004b; Johnson et al. 2007; Leddy et al. 2007; Markov et al. 2001; 

McMahon et al. 2002; Spengler et al. 1999; Stuessi et al. 2001; Verges et al. 2007b). 

However, other studies have failed to observe such changes (Kohl et al. 1997; Spengler et 

al. 1996; Williams et al. 2002). Despite a lack of performance improvements, Spengler et 

al. (1996) observed ~2 mmol·L
-1

 reduction in [lac
-
]B during exercise and Williams et al. 

(2002) observed a relationship between the changes in MIP following IMT and the 

reduction in the perceptions of breathlessness during the last min of the exercise trial which 

approached significance (no control group; r = -0.650, P = 0.057). Thus it appears that sub-

maximal constant power performance is improved with RMT.  

Although high in internal validity (i.e. the power output is identical pre and post-

RMT), the ecological validity of constant power sub-maximal trials has been questioned 

since athletic competition does not require a sustained power output, but rather a self-

selected oscillating velocity above and below the maximal sustainable intensity. 

Notwithstanding this, recent evidence suggests that the sensitivity (i.e. the change in 

performance divided by the error of measurement [SD]) of constant power tests is similar 

to that of time-trial performance tests. Constant power performance is however constrained 

by the hyperbolic power-time relationship where small reductions in the ability to produce 

force results in remarkable reductions in the time to the limit of tolerance (Amann et al. 

2008a). Despite this, the greater variance observed in constant power exercise (coefficient 

of variation: 17 to 40%; Jeukendrup et al. 1996) relative to a time trial (coefficient of 

variation: 17 to 40%; Jeukendrup et al. 1996) may be deemed negligible since the potential 

improvements in performance far exceed that observed during time-trial exercise. This 

results in a sensitivity of constant power exercise tests similar to that of a time-trial. 

However despite this, Amann et al. (2008a) declare that when investigating the true effects 

of an intervention on “real-life” endurance performance, a time-trial type performance test 



 65 

is preferable. The sub-conscious selection of a given power-output in such tests avoids 

working at an intensity which exceeds the lactate threshold and thus the premature draining 

of the metabolic reserve (Fukuba and Whipp 1999). Above the lactate threshold, 

performance time is reduced as fatigue develops in proportion to the exercise intensity 

(Walsh 2000). Furthermore, the athlete can appraise the systemic metabolic environment 

throughout exercise permitting them to choose an exercise intensity which they feel 

appropriate to complete the task in the quickest time possible (Amann et al. 2008b; 

McConnell and Romer 2004a).  

Volianitis et al. (2001) were the first to examine the effects of IMT upon rowing 

time trial performance. Subjects completed either 11 wk of pressure threshold IMT or 

placebo IMT. The time to complete 5 km and the distance covered in 6 min were improved 

following IMT by 3.1% (-36 s; P<0.05) and 3.5% (+52 m; P<0.05), respectively, but 

remained unchanged following the sham training (5 km: 0.9%, 6 min trial: 1.6%). 

Improvements have also been reported in 20 and 40 km simulated cycling time-trial on an 

electromagnetically braked cycle ergometer (3.8 and 4.6%; Romer et al. 2002c) and during 

a 25 km cycling time-trial where the subjects own racing bicycle was mounted on an air-

braked ergometry system (2.7%; Johnson et al. 2007). Leddy et al. (2007) observed a 

significant 4% (1.2 min) improvement in 4 mile run time above that of a placebo control 

group and most recently, Edwards et al. (2008) observed a significant 4.3% improvement 

in 5 km running time trial performance above a placebo (2.2%) following IMT. These 

findings have also been confirmed and extended by Griffiths and McConnell (2007). They 

observed a significant 2.7% (~15 m, ~20 W) improvement in a 6 min all out rowing 

ergometer test following 4 wk IMT but no change in simulated rowing performance 

following 4 wk of expiratory muscle training (EMT). Furthermore, a subsequent 6 wk 

period of combined IMT and EMT failed to further change any performance measures. It 

should be noted that studies investigating EMT and exercise tolerance have been 

conducted in healthy active subjects (e.g. Griffiths and McConnell 2007). In contrast EMT 
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appears increase expiratory muscle strength and improve exercise tolerance in clinical 

populations, such as those with COPD (Weiner et al. 2003). Significant improvements in 

recovery duration between repeated sprint exercise (Romer et al. 2002b) and distance 

covered in the Yo-Yo intermittent recovery test (Tong et al. 2008) have also been reported 

following IMT. Collectively these findings illustrate an ergogenic effect of IMT on whole-

body performance but question the use of EMT to further improve performance.  

Despite these improvements, Hanel and Secher (1991) observed no differences 

between groups in the distance covered in a 12 min running test following FRL (8%) and 

sham-FRL (6%). During IMT, the training regimen required 1 subject from each group to 

train at the same time, however with sham-IMT the resistance was minimal. Thus it is 

possible that the sham group were not completely blinded to the outcomes of the study and 

thus did not participate in a true placebo group. Sonetti et al. (2001) also reported no 

differences in 8 km cycling time-trial performance following RMT. The time-trial duration 

was significantly improved by 1.8% but was not different to the placebo control group. In 

this study, the IMT regimen was a combination of both pressure threshold IMT (~40 

breaths once daily) and VIH training (30 min as hard as possible once daily). As a 

consequence, only modest changes in MIP were observed following the intervention: MIP 

increased by 8% and 4% in the RMT and placebo groups, respectively. Changes in the 

maximal sustainable MVV following the intervention were not different between groups 

although a large coefficient of variation was noted (163%). Therefore, these findings 

suggest that either the RMT group did not have a sufficient training stimulus throughout 

the intervention and / or the placebo group also observed a small yet important training 

stimulus. However, it is known that concurrent strength and endurance training is 

disadvantageous as strength adaptations are inhibited compared to performing strength 

training alone. This is likely due to the marked difference in fibre type adaptations that 

occur with each method and the conflicting intra-cellular signals produced (Leveritt et al. 

1999).  
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In summary, early studies appeared to be limited by the lack of appropriate subject 

numbers and control / placebo groups. It also seems likely that the nature of the outcome 

criterion tests selected to assess performance have been inappropriate with open-ended 

high intensity constant power tests employed which are high in variation. Furthermore, the 

escalating metabolic acidosis and discomfort associated with intense exercise and the 

abrupt termination of maximal exercise would overwhelm any potential effects of RMT. 

More recent, well controlled studies that have employed placebo-controlled methodology 

have shown significant improvements in both cycling and running time-trial exercise 

performance as well as intermittent exercise performance. Specific RMT appears to 

provide an improvement in time-trial type exercise from 1.6 to 4.6%. Romer et al. (2002c) 

suggest that since the improvements in performance observed following IMT exceeds 

about half of the natural variance in human performance, the IMT-mediated improvements 

in exercise performance are likely to present a meaningful ergogenic effect which most 

importantly would make a difference to an athletes chance of athletic success. 

 

1.6.7 POTENTIAL MECHANISMS 

The mechanisms that underpin the improvements in performance following RMT 

may be (although not exclusively) due to interactions between the respiratory muscles and 

the brain. Research indicates that improvements in performance are not due to 

cardiovascular adaptations. Markov et al. (2001) reported improvements in cycling 

endurance which were not accompanied by changes in stroke volume (SV). Following 15 

wk RMT, SV measured using the CO2 re-breathing technique remained unchanged from 

baseline during exercise at 60% 2OV max (pre: 94 ml, post: 93 ml) compared to 15 wk 

whole-body endurance training (pre: 89 ml, post: 104 ml). Stuessi et al. (2001) also 

observed no changes in PaO2, PaCO2 and SaO2 measured from the radial artery during 

constant power cycling exercise at 70% 2OV max. However, in this study, total [Hb] was 

not measured thus the changes in [CaO2] which may be affected independent of SaO2 and 
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PaO2 were not reported. These findings are supported by Edwards and Cooke (2004) who 

report that the 2OV  kinetics during the transition from low to moderate intensity exercise 

(80% of the ventilatory threshold) are unchanged following IMT. Collectively these 

findings suggest that chronic RMT does not affect the cardiovascular system. This is 

probably due to the moderate cardiovascular demand placed on the whole-body during 

RMT. RMT also fails to affect the lactate threshold (Spengler et al. 1999) and the maximal 

sustainable power output (McConnell and Sharpe 2005; Johnson et al. 2007). A small 

increase in anaerobic work capacity (which reflects a constant yet finite energy store that is 

utilised above the maximal sustainable power output) has been observed following IMT 

but this increase is not great enough to account for the performance improvements. Romer 

et al. (2002c) suggests that the improvements in exercise tolerance and performance may 

be due to a number of mechanisms including an RMT-mediated effect upon respiratory 

muscle fatigue and subsequent locomotor muscle perfusion, changes in breathing 

mechanics and / or favourable changes in acid-base balance which may affect the 

perception of both respiratory and locomotor discomfort.  

 

1.6.7.1 ATTENUATED RESPIRATORY MUSCLE FATIGUE 

Unloading the respiratory muscles during intense exercise above 85% 2OV max 

using PAV attenuates both diaphragm and limb muscle fatigue (Babcock et al. 2002; 

Romer et al. 2006a) improves exercise tolerance and attenuates the perception of both leg 

and breathing discomfort (Harms et al. 2000). Dempsey et al. (2006b) state that a reduction 

in diaphragm fatigue would improve leg blood flow and as a consequence leg exertion is 

reduced and exercise performance is improved. Whether specific RMT may have similar 

effects on performance is unknown as the physiological effect of unloading the respiratory 

muscles is vastly different to the effects of RMT (Wetter and Dempsey 2000). For 

example, the performance improvement observed when the respiratory muscle are 
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unloaded by >50% is much smaller (~14%; Harms et al. 2000) than the improvements 

observed at similar exercise intensities following RMT (>50%). 

Post-exercise reductions in MIP, illustrative of inspiratory muscle fatigue are 

attenuated following IMT during intense rowing exercise (Griffiths and McConnell 2007; 

Volianitis et al. 2001), cycling time trials (Romer et al. 2002a) and intense constant power 

exercise in normoxia and hypoxia (Downey et al. 2007). However volitional measures of 

respiratory muscle fatigue fail to discriminate between a reduction in inspiratory muscle 

pressure generation and poor coordination / sub-maximal effort. Using magnetic 

stimulation techniques, Verges et al. (2007b) reported that 4 to 5 wk of RMT attenuated 

the reduction in twitch Pdi following intense exercise to volitional tolerance at 85% W

max but only in subjects who demonstrated a reduction in twitch Pdi greater than 10% 

(absolute reduction twitch Pdi pre: -17  6%, post -9  10%). Interestingly, the reduction 

in diaphragm fatigue was not correlated with improved exercise performance  

An RMT-mediated reduction in inspiratory muscle fatigue may improve 

performance by attenuating the sympathetic-mediated respiratory muscle metaboreflex. 

This would improve limb blood flow (and O2 delivery) and reduce locomotor muscle 

fatigue; although this has yet to be investigated. There appear to be three lines of evidence 

that support this hypothesis. Firstly, genuine physiological adaptations within the 

respiratory muscles are observed following IMT. Muscle biopsy analysis of the human 

external intercostals following 5 wk pressure threshold IMT has been shown to increase 

the proportion (38%) and size (21%) of type I and type II muscle fibres (Ramírez-

Sarmiento et al. 2002). Animal studies also support this with an increase in diaphragm 

mitochondrial cytochrome-c oxidase activity observed following 3 wks chronic FRL 

(Akiyama et al. 1994, 1996). The increase in respiratory muscle oxidative capacity may 

reduce the reliance on / delay the recruitment of less fatigue resistant type II muscle fibres. 

An IMT-mediated increase in the maximal force generating capacity reduces the absolute 

force (Kellerman et al. 2000) generated and detected (Redline et al. 1991) for a given 
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ventilation. This may reduce inhibitory feedback from the inspiratory muscles to the 

sensory areas of the brain and attenuate the sympathetic-mediated efferent response.  

Secondly, Witt et al. (2007) reported that the sympathetic response to fatiguing 

diaphragm work during resistive loading at 60% MIP is attenuated post-IMT. Pre-

intervention heart rate (HR) and mean arterial pressure increased significantly from 62  3 

beats·min
-1

 and 84  1 mmHg at rest to 83  4 beats·min
-1 

and 99  3 mmHg at task failure 

prior to the intervention (P<0.05). Following 5 wk IMT, when performing the breathing 

task at the same absolute intensity, the increase in HR and mean arterial pressure from rest 

was attenuated to 74  2 beats·min
-1 

and 89 mmHg (P<0.05), respectively; no changes 

were observed in a placebo control group.  

Finally, McConnell and Lomax (2006) reported that prior fatigue of the inspiratory 

muscles using resistive breathing at 60% MIP reduced subsequent isolated plantar flexion 

performance relative to a control trial. The reduction in performance in the control trial 

was similar to when a pressure cuff was fastened around the limb which reduced limb 

blood flow from 7.75  1.70 to 6.86  1.24 mlminmmHg
-1

. Following IMT, despite 

completing a similar total volume of inspiratory muscle work prior to plantar flexion 

exercise the time to the limit of tolerance was significantly improved. The improvement in 

plantar flexion exercise tolerance was attributed to an IMT-mediated improvement in limb 

blood flow following fatiguing inspiratory muscle work. In support of this, Chiappa et al. 

(2008a) reported that after 4 wk pressure threshold IMT, calf blood flow during fatiguing 

inspiratory muscle work was increased, as was forearm blood flow during intense handgrip 

exercise (repeated 10 s MVC, 20 s rest) following a fatiguing inspiratory breathing 

challenge in patients with chronic heart failure.  

These indirect measures suggest a possible role for RMT in attenuating the 

respiratory muscle metaboreflex during intense exercise with fatiguing diaphragm work. 

However, many exercise competitions such as time-trial performance occur at exercise 

intensities lower than the threshold for diaphragm fatigue and the respiratory muscle 
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metaboreflex. For example during a 20 to 40 km cycling time-trial, the average power 

output is ~75% W max (Romer et al. 2002c) and the athlete is required to constantly up or 

down-regulate power output or running velocity in order to effectively pace the bout 

(Edwards et al. 2008). Consequently, other mechanisms are likely to underpin the 

improvements in performance observed at sub-maximal exercise intensities. These 

mechanisms may involve an RMT-mediated change in breathing efficiency and / or 

systemic [lac
-
]B and their effect upon acid-base balance and the sensations of both 

respiratory and locomotor discomfort.   

 

1.6.7.2 IMPROVED BREATHING MECHANICS 

There are many studies which have reported a reduction in the sensation of 

breathlessness and changes in exercising breathing pattern following RMT (Downey et al. 

2007; Romer et al. 2002b,c Verges et al. 2007b; Volianitits et al. 2001). Verges et al. 

(2007b) comment that the hyperpnoea response to exercise is extremely plastic after RMT. 

An RMT-mediated reduction in EV  may reduce the work of breathing and possibly the 

competition for Q  and O2 with other metabolically active tissues. However, interpretation 

of the data is difficult; Romer et al. (2002c) observed an increase in EV  caused by an 

increase in VT and EILV during a cycling time-trial following RMT. In studies where the 

same absolute workload is performed prior to and following RMT, others have reported an 

increase in EV  due to an increased R without changes in VT (Holm et al. 2004; Spengler et 

al. 1999), a decrease in EV  due to a lower R (Leddy et al. 2007; Suzuki et al. 1995) or a 

lower VT (Gething et al. 2004b). Despite the disparity in the breathing response to exercise 

following RMT, significant relationships are reported between the reduction in EV  post 

RMT and improved exercise tolerance (Kohl et al. 1997; Verges et al. 2007b; Boutellier et 

al. 1992). Whether an RMT-mediated decrease in EV  would reduce whole-body 2OV  is 
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unknown since reducing the work of breathing normally performed during intense exercise 

by >50% using PAV only reduces whole body 2OV  by ~6.9% (Harms et al. 2000).  

Alternatively, performance may be improved following IMT due to a reduction in 

effort sensations. This is supported most recently by Edwards et al. (2008). In this study, 

participants were divided into an experimental or a placebo control group and both groups 

completed 4 wk whole-body cardiovascular training. The experimental group also 

performed, in addition to the whole-body training, specific IMT. Following the 4 wk 

intervention, 5000 m running performance was significantly improved in the IMT group 

only (4.3%, ~50 m). During the 5000 m trial following the intervention, there were no 

differences in [lac
-
]B and HR at the end of the test. However, RPE was attenuated 

throughout the training intervention, reaching significance in the 4
th
 wk. Relative to the 

placebo group, there no changes in the ventilatory threshold or maxOV 2
   following the 

intervention period; this suggested that the performance gain  in the IMT group was likely 

ascribed to the reductions in the perception of effort, which the placebo group did not 

experience. During exercise, an increase in respiratory drive increases EV  which is 

detected by the sensory brain centres and intensifies the perception of breathing discomfort 

(El-manshawi et al. 1986). However, following IMT, Huang et al. (2003) observed that the 

pressure generated during the first 0.1 s of inspiration with the airway briefly occluded (i.e. 

mouth occlusion pressure after 0.1 s), which provides a measure of respiratory muscle 

motor drive, decreased by 21.9  5.2%. Kellerman et al. (2000) also reported a reduction in 

motor output to the respiratory muscles and the magnitude estimation of the inspiratory 

load with varying inspiratory resistive loads following 4 wk IMT. The authors attribute 

their findings to an attenuated discharge of respiratory muscle mechanoreceptors. In 

agreement with this, Sinoway et al. (1996) suggest that group III mechanoreceptors are 

desensitised due to the repeated high inspiratory loads tolerated throughout IMT. 

Therefore, it appears that a change in the exercise breathing pattern and / or attenuated 

sensory feedback between the respiratory muscles to the brain which may influence 
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subsequent breathing mechanics provides a possible explanation for the overall 

performance enhancement (Edwards et al. 2008).  

 

1.6.7.3 REDUCED SYSTEMIC BLOOD LACTATE CONCENTRATION 

A common and surprising observation following RMT is a reduction in systemic 

[lac
-
]B. This reduction has been observed during maximal incremental cycling (Spengler et 

al. 1999; Volianitis et al. 2001), 6 min maximal rowing (Griffiths and McConnell 2007), 

constant power exercise to the limit of tolerance (Leddy et al. 2008; Kohl et al. 1997; 

Spengler et al. 1999; Boutellier and Piwko 1992; Verges et al. 2007b), exercise at the 

maximal lactate steady state (McConnell and Sharpe 2005) and during repeated sprint 

exercise (Romer et al. 2002a; Tong et al. 2008). The reductions observed are often similar 

to those which occurs following whole-body exercise training (>2 mmolL
-1

; McConnell 

and Sharpe 2005; Romer et al. 2002b; Spengler et al. 1999). Interestingly, Verges et al. 

(2007b) reported a rise in systemic [lac
-
]B following exhaustive volitional hyperpnoea at 

70% MVV which was attenuated following VIH training. Despite the attenuated rise in 

[lac
-
]B  throughout hyperpnoea, no changes in the exercising [lac

-
]B  were observed. It is 

therefore unknown whether the changes in exercise [lac
-
]B observed during whole body 

exercise are due to the respiratory muscles the locomotor muscles and / or other 

metabolically active tissues. Spengler et al. (1999) suggest that the reductions in [lac
-
]B 

following RMT may be due to either a decrease in the net lactate efflux by the respiratory 

muscles or an increase in respiratory muscle lactate consumption although this is yet to be 

rigorously investigated. Despite this, data from whole body training studies suggests an 

important role for this small muscle group in attenuating systemic [lac
-
]B.  

During intense exercise, a reduction in circulating metabolites may attenuate the 

discharge of chemosensitive afferent fibres located within the diaphragm which are known 

to trigger the respiratory muscle metaboreflex (Rodman et al. 2003). However, significant 

reductions in [lac
-
]B are observed even at sub-maximal exercise intensities. Here the lower 
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[lac
-
]B may be more important in the attenuation of the perceptions of limb discomfort. 

Romer et al. (2002a) observed a significant correlation between the change in systemic 

[lac
-
]B and total recovery time taken between repeated sprints as well as the reduction in 

RPE. Thus favourable change in acid-base balance may be associated with the reduction in 

the intensity of peripheral effort sensations (Romer et al. 2002a).  

Throughout repeated bouts of respiratory muscle training, sensory afferents within 

the respiratory muscle may become desensitised. Repeated exposures to high metabolite 

concentrations which may occur during IMT would reduce the afferent-mediated efferent 

response to a given change in metabolite concentration during subsequent exercise 

(Sinoway et al. 1992, 1993). In support of this, Sinoway et al. (1992) observed that the 

discharge of sympathetic afferents was lower in the trained forearm relative to the 

untrained control. These findings were confirmed in a second experiment where exercise 

was performed with a pressure cuff around the arm and afferent discharge for a given 

concentration of lactate and / or pH was lower in trained persons. These findings have 

since been confirmed in anaesthetised cats. In this study, repeated exposures to high 

concentrations of lactate reduced the firing frequency of chemosensitive afferent fibres 

when the hind limbs were electrically stimulated (Sinoway et al. 1993). Therefore, the 

chronic conditioning of mechanoreceptors and chemoreceptors over the period of RMT 

may reduce afferent feedback to the brain, attenuating the perceptions of breathing 

discomfort.  

In summary, there are many factors which appear to contribute to an improved 

whole-body performance following RMT. Given the link between diaphragm fatigue, the 

respiratory muscle metaboreflex and exercise tolerance, much work has focused on 

whether RMT attenuates the reflex reduction in limb blood flow. However, given that 

athletic performance occurs at sub-maximal often steady state exercise intensities where 

the respiratory muscle metaboreflex does not occur, other mechanism have been explored. 

Of these mechanisms, one which has received very little attention is the role of lactate. 
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Lactate is consistently lower during whole body exercise following IMT, yet the possible 

role this metabolite has in performance improvement following RMT remains elusive. It is 

also unknown whether the respiratory muscles are capable of influencing systemic lactate 

kinetics at all. Consequently, the following sections address the functional role of lactate 

and the possible role the trained and untrained respiratory muscle have in affecting 

systemic lactate turnover.  

 

1.7 LACTATE: A BRIEF INTRODUCTION 

Historically, lactate (commonly referred to as lactic acid) was thought to be a dead 

end metabolite produced during intense, anaerobic exercise. It was proposed that lactic 

acid disassociates into the acid salt lactate and a free proton (H
+
). This process was called 

lactic acidosis and was synonymous with metabolic acidosis. The accumulation of 

intracellular [H
+
] would cause fatigue by reducing pH, interfering with the contractile 

structures of the sarcomere and / or by poisoning the myofibril. This concept, was based on 

the pioneering work of Hill and Meyerhoff in 1922 (cited in Robergs et al. 2004) who 

suggested that lactic acid was produced due to muscle hypoxia at the onset of exercise. 

This theory was later substantiated by a significant negative linear relationship between 

lactic acid and pH during intense exercise leading to a unanimous, incorrect conclusion 

that lactic acid caused peripheral muscle fatigue (r = - 0.912; Margaria et al. 1933; Sahlin 

et al. 1976). However, contemporary physiologists persist that this hypothesis has no 

biochemical support and is fundamentally flawed (Robergs et al. 2004).   

 

1.7.1 CURRENT CONCEPTS IN LACTATE BIOCHEMISTRY 

 Current opinion accepts that lactate rather than lactic acid is produced as a direct 

consequence of anaerobic glycolysis. Furthermore, lactate is produced under fully aerobic 

conditions (predominantly within the erythrocyte which are void of mitochondria) as it 

serves as an important carbon source for oxidation and gluconeogenesis. For example, in 
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the post-absorptive state, approximately 25-50% of carbohydrates passes through the 

lactate pool and following-exercise, up to 70% of lactate is oxidised (Brooks 1986). 

 During sub-maximal exercise below the anaerobic threshold, pyruvate (the end 

product of glycolysis) is formed following a series of ten reactions (see Figure 1.25, 

reactions  to ) and enters the mitochondria. Electrons produced during glycolysis and 

the tricarboxylate cycle (or Krebs cycle; named after Hans Krebs in 1937) enter the 

electron transport chain (ETC), where under such conditions mitochondrial respiration is 

sufficient to resynthesise ATP. In the cytoplasm, nicotinamide adenine-dinucleotide 

(NAD
+
) is reduced to NADH+H

+ 
via the glyceraldehyde 3-phosphate dehydrogenase 

reaction (Figure 1.25: ). Since NADH+H
+ 

can not cross the mitochondrial membrane, it 

is oxidised and active mitochondrial membrane electron carrier proteins transport the H
+
 in 

to the mitochondria. The delivery of electrons to inter-mitochondrial NAD
+
 and FAD by 

the active carriers allows chanelling to the ETC for subsequent donation to molecular O2. 

These shuttles are known as the malate asparate shuttle and / or the glycerol phosphate 

shuttle. Thus the oxidation of NADH+H
+ 

to NAD
+ 

maintains the glycolytic rate by 

preserving the flow of NAD
+ 

through the glyceraldehyde 3-phosphate dehydrogenase 

reaction and thus the flow of metabolites to subsequent oxidative phosphorylation 

(Mougios 2006).  

 However, with increasing exercise intensities, cytosolic ATP production contributes 

increasingly to the total [ATP] and the rate of NADH+H
+ 

formation in the cytosol exceeds 

the rate of NAD
+
 regeneration by oxidative phosphorylation. Note: glycolysis yields 2 

ATP per glucose molecule and glycogenolyis yields 3ATP per glucose-1-phosphate. The 

disparity is accounted for by the spending of 1ATP during glycolysis in reaction  as 

shown in Figure 1.25. With an increase in the glycolytic rate, lactate dehydrogenase 

(reaction 12) catalyses the conversion of pyruvate to lactate, therefore, pyruvate is the 

oxidant of NADH+H
+
. 
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    Thus the production of lactate restores cytosolic [NAD
+
], maintains the 

glyceraldehyde 3-phosphate dehydrogenase reaction (cytosolic redox potential), but most 

importantly, facilitates ATP production. It has been suggested that the formation of lactate 

and NAD
+ 

from pyruvate requires 2 electrons and 2 H
+
, thus, the formation of lactate has 

an alkalinising effect on the muscle cell by attenuating cellular proton accumulation and 

retarding the development of a metabolic acidosis (Robergs et al. 2004). Whether this 

reduces whole-body [H
+
] is equivocal given the large volume of readily available H2O and 

thus [H
+
] and OH

-
 which may offset such effects. Lactate is therefore an important marker 

of cytosolic redox potential and anaerobic metabolism (Mougios 2006).  
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Figure 1.25 Simplified schematic of glycolysis and lactate production. Red font, enzyme; red arrow, site of 

enzyme activity; H
+
, hydrogen ion; NAD

+
, Nicatinamide adenine denuclotide; ATP, adenosine triphosphate. 

, Reactions not shown ( to  above) include (product [enzyme]) 1,3-Bisphosphoglycerate 

[Phophoglycerate Kinase], 3-Phosphoglycerate [Phosphoglycerate mutase], 2-Phosphoglycerate [Enolase] 

and finally the conversion of Phosphoenolpyruvate to Pyruvate [Pyruvate kinase].  

 

 

Traditionally, lactate was thought to be transported from the cytosol into the blood 

via passive diffusion and into the mitochondria through the PDH reaction. However 

significant evidence now supports the lactate shuttle hypothesis which describes both the 

intracellular and extracellular transport of lactate over both sarcolemmal and mitochondrial 

membranes (Brooks 1986, Brooks 1991). The active transport of lactate occurs via two 
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predominant monocarboxylate transporters (MCT), MCT1 and MCT4 with specific 

functions for lactate influx and efflux, respectively. The presence of the MCT proteins 

facilitates the efflux of lactate from the glycolytic muscle fibres (type II) and influx to the 

oxidative muscle fibres (type I). There is ~40% lower [MCT1] in glycolytic fibres 

compared to their type I counterparts (Juel 2001). MCT mediated lactate transport occurs 

with a 1:1 coupling between lactate and H
+
, therefore, the active movement of lactate may 

have profound effects on the maintenance of intramuscular acid-base balance.  

 Much debate remains as to the effects of lactate per-se on intramuscular pH. Many 

researchers maintain that lactate production contributes to reductions in pH as the buffering 

capacity of the cell is breached (Stringer and Wasserman 2005). Others suggest an 

integrated physicochemical systems approach to understanding the role of lactate in acid-

base balance (Stewart 1983), which appears to be favoured at present (Gladden 2008). 

Using the Stewart approach, mechanisms accounting for disturbances in acid-base balance 

during and following exercise can be quantified. Within a given compartment (e.g. muscle, 

plasma, erythrocyte) the dependent variables which are [H
+
] and [HCO3

-
] are determined 

by the net effect of the strong ion difference ([SID] = [Na
+
] + [K

+
] - [Cl

-
] + [lac

-
]), PCO2 

and the total concentration of weak acids ([Atot
-
]), principally albumin. According to this 

model, assuming minimal change in other strong ions, the [lac
-
] of a given compartment 

may indirectly affect [H
+
] by causing a direct change in [SID] (Lindinger 1995; 

Kowalchuck and Scheuermann 1995). 

Debate exists whether co-transport of [H
+
] and lactate across a given membrane 

affects the compartment pH at all, due to the large expanse of water which can act as a 

reservoir for free H
+
 and OH

-
 (Putman et al. 2003). Indeed lactate efflux during moderate 

intensity cycling exercise is up to four times greater than H
+
 efflux. These authors suggest 

that the movement of strong ions across a given membrane affects the destination pH 

giving an apparent, false H
+ 

efflux. Regardless of the mechanism(s), the direct effect of a 

decrease in pH on skeletal muscle fatigue at human physiological temperatures has been 
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questioned (Westerblad et al. 1997). Notwithstanding this, given that large reductions in 

[lac
-
]B are observed during whole-body exercise following RMT, if the respiratory muscles 

are capable of increasing and / or decreasing the compartment [lac
-
], this small muscle 

mass may have important effects on intramuscular and plasma acid-base balance. 

 

1.7.2 RESPIRATORY MUSCLE LACTATE KINETICS: ANIMAL STUDIES 

Due to the small muscle mass and high oxidative capacity, the notion that the 

respiratory muscles may contribute to systemic lactate kinetics by either net lactate 

production and / or consumption has often been disregarded (Wetter and Dempsey 2000). 

However, the fibre type distribution of the respiratory muscles is similar to locomotor 

muscles (see Figure 1.12). Therefore, conceptually it is likely that this muscle group can 

influence whole-body lactate kinetics. To investigate this hypothesis, research has often 

favoured animal models as a surrogate for humans owing to the ease in which direct 

physiological responses can be measured through arterial and venous blood sampling as 

well as access to diaphragm tissue post exercise. 

Ciufo et al. (2001) observed an increase in phrenic venous [lac
-
]B from 3.1  

mmol·L
-1

 at rest to 6.4 mmol·L following 30 min of intense flow resistive loading of 

32,000 cmH2O·L
-1

·s
-1

 to the point of respiratory arrest in anesthetised rats (n = 77;). 

Arterial [lac
-
]B was unchanged from rest, as was the soleus [lac

-
]B (control), however, 

diaphragm [glycogen] was reduced from 15.8 to 8.4 mmol·g. These data suggest that the 

diaphragm may be a net producer of lactate; however, the external validity of such high 

resistive loads is questionable. In contrast to these data, Bazzy et al. (1989) reported no 

change in phrenic vein [lac
-
]B following a less intensive resistive load of 150 cmH2O·L

-1
·s

-

1
 in sheep. The load was induced by a cuffed tracheostomy tube which increased Pdi to 

74.7 cmH2O. However, during resistive loading there was a marked respiratory acidosis 

increasing PCO2 from 36.4 mmHg at rest to 70 mmHg at the cessation of the trial. This 

large increase in PCO2 may attenuate [lac
-
]B due to the intramuscular inhibition of PFK 
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(Graham et al. 1986). Both of these studies have little application to exercise as the 

methods used to increase the work of breathing have been extreme and in the study of 

Ciufo et al. (2001) maintained until death.  

Improving significantly on the ecological validity of previous work, Fregosi and 

Dempsey (1989) measured intramuscular metabolites during whole-body exercise in wistar 

rats (n = 120). Animals completed a number of trials on a motorised treadmill including: 

10 min sub-maximal exercise, 10 min high-intensity exercise and maximal exercise to 

exhaustion (~ 4.1 ± 0.3 min). A third group of rats also exercised sub-maximally to 

exhaustion in hypoxia (FIO2: 0.12). During sub-maximal normoxic exercise, there was no 

change in [lac
-
] in any tissues, however, when the intensity exceeded 92% 2OV max (high-

intensity and maximal trials), [lac
-
] increased by 234  12 and 214  9% in the diaphragm 

and intercostals, respectively, and 466  21 and 462 ± 8% in the plantaris and arterial 

blood, respectively. That diaphragm and intercostal [lac
-
]M was less than arterial suggests 

that these tissues favoured net lactate uptake. Following the sub-maximal and high 

intensity prolonged exercise trials, diaphragm and plantaris muscle [glycogen] were 

unchanged and significantly reduced, respectively, and [glucose 6-phosphate] was 

increased (267%) and unchanged, respectively. Interestingly, only during exercise to 

exhaustion in hypoxia was there evidence of glycogen utilisation in the diaphragm, which 

was also observed in the intercostals and plantaris. In the diaphragm, intercostals and 

plantaris muscle [glycogen] was 58, 44 and 20% of hypoxic control values. Figure 1.26A 

and B, shows [lac
-
]M and [glycogen]M during sub-maximal and maximal exercise. Figure 

1.26C shows that increases in [lac
-
]M in the plantaris were related to the decrease in 

[glycogen] in both conditions (r = 0.67, P<0.01), however, this was only true during 

exercise in hypoxia for the diaphragm (r = 0.92, P<0.01).  
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Figure 1.26 Changes in muscle metabolite concentrations. (A) lactate and (B) glycogen concentration 

following prolonged exhaustive exercise at 68% 2OV max (left bars in each figure, 1.32 kmh
-1

 on a 1% 

gradient) and 84% 2OV max (right bars in each figure, 1.44 kmh
-1

 on a 10% gradient). (C) Changes in 

lactate and glycogen concentrations following exhaustive exercise in normoxia and hypoxia (Fregosi and 

Dempsey 1989). 

 

The findings of Fregosi and Dempsey suggests that only during prolonged exercise 

to exhaustion in hypoxia is endogenous glycogen utilised within the rat diaphragm which 

may result in an increased diaphragm [lac
-
]M; although it is important to note however that 

the end-exercise [glycogen] was still ~50% baseline. Since [glucose 6-phosphate] was 

increased and muscle glycogen preserved in all trials in normoxia suggests that 
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endogenous glycogen stores were utilised secondary to blood borne substrates such as 

liver-derived blood glucose and free fatty acids. Glycogen breakdown is facilitated by the 

enzyme phosphorylase which in turns is converted to glucose 1-phosphate and via the 

enzyme phosphoglucomutase forms [glucose 6-phosphate] in the cytoplasm (see Figure 

1.25). Secondary to an increased β-oxidation, the increase in [glucose 6-phosphate] 

attenuates the conversion of the enzyme glycogen phosphorylase-b to its more active form 

glycogen phosphorylase-a by allosteric regulation. This regulation decreases the formation 

of glucose 1-phosphate and the net glycolytic flux. The increase in [glucose 6-phosphate] 

also facilitates endogenous glycogenesis. This latter allosteric regulation does not occur in 

hypoxia as an increase in catecholamine concentration speeds glycogen breakdown 

independent of allosteric effects (Watt et al. 2001).  

Interestingly, an earlier study which was methodologically similar to that of the 

study by Fregosi and Demspey, Ianuzzo et al (1987) employed one sub-maximal exercise 

trial to exhaustion in normoxia and reported somewhat contradictory findings. In contrast 

to Fregosi and Demspey the authors reported marked glycogen depletion in the albino rat 

diaphragm (43% of control), intercostals (43%), plantaris (76%) and also the heart (39%). 

Accounting for these differences in findings is difficult since both employ near-identical 

exercise protocols and killing / sampling techniques. Interestingly, baseline [glycogen] of 

the diaphragm, intercostals and plantaris in the study by Ianuzzo and colleagues was 10 to 

15 μmol·gm
-1

 wet weight greater despite a similar mean animal body mass. The disparity 

may be explained by sex differences in glycogen utilisation that are sometimes observed 

during exercise (although neither study report the sex of their animals; Ivey and Gaesser, 

1987) and / or strain differences in post-exercise glycogen metabolism that may exist 

between species (Albino vs. Wistar). More likely, the difference in findings are explained 

by a combination of tissue sampling delay which was prolonged by Ianuzzo et al. (1.32 

min vs. 45 s), sample size (n = 14 vs. n = 90) and exercise time to exhaustion: 48.30  

11.45 min vs. 38.0  3.0 min. Longer exercise duration is known to exacerbate glycogen 
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depletion (Ivey and Gaesser, 1987). What is apparent from these studies is that the 

diaphragm, either (I) engages in net lactate consumption with the intention of consuming 

lactate as a respiratory fuel and / or (II) the rat diaphragm, as with other skeletal muscles 

becomes depleted of glycogen during prolonged exercise in normoxia and hypoxia and 

may be capable of net lactate production. Given the methodological disparity between 

these studies and the use of rats, it is difficult to extend these findings to exercising 

humans. 

In a series of excellent studies, Manohar and Colleagues quantified the metabolic 

demands of the pony diaphragm during short duration maximal (Manohar et al. 1988; 

Manohar and Hassan, 1990) and prolonged sub-maximal exercise (Manohar and Hassan, 

1991). Manohar et al. (1988) studied the changes in diaphragm metabolism during 

incremental exercise comprising three, 4 min intervals at 16, 24 and 32 km·h
-1 

on a 

motorised treadmill. Throughout exercise, blood was sampled from the abdominal aorta 

and the phrenic vein; in the pony the phrenic vein represents the primary site of costal 

hemi-diaphragm drainage. With increasing exercise intensities despite a marked increase in 

O2 extraction and decrease in pH, PCO2 and [HCO3
-
], there were no differences in arterial-

phrenic venous [lac
-
]B. However, during heavy and maximal exercise, there was a non-

significant reduction in phrenic venous [lac
-
]B of 0.46 and 1.02 mmol·L

-1
, respectively.  

In a subsequent study (Manohar and Hassan 1990) ponies exercised at 32 km·h
-1

 to 

exhaustion on a motorised treadmill (7% grade) and diaphragm metabolism was measured 

as above (i.e. phrenic arterial-venous [lac
-
] difference). Exercise was terminated within 

approximately 4 min. At the cessation of exercise, arterial [lac
-
]B increased, as did 

[ammonia], furthermore there was a reduction in pH and PCO2 due to a marked 

hyperventilation. In contrast, phrenic [lac
-
]B and [ammonia] were not different to arterial 

values. Similar to the previous study, there was a non-significant decrease in phrenic 

venous [lac
-
]B during the final 3 min of exercise ~1.5 mmol·L

-1 
(Figure 1.27). The non-

significant yet quite large reduction in phrenic venous [lac
-
]B suggests a possible role, in 
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agreement with the data of Fregosi and Dempsey, for diaphragm net lactate consumption. 

Similar results were also noted (Manohar and Hassan 1991) where ponies exercised sub-

maximally for 30 min at 24 km·h
-1

 on a 7% grade. At the cessation of exercise, there were 

no differences in arterial and phrenic venous [lac
-
]B, although, at min 5, 10 and 15 

inclusive, venous lactate was 1 mmol·L
-1

 lower than the corresponding arterial value (non-

significant).  

 

 

 

 

Figure 1.27 Arterial and phrenic-venous [lac
-
]B at rest, and during 4 min of maximal exercise to exhaustion 

(Manohar and Hassan 1990).  

 

Previous studies that have reported large changes in [lac
-
]B in the animal diaphragm 

following resistive breathing are questionable since the loads imposed on the inspiratory 

muscles were exceptionally high. Breathing challenges that employ resistive loading vs. 

exercise hyperpnoea also differ in the pattern of respiratory muscle recruitment as the 

protocols occupy different regions of the force-velocity and length-tension relationships. 

Data from exercising quadrupeds suggest a minimal role of the diaphragm in net lactate 

production but a more likely role for net lactate consumption (Fregosi and Dempsey 1989). 

However, the breathing mechanics, and therefore the metabolic characteristics of the 

quadruped are markedly different to the exercising human. For example, a 1:1 ratio exists 
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between the breathing and stride frequency in the exercising quadruped (Padilla et al. 

2004). Additionally, the axial displacement of the abdominal viscera during exercise (Cobb 

et al. 1994) facilitates passive diaphragm shortening by functioning as a mechanical piston 

(Bramble and Carrier 1983). Therefore, with R limited by stride frequency and the partial 

unloading of the diaphragm during the breath cycle, application of these findings to 

exercising humans is difficult.  

 

1.7.3 RESPIRATORY MUSCLE LACTATE KINETICS: HUMAN STUDIES 

Lactate production by the human respiratory muscles has been investigated for 

almost 50 years. Direct measurement and evaluation of respiratory muscle metabolism in 

humans is inherently restricted by the anatomical location and proximity of this muscle 

group to essential organs. Furthermore, given the unique interaction between the primary 

inspiratory, expiratory and accessory muscles during hyperpnoea, identifying the specific 

location(s) of lactate production and exchange becomes problematic. This is particularly 

important since lactate production, release, consumption and transport occur 

simultaneously within the myofibril (Brooks 1986). Consequently the contribution of the 

respiratory muscles to lactate kinetics is typically based upon the interpretation of 

arterialised venous blood lactate measurements. However, caution is warranted when 

interpreting [lac
-
]B as an estimate of respiratory muscle metabolism. Firstly, [lac

-
]B reflects 

both the rate of lactate release in to the systemic circulation and the rate of lactate removal 

by metabolically active tissue and organs and secondly, at rest, metabolically active tissues 

including the brain, liver and the heart as well as other non-skeletal muscles are capable of 

simultaneously removing, releasing or consuming lactate as a respiratory fuel (Brooks, 

1986). 

The first study to investigate the contribution of the respiratory muscles to [lac
-
]B in 

humans was conducted by Eldridge (1966).  Given the mistaken biochemistry and fate of 

lactate (See section 1.14.1), Eldridge suggested that following a breathing challenge whilst 
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at rest, an increase in arterial [lac
-
]B would directly reflect fatigue of the respiratory 

muscles. Eldridge (1966) studied eleven subjects of which two were described as “cardiac 

or pulmonary disease patients”. Subjects completed a number of breathing challenges with 

a spontaneous breathing pattern, these included hypoxia (FIO2: 0.15), 1290 ml dead space-

induced hyperventilation and flow resistive loading (21 cmH2O). In these trials EV  was 

7.9, 28.3 and 21.6 L·min
-1

, respectively. [lac
-
]B was unchanged following each individual 

breathing challenge, although, combining all three in a subsequent trial elevated [lac
-
]B 

from 0.61 mmol·L
-1 

at rest to 1.02 mmol·L
-1

. However, given that the methods used to 

increase the work of breathing in this study do not reflect exercise, the findings of this 

study are very limited. 

In recent years, volitional isocapnic hyperpnoea under resting conditions or 

imposed upon exercise hyperpnoea has been employed. Reproducing the ventilatory 

requirements of exercise hyperpnoea whilst all other muscles are otherwise at rest or 

working at sub-maximal exercise intensities provides a unique model to assess the 

metabolic response of the respiratory muscles to exercise hyperpnoea. Despite the 

ecological validity of such experimental methods, Klas and Dempsey (1989) report that 

even when matching the maximal exercise flow:volume loop, EELV and breathing pattern 

during volitional hyperpnoea at rest, Pga exceeds that observed during exercise. Despite 

this, Coast et al. (1993) state that respiratory muscle 2OV  during exercise and volitional 

hyperpnoea is not different when the absolute EV  is between 30 to 130 L
.
min

-1
 and the 

breathing pattern achieved suring whole-body exercise, which includes the fR, VT and 

TI/Ttot are mimicked accurately. Therefore, when the breathing pattern is rigorously 

controlled, isocapnic volitional hyperpnoea can provide an appropriate method to 

investigate the work of breathing and its metabolic consequences. 
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Freedman et al. (1983) imposed sustained isocapnic MVV whilst semi-recumbent 

with R fixed at 60 breaths·min
-1

 ( EV : 108.6 L·min
-1

; 68% MVV) and reported an absolute 

increase in [lac
-
]B of 1.1 mmol·L

-1
 following 10 min (range 0.0 to 2.7 mmol·L

-1
). In 

another study (Martin et al. 1984) subjects were seated and completed three 5 min bouts of 

isocapnic volitional hyperpnoea, at 85, 100 and 115% maxVE
 with a relative increase in fR 

and a fixed VT. This breathing pattern was chosen to represent the breathing mechanics of 

maximal exercise. These relative intensities corresponded to a EV  of 117, 138 and 159 

L·min
-1

, respectively. Following hyperpnoea [lac
-
]B was significantly increased when EV  

was greater than 138 L·min
-1 

(72% MVV; resting [lac
-
]B: 0.88 mmol·L

-1
, post-hyperpnoea 

at 138 L·min
-1

: 1.36 mmol·L
-1

; post hyperpnoea at 159 L·min
-1

: 1.70 mmol·L
-1

). 

Interestingly, the greatest change in [lac
-
]B was positively correlated with the EV  from 

subjects that utilised the largest percentage of their MVV (r = 0.76, P < 0.05). In 

agreement with this, Verges et al. (2007b) observed a significant increase in [lac
-
]B to 1.7  

0.8 mmol·L
-1 

(resting [lac
-
]B not reported) following volitional hyperpnoea to volitional 

tolerance at 69  7% MVV15. Therefore it appears that a threshold ventilation exists (~70% 

MVV), below which minimal changes in [lac
-
]B are observed. This is supported by 

Spengler et al. (2000) who demonstrated no change in [lac
-
]B following 41  9 min 

volitional hyperpnoea at 51 and 62% MVV20 (resting [lac
-
]B: 1.6  0.5 mmol·L

-1
, post-51% 

MVV: 1.4  0.3 mmol·L
-1

; post-62% MVV: 1.9  0.9 mmol·L
-1

). It is clear that when the 

work of breathing increases above a certain level, the respiratory muscles are capable of 

net lactate production and release.  

A large drawback of assessing the metabolic contribution of the respiratory muscles 

to whole-body lactate kinetics during volitional hyperpnoea at rest is that there is 

additional capacity to counter lactate appearance by other metabolically active tissues such 

as the liver, heart, brain and non-active skeletal muscle (Brooks 1986, 2000). To 

circumvent these issues, an exercising model has been used (Edwards and Clode 1979; 
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Engelen et al. 1995; Johnson et al. 2006). Edwards and Clode (1979) examined the effects 

of spontaneous voluntary hyperventilation on [lac
-
]B whilst exercising at 98 W for 6 min on 

a cycle ergometer (n = 7 smokers [classified as smoking no more than 5 cigarettes per 

day]).  EV  increased from 46.9 L·min
-1 

during exercise to 80.6 L·min
-1

 with volitional 

hyperpnoea and [lac
-
]B increased from 3.4 to 4.5 mmol·L

-1
. However, during volitional 

hyperpnoea, PCO2 decreased approximately 12 mmHg from 43.5 mmHg at rest to 31.5 

mmHg at the end of the trial. The efficacy of these results are questionable since 

respiratory alkalosis is known to increase [lac
-
]B due to a pH-mediated inhibition of PDH 

(LeBlanc et al. 2002). Interestingly, when the experiment was repeated maintaining 

isocapnia, [lac
-
]B did not change from baseline (n = 1; Edwards and Clode 1979).  Engelen 

et al. (1995) also reported no change in [lac
-
]B when spontaneous maximal breathing was 

imposed upon 10 min constant power cycling exercise above the lactate threshold (94 W; 

n = 5 healthy subjects). However, the subjects in this study were untrained ( 2OV max: 2.32 

L·min
-1

) and the absolute EV  attained during hyperpnoea was 80 L·min
-1

 (45% MVV). 

Consequently, it is not surprising that changes in [lac
-
]B were minimal.   

Most recently, maximal isocapnic volitional hyperpnoea was performed whilst 

exercising at the MLSS (Johnson et al. 2006).  Unlike at rest or during exercise above the 

lactate threshold, the MLSS represents a relative constant power exercise intensity where 

the rate of lactate appearance in to the blood is matched by an equal rate of lactate removal 

from the blood and therefore [lac
-
]B remains constant over time (Figure 1.28, ●). Johnson 

and colleagues reported a significant 25% (1.0 mmol·L
-1

; Figure 1.28, ○) increase in [lac
-
]B 

when maximal spontaneous breathing was imposed from min 20 to 28 of a 30 min constant 

power cycling trial (mean MLSS power: 207 W). During volitional hyperpnoea, subjects 

were instructed to attain their maximal spontaneous EV  (168.3 L·min
-1

) which was not 

different to EV max. There was a 6% increase in PCO2 during the volitional hyperpnoea 

trial, however, this would only serve to reduce the [lac
-
]B therefore, these findings may 
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have underestimated the true change in [lac
-
]B. Since the MLSS represents an exercise 

intensity where the capacity for lactate removal is abolished and there is little capacity to 

counter further lactate appearance, this study suggests that the respiratory muscles are the 

source of at least part of the increase in [lac
-
]B observed during intense endurance exercise.  

 
Figure 1.28 Changes in blood lactate concentration ([lac

-
]B) and blood acid-base balance during exercise at 

MLSS power. Control trial (); experimental trial (; Johnson et al. 2006).  

 

The precise origin(s) of this increase is unknown, i.e. primary inspiratory, 

expiratory, or accessory muscles although Babcock et al. (1995) suggest that the 

diaphragm per-se is an unlikely source (Babcock et al. 1995). In this study, subjects 

performed an endurance exercise test to exhaustion at 85 to 90% maxOV 2
 (mean time to 

volitional tolerance: 13.2 min). On a subsequent trial, participants mimicked at rest and for 

the same duration the VT, R, TI/Ttot Pdi from the final third of the endurance exercise test. 

Immediately following isocapnic hyperpnoea, there were no changes in evoked Pdi (1, 10, 

20 Hz) and minimal changes in [lac
-
]B (mean peak [lac

-
]B 1.1 mmol·L

-1
). It should be noted 

however that the exercise test in this study was running, therefore, during the volitional 

hyperpnoea mimic trial, the work of breathing may have been underestimated as the 

propulsive forces of locomotion on the thoracic compartment create a cyclical mechanical 

loading which the respiratory muscles must appose (Bramble and Carrier 1983). In this 

study by Babcock et al. (1995) the target Pdi was calculated as the average of the final 
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third of the maximal exercise test, i.e. the final 4.4 min. During intense exercise a time and 

intensity-dependent alveolar hyperventilation occurs which reflects either a respiratory 

compensation for a metabolic acidosis and / or diaphragm fatigue (Johnson et al. 1993; 

Sheel, 2002). This hyperventilation is characterised by an increase in Poe/Pdi (Johnson et 

al. 1993) and a reduction in the contribution of the diaphragm to the total respiratory 

muscle power output (Babcock et al. 1998). Thus the changes in [lac
-
]B observed during 

volitional hyperpnoea in previous studies may be due to the increased recruitment of the 

less efficient accessory muscles. It is also attractive to speculate that those subjects who 

achieve a EV  that comprises a greater percentage of their MVV will have a greater 

contribution from the accessory respiratory muscles to increases in systemic [lac
-
]B.   

 To date the majority of studies have investigated the contribution of the respiratory 

muscles to increases in systemic [lac
-
]B. However, in line with the findings of Fregosi and 

Demspey, recent studies have assessed the ability of the respiratory muscles to consume 

lactate. This notion is supported by and founded upon studies that report a significant 

reduction in [lac
-
]B during whole-body exercise performed at the same absolute exercise 

intensity following specific RMT (e.g. McConnell and Sharpe 2005; Romer et al. 2002b; 

Spengler et al, 1999). Perret and Müeller (2007) investigated the effects of low intensity 

volitional hyperpnoea ( EV  61.6  9.3 L·min
-1

, 30  1% MVV) and a passive recovery (no 

exercise) on lactate clearance following maximal arm cranking exercise in wheelchair 

athletes. The decay in [lac
-
]B following exercise was not different between trials (Figure 

1.29A). However, since a critical EV  (~70% of MVV) is required to cause an increase in 

[lac
-
]B during volitional hyperpnoea, a relative breathing intensity following exercise closer 

to this may have a greater impact on [lac
-
]B recovery kinetics as is observed with an active 

recovery following whole-body exercise (Dodd et al. 1984). 

 

 

 



 92 

 

 

 

Figure 1.29 Blood lactate following maximal exercise. (A) low intensity volitional hyperpnoea performed 

following exercise, EV  61.6  9.3 Lmin
-1

 (Perret and Müeller  2007); (B) 15cmH2O inspiratory pressure 

threshold loading performed following exercise (Chiappa et al. 2008b). 

  

In contrast to these findings, Chiappa et al. (2008b) reported a significant reduction 

(~2.5 mmol·L
-1

) in [lac
-
]B following as little as 5 min of recovery when pressure threshold  

inspiratory loading was performed during recovery from maximal incremental exercise (15 

cmH2O; ~15% MIP; Figure 1.29B, ●). Chiappa et al. (2008b) attributed this reduction to 

an increased respiratory muscle blood flow during loaded breathing which presented a 

favourable environment for lactate exchange by increasing the extra- to intra-cellular 

respiratory muscle lactate gradient. Similar to previous findings, it is not clear as to the 
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specific site of lactate clearance. Regardless of the site of removal, the findings of Chiappa 

and colleagues suggest that the inspiratory muscles may possess a large, previously 

underestimated capacity to affect lactate clearance. However, whether following IMT the 

ability of the inspiratory muscles to reduce net lactate production and / or increase net 

lactate clearance during and following whole-body exercise remains unknown.  

 

1.8 GENERAL SUMMARY 

The respiratory muscles are a precisely co-ordinated muscle group which power 

pulmonary ventilation. During intense exercise pulmonary ventilation can exceed 200 

Lmin
-1 

and the respiratory muscles may demand up to 15% of the total whole-body Q  and 

2OV . As a consequence of the work of breathing, respiratory muscle fatigue develops 

which can affect the distribution of systemic Q  and accelerate locomotor muscle fatigue. 

Specific training techniques have been developed to increase the strength and endurance of 

the respiratory muscles independent to whole body training. Furthermore, rigorously 

designed placebo controlled studies illustrated that RMT can improve exercise tolerance. 

The mechanism(s) which may underpin this ergogenic effect are multifaceted, and 

probably involve a unique interaction between respiratory muscle plasticity, systemic 

metabolites and the supraspinal sensory / motor centres. A surprising observation 

following RMT is a reduction in [lac
-
]B during whole-body exercise. Amazingly, these 

reductions are often similar to those observed following whole-body training. However, it 

remains unknown whether this small muscle group which comprises a modest 3% of total 

body mass can affect systemic metabolites at all. An RMT-mediated reduction in blood 

lactate concentration may provide, in part, a possible explanation for the impressive  

improvements in whole body exercise tolerance due to favourable changes in acid-base 

balance and / or the intensity of perceived breathing / locomotor discomfort. Therefore, the 

contribution of the respiratory muscles to systemic [lac
-
]B during and following intense 
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endurance exercise both prior to and following RMT remains poorly understood and 

certainly deserves further investigation.  

 

1.9 RESEARCH AIMS 

Previous research suggested (c.f. McConnell and Sharpe 2005; Spengler et al. 

1999) that the reductions in [lac
-
]B observed during whole-body exercise following RMT 

may be due to systemically relevant changes in respiratory muscle lactate release and / or 

clearance. This hypothesis, however, has yet to be rigorously investigated. As a 

consequence of such a poor understanding of the potential contribution of the trained and 

untrained respiratory muscles to changes in systemic lactate kinetics, the principal aim of 

this thesis was to investigate the physiological consequences of the work of breathing and 

of specific IMT. This thesis aims to provide evidence to support or negate the hypotheses 

that i) the respiratory muscles contribute to systemic lactate turnover and ii) subsequent to 

their specific conditioning, attenuate [lac
-
]B during dynamic whole-body exercise and 

throughout recovery.  

In order to test the hypotheses outlined above, 3 primary studies were designed. 

Firstly, under resting conditions, intense isocapnic volitional hyperpnoea was performed 

both prior to and following specific IMT. The breathing pattern adopted was matched  

precisely to that achieved during near-maximal exercise performed using an 

electromagnetically braked cycle ergometer. Using this approach, an increase in systemic 

[lac
-
]B from resting concentrations can be attributed, almost exclusively, to respiratory 

muscle work (e.g. see Martin et al. 1982). Following IMT, it is anticipated that the same 

absolute breathing challenge as pre-intervention would cause a smaller rise (i.e. a 

reduction) in the [lac
-
]B, illustrating the ability of the inspiratory muscles to engage in 

lactate exchange / clearance.  
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There are a number of limitations to this first study. In particular, when performing 

volitional hyperpnoea under resting conditions adjacent muscle fibres, inactive muscles 

and organs can engage in lactate exchange: this is known as the lactate shuttle hypothesis 

(Brooks 1986; see section 1.7.1). Thus, the Second study of this thesis was designed to 

minimise the confounding influence of the lactate shuttle by performing isocapnic 

volitional hyperpnoea whilst cycling at the maximal lactate steady state (MLSS). The 

MLSS represents the highest power output at which the rate of lactate efflux to and 

removal from the systemic circulation is equal. Whilst exercising at the MLSS minimal 

capacity exists for other tissues and organs to influence [lac
-
]B. Therefore, following IMT a 

reduction in the (expected) increase in [lac
-
]B (~1 mmol·L

-1
; Johnson et al. 2006) observed 

with intense isocpanic hyperpnoea can be attributed with far more confidence to the trained 

inspiratory muscles. 

The Third study of this thesis was designed to investigate whether the potential 

reductions observed in [lac
-
]B following IMT during volitional hyperpnoea such as those 

expected in studies one and two and during whole body exercise such as those observed in 

previous research (McConnell and Sharpe 2005) are due to an increase in respiratory 

muscle lactate exchange and / or clearance. To achieve this, the third study investigated the 

effects of IMT upon the recovery of [lac
-
]B following maximal exercise. The methodology 

of this study was based largely upon that of recent, pertinent research (Chiappa et al. 

2008b, 2009). In these recent studies, [lac
-
]B was lower when a low intensity (15 cmH2O) 

inspiratory muscle pressure threshold resistance was attatched to the breathing circuit 

immediately following maximal cycle ergometry exercise. Given that the [lac
-
]B is reduced 

with inspiratory muscle loading, whether this may be further enhanced by specific training 

is an attractive avenue to explore. Unlike the studies by Chiappa et al. (2008b, 2009), in 

this thesis, individual lactate recovery curves prior to and following the intervention were 

fitted to a bi-exponential time function using non-linear regression. Modelling lactate 

recovery in this way provides empirical evidence based upon the systemic [lac
-
]B which 
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describes i) the rate of appearance of lactate into the arterialised blood (lactate exchange) 

and ii) lactate clearance (Freund and Zouloumian 1981). An increase in the lactate 

clearance velocity constant with inspiratory muscle loading and following IMT would 

provide novel evidence for the ability of the trained inspiratory muscle to engage in lactate 

turnover. It is anticipated that the findings of these experimental studies will confirm the 

hypotheses that the respiratory muscles are capable of engaging in lactate exchange and net 

lactate clearance. Furthermore, they will also confirm the notion that the reductions in [lac
-

]B following IMT during whole-body exercise are due, in part, to the trained inspiratory 

muscles, and in particular, greater lactate clearance.  

Finally, as an adjunct to the main focus of the thesis, a subsequent aim was to 

investigate the potential determinants of inspiratory muscle strength (measured by MIP) 

both prior to and following IMT. A previous study (Johnson et al. 2007) reported that the 

baseline MIP (i.e. prior to IMT) and the change in MIP following IMT are correlated. In 

addition, Hershenson et al. (1988) reported that global inspiratory muscle strength may not 

be limited by the strength of the diaphragm but rather the relative strengths of the chest 

wall inspiratory muscles. These intruiging findings warrant further exploration as a large 

variability exists in between-subject baseline MIP and the IMT-induced changes in MIP in 

healthy, active persons. Therefore, the aims of this final study were threefold: i) to identify 

whether the disparity in baseline MIP between-subjects could be explained by the physical 

characteristics of the participant; ii) to re-affirm the relationship between baseline MIP and 

the IMT-induced changes in MIP with a larger number of subjects and greater variance in 

the baseline inspiratory muscle strength; and iii) to establish whether the between-subject 

differences in MIP and the between-subject increase in MIP following IMT are determined 

by the strength of the chest wall inspiratory muscles relative to the strength of the 

diaphragm, and their respective change in strength following IMT. 
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2.1 PARTICIPANT PREPARATION 

Prior to all research studies, subjects were provided with information packs 

containing a full description of the aims, potential risks and benefits of the research. 

Following this, subjects provided their written informed consent, completed a health screen 

questionnaire and were familiarised with all testing protocols and equipment. The day 

preceding and the day of a research trial, subjects were instructed not to engage in any 

strenuous exercise. Each subject completed a 24 h diet record prior to their first trial and 

this was repeated prior to subsequent tests. Subjects arrived at the laboratory 2 h post-

prandial during which they were instructed to consume only water having abstained from 

alcohol and caffeine in the 24 h prior to testing. Prior to each study, obstructive and 

restrictive pulmonary disease was assessed using dynamic spirometry (see section 2.5). 

Any individual with an FEV1/FVC (see section 2.5) lower than 80% was excluded from 

participating in any research trials. Prior to all studies, optimal participant numbers were 

calculated assuming an effect size of 0.30 to 0.50, a statistical power of 0.80 with a-priori α 

set at P<0.05 (Cohen 1988; Dallal 1990). The calculated sample size was then adjusted to 

concur with previous research (Field 2008). 

 

2.2 LODE EXCALIBUR SPORT CYCLE ERGOMETER 

All exercise trials were performed on an externally calibrated electromagnetically 

braked cycle ergometer (Exalibur Sport, Lode, Groningen, The Netherlands). The 

ergometer was set in the hyperbolic mode in which power output was constant and 

independent of pedal cadence. The handlebars and saddle height and their respective 

horizontal displacements were adjusted for each individual and these configurations were 

recorded to the nearest mm and replicated for subsequent trials. The handle bars of the 

ergometer were modified with time trial bars (Aeroforce EA70 Clip on bar, Easton, CA, 

USA) and when appropriate, subjects were instructed to use their own cycling pedals and 

cleated cycling shoes. Pedal cadence was displayed at all times on a digital screen mounted 
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on the handlebars. The power output of the cycle ergometer was controlled by an external 

PC running specific software on which exercise protocols were programmed to the nearest 

1 W and 1 s (Lode ergometry manager, version 5.18.20, Lode, Groningen, The 

Netherlands). 

 

2.3 INSPIRATORY MUSCLE STRENGTH 

 A hand-held mouth pressure meter (MicroR.P.M., Micro Medical, 

Buckinghamshire, UK) measured the maximal inspiratory mouth pressure (MIP) during a 

quasi-static contraction (Müeller manoeuvre) as an index of global inspiratory muscle 

strength. The mouthpiece assembly incorporated a 1 mm orifice to prevent glottic closure 

during inspiratory efforts and minimise the contribution of the buccal muscles to 

inspiratory pressure development (Black and Hyatt 1969). Efforts were performed in an 

upright standing posture, were initiated from residual volume, and sustained for at least 2 s. 

Inspiratory efforts were separated by 30 s and repeated until serial measures were within 

10% or 10 cmH2O of one another with the highest value recorded for analysis (McConnell 

2007); MIP was compared to normal values provided by published reference equations 

(Wilson et al. 1984). 

 

2.4 CALIBRATION OF THE MOUTH PRESSURE METER  

The mouth pressure meter was calibrated using a capacitive sensor prior to 

commencement of the research programme. The capacitive sensor had a pressure capacity 

>1360 cmH2O (1000 torr; Pirani strain gauge, MKS Barathon, MKS Instruments, MA, 

USA) and was maintained at a constant temperature (55 ºC) by a digital signal conditioner 

(MKS Barathon, Type 270B, MKS Instruments, MA, USA). A two-point calibration was 

performed on the strain gauge daily: firstly the strain gauge pressure was set to zero and 

secondly to the atmospheric pressure provided by the local meterological station and 

confirmed with a laboratory based wall-mounted mercury manometer. The assembly for 
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calibration of the mouth pressure meter is shown in Figure 2.1; the mouth pressure meter 

was connected via flexible tubing to the strain gauge and an electronic syringe pump fitted 

with a 60 ml syringe (KD Scientific, KDS 210C, Holliston, MA, USA) using a three-way 

stopcock. The pump opened the syringe at a constant rate of 70.57 ml·min
-1

. Displacement 

of the syringe to multiple limits was repeated 12 times generating a range of pressures 

from 6 to 298 cmH2O.  

 

 

Figure 2.1. Assembly for calibration of the mouth pressure meter. 1) capacitive strain gauge, 2) syringe 

pump, 3) mouth pressure meter, 4) three-way stopcock and 5) pressure display. 

 

Figure 2.2A shows the relationship between pressure recordings from the mouth pressure 

meter (PMOUTH) and the calibrated strain gauge (PSTRAIN). The relationship between the two 

was excellent as shown by the correlation coefficient. Figure 2.2B illustrates a Bland and 

Altman plot (Bland and Altman 1986) of the difference in pressure recordings between 

PMOUTH and PSTRAIN against the mean of both. Also shown in Figure 2.2B are the mean 

bias, and 95% confidence intervals. Given the narrow limits of agreement, it can clearly be 

seen that the mouth pressure meter provides a valid measure of pressure.  

 

 1 

2 

  3 

 4 

 5 



 101 

 

         

 

Figure 2.2. A) Strain gauge pressure (PSTRAIN) against mouth pressure meter pressure (PMOUTH); B) 

Difference in pressure between PSTRAIN and PMOUTH against the mean (PMOUTH & PSTRAIN). 95% confidence 

intervals for the mean bias, upper limits of agreement and lower limits of agreement were -0.90 to 0.61 

cmH2O, 1.12 to 3.74 cmH2O and -4.03 to -1.41 cmH2O, respectively. x , mean. 

 

2.5 PULMONARY FUNCTION: DYNAMIC SPIROMETRY 

 Forced lung volumes and flows were assessed in accordance with published 

guidelines (American Thoracic Society: Quanjer et al. 1993; British Association of Sport 

and Exercise Sciences: McConnell et al. 2007). Tests were performed using a hand-held 

pneumotachograph (Pneumotrac, Vitalograph, Buckingham, UK) calibrated using a 3 L 

syringe. Subjects performed manoeuvres wearing a nose clip and standing upright. A 

minimum of 3 and maximum of 8 flow-volume loops were performed to determine the 

forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory 

(PEF) and peak inspiratory flow rates (PIF) until the within and between-manoeuvre 

criteria were satisfied, i.e. two largest recordings of FVC and FEV1 were within 100 ml of 

each other (Miller et al. 2005). A 10 s maximal voluntary ventilation (MVV10) was 

performed to determine the maximal breathing capacity. Efforts were separated by 1 min 

and continued until repeat measurements were within 10% or 20 L·min
-1

 of each other 

(McConnell 2007). The highest value recorded for the flow-volume loop and MVV10 were 

used for subsequent analysis (Quanjer et al. 1993). All spirometry data were compared to 
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normal reference values published previously (FVC, FEV1, PEF, FEV1/FVC, Quanjer et al. 

1993; MVV10, Cotes 1993). 

 

2.6 ZAN 600 USB CPX BREATH BY BREATH ANALYSER 

Pulmonary gas exchange and ventilation were measured at the mouth using an 

online breath by breath gas analysis system operated by an integrated PC (ZAN 600 USB 

CPX, Nspire Health, Oberthulba, Germany). Pulmonary gases were continuously sampled 

and analysed using fast response selective analysers at a flow rate of 0.66 Ls
-1

 (O2: 

amperometric solid state electrolyte sensor; CO2: infrared spectroscopy). The expired gases 

were time aligned with expired airflow using specific software (GPI version 3.0, Nspire 

Health, Oberthulba, Germany) to provide breath by breath pulmonary gas exchange 

measurements expressed at STPD. Expired volumes of air were measured using a 

pneumotachograph (Type II flow sensor, Nspire Health, Oberthulba, Germany) with a low 

dead space (<40 ml) and expressed at BTPS. The additional resistance provided by the 

flow pneumotachograph according to the manufacturer‟s guidelines was 1.0, 1.7, 2.4 and 

2.9 cmH2O for flow rates of 6.2, 8.4, 10.0 and 11.2 L·s
-1

, respectively. The flow 

pneumotachograph and gas analysers were calibrated prior to all trials using a 3 L syringe 

and gases of known concentrations (BOC Gases, Guilford, UK), respectively. The 

pneumotachograph was attached to a facemask (Vmask model 7400, Hans Rudolph, KS, 

USA) with a low dead space (97 ml) and secured around the participants face using elastic 

quick release mesh head gear. During trials where FICO2 was increased (Chapters 3 and 4) 

or inspiratory resistance was required (Chapter 5), a two-way non-rebreathing valve 

(model 2730, Hans Rudolph, Missouri, USA) was connected distal to the 

pneumotachograph. According to the manufacturer‟s guidelines, the two way non-

rebreathing valve provided inspiratory and expiratory resistances of 7.0, 12.2 and 20.2 

cmH2O and 10.8, 16.3 and 22.2 cmH2O, respectively, for inspiratory and expiratory flow 

rates of 5.0, 6.7 and 8.3 Ls
-1

, respectively.    
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2.7 AGREEMENT BETWEEN ZAN 600 USB CPX AND A ‘GOLD STANDARD’ 

 The validity and reliability of the on-line breath by breath expired gas analysis 

system was assessed against the closed circuit Douglas bag technique since the latter is 

considered the gold standard of expired gas measurements (Bassett et al. 2001). Expired air 

was collected into non-permeable bags (200 L capacity) and the concentration of gases and 

volumes of air were determined. Exercise was performed on an electromagnetically braked 

cycle ergometer (see section 2.2) at constant power outputs equivalent to 100, 130, 160, 

190 and 220 W. Following 4 min of exercise, a 60 s expired air sample was taken. The 

breath by breath flow pneumotachograph was connected in series with a two-way non-re-

breathing valve (model 2730, Hans Rudolph, Missouri, USA) with the Douglas bag 

corrugated tubing attached proximally to the expiratory port and distally to the Douglas 

bag. This permitted simultaneous measurement of expired air samples using both methods; 

this was repeated at each exercise power output. 

Douglas bag expired air samples were analysed for the concentrations of CO2 and 

O2 using infrared and paramagnetic analysers, respectively (Servomex Series 1400, 

Crowborough, UK), calibrated immediately prior to analysis with gases of known 

concentration (BOC Gases, BOC, Guilford, UK). Expired gas volumes were determined 

using a dry gas meter calibrated with a known volume of air (Harvard Ltd., Edenbridge, 

UK); EV , 2OV  and 2COV  were subsequently corrected from ATPS to BTPS and STPD, 

respectively.  Figure 2.3 shows the relationship between EV , 2OV  and 2COV , each data 

series represents a specific date of measurement. Figure 2.3 clearly shows an excellent 

relationship between both measures of pulmonary gas exchange and ventilation as 

indicated by the significant correlation coefficients.  
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Figure 2.3. Relationships between ZAN 600 USB CPX (ZAN 600) and Douglas bags (DB). A) minute 

ventilation ( EV ) , B) oxygen consumption ( 2OV ), C) carbon dioxide production ( 2COV ). Each data series 

represent a specific date of measurement: ▲, 02.04.2006; ■, 09.06.2006; ○, 03.03.2007; , 24.07.07; ●, 

11.04.08; each data point within a series reflects a given constant power output. 

 

 

To minimise the influence of between subject variance on the relationship between 

the ZAN 600 and Douglas bag method and to observe the relationship between the 

measurement error and the true value, Bland and Altman plots were constructed. Figures 

2.4, 2.5 and 2.6 show the difference between measurements made by the ZAN 600 USB 

CPX and Douglas bags plotted against the mean of both for EV , 2OV  and 2COV , 
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respectively. The Figures also show the bias of the mean difference, and the 95 % 

confidence intervals for the lower and upper limits of agreement. Figures 2.4, 2.5 and 2.6 

clearly show good agreement for each measurement. These results indicate that the ZAN 

600 USB CPX is a valid and reliable breath by breath expired gas analysis system during 

exercise.  

 

 

 

 

Figure 2.4. Difference in minute ventilation ( EV ) against mean for ZAN 600 USB CPX (ZAN 600) and 

Douglas bag (DB) methods. 95% confidence intervals for the mean bias, upper limits of agreement and lower 

limits of agreement were -1.19 to 1.25 L·min
-1

, 3.84 to 8.07 L·min
-1

 and -8.02 to -3.78 L·min
-1

, respectively. 

x , mean. Each data series represent a specific date of measurement: ▲, 02.04.2006; ■, 09.06.2006; ○, 

03.03.2007; , 24.07.07; ●, 11.04.08; each data point within a series represents a given constant power 

output. 
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Figure 2.5. Difference in pulmonary oxygen consumption ( 2OV ) against mean for ZAN 600 USB CPX 

(ZAN 600) and Douglas bag (DB) methods. 95 % confidence intervals for the mean bias, upper limits of 

agreement and lower limits of agreement were -0.11 to -0.02 L·min
-1

, 0.08 to 0.23 L·min
-1

 and -0.36 to -0.20 

L·min
-1

, respectively. x , mean. Each data series represent a specific date of measurement: ▲, 02.04.2006; 

■, 09.06.2006; ○, 03.03.2007; , 24.07.07; ●, 11.04.08; each data point within a series represents a given 

constant power output. 

 

 

 

 

 

Figure 2.6. Difference in pulmonary carbon dioxide production ( 2COV ) against mean for ZAN 600 USB 

CPX (ZAN 600) and Douglas bag (DB) methods. 95 % confidence intervals for the mean bias, upper limits 

of agreement and lower limits of agreement were -0.08 to -0.01 L·min
-1

, 0.07 to 0.20 L·min
-1

 and -0.29 to -

0.16 L·min
-1

, respectively. x , mean. Each data series represent a specific date of measurement: ▲, 

02.04.2006; ■, 09.06.2006; ○, 03.03.2007; , 24.07.07; ●, 11.04.08; each data point within a series 

represents a given constant power output. 
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2.8 BLOOD SAMPLING AND ANALYSIS 

Arterialised venous blood was sampled from a dorsal hand vein via an indwelling 

21-G teflon venous cannula (Surflo-W, Terumo, Leuven, Belgium). The cannula was fitted 

with a 3-way stopcock valve (Becton Dickinson UK Ltd, Oxford, UK) and secured to the 

hand using adhesive medical tape. This method of arterialised venous blood sampling has 

been shown to provide excellent agreement with arterial blood for measures of blood 

lactate concentration ([lac
-
]B), pH and the partial pressure of CO2 (PCO2) during both 

steady state and incremental exercise to volitional tolerance (Forster et al. 1972; 

McLoughlin et al. 1992). Prior to cannulation, arterialisation was ensured by immersing 

the hand in water ~40˚C for 10 min and during exercise by warming the hand using a stand 

mounted infrared lamp (Infraphil HP3614, Philips, UK). Dorsal hand skin temperature was 

measured throughout using a thermistor (Thermocouple 206-3722, RS Components, 

Northants, UK) with the distance of the lamp adjusted to ensure a constant skin 

temperature of ~40ºC. Following cannulation, a 5 ml intra-venous infusion of 0.9% sodium 

chloride (Mini-Plasco Saline, Braun, Melsungen, Germany) was performed to maintain 

patency. Immediately prior to all blood sampling, residual fluids were withdrawn from the 

cannula and stopcock using a 1 ml syringe. On completion of a trial, the cannula was 

removed and medical gauze (Topper 8, Johnson and Johnson Medical Ltd, Skipton, UK) 

was applied under firm pressure to the puncture site for a minimum of 10 min to avoid 

superficial haematoma.  

 [lac
-
]B and glucose concentrations ([glucose]B) were measured using an automated 

enzymatic method (Biosen, EKF Diagnostics, Barleben, Denmark). Blood samples were 

drawn into a 1 ml syringe and transferred in to sodium-heparinised 20 μl end-to-end 

capillary tubes (Biosen, EKF Diagnostics, Barleben, Denmark). Capillary tubes were then 

placed into a 1 ml micro test tube filled with a glucose/lactate haemolysing solution 

(Biosen, EKF Diagnostics, Barleben, Denmark) and shaken vigorously for approximately 

10 s. The specific [lac
-
] contained within the capillary sample was then determined using 
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the analyser. Here the sample was converted to pyruvate and hydrogen peroxide via the 

enzyme lactate oxidase using an amperometric electrochemical sensor chip. The products 

of the aforementioned reaction produce an electrical current on the working electrode site 

of the sensor directly proportional to the original lactate concentration (Figure 2.6) 

achieved by comparison to the reference electrode site of the micro sensor where no 

electrical current is present.  

 

 

Figure 2.7. Measurement principles of lactate analyser (Biosen, EKF Diagnostics, Barleben, 

Denmark). 

 

 

 

The analyser was calibrated prior to use using a standard solution of known 

concentration ([lac
-
] / [glucose]: 12 mmol·L

-1
). Between day coefficient of variation (CV) 

in [lac
-
] / [glucose] was monitored by the calibration slope of a quality control solution 

which was <1.5%. The within-sample CV for [lac
-
]B and [glucose]B was 2.0 ± 0.6 (n = 10 

samples) and 1.5 ± 0.4 % (n = 8 samples), respectively. Previous research has confirmed 

the intra-sample and between-day reliability of this method (Davison et al. 2000), to which 

the current data agree.   

Arterialised venous blood gas measurements including PCO2 and pH (and thus 

[H
+
]) were made using an automated blood gas analyser (ABL 520, Radiometer, 

Copenhagen, Denmark). After drawing approximately 1.5 ml of blood into a pre-
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heparinised syringe (PICO 50, Radiometer, Copenhagen, Denmark), it was rolled vertically 

between the hands for approximately 10 s and introduced immediately into the analyser. 

Blood gases were corrected for in-vivo changes in core temperature measured using a self-

inserted rectal thermistor fixed at 10 cm beyond the anal sphincter (1000 Series Squirrel, 

Grant Instruments, Cambridge, UK). The Henderson Hasselbalch equation was used to 

calculate plasma bicarbonate concentration ([HCO3
-
]): 

2

3

CO0.03

][HCO
logpKpH

P




 

and the Siggaard-Anderson equation was used to calculate base excess of the extracellular 

fluid (BEECF; Siggaard-Anderson and Fogh-Anderson, 1995): 

  7.40pH14.8324.40][HCO0.93BE 3ECF 


 

 Automatic calibration of the analyser occurred every 8 hr; additionally, during 

periods of heavy use, quality control solutions stored in air tight glass ampules were 

injected in to the analyser (QUALICHECK 3+, Radiometer, Copenhagen, Denmark). Four 

quality control solutions were introduced into the analyser each containing certified values 

of PCO2 and pH; the range of values within the quality control solutions for PCO2 were 

20.4 to 24.4, 40.0 to 46.0, 65.4 to 75.4 and 88.3 to 104.3 mmHg and for pH were 6.797 to 

6.827, 7.076 to 7.116, 7.376 to 7.416 and 7.565 to 7.605, respectively. 

 

2.9 EFFECTS OF STORAGE DURATION ON [LAC
-
]B AND [GLUCOSE]B 

 Throughout exercise trials approximately 45 min separated blood sampling and 

analysis. Therefore the effects of 50 min time delay on [lac
-
]B and [glucose]B was 

investigated. Five males performed 5 min cycling exercise at a constant power output 

between 100 and 300 W using an electromagnetically braked cycle ergometer and blood 

sampling procedures described in sections 2.2 and 2.8, respectively. To achieve maximal 

[lac
-
]B and [glucose]B, a 5 ml blood sample was drawn approximately 5 min post-exercise 

and divided in to 11 aliquots of 20 μl. The first aliquot was analysed immediately (time: 0) 
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with each subsequent blood sample analysed every 5 min thereafter. The effect of storage 

duration on [lac
-
]B and [glucose]B is shown in Figure 2.7. 

 

 

 

Figure 2.8. Effect of storage duration (time delay prior to analysis) on blood lactate ([lac
-
]B; ●) and blood 

glucose ([glucose]B; ○) concentrations.  

 

 

A linear regression was fitted to the values of [lac
-
]B and [glucose]B over time in 

order to determine if the slope of the relationship was significantly different to zero using 

the equation:  

  
SEE

1NSDb
t


 x  

where b = is the slope, SDx = standard deviation (SD) of x where x is time and SEE = the 

standard error of the estimate (est) calculated as: 

 
N

YY
2'

est

 
  

where  2'YY   is the sum of the squared errors of predictions of Y and N is the number of 

predictions. The slope of the relationships were not significantly different to zero, 
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therefore, a time delay of up to 50 min did not influence the measurement of either 

arterialised venous [lac
-
]B or [glucose]B.  

 

2.10 INSPIRATORY MUSCLE TRAINING 

 Inspiratory muscle training (IMT) was performed using a commercially available 

pressure threshold loading device (POWERbreathe
®
, Gaiam, UK; Figure 1.24).  The 

device has been shown to provide near flow-independent pressure threshold loading over a 

range of inspiratory flow rates (Caine and McConnell 2000).  During inspiration, subjects 

were required to generate a negative pressure at the mouth sufficient to open a spring 

loaded valve until the threshold pressure could no longer be sustained. At such time, the 

valve closed and unloaded expiration was initiated. 30 dynamic inspiratory efforts were 

performed twice daily for a period of 4 to 6 wk against a pressure-threshold load of 50% 

MIP. Throughout the training intervention, subjects were instructed to periodically increase 

the load to a threshold pressure which would permit them to only just complete 30 breaths. 

Each inspiratory manoeuvre was initiated from residual volume and subjects strove to 

maximise VT. To avoid hypocapnia, subjects were instructed to expire slowly and fully, 

thus attenuating R. This protocol is known to be effective in eliciting an adaptive response 

(see section 1.15.3). Throughout the intervention period, subjects completed a training 

diary to record IMT adherence and habitual training (Appendix 1). 

 

2.11 STATISTICAL TREATMENT OF DATA 

 For all data included in statistical analyses, normal distribution of the sample was 

used to indirectly confirm normal distribution expected within the sample population 

(Field 2008). Normality was confirmed by subjective interpretation of frequency 

distribution histogram plots and interpretation of the empirical skewness and kurtosis. 

Interpretation of the Kolmogorov-Smirnov statistic was used to objectively interpret 

whether the distribution of data was significantly different from a comparable normal 
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distribution with an identical mean  SD. Data was considered normal when the 

Kolmogorov-Smirnov α-level was greater than 0.05 (Field 2008). 

 Homogeneity of variance, i.e. the assumption that the variance of one variable / 

group was similar at all levels of another variable, was confirmed using Levene‟s test 

(Field 2008). Briefly, a one-way ANOVA was performed upon the deviance scores of the 

variable(s) to reveal the absolute difference between the mean of the group and each 

individual variance score. A levene‟s statistic greater than 0.05 confirmed homogeneity of 

variance.  

 Througout the thesis, all data are presented as mean  SD unless stated otherwise. 

All statistical analyses (including the assessment of normal distribution and homogeneity 

of variance) were performed using SPSS for Windows (SPSS, Chicago, Illinois, USA). 

The modelling of oxygen uptake / lactate kinetics at the onset of constant power exercise 

(Chapter 4) and lactate kinetics throughout recovery from maximal exercise (Chapter 5) 

were performed using the statistical packages GraphPad Prism (Version 5.01, GraphPad 

software, Inc. CITY, USA) and SYSTAT (Version 12, SYSTAT software Inc., CA, USA), 

respectively.  

 

2.12 THE LACTATE MINIMUM TEST AND THE MAXIMAL LACTATE STEADY STATE (MLSS) 

The lactate minimum test (Johnson et al. 2009; Tetgbur et al. 1993) was used to 

predict the maximal lactate steady state power output (MLSS). The lactate minimum test 

consisted of three consecutive phases: phase one: a maximal incremental exercise test to 

volitional tolerance; phase two: 8 min of constant power cycling at 60 W to maximise [lac
-

]B; and phase three: five, 4 min increments in power output at 45, 50, 55, 60 and 65% of 

the maximal power output ( maxW ) achieved during phase one. During the maximal 

incremental test, power output started at 0 W and was increased by 10 W every 15 s to 

elicit exercise intolerance within approximately 10 min; exercise intolerance was 

determined when, despite verbal encouragement, cycling cadence could no longer be 
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maintained above 60 r.p.m. Throughout phase 3, [lac
-
]B was determined in the final 

seconds of each 4 min increment. Subsequently, a 2
nd

 order polynomial was fitted to the 

relationship of [lac
-
]B and power output. The asymptote of the curve was calculated 

through differentiation of the quadratic equation and defined the lactate minimum power 

output (i.e. estimated MLSS power).   

 The MLSS represents the highest power output that can be sustained over time 

where a steady state in [lac
-
]B is observed (i.e. the rate of appearance and disappearance of 

lactate from the systemic circulation is equal). Therefore, in order to resolve the MLSS 

power output, a minimum of two, 30 min constant power trials were performed, preceded 

by a 3 min warm-up at 50% power output. The first trial was performed at the lactate 

minimum power output. Throughout these tests, [lac
-
]B was determined every 3 min from 

min 15 to 30 using procedures outlined in section 2.10. MLSS was defined as the highest 

cycling power output where [lac
-
]B increased no more than 0.5 mmol·L

-1
  from min 15 to 

30 (Aunola and Rusko 1992; Bacon and Kern 1999). If [lac
-
]B increased or decreased more 

than 0.5 mmol·L
-1

 during the first trial, power output during the subsequent trial was 

decreased or increased by 2.5 %, respectively. This process was repeated until MLSS 

power output was confirmed. 

 

2.13 EFFECTS OF PEDAL CADENCE ON THE PHYSIOLOGICAL RESPONSES TO EXERCISE AT 

THE MAXIMAL LACTATE STEADY STATE 

2.13.1 INTRODUCTION 

In Chapter 4, isocapnic volitional hyperpnoea was imposed upon cycling exercise 

at the MLSS to determine the contribution of respiratory muscle work to systemic [lac
-
]B. 

Preliminary investigations showed that at the onset of volitional hyperpnoea where EV  

was increased in a square wave manner from ~80 Lmin
-1

 to ~150 Lmin
-1

, pedal cadence 

demonstrated a transient rise by ~10 r.p.m. Previous studies have demonstrated that large  

( 50 r.p.m.) increases in pedal cadence have big effects upon the [lac
-
] response to 
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exercise at the MLSS. Whether much smaller increases in pedal cadence (as observed in 

our preliminary work) per-se has any meaningful effect upon physiological responses 

reflective of the MLSS is unknown. A pedal cadence-mediated alteration in physiological 

parameters independent of the imposed volitional hyperpnoea may confound the 

interpretation of physiological responses. Therefore, the aim of this pilot study was to 

quantify the effects of pedal cadence upon physiological responses to 30 min cycling 

exercise at the MLSS. The findings of this study provide novel methodological 

recommendations for the control of pedal cadence during exercise with imposed volitional 

hyperpnoea used in Chapter 4. 

 

2.13.2 METHODS 

2.13.2.1 PARTICIPANTS 

Following ethical approval and written informed consent, 11 non-smoking, active 

males were recruited for the study (Table 2.1). Participants followed pre-exercise 

instructions outlined in section 2.1. All tests were separated by a minimum of 48 h and 

performed at a similar time of day and in similar laboratory conditions (temperature: 16.5 

 1.7C; relative humidity: 46.2  8.7%).   

 

2.13.2.2 EXPERIMENTAL PROCEDURE 

On the first visit, all subjects were familiarised with the testing procedures. In 

subsequent visits, MLSS cycling power output was determined as described in section 

2.12.  Following determination of MLSS and the subjects‟ preferred cadence, three 30 min 

experimental cycling trials were performed at MLSS on different days and in random 

order. The first 15 min of each trial was performed at the preferred cycling cadence and for 

the remaining 15 min subjects maintained this (control) or cycled 15 r.p.m. above 

(+15r.p.m.) or 15 r.p.m. below (-15r.p.m.) the control. All exercise trials were performed 

on an electromagnetically braked cycle ergometer (see section 2.2).   
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Table 2.1 Descriptive characteristics of the subjects. 

 

n = 11 

Age (years) 33.1  8.0 

Body mass (kg) 81.5  8.2 

Height (m) 1.79  6.4 

2OV max (L∙min
-1

) 4.10  0.61 

maxW (W) 387  42 

MLSS (W) 214  29 

MLSSINTENSITY (MLSS/ maxW ; %) 55   4 

Values are expressed as mean  SD. 

 

2.13.2.3 RESPIRATORY, CARDIOVASCULAR AND PERCEPTUAL MEASUREMENTS 

Throughout all experimental trials, respiratory variables and pulmonary gas 

exchange were measured breath by breath (see section 2.6). Heart rate (HR) was measured 

every 2 min using telemetry (Polar S610, Polar, Kempele, Finland) and ratings of 

perceived exertion (RPE) were recorded every 2 min using the Borg 6-20 scale (Borg 

1982). 

  

2.13.2.4 BLOOD SAMPLING 

Arterialised venous blood samples were drawn every 2 min and analysed 

immediately for PCO2, pH, [lac
-
]B and [glucose]B (see section 2.8); [HCO3

-
] and BEECF 

were calculated as in section 2.8.  

 

2.13.2.5 STATISTICAL ANALYSES 

 Statistical analyses were performed using SPSS for Windows (SPSS, Chicago, 

Illinois, USA). All trials were divided into and averaged over two discrete periods: steady 

state period (min 10 to 14) and an intervention period (min 16 to 30). Since dependent 
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variables were not different between trials during the steady-state phase, data are presented 

from the steady state period of the control trial only. Differences and trial interactions were 

compared using a factorial ANOVA for repeated measures and Tukey‟s HSD post-hoc 

analysis. Interactions were defined for “trial” (control vs. +15r.p.m. vs. -15r.p.m.) and 

“time” (steady state vs. intervention). Pearson product-moment correlation coefficients 

were calculated to assess the relationship between selected variables. Statistical 

significance was set at P0.05.  Results are presented as mean  SD.  

 

2.13.3 RESULTS 

 During the control trial, subjects preferred cycling cadence was 87  6 r.p.m.  

Throughout +15r.p.m. and -15r.p.m. cycling cadence increased to 102  6 r.p.m. (P<0.05) 

and decreased to 72  6 r.p.m. (P<0.05).  

 

2.13.3.1 PERCEPTUAL RESPONSES 

RPE was similar between trials during the steady state period (11.4  0.1). Relative 

to this, during the intervention period (min 16 to 30) RPE increased to 12.1  1.2, 13.4  

2.1 and 12.4  1.6 (all P<0.05) in the control, +15r.p.m. and -15r.p.m. trials, respectively. 

The increase in RPE in +15r.p.m. was greater than the control trial and -15r.p.m (P<0.05). 

 

2.13.3.2 VENTILATORY RESPONSES  

Group mean EV , VT and R are shown in Table 2.2.  Breathing pattern was not 

different between trials during the steady state period, however, EV  was significantly 

increased and decreased from min 16 to 30 in +15r.p.m. and -15r.p.m., respectively 

(P<0.001). In +15r.p.m., this was due predominantly to an increase in R (P<0.001) with 

only a small change in VT. In contrast, the lower EV  in -15r.p.m. was primarily due to a 

reduction in VT with no change in R. Duty cycle was unchanged between and within all 
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trials. An increase and decrease in cadence resulted in an increase and decrease in 2OV , 

2COV  and RER (Table 2.2). 

 

Table 2.2 Pulmonary ventilation and gas exchange responses to 30 min exercise at MLSS 

during the control, +15r.p.m. and -15r.p.m. trials. 

 
 Control trial  +15r.p.m.  -15r.p.m. 

 Steady state 

(min 10-14) 

Intervention 

(min 16-30) 

 Intervention 

(min 16-30) 

 Intervention 

(min 16-30) 

EV  (Lmin
-1

) 72.2  12.0 78.3  13.9 *  91.8  18.7 *†  70.8  13.7 † 

VT (L) 2.46  0.69 2.36  0.68 *  2.48  0.83  2.23  0.73 *† 

R (breathsmin
-1

) 31  7 35  8 *  40  10 *†  34  8 * 

TI/Ttot 0.49  0.03 0.49  0.03  0.49  0.02  0.48  0.03 

2OV  (Lmin
-1

) 2.85  0.37 2.88  0.37  3.03  0.53 *  2.66  0.43 † 

2COV  (Lmin
-1

) 2.76  0.39 2.81  0.41  3.03  0.51 *†  2.56  0.43 † 

EV / 2OV  25.35  2.16 27.12  2.72*  30.37  3.60*†  27.67  2.08* 

EV / 2COV  26.15  2.08 27.84  2.41*  30.26  2.77*†  26.59  2.30 

RER 0.97  0.03 0.97  0.03  1.00  0.05 *†  0.96  0.03 

Values are expressed as mean  SD. * P<0.05 vs. steady state. † P<0.05 vs. intervention period of control 

trial.  

 

2.13.3.3 CARDIOVASCULAR RESPONSES 

There were no differences in steady state HR between all trials (146.7  8.2 

beats·min
-1

). A transient increase in HR was observed in the control trial from min 16 to 30 

(155.7  9.4 beats·min
-1

, P<0.05), however, this was exceeded during +15r.p.m. (160.3  

11.8 beats·min
-1

; P<0.05) and attenuated in -15r.p.m. (152.5  12.3 beats·min
-1

; P<0.05; 

interaction effect trial × time, P<0.05).  
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2.13.3.4 BLOOD AND ACID-BASE RESPONSES 

Acid-base status was not different between trials during the steady state period. 

Relative to the control trial, during min 16 to 30 reducing cadence by 15 r.p.m. lead to a 

reduction in [H
+
] and an increase in [HCO3

-
] and BEECF; PCO2 remained unchanged. 

Conversely in +15r.p.m., [H
+
] was increased and [HCO3

-
], BEECF and PCO2 decreased. 

The changes observed in BEECF and [HCO3
-
] in +15r.p.m. and -15r.p.m. exceeded that of 

the control trial (interaction effect trial × time, P<0.001; Table 2.3).  

 

Table 2.3. Acid-Base and blood glucose responses to 30 min exercise at MLSS during the 

control, +15r.p.m. and -15r.p.m. trials. 

 
 Control trial  +15r.p.m.  -15 r.p.m. 

 Steady state 

(min 10-14) 

Intervention 

(min 16-30) 

 Intervention 

(min 16-30) 

 Intervention 

(min 16-30) 

[H
+
] (nmolL

-1
) 44.5  3.0 43.6  2.9 *  44.4  2.3  43.1  2.3 * 

[HCO3
-
] (mmolL

-1
) 23.1  2.0 22.9  1.8  21.5  2.8 *†  24.1  3.0 

BEECF  (mEqL
-1

) -1.87  2.01 -1.84  1.95  -3.31  2.69 *†  -0.76  2.71 * 

PCO2 (mmHg) 43.6  3.2 42.0  2.9 *  39.9  4.8 *  43.5  6.5 

[glucose]B (mmolL
-1

) 4.04  0.37 4.06  0.48  4.05  0.60  3.88  0.48 

Values are expressed as mean  SD. * P<0.05 vs. steady state. † P<0.05 vs. intervention period of control 

trial. 
 

 

The [glucose]B was not different between or within trials (Table 2.3). During all 

trials [lac
-
]B reached a steady state following ~10 min (3.91  1.89 mmol·L

-1
). Following 

30 min, [lac
-
]B was increased and decreased in +15r.p.m. and -15r.p.m. to 4.96  2.01 

mmol·L
-1

 (+43  38 %) and 3.15  1.75 mmol·L
-1

 (-25  22 %), respectively (interaction 

effect trial × time, P<0.001; Figure 2.9).  The rate of change in [lac
-
]B in +15 and -15r.p.m. 

was 0.09 and -0.03 mmolL
-1
min

-1
, respectively.  
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Figure 2.9 Blood lactate concentration ([lac

-
]B) during 30 min exercise at MLSS. ○, control trial; ■, 

+15r.p.m.; ▲, -15r.p.m.. * P<0.05 vs. control trial. 

 

2.13.4 DISCUSSION 

The aim of this pilot study was to investigate the effects of pedal cadence upon 

physiological responses to 30 min cycling at MLSS. The between day coefficient of 

variation in preferred cadence was 0.5  0.3% which was superior to that reported 

previously (4.4  0.9%; Moussay et al. 2003). The main findings were that increasing and 

decreasing pedal cadence by 15 r.p.m. significantly altered physiological, acid base and 

psychophysical responses. Therefore, in subsequent studies, failing to control for changes 

in pedal cadence during exercise at the MLSS would significantly affect the interpretation 

of physiological parameters.  

At the onset of volitional hyperpnoea imposed upon exercise, preliminary work 

indicated that pedal cadence increases. This rise in pedal cadence is explained by the 

neural link between breathing and locomotion (Eldridge et al. 1981) which is termed 

locomotor-respiratory coupling or the „entrainment‟ of breathing (Bramble and Carrier 

1983). Recent evidence shows that the supero-lateral primary motor cortex (the cortex area 

associated with volitional hyperpnoea) is also activated during and following leg exercise 
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in humans (Haouzi 2006). Therefore, when intense volitional hyperpnoea is imposed upon 

exercise, the increase in central respiratory motor output appears to also activate the 

supraspinal locomotor efferent centres causing an increase in motor output to the limbs and 

thus pedal cadence. 

The MLSS is suggested to represent a relative exercise intensity at which a steady 

state is observed in metabolite concentrations, cardiorespiratory parameters and breathing 

pattern (Baron et al. 2003). In +15r.p.m. an increase in R was observed and VT remained 

unchanged. Conversely, in -15r.p.m. R remained unchanged and VT was reduced. The 

increase in breathing frequency in +15r.p.m. may be due to the entrainment of respiratory 

and locomotor motor output. This is supported by the significant negative correlation 

between ΔPCO2 and Δ EV  (r = -0.57, P<0.05) and the significant increase in the 

ventilatory equivalents for O2 and CO2 (Table 2.2) above that of the control and -15r.p.m. 

trials. This demonstrates an excessive respiratory motor drive and pulmonary EV  for the 

exercise metabolic demand and would also account for the increase in 2COV  and RER.  

Alternatively, the greater pedal cadence may have increased the recruitment of less 

efficient type II muscle secondary to the increased rate of muscle shortening. The greater 

recruitment of type II muscle fibres with an increase in pedal cadence is supported by the 

increase in [lac
-
]B (Figure 2.9) and is consistent with the transient on-time of the glycolytic 

flux (Crowther et al. 2002). This is also supported by the increase in 2OV  in +15r.p.m. 

(Ferguson et al. 2001) which is likely due to the greater work performed when pedal 

cadence is higher and places the type I and type II muscle fibres on a more 

disadvantageous and optimal position on their efficiency-rate of muscle shortening curve 

(He et al. 2000). The recruitment of type II muscles fibres would increase glycogenolysis 

(Beelen et al. 1993) and in support of this notion, Table 2.2 shows an increase in RER from 

0.97 in the control trial to 1.00 in +15r.p.m. Therefore, the resultant tachypnoea may reflect 

a respiratory compensation for the greater utilisation of endogenous carbohydrates stores. 
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  However, the potential for a respiratory alkalosis to increase [lac
-
]B is also well 

documented (Davies et al. 1986; LeBlanc et al. 2002). In +15r.p.m. significant 

relationships were observed between Δ[lac
-
]B and Δ EV  (r = 0.83, P<0.05), Δ EV  and 

ΔPCO2 (r = -0.57, P<0.05), and Δ[lac
-
]B and ΔPCO2 (r = -0.74, P<0.01; Figure 2.10). The 

decrease in PCO2 (-13%) is similar to previous studies although the increase in [lac
-
]B 

(+43%) is larger (Davies et al. 1986; LeBlanc et al. 2002). The differences between studies 

is most likely explained by differences in study protocol since previous studies imposed 

moderate intensity hyperventilation upon steady state exercise to achieve a reduction in 

PCO2. Therefore, it is possible that the increase in [lac
-
]B occurred secondary to the 

reduction in PCO2. Interestingly, pH remained unchanged in +15r.p.m. despite the increase 

in [lac
-
]B and decrease in BEECF, although this was likely due to the 5 mmHg reduction in 

PCO2. It would certainly be interesting in future study to investigate the effects of pedal 

cadence upon responses to exercise at MLSS with a breathing pattern matched to that 

observed in the control trial thus identifying the respiratory contribution to changes in 

systemic metabolites and acid-base balance. 

 

   

 

 

Figure 2.10 Change in [lac
-
]B versus change in PCO2 in the +15r.p.m. trial. Note: correlation coefficient: r = -

0.74, P = 0.01.  
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The increase in EV  in +15r.p.m. was caused almost exclusively by a greater R. 

This would increase the recruitment of the less efficient accessory muscles and therefore 

the work of breathing. In a previous study, increasing the work of breathing up to 50% via 

inspiratory resistive loads resulted in a decreased vascular conductance and blood flow in 

the working limb muscles (Harms et al. 1997) which resulted in a significant increase in 

limb muscle fatigue (Romer et al. 2006a). In +15r.p.m. the greater ventilatory work may 

have attenuated limb blood flow secondary to a reflex reduction in limb vascular 

conductance and thus O2 delivery which would increase the reliance upon type II muscle 

fibres. The increase in type II muscle fibre recruitment may increase the glycolytic flux 

and thus lactate production and release by the locomotor muscles. However, reductions in 

limb blood flow with inspiratory muscle loading does not affect arterial-venous femoral 

[lac
-
] (Harms et al. 1997). Furthermore, the absolute increase in EV  in +15r.p.m. was less 

than previous studies (Harms et al. 1997; Romer et al. 2006a). With a low EV  is unlikely 

to trigger a sympathetic efferent response which importantly, is known to preserve 

locomotor perfusion (Wetter et al. 1999). Accordingly, it is unlikely that an increased 

ventilatory work contributed to the observed increase in [lac
-
]B in +15r.p.m. 

 

2.13.5 CONCLUSIONS 

In summary, this pilot study shows the importance of controlling pedal cadence 

throughout steady state exercise when determining physiological parameters. The pedal 

cadence-mediated change in these parameters is probably due to type II muscle fibre 

recruitment and / or the development of a respiratory alkalosis. In chapter 4, performing 

volitional hyperpnoea upon exercise at the MLSS whilst maintaining a spontaneous (and 

increasing) pedal cadence has the potential to affect the interpretation of physiological 

variables due to the coupling between breathing and locomotion.  
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CHAPTER 3 

 

INSPIRATORY MUSCLE TRAINING REDUCES  

BLOOD LACTATE CONCENTRATION  

DURING RESTING ISOCAPNIC VOLITIONAL HYPERPNOEA  
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3.1 INTRODUCTION 

Specific respiratory muscle training (RMT) can be performed using voluntary 

isocapnic hyperpnoea (VIH), flow-resistive loading, or pressure-threshold loading; with 

the exception of VIH, these are commonly referred to as inspiratory muscle training (IMT). 

Ventilatory endurance is enhanced with all three techniques, whereas IMT also increases 

diaphragm thickness (Downey et al. 2007; Enright et al. 2006) and the maximal strength, 

shortening velocity and power of the inspiratory muscles (for a full review see McConnell 

and Romer 2004a). Furthermore, well controlled studies have shown improvements in 

endurance exercise performance following both IMT (Gething et al. 2004a, b; Griffiths and 

McConnell 2007; Johnson et al. 2007; Romer et al. 2002a; Volianitis et al. 2001) and VIH 

(Leddy et al. 2007). 

The mechanisms underlying such performance improvements remain speculative 

but may include altered breathing mechanics, reduced perception of effort (Downey et al. 

2007; Gething et al. 2004a, b; Griffiths and McConnell 2007; Romer et al. 2002a; Verges 

et al. 2007b; Volianitis et al. 2001) and possibly reductions in both diaphragm fatigue 

(Verges et al. 2007b) and an associated metaboreflex that attenuates limb blood flow 

(McConnell and Lomax 2006; Witt et al. 2007). The notion that genuine physiological 

adaptation explains, in part, RMT-mediated improvements in endurance exercise 

performance is further supported by the frequently observed reduction in blood lactate 

concentration ([lac
-
]B) during whole-body exercise following both IMT (Griffiths and 

McConnell 2007; McConnell and Sharpe 2005; Romer et al. 2002b; Volianitis et al. 2001) 

and VIH (Leddy et al. 2007; Spengler et al. 1999). Furthermore, correlations have been 

reported between reductions in [lac
-
]B and performance improvements following RMT 

(Romer et al. 2002b; Spengler et al. 1999), with up to 52% of the variation in performance 

being attributed to the reduced [lac
-
]B (Romer et al. 2002b).  

The mechanism(s) by which RMT reduces [lac
-
]B remains equivocal. An RMT-

mediated change in minute ventilation ( EV ), which may conceivably alter both the work of 
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breathing and acid base balance, is an unlikely mechanism since reductions in [lac
-
]B 

following RMT have been observed irrespective of whether EV  is lower (Leddy et al. 

2007), unchanged (McConnell and Sharpe 2005; Spengler et al. 1999; Volianitis et al. 

2001), or increased (Kohl et al. 1997). The concept that RMT-mediated respiratory muscle 

adaptations explain, in part, the reductions observed in [lac
-
]B remains contentious: the 

small size of these muscles and observations that loading and unloading of the respiratory 

muscles during exercise fails to influence both the systemic (Romer et al. 2006a) and 

femoral arterial-venous [lac
-
]B (Harms et al. 1997) argue against this premise (Wetter and 

Dempsey 2000). However, volitional hyperpnoea increases [lac
-
]B both at rest (Martin et 

al. 1984; Verges et al. 2007b) and when superimposed upon steady state exercise (Johnson 

et al. 2006) suggesting that the respiratory muscles are capable of net lactate production 

and release. Furthermore, VIH appears to attenuate such net release during volitional 

hyperpnoea (Verges et al. 2007b). However, this latter study did not rigorously control 

isocapnia which is essential for the interpretation of changes in [lac
-
]B. Also, the use of a 

breathing challenge based upon maximum voluntary ventilation (MVV) limits external 

validity as both the breathing pattern and work of breathing are unreflective of that seen 

during exercise (Coast et al. 1993). Since many of the muscle adaptations associated with 

endurance-orientated training (i.e. VIH) are different from those associated with strength-

orientated training (i.e. pressure threshold IMT), it also remains uncertain whether IMT 

would reduce [lac
-
]B during volitional hyperpnoea. 

Therefore, to investigate this issue further the present study examined the 

hypothesis that 6 weeks of IMT would attenuate the increase in [lac
-
]B caused by 

mimicking, at rest, the breathing pattern observed during high-intensity endurance 

exercise.  
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3.2 METHODS 

3.2.1 PARTICIPANTS 

Following approval from Nottingham Trent University‟s ethics committee, 22 non-

smoking, recreationally active males provided written informed consent to participate in 

the study. Throughout the study subjects were instructed to adhere to their usual training 

regimen and followed pre-exercise instructions outlined in section 2.1. Descriptive 

characteristics of the subjects are presented in Table 3.1.   

 

Table 3.1 Descriptive characteristics of the subjects.  

 

 Control (n = 11) IMT (n = 11) 

Age (years) 28.5  4.1 22.4  4.5 * 

Body mass (kg) 75.5  5.6 78.6  9.7 

Height (cm) 176.9  7.4 181.6  7.6 

FVC (L) 5.32  0.55 (104  8) 5.67  0.92 (106  12) 

FEV1 (L) 4.28  0.62 (99  11) 4.93  0.67 (109  11) 

FEV1/FVC (%) 80.3  7.1 (96  9) 87.7  8.3 (103  9) * 

MVV10 (Lmin
-1

) 176.3  15.0 (102.3±10.9) 173.4  53.7 (122.4±30.3) 

MIP (cmH2O) 163  19 (113  4) 147  27 (119  5) 

2OV max (Lmin
-1

) 3.75  0.55 3.77  0.75 

maxW (W) 353  44 362  38 

Values are expressed as means  SD. Values in parentheses represent the percent of predicted values 

(Quanjer et al. 1993; Wilson et al. 1984). * P<0.05 between groups. 
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3.2.2 EXPERIMENTAL PROCEDURE 

Baseline pulmonary function and MIP were measured during the first laboratory 

visit. On subsequent visits separated by at least 48 h, subjects performed a maximal 

incremental cycling test, and two 10 min isocapnic volitional hyperpnoea tests (the first 

being a familiarisation test). The volitional hyperpnoea tests were performed at the EV , 

tidal volume (VT), breathing frequency (R) and duty cycle (TI/Ttot) associated with 85% 

maximal exercise EV  ( EV max). During volitional hyperpnoea tests blood samples were 

taken every 2 min from 0-10 min, inclusive, and respiratory variables were measured 

breath by breath and averaged over 2 min intervals. Subjects were subsequently matched 

for 85% EV max and divided into an IMT group (n = 11) or a control (no IMT) group (n = 

11). No more than 1 week following a 6 wk intervention MIP was measured and at least 48 

h following this, subjects repeated the volitional hyperpnoea test.  

 

3.2.3 PULMONARY FUNCTION AND MAXIMAL INSPIRATORY MOUTH PRESSURE 

Pulmonary function was assessed using a pneumotachograph and a hand-held 

mouth pressure meter measured MIP as an index of global inspiratory muscle strength 

according to sections 2.3 and 2.5, respectively.  

 

3.2.4 MAXIMAL EXERCISE TEST 

Subjects performed a maximal incremental cycling test on an electromagnetically-

braked cycle ergometer (see section 2.2). Cycling began at 0 W and power was 

subsequently increased by 10 W every 15 s in order to result in exercise intolerance within 

10 min. This rapid incremental protocol was selected to maximise EV  at the cessation of 

the test. The power at which exercise intolerance ensued defined maximal power output (

W max), and the highest oxygen uptake ( 2OV ) and EV  recorded in any 30 s period 

defined 2OV max and EV max, respectively.   
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3.2.5 VOLITIONAL HYPERPNOEA  

Volitional hyperpnoea was performed whilst seated on the cycle ergometer in an 

identical body position to that adopted during the maximal exercise test. Subjects were 

instructed to increase EV  and R in a square wave manner to a level commensurate with 

85% EV max, which during pilot work was shown to represent the maximum square wave 

response that could be maintained for 10 min. An audio metronome paced R and real-time 

visual feedback of EV  was provided throughout the test. The prescribed breathing pattern (

EV , VT, R and TI/Ttot) during volitional hyperpnoea was identical pre- and post-

intervention and was chosen to provide a breathing challenge reflective of the work of 

breathing associated with exercise hyperpnoea. This methodology is deemed superior to an 

arbitrary %MVV as it more closely reflects the work of breathing during whole-body 

exercise: for a given EV  greater than approximately 60 Lmin
-1

 the work of breathing of 

exercise hyperpnoea can be overestimated by as much as 25% when a spontaneous 

breathing pattern is adopted during volitional hyperpnoea (Coast et al. 1993). Isocapnia 

was maintained during volitional hyperpnoea by adding CO2 into the inspiratory circuit in 

order to maintain a resting PCO2.  

 

3.2.6 INTERVENTION 

IMT was performed using an inspiratory pressure-threshold device as described in 

section 2.10. Subjects completed a training diary to record IMT adherence and habitual 

training, which the control group also recorded. The control group did not perform sham 

IMT since the duration of the volitional hyperpnoea test and the breathing pattern 

employed was identical pre- and post-intervention, thus responses would not be influenced 

by either motivation or expectation. 
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3.2.7 BLOOD SAMPLING AND RESPIRATORY MEASUREMENTS 

Arterialised venous blood was sampled from a dorsal hand vein via an indwelling 

cannula and analysed immediately for PCO2, pH, and [lac
-
]B as outlined in section 2.8. 

Plasma [HCO3
-
] and BEECF were calculated as described in section 2.8. Pulmonary 

ventilation and gas exchange were measured breath by breath (see section 2.6). During 

volitional hyperpnoea tests, a two-way non-rebreathing valve (model 2730, Hans Rudolph, 

Kansas City, Missouri) and a 1.5 m length of corrugated tubing was attached distally to the 

pneumotachograph allowing additional CO2 to be added to the inspirate. 

 

3.2.8 STATISTICAL ANALYSES 

 Statistical analyses were performed using SPSS for Windows (SPSS, Chicago, 

Illinois, USA). Within group changes over time during volitional hyperpnoea were 

determined using one-way ANOVA for repeated measures and Tukey‟s HSD post-hoc 

analysis. Within and between group interaction effects were determined using two-way 

ANOVA for repeated measures. Pearson product-moment correlation coefficients were 

calculated to assess the relationship between selected variables. Statistical significance was 

set at P0.05. Results are presented as mean  SD.  

 

3.3 RESULTS 

3.3.1 PULMONARY FUNCTION AND MAXIMAL INSPIRATORY PRESSURE 

Baseline pulmonary function and MIP were all within normal limits (Table 3.1). 

The IMT group demonstrated excellent training compliance (91% adherence) and subjects‟ 

habitual training remained unchanged in both IMT and control groups. MIP increased from 

147  27 to 189  27 cmH2O (+31  22%) following IMT (P<0.01). No change was 

observed in the control group (pre: 163  19 vs. post: 166  20 cmH2O). 
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3.3.2 RESPIRATORY  AND ACID-BASE RESPONSES TO VOLITIONAL HYPERPNOEA  

Group mean values for ventilatory and acid base responses to 10 min volitional 

hyperpnoea pre- and post-intervention are shown in Table 3.2. Before and after the 

intervention, EV , VT, R, TI/Ttot, and measures of acid base balance, were not different 

between groups and remained unchanged over time during volitional hyperpnoea. The 

mean EV  during volitional hyperpnoea represented 72  8% and 81  19% of MVV10 in 

control and IMT groups, respectively. PCO2 was maintained at resting levels throughout 

volitional hyperpnoea prior to and following the intervention and was not different 

between groups (Figure 3.1). 

 

Table 3.2 Ventilatory and acid-base responses to 10 min volitional hyperpnoea pre- and 

post-intervention.  

 

 Control  IMT 

 Pre Post  Pre Post 

EV  (Lmin
-1

) 127.1  2.3 128.7  2.4  132.9  9.6 136.8  3.2 

VT (L) 2.62  0.04 2.64  0.07  2.60  0.03 2.66  0.06 

R (breathsmin
-1

) 50  0 50  0  52  0 52  0 

TI/Ttot 0.44  0.00 0.44  0.00  0.52  0.00 0.49  0.00 

[H
+
]
 
(nmolL

-1
) 40.6  2.9 39.4  2.2  40.2  2.2 40.3  1.0 

[


3HCO ] (mmolL
-1

) 26.0  0.9 26.9  2.5  26.5  1.4 27.0  1.3 

BEECF  (mEqL
-1

) 1.38  0.91 1.72  2.04  1.52  1.11 2.35  1.23 

Values are expressed as means  SD.  
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Figure 3.1 Partial pressure of carbon dioxide in arterialised venous blood (PCO2) during volitional 

hyperpnoea pre- (○) and post- (●) intervention in control and IMT groups. 

 

 

3.3.3 LACTATE RESPONSES TO VOLITIONAL HYPERPNOEA  

 Individual plots demonstrating the change in [lac
-
]B following 10 min of volitional 

hyperpnoea pre and post-intervention for both groups is shown in Figure 3.2; note the 

reduction in group mean [lac
-
]B following IMT only (solid black line). 

 

 

  

Figure 3.2 Individual changes in blood lactate concentration ([lac
-
]B) during 10 min volitional hyperpnoea 

pre- and post-intervention in control and IMT groups.  
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Prior to the intervention, significant increases in [lac
-
]B above rest were observed 

following 10 min of volitional hyperpnoea in IMT and control groups (P<0.05; Figure 3.3) 

and such changes were not different between groups. Following the intervention the [lac
-
]B 

response to volitional hyperpnoea was unchanged in the control group. Conversely, [lac
-
]B 

during volitional hyperpnoea was reduced following IMT, with 17  37% and 25  34% 

reductions observed at 8 and 10 min, respectively (P<0.05). These reductions exceeded 

changes observed in the control group (P<0.05).  

 

 

  

 

Figure 3.3 Blood lactate concentration ([lac
-
]B) during volitional hyperpnoea pre- (○) and post- (●) 

intervention in control and IMT groups. 
a
 P<0.01 vs. rest pre-IMT;  

b
 P<0.01 vs. rest post-IMT; * P<0.05 vs. 

pre-IMT; 
†
 P<0.05 interaction effect. 
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correlated with increases in MIP. However, baseline MIP was negatively correlated with 

relative IMT-induced increases in MIP (r = -0.70, P<0.05; Figure 3.4).  

 

 

 

Figure 3.4 Identitiy plot of pre and post-IMT maximal inspiratory pressure (MIP). 
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70% MVV, Verges et al. 2007b), but not lower (62% MVV, Spengler et al. 2000), relative 

intensities. Therefore it is apparent that when EV  surpasses a certain level the respiratory 

muscles are capable of net lactate release. However, the potential for respiratory alkalosis 

to elevate [lac
-
]B is well documented (Davies et al. 1986; LeBlanc et al. 2002). 

Consequently, we were careful to maintain, with considerable accuracy, resting PCO2 

throughout the 10 min of volitional hyperpnoea (see Figure 3.1). Other measures of acid 

base status also remained unchanged from rest during volitional hyperpnoea in both groups 

pre- and post-intervention. We are thus confident that the increase in [lac
-
]B during 

volitional hyperpnoea was a consequence of increased lactate efflux from the respiratory 

muscles rather than respiratory alkalosis. 

The attenuated increase in [lac
-
]B during volitional hyperpnoea following IMT is 

similar to that observed in healthy subjects performing an exhaustive respiratory endurance 

test at 70% MVV following VIH training, although this reduction did not exceed that of a 

control group (Verges et al. 2007b). Given the aforementioned importance of maintaining 

isocapnia it is also unfortunate that end-tidal CO2 and/or PCO2 was not controlled during 

the respiratory endurance test. Furthermore, subjects were prescribed a pre-determined 

arbitrary breathing pattern which has previously received criticism for failing to accurately 

represent the work of breathing during exercise hyperpnoea (Coast et al. 1993). 

Notwithstanding this, VIH- and IMT-mediated reductions in [lac
-
]B observed during 

volitional hyperpnoea are similar to the reductions often observed during submaximal, 

whole-body exercise (Griffiths and McConnell 2007; Leddy et al. 2007; McConnell and 

Sharpe 2005; Romer et al. 2002b; Spengler et al. 1999; Volianitis et al. 2001); however, 

whether these observations during volitional hyperpnoea and exercise share a common 

mechanistic explanation is unclear.  

RMT-mediated reductions in [lac
-
]B at sustainable and submaximal exercise 

intensities occur (e.g. see Leddy et al. 2007; McConnell and Sharpe 2005; Spengler et al. 

1999; Volianitis et al. 2001) when net lactate production from the respiratory muscles is 
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probably negligible given the relatively low EV  and minimal activation of the less efficient 

accessory muscles (Martin et al. 1984; Johnson et al. 2006). Hence, under such conditions 

it seems more likely that reductions in [lac
-
]B result from increased uptake and metabolism 

of lactate by the trained respiratory muscles (Griffiths and McConnell 2007; Spengler et al. 

1999) rather than a decrease in net lactate release. Conversely, during high-intensity 

exercise where EV  relative to MVV approaches/exceeds levels achieved in the breathing 

challenge of this study (e.g. see Edwards and Cooke 2004; Kohl et al. 1997; Spengler et al. 

1999), it is possible that RMT-mediated respiratory muscle adaptation contributes to 

lowering [lac
-
]B through affecting both lactate clearance by and efflux from the trained 

respiratory muscles.  

The plasticity of the inspiratory muscles has been well documented (McConnell 

and Romer 2004a; Powers et al. 1997; Ramírez-Sarmiento et al. 2002). It is thus attractive 

to suggest that changes in inspiratory muscle morphology may explain, in part, the 

attenuated hyperpnoea-mediated increase in [lac
-
]B following IMT. An approximate 10% 

increase in diaphragm thickness (Downey et al. 2007; Enright et al. 2006), and a 21% 

increase in the size of type II muscle fibres in the external intercostal muscles (Ramírez-

Sarmiento et al. 2002), has been reported following 6 and 5 weeks of IMT, respectively. 

Increasing inspiratory muscle fibre cross-sectional area and subsequently strength 

decreases the relative intensity for a given absolute work load, which may reduce/delay 

fast twitch fibre recruitment and thus lactate production (Marcinik et al. 1991). A decrease 

in the relative workload per muscle fibre may also decrease blood flow occlusion, which 

may influence lactate production and/or clearance (Marcinik et al. 1991).  

Increased muscle MCT protein content, which facilitates inter- and intra-cellular 

lactate shuttling in sarcolemmal and mitochondrial membranes, respectively (Brooks et al. 

1999; Dubouchaud et al. 2000), has been reported following endurance (Baker et al. 1998; 

Burgomaster et al. 2007) and strength (Juel et al. 2004) based training regimens. It is thus 

possible (cf. McConnell and Sharpe 2005) that similar adaptations would occur in the 
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respiratory muscles following both IMT (strength-orientated) and VIH (endurance-

orientated) training and may explain, in part, the decrease in [lac
-
]B observed during whole-

body exercise and volitional hyperpnoea following these dissimilar training stimuli. 

Finally, the attenuated [lac
-
]B response to volitional hyperpnoea following IMT 

(and VIH training) may also reside in a training-induced increase in the oxidative capacity 

of the inspiratory muscles. In support of this notion, Ramírez-Sarmiento et al. (2002) 

reported a 38% increase in the proportion of type I muscle fibres in the external 

intercostals following 5 weeks IMT. Moderate intensity, high repetition strength training, 

similar to the IMT protocol used in the present study, can increase oxidative enzyme 

activity (Costill et al. 1979; Sale et al. 1990) thereby reducing net lactate production 

(Holloszy and Coyle 1984). Since similar oxidative adaptations would be expected to 

occur following VIH (endurance-orientated) training (Holloszy and Coyle 1984), this also 

offers an attractive explanation for the decrease in [lac
-
]B observed during whole body 

exercise (Griffiths and McConnell 2007; Kohl et al. 1997; Leddy et al. 2007; McConnell 

and Sharpe 2005; Romer et al. 2002b; Spengler et al. 1999; Volianitis et al. 2001) and 

volitional hyperpnoea (present study; Verges et al. 2007b).  

 

3.5 CONCLUSIONS 

In summary, the present study provides novel evidence that increases in [lac
-
]B 

when mimicking the breathing pattern observed during heavy exercise can be attenuated 

following IMT. These data suggest that the inspiratory muscles were the source of at least 

part of this reduction, and provide a possible explanation for at least some of the IMT-

mediated reductions in [lac
-
]B previously observed during whole-body exercise. The 

precise mechanisms that underpin these changes remain unknown, but an IMT-mediated 

increase in the oxidative and/or lactate transport capacity of the inspiratory muscles is an 

attractive possibility that merits further investigation. 
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4.1 INTRODUCTION 

In Chapter 3 it was demonstrated that respiratory muscle work and training 

influenced the systemic [lac
-
]B. This surprising notion contradicts the traditional view that 

the small size (~0.5% total body mass) and large oxidative capacity of this muscle group 

precludes any systemically relevant lactate exchange (Wetter and Dempsey 2000).  

However, supporting evidence comes from three avenues of investigation. Firstly, studies 

investigating the effects of specific IMT have consistently reported large decreases in [lac
-

]B during whole body exercise (see section 1.17.3). Furthermore, reductions in [lac
-
]B and 

improved performance appear to be correlated (Romer et al. 2002b; Spengler et al. 1999) 

with up to 52% of the variation in performance accounted for by the reduced [lac
-
]B 

(Romer et al. 2002b). 

Secondly, and most recently Chiappa et al. (2008b) showed that increasing the 

work of breathing (via low intensity pressure threshold loading) during recovery from 

maximal exercise significantly accelerated the rate of lactate clearance. During recovery, 

[lac
-
]B was up to 20% lower with loaded breathing than without. The authors explain their 

findings by suggesting that under these conditions the inspiratory muscles are capable of 

net lactate consumption.  

Finally, a third line of evidence comes from investigations in which the work of 

breathing is increased via volitional hyperpnoea whilst at rest. Such interventions typically 

result in a twofold increase in resting [lac
-
]B following approximately 10 min (Chapter 3; 

Johnson et al. 2006; Martin et al. 1984; Verges et al. 2007b). Presumably once a critical 

level of hyperpnoea is reached (suggested to be around 70% MVV) the respiratory muscles 

are capable of significant net lactate production. Intriguingly, specific RMT attenuates the 

hyperpnoea-mediated increase in [lac
-
]B at rest (Chapter 3; Verges et al. 2007b), although 

such reductions do not occur during constant power high-intensity exercise at 85% 

maxOV 2
  (Verges et al. 2007b). Indeed, it is possible that at such exercise intensities 

which surpass the lactate threshold, metabolic perturbations within the locomotor muscles 
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overshadow any changes which may be occurring due to an RMT-mediated increase in 

respiratory muscle plasticity.  

When performing volitional hyperpnoea under resting conditions adjacent muscle 

fibres, inactive muscles and organs can engage in lactate exchange (Hashimoto and Brooks 

2008), furthermore, when exercising at a high-intensity fixed work rate lactate exchange 

within the locomotor muscles may also mask genuine changes in respiratory muscle lactate 

kinetics. To circumvent this problem we developed a protocol in which isocapnic 

volitional hyperpnoea was imposed upon cycling exercise at the MLSS and previously 

observed a significant increase in [lac
-
]B (~25%; Johnson et al. 2006). The MLSS 

represents the highest power output at which the rate of lactate efflux to and removal from 

the systemic circulation is equal and minimal capacity exists for other tissues and organs to 

influence [lac
-
]B. Therefore the observed increase in [lac

-
]B was more fully attributable to 

the respiratory muscles. It has also been shown that IMT attenuates the lactate response to 

cycling exercise at the MLSS without modifying the absolute exercise intensity 

(McConnell and Sharpe 2005).  

Therefore the primary aim of the current study was to extend the work of Johnson 

et al. (2006), McConnell and Sharpe (2005) and those in Chapter 3. We hypothesised that 6 

wk pressure threshold IMT would attenuate steady state and the hyperpnoea-mediated 

increase in [lac
-
]B when cycling at MLSS. It was anticipated that the findings would further 

reveal the extent to which training the respiratory muscles can affect their capacity for net 

lactate production and clearance. 

 

4.2 METHODS 

4.2.1 PARTICIPANTS 

Following approval from Nottingham Trent University‟s ethics committee 20 

healthy non-smoking males provided written informed consent to participate in the study 

(Table 4.1). Throughout the study subjects were instructed to adhere to their usual training 
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regimen and followed pre-exercise instructions outlined in section 2.1. Descriptive 

characteristics of the subjects are presented in Table 4.1.  All exercise was performed in 

similar laboratory conditions (temperature: 17.5  2.6˚C; relative humidity: 47.3  9.7%).  

 

 

Table 4.1. Descriptive characteristics of the subjects.  

 

 Control group (n = 10) IMT group (n = 10) 

Age (years) 25.9  4.8 36.7  6.1 * 

Body mass (kg) 77.8  10.0 84.8  13.9 

Height (cm) 180.8  8.4 179.4  7.1 

FVC (L) 5.79  1.14 (107  15) 5.41  0.88 (108  11) 

FEV1 (L) 4.47  0.91 (99  15) 4.13  0.65 (100  14) 

FEV1/FVC (%) 77.6  7.1 (92  7) 76.6  6.0 (94  8) 

MVV10 (L∙min
-1

) 187.5  25.2 (100  13) 205.8  38.7 (119  23) 

MIP (cmH2O) 149.3  24.7 (115  5) 163.5  23.4 (104  6) 

2OV max (L∙min
-1

) 3.82  0.41 4.09  0.66 

maxW (W) 366  37 393  47 

MLSS (W) 205  29 210  28 

Values are expressed as means  SD. *, P<0.05 between groups. Values in parentheses represent the percent 

of predicted values (Quanjer et al. 1993; Wilson et al. 1984). 

 

4.2.2 EXPERIMENTAL PROCEDURE 

Subjects were initially familiarised with testing procedures and completed 

pulmonary function and MIP tests. Subsequently, MLSS was estimated using the lactate 

minimum test and resolved using 30 min constant power tests. Subjects were then matched 

for 90% maxVE
  and MLSS and divided equally into an IMT or control group. Prior to 

and following a 6 week intervention (IMT or no IMT) subjects completed in random order 

a 30 min reference trial at MLSS, and a 30 min experimental trial at MLSS during which 
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from 20-28 min EV  and breathing pattern were volitionally matched to that commensurate 

with 90% EV max. All exercise trials were performed using an electromagnetically-braked 

cycle ergometer (see section 2.2). 

 

4.2.3 PULMONARY FUNCTION AND MAXIMAL INSPIRATORY MOUTH PRESSURE 

Pulmonary function was assessed using a pneumotachograph and a hand-held 

mouth pressure meter measured MIP as an index of global inspiratory muscle strength 

according to sections 2.3 and 2.5, respectively. MIP was reassessed following 2, 4 and 6 

wk of the intervention using the same protocol in both groups.  

 

4.2.4 DETERMINATION OF MLSS  

MLSS cycling power output was predicted and resolved using the protocols 

described in section 2.11. Following the intervention MLSS was re-assessed, starting at the 

pre-intervention MLSS power, using the same criteria.  

 

4.2.5 REFERENCE TRIAL (WITHOUT VOLITIONAL HYPERPNOEA) 

Following a 3 min warm-up at 50% MLSS power, subjects cycled for 30 min at 

MLSS. [lac
-
]B was determined at rest and every 2 min during exercise, whereas blood 

gases were determined every 4 min from 0-20 min and every 2 min thereafter. Breath by 

breath respiratory variables were averaged over the final 30 s of every 2 min interval. Heart 

rate (HR) was measured using short range telemetry (Polar S610, Polar, Kempele, Finland) 

and arterial oxygen saturation (SpO2) was estimated using infrared pulse oximetry (Model 

8600, Nonin, Minnesota, USA). Ratings of perceived exertion (RPE) and dyspnoea (RPD) 

were recorded every 2 min using the Borg 6-20 and modified Borg 1-10 scales, 

respectively (Borg et al. 1982). Pedal cadence was constant throughout. 
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4.2.6 EXPERIMENTAL TRIAL (WITH VOLITIONAL HYPERPNOEA) 

The experimental trial was identical to the reference trial except that from 20-28 

min, subjects volitionally increased EV  to 90% of the EV max which was measured during 

the maximal incremental phase (Phase I) of the lactate minimum protocol (see section 

2.11). Pilot work showed that the breathing pattern equal to 90% EV max was the highest 

value that could be maintained for 8 minutes in a square wave fashion. During volitional 

hyperpnoea tidal volume (VT), breathing frequency (R) and duty cycle (TI/Ttot) were 

matched to that used to achieve the target EV  during maximal exercise. An audio 

metronome paced R and real-time visual feedback of EV  and VT were provided. 

Following volitional hyperpnoea, subjects returned to a spontaneous breathing pattern for 

the final 2 minutes of exercise. According to the methodological recommendations 

reported in section 2.12, pedal cadence was rigorously controlled and matched to that 

achieved during min 2 to 20 throughout the period of volitional hyperpnoea (see Table 

4.2). 

 

Figure 4.1. Participant set-up for experimental exercise trials requiring isocapnic volitional hyperpnoea. 1) 

pneumotachograph; 2) 1.5 m length of corrugate tubing attached via the inspiratory port of two-way non-

rebreathing valve to the pneumotachograph; 3) flow meter controlling the flow of CO2 into the inspiratory 

circuit; 4) cannula inserted into a dorsal hand vein and 5) finger pulse oximeter.   

  1 

 3 

 2 

 4 
 5 
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4.2.7 INTERVENTION  

IMT was performed using an inspiratory pressure-threshold device as described in 

section 2.10. Subjects completed a training diary to record IMT adherence and habitual 

training, which the control group also recorded. The control group continued with their 

habitual physical training schedule and were not exposed to an intervention. A placebo 

treatment was not applied to the control group since the study outcome measures could not 

be influenced by either motivation or expectation. Subjects were informed that they 

belonged to a control group prior to commencement of the study and to avoid any possible 

disadvantage were afforded the opportunity to undertake 6 weeks of inspiratory muscle 

training after completion of the study. 

 

4.2.8 BLOOD SAMPLING AND RESPIRATORY MEASUREMENTS 

Arterialised venous blood was sampled from a dorsal hand vein via an indwelling 

cannula (Figure 4.1, number 4) and analysed immediately for PCO2, pH, and [lac
-
]B as 

outlined in section 2.9. Plasma [HCO3
-
] and BEECF were calculated as described in section 

2.8. Throughout experimental trials, pulmonary ventilation and gas exchange were 

measured breath by breath (see section 2.6). During volitional hyperpnoea tests, a two-way 

non-rebreathing valve (model 2730, Hans Rudolph, Kansas City, Missouri) and a 1.5m 

length of corrugated tubing was attached distally to the pneumotachograph (Figure 4.1 

numbers 1 and 2) allowing additional CO2 to be added to the inspirate in order to maintain 

blood PCO2 at levels commensurate with steady state exercise. 

 

4.2.9 PULMONARY 2OV  KINETICS  

The effects of IMT upon the pulmonary 2OV  exercise onset response to constant 

power heavy exercise was characterised by fitting a single monoexponential model to the 

exercise 2OV  data (0 to 20 min only). Breath by breath data were linearly interpolated to 

provide second by second values following the elimination of outlying breaths (defined as 
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those  4 SD of the previous 5 breaths; Lamarra et al. 1987). For each subject, prior to and 

following the intervention, two square wave transitions from 50% MLSS to the MLSS 

power (i.e. the reference and experimental trials) were time aligned and averaged to 

improve the signal to noise ratio and thereby the underlying features of the 2OV  response. 

This provided one set of second by second data for pre- and post-intervention comparisons. 

The amplitude and time delay of the primary (phase II) 2OV  response was then modelled 

using iterative non-linear regression with a 20 s time delay to exclude the cardiodynamic 

component (phase I): 

)eA(1OV)(OV TD)/(
b2,2

τtt    

where b,2OV  is the baseline 2OV  measured during the final minute of the warm-up 

preceding the onset of exercise; A is the amplitude of the exponential curve and defined as 

the increase in 2OV  from b,2OV  to the end of phase II and τ  and TD are the time 

constant and the time delay of the response, respectively. The amplitude of the 2OV  slow 

component (phase III) was defined as the difference in 2OV  between TD (end of phase II) 

and the average 2OV  from 19.5 to 20 min. The parameters of the exponential model were 

calculated using commercially available software (GraphPad Prism Version 5.01, 

GraphPad software, Inc. CITY, USA). 

 

 

 

 

 

 

 

 



 145 

4.2.10 BLOOD LACTATE KINETICS 

The effects of IMT upon the lactate response to constant power heavy exercise was 

characterised by iterative least mean squares non-linear regression. For each subject, the 

reference and experimental trials (from 0 to 20 min only; i.e. excluding volitional 

hyperpnoea) were time aligned and averaged. This provided one set of [lac
-
]B against time 

data per-subject for pre- and post-intervention comparisons. Data were fitted to the 

following exponential time function: 

 tet  1ALa0)La(  

Where La(t) (mmol·L
-1

) is the [lac
-
]B for a given time (t; min); La(0) (mmolL

-1
) is the [lac

-

]B at the onset of exercise; A and τ  are the amplitude of the exponential curve defined as 

the increase in [lac
-
]B from La(0) to steady state (where Δ[lac

-
]B/Δt = 0) and the time 

constant of the response, respectively. The parameters of the exponential curve were 

calculated using commercially available software (GraphPad Prism Version 5.01, 

GraphPad software, Inc. CITY, USA). 

 

4.2.11 STATISTICAL ANALYSES 

 Statistical analyses were performed using SPSS for Windows (SPSS, Chicago, 

Illinois, USA). In order to compare the discrete physiological responses between steady 

state exercise and volitional hyperpnoea, the reference and the experimental trials were 

averaged and analysed over two time periods: a steady state period from 12 to 20 min (as it 

takes approximately 12 min to reach a steady state in [lac
-
]B) and a volitional hyperpnoea 

period from 22 to 28 min. When physiological responses to the reference trial only were 

analysed and compared, data were averaged from 12 to 30 min. This method of analyses is 

similar to that used previously when volitional hyperpnoea was imposed upon exercise at 

the MLSS (Johnson et al. 2006). Pre- and post-intervention results and group interactions 

were assessed using one-way or two-way ANOVA for repeated measures and Tukey‟s 

HSD post-hoc analysis. Interactions were defined for “group” (IMT vs. Control), “trial” 
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(reference vs. experimental) and “time” (min 12 to 20 [steady state period] or min 22 to 28 

[volitional hyperpnoea period]).  Pearson product-moment correlation coefficients were 

calculated to assess the relationship between selected variables. Statistical significance was 

set at P0.05. Results are presented as mean  SD.  

 

4.3 RESULTS 

4.3.1 PULMONARY FUNCTION, MAXIMAL INSPIRATORY PRESSURE AND MLSS  

Baseline pulmonary function and MIP were all within normal limits (Table 4.1). 

Inspiratory muscle training compliance was excellent in the IMT group (96  4%) and 

inspection of training diaries revealed habitual training remained constant in both groups. 

MIP was unchanged following the intervention period in the control group (pre vs. post: 

149  25 vs. 147  27 cmH2O). In contrast, MIP increased from 164  23 cmH2O at 

baseline to 174  24, 187  23 and 194  21 cmH2O (+19 %) following 2, 4 and 6 weeks 

of IMT, respectively (P<0.01). MLSS power was unchanged following the intervention 

period in both groups with the exception of one subject in the control group in whom 

MLSS power fell by 2.5% (7 W). 

 

4.3.2 RESPIRATORY RESPONSES  

In the IMT (see Figure 4.2 and Table 4.2) and control groups, volitional 

hyperpnoea represented 90.3  9.6% EV max (76  19% MVV) and 91.2  4.9% EV max 

(81  15% MVV), respectively. EV  and breathing pattern during both the reference and 

experimental trials were not different between groups before or after the intervention 

period. Therefore the breathing challenge was repeated with considerable accuracy by both 

groups after the 6 wk intervention period.  
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Figure 4.2. Pre-intervention breathing pattern during the reference trial (●) and experimental trial (○) for the 

IMT group only (n = 10). Data from the IMT group following the intervention and the control group both prior 

to and following the intervention has been omitted since it was not different to the data illustrated within the 

figure. Volitional hyperpnoea was imposed from 20 to 28 min. Time 0 reflects the end of a 3 min warm-up at 

50% MLSS power. *, P<0.05, hyperpnoea period significantly different from steady state period (12 to 20 min) 

both prior to and following the intervention. 

 

 

 

Following IMT, SpO2 was slightly lower (-0.6  0.8%; P<0.05) from 22 to 28 min 

relative to the pre-intervention reference trial. However, 2OV , 2COV  and RER throughout 

the reference trial and 2OV  and 2COV  throughout the experimental trial were not 

different between groups and were unchanged following the intervention (Table 4.2).  
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Table 4.2. Physiological responses to 30 min cycling exercise during the reference and 

experimental trials prior to and following IMT. Data from the control group both prior to 

and following the intervention has been omitted since it was not different to pre-IMT. 

 
IMT Group 12 – 20 min 22 – 28 min 

 Pre-IMT Pre-IMT Post-IMT 

 Reference trial  Reference trial  Experimental trial 

(hyperpnoea) 

Reference trial  Experimental trial 

(hyperpnoea) 

[H+] (nmolL-1) 44.2  3.8 43.4  3.1* 46.1  2.8* 42.0  2.8* 45.5  5.5* 

[HCO3
-] (mmolL-1) 23.2  2.7 23.1  2.7 22.8  3.0* 23.4  2.4 23.5  2.8§ 

BEECF (mEqL-1) -1.75  2.87 -1.74  2.91 -2.33  3.25* -1.28  2.43§ -1.60  3.23§ 

PCO2 (mmHg) 42.6  3.1 41.6  3.0* 43.6  3.6 40.9  3.3* 44.2  3.4* 

SpO2 (%) 95.3  1.2 95.3  1.0 95.8  1.2 94.7  1.2† 95.9  1.3 

EV (Lmin-1) 67.3  8.7 71.0  9.4 134.2  13.8* 75.8  9.6 131.1  14.8* 

2OV (Lmin-1) 2.55  0.39 2.55  0.42 3.28  0.43* 2.81  0.37 3.25  0.47* 

2COV (Lmin-1) 2.46  0.41 2.54  0.43 - 2.78  0.36 - 

RER 0.98  0.02 0.99  0.03 - 0.96  0.04 - 

HR (beatsmin-1) 144.6  11.0 152.4  13.6 160.0  14.5 152.7  12.0 156.6  13.9§ 

RPE 12.1  0.7 12.8  0.9* 13.1  1.4 12.5  2.1* 12.0  1.0 

RPD 2.9  0.6 3.1  0.9 5.6  1.5* 3.1  0.6* 4.0  1.4*†§ 

Cadence (r.p.m.) 91  8 91  8 92  9 91  7  90  9 

* P<0.01 vs. 12-20 min; † P<0.05 vs. pre; § P<0.05 trial × time interaction. 2COV  and RER data not shown 

from 22 to 28 min of experimental trial due to technical limitations. 

 

The parameters of the pulmonary 2OV  exercise onset response to constant power 

heavy exercise are shown in Table 4.3 and displayed graphically for the IMT group in 

Figure 4.3. With the exception of τ  which was reduced following IMT from 45.2  13.8 s 

to 31.3  18.4 s (P<0.05), no parameter of the phase II or III 2OV  kinetics were modified 

following the intervention in both groups.  
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Figure 4.3. Pulmonary 2OV  exercise onset response to constant power heavy exercise prior to (Upper 

panel) and following (lower panel) IMT. Note data are displayed as 1 s interpolated average. Time:  

-60 to 0 reflects a 60 s warm-up at 50% MLSS power output. Power output was increased in a square wave 

manner to MLSS power at time 0. Dashed red horizontal line, baseline 2OV ( b2,OV ). 
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Table 4.3. Pulmonary oxygen uptake kinetics.  

 Control IMT 

 Pre Post Pre Post 

Phase II     

TD (s) 15.9  4.8 13.0  10.5 15.7  4.2 16.3  4.4 

A (L·min
-1

) 0.94  0.36 1.02  0.19 0.91  0.26 0.86  0.25 

τ (s) 56.1  61.0 51.6  18.6 45.2  13.8 31.3  18.4 * 

Phase III      

A (L·min
-1

) 1.89  0.32 1.81  0.34 1.83  0.31 1.94  0.30 

A, amplitude; τ  and TD are the time constant and the time delay of the response, respectively. Phase III A, 

difference in 2OV  between TD (end of phase II) and the average 2OV  from 19.5 to 20 min. * P<0.05 pre 

vs. post-intervention: IMT group only. 

 

 

4.3.3 BLOOD LACTATE RESPONSES TO EXERCISE AND VOLITIONAL HYPERPNOEA 

The blood lactate response to the reference and the experimental trials for the IMT 

group only are shown in Figure 4.4. [lac
-
]B remained unchanged between minutes 12 to 30 

during the reference trial in both groups, before and after the intervention; this reflects the 

successful determination of MLSS in all subjects. Pre-intervention mean [lac
-
]B over 12 to 

30 min of the reference trial was 3.74  1.83 mmolL
-1

 and 3.94  1.57 mmolL
-1

 in the 

IMT and Control groups respectively. Prior to the intervention volitional hyperpnoea 

increased [lac
-
]B with the greatest increases occurring at min 30. Relative to the mean of 

12-20 min [lac
-
]B was increased at min 30 by 0.88  0.72 (25 %) and 0.96  0.58 mmol·L

-1
 

(27 %) in the control and IMT groups respectively.  

In the control group [lac
-
]B during the reference trial and throughout the 

experimental trial (both 12 to 20 min and 22 to 28 min) were unchanged following the 

intervention. Conversely, following IMT [lac
-
]B was reduced during the reference trial by 

0.65  1.68 mmol·L
-1

 (-8 %) from minutes 12 to 30. A main effect for „trial‟ (P<0.05) was 
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observed, although pairwise comparisons revealed no significant differences at individual 

time points. During the experimental trial [lac
-
]B was also reduced by 0.94  1.77 mmol·L

-1
 

(-15 %) from 12-20 min (main effect „trial‟, P<0.05) although once more, individual time 

points were not statistically different. Interestingly, the time constant and the amplitude of 

the increase in [lac
-
]B from the start of exercise to the steady-state (Δ[lac

-
]B /Δt = 0) was 

significantly reduced by 26 and 17%, respectively (Table 4.4). During volitional 

hyperpnoea, i.e. 22 to 28 min of the experimental trial, the increase in [lac
-
]B observed prior 

to the intervention was abolished. At minute 30, relative to pre-intervention, [lac
-
]B was 

reduced by 1.84  1.28 mmol·L
-1 

(-26 %; group × trial × time interaction; P<0.01; Figure 

4.4).   

 

Table 4.4. Blood lactate kinetics at the onset of exercise.   

 Control  IMT 

 Pre Post  Pre Post 

La(0) (mmol·L
-1

 ) 0.95  0.32 0.86  0.25  0.98  0.10 0.94  0.22 

A (mmol·L
-1

 ) 3.13  1.65 3.66  1.83*  3.07  2.16 2.18  1.33* 

τ  (s) 3.84  1.11 3.89  1.20  4.09  1.37 2.91  1.31* 

Δ[lac
-
]B /Δt = 0 

(mmol·L
-1

 ) 

4.08  1.75 4.52  1.88*  3.07  2.16 2.18  1.33 

* P<0.05 vs. pre intervention.  
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Figure 4.4. Blood lactate concentration ([lac
-
]B) during 30 min exercise at MLSS in the reference trial (●) 

and experimental trial (○) for the IMT group only; pre and post intervention data in the control group were 

not different from IMT-Pre. Time 0 represents the end of a 3 min warm-up at 50% MLSS power. Volitional 

hyperpnoea was imposed from min 22 to 28. *, P<0.05, experimental trial greater than reference trial; †, 

P<0.05, experimental trial post-IMT lower than experimental trial pre-IMT. 

 

4.3.4 ACID-BASE BALANCE RESPONSES  

Whilst cycling at MLSS, [H
+
] increased over time: prior to the intervention the 

mean [H
+
] between 22-28 min was higher than that between 12-20 min in the reference 

and experimental trials in both groups (Table 4.2). Relative to the pre-intervention 

reference trial, [H
+
] was lower from 22 to 28 min during the post-IMT reference trial, but 

this just failed to reach significance (P=0.07). Pre- and post-intervention, volitional 

hyperpnoea (22 to 28 min of the experimental trial) did not change [H
+
] relative to the 

same time period (22 to 28 min) of the reference trial in either group.  

[HCO3
-
] and BEECF remained constant over time during the pre-intervention 

reference trial, in both groups. However, relative to 22 to 28 min of the reference trial, in 

both groups pre-intervention, volitional hyperpnoea caused a reduction in [HCO3
-
] and 

BEECF. Post intervention these responses were unchanged in the control group. Following 

IMT relative to the pre-intervention reference trial, from 22 to 28 min, [HCO3
-
] was 

unchanged, but BEECF was higher (trial × time interaction; P<0.05). Relative to the pre-
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intervention experimental trial, the reductions in [HCO3
-
] and BEECF observed during 

volitional hyperpnoea were both attenuated (trial × time interaction; P<0.05).  

PCO2 was similar between groups and between trials prior to and following the 

intervention (Table 4.2). PCO2 during volitional hyperpnoea and over the equivalent time 

period of the reference trial were not different, thus isocapnia was maintained successfully.  

 

4.3.5 HEART RATE AND PERCEPTUAL RESPONSES 

In both groups there were no differences in HR and RPD between groups during 

the reference trial either prior to or following the intervention. Prior to the intervention 

there were also no differences in HR and RPD between groups during min 12 to 20 of the 

experimental trial. During volitional hyperpnoea (22 to 28 min) in the experimental trial, 

HR (P<0.01) and RPD (P<0.01) increased in both groups prior to the intervention and 

were similar in the control group following the intervention. However, following IMT, HR 

and RPD during volitional hyperpnoea were both lower than pre-intervention values (trial 

× time interaction; P<0.05, Table 4.2). Following IMT, RPE was lower during 12-20 min 

of the experimental trial (pre: 13  1 vs. post: 12  1, P<0.05) and during 20-28 min of the 

experimental trial (pre: 13  1 vs. post: 12  1; P = 0.07). There were no such trends 

observed during the reference trial for the IMT group or either trial in the control group.  

 

4.3.6 CORRELATIONS 

Pre-intervention increases in [lac
-
]B during volitional hyperpnoea were correlated 

with the target EV  relative to MVV (r = 0.68, P<0.05). Baseline MIP was negatively 

correlated with relative IMT-mediated increases in MIP (r = -0.79, P<0.05). Both absolute 

(r = 0.75, P<0.05) and relative (r = 0.66, P<0.05) increases in MIP following IMT were 

correlated with the absolute reduction in [lac
-
]B  observed at min 30 of the experimental 

trial. All relationships are displayed in Figure 4.5. 

 



 154 

         

 

            

 
 

Figure 4.5. Relationship between the absolute reduction in [lac
-
]B and the relative demand of volitional 

hyperpnoea (Top left), baseline MIP and the relative IMT-mediated increase in MIP (Top right) and finally 

the absolute (Bottom left) and relative (Bottom right) IMT-induced change in MIP and the reduction in lac at 

30 min. 

 

4.4 DISCUSSION 

The primary finding of this study was that 6 wk IMT reduced the steady state  

[lac
-
]B and abolished the increase in [lac

-
]B observed when volitional hyperpnoea was 

superimposed upon cycling exercise at MLSS. We also show that IMT reduced dyspnoea 

and HR during volitional hyperpnoea.  

The observation that hyperpnoea elevates [lac
-
]B is consistent with the findings of 

previous studies performed during exercise at the MLSS (Johnson et al. 2006) and those 

presented in Chapter 3. The approximate 25% increase in [lac
-
]B caused by the relatively 
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modest (~60 L
.
min

-1
) increase in EV  in this study indicates that the respiratory muscles 

contribute significantly to systemic lactate evolution. However other studies (Babcock et 

al. 1995), using much larger increases in EV  failed to observe a change in [lac
-
]B. This 

may be because their challenge was performed at rest where, unlike at MLSS, there is 

spare capacity for lactate clearance by other tissues. An alternative explanation may lie in 

the nature of the breathing challenge. Similar to Babcock et al. (1995) we mimicked 

exercise R, VT and EV . However, we did not control the work of breathing associated 

with exercise, i.e. the pressure-volume characteristics per breath. The work of breathing 

(particularly that associated with expiration) during voluntary hyperpnoea exceeds that of 

an identical EV  during exercise (Klas and Dempsey 1989). Therefore we recognise that the 

increase in net respiratory muscle lactate production in this study probably exceeds that 

likely to be observed during exercise. Nonetheless this study‟s primary finding that the 

hyperpnoea-mediated increase in [lac
-
]B was completely abolished following inspiratory 

muscle training is a stark illustration of this muscle groups plasticity and capacity to affect 

systemic blood chemistry.  

Our findings suggest that IMT causes an upward shift of the critical ventilation rate 

at which net respiratory muscle lactate production occurs (around 70% MVV in the 

untrained state; Chapter 3; Martin et al. 1984) as following IMT our breathing challenge 

appears to fall below this critical level. The IMT-induced adaptations that may explain this 

deserve further elucidation. Hypertrophy of the diaphragm (Downey et al. 2007; Enright et 

al. 2006) and external intercostals (Ramírez-Sarmiento et al. 2002) may decrease the 

relative intensity for a given absolute EV , thus reducing/delaying the recruitment of less 

efficient muscle fibres and thus lactate production (Marcinik et al. 1991). The shift in the 

critical ventilation rate may also be explained by an increased prevalence of inspiratory 

muscle type I fibres (Ramírez-Sarmiento et al. 2002), and/or increased muscle 

mitochondria mass (Juel et al. 2004) and oxidative enzyme activity (Costill et al. 1979). 
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That a primarily strength-based training intervention would cause such alterations in a 

relatively short (6 wk) time frame seems unlikely at first sight. However, it has been 

argued that the inspiratory muscles are unusually plastic and that pressure threshold IMT 

improves the functional capacity of both the pressure (strength) and flow (velocity of 

shortening) axes of the inspiratory muscle pressure-flow (force-velocity) relationship 

(McConnell and Romer 2004a). 

The IMT-induced decrease in [lac
-
]B whilst cycling at MLSS is similar to that 

reported by McConnell and Sharpe (2005). We also show that a steady state in [lac
-
]B 

(defined as Δ[lac
-
]B /Δt = 0) was reached more quickly and the time constant of the primary 

(phase II) 2OV  response to the onset of exercise at MLSS was reduced after IMT. 

Notwithstanding these changes and similar to previous work (Johnson et al. 2007; 

McConnell and Sharpe 2005) we found that MLSS power remained unchanged. Therefore 

it appears that IMT reduces some of the transient physiological flux associated with 

mitochondrial inertia (Xu and Rhodes 1999) at the commencement of constant power 

exercise thereby “re-setting” the [lac
-
]B associated with MLSS. Given the small mass of the 

respiratory muscles relative to the locomotor muscles this explanation may seem 

counterintuitive. However, recently published work (Chiappa et al. 2008b) indicates that 

the respiratory muscles may be large consumers of lactate: the addition of a relatively light 

inspiratory resistance resulted in accelerated lactate clearance during recovery from 

maximal exercise. The authors suggest that the rich perfusion and high oxidative capacity 

of the inspiratory muscles promotes net lactate clearance when respiratory muscle 

perfusion is increased. Reduced [lac
-
]B during whole-body exercise following IMT could 

thus be explained by increased lactate clearance by inspiratory muscles secondary to 

increased expression of sarcolemmal and mitochondrial membrane-bound 

monocarboxylate transporters (MCT; Juel et al. 2004) and/or increases in oxidative 

enzyme activity (Costill et al. 1979). Although the marked reductions in [lac
-
]B following 

IMT seem surprising given the relatively small muscle mass of the inspiratory muscles, 
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their metabolic capacity is high due to an impressive capillary supply and high aerobic 

oxidative enzyme activity (Polla et al. 2004).  

The 8 min period of volitional hyperpnoea was sufficient to cause a (small) 

increase in [H
+
] and decrease in [HCO3

-
] relative to the same time point of the reference 

trial; we also observed a significant reduction in BEECF and increase in [lac
-
]B. Collectively 

these findings demonstrate that mimicking the breathing pattern associated with intense 

exercise promotes a metabolic acidosis (Johnson et al. 2006). Following IMT, during 

volitional hyperpnoea [H
+
] remained unchanged relative to pre-intervention, yet the 

reductions in [HCO3
-
] and BEECF were attenuated; we also observed a significant reduction 

in [lac
-
]B  (see Table 4.2 and Figure 4.4). Thus, despite a similar [H

+
] during volitional 

hyperpnoea pre- and post-intervention, we interpret these data as an IMT-mediated 

reduction in metabolic acidosis. We explain these conclusions according to the integrated 

physicochemical systems approach of acid-base balance (Stewart 1983). Using this 

method, the plasma [H
+
] is determined by the strong ion difference ([SID] = [Na

+
] + [K

+
] - 

[Cl
-
] + [lac

-
]; see section 1.18.1), PCO2 and the total concentration of weak acids ([Atot

-
]). 

Following IMT, the significant reduction in [lac
-
]B would conceivably increase the [SID] 

and (assuming negligible changes in [Atot
-
]) increase [H

+
]. However, that [H

+
] was 

unchanged during volitional hyperpnoea following IMT is probably accounted for by the 

small ~3 mmHg increase in PCO2 which according to this model would counteract the 

increase in [SID]. The attenuated metabolic acidosis is further supported by the greater 

BEECF during volitional hyperpnoea following IMT. Under conditions of metabolic 

acidosis, this parameter describes the amount of alkali required to return the plasma to a 

normal pH (7.4) with a constant PCO2 (40 mmHg; Siggaard-Anderson and Fogh-Anderson 

1995) and provides very similar observations to the physicochemical approach (Stewart 

1983). Thus based on the attenuated reduction in BEECF and the likely effects of [lac
-
]B on 

the [SID], it would appear that following IMT, the hyperpnoea-mediated metabolic 

acidosis was attenuated. This may have also been the case during the reference trial, since 
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following IMT from 22 to 28 min [H
+
] was lower (P=0.07), [lac

-
]B was significantly lower 

and the reduction in BEECF was attenuated (see Table 4.2). However, since we did not 

quantify changes in acid-base disturbance using the physicochemical approach, the 

possible effects of IMT upon the mechanisms accounting for changes in plasma acid-base 

balance remains to be confirmed.  

Following IMT dyspnoea was reduced during hyperpnoea by around 30%. IMT-

induced reductions in dyspnoea have been reported previously during whole body exercise 

(Romer et al. 2002a, Volianitis et al. 2001) and during breathing challenges following 

respiratory muscle training (Verges et al. 2007b). Whilst the target EV  and breathing 

pattern were identical pre- and post- intervention the relative load was presumably lower 

due to the training-induced conditioning of the inspiratory muscles. Therefore dyspnoea 

may have fallen due to a reduced central corollary discharge for a given absolute EV  

(Kellerman et al. 2000; McConnell and Romer 2004b; Redline et al 1991). It is also 

possible that repeated training bouts may desensitise mechanosensitive type III and 

chemosensitive type IV afferents (Revelette and Wiley 1987; Sinoway et al. 1993, 1996). 

Thus, afferent feedback originating in the inspiratory muscles may have been attenuated 

thereby reducing the sensations of respiratory effort. 

 We also observed a reduction in HR during hyperpnoea after IMT. Similar 

reductions have been reported during constant power exercise (Gething et al. 2004a, b) and 

fatiguing resistive inspiratory muscle loading (Witt et al. 2007). The reduced relative 

intensity at which the inspiratory muscles were operating may have attenuated the activity 

of the centrally-mediated type III mechanoreceptor afferent discharge to a given 

mechanical stimulus thereby reducing the subsequent sympathetic efferent response and 

therefore the rise in HR. It has also been suggested (Witt et al. 2007) that increased 

oxidative capacity of the respiratory muscles following training (Ramírez-Sarmiento et al. 

2002) may reduce the firing frequency of mechanically sensitive type III and 

chemosensitive type IV afferent fibres, possibly due to a reduced metabolite concentration 
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(Sinoway et al. 1993, 1996), thereby reducing the cardiovascular tone during volitional 

hyperpnoea. Alternatively, but not exclusively, IMT may offset an increase in EILV and 

EELV (Romer et al. 2002c). A lower operating tidal flow-volume envelope (i.e. %TLC) 

would also reduce expiratory pressure swings and thus preserve mean expiratory flow 

rates. A subsequent lowering in expiratory pressure would promote venous return 

subsequently increasing stroke volume. Such an increase in cardiac output may attenuate 

heart rate for a given absolute exercise intensity.  

 

4.5 CONCLUSIONS 

In conclusion, these findings extend those of Chapter 3 and previous studies 

(Verges et al. 2007b) and reinforce the body of evidence indicating that in a young, 

recreationally active population respiratory muscle work influences exercising [lac
-
]B and 

that specific training of the respiratory muscles reduces lactate evolution and possibly 

increases lactate uptake. The findings herein also demonstrate that IMT reduces [lac
-
]B 

during both steady state exercise and volitional hyperpnoea, thus providing novel evidence 

that the reductions in [lac
-
]B commonly observed during whole-body exercise following 

IMT are almost certainly due, in part, to the trained respiratory muscles.  
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CHAPTER 5 

 

LOADING THE TRAINED INSPIRATORY MUSCLES SPEEDS LACTATE 

CLEARANCE FOLLOWING MAXIMAL EXERCISE 
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5.1 INTRODUCTION 

Data presented in Chapters 3 and 4 demonstrate that the respiratory muscles are 

capable of net lactate production when the work of breathing exceeds a critical threshold 

level (see also Johnson et al. 2006; Verges et al. 2007b) and that specific training of these 

muscles reduces this efflux. Chapter 4 also shows in agreement with previous literature 

that reductions in [lac
-
]B occur during exercise following specific RMT (McConnell and 

Sharpe 2005; Romer et al. 2002b; Spengler et al, 1999) suggesting that at moderate levels 

of pulmonary ventilation, the respiratory muscles may become net lactate consumers 

(Fregosi and Dempsey 1986). Collectively, these findings suggest an important, previously 

underestimated role for the respiratory muscles in the regulation of whole body lactate 

kinetics. 

This theme was recently extended by Chiappa et al. (2008b) who found that adding 

an inspiratory resistance (15 cmH2O) during recovery from maximal incremental cycling 

exercise significantly reduced [lac
-
]B (~2.5 mmolL

-1
) compared to a passive recovery. This 

intriguing finding suggests that moderate levels of inspiratory muscle work can accelerate 

lactate clearance by a similar magnitude to that achieved with an active recovery involving 

locomotor muscles, but with the possible benefit of sparing intramuscular energy stores 

(Dupont et al. 2003). Given that lactate consumption by the inspiratory muscles may be 

enhanced by specific training it is attractive to speculate that the findings of Chiappa et al. 

(2008b) would also be magnified after RMT; this was the focus of the present study. 

It is unlikely that increases in [lac
-
] alone result in metabolic acidosis and cause 

skeletal muscle fatigue (Robergs et al. 2004) particularly at physiological temperatures 

(Westerblad et al. 1997). However, according to the integrated physicochemical systems 

approach, with which it is possible to quantify the mechanisms accounting for disturbances 

in acid-base balance during and following exercise, it is proposed that [lac
-
] may indirectly 

affect [H
+
] (Stewart et al. 1983). Within a given compartment (e.g. muscle, plasma, 

erythrocyte) the dependent variables: [H
+
] and [HCO3

-
] are determined by the independent 
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variables: strong ion difference ([SID] = [Na
+
] + [K

+
] - [Cl

-
] + [lac

-
]), PCO2 and the total 

concentration of weak acids ([Atot
-
]). Therefore, a reduction in [lac

-
] in the systemic 

circulation, assuming all other variables remain constant, may affect the [H
+
] by causing a 

change in [SID] (for reviews: Lindinger 1995; Kowalchuck and Scheuermann 1995). This 

is especially important given the associations between an elevated [H
+
] and / or [lac

-
] on 

some intramuscular processes (Fitts 1994) and subsequent exercise performance (Pilegaard 

et al. 1994; Thomas et al. 2004).  

Accordingly, we hypothesised that inspiratory loading during recovery from 

maximal exercise would speed lactate clearance and that this would be further increased 

following specific inspiratory muscle training (IMT). In order to determine the effect of 

changes in [lac
-
]B on plasma [H

+
], the contribution of associated physiological variables to 

the regulation of plasma acid-base homeostasis were quantified using the integrated 

physicochemical approach. 

 

5.2 METHODS 

5.2.1 PARTICIPANTS 

Following ethical approval and written informed consent, 18 healthy non-smoking 

participants with normal lung function volunteered for the study (Table 5.1). Throughout 

the study subjects were instructed to adhere to their usual training regimen and followed 

pre-exercise instructions outlined in section 2.1. All exercise trials were performed using 

an electromagnetically-braked cycle ergometer (see section 2.2) and in similar laboratory 

conditions (temperature: 21.1  2.7˚C; relative humidity: 46.6  14.4%).   
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Table 5.1. Descriptive characteristics of the subjects.  

 

 Control (n = 9) IMT (n = 9) 

Age (years) 27.1  3.7 32.2  6.3 * 

Body mass (kg) 81.3  8.0 78.9  16.6 

Height (cm) 183.3  6.6 177.0  9.5 

FVC (L) 6.03  0.92 (109  14) 5.22  1.03 (107  9) 

FEV1 (L) 4.77  0.63 (103  11) 4.11  0.76 (101  7) 

FEV1/FVC (%) 79.5  5.2 (97  7) 79.3  6.7 (96  7) 

MVV10 (L∙min
-1

) 198.5  23.2 (105  14) 176.6  29.4 (109  9) 

MIP (cmH2O) 148.0  35.7 (114  4) 120.1  27.3 (109  7) 

2OV max (L∙min
-1

) 4.27  0.49 4.13  0.83 

maxW (W) 386  44 378  57 

Values are expressed as means  SD. Values in parentheses represent the percent of predicted values 

(Quanjer et al. 1993; Wilson et al. 1984). * P<0.05 between groups. 

 

5.2.2 EXPERIMENTAL PROCEDURE 

Subjects attended the laboratory 3 times prior to a 6 wk intervention. During the 

first laboratory visit subjects completed pulmonary function and MIP tests and were 

subsequently familiarised with all testing procedures including maximal incremental 

exercise. On two separate occasions subjects completed a maximal incremental exercise 

test. Immediately following exercise subjects breathed against either a constant pressure 

threshold inspiratory resistance (15 cmH2O) for 20 min (ITL) or recovered passively with 

spontaneous breathing for 20 min (no inspiratory resistance; PR); the order of these trials 

were randomised. Following the pre-intervention trials, subjects were matched for W max 

and divided in to an IMT group (n = 9) or a control group (n = 9). Following a 6-wk 

intervention (IMT or no IMT), subjects repeated the pre-intervention trials. Given the 

increase in MIP expected following IMT, the IMT group completed a third maximal 
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incremental exercise test in which the absolute intensity of the pressure threshold 

inspiratory load during recovery was increased, so that the same fraction of MIP was used 

before and after the intervention. This subsequent trial was defined as ITL%.  

 

5.2.3 PULMONARY FUNCTION AND MAXIMAL INSPIRATORY MOUTH PRESSURE 

Pulmonary function was assessed using a pneumotachograph and a hand-held 

mouth pressure meter measured MIP as an index of global inspiratory muscle strength 

according to sections 2.3 and 2.5, respectively. MIP was reassessed following 2, 4 and 6 

wk of the intervention using the same protocol in both groups.  

 

5.2.4 MAXIMAL EXERCISE FOLLOWED BY PASSIVE RECOVERY (PR) 

Subjects performed a maximal incremental cycling test in which the initial power 

was 0 W and subsequently increased by 20 Wmin
-1

 until exercise could no longer be 

tolerated ( W max; Chiappa et al. 2008b). The highest oxygen uptake ( 2OV ) recorded in 

any 30 s period defined 2OV max. [lac
-
]B was determined at the cessation of exercise, and 

every 2 min thereafter; PCO2 and [H
+
] were determined at volitional intolerance and every 

5 min thereafter. At the cessation of exercise and following 10 and 20 min, 

physicochemical variables were determined. Throughout exercise and recovery, subjects 

wore a facemask (model 7940, Hans Rudolph, Kansas City, Missouri) connected to an 

online breath by breath expired gas analyser (see section 2.6). Breath by breath respiratory 

variables were averaged over the final 30 s of every 2 min interval. Heart rate (HR) was 

recorded continuously during exercise using short-range telemetry (Polar S610, Polar, 

Kempele, Finland). 
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5.2.5 MAXIMAL EXERCISE FOLLOWED BY INSPIRATORY LOADING (ITL) 

The ITL trial was identical to PR, however, immediately following exercise, a 1.5 

m length of wide bore corrugated tubing was attached to the inspiratory port of a two-way 

non-rebreathing valve (model 2730, Hans Rudolph, Kansas City, Missouri) and connected 

distally to a weighted plunger pressure threshold inspiratory muscle loading device based 

on the design of Nickerson and Keens (1982; Johnson et al. 1997; Figure 5.1). 

physiological range (see Johnson et al. 1996); a full description of the device is provided 

elsewhere (Johnson et al. 1996). During ITL, weights were added to the plunger to adjust 

the threshold opening pressure which was fixed at 15 cmH2O. For the IMT group and the 

control group this represented 13  3% and 11  3% MIP (pooled data, n = 18, 12  3% 

MIP), respectively. Following 6 wk IMT, and due to the training-induced increase in MIP, 

the opening pressure of 15 cmH2O represented a smaller resistance relative to MIP (10  

2% MIP). Thus in the ITL% trial, the absolute resistance was increased to 20  2 cmH2O 

which achieved the same relative resistance as the pre-IMT ITL trial (i.e. 13  3%).  The 

measurement accuracy of the online expired gas analyser during ITL was investigated prior 

to commencement of the study. Comparisons were made with the Douglas bag method at 

rest and over a range of exercise intensities. The mean bias  95% limits of agreement (2 

SD) for EV  were -1.91  2.19 L·min
-1

; for 2OV  were -0.08  0.14 L·min
-1

 and for 2COV  

were -0.07  0.14 L·min
-1

. These data show that the online expired gas analyser performed 

satisfactorily despite the negative pressures generated during ITL. 
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Figure 5.1. Weighted plunger inspiratory pressure threshold loading device (Johnson et al. 1997).  

 

5.2.6 INTERVENTION 

IMT was performed using an inspiratory pressure-threshold device as described in 

section 2.10. Subjects completed a training diary to record IMT adherence and habitual 

training, which the control group also recorded. The control group continued with their 

habitual physical training schedule and were not exposed to an intervention. A placebo 

treatment was not applied to the control group since both 2OV max and W max are known 

to be unaffected by RMT (see section 1.16). 

 

5.2.7 BLOOD SAMPLING AND ANALYSIS 

During all exercise trials arterialised venous blood was sampled from a dorsal hand 

vein via an indwelling cannula and analysed immediately for PCO2, pH, and [lac
-
]B as 

outlined in section 2.8. Plasma [HCO3
-
] and BEECF were calculated as described in section 

2.8. 

 

To the subject via 1.5 m length of tubing 
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To quantify the mechanisms accounting for plasma acid-base disturbances the 

integrated physicochemical systems approach was used (Stewart 1983). Under resting 

conditions, at the cessation of maximal exercise and every 10 min thereafter, a 5 ml blood 

sample was drawn and centrifuged immediately for 10 min at 3000 g. Plasma [Na
+
] and 

[K
+
] were measured using inductively coupled plasma optical emission spectrometry 

(1200DV ICP OES, Perkin Elmer, MA, USA). Plasma [Cl
-
] was measured by ion 

chromatography (DX120, Dionex, CA, USA) and the total concentration of plasma 

proteins [PPr
-
] was assayed in duplicate according to the method of Lowry (1951). The 

total concentration of weak acids ([Atot
-
]) was subsequently calculated as: 2.45 × [PPr

-
] 

(McKenna et al. 1997). Plasma strong ion difference ([SID]) was calculated as the sum of 

the strong cations minus the sum of the strong anions (Stewart 1983): 

 

             lacClKNaSID     [1] 

          

Free plasma [H
+
] was calculated using the empirical relationship derived by Stewart 

(1983). This equation describes the dependency of the [H
+
] within a given compartment on 

three independent variables ([SID], PCO2 and [Atot
-
]) with respect to the laws of mass 

action, conservation of mass and electrical neutrality: 

 

             
          0COKKKHCOKKKCOKKH

KCOKASIDKHSIDKH

2C3A2C3W
'

2CA

2

W
'

2CtotA

3

A

4









PPP

P
 

[2] 

 

The equilibrium constants KA, KC, K‟W and K3 were: KA = 3.0 × 10
-7

 equiv·l
-1

, KC = 2.45 × 

10
-11 

(equiv·l
-1

)
2
, K‟W = 4.4 × 10

-14
 (equiv·L

-1
)
2
 and K3 = 6.0 × 10

-11 
equiv·L

-1
. 
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The contributions of the independent variables (PCO2, [SID] and [Atot
-
]) to changes 

in arterialised venous plasma [H
+
] were calculated according to Putman et al. (2003) where 

each independent variable was individually changed to the corresponding exercise value 

while the remaining two variables were held constant at resting levels (equation 2). The 

resting [H
+
] was then subtracted from the resulting [H

+
] and the difference expressed as a 

percentage of the total [H
+
] (Table 5.5). 

 

5.2.8 LACTATE RECOVERY KINETICS 

The individual lactate recovery curves prior to and following the intervention were 

fitted to the following bi-exponential time function using iterative, least squares non-linear 

regression (Freund and Zouloumian 1981): 

 

     tγ

2

tγ

1

-- 21 e1Ae1A0Lac)(Lac


t                         

[3] 

 

Lac
-
(t) (mmol·L

-1
) denotes the [lac

-
]B for a given time (t; min) of the recovery period and 

Lac
-
(0) (mmol·L

-1
) being the [lac

-
]B at the onset of the recovery period. This equation 

illustrates that blood lactate kinetics following exercise can be described by two 

mathematical and physiological processes: one with a fast velocity constant (γ1; ·min
-1

) 

describing the appearance of lactate in the arterialised blood  or lactate exchange (A1 > 0; 

mmol·L
-1

) and an increased [lac
-
]B and a second with a slow velocity constant (γ2; ·min

-1
) 

describing lactate clearance (A2 < 0; mmol·L
-1

) and a reduction in [lac
-
]B. The parameters 

of the bi-exponential non-linear regression were calculated using SYSTAT (Version 12, 

SYSTAT software Inc., CA, USA). 
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5.2.9 STATISTICAL ANALYSES 

 Statistical analyses of the dependent variables were performed using SPSS (Version 

15, SPSS, Chicago, Illinois, USA). Pre- and post-intervention results and group 

interactions were assessed using one-way or two-way repeated measures ANOVA across 

groups (IMT vs. Control), trials (PR vs. ITL) and time (20 min recovery duration or Pre- 

vs. Post-intervention). Following a significant F-ratio, Tukey‟s HSD post-hoc analysis was 

performed. Pearson product-moment correlation coefficients assessed the relationship 

between selected variables. Statistical significance was set at P0.05. Results are presented 

as mean  SD.  

 

5.3 RESULTS 

5.3.1 PULMONARY FUNCTION AND MAXIMAL INSPIRATORY PRESSURE 

Baseline pulmonary function and MIP were all within normal limits (Table 5.1). 

Training compliance was excellent in the IMT group (92  2%) and inspection of training 

diaries revealed habitual training remained constant in both groups. MIP was unchanged 

following the intervention in the control group (pre vs. post: 148.0  35.6 vs. 148.4  37.7 

cmH2O). In contrast, MIP increased from 120.1  27.3 cmH2O at baseline to 140.0  26.7, 

154.8  36.2 and 159.8  34.8 cmH2O (+34 %; P<0.001) following 2, 4 and 6 weeks of 

IMT, respectively.  

  

5.3.2 RESPIRATORY AND HEART RATE RESPONSES  

W max, 2OV max, breathing pattern and HR responses to maximal exercise prior to 

the intervention are shown in Table 5.2 for the control and IMT groups, respectively. 

These responses were similar between trials (PR vs. ITL) and between groups (IMT vs. 

Control) prior to and following the intervention. There were no within or between group 

differences in EV , R, VT and 2OV  during incremental exercise both prior to and 
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following the intervention (Figure 5.2). Transient changes in breathing pattern and 2OV  

throughout recovery from maximal exercise in PR and ITL for the IMT group are shown in 

Figure 5.3. There were no differences in maximal exercise EV , R, VT and TI/Ttot between 

trials and between groups both prior to and following the intervention. EV  during recovery 

was similar between trials and between groups, however, with ITL, VT was increased by 

0.32 ± 0.16 L and R was decreased by 5 ± 2 breaths·min
-1

; this increased TI/Ttot in both 

the IMT (absolute increase: 0.020 ± 0.031) and control groups (absolute increase: 0.044 ± 

0.047). These responses were similar following the intervention in both groups. HR 

recovery was similar between trials and between groups. Maximal HR was ~180 

beats·min
-1

 and decreased to ~100 beats·min
-1

 following 8 min of recovery which was not 

different to 20 min. There were no changes in HR in either group following the 

intervention. 

 

Table 5.2. Pre-intervention responses to maximal incremental cycling exercise prior to 20 

min recovery with (ITL) and without (Passive recovery) inspiratory threshold loading. 

 

 Control group  IMT group 

 Passive recovery ITL  Passive recovery ITL 

maxW  387 ± 44 387 ± 41  378 ± 57 376 ± 57 

2OV max 4.21 ± 0.66 4.23 ± 0.52  4.10 ± 0.92 4.20 ± 0.75 

EV  166.6 ± 22.5 170.1 ± 14.0  163.1 ± 32.3 158.8 ± 34.8 

R 61 ± 13 60 ± 8  60 ± 11 58 ± 11 

VT 2.83 ± 0.62 2.93 ± 0.47  2.90 ± 0.94 2.86 ± 0.93 

TI/Ttot 0.50 ± 0.02 0.50 ± 0.01  0.47 ± 0.04 0.50 ± 0.01 

HR 177 ± 9 178 ± 11  181 ± 10 181 ± 11 

Values are expressed as means  SD.  
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Figure 5.2. Respiratory responses to maximal incremental cycling exercise for the IMT group only prior to 

and following the 6 wk intervention. ▲, passive recovery trial pre-intervention; □, inspiratory pressure 

threshold loading trial at 15 cmH2O pre-intervention; ■, passive recovery trial following the intervention; Δ, 

ITL trial following the intervention; ●, inspiratory pressure threshold loading trial post-intervention at a 

higher absolute resistance but the same relative resistance as pre-intervention (ITL%). 
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Figure 5.3. Respiratory responses during 20 min recovery from maximal incremental cycling exercise in the 

IMT group only prior to and following the 6 wk intervention. „Max‟ is defined as the point of exercise 

intolerance. ▲, passive recovery pre-intervention; □, inspiratory pressure threshold loading at 15 cmH2O pre-

intervention; ■, passive recovery following the intervention; Δ, ITL following the intervention; ●, inspiratory 

pressure threshold loading post-intervention at a higher absolute resistance but the same relative resistance as 

pre-intervention (ITL%).  

 

5.3.3 LACTATE RECOVERY KINETICS  

 Pre-intervention, peak and minimum [lac
-
]B were similar in PR and ITL in both 

groups (Figure 5.4) and were unchanged in the control group following the intervention. 

Relative to pre-intervention, following IMT the exercise-induced peak and minimum [lac
-

]B were reduced by 1.24  1.32 (P<0.05) and 1.18  1.22 mmol·L
-1

 (P<0.05) in PR and by 

1.52  1.26 (P<0.05) and 1.42  1.60 mmol·L
-1

 (P<0.05) in ITL, respectively; these 

reductions were not different between PR and ITL trials. Following-IMT only, inspiratory 

pressure threshold loading throughout the 20 min recovery period (mean of 2 to 20 min) 

reduced [lac
-
]B by 0.66  1.28 mmol·L

-1
 (trial × time interaction effect, P<0.01). When ITL 
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was performed with the same relative inspiratory pressure threshold load as pre-

intervention (ITL%), lactate clearance was not different to the post-IMT trial with passive 

recovery (Figure 5.4).  

 

 

   

 
Figure 5.4. Blood lactate concentration ([lac

-
]B) during 20 min of recovery from maximal incremental 

cycling exercise in the IMT group only prior to and following the 6 wk intervention. „Max‟ is defined as the 

point of exercise intolerance. ▲, passive recovery; □, inspiratory pressure threshold loading (15 cmH2O); ●, 

inspiratory pressure threshold loading (ITL%). **, Post-intervention: ITL different to PR (P<0.05). 

 

The amplitudes and velocity constants for the lactate recovery curves are shown in 

Table 5.3. Prior to the intervention, there were no differences between groups or between 

trials in any parameter, thus ITL throughout recovery failed to affect either lactate 

exchange or lactate clearance. Following the intervention, all parameters remained 

unchanged in the control group. Following IMT, relative to the equivalent pre-intervention 

trial Lac
-
(0) and A2 was reduced in PR (P<0.05). In ITL there was a decrease in A1 and A2 

and increase in γ1 and γ2 (P<0.05); the reduction in A2 and increase in γ2 exceeded those of 

the control group (group × time × trial interaction effect, P<0.05). In ITL%, relative to the 

pre-intervention ITL trial there was a reduction in Lac
-
(0) and A2 and increase in γ1 

(P<0.05) although relative to the post-intervention ITL trial γ2 was slower (P<0.05).  
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Table 5.3. Parameters of the bi-exponential non-linear regression model fitted to 20 min 

lactate recovery data following maximal incremental exercise with 20 min passive 

recovery (PR) and inspiratory threshold loading (ITL) for both the control and IMT groups, 

respectively. Data from the control group were not different following the intervention and 

have been omitted. 

 
 Control Group  IMT group 

 Pre-intervention  Pre-intervention  Post-intervention 

 PR ITL  PR ITL  PR ITL 

La(0) 10.97 ± 1.22 11.11 ± 1.44  11.25 ± 1.53 11.50 ± 1.52  10.12 ± 1.58* 9.91 ± 2.04* 

A1 4.38 ± 1.44 4.38 ± 1.56  3.93 ± 0.39 3.99 ± 1.90  3.36 ± 0.91 2.55 ± 0.66*† 

γ1 0.270 ± 0.246 0.313 ± 0.182  0.296 ± 0.084 0.235 ± 0.076  0.308 ± 0.168 0.463 ± 0.266*† 

A2 -21.76 ± 7.98 -19.16 ± 6.84  -20.62 ± 5.50 -20.17 ± 3.82  -15.16 ± 4.42* -13.13 ± 3.95*† 

γ2 0.031 ± 0.014 0.037 ± 0.015  0.031 ± 0.011 0.034 ± 0.009  0.036 ± 0.012 0.056 ± 0.025*† 

Values are expressed as means  SD. * P<0.05 vs. pre-intervention; † P<0.05 vs. PR. 

 

In the ITL trial lactate clearance was not correlated with the relative intensity of 

inspiratory muscle loading (%MIP) prior to the intervention (γ2; n = 18; see Figure 5.5: 

Left panel). Following IMT, there was no correlation between the relative intensity of 

inspiratory loading and γ2 when data from both the ITL and ITL% trials were combined (n 

= 9; see Figure 5.5: Right panel). 

 

 
 

 

Figure 5.5. Inspiratory pressure threshold load relative to the maximal inspiratory pressure (MIP) versus the 

slow velocity constant (γ2; ·min
-1

) which describes lactate clearance (A2 < 0; mmol·L
-1

). Left panel: pre-

intervention pooled data of both control and IMT groups. Right panel: post-IMT data from the ITL and ITL% 

trials; o, ITL data; □, ITL% data. Note: regression line reflects the pooled data from both the ITL and ITL% 

trials.   
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5.3.4 ACID-BASE BALANCE: INDEPENDENT VARIABLES 

Independent acid-base variables are shown in Table 5.4. At rest [Cl
-
] was 101.2  

3.6 mmol·L
-1

, [Na
+
] was 138.4  5.9 mmol·L

-1 
and [K

+
] was 3.9  0.3 mmol·L

-1
 in the 

IMT group which was not different to the control group. Immediately following maximal 

exercise in PR, [Cl
-
] and [K

+
] increased by 4.4  0.8 and 1.4  0.5 mmol·L

-1 
in the IMT 

group and by 4.2  0.6 and 2.5  1.3 mmol·L
-1

, respectively, in the control group (P<0.05), 

these increases were similar between groups and during both trials. The increases were 

unchanged after the intervention period in both groups. [Na
+
] remained unchanged after 

maximal exercise and throughout recovery in both groups and in all trials before and after 

the intervention. During recovery from maximal exercise [K
+
] returned to resting values 

after 10 minutes. [Cl
-
] remained higher than rest after 10 minutes of recovery but had 

returned to resting concentration after 20 minutes. These patterns were similar in both 

groups and during both PR and ITL trials and were largely unaffected by the intervention 

period. However, after 20 min of the post-IMT ITL trial [K
+
] was greater (absolute 

increase ~ 0.3 mmol·L
-1

, P<0.05) than at the same time point of the pre-intervention ITL 

trial. 
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Table 5.4. Ion and plasma protein concentrations and independent and dependent plasma 

acid-base variables immediately following maximal incremental exercise (Max) and after 

10 and 20 min recovery in the IMT group only. 

 
   IMT group (n = 9) 

   Passive recovery  15 cmH2O ITL 

  Rest Max 10 min  20 min Max 10 min  20 min 

Electrolytes and plasma proteins     

[lac-]  

(mmol·L-1) 

Pre 0.7  0.3 11.3  1.4† 9.8  1.6† 6.4  1.6†ab 11.4  1.5† 9.5  1.6† 6.2 ± 1.4†ab 

Post - 10.1  1.4*† 8.4  1.7*† 5.1  1.5*†ab 9.9  1.9*† 7.5  2.1*†c 4.8  1.8*†ab 

[Cl-] 

(mmol·L-1) 

Pre 101.2  3.6 105.6  3.9† 103.0  4.6a 102.1  3.8a 104.9  5.2† 103.6  4.2a 101.4  5.0a 

Post - 105.8  4.4† 102.3  7.1a 101.9  6.0a 106.6  6.5† 102.9  3.1a 101.6  4.5a 

[Na+] 

(mmol·L-1) 

Pre 138.4  5.9 139.6  7.1 135.3  6.6 140.3  8.5 140.8  10.0 135.5  6.4 139.3  10.5 

Post - 143.9  10.2 135.3  8.9 143.0  11.4 142.6  5.0 136.2  6.1 135.7  4.0 

[K+] 

(mmol·L-1) 

Pre 3.9  0.3 5.4  0.4† 3.7  0.3a 3.9  0.3a 5.3  0.3† 3.9  0.4ac 3.9  0.3a 

Post - 5.4  0.5† 3.9  0.4a 4.0  0.5a 5.7  0.7† 3.9  0.5 4.2  0.5*a 

[PPr-] 

(mmol·L-1) 

Pre 66.3  33.8 83.8  22.0 95.0  14.8 79.7  17.7 96.3  39.6 93.4  13.7 76.4  28.2 

Post - 86.2  12.9 96.9  12.6 87.0  28.9 109.0  53.8 87.8  32.8 90.8  13.6* 

Independent acid-base variables     

[SID] 

(mmol·L-1) 

Pre 40.4  6.2 28.7  7.3 26.2  7.2† 35.8  7.5 33.2  14.4 32.0  13.3 34.0  6.6 

Post - 32.3  6.7 28.7  6.7† 36.2  11.0 33.1  9.7 28.7  10.1 40.8  11.8* 

[Atot
-] 

(mmol·L-1) 

Pre 16.2  8.2 20.5  5.4 23.3  3.6 19.5  4.3 23.6  9.7 22.9  3.4 18.7  6.9 

Post - 21.1  3.2 23.7  3.1 21.3  7.1 26.7  13.2c 21.5  8.0 22.2  3.3* 

PCO2 

(mmHg) 

Pre 39.5  4.1 42.2  8.0 34.4  3.0† 36.1  3.2 44.0  7.7 33.9  4.8 33.2  6.0 

Post - 42.4  9.0 34.4  2.9 35.7  2.7 42.3  7.4 32.5  4.7† 32.4  5.5 

Dependent acid-base variables       

[H+]  

(nmol·L-1) 

Pre 37.3  2.2 60.4  7.9† 53.8  5.8† 45.2  4.2†ab 63.0  7.3† 51.1  3.8† 41.5  4.0ab 

Post - 57.0  8.7† 50.6  5.4† 43.2  4.6†ab 59.0  10.0† 48.8  7.9ab 40.4  6.3ab 

[HCO3
-] 

(mmol·L-1) 

Pre 25.3  1.8 16.7  2.0† 15.6  2.1† 19.2  2.4†b 16.7  2.1† 15.8  2.0† 19.0  2.4†b 

Post - 17.8  2.5† 16.4  2.1† 19.9  1.9†b 17.2  2.1† 16.2  3.0† 19.3  2.7†b 

Values are expressed as means  SD. Within trials: 
†
, P<0.05 different to rest; 

a
, P<0.05 different to max; 

b
, 

P<0.05 different to 10 min. Between trials: 
c
, P<0.05 time point different to passive recovery; 

*
, P<0.05 pre 

vs. post. 
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5.3.5 ACID-BASE BALANCE: DEPENDENT VARIABLES 

Table 5.4 shows the changes in dependent variables throughout recovery from 

maximal exercise and Table 5.5 illustrates the contributions of the independent variables 

([SID], [Atot
-
] and PCO2) to changes in plasma [H

+
]. Before IMT, [H

+
] increased 

significantly from rest (37.3  2.2 nmol·L
-1

) to maximal exercise (~60 nmol·L
-1

; P<0.01) 

in both trials. Similar changes were observed in the control group. During the final 10 min 

of the recovery period of the PR trial, 84% of the increase in [H
+
] above rest was 

accounted for by a 9.4 mmol·L
-1

 reduction in [SID] with the remaining 16% being due to a 

5.2 mmol·L
-1

 increase in [Atot
-
]. During the recovery period [H

+
] was lower by ~3 nmol·L

-1
 

in the ITL trial compared to the PR trial however (; P<0.01), this difference was accounted 

for by the greater hypocapnia (lower PCO2) observed during the ITL trial since all other 

independent variables were not different to PR. Similar findings were observed in the 

control group both prior to and following the intervention.  

Compared to pre-intervention values, plasma [H
+
] was lower in recovery from 

maximal exercise in both PR (main effect time, P<0.05) and ITL (main effect time, 

P<0.05) after IMT in either trial. However, in the same analysis PCO2 and [Atot
-
] after 

exercise and throughout recovery were not different following IMT. Therefore the 

reduction in [H
+
] was accounted for exclusively by an increased [SID]. The increase in 

[SID] during PR was accounted for by the reduction in [lac
-
]B and during ITL, by the 1.7 

and 0.3 decrease and increase in [lac
-
]B and [K

+
], respectively. Between trial differences 

were not present following-IMT. 
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Table 5.5. Contributions of the independent variables (PCO2, [SID] and [Atot
-
]) to changes 

in plasma [H
+
] following maximal exercise with 20 min passive recovery (PR) and 

inspiratory threshold loading (ITL) prior to (Pre-IMT) and following-IMT (Post-IMT). 

Data are the average of min 10 to 20.  

 
  

 

 

Concentration 

 Contribution of 

independent 

variables to [H+] 

(nmolL-1) 

  [H+] = 
(recovery) – (rest) 

(nmolL-1) 

 Percentage 

contribution 

to  [H+] (%) 

     Variable Rest PR ITL  PR ITL  PR ITL  PR ITL 

Pre-IMT             

[H+] meas. (nmolL-1) 37.3 49.3 46.4  - -  +12.0 +9.1  - - 

[H+] calc. (nmolL-1) 36.1 52.0 44.8  - -  +15.9 8.7  - - 

PCO2 (mmHg) 39.5 35.2 33.5  32.2 30.9  -3.9 -5.2  -21 -37 

[SID] (mmolL-1) 40.4 31.0 33.0  51.9 47.5  +15.8 +11.4  +84 +81 

[Atot
-] (mmolL-1) 16.2 21.4 20.8  39.2 38.8  +3.1 +2.7  +16 +19 

Post-IMT             

[H+] meas. (nmolL-1) 37.3 46.9 44.6  - -  +9.6 +7.3  - - 

[H+] calc. (nmolL-1) 36.1 49.7 40.8  - -  +13.6 +4.7  - - 

PCO2 (mmHg) 39.5 35.1 32.5  32.2 29.6  -3.9 -6.5  -24 -56 

[SID] (mmolL-1) 40.4 32.5 34.8  48.8 44.5  +12.7 +8.4  +77 +72 

[Atot
-] (mmolL-1) 16.2 22.5 21.9  39.8 39.4  +3.7 +3.3  +23 +28 

 

5.4 DISCUSSION 

The primary finding of this study is that the addition of a pressure-threshold 

inspiratory resistance (15 cmH2O) during recovery from maximal incremental exercise 

accelerated blood lactate clearance but only after 6 weeks of specific inspiratory muscle 

training.  

Our finding that pressure-threshold loading of untrained inspiratory muscles 

immediately following maximal exercise failed to affect systemic lactate clearance (Figure 

5.4) disagrees with the findings of Chiappa et al. (2008b, 2009). An explanation for this 

disagreement is not readily forthcoming as the experimental protocols were identical 

(including breathing pattern). Our subjects were of notably higher training status ( maxW

was around 80 W higher) which may conceivably have influenced the findings. However, 

breathing endurance is positively related to whole body training status (Eastwood et al. 

2001), therefore baseline respiratory muscle conditioning is likely to have been higher in 
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our subjects and, if this was influential, we might reasonably have expected greater rather 

than less lactate clearance. Chiappa et al. (2008b) found that during recovery with an 

inspiratory resistance [H
+
] was unaffected by a large (~2.5 mmol·L

-1
) decrease in [lac

-
]B 

with no change in PCO2 . The authors suggest that flux in other strong ions (not measured) 

may explain the unaltered blood acid-base balance despite the large reduction in [lac
-
]B. 

We found no such changes either before or after IMT in any electrolyte or [Atot
-
]. Also, 

lactate clearance is well described by a bi-exponential function following exercise at 

different intensities (Freund and Zouloumian 1981), with respiratory muscle loading 

(Perret and Müeller 2007; this study) and following both whole body (Messonnier et al. 

2006) and IMT (this study). That this pattern was not observed by Chiappa et al. (2008b) is 

also difficult to resolve.  

Whilst methodologically disparate our (pre-intervention) findings are similar to 

those of Perret and Mueller (2007) who reported unchanged lactate recovery kinetics 

following exercise with low intensity isocapnic volitional hyperpnea ( EV  61.6  9.3 

L·min
-1

, 30  1% of MVV) compared to PR. Therefore the issue of whether increasing the 

work of breathing offers a method of accelerating lactate clearance remains equivocal. It is 

possible that the intensity of inspiratory muscle loading is influential: when ITL was 

performed at the same relative intensity (an absolute pressure threshold of 20  2 cmH2O; 

i.e. ITL%) following IMT lactate clearance was not accelerated relative to PR and ITL.  

This finding is similar to previous work where relative to high intensity leg exercise (65% 

2OV max), low intensity leg exercise (35% 2OV max) performed immediately after 

maximal exercise increased lactate clearance (1984). The blood flow characteristics of 

different exercise intensities were proposed as an explanation for their findings (1984). 

Notwithstanding this, the lack of relationship between %MIP of ITL (range: 10% - 19%) 

and rates of lactate clearance (Figure 5.5) does not support the notion that the ITL intensity 

is influential. However, it is interesting to speculate whether a lower inspiratory resistance 
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(<15 cmH2O) prior to the intervention would have accelerated lactate clearance and further 

work is warranted to reveal the effects of ITL intensity upon lactate recovery kinetics.  

We also report that IMT reduced peak [lac
-
]B by ~1 mmol·L

-1 
after completion of 

the maximal incremental exercise test. This agrees with previous research which shows 

reduced [lac
-
]B following both maximal incremental (Spengler et al. 1999) and constant 

power steady-rate exercise (Chapter 4; McConnell and Sharpe 2005). When comparing 

[lac
-
]B during the ITL trial pre- and post-IMT the difference was maximal (2.30 mmol·L

-1
)

 

after 8 minutes. Whether such reductions may affect subsequent exercise tolerance remains 

an intriguing question.  

We are the first to report that inspiratory threshold loading after specific inspiratory 

muscle training can significantly speed lactate clearance following maximal incremental 

cycling exercise. Following IMT, A2 which reflects the amplitude concentration of lactate 

clearance, was reduced during passive recovery from maximal exercise, however, since the 

velocity constants were unchanged, this is likely to reflect the lower absolute [lac
-
]B 

throughout recovery relative to pre-intervention (Figure 5.4). Conversely, increasing the 

work of breathing with ITL immediately following exercise at the same intensity increased 

the velocity constants and decreased the amplitudes of both exponential terms (Table 5.3). 

Previous studies have reported similar changes in these parameters following whole-body 

training (Messonnier et al. 2001, 2006). After IMT, we observed a 68% increase in γ1 

during ITL indicating an improved capacity for lactate exchange between the previously 

worked muscle(s) and the systemic circulation (Freund and Zouloumian 1981). Due to the 

specific nature of inspiratory muscle training this is probably achieved by increasing the 

concentration gradient between the locomotor muscles and the systemic circulation most 

likely due to increased lactate clearance by the inspiratory muscles (as confirmed by the 

71% increase in γ2). The increase in γ2 is also similar to that found in whole body exercise 

training studies in which it was associated with an increase in lactate transport capacity 

(MCT1, MCT4) and oxidative enzyme activity (Messonnier et al. 2001, 2006). It has been 
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argued that such adaptations may occur following inspiratory muscle training (cf. 

McConnell and Sharpe 2005). In support of this argument, oxidative enzyme adaptations 

have been observed in sheep diaphragm following intense resistive RMT (Akiyama et al. 

1996) and muscle biopsy data from the external intercostal muscles following 5 wk IMT 

similar to that used in the present study have shown an increase in the proportion of type I 

muscle fibres (Ramírez-Sarmiento et al. 2002). Thus it is likely that loading the trained 

inspiratory muscles increased their capacity for lactate consumption.  

We used the physicochemical approach (Stewart 1983) to quantify the contribution 

of each of the independent variable to changes in acid-base disturbance. Here, each 

independent variables was individually changed to the corresponding exercise value while 

the remaining two variables were held constant at resting levels; the resting [H
+
] was then 

subtracted from the calculated [H
+
] and the difference expressed as a percentage of the 

total [H
+
] (Table 5.5). As reported by others (Putman et al. 2003), there was excellent 

agreement between the measured and calculated [H
+
] (r = 0.925, P<0.001). Prior to the 

intervention and in both PR and ITL the contribution of the [SID] and hence the influence 

of [lac
-
]B on plasma [H

+
] remained unchanged accounting for 84 and 81% of the total 

change in [H
+
], respectively. Following IMT, the greater reduction in plasma [H

+
] with 

ITL compared to PR was due to an increase in [SID] since both PCO2 and [Atot
-
] and their 

contribution to the changes in [H
+
] were unchanged (Table 5.5).  

 Previous studies using a similar approach to quantify changes in acid-base balance 

reported significant reductions in plasma [H
+
] following (1 wk) endurance training (2 

h·day
-1

, 60% 2OV max; Putman et al. 2003). The reduction in plasma [H
+
] occurred 

secondary to adaptations specific to the locomotor muscles which, in turn, affected the 

concentrations of the strong ions, increasing [SID] (Putman et al. 2003). In the present 

study, with the exception of a small increase in [K
+
] following IMT in ITL, no other strong 

ion was affected, therefore, the increase in [SID] was almost exclusively accounted for by 

the reductions in [lac
-
]B. These data are the first to show that IMT and ITL are capable of 
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influencing plasma [H
+
] following exercise. The mechanism(s) accounting for this are an 

IMT-mediated increase in [SID] which was caused by an increase in lactate clearance by 

the inspiratory muscles. The defence of plasma acid-base homeostasis is considered of 

great importance during and following exercise (Putman et al. 2003), therefore, IMT and 

ITL may provide a favourable systemic metabolic environment for subsequent bouts of 

exercise (Edge et al. 2006). 

Whether the present findings suggest that the inspiratory muscles are net consumers 

of H
+
 is equivocal. The increased inspiratory muscle lactate clearance following IMT may 

occur due to the greater expression of sarcolemmal and mitochondrial bound lactate-H
+
 co-

transporters (MCT). However, despite this linked transport, the intramuscular [H
+
] may 

remain unchanged due to the reservoir in which the intracellular milieu exists, i.e. water 

(H2O), which can provide a sink for both H
+
 and OH

-
. Rather the H

+
 may simply be 

required to activate the co-transporter proteins, with the movement of lactate and its direct 

effect on [SID] (or the other independent variables, respectively) causing the change in the 

intramuscular [H
+
] (Lindinger 1995; Kowalchuck and Scheuermann 1995). Indeed, in a 

previous report, the supposed „efflux‟ of H
+
 from the intramuscular compartment to the 

extracellular space was four times lower than the efflux of lactate during moderate 

intensity exercise, suggesting the independent transport of lactate across the muscle 

membrane (Putman et al. 2003). However, due to the anatomical location of the respiratory 

muscles this hypothesis is extremely difficult to confirm in exercising human subjects.  

 

5.5 CONCLUSIONS 

The present study investigated the effects of ITL and IMT on blood lactate 

recovery kinetics following maximal incremental exercise. The novel finding of this 

investigation is that following IMT, ITL accelerates the capacity for whole body lactate 

exchange and clearance. Furthermore, IMT also reduced plasma [H
+
] which was accounted 

for by the increase in [SID] due almost exclusively to the IMT-mediated reduction in [lac
-
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]B. The potential mechanisms affecting lactate recovery kinetics following IMT appear 

similar to those observed following whole body endurance training and these adaptations 

may help explain the increase in whole body performance observed following IMT, 

particularly since superior lactate recovery kinetics are correlated with whole-body 

performance (Messonnier et al. 1997). Finally, the effects of ITL during recovery from 

intense exercise on subsequent performance following IMT present novel avenues for 

future study.  
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CHAPTER 6 

 

DETERMINANTS OF INSPIRATORY MUSCLE STRENGTH 
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6.1 INTRODUCTION 

Maximal inspiratory mouth pressure (MIP) is a reliable measure of global 

inspiratory muscle strength in health (Romer and McConnell 2004) and disease (Larson et 

al. 1993; Smeltzer et al. 1999). Measurement of inspiratory muscle pressure is fundamental 

to diagnose inspiratory muscle weakness in clinical populations (Steier et al. 2007) and the 

evaluation of interventions such as IMT (McConnell and Romer 2004a).  

In healthy subjects, inspiratory muscle strength varies widely. Reference equations 

have been published, based largely on age and stature, which identify „normal‟ inspiratory 

muscle strength (e.g. MIP measured at RV for men: MIPPREDICTED = MIPMEASURED/(142-

(1.03age)100); women: MIPPREDICTED = MIPMEASURED/(43-(0.71height)100); Wilson 

et al. 1984). In competitive cyclists, some studies report inspiratory muscle strength values 

137% of predicted (Johnson et al. 2007) whilst others, despite having a similar age, are 

much lower ~90% (Romer et al. 2002c). Therefore, a large variability exists in MIP 

between healthy, active persons. Moreover, in this population, there are no published 

reports of the possible parameters which may predict inspiratory muscle strength. Thus, the 

aim of Experiment 1 was to determine the possible predictors of MIP which may help 

explain the disparity in between-subject inspiratory muscle strength in healthy active 

people. 

MIP is routinely measured to identify changes in inspiratory muscle strength during 

and following IMT. Baseline MIP (i.e. prior to training) may be important in determining 

the relative improvements in inspiratory muscle strength following IMT (Johnson et al. 

2007) as the window for adaptation is reduced in those subjects with a greater baseline 

strength (Kraemer et al. 1996). In support of this, baseline MIP was negatively correlated 

with the relative IMT-induced increase in MIP in both Chapters 3 and 4 (r = -0.70, P<0.05 

and r = -0.79, P<0.05, respectively). This appears to agree with findings from clinical 

literature (Duchenne muscular dystrophy; Winkler et al. 2000) where the increases in MIP 

following 9 months IMT was dose-dependent in those subjects where VC declined by less 
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than 10% in the year prior to the start of the study. Therefore the aim of Experiment 2 was 

to confirm the relationship between baseline MIP and the relative IMT-induced increase in 

MIP with a larger cohort of subjects and investigate whether this relationship also applied 

to additional measures of dynamic respiratory muscle function.  

Following IMT, group mean improvements in MIP range from as little as 10% up 

to 55% (Leith and Bradley 1976; McConnell and Sharpe 2005; Romer et al. 2002a, b, c; 

Sonetti et al. 2001; Volianitis et al. 2001; Tong et al. 2008). Hershenson et al. (1988) 

reported that global inspiratory muscle strength may not be limited by the strength of the 

diaphragm but rather the relative strengths of the chest wall muscles. Therefore, low 

inspiratory muscle strength (and thus MIP) may be accounted for by weakness in the chest 

wall muscles. Consequently, large increases in MIP following IMT may be attributed to 

increases in the contribution of the chest wall muscles to the generation of inspiratory 

pressure. Therefore, the aim of Experiment 3 was to firstly evaluate the relationship 

between the relative contributions of the chest wall inspiratory muscles and the diaphragm 

to global inspiratory muscle strength and secondly, to investigate the importance of chest 

wall muscle strength in the IMT-mediated increases in MIP. 

 

6.2 METHODS 

6.2.1 PARTICIPANTS 

Following ethical approval and written informed consent, 59 non-smoking, 

recreationally active subjects were recruited for the study. Subjects participated in one of 3 

Experiments; the same cohort performed both Experiments 1 and 2. In all trials subjects 

arrived at the laboratory 2 h post-prandial having abstained from alcohol, caffeine and 

intense exercise in the 24 h prior to testing.  
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6.2.2 PULMONARY FUNCTION AND MAXIMAL INSPIRATORY MOUTH PRESSURE 

Pulmonary function was assessed using a pneumotachograph and a hand-held 

mouth pressure meter measured MIP as an index of global inspiratory muscle strength 

according to sections 2.3 and 2.5, respectively. In Experiments 2 and 3 MIP was re-

evaluated throughout the control and intervention periods at 2 wk intervals. 

 

6.3 EXPERIMENT 1: CANDIDATE PREDICTORS OF INSPIRATORY MUSCLE STRENGTH 

6.3.1 EXPERIMENTAL PROCEDURES 

Thirty eight healthy and athletic (self-report) subjects visited the laboratory on two 

separate occasions (males n = 22, females n = 16). During the first laboratory visit subjects 

were familiarised with all testing procedures. During the second visit pulmonary function, 

inspiratory muscle strength, somatotype and physical characteristics were measured.   

 

6.3.2 SOMATOTYPE AND PHYSICAL CHARACTERISTICS 

Body somatotype was assessed using the Heath-Carter method (Carter and Heath 

1990) and plotted using specific software (Somatotype, Sweat Technologies, Sweat 

Technologies, USA). This method quantifies physique through three components: 1) 

endomorphy, 2) mesomorphy and 3) ectomorphy. Endomorphy refers to relative fatness 

and was derived from three skinfold measurements including the tricep brachii, 

subscapular and supraspinal sites using skinfold callipers (Harpenden skinfold callipers, 

British Indicators, Redhill, UK). Mesomorphy describes the relative muscularity and was 

determined from the bi-epicondylar femur and humerus widths measured using an 

anthropometer (Holtain, Crymych, UK) and the arm and calf circumferences measured 

using a metal tape measure corrected for the site specific skinfold thickness. Ectomorphy 

refers to the relative linearity of the body shape and is calculated by the stature-body mass 

ratio ( 3    /  y x  : where x is stature in cm and y is body mass in kg). All measurements 

were assessed from the right side of the body and repeated in triplicate with the average 
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used for subsequent analysis. An additional skinfold was measured from the right bicep 

brachii to determine body density (BD) according to the method of Siri (1961): 

 

  
  xlog.. 100632016311BD

 

 

1.1631 and 0.0632 are constants and ∑x is the sum of the four skinfolds.  

 

BD was subsequently used to calculate body fat percentage (%bodyfat; equation 1), fat 

mass (FM; equation 2) and fat free mass (FFM; equation 3) using the method of Durnin 

and Wormersley (1974): 

 

100450
BD

495
bodyfat 

















%  

 (1) 

bodymass
100

%bodyfat
FM   

  (2) 

bodymassFMFFM   

  (3) 

 

Body mass index (BMI; equation 4) and body surface area (BSA; equation 5) were also 

calculated: 
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 Finally, handgrip maximal voluntary isometric force was measured from the right 

arm using a handheld dynamometer (Smedleys, Yagami international trading co Ltd, 

Nagoya, Japan). Subjects were instructed to fully abduct their arm and then slowly (~5 s) 

adduct their arm 180 whilst gripping the device as hard as possible. The highest value of 

three efforts was recorded.  

 

6.3.3 STATISTICAL ANALYSES 

Hierarchical regression analysis was used to identify the strongest predictors of 

MIP. Independent candidate predictors were based on previous research (Carpenter et al. 

1999; Enright et al. 1994; Harik-Khan et al. 1998; Vincken et al. 1987) and plausibility. 

Candidate predictors included somatotype, physical characteristics (stature, body mass, 

BMI, BSA), hand grip strength and pulmonary function. Statistical significance was set a-

priori at P0.05. Data are presented as mean  SD. 

 

6.4 EXPERIMENT 2: INSPIRATORY MUSCLE STRENGTH AND INSPIRATORY MUSCLE 

TRAINING: EFFECTS OF BASELINE MIP  

6.4.1 EXPERIMENTAL PROCEDURES 

Prior to and following a 4 wk control period and 4 wk IMT period, thirty eight 

subjects (see Experiment 1 and Table 6.1) visited the laboratory on two separate occasions. 

During the first laboratory visit subjects were familiarised with all testing procedures. In 

the second visit, pulmonary function (see section 2.3), static (see section 2.5) and dynamic 

inspiratory muscle function and inspiratory muscle endurance were assessed. All female 

subjects were tested on the same day of each month following the 4 wk control and 

intervention periods to minimise the possible effects of the menstrual cycle on skeletal 

muscle contractile characteristics (Sarwar et al. 1996). Evidence suggests that handgrip 

strength (and thus whole body strength) is greater prior to ovulation due to increased levels 



 190 

of circulating oestrogen (and possibly testosterone) which may act upon the anabolic 

receptors (Sarwar et al. 1996; Janse de Jonge et al. 2001).  

 

6.4.2 DYNAMIC INSPIRATORY MUSCLE FUNCTION 

Maximal dynamic inspiratory muscle function (Romer et al 2002c; Romer and 

McConnell 2003) was assessed by performing maximal inspiratory efforts against a 

pressure threshold inspiratory device (see Figure 1.24). Inspiratory mouth pressure was 

measured by a differential pressure transducer (± 400 cmH2O; TSD104A, BIOPAC 

systems Inc., California, USA) connected to a bridge amplifier (DA100C, BIOPAC 

systems Inc., California, USA) inserted in to the ceiling of the pressure threshold device 

through a 2 mm aperture. Inspiratory airflow was measured using a pneumotachograph 

(TSD160A Fleisch number 3 Pneumotachograph, BIOPAC systems Inc., California, USA) 

connected distally to the inspiratory port of the pressure threshold device. The pressure and 

flow signals were passed through an analogue-digital converter and sampled at 200 Hz 

(Acqknowledge version 3.7.3, BIOPAC systems Inc., California, USA).  

Maximal inspiratory pressure at zero flow (P0) was measured by closing the air 

inlet port of the pressure threshold device and exposing a 1 mm leak to prevent glottic 

closure. Subsequently, subjects performed 3 inspiratory efforts in random order at 

approximately 0, 20, 25, 35, 50 and 65% P0 separated by 30 s. During all manoeuvres, 

subjects stood, wore a nose clip and received both visual and verbal feedback of voluntary 

efforts; subjects were encouraged to inspire as fast and hard as possible. Pressure and flow 

fatigue is negligible following this protocol (Romer et al 2002c; Romer and McConnell 

2003).  

 The maximal value recorded for both pressure and inspiratory flow ( IV ) at each 

%P0 was used for analysis, of which the product defined inspiratory muscle power ( IW ). 

Maximal IV  ( maxV ) was calculated by extrapolation of a linear least squares 
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representation of the pressure- IV  data. A 2
nd

 order polynomial was fitted to the IW - IV data 

and maximal IW   ( IW max) was calculated by differentiation of the quadratic equation. 

Optimal IV  ( optV  and maxV/VmaxV% opt
  ) and optimal inspiratory pressure ( optP  and 

%P0 = optP / P0) were defined as the flow and pressure values corresponding to the 

asymptote of the IW  curve ( maxWI
 ) and the point at which this vertically transected the 

linear representation of the pressure-flow relationship (Figure 6.1). Maximal rate of 

inspiratory pressure development (MRPD) was assessed during an inspiratory effort at P0. 

MRPD was defined as the positive peak of the pressure derivative as a function of time or 

the inspiratory pressure commensurate with the greatest ∆Pressure (cmH2O) /∆time (ms). 

 

 

 

Figure 6.1 Schematic illustration of pressure-flow-work calculations. A, maximal flow at zero pressure (

maxV ); B, maximal pressure at zero flow (P0); C, maximal inspiratory muscle power output ( maxWI
 ); D, 

optimal inspiratory flow rate ( optV ); E, optimal inspiratory pressure ( optP ).  

 

6.4.3 INSPIRATORY MUSCLE ENDURANCE 

Inspiratory muscle endurance was assessed on two occasions (the first being a 

familiarisation session) using a weighted plunger pressure threshold loading device 

(Johnson et al. 1997; Nickerson and Keens 1982; see section 5.2.4; Figure 5.1). Resistance 

started at 10 cmH2O and was increased by adding brass weights (5 cmH2O) to the plunger 
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every min until task failure. R and TI/Ttot were paced by a custom made audio metronome 

(R = 15 breaths·min
-1

, TI/Ttot = 0.5). The breathing pattern was chosen to reflect the 

typical spontaneous breathing pattern adopted during incremental threshold loading using 

the same device (Johnson et al. 1997). Subjects were seated in an upright position and 

wore a nose clip. Inspiratory mouth pressure was measured using a differential pressure 

transducer (TSD104A) inserted into the pressure transducer aperture of the ITL device. VT 

was measured continuously during ITL using a Fleisch number 3 pneumotachograph 

(TSD160A) attached to the inspiratory air inlet port of the ITL device and online 

integration of inspiratory flow. Subjects were instructed to maintain the prescribed target 

VT (which was equal to the resting VT) as closely as possible. Pilot work indicated that 

mimicking the target breathing pattern prevented changes in arterialised blood PCO2. Task 

failure (endurance time) was defined as the inability to maintain VT for three consecutive 

breaths despite verbal encouragement. 

 

6.4.4 STATISTICAL ANALYSES 

Pre and post measures of respiratory muscle and pulmonary function were assessed 

using a paired t-test. Pearson‟s product moment correlation was used to asses the 

relationship between baseline MIP and the IMT-mediated improvements in dynamic 

inspiratory muscle function and endurance. Statistical significance was set a-priori at 

P0.05. Data are presented as mean  SD. 
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6.5 EXPERIMENT 3: TRAINING THE INSPIRATORY MUSCLES AFFECTS THE CONTRIBUTION 

OF THE CHEST WALL INSPIRATORY MUSCLES AND THE DIAPHRAGM TO GLOBAL 

INSPIRATORY MUSCLE STRENGTH 

6.5.1 EXPERIMENTAL PROCEDURES 

Prior to and following a 4 wk intervention 20 subjects (males n = 16, females n = 4) 

attended the laboratory on two occasions separated by approximately one week. All female 

subjects were tested on the same day of each month following the 4 wk control and 

intervention periods to minimise the possible effects of the menstrual cycle on skeletal 

muscle contractile characteristics (Sarwar et al. 1996).  

During the first session participants were familiarised with all procedures. 

Subsequently pulmonary function was measured according to the procedures outlined in 

section 2.3. In the second trial subjects arrived at the laboratory at least 2 hr post-prandial 

to minimise the effects of the gastric contents on transdiaphragmatic pressure (Man et al. 

2002), were fitted with oesophageal and gastric balloon catheters and performed 10 

maximal Müeller manoeuvres using a mouth pressure meter (see section 2.5). Five efforts 

were performed from RV and following a 5 min break, 5 were performed from FRC. 

Measurements of MIP were recorded at RV as recommended by the British Association of 

Sport and Exercise Sciences (McConnell 2007) and the American Thoracic Society (Green 

et al. 2002). Measurements were also preformed at FRC since the elastic recoil pressure 

from the lung and chest wall (>30cmH2O) are negligible (Green et al. 2002). When 

performing efforts from FRC, end-expiratory lung volume was controlled by ensuring a 

similar end expiratory Poe (-2.0 to -5.0 cmH2O; Romer et al. 2007a). All inspiratory efforts 

were performed upright and standing to minimise the compressive effects of the 

mediastinal compartment on Poe (Knowles et al. 1959; Baydur et al. 1982) and with arms 

and hands relaxed. The mouth pressure meter was secured in place by a table-mounted 

clamp which was adjusted vertically to align with the mouth (Figure 6.2). Subjects were 

instructed to inspire maximally and avoid using non-respiratory muscles.  
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Figure 6.2 Schematic illustration of the placement of nasopharyngeal balloons in the lower third of the 

oesophagus and the stomach and the table mounted clamp stand and mouth pressure meter. 

 

6.5.2 PRESSURE MEASUREMENTS 

 Oesophageal (Poe) and gastric pressures (Pga) were measured using two thin 

walled (~0.6 mm) latex balloons (10 cm in length) sealed over a single polyethylene 

catheter (Nspire health, Oberthulba, Germany; Figure 6.2). The balloon catheters were 

passed through the nasal passage into the stomach and lower one third of the oesophagus 

following local anaesthesia of the nasal mucosa and posterior pharynx (2% lidocaine; 

Instillagel


; FARCO-PHARMA GmbH, 50670, Köln, Germany). Using a glass syringe the 

oesophageal and gastric balloons were filled with 1 and 2 ml of air, respectively, according 

to their optimal pressure-volume characteristics (Mead et al. 1954; Figure 6.3). In brief, 

following insertion of the balloon catheter, both balloons were filled with air (0 to 5 ml at 1 

ml intervals) using a glass syringe in order to elucidate the optimal balloon volume for 

intrathoracic pressure measurements.   

        Mouth Pressure Meter 
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Figure 6.3 Pressure-volume characteristics of the oesophageal (Poe; ○) and gastric (Pga; ●) balloons 

measured at resting end-expiratory lung volume (FRC).  

 

Both balloons were initially positioned in the stomach, such that a positive 

deflection was observed in Poe and Pga. The catheter was then withdrawn until, during 

repeated sniffs, Poe became negative. Subsequently, the balloon was retracted a further 10 

cm, approximately 35 to 45 cm distal to the nares (Baydur et al. 1982; Benditt 2005). 

Correct positioning of the oesophageal balloon was confirmed with a Poe of -2 to -5 

cmH2O at FRC and by close agreement with mouth pressure during dynamic inspiratory 

efforts and a Müeller manoeuvre (occlusion technique; Baydur et al. 1982; Benditt 2005). 

Each catheter was connected distally to a differential pressure transducer (TSD104A) and 

recorded by specific data acquisition software at 200 Hz (Acqknowledge). Pdi was 

calculated by online subtraction of Poe from Pga.  

 

6.5.3 STATISTICAL ANALYSES 

MIP, Pdi, Pga and Poe were obtained from the inspiratory effort that provided the 

highest Pdi. The pattern of relative chest wall muscle recruitment was expressed by the 

Poe/Pdi ratio as described by Nava et al. (1993). Pre and post measures of respiratory 

muscle strength and pulmonary function were assessed using a paired t-test. Pearson‟s 

product moment correlation coefficients were calculated to assess the relationship between 
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baseline MIP and baseline Poe/Pdi and the relationship between the IMT-mediated 

improvements in MIP and Poe/Pdi. Statistical significance was set a-priori at P0.05. Data 

are presented as mean  SD. 

 

6.6 RESULTS 

6.6.1 EXPERIMENT 1 

Participants‟ physical characteristics are shown in Table 6.1 and somatotype is 

shown in Figure 6.4. Pulmonary function and inspiratory muscle strength are shown in 

Table 6.4 (see Baseline column). 

 

 

Table 6.1 Physical characteristics of the subjects. 
 

n = 38 

Age (years) 22.8 (18 – 43) 

Body mass (kg) 70.4 (54.0 – 107.0) 

Stature (m) 1.72 (1.59 – 1.85) 

BMI (Kg·m
2
) 23.6 (19.4 – 36.1) 

BSA (m
2
) 3.4 (2.4 – 5.4) 

% body fat  16.7 (7.6 – 25.1) 

Sum of skinfolds (mm) 41.1 (18.0 – 76.9) 

Total fat mass (kg) 11.8 (5.7 – 24.5) 

Fat free mass (kg) 58.3 (44.3 – 83.2) 

Handgrip strength (kg) 40.7 (26.0 – 65.0) 

Somatotype (AU) 3.51 – 4.04 – 2.24  (1.4–6.2) – (1.5–8.0) – (0.7–4.2) 

Values are expressed as means (range). Note: Somatotype statistic expressed as: endomorphy – 

mesomorphy – ectomorphy; AU, arbitrary units. 
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Figure 6.4 Somatoplot of participants. Blue circles, males; pink triangles, females; big blue circle, male 

group mean; big pink circle, female group mean; big black circle, Pooled group mean. , Endomorphy; , 

mesomorphy; |, ectomorphy. 

 

 

Pearson‟s product-moment correlations were calculated between MIP and measures 

of body composition, physical characteristic and pulmonary function (Table 6.2). MIP was 

significantly correlated with handgrip strength, measures of body fat, height, weight and 

pulmonary function. The correlation coefficient between MIP and endomorphy and 

mesomorphy just failed to reach significance.  

 

 

 

 

 

     Mesomorphy 

    Endomorphy         Ectomorphy 



 198 

Table 6.2 Pearson‟s Product moment correlation coefficients for MIP and physical 

characteristics 
 

Variable r R
2
 P Variable r R

2
 P 

Handgrip strength 0.63 0.40 0.000* Weight 0.31 0.10 0.030* 

Fat free mass 0.42 0.18 0.004* Height 0.29 0.08 0.040* 

% body fat -0.28 0.08 0.046* FVC 0.46 0.21 0.002* 

Body surface area 0.34 0.12 0.018* FEV1 0.47 0.22 0.001* 

Endomorphy -0.26 0.07 0.056 PIF 0.60 0.36 0.000* 

Mesomorphy 0.25 0.06 0.061 MVV10 0.66 0.44 0.000* 

* P<0.05 

 

Using multiple linear regression analysis, significant predictors of MIP were 

MVV10, age and handgrip strength (Table 6.3 step 3). MVV10 ( = .53) and handgrip 

strength ( = .48) were positive predictors of MIP, where as age ( = -.35) was a negative 

predictor of MIP (P<0.05; Table 6.3). These variables explained 57% of the total variance 

in MIP. The regression analysis was not different when conducted independently across 

gender. 
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Table 6.3 Multiple regression coefficients and constants for predictors of MIP (n = 38).  
 

 b SE b  

Step 1    

Constant  33.43 22.85  

MVV10 0.76 0.15 .66* 

Step 2    

Constant  0.834 22.57  

MVV10 0.536 0.15 .46* 

Handgrip strength 1.644 0.50 .41* 

Step 3    

Constant  29.12 21.66  

MVV10 0.62 0.13 .53* 

Handgrip strength 1.92 0.45 .48* 

Age -2.26 0.68 -.35* 

Note: R
2
 = .43 for step 1 (P<0.01); R

2
 = .13 for step 2 (P<0.01); R

2
 = .11 for step 3 (P<0.01). * P<0.01. b 

coefficient; SE b standard error of coefficient;  standardised coefficient. 

 

6.6.2 EXPERIMENT 2 

MIP, pulmonary and dynamic inspiratory muscle function prior to and following 

the control and intervention periods are shown in Table 6.4. IMT compliance was good (88 

 10%). MIP was unchanged following the control period (Table 6.4) and increased 13  

13% following IMT (P<0.001, range -7 to +45%). Following 4 wk IMT, the relationship 

between baseline MIP and the relative increase in MIP just failed to reach significance 

(P=0.055, n = 38; Figure 6.5A). However, in subjects where training adherence exceeded 

93%, a significant negative correlation was observed between baseline MIP and the IMT-

induced relative increase in MIP (P=0.007, n = 16; Figure 6.5B). Baseline MIP was also 

correlated with the relative increase in maxWI
  (r = -0.517, P<0.01; n = 38). Interestingly, 

8 of the 38 subjects showed no change in MIP following the intervention (Figure 6.5A; see 
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below horizontal grey line) of which 3 of these were present in the subgroup of participants 

with greater than 93% compliance (Figure 6.5B; see below horizontal grey line) 

 

 

        

 

 

Figure 6.5 Relationship between baseline maximal inspiratory pressure (Baseline MIP) and the relative 

change in MIP (MIP) following 4 wk inspiratory muscle training. A) n = 38: y = -0.0978x + 28.107; B) n = 

16: y = -0.1713x + 40.42).  

 

 

In addition, the relative change in MIP was positively correlated with the absolute 

and relative change in maxWI
  (r = 0.585, P<0.01 and r = 0.626, P<0.01, respectively) and 

the relative change in optP  (r = 0.588, P<0.01). The relative change in MIP was also 

positively correlated with the absolute change in optV  (r = 0.516, P<0.01), and % maxV  (r 

= 0.562, P<0.01). 
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Table 6.4 Inspiratory muscle strength, pulmonary and dynamic inspiratory muscle function 

prior to (Baseline) and following the 4 wk control period (Post-control) and following 4 wk 

IMT (Post-Intervention).  
 

 Baseline Post-Control Post-Intervention 

Pulmonary function 

MIP (cmH2O) 155.8  46.1 (126  35) 149.5  42.0 168.0 ± 45.3 

FVC (L) 4.63  0.85 (99.1  11.9) 4.63  0.87 4.65  0.88 

FEV1 (L) 3.85  0.67 (96.2  11.8) 3.78  0.71* 3.80  0.72 

FEV1/FVC (%) 83.6  6.1 (98.0  7.1) 82.1  7.0* 82.0  6.9 

PIF (L∙s
-1

) 6.84 ± 15.34 6.97  1.66 7.14  1.87 

PEF (L∙s
-1

) 8.33 ± 1.99 (81.7 ± 15.3) 10.21  12.33 8.38  2.0 

MVV12 (L∙min
-1

) 156.3  33.7 (84.2  19.6) 152.4  36.2 158.2  37.7** 

Dynamic inspiratory muscle function and respiratory muscle endurance 

maxIP  (cmH2O) 154.5 ± 40.3 150.6 ± 41.2* 167.8 ± 46.4** 

maxV  (L·s
-1

) 7.37 ± 1.49 7.30 ± 1.53 7.51 ± 1.34 

maxWI
  (cmH2O·L

-1
·s

-1
) 271.6 ± 95.5 275.6 ± 109.0 319.9 ± 102.6** 

optV  (L·s
-1

) 3.60 ± 0.76 3.62 ± 0.76 3.77 ± 0.75** 

optP  (cmH2O) 67.1 ± 19.7 74.0 ± 21.0 82.1 ± 20.1** 

% maxV  (%) 49.3 ± 6.9 50.0 ± 6.0 50.2 ± 4.6 

% maxIP  (%) 43.5 ± 8.4 49.6 ± 7.2 49.8 ± 6.2 

MRPD (cmH2O·ms
-1

) 0.51 ± 0.22 0.48 ± 0.19 0.73 ± 0.62** 

ITL (min) 13.48 ± 4.58 13.59 ± 5.34 16.11 ± 4.48** 

Values are expressed as means  SD. * P<0.05 vs. baseline; ** P<0.05 vs. post-control. Values in 

parentheses represent the percent of predicted values (Quanjer et al. 1993; Wilson et al. 1984). 

 

 

6.6.3 EXPERIMENT 3 

The physical characteristics, pulmonary function and baseline inspiratory muscle 

strength of the control and IMT groups are shown in Table 6.5. One subject from the IMT 

group was omitted from the experiment due to difficulties with balloon catheter insertion. 
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Table 6.5 Descriptive characteristics of the control and IMT groups.  
 

 Control (n = 11) IMT (n = 9) 

Age (years) 27.0  4.52 21.3  2.9* 

Body mass (kg) 75.1  8.2 72.4 10.1 

Height (cm) 179.9  7.7 175.8  6.0 

FVC (L) 5.43  0.92 (103.8  14.1) 4.92  0.66 (99.7  9.04) 

FEV1 (L) 4.22  0.78 (95.5  13.4) 3.92  0.77 (92.0  9.8) 

FEV1/FVC (%) 77.7  7.4 (89.2  8.62) 86.9  23.0 (99.1  25.5) 

PIF (L∙s
-1

) 9.16  1.58  7.83  1.88 * 

PEF (L∙s
-1

) 10.04  1.81 (83.4  14.5) 8.43  1.64 (78.5  14.6) 

MVV10 (L∙min
-1

) 186.1  36.4 (103.5  17.2) 172.4  41.0 (105.9  30.5) 

MIP (cmH2O) 155.3  43.8 (142  47) 169.7  48.4 (171  47) 

* P<0.05 between groups; values in parentheses represent the percent of predicted values (Quanjer et al. 

1993; Wilson et al. 1984) 

 

 

Global inspiratory muscle strength and intrathoracic pressures at RV and FRC are 

shown in Table 6.6 for both groups. There were no differences in any measure of pressure 

in the control group at RV and FRC prior to or following the intervention.  

MIP increased significantly following 4 wk IMT by 11  15% (P<0.05). Significant 

increases were also observed in Poe (14  11%; P<0.01), Pdi (9  9%; P<0.05) and 

Poe/Pdi (5  5%; P<0.05) at RV and Poe (18  13%; P<0.01), Pdi (15  14%; P<0.05) 

and Poe/Pdi (3  3%; P<0.05) at FRC (see Table 6.6).  
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Table 6.6 Pressure responses to maximal inspiratory manoeuvres in the control and IMT 

groups prior to and following the intervention performed at residual volume (RV) and 

functional residual capacity (FRC). 

 

 RV pre RV post FRC pre FRC post 

Control Group (n = 11) 

MIP (cmH2O) 155.3  43.8 151.7  43.7 147.5  40.2 139.1  40.0 

Poe (cmH2O) -129.3  46.0 -129.7  52.3 -132.0  36.4 -133.2  39.2 

Pga (cmH2O) 20.8  24.8 23.8  23.6 29.7  22.0 27.6  18.5 

Pdi (cmH2O) 150.0  40.8 153.6  36.9 161.8  41.8 160.8   43.8 

Poe/Pdi (%) 85.2  85.1 81.9  18.6 82.2  13.3 83.4  11.8 

IMT Group (n = 9) 

MIP (cmH2O) 174.3  49.6 192.4  55.9* 136.8  30.1 156.4  24.5* 

Poe (cmH2O) -126.3  20.0 -144.6  29.9** -117.2  26.9 -136.8  31.5** 

Pga (cmH2O) 28.8  27.1 24.6  23.9 35.6  24.9 31.2  28.3 

Pdi (cmH2O) 152.1  32.7 166.7  39.9* 147.8  33.3 168.0  35.2* 

Poe/Pdi (%) 84.4  10.1 88.3  12.2* 80.4  14.0 82.6  14.5* 

* P < 0.05, ** P < 0.01 vs. pre. 

 

Correlations at baseline: In all participants (n = 20), baseline MIP was significantly 

correlated with baseline Poe/Pdi at RV (r = 0.582, P = 0.014) and FRC (r = 0.523, P = 

0.026) (Figure 6.6). Baseline MIP (n = 20) was also correlated with Pdi at both RV (r = 

0.561, P = 0.012) and FRC (r = 0.515, P = 0.024). Neither the baseline MIP nor the IMT-

mediated increase in MIP was correlated with any other measure of respiratory pressure. 

 

Correlations post-intervention: Following IMT, the absolute change in MIP was correlated 

with the absolute (Figure 6.6) and relative change in Poe/Pdi at RV (r = 0.719, P = 0.044 

and r = 0.742, P = 0.035, respectively) and the absolute change in Poe/Pdi at FRC (r = 

0.803, P = 0.016). The absolute (r = 0.707, P<0.05) and relative (r = 0.759, P<0.05) 

increase in Pdi was correlated with the absolute increase in Poe at RV. At FRC, the 
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relative change in Pdi was negatively correlated with the absolute (r = -0.813, P<0.05) and 

relative (r = -0.862, P<0.01) changes in Poe/Pdi. Figure 6.6 (Lower right panel) 

demonstrates the relationship between pre- and post-IMT Poe/Pdi, note the tendency for 

post-IMT Poe/Pdi to fall above the line of identity. 

 

     

 

    

 

Figure 6.6 Relationship between baseline MIP at RV (Upper left) and baseline MIP at FRC (Upper right) 

and baseline Poe/Pdi, the change in Poe/Pdi and the change in MIP following IMT (Lower left) and finally 

an identity plot of pre- versus post-IMT Poe/Pdi (Lower right).  
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6.7 DISCUSSION 

The aim of this study was to investigate the factors which determine inspiratory 

muscle strength. The main findings were: Experiment 1: in healthy athletic participants, 

global inspiratory muscle strength was predicted positively by MVV10 and handgrip 

strength and negatively by age. Experiment 2: when training adherence exceeded 93%, a 

significant negative correlation was observed between the baseline MIP and the IMT-

induced increase in MIP. Experiment 3: the increase in MIP following IMT was greatest in 

subjects who achieved the largest increase in the relative contribution of the chest wall 

inspiratory muscles to global inspiratory muscle strength. 

 

6.7.1 EXPERIMENT 1 

 Previous research in elderly patients with cardiovascular disease (n = 2871, age ~65 

yr) reported that MIP was positively predicted by sex, FVC, handgrip strength and lean 

body mass and negatively by age and waist size (Enright et al. 1994). In another study, 

McConnell and Coopestake (1998) report that in healthy elderly subjects (n = 41, age 71  

7 yr) age and weight were negative predictors and stature a positive predictor of MIP. In 

healthy elderly males (n = 381, age 51.8  17.3 yr), Harik-Khan et al. (1998) also reported 

that MIP was predicted negatively by age and weight but positively by PEF. In contrast to 

these studies, Vincken et al. (1987) reported that only age was able to significantly predict 

MIP (n = 46, age range 16 to 79 yr). Collectively these studies illustrate the large degree of 

variation in the parameters which predict MIP in elderly and clinical populations and 

hence, the difficulty when interpreting measures of inspiratory muscle strength in young 

active participants (this study). 

In the present cohort (n = 38, age 22.8  6.4 yr) MVV10 was the only measurement 

of pulmonary function which significantly predicted MIP. Significant correlation 

coefficients were reported between MIP and PIF (see Table 6.4). The novel relationships 

observed between MIP and pulmonary function may be due to a whole-body, training-
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induced improvement in ventilatory endurance which is greater than untrained subjects 

(Eastwood et al. 2001). Enright et al. (1994) reported that lean body mass significantly 

predicted MIP. However, in the present study, no significant correlations were observed 

between measures of body composition (somatotype) and inspiratory muscle strength. 

Furthermore, only weak relationships were observed between MIP and %bodyfat, fat free 

mass and body surface area (see Table 6.4).  

In agreement with this, McConnell and Coopestake (1998) identified that MIP is 

poorly predicted by measures of body composition (in the elderly). However, they did 

observe a significant influence of physical activity (measured by activity diary and task 

specific energy expenditure) in the prediction of MIP in a small subgroup of participants (n 

= 10). This may suggest that variables associated with routine physical activity are also 

likely to determine MIP in younger, healthy athletic populations. In support of this notion, 

handgrip strength was a significant predictor of MIP in the present study. In previous work, 

handgrip strength has been related to both aerobic fitness and whole body strength (Bassey 

and Harries 1993; Kay and Shephard 1969). Additionally, diaphragm thickness and MIP 

are greater in subjects that perform resistance (DePalo et al. 2004) and yoga training 

(Madanmohan et al. 2008). Thus, whether a specific measurement of training history and 

the effect this may have on inspiratory muscle cross sectional area could explain a larger 

portion of the remaining unique variance in MIP is unknown, but certainly deserves further 

attention. Collectively, these findings suggest that adaptations associated with chronic 

whole-body exercise (excluding changes in body composition) may be able to explain a 

larger portion of the variance in MIP in young healthy populations.  
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6.7.2 EXPERIMENT 2 

 The main findings of Experiment 2 were that when training adherence exceeded 

93%, a significant relationship was observed between the IMT-mediated increase in MIP 

and the baseline inspiratory muscle strength. Therefore, these data suggest that a training 

compliance below this level may not be great enough to elicit maximal adaptations within 

the inspiratory muscles. However, it is important to note that despite this relationship, in 

the subgroup of participants with greater than 93% compliance, 3 subjects failed to show 

an improvement in MIP.  

 Initial improvements in force generation throughout strength training are a 

consequence of neuromuscular adaptations with a gradual increase in the contribution of 

muscular hypertrophy (Kraemer et al. 1996). The physiological scale of adaptation in 

response to strength training is suggested to be inversely related to the baseline training 

status, therefore, the closer the individual is to their physiological ceiling, the smaller the 

window for adaptation (Åstrand et al. 2003; Häkkinen 1994). However, the mechanisms 

that account for this are not well understood. It has been suggested that this may be due to 

changes in the hormonal response during training (Ahtiainen et al. 2003) which could 

delay the increase in muscle fibre size (Kraemer et al. 1996). 

 The constraining effect of baseline training status on subsequent adaptation appears 

to apply to the respiratory muscles (see Figure 6.5B) and is similar to findings reported in 

clinical populations (Winkler et al. 2000). In previous studies, the improvements in global 

inspiratory muscle strength following IMT have ranged widely from as little as 10% up to 

55% (Leith and Bradley 1976; McConnell and Sharpe 2005; Romer et al. 2002a, b, c; 

Sonetti et al. 2001; Volianitis et al. 2001; Tong et al. 2008). In the studies where large 

improvements in MIP were observed, participants‟ baseline MIP was considerably lower 

(Romer et al. 2002b, c; Volianitis et al. 2001). The present data have also demonstrated 

this trend, as in Experiments 2 and 3 the improvements in MIP were only 13 and 11% 

which is likely due to the high baseline MIP (126 and 171% predicted, respectively).  
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 The inspiratory muscles have a number of highly specific functions which are 

vastly different to other muscle groups. For example, the precise coordination of a number 

of inspiratory muscles is required to increase thoracic volume with minimal distortion to 

the chest wall away from the relaxed configuration (Kenyon et al. 1997). It is suggested 

that the maximal pressure generating capacity of the inspiratory muscles is dependent upon 

the strength of the chest wall muscles since this muscle group is weaker than the 

diaphragm (Hershenson et al. 1988). Therefore, the significant negative correlation 

reported between baseline MIP and the IMT-induced increase in MIP may reflect the 

superior chest wall muscle strength in those subjects with a high baseline strength and 

hence a smaller window for chest wall muscle adaptation during IMT. The opposite may 

be true for subjects with low baseline inspiratory muscle strength and account for their 

larger increase in MIP. In summary, the findings of Experiment 2 demonstrate that the 

increase in inspiratory muscle strength following IMT is inversely related to baseline MIP. 

Data presented in Experiment 3 and discussed in section 6.7.3 support this hypothesis.  

 It is interesting to note that following 4 wk IMT, 8 of the 38 subjects showed no 

improvement or even a lower MIP relative to pre-intervention baseline measures. In this 

sub-group, training adherence was good (88  10%) suggesting that this did not account 

for the lower MIP. However, baseline MIP was 142  24% of predicted and much higher 

than the remaining participants (n = 30: 124  37%). This may suggest that the baseline 

MIP relative to the predicted value may be more important in determining the IMT-

mediated improvements in inspiratory muscle strength. Of the 8 subjects within this sub-

group, 3 were also studied in Experiment 3. Remarkably, all showed an increase in Poe (n 

= 3: 21  10 cmH2O). Why the increase in Poe failed to increase MIP is unknown. One 

possibility is that following IMT, abdominal compliance was increased. An increased 

abdominal compliance would lower Pga as the diaphragm descends during the inspiratory 

effort and attenuate the rise in Pdi. A small reduction in Pga was observed in these subjects 

following the intervention (~15 cmH2O) which may support this notion. However, despite 
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the decrease in Pga, improvements were observed in Pdi (9  29 cmH2O) as the IMT-

mediated change in Poe exceeded the change in Pga. An additional explanation for an 

increase in Poe yet no change in MIP may reside in the nature of volitional tests of 

inspiratory muscle strength. It is well known that volitional techniques are dependent upon 

task learning and motivation. Thus, improvements in MIP following IMT may be due to 

subjects getting better at performing the test (Polkey and Moxham 2004). Thus the subjects 

may have simply performed the test poorly on the day of measurement. In support of this, 

it was previously reported that volitional measures of inspiratory muscle pressure 

development were unchanged despite an altered (non-volitional) muscle function (Johnson 

et al. 1993) illustrating that volitional measures of intrathoracic pressure may not reflect 

true changes in muscular strength. Notwithstanding this, examination of MIP in the 8 

subjects following 2 wk IMT illustrated a small but significant increase in MIP (3%; n = 3: 

P=0.017; n = 8: P=0.024). However, it can not be ruled out that some of the participants 

simply did not perform the prescribed IMT. Indeed, assessing the compliance of the 

subjects to the IMT is difficult and likely reflects an important flaw in self-report training 

diaries and unsupervised training sessions. Notwithstanding this, these data suggest that the 

lack of change in MIP following 4 wk IMT may also have been due to factors related to 

task learning and the ability to perform the test successfully and / or the baseline MIP 

relative to the predicted value.  

 

6.7.3 EXPERIMENT 3 

 The main findings of Experiment 3 were that prior to 4 wk IMT, MIP was 

significantly correlated with the relative chest wall muscle recruitment as expressed by the 

Poe/Pdi ratio (Nava et al. 1993). Furthermore, following IMT, the absolute increase in 

MIP was positively correlated with both the absolute and relative increase in Poe/Pdi. 

These findings in combination with the findings presented in Experiment 2, suggest that 

the baseline status of the inspiratory muscles, specifically the chest wall inspiratory 
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muscles is a key parameter which may, in part, determine the increase in inspiratory 

muscle strength following pressure threshold IMT.  

 Hershenson et al. (1988) hypothesised that during a maximal inspiratory effort, in 

order to preserve the geometry of the thorax (thoracoabdominal configuration) the force 

generated by all inspiratory muscles must be equal. If the force generated by the diaphragm 

exceeded the chest wall muscles, the diaphragm would be shortened and chest wall 

muscles would be lengthened. This would reduce the mechanical advantage of these 

muscles, and the rib cage/abdomen would be displaced inward/outward, respectively, i.e. 

distorting the thoracoabdominal configuration of the thorax. Excessive distortion of the 

thorax away form the resting configuration would significantly increase the elastic work of 

breathing (Kenyon et al. 1997). 

 Hershenson et al. (1988) demonstrated that during a maximal Müeller manoeuvre, 

diaphragm activation was sub-maximal. This was illustrated by an increase in twitch force 

superimposed upon a maximal inspiratory effort. This has also been confirmed by a lower 

diaphragm EMG during a Müeller manoeuvre relative to a combined maximal inspiratory 

and expulsive effort (Nava et al. 1993). In the study of Hershenson et al. (1988) the pattern 

of relative chest wall muscle recruitment (Poe/Pdi) during the Müeller manoeuvre was 

92%. In another trial, the pressure generating capacity of the chest wall muscles was 

increased by sealing an air tight plastic garment around the thorax and creating a negative 

body surface pressure using a vacuum cleaner. By increasing the pressure generating 

capacity of the chest wall muscles (artificially increasing Poe), Pdi was greater during 

subsequent efforts. In this trial, the Poe/Pdi increased to 96%. These findings clearly 

demonstrate that global inspiratory muscle strength was limited by the maximal strength of 

the chest wall muscles and not the maximal strength of the diaphragm.  

 The pre-intervention data from Experiment 3 support the findings of Hershenson et 

al. (1988). Here, a significant positive correlation between MIP and Poe/Pdi was observed 

suggesting that subjects with low inspiratory muscle strength had the weakest chest wall 
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muscles and the smallest relative contribution of the chest wall muscles (and therefore the 

diaphragm) to global inspiratory pressure generation. The Poe/Pdi ratio reported for both 

groups in Experiment 3 (~80 to 85%; see Table 6.6) was similar to that reported previously 

(Fittting et al. 1988; Nava et al. 1993) although lower than those of Hershenson et al. 

(1988). This is explained by the different methodologies used to measure inspiratory 

muscle strength. In the study of Hershenson and colleagues, participants performed the 

Müeller manoeuvre with the glottis closed compared to open in this study. Closing the 

glottis during a Müeller manoeuvre minimises abdominal muscle recruitment and reduces 

Pdi.  

In the present study, following IMT Poe/Pdi increased significantly from 84 and 

80% to 88 and 83% at RV and FRC, respectively, and was significantly correlated with the 

increase in MIP. The increase in the contribution of the chest wall muscles to inspiratory 

pressure generation (~4%) is similar to that reported by Hershenson et al. (1988) when a 

negative pressure was applied to the thorax (~4%). These findings are the first to show that 

the greatest increase in MIP probably occurs in subjects who have the lowest chest wall 

muscle strength at baseline and the largest increase in chest wall muscle strength following 

IMT. This is further supported by the increase in post-IMT Poe at RV and FRC from -

126.3  20.0 and -117.2  26.9 cmH2O at baseline to -144.6  29.9 and -136.8  31.5 

cmH2O, respectively, and also by the significant post-IMT correlation between the increase 

in Poe and the increase in Pdi.  

The notion that the chest wall muscles may receive the largest training stimulus 

throughout pressure threshold IMT was proposed previously (McConnell et al. 2002) and 

the present findings are the first to confirm this hypothesis. Although it was not the aim of 

this study to identify the mechanism(s) accounting for greater chest wall and diaphragm 

muscle strength following IMT, it may be due to a reduced co-activation of antagonistic 

muscles and / or improved synchrony of motor unit firing; however these have yet to be 

quantified following IMT. The plasticity of the chest wall muscles following IMT is, 
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however, supported by previous studies in which an increase in the size and prevalence of 

type I and type II muscle fibres was observed following 5 wk IMT (Ramírez-Sarmiento et 

al. 2002). However, it is important to note that IMT does not target the chest wall muscles 

per-se as significant increases in diaphragm thickness are also observed following IMT 

(Downey et al. 2007; Chiappa et al. 2008a; Enright et al. 2006). This is supported by the 

present findings which demonstrate a significant increase in Pdi from 152.1  32.7 and 

147.8  33.3 cmH2O at baseline to 166.7  39.9 and 168.0  35.2 cmH2O at RV and FRC, 

respectively, following 4 wk IMT. The precise temporal changes in chest wall and 

diaphragm adaptation during IMT have yet to be reported. Therefore, whether adaptation 

of the chest wall with strength training precedes that of the diaphragm or even signals its 

adaptation is unknown and would certainly be an interesting avenue for future research. It 

would also be interesting to investigate the effects of negative chest wall pressure (see 

Hershenson et al. 1988) throughout individual IMT sessions on subsequent global 

inspiratory muscle strength. 

 

6.8 CONCLUSIONS 

 Experimental data demonstrates that MIP in young healthy subjects is difficult to 

predict and that measures of training status and chronic whole-body training-induced 

alterations in inspiratory muscle function may provide novel parameters relevant to this 

population for future study. Evidence is provided illustrating that the baseline inspiratory 

muscle strength limits the IMT mediated increase in MIP. The mechanisms that may 

account for this relationship appears to be the relative strengths of the chest wall muscles 

and their proximity with their ceiling for adaptation since following IMT, a large increase 

in chest wall muscle strength significantly increases global inspiratory muscle strength. 

These findings highlight the importance of baseline inspiratory muscle strength in 

determining the magnitude of adaptation and may well explain the disparity in the relative 

increase in MIP previously reported within the literature. 
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7.1 MAIN FINDINGS 

The aim of the thesis was to investigate the physiological consequences of the work 

of breathing during intense endurance exercise and of specific inspiratory muscle training. 

The main findings demonstrate that: 

 

I) During intense exercise in which pulmonary ventilation increases to near-maximal 

levels, the respiratory muscles are capable of contributing to the systemic [lac
-
]B. This was 

demonstrated in Chapters 3 and 4 where a ~25% increase in [lac
-
]B was observed when 

isocapnic volitional hyperpnoea with a breathing pattern matched to that of 85% and 90% 

EV max was mimicked whilst at rest (Chapter 3) and also whilst exercising at the power 

output corresponding to the MLSS (Chapter 4).  

 

II) Following specific IMT, the volitional hyperpnoea-mediated increases in systemic 

[lac
-
]B were reduced by ~25% when performed both at rest (Chapter 3) and upon exercise 

(Chapter 4). A significant reduction in the steady state [lac
-
]B was also observed following 

IMT during exercise at the MLSS by 8 to 15%. These findings are the first to demonstrate 

that the inspiratory muscles are the likely source of these reductions and probably explain 

the reductions in [lac
-
]B often observed during whole-body exercise following RMT. 

 

III) A previous study suggested that the application of a low-intensity pressure 

threshold inspiratory resistance (15 cmH2O) following maximal exercise significantly 

accelerated lactate clearance (Chiappa et al. 2008b, 2009). In stark contrast to this study, 

using an identical exercise and recovery protocol, we observed no difference in the 

recovery of lactate following maximal exercise when performed with or without 

inspiratory muscle loading (Chapter 5). However, in the same study, following 6 wk IMT, 

relative to pre-intervention, loading the trained inspiratory muscles at the cessation of 

maximal incremental exercise for 20 min decreased the mean [lac
-
]B by ~20% and 
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increased inspiratory muscle lactate exchange and clearance capabilities by ~70%. The 

significant decrease in [lac
-
]B caused an increase in the [SID] which was responsible for a 

reduction in plasma [H
+
]. 

 

IV) Finally, this thesis presents novel evidence that the relative gains in inspiratory 

muscle strength following IMT as measured by the maximal inspiratory pressure generated 

at the mouth (MIP) is dependent upon the baseline strength (Chapter 6). Specifically, this 

was due to a lower contribution by the chest wall inspiratory muscles relative to the 

diaphragm (Poe/Pdi) to the evolution of inspiratory muscle pressure (Chapter 6). 

Consequently, following IMT, the relative increase in Poe/Pdi was positively correlated 

with the relative increase in MIP. 

 

7.2 THE WORK OF BREATHING: A LIMITING FACTOR DURING INTENSE EXERCISE? 

7.2.1 THE WORK OF BREATHING  

 Historically, the respiratory system was not considered a limiting factor of whole-

body endurance performance. This was based upon the observation that MVV performed 

at rest surpassed EV max, thus a substantial breathing reserve existed and that the SaO2 

rarely fell below ~98% even during intense exercise in untrained subjects (Dempsey 1986). 

Furthermore, it was well recognised that the respiratory muscles, in particular the 

diaphragm, was extremely well evolved for the physiological demands of exercise. During 

sub-maximal exercise, the respiratory muscles may require ~10% of the available Q  and 

whole body 2OV  (Harms et al. 1997; Aaron et al. 1992a, b). However, when exercise 

intensity exceeds ~85% 2OV max, the work of breathing increases dramatically with the 

respiratory muscles demanding up to 15% of the available Q  and whole body 2OV  

(Harms et al. 1997; Aaron et al. 1992b). Indeed, during intense whole-body exercise, 
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respiratory muscle perfusion when expressed relative to muscle mass is greater than all 

other skeletal muscles (Manohar 1986).  

In addition to this large metabolic demand, during intense endurance exercise, in 

order to maintain high expiratory flow rates, the EELV and EILV are increased to a greater 

percentage of TLC and R is increased by the recruitment of accessory respiratory muscles 

typically when VT reaches ~65% of VC (Dempsey 1986). Due to the length-tension and 

force-velocity relationships of the inspiratory muscles, the greater EILV and R increases 

the length and velocity of shortening of the diaphragm, respectively, reducing the capacity 

for inspiratory muscle pressure generation (LeBlanc et al. 1988; Johnson et al. 1993). 

Consequently, the functional weakening of the inspiratory muscles throughout intense 

exercise and the competition with exercising locomotor muscles for the available Q  may 

compromise diaphragmatic perfusion and O2 transport and ultimately manifest in 

diaphragm fatigue (Babcock et al. 1998; Johnson et al. 1993).  

At exercise intensities which exceed ~85% 2OV max diaphragm fatigue can occur 

which may, through a sympathetically mediated reduction in locomotor perfusion, limit 

locomotor force generation. Thus it is evident that under certain circumstances, most 

notably those of intense endurance exercise, the work of breathing and its physiological 

consequences may well contribute to exercise intolerance. 

 

7.2.2 DIAPHRAGM FATIGUE AND THE RESPIRATORY MUSCLE METABOREFLEX: THE 

QUINTESSENCE OF RESPIRATORY MUSCLE LIMITATION TO EXERCISE? 

Exercise-induced diaphragm fatigue is well documented when the exercise 

intensity meets or exceeds approximately 85% 2OV / W max and is sustained to the limit of 

volitional tolerance (Johnson et al. 1993, Babcock et al. 1995, 1996, 1998, 2002). 

However, the functional importance of diaphragm fatigue is questionable. It has been 

argued that diaphragm fatigue causes a gradual reduction in the work performed by the 

diaphragm relative to the entire respiratory system (Figure 7.1), however despite this, 



 217 

inspiratory accessory muscle recruitment is increased which facilitates further increases in 

EV  and maintains arterial blood gas tensions (Johnson et al. 1993). 

 

 

                  

 

 

Figure 7.1 Inspiratory chest wall muscle (Poe; ○) and diaphragm (Pdi ; ●) work performed throughout 

exercise to exhaustion at 95% W max (left) and 85% W max (right). Also shown in both graphics is the 

ratio: ∫Pdi/∫Poe throughout exercise (; Johnson et al. 1993). 

 

The physiological importance of exercise-induced diaphragm fatigue appears to be 

a sympathetically-mediated reflex reduction in locomotor blood flow (Sheel et al. 2001; St. 

Croix et al. 2000) secondary to an increased limb vascular resistance. This attenuates limb 

O2 delivery (Harms et al. 1997) and possibly through an increased reliance upon anaerobic 

processes increases locomotor muscle fatigue (Romer et al 2006). Interestingly, unloading 

the inspiratory work of breathing by up to 50% using a mechanical ventilator during 

intense exercise maintains limb blood flow and performance is improved (Harms et al. 

2000). The mechanisms accounting for this improved performance appear to be both 

centrally and peripherally mediated (Dempsey et al. 2006b). Unloading the inspiratory 

muscles attenuates peripheral locomotor fatigue possibly by an increased O2 delivery and 

decreased reliance upon anaerobic processes (Romer et al. 2006a). It also dampens the 

intensity of both respiratory and limb effort perception (Harms et al. 1997).  
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Recently, it was proposed that a respiratory muscle metaboreflex-mediated increase 

in limb muscle fatigue stimulates chemo and mechanosensitive afferent nerve endings 

(Dempsey et al. 2006b). The functional significance of this, as illustrated in Figure 7.2, is 

an increased perception of limb discomfort and consequently, reflex inhibition of central 

motor output to the locomotor muscles (i.e. an increased central fatigue; Dempsey et al. 

2006b). Thus it appears that respiratory muscle fatigue may not only impair performance 

by exacerbating limb muscle fatigue via a reflex reduction in locomotor perfusion, but may 

also attenuate motor output from the cortical and / or sub-cortical centres to the locomotor 

muscles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Schematic illustration of the possible peripheral and central fatigue influences on exercise 

tolerance caused by exercise-induced respiratory muscle work. Peripheral locomotor fatigue mediated by 

fatiguing respiratory muscle work exacerbates effort perception and possibly attenuates central motor output 

to the exercising limbs (Dempsey et al. 2006b). 

 

Recent evidence supports the notion that locomotor fatigue impairs voluntary 

descending drive via somatosensory feedback (Amann et al. 2006; Amann et al. 2008b, 

2009; Romer et al. 2007b). Prior to a 5 km time-trial, an interspinous ligament injection of 

anaesthesia in to the epidural space (which reduces the ascending activity of nociceptive 

Peripheral / central causes of respiratory muscle 

fatigue-induced limitation to exercise performance 

↑ locomotor muscle  

fatigue 
↑ effort perception ↑ reflex inhibition? 

↓ force production to 

supra-maximal stimulation 

↓ central motor output to 

locomotor muscles 
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and metaboreceptive group III and IV afferents to the somatosensory cortex) increased 

both central motor drive and quadriceps fatigue (reduction in quadriceps twitch force:  

-45%) relative to a placebo control trial (-33%; Amann et al. 2008b). Therefore, it is 

possible that subsequent to the metaboreflex which may exacerbate locomotor muscle 

fatigue, this further impairs performance by reducing central motor drive to the exercising 

limbs.  

The role of lactate in the processes outlined above is unknown. A previous study 

conducted on exercising dogs suggests that lactic acid infusion triggers the metaboreflex 

(Rodman et al. 2003), buts its precise role in attenuating central motor drive subsequent to 

the metaboreflex is equivocal. Lactate is known to increase the firing frequency of group 

III and IV afferent fibres (Balzamo et al. 1992; Graham et al. 1986; Jammes and Balzamo 

1992; Jammes et al. 1986). However, following a 5 km cycling time-trial preceded by 

either high or low-intensity prior exercise, despite a markedly different iEMG (an indicator 

of central motor drive) yet a similar relative reduction in quadriceps force output and 

increase in [lac
-
]B was observed (Amann and Dempsey 2008). This suggests a minimal role 

for lactate as a mediator of central motor drive. It is more likely that lactate has a far more 

important role in determining exercise tolerance via its effect upon acid-base balance 

during sub-maximal exercise and possible role for affecting perceived exertion (see 7.3.4 

and 7.4.3).  

In summary, there is no doubt that central motor output to the locomotor muscles is 

fundamental to the power output achieved during intense exercise. The respiratory muscle 

metaboreflex may contribute to exercise intolerance at very high intensities by both a 

reflex reduction in limb blood flow (and O2 delivery) which increases peripheral muscle 

fatigue and the perceptions of breathing and limb discomfort. The latter may increase 

above a critical sensory tolerance limit and reduce the conscious drive to the locomotor 

muscles. Thus, the respiratory muscle metaboreflex and its physiological and 

psychophysical consequences may well be an important determinant of exercise 
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performance. However, during sub-maximal exercise as is commonly performed during 

competition, diaphragm fatigue does not occur and limb blood flow is preserved (Wetter et 

al. 1999). Under these conditions, the respiratory muscle metaboreflex is unlikely to have 

any bearing upon exercise tolerance. At such intensities, the conscious awareness of 

respiratory motor drive may well be more important (Jones and Killian 2000; Jones 2008). 

This notion is supported by significant reductions in dyspnoea which are observed 

following RMT during whole body-exercise (Edwards et al. 2008; McConnell and Romer 

2004a, b; Romer et al. 2002b; Volianitis et al. 2001) and periods of intense pulmonary EV  

(Chapter 4). 

 

7.3 THE RESPIRATORY MUSCLES AND SYSTEMIC METABOLITES 

7.3.1 CONTRIBUTION OF THE RESPIRATORY MUSCLES TO LACTATE TURNOVER 

 The contribution of the respiratory muscles to systemic lactate kinetics has been 

investigated for many years. Animal studies suggest the diaphragm has a minimal role in 

lactate production (Manohar et al. 1988; Manohar and Hassan 1990, 1991) or may engage 

in lactate consumption (Fregosi and Dempsey 1989). In contrast, human studies suggests 

that above a critical level of pulmonary EV  (~70% MVV), [lac
-
]B increases possibly due to 

an increased recruitment of the less efficient accessory muscles. This was illustrated in 

Chapter 3 when intense volitional hyperpnoea was performed at rest (Freedman et al. 1983; 

Martin et al. 1984; Verges et al. 2007b) and in Chapter 4 when performed upon exercise 

(Johnson et al. 2006). It is important to note that when mimicking the work performed by 

the respiratory muscles, the metabolic response will most likely overestimate that of 

exercise hyperpnoea. Klas and Dempsey (1989) demonstrated that during a voluntary 

mimic task, the expiratory pressures generated exceed those produced during exercise, 

probably because of dynamic compression of the airways during expiration and / or sub-

maximal airway dilation. Therefore, although the findings reported in Chapters 3 and 4 
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extend those of previous studies, a study which mimics precisely the work of breathing of 

very intense exercise hyperpnoea is yet to be completed.  

In Chapter 3, whilst at rest, volitional hyperpnoea resulted in a significant 0.96  

0.58 mmolL
-1 

(range: 0.20 to 2.50 mmolL
-1

,
 
n = 22) increase in [lac

-
]B. In chapter 4, when 

volitional hyperpnoea was imposed upon cycling exercise at the MLSS, [lac
-
]B increased 

by 0.99  0.58 mmolL
-1 

(range: 0.32 to 2.41 mmolL
-1

; n = 20). In previous studies which 

also mimicked the exercise hyperpnoea at rest or when exercising, breathing pattern was 

not controlled which was shown to significantly overestimate the O2 cost of breathing 

relative to exercise hyperpnoea (Coast et al. 1993); subjects were instructed to achieve a 

fixed R (Freedman et al. 1983), VT (Martin et al. 1984), fraction of MVV (Verges et al. 

2007b) or the greatest EV  attainable (Johnson et al. 2006). Although the breathing pattern 

prescribed in Chapters 3 and 4 of the thesis are also likely to overestimate the work of 

breathing relative to exercise hyperpnoea, the oxidative cost was likely to be similar, 

therefore these data extend previous findings that when performing volitional hyperpnoea 

with a breathing pattern matched precisely to that achieved during near-maximal exercise, 

the respiratory muscles are capable of net lactate production and contribute significantly to 

the systemic [lac
-
]B. 

It is clear from the data presented above and in Chapters 3 and 4 that the respiratory 

muscles contribute significantly to systemic lactate turnover. This is in stark contrast to the 

notion that the respiratory muscles are unable to alter systemic lactate kinetics (Wetter and 

Dempsey 2000) and clearly shows that given a high enough level of pulmonary ventilation, 

the respiratory muscles function anaerobically. The functional significance of this is not 

clear at present. It is unlikely that respiratory muscle lactate production affects the lactate 

threshold power output or even 2OV max. It is predicted that the significance of lactate 

production by the respiratory muscle may be twofold. Firstly, lactate produced within the 

fatiguing respiratory muscles is capable of triggering the metaboreflex (Rodman et al. 

2003), thus lactate production by the locomotor muscles may not necessarily be required to 
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initiate this response. Secondly, respiratory muscle lactate efflux may stimulate chemo and 

mechanosensitive afferent fibres which provide important sensory feedback to the brain 

regarding the intensity of breathing discomfort. Thus, respiratory muscle lactate production 

may have a far greater effect upon exercise tolerance during intense exercise than 

previously recognised.  

 The application of these findings to clinical populations is equivocal. The 

ventilatory response to exercise in patients with COPD is well described by an increase in 

EILV and EELV (hyperinflation) and a tachypnoeic breathing pattern where incomplete 

emptying of the lungs follows a forceful inspiration (McConnell 2005). Such a breathing 

pattern reduces the capacity of the inspiratory muscles to generate tension and therefore 

inspiratory flow (LeBlanc et al. 1988) which further increases central motor output and 

thus the sensations of respiratory effort through a heightened corollary discharge. Indeed 

breathlessness is known to be one of the major factors which lead to exercise termination 

in this population (McConnell and Romer 2004b) and the alleviation of this symptom is 

recommended for successful pulmonary rehabilitation programmes (Lotters et al. 2002). 

Importantly, it should be noted that inspiratory muscle strength is lower in patients with 

COPD relative to healthy individuals (Decramer 1989), but how this effects the respiratory 

muscle lactate turnover is unclear. Eastwood et al. (2006) investigated the arterial [lac
-
]B 

response to incremental  inspiratory threshold loading prior to and following specific IMT. 

Prior to training, two of seven subjects demonstrated an increase in [lac
-
]B during ITL 

(absolute increase, range: 0.57 to 1.03 mmol·L
-1

). Following 8 wk IMT, five of the seven 

subjects showed an increase in [lac
-
]B during ITL (absolute increase, range: 0.26 to 1.67 

mmol·L
-1

). Given that only two of the subjects showed an increase in [lac
-
]B prior to IMT, 

and that this response was increased after IMT illustrates that structural and oxidative 

properties of the inspiratory muscles are likely to differ between COPD patients and 

healthy individuals and that training the inspiratory muscles increased their capacity to 

perform an absolute level of anaerobic work. Given that RMT is known to improve 
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exercise tolerance in patients with COPD (Lisboa et al. 1997; Scherer et al. 2000) and 

alleviate the sensations of dyspnoea, it is likely that the improvement in performance in 

this population is more closely related to this (i.e. attenuated hyperinflation and central 

motor output) rather than a mechanism(s) related directly or indirectly to changes in 

systemic [lac
-
]B: since the latter appears to be greater following-IMT. 

 

7.3.2 POSSIBLE SITE(S) OF RESPIRATORY MUSCLE LACTATE EFFLUX  

Data reported in chapters 3 and 4 demonstrate that the respiratory muscles make a 

significant contribution to systemic lactate turnover, however, the precise muscle fibres / 

muscle mass that are responsible for this production and / or release is unknown. The 

respiratory muscles are a complex group of highly co-ordinated skeletal muscles. Studies 

in animals (Fregosi and Dempsey 1989; Manohar and colleagues) and humans (Babcock et 

al. 1995) suggest the diaphragm does not produce lactate. However, the diaphragm 

contains both oxidative and glycolytic muscle fibres (Mizuno and Secher 1989). Therefore, 

with very high ventilations, due to the greater capillary:muscle fibre ratio, smaller diffusion 

distance and increased mitochondrial density relative to other skeletal muscles, the 

diaphragm may partake in simultaneous lactate production and consumption which 

remains undetected within the systemic circulation.  

During intense endurance exercise, accessory inspiratory muscle recruitment is 

increased (Aliverti et al. 1997) as the ratio between the work performed by the diaphragm 

relative to the intercostal muscles is reduced (Figure 7.1; Johnson et al. 1993). The 

morphology of the external intercostals (and possibly other accessory muscles) is very 

similar to the vastus lateralis with up to 40% type II muscle fibres. Given their morphology 

and the velocity of shortening required during intense volitional hyperpnoea, it is attractive 

to speculate that these muscles are the source of at least part of the increase in [lac
-
]B. This 

is supported by the significant correlation between the relative increase in [lac
-
]B and the 

relative breathing intensity of volitional hyperpnoea (Chapter 4; Johnson et al. 2006; 
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Martin et al. 1984). The expiratory muscles may also contribute to the [lac
-
]B during 

volitional hyperpnoea. Direct evidence for this is not forthcoming, but fatigue of the 

abdominal muscles prior to exercise was shown to significantly increase [lac
-
]B relative to 

a control trial (isotime trial: 7.8  1.7 mmolL
-1 

vs. expiratory muscle fatigue trial: 9.8  2.0 

mmolL
-1

; Taylor and Romer 2007) although the greater peak expiratory Pga was coupled 

with a significantly greater R and EV . Thus it is clear that the hitherto notion which failed 

to acknowledge the respiratory muscles as significant lactate producers is misleading and 

that the inspiratory and probably the expiratory muscles are likely sources for both net 

lactate production and release during intense pulmonary ventilation.  

A possibility exists, however, that muscles distal to the respiratory muscle are 

responsible for the increase in systemic [lac
-
]B during intense volitional hyperpnoea. For 

example, it may be that the work performed by the respiratory muscles during intense 

volitional hyperpnoea activates the respiratory muscle metaboreflex. A reflex reduction in 

limb blood flow would conceivably increase the locomotor glycolytic flux and therefore 

lactate production. Indeed, 8 min volitional hyperpnoea performed whilst at rest with a 

similar intensity to that used in this study (70% MVV, breathing pattern not controlled) 

resulted in diaphragm fatigue (Renggli et al. 2008). However, it is very unlikely that there 

is an increase in locomotor lactate production secondary to a volitional hyperpnoea-

mediated metaboreflex since maximal exercise (with a significantly increased inspiratory 

muscle work), which causes a reflex reduction in locomotor blood flow does not 

significantly affect the arterial or femoral venous [lac
-
]B (arterial [lac

-
]B: 8.83  0.33 

mmolL
-1

, femoral venous [lac
-
]B: 9.39  0.29 mmolL

-1
; Harms et al. 1997). Furthermore, 

specific breathing challenges such as resistive breathing (30% MIP) and volitional 

hyperpnoea (VT: 1.5 L, R: 45 breathsmin
-1

) with near-maximal levels of inspiratory motor 

output also fail to affect limb vascular resistance, locomotor perfusion and therefore O2 

delivery (Sheel et al. 2002; St. Croix et al. 2000). Collectively these data suggests that the 
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changes in [lac
-
]B  throughout volitional hyperpnoea are not a result of an increased 

glycolytic flux and lactate release within / from non-respiratory tissues.  

 

7.3.3 INSPIRATORY MUSCLE TRAINING AND SYSTEMIC LACTATE KINETICS 

Numerous studies have reported reductions in [lac
-
]B during whole-body exercise 

following RMT (for example: Griffiths and McConnell 2007; Leddy et al. 2007; 

McConnell and Sharpe 2005; Romer et al. 2002b; Spengler et al. 1999; Tong et al. 2008 

Volianitis et al. 2001). However, whether the respiratory muscles are, in part, the source of 

these reductions was until now, less well understood.  

Chapters 3 and 4 clearly illustrate that IMT attenuates the volitional hyperpnoea-

mediated increase in [lac
-
]B and steady state [lac

-
]B. In Chapter 5, a significantly lower [lac

-

]B was also observed at the cessation of maximal exercise following IMT. The data 

presented in this thesis are the first to show (indirectly) that the trained inspiratory muscles 

are, in part, the source of the reductions in [lac
-
]B observed during volitional hyperpnoea, 

whole-body exercise and post-exercise recovery. Interestingly, the reductions in [lac
-
]B 

occur with near-maximal (Chapters 3 and 4: ~135 Lmin
-1

) and maximal (Chapter 5: ~160 

Lmin
-1

) levels of EV , suggesting that the reductions were probably because the respiratory 

muscles produced less lactate. Interestingly however, significant reductions in [lac
-
]B were 

also observed during steady-state exercise at the MLSS and throughout recovery from 

exercise where EV  was sub-maximal (Chapter 4: ~70 Lmin
-1

) and/or similar to rest 

(Chapter 5: ~20 Lmin
-1

), respectively. These findings suggest that the reductions in [lac
-
]B 

which occur at low ventilations are likely due to net lactate uptake by the respiratory 

muscles.  
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7.3.4 POSSIBLE SITE(S) OF RESPIRATORY MUSCLE LACTATE CLEARANCE 

The specific site(s) which account for the reductions in [lac
-
]B are unknown. In 

Chapter 4, a significant correlation was reported between the increase in MIP and the 

reduction in [lac
-
]B and novel findings presented in Chapter 6 suggests that the greatest 

improvements in MIP following IMT occur in those subjects with the greatest increase in 

chest wall muscle strength. Thus it is attractive to speculate that the chest wall inspiratory 

muscles increase their contribution to lactate turnover following IMT. This is supported by 

muscle biopsy analyses of the external intercostals following 5 wk IMT (Ramírez-

Sarmiento et al. 2002) which show a significant increase in the proportion and size of type 

I and II muscles fibres, respectively.  

Physiological adaptations following IMT do not only target the chest wall muscles. 

Increases in diaphragm thickness (e.g. Downey et al. 2007) and maximal volitional Pdi 

(Chapter 6) are observed following IMT. In animal studies, chronic loading of the 

diaphragm causes an increase in cytochrome-c oxidase activity (Akiyama et al. 1994, 

1996) which is fundamental to complex III and IV of the electron transport chain. Thus it 

appears that accessory inspiratory muscles and the diaphragm are probably responsible for 

the reductions in [lac
-
]B following IMT, although the relative contribution of each is 

unknown. Whether expiratory muscle training (EMT) has similar effects upon [lac
-
]B is 

unlikely since both EMT and combined IMT / EMT  do not affect systemic [lac
-
]B during 

either an incremental or an all-out rowing ergometer test (Griffiths and McConnell 2007). 

 

7.3.5 IMT-MEDIATED REDUCED BLOOD LACTATE CONCENTRATION: EFFECTS UPON 

EXERCISE TOLERANCE 

Reductions in [lac
-
]B following IMT may well contribute to improvements in 

whole-body exercise tolerance. During intense exercise above 85% 2OV max, fatiguing 

diaphragm contractions and the accumulation of respiratory muscle metabolites activate 

both group III and IV phrenic nerve afferents causing a sympathetically-mediated increase 
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in limb vascular resistance. The findings of Chapters 3 and 4 demonstrated that high levels 

of pulmonary ventilation promote respiratory muscle lactate release (and presumably 

accumulation) which is known to stimulate phrenic nerve afferent fibres (Balzamo et al. 

1992; Graham et al. 1986; Jammes and Balzamo 1992; Jammes et al. 1986). In support of 

this, Rodman et al. (2003) injected a bolus of lactic acid in to the exercising canine 

diaphragm through the phrenic artery and observed a transient reduction in limb blood 

flow secondary to an increased vascular conductance. Thus it appears that lactate may well 

be an important dose-dependent metabolite which contributes to the activation of the 

respiratory muscles metaboreflex. Therefore, an IMT-mediated reduction in respiratory 

muscle lactate production (and therefore accumulation) may attenuate phrenic afferent 

discharge, preserving limb blood flow and improving exercise tolerance (Harms et al. 

2000; Romer et al. 2006a).  

Notwithstanding this, many performance improvements following IMT occur at 

sub-maximal intensities (McConnell and Romer 2004a) during which respiratory muscle 

lactate production is negligible (Chapter 4) and diaphragm fatigue / the metaboreflex does 

not occur (Wetter et al. 1999). Since following IMT both critical power (Johnson et al. 

2007) and MLSS (McConnell and Sharpe 2005; Chapter 4) remain unchanged, the most 

likely mechanisms by which an IMT-mediated reduction in [lac
-
]B affects whole-body 

exercise performance are twofold. Firstly, favourable changes in acid-base balance may 

reduce the stimulation of both locomotor and respiratory muscle afferent nerves and the 

perception of breathing and locomotor effort. This notion is supported by Romer et al. 

(2002b) who observed a significant correlation between the IMT-mediated relative 

reduction in total recovery time throughout a repeated sprint trial and the relative change in 

RPE, dyspnoea and [lac
-
]B. The intensity of locomotor and breathing effort perception is 

suggested to be a major determinant of sub-maximal exercise tolerance, since despite a 

different origin, they are both appraised within the sensory cortex (Jones and Killian 2000; 

Presland et al. 2005). Secondly, it appears that the time taken to reach a metabolic steady 
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state is faster following IMT which is coupled with a speeding of the pulmonary oxygen 

uptake kinetics. This suggests that an IMT mediated reduction in [lac
-
]B also reduces part 

of the metabolic inertia experienced at the onset of exercise. This may provide a possible 

explanation for the improved performance during whole-body exercise following IMT, 

particularly in studies where the criterion exercise test has involved repeated bouts of short 

duration intense sprinting (Romer et al. 2002b; Tong et al. 2008). However, how does this 

affect the elite athlete? It could be hypothesised that the ergogenic effects of IMT are 

magnified in highly trained individuals relative to their sedentary counterparts. This notion 

is based on studies which illustrated that the ventilatory demand of well trained individuals 

is greater relative to the untrained (Babcock et al. 1996) and that the strength of the 

inspiratory muscles in unaffected by whole body training (Dempsey 1986). Thus, all other 

systems devoted to oxygen transport and utilisation are improved with training, yet the 

respiratory muscle remain surprisingly unchanged. Notwithstanding this, chronic 

endurance training is positively related to measures of dynamic pulmonary function 

(Eastwood et al. 2001). Despite this latter finding, given that the strength of the inspiratory 

muscle remains unchanged following whole body endurance training the greater 

ventilatory demand of elite athletes would likely result in an increase in [lac
-
]B similar to 

that presented in the experimental chapters of this thesis with moderate to well trained 

individuals. It would also be anticipated that these athletes would experience a similar 

reduction in [lac
-
]B following IMT. Thus, if a change in the systemic [lac

-
]B is responsible, 

in part, for the improvement in performance (regardless of the specific mechanism[s]) 

following IMT, this may also be magnified.  

 

7.3.6 EFFECTS OF AGE, SEX AND NUTRITIONAL INTERVENTIONS 

Non-respiratory skeletal muscle demonstrates functional weakening with age which 

can be reversed with resistance strength training (Folland and Williams 2007). Non-

respiratory, knee extensor muscles show significant improvements in strength and cross 
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sectional area (>9.8%) following 8 wks high-intensity resistance strength training 

(Harridge et al. 1999). Similar to the limb muscles, recent evidence also demonstrates that 

the inspiratory muscles are weakened with age. Britto et al. (2009) revealed that in three 

groups of subjects matched for height aged from 20 to 59 (group 1), 60 to 69 (group 2) and 

70+ yrs (group 3), MIP was significantly greater in group 1 (92  43 cmH2O) relative to 

groups 2 and 3 (54  32 cmH2O). Despite the reduction in MIP with age, Watsford and 

Murphy (2008) observed a significant increase in MIP following 8 wk IMT (+22%) as well 

as a 12% improvement in sub-maximal treadmill performance in elderly subjects (age: 60 

to 69 yrs). Also a 5% reduction in exercising heart rate and 8% reduction in RPE were 

observed.  These novel findings demonstrate the plasticity and possible ergogenic effects 

of IMT even in elderly populations. The application of the hypotheses of this thesis (see 

section 1.9) to elderly populations are however, difficult since no such study has 

investigated the effects of IMT upon the whole body [lac
-
]B in elderly individuals. It has 

been suggested that the ageing process promotes fibre type transformation from type II to 

type I (Maharam et al. 1999) and that whole body endurance training may offset this 

(Hawkins and Wiswell 2003). Given that the exercising breathing pattern does not change 

with age (Watsford and Murphy 2008) suggests that so long as the relative ventilatory 

demand exceeds ~70% MVV and the individual has participated in chronic whole body 

exercise training requiring high levels of hyperpnoea similar increases in [lac
-
]B relative to 

those reported in Chapters 3 and 4 are likely to be observed. Furthermore, given the 

plasticity of skeletal muscles following resistance training in the elderly (Watsford and 

Murphy 2008) also suggest that any hyperpnoea-mediated increase in [lac
-
]B may also be 

attenuated following IMT.  

 The role of IMT in female participants is also equivocal since there is a paucity of 

studies focusing specifically on this population group. Studies have shown that the relative 

increase in MIP following IMT is similar between sexes (McConnell and Lomax 2006; 

Guenette et al. 2006). Guenette et al. (2006) also observed no difference between males or 
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females in the improvement in time to the limit of tolerance (80% W max) following 5 wk 

IMT (relative improvement in males: 14%; females: 18%, P>0.05). Notwithstanding this, 

it is well document that when matched for chest volume, females have smaller lung 

volumes, slower expiratory flow rates, narrower airways and a reduced diffusion distance 

within the alveoli walls (Sheel et al. 2004). In particular, the smaller airways in females 

increases the resistive work of breathing for a given absolute ventilatory demand most 

likely due to a greater R (Guenette et al. 2009). Given the smaller lung volumes yet 

similar inspiratory and expiratory reserve volumes, females present themselves with a 

unique ventilatory challenge which increases their risk of expiratory flow limitation 

(McClaran et al. 1998). Expiratory flow limitation promotes hyperinflation and markedly 

increases the work of breathing and may attenuate cardiac output and thus limb O2 delivery 

(Aleverti et al. 2005). Whether IMT would attenuate such effects remains unknown, 

however, Romer et al. (2002c) reported a non-significant reduction in EELV following 

IMT throughout maximal incremental exercise; thus, this remains to be confirmed. In 

addition to an increased prevalence of flow limitation, the smaller lung volumes of females 

increases the incidence and severity of exercise induced arterial hypoxeamia (EIAH); 

indeed, flow limitation and EIAH are correlated in female athletes (P<0.05; Walls et al. 

2002). The precise cause of EIAH is unknown, although is has been proposed that it is due 

to i) an increase in the alveolar-arterial O2 difference likely due to ventilator-perfusion 

inequality, ii)  an insufficient PO2 in the alveoli due to a relative hypoventilation and/or  

iii) a rightward shift in the O2Hb dissociation curve due to metabolic acidosis (Dempsey 

and Wagner 1999). Of these possible mechanisms, IMT is unlikely to affect the first two. 

However, it may well indirectly affect the third. A right shift in the O2Hb dissociation 

curve is caused by an increase in arterial [H
+
] (i.e. a decreased pH) and increased body 

temperature.  If using the physicochemical approach to evaluate such a mechanism, it is 

possible that IMT would attenuate the systemic [lac
-
]B and thus increase the [SID]. This 

would attenuate the [H
+
] and increase pH, offsetting the right shift in the O2 dissociation 
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curve. Whether this hypothetical mechanism would occur in female athletes is unknown, 

although given that the changes in performance following IMT are similar between males 

and females supports this notion. 

To date, no study has investigate the role of nutritional supplements, such as 

carbohydrate loading, protein or creatine in conjunction with IMT: thus the effects upon 

inspiratory muscle strength gains remain unknown. Following exercise, protein breakdown 

and synthesis are both increased, but protein balance remains negative (Wolfe 2000). Ingestion 

of carbohydrate stimulates insulin release, which increases protein synthesis at rest and 

attenuates protein breakdown following exercise (i.e. improving protein balance; Wolfe 2001). 

However, a positive protein balance is only possible with the provision of amino acids (both 

prior to, during and following exercise; Tipton and Wolfe 2004). Amino acids promote and 

provide building blocks for protein synthesis and reduce protein degradation. This would 

ensure an anabolic rather than catabolic environment enhancing muscle protein accretion 

(Koopman et al. 2007). Low frequency fatigue (LFF) of the diaphragm is well documented in 

the human diaphragm (see section 1.5.3), whereby reductions in force are most likely due to 

structural changes in sarcomere proteins involved in excitation-contraction coupling. Thus the 

time course of recovery of LFF represents the repair or re-synthesis of these proteins. During 

IMT where intense inspirations are performed against moderate to high resistances, LFF is 

likely to occur. This suggests that protein and/or carbohydrate supplementation may well 

facilitate recovery by improving protein balance, therefore enhancing force output in 

subsequent training sessions and improving strength gains following IMT. Recent evidence 

also suggests that protein supplementation immediately prior to resistance training may further 

improve strength gains possibly because of increased blood flow throughout training, therefore 

increased transport of amino acids and carbohydrates to the exercising muscles (Candow and 

Chilibeck 2008). Such a strategy may further improve the recovery of the inspiratory muscles 

during and following IMT and thus inspiratory muscle strength gains. Creatine monohydrate 

supplementation has also been shown to improve isotonic force output following resistance 

training regimens (Bemben and Lamont 2005). This supplement may improve the recovery of 
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the inspiratory muscles during IMT by increasing the immediate energy stores responsible for 

resynthesising ATP. Notwithstanding these additional improvements in MIP that may or may 

not occur when combining nutritional supplements with IMT, the added ergogenic effect on 

whole body performance is likely to be negligible as improvements in MIP and performance 

are not correlated (Johnson et al. 2007; Romer et al. 2002c) and may well be dependent upon 

the strength of the chest wall inspiratory muscles (see Chapter 6). Thus the added benefit of 

such strategies warrants further attention and clarification.  

 

7.4 ACID-BASE BALANCE 

7.4.1 HISTORICAL PERSEPCTIVE 

„Traditionally‟, exercise-induced acid-base disturbances were quantified by the 

Hendersen-Hasselbalch equation which was first described in 1907 (Jones 2008; Sirker et 

al. 2002) where  23 CO0.03]/[HCO logpH PpK 


. This equation implies that the 

dissociation constant (pK) of carbonic acid is the control system for pH where HCO3
-
 and 

PCO2 represent the metabolic and respiratory influences upon acid-base balance, 

respectively (Sirker et al. 2002). However, since [HCO3
-
] is affected by changes in PCO2, 

this equation fails to reliably quantify metabolic disturbances. Although the equation 

expresses a valid quantified relationship, it is more descriptive than mechanistic and does 

not imply a physiological control system (Jones 2008). 

In contrast, the „modern‟ physicochemical approach developed by Stewart (1983), 

quantifies the mechanisms that cause changes in pH within a given compartment. During 

exercise, this model identifies the importance of electrolyte balance, fluid shifts and events 

which occur within the respiratory, circulatory and skeletal muscle systems (Putman et al. 

2003). Within each compartment, [H
+
] and [HCO3

-
] are considered dependent variables 

and are determined by the equilibrium state reached between the independent variables: 

[SID], PCO2 and [Atot
-
] (Jones 2008). Each independent variable is constrained by physical 

laws including its disassociation constant in water (pK), the laws of conservation of mass 
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() and electrical neutrality (Q; Figure 7.3). Therefore, to summarise, the physicochemical 

approach appears to be, at present, the most robust method available to quantify the 

mechanisms which account for changes in acid-base balance in healthy exercising subjects. 

Consequently, its application has received a great deal of support from leading 

physiologists (Gladden 2008; Jones 2008; Kowalchuck and Scheuermann 1995; Lindinger 

1995).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Determinants of plasma pH according to Stewart‟s physicochemical approach (Sirker et al. 2002; 

Stewart 1983). * from Staempfli and Constable (2003). pK, dissociation constant: pK1, 2 and 3, dissociation 

constant for carbonic acid, water and weak acids, respectively; Q, net electric charge; , conservation of 

mass; Hb, haemoglobin; H2CO3, carbonic acid; H2O, water. 

 

7.4.2 PHYSICOCHEMICAL INTERACTIONS DURING EXERCISE 

At the onset of exercise, many changes occur with respect to fluid volumes, 

metabolite and ion concentrations. In brief, water, Na
+
 and Cl

-
 ions shift into the muscles in 

exchange for K
+
, lactate and metabolic CO2; these processes serve to increase intracellular 

[SID] and attenuate the rise in intramuscular [H
+
] (McKenna et al. 1997). The influx of 

water increases interstitial and muscle volume and dilutes the metabolite and ion 
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concentrations in these compartments; although this subsequently increases the 

concentration of these ions and [Atot
-
] in the plasma. The erythrocyte also plays an 

important function with respect to lactate, K
+
, Cl

- 
and PCO2 storage/exchange (Jones 2008; 

Putman et al. 2003). During exercise, regulatory mechanisms are activated to restore 

intracellular and interstitial homeostasis at the expense of the plasma compartment. Thus, 

efficient regulation of plasma acid-base balance can have a marked effect upon the 

regulation of intracellular [H
+
] (McKenna et al. 1997; Putman et al. 2003). 

 During recovery from exercise, the exchange of strong ions, CO2 and water 

between the intra- and extracellular compartments (Kowalchuck et al. 1988) function to 

restore acid-base homeostasis (Lindinger et al. 1992). Following exercise, the recovery of 

plasma electrolytes is relatively fast, with values similar to rest within ~10 min 

(Kowalchuck et al. 1988; Chapter 5). However, the recovery of lactate is much slower 

(>90 min) clearly demonstrating its importance in affecting the post-exercise plasma [SID] 

(Lindinger et al. 1992).  

 

7.4.3 REDUCED SYSTEMIC LACTATE AND PLASMA ACID-BASE BALANCE 

There is a dearth of literature reporting the physicochemical mechanisms 

responsible for changes in acid-base balance following whole-body training (McKenna et 

al. 1997; Putman et al. 2003). The data presented in Chapter 5 are the first to have 

examined the mechanisms which are responsible for changes in acid-base balance after 

maximal exercise following specific IMT. Putman et al. (2003) reported significant 

changes in ion and water flux regulation following just 1 wk of sub-maximal endurance 

training 2 hday
-1

 at 60% 2OV max. After-training and during exercise at 75% 2OV max, 

arterial and venous [H
+
] was lower relative to pre-training values by ~5 nmolL

-1
 due to a 

smaller decrease in [SID] and a lower [Atot
-
]. At this intensity, the smaller decrease in 

[SID] was accounted for by a lower intramuscular lactate concentration, K
+
 efflux from the 
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intramuscular space and greater erythrocyte lactate and Cl
-
 uptake. The lower arterial and 

venous [Atot
-
] was accounted for by a lower influx of water. 

The data presented in Chapter 5 are in stark contrast to those of Putman et al. 

(2003) as following IMT, lactate was the only physicochemical parameter which changed. 

As a consequence, the increase in [SID] (and lower [H
+
]) throughout recovery from 

maximal exercise following IMT was almost exclusively attributed to the lower [lac
-
]B. 

Therefore, it appears that following IMT, reductions in [lac
-
]B during and following 

exercise have an important role in determining plasma acid-base balance since there does 

not appear to be any changes in any other independent variable within the plasma. Whether 

there are changes in any other physicochemical parameter within the respiratory muscles 

per-se remains to be investigated, although ethical and methodological constraints would 

limit such studies to animal models. These data therefore present an important milestone in 

the understanding of the role of IMT and changes in systemic [lac
-
]B in the regulation of 

whole-body acid-base homeostasis.  

The wider implications of these findings may be applicable to sports performance. 

A lower [lac
-
]B and [H

+
] are associated with improved performance (Edge et al. 2006). 

Therefore, following IMT, the use of a low intensity inspiratory resistance may speed 

recovery and facilitate subsequent performance. Such a technique may be applicable to 

athletes who have limited space to recover actively following exercise. This may include 

sports such as swimming or when athletic heats are performed. In addition, this technique 

may be relevant to wheelchair bound sports. Furthermore, that following IMT, reductions 

in [lac
-
]B are correlated with reductions in recovery time during a repeated sprint test 

(Romer et al. 2002b), accelerating recovery processes by using inspiratory loading may 

also be beneficial to speed recovery between repeated sprint exercise. This would be 

applicable for intermittent sports such as hockey where rolling substitutions are used 

throughout or soccer and rugby, where a fixed duration half-time break is employed.  
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7.5 EFFECTS OF BASELINE INSPIRATORY MUSCLE STRENGTH 

Following inspiratory muscle training, some studies report large improvements in 

inspiratory muscle strength (~30 to 40%; Romer et al. 2002b; Volianitis et al. 2001), where 

as others are far more modest (~10 to 20%; Johnson et al. 2007; Sonetti et al. 2001). In 

Chapter 6 (Experiment 2), approximately 40% of the between-subject variation in the 

improvements in MIP was explained by the baseline status, which in itself was determined 

by the pattern of relative chest wall muscle recruitment (expressed by the ratio: Poe/Pdi). 

Furthermore, following 4 wk IMT a significant positive correlation was observed between 

the relative increase in Poe/Pdi and the increase in MIP illustrating that the greater 

maximal pressure generating capacity of the chest wall inspiratory muscles permitted a 

greater pressure generation by the diaphragm (Hershenson et al. 1988). It also appears that 

the IMT-mediated improvements in MIP are determined by the degree to which the 

baseline inspiratory muscle strength exceeds its predicted value. In Chapter 6, 8 of 38 

subjects failed to demonstrate an improvement in MIP following 4 wk IMT. 

The functional importance of these relationships is unknown particularly since the 

contribution of the diaphragm to inspiratory pressure development is inversely related to 

the exercise intensity (Aliverti et al. 1997; Johnson et al. 1993). Although subjects with 

weaker chest wall inspiratory muscles (and thus MIP) show the largest improvement in 

MIP following IMT, the likelihood of this translating into a superior performance gain is 

small, since performance improvements following IMT and increases in MIP are not 

correlated (Johnson et al. 2007; Romer et al. 2002c). Furthermore, whether having weaker 

chest wall inspiratory muscles increases the possibility of a relative hypoventilation during 

exercise and the development of conditions such as exercise induced arterial hypoxemia is 

also unknown.  However, in Chapter 4 a significant correlation was reported between the 

IMT-mediated increase in MIP and the reductions in [lac
-
]B during volitional hyperpnoea 

and in Chapter 5, between the relative increase in MIP and the increase in [SID] at the 
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point of maximal exercise termination. Therefore, this relationship may well be more 

important for the RMT-mediated changes in systemic acid-base balance. 

Collectively these findings suggests that future studies who aim to reveal a 

homogenous response to IMT with regard to changes in MIP or other dependent variables 

should strive to employ a group with similar levels of inspiratory muscle strength. 

Furthermore, when designing an IMT study, in order to maximise the potential of 

observing a positive response and avoiding a type II error, recruiting a cohort of subjects 

with a low MIP may be more beneficial than a group with a high baseline MIP since their 

capacity for adaptation may be limited. 

 

7.6 LIMITATIONS AND FUTURE PERSPECTIVES 

In Chapters 3 and 4 volitional hyperpnoea was imposed upon exercise under resting 

conditions and superimposed upon cycling exercise at the MLSS. Throughout volitional 

hyperpnoea, subjects were instructed to mimic their spontaneous exercise breathing 

pattern. Although, the methods used within Chapters 3 and 4 are more applicable to 

endurance exercise than those of previous studies, it is likely that physiological responses 

were overestimated (see section 7.3.1). Future studies should attempt to precisely mimic 

during volitional hyperpnoea the inspiratory and expiratory pressure swings and the 

operating lung volumes achieved during exercise to identify the true respiratory muscle 

contribution to systemic lactate kinetics. 

The pre-intervention data presented in Chapters 3 and 4 show that intense volitional 

hyperpnoea increases [lac
-
]B, however, the precise source(s) of this increase remains 

unknown. Since expiratory muscle work is artificially increased during volitional 

hyperpnoea (Klas and Dempsey 1989), breathing with and without a less dense gas mixture 

such as heliox would allow the quantification of the contribution of abdominal work (and 

the associated increase in flow limitation) to changes in [lac
-
]B during intense endurance 

exercise. Mimicking independently the pressures generated by the diaphragm, chest wall 
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and / or abdominal muscles that were achieved during intense exercise and measuring the 

subsequent metabolic response may also provide insight into their individual contribution 

to lactate turnover. During volitional hyperpnoea and with inspiratory muscle loading 

following exercise, sampling blood from an artery distal to the respiratory muscles and the 

phrenic, intercostal and deep circumflex vein / vena cava would provide useful information 

regarding the contribution of these muscles to systemic lactate turnover. A negative or 

positive difference in the venous and arterial [lac
-
]B would indicate net lactate release or 

consumption, respectively. Additionally, injection and analyses of stable (lactate) isotopes 

would also provide invaluable information regarding respiratory muscle lactate production 

and oxidation during volitional hyperpnoea and recovery both prior to and following RMT. 

For example, administration of labelled isotopes such as [1-
14

C]lactate and subsequent 

analysis of uniformely radiolabelled 2

14COV can provide a reliable measure of lactate 

oxidation (Brooks and Gaesser 1980). 

In Chapters 3, 4 and 5, significant reductions in systemic [lac
-
]B were observed 

following IMT. It is likely that these reductions were mediated by a reduction in lactate 

production with a high EV  and / or by lactate consumption with low EV . The precise 

mechanisms which result in these changes, however, remain unknown. Future study would 

benefit from muscle biopsy analyses of the respiratory muscles following IMT with 

immuno-histochemical analyses of muscle fibre types, enzyme activity and MCT protein 

expression. Although tissue sampling techniques for the respiratory muscles are inherently 

restricted by their small size and proximity to essential organs, techniques are available to 

achieve such goals for both the human diaphragm (Nguyen et al. 2000) and external 

intercostals (Ramírez-Sarmiento et al. 2002). Such analyses may provide further evidence 

of respiratory muscle plasticity following IMT and the possible enzymatic and 

morphological mechanisms which contribute to a lower [lac
-
]B.  

The protection of plasma acid-base homeostasis is considered essential for whole 

body exercise tolerance (Putman et al. 2003). In Chapter 5, a significant reduction in 
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plasma [H
+
] was observed following IMT when low intensity inspiratory muscle loading 

was performed which was accounted for by the increase in [SID]. It would be interesting to 

investigate whether similar observations occur with expiratory muscle loading since the 

muscle mass of the expiratory muscles is far greater than their inspiratory counterparts. 

Furthermore, given the inverse relationship between [H
+
] and performance, an-IMT 

mediated reduction in [H
+
] during recovery from bouts of high-intensity exercise with the 

addition of a low-intensity inspiratory resistance may serve to improve subsequent 

performance. This hypothesis certainly provides a novel avenue for future study.  

The mechanisms responsible for the improvements in whole-body exercise 

performance following RMT are not well understood. One possible mechanism is an IMT-

mediated attenuation of exercise-induced diaphragm fatigue and subsequent activation of 

the respiratory muscle metaboreflex. Such a mechanism may improve locomotor muscle 

perfusion and exercise tolerance. Previous studies have reported a reduction in exercise-

induced diaphragm fatigue following RMT (Romer et al. 2002a; Verges et al. 2007b). IMT 

was also reported to attenuate the sympathetic efferent response triggered by fatiguing 

diaphragm work (McConnell and Lomax 2006; Witt et al. 2007). Notwithstanding this, one 

key question which remains is whether specific IMT attenuates locomotor muscle fatigue 

following intense exercise. Future studies should be performed to investigate the role of 

IMT upon locomotor muscle fatigue following time-trial exercise and intense exercise to 

exhaustion as assessed by supramaximal stimulation of the femoral nerve. 

Finally, in Chapter 6, a significant relationship was observed between the relative 

strengths of the chest wall muscles and the global inspiratory muscle strength (MIP). In 

other words, the lower the strength of the chest wall muscles, the lower the global force 

generating capacity of the inspiratory muscles. Similarly, following IMT, the largest 

increases in MIP were observed in subjects who enjoyed the greatest increase in the 

contribution of relative chest wall muscle recruitment. Although the ratio of Poe/Pdi 

provides an indication of the pressure generated between diaphragm vs. non-diaphragmatic 
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muscles, it does not provide information regarding the precise non-diaphragmatic muscles 

which are active throughout the inspiratory effort. For example, it is well known that 

accessory muscles within the neck (i.e. the scalenes and sternocleidomastoids) are tonically 

active during a Müeller manoeuvre. The change in muscle recruitment and / or synchrony 

in the chest and neck muscles would also be an interesting avenue for future research. 

Attempts to measure inspiratory muscle EMG were made in Chapter 6 (data not shown), 

however, the between-day coefficient of variation was poor (>30%) and did not provide an 

insight into IMT-mediated changes in inspiratory muscle recruitment. Whether the 

relationships observed between the strength of the chest wall inspiratory muscles and MIP 

determine the ergogenicity and / or physiological consequences of RMT remains 

equivocal. However, if this were a functional relationship, future study should aim to 

recruit participants with a similar baseline MIP and relative chest wall activation thus 

revealing the true effects of baseline inspiratory muscle strength and RMT upon exercise 

tolerance. Indeed, a large scale study recruiting participants who have a variety of baseline 

MIP measures is warranted to determine whether there are responders and non-responders 

to IMT and the mechanisms that may potentially explain this phenomenon.  
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Abstract Although reduced blood lactate concentrations

([lac-]B) have been observed during whole-body exercise

following inspiratory muscle training (IMT), it remains

unknown whether the inspiratory muscles are the source of at

least part of this reduction. To investigate this, we tested the

hypothesis that IMT would attenuate the increase in [lac-]B

caused by mimicking, at rest, the breathing pattern observed

during high-intensity exercise. Twenty-two physically

active males were matched for 85% maximal exercise min-

ute ventilation _VE max
� �

and divided equally into an IMT or

a control group. Prior to and following a 6 week intervention,

participants performed 10 min of volitional hyperpnoea at

the breathing pattern commensurate with 85% _VE max : The

IMT group performed 6 weeks of pressure-threshold IMT;

the control group performed no IMT. Maximal inspiratory

mouth pressure increased (mean ± SD) 31 ± 22% follow-

ing IMT and was unchanged in the control group. Prior to the

intervention in the control group, [lac-]B increased from

0.76 ± 0.24 mmol L-1 at rest to 1.50 ± 0.60 mmol L-1

(P \ 0.05) following 10 min volitional hyperpnoea. In the

IMT group, [lac-]B increased from 0.85 ± 0.40 mmol L-1

at rest to 2.02 ± 0.85 mmol L-1 following 10 min voli-

tional hyperpnoea (P \ 0.05). After 6 weeks, increases in

[lac-]B during volitional hyperpnoea were unchanged in the

control group. Conversely, following IMT the increase

in [lac-]B during volitional hyperpnoea was reduced

by 17 ± 37% and 25 ± 34% following 8 and 10 min,

respectively (P \ 0.05). In conclusion, increases in [lac-]B

during volitional hyperpnoea at 85% _VE max were attenuated

following IMT. These findings suggest that the inspiratory

muscles were the source of at least part of this reduction, and

provide a possible explanation for some of the IMT-medi-

ated reductions in [lac-]B, often observed during whole-

body exercise.

Keywords Respiratory muscle training � Diaphragm �
Intercostal muscles � Blood lactate concentration �
Hyperventilation

Introduction

Specific respiratory muscle training (RMT) can be per-

formed using voluntary isocapnic hyperpnoea (VIH), flow-

resistive loading, or pressure-threshold loading; with the

exception of VIH, these are commonly referred to as

inspiratory muscle training (IMT). Ventilatory endurance is

enhanced with all three techniques, whereas IMT also

increases diaphragm thickness (Downey et al. 2007;

Enright et al. 2006) and the maximal strength, shortening

velocity and power of the inspiratory muscles (for a full

review see McConnell and Romer 2004). Furthermore,

well controlled studies have shown improvements in

endurance exercise performance following both IMT

(Gething et al. 2004; Griffiths and McConnell 2007;

Johnson et al. 2007; Romer et al. 2002a; Volianitis et al.

2001) and VIH (Leddy et al. 2007).

The mechanisms underlying such performance

improvements remain speculative but may include reduced

perception of effort (Downey et al. 2007; Gething et al.

2004; Griffiths and McConnell 2007; Romer et al. 2002a;

Verges et al. 2007; Volianitis et al. 2001) and possibly
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reductions in both diaphragm fatigue (Verges et al. 2007)

and an associated metaboreflex that attenuates limb blood

flow (McConnell and Lomax 2006; Witt et al. 2007). The

notion that genuine physiological adaptation explains, in

part, RMT-mediated improvements in endurance exercise

performance is further supported by the frequently

observed reduction in blood lactate concentration ([lac-]B)

during whole-body exercise following both IMT (Griffiths

and McConnell 2007; McConnell and Sharpe 2005; Romer

et al. 2002b; Volianitis et al. 2001) and VIH (Leddy et al.

2007; Spengler et al. 1999). Furthermore, correlations have

been reported between reductions in [lac-]B and perfor-

mance improvements following RMT (Romer et al. 2002b;

Spengler et al. 1999), with up to 52% of the variation in

performance being attributed to the reduced [lac-]B (Ro-

mer et al. 2002b).

The mechanism(s) by which RMT reduces [lac-]B

remains equivocal. An RMT-mediated change in minute

ventilation _VE

� �
; which may conceivably alter both the

work of breathing and acid base balance, is an unlikely

mechanism since reductions in [lac-]B following RMT

have been observed irrespective of whether _VE is lower

(Leddy et al. 2007), unchanged (McConnell and Sharpe

2005; Spengler et al. 1999; Volianitis et al. 2001), or

increased (Kohl et al. 1997). The concept that RMT-med-

iated respiratory muscle adaptations explain, in part, that

the reductions observed in [lac-]B remains contentious: the

small size of these muscles and observations, that loading

and unloading of the respiratory muscles during exercise

fails to influence systemic [lac-]B, argue against this pre-

mise (Wetter and Dempsey 2000). However, volitional

hyperpnoea increases [lac-]B both at rest (Martin et al.

1984; Verges et al. 2007) and during exercise (Johnson

et al. 2006) suggesting that the respiratory muscles are

capable of net lactate release. Furthermore, VIH appears to

attenuate such net release during volitional hyperpnoea

(Verges et al. 2007). However, this study did not rigorously

control isocapnia that is essential for the interpretation of

changes in [lac-]B. Also, the use of a breathing challenge

based on maximum voluntary ventilation (MVV) limits

external validity as both the breathing pattern and work of

breathing are unreflective of that seen during exercise

(Coast et al. 1993). Since many of the muscle adaptations

associated with endurance-orientated training (i.e. VIH) are

different from those associated with strength-orientated

training (i.e. IMT), it also remains uncertain whether IMT

would reduce [lac-]B during volitional hyperpnoea.

Therefore, to investigate this issue further the present

study examined the hypothesis that 6 weeks of IMT would

attenuate the increase in [lac-]B caused by mimicking, at

rest, the breathing pattern observed during high-intensity

endurance exercise.

Methods

Subjects

Following approval from Nottingham Trent University’s

ethics committee, 22 non-smoking, recreationally active

males provided written informed consent to participate in

the study. Throughout the study, subjects were instructed to

adhere to their usual training regimen and not to engage in

strenuous exercise the day before test days, during which

subjects refrained from ingesting caffeine and arrived at the

laboratory 2 h post-prandial. Descriptive characteristics of

the subjects are presented in Table 1.

Experimental procedure

Baseline pulmonary function and maximal inspiratory

mouth pressure (MIP) were measured during the first lab-

oratory visit. On subsequent visits separated by at least

48 h, subjects performed a maximal incremental cycling

test, and two 10 min isocapnic volitional hyperpnoea tests

(the first being a familiarisation test). The volitional hy-

perpnoea tests were performed at the _VE; tidal volume (VT),

breathing frequency (fR) and duty cycle (TI/TTOT)

Table 1 Descriptive

characteristics of the subjects

(mean ± SD)

FVC forced vital capacity; FEV1

forced expiratory volume in 1 s;

MVV10 maximum voluntary

ventilation in 10 s. Values in

parenthesis represent the

percent of predicted values

(Quanjer et al. 1993; Wilson

et al. 1984)

* Between group differences;

P \ 0.05

Control (n = 11) IMT (n = 11)

Age (years) 28.5 ± 4.1 22.4 ± 4.5*

Body mass (kg) 75.5 ± 5.6 78.6 ± 9.7

Height (cm) 176.9 ± 7.4 181.6 ± 7.6

FVC (L) 5.32 ± 0.55 (104 ± 8) 5.67 ± 0.92 (106 ± 12)

FEV1 (L) 4.28 ± 0.62 (99 ± 11) 4.93 ± 0.67 (109 ± 11)

FEV1/FVC (%) 80.3 ± 7.1 (96 ± 9) 87.7 ± 8.3 (103 ± 9)*

MVV10 (L min-1) 176.3 ± 15.0 (102.3 ± 10.9) 173.4 ± 53.7 (122.4 ± 30.3))

MIP (cmH2O) 163 ± 19 (113 ± 4) 147 ± 27 (119 ± 5)

_VO2 max (L min-1) 3.75 ± 0.55 3.77 ± 0.75

_Wmax ðW) 353 ± 44 362 ± 38
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associated with 85% maximal exercise _VE
_VE max
� �

:During

volitional hyperpnoea tests, blood samples were taken every

2 min from 0 to 10 min, inclusive, and respiratory variables

were measured breath by breath and averaged over 2 min

intervals. Subjects were subsequently matched for 85%
_VE max and divided into an IMT group (n = 11) or a control

(no IMT) group (n = 11). Not more than a week, following

a 6 week intervention MIP was measured and at least 48 h

following this, subjects repeated the volitional hyperpnoea

test. Each subject completed a 24 h diet record prior to the

criterion pre-intervention volitional hyperpnoea test and

this was then replicated during the 24 h prior to the post-

intervention volitional hyperpnoea test.

Pulmonary function, maximal inspiratory pressure,

and respiratory measurements

Pulmonary function was assessed using a pneumotacho-

graph (ZAN 600USB, Nspire Health, Oberthulba,

Germany), calibrated using a 3-L syringe. Each measure-

ment was repeated three times and the highest recorded

value was used for subsequent analysis (Quanjer et al.

1993). A hand-held mouth pressure metre (Ferraris

Respiratory Europe, Hertford, UK) measured MIP as an

index of global inspiratory muscle strength. The mouth-

piece assembly incorporated a 1 mm orifice to prevent

glottic closure during inspiratory efforts. Manoeuvres were

performed in an upright standing posture, were initiated

from residual volume, and sustained for at least 1 s. Repeat

measurements separated by 30 s were taken until three

values within 5 cmH2O of each other were produced

(McConnell 2007). The highest recorded value was used

for subsequent analysis. Throughout the maximal exercise

test and volitional hyperpnoea, subjects wore a facemask

(model 7940, Hans Rudolph, Kansas City, Missouri) con-

nected to a pneumotachograph and respiratory variables

were measured breath by breath (ZAN 600USB, Nspire

Health, Oberthulba, Germany). During volitional hyperp-

noea tests, a two-way non-rebreathing valve (model 2730,

Hans Rudolph, Kansas City, Missouri) and a 1.5 m length

of corrugated tubing was attached distally to the pneumo-

tachograph allowing additional CO2 to be added to the

inspirate.

Blood sampling and analysis

Arterialised venous blood was sampled from a dorsal hand

vein via an indwelling cannula (Forster et al. 1972;

McLoughlin et al. 1992). Arterialisation was ensured by

immersing the hand in water at *40�C for 10 min prior to

cannulation and by warming the hand during volitional

hyperpnoea tests using an infrared lamp. Blood samples

were drawn into a 2 ml pre-heparinised syringe (PICO 50,

Radiometer, Copenhagen, Denmark) and analysed imme-

diately for blood gases (ABL520, Radiometer,

Copenhagen, Denmark), including the partial pressure of

carbon dioxide (PCO2) and pH, and [lac-]B (Biosen C_line

Sport, EKF Diagnostics, Barleben, Germany). Plasma

bicarbonate concentration ([HCO3
-]) was calculated from

PCO2 and pH values using the Henderson Hasselbalch

equation:

pH ¼ pK þ log
½HCO�3 �

0:03� PCO2

[HCO3
-] was then subsequently incorporated into the

Siggaard–Anderson equation to calculate base excess of

the extracellular fluid (BEECF) (Siggaard-Anderson and

Fogh-Anderson 1995):

BEECF ¼ 0:93� ½HCO�3 � � 24:4þ 14:83� pH� 7:40ð Þ
� �

Maximal exercise test

Subjects performed a maximal incremental cycling test on

an electromagnetically-braked cycle ergometer (Excalibur

Sport, Lode, Groningen, The Netherlands). Cycling began

at 0 W and power was subsequently increased by 10 W

every 15 s in order to result in exercise intolerance within

*10 min. This rapid incremental protocol was selected to

maximise _VE at the cessation of the test and therefore

reflect intense endurance exercise. The power at which

exercise intolerance ensued defined maximal power output
_Wmax

� �
; and the highest oxygen uptake, _VO2

� �
and _VE;

recorded in any 30 s period defined _VO2max and _VE max;

respectively.

Volitional hyperpnoea

Volitional hyperpnoea was performed whilst seated on the

cycle ergometer in an body position identical to that

adopted during the maximal exercise test. Subjects were

instructed to increase _VE and fR in a square wave manner to

a level commensurate with 85% _VE max; which during

pilot work was shown to represent the maximum square

wave response that could be maintained for 10 min. An

audio metronome paced fR and real-time visual feedback of
_VE was provided throughout the test. The prescribed

breathing pattern ( _VE, VT, fR and TI/TTOT) during volitional

hyperpnoea was identical pre- and post-intervention and

was chosen to provide a breathing challenge reflective of

the work of breathing associated with exercise hyperpnoea.

This methodology is deemed superior to an arbitrary

%MVV as it more closely reflects the work of breathing

during whole-body exercise: for a given _VE greater than

approximately 60 L min-1 the work of breathing of exer-

cise hyperpnoea can be overestimated by as much as 25%
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when a spontaneous breathing pattern is adopted during

volitional hyperpnoea (Coast et al. 1993). Isocapnia was

maintained during volitional hyperpnoea by adding CO2

into the inspiratory circuit in order to maintain resting

PCO2.

Intervention

IMT was performed using an inspiratory pressure-threshold

device (POWERbreathe�, Gaiam, UK). The IMT group

performed 30 dynamic inspiratory efforts twice daily for

6 weeks against a pressure-threshold load of *50% MIP.

Thereafter, subjects periodically increased the load to a

level that would permit them to only just complete 30

manoeuvres. Each inspiratory manoeuvre was initiated

from residual volume and subjects strove to maximise VT.

This protocol is known to be effective in eliciting an

adaptive response (Johnson et al. 2007; McConnell and

Lomax 2006; McConnell and Sharpe 2005; Romer et al.

2002a, b; Volianitis et al. 2001). Subjects completed a

training diary to record IMT adherence and habitual

training, which the control group also recorded. The con-

trol group did not perform sham IMT since the duration of

the volitional hyperpnoea test and breathing pattern

employed was identical pre- and post-intervention, thus

responses would not be influenced by either motivation or

expectation.

Statistical analyses

Statistical analyses were performed using SPSS for

Windows (SPSS, Chicago, Illinois, USA). Within group

changes over time during volitional hyperpnoea were

determined using one-way ANOVA for repeated measures

and Tukey’s HSD post hoc analysis. Within and between

group interaction effects were determined using two-way

ANOVA for repeated measures. Pearson product-moment

correlation coefficients were calculated to assess the

relationship between selected variables. Statistical signif-

icance was set at P B 0.05. Results are presented as

mean ± SD.

Results

Pulmonary function and maximal inspiratory pressure

Baseline pulmonary function and MIP were all within nor-

mal limits (Table 1). The IMT group demonstrated excellent

training compliance (91% adherence) and subjects’ habitual

training remained unchanged in both IMT and control

groups. MIP increased from 147 ± 27 to 189 ± 27 cmH2O

(+31 ± 22%) following IMT (P \ 0.01). No change was

observed in the control group (pre- vs. post-: 163 ± 19

vs. 166 ± 20 cmH2O).

Responses to volitional hyperpnoea

Group mean values for ventilatory and acid base responses

to 10 min volitional hyperpnoea, pre- and post-intervention

are shown in Table 2. Before and after the intervention, _VE,

VT, fR, TI/TTOT and measures of acid base balance were not

different between groups and remained unchanged over

time during volitional hyperpnoea. The mean _VE during

volitional hyperpnoea represented 72 ± 8 and 81 ± 19%

of MVV10 in control and IMT groups, respectively. PCO2

was maintained at resting levels throughout volitional hy-

perpnoea, prior to and following the intervention and was

not different between groups (Fig. 1).

Prior to the intervention, significant increases in [lac-]B

above rest were observed following 10 min of volitional

hyperpnoea in IMT and control groups (P \ 0.05) (Fig. 2)

and such changes were not different between the groups.

Following the intervention, the [lac-]B response to

Table 2 Mean (±SD) ventilatory and acid-base responses to 10 min volitional hyperpnoea, pre- and post-intervention

Control (n = 11) IMT (n = 11)

Pre Post Pre Post

_VE (L min-1) 127.1 ± 2.3 128.7 ± 2.4 132.9 ± 9.6 136.8 ± 3.2

VT (L) 2.62 ± 0.04 2.64 ± 0.07 2.60 ± 0.03 2.66 ± 0.06

fR (breaths min-1) 50 ± 0 50 ± 0 52 ± 0 52 ± 0

TI/TTOT 0.44 ± 0.00 0.44 ± 0.00 0.52 ± 0.00 0.49 ± 0.00

pH 7.392 ± 0.031 7.406 ± 0.024 7.397 ± 0.023 7.395 ± 0.014

[H+] (nmol L-1) 40.6 ± 2.9 39.4 ± 2.2 40.2 ± 2.2 40.3 ± 1.0

[HCO�3 ] (mmol L-1) 26.0 ± 0.9 26.9 ± 2.5 26.5 ± 1.4 27.0 ± 1.3

BEECF (mEq L-1) 1.38 ± 0.91 1.72 ± 2.04 1.52 ± 1.11 2.35 ± 1.23

_VE; minute ventilation; VT, tidal volume; fR, respiratory frequency; TI/TTOT, duty cycle; [H+], hydrogen ion concentration; HCO�3
� �

; plasma

bicarbonate concentration; BEECF, base excess of the extracellular fluid
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volitional hyperpnoea was unchanged in the control group.

Conversely, [lac-]B during volitional hyperpnoea was

reduced following IMT with 17 ± 37 and 25 ± 34%

reductions being observed at 8 and 10 min, respectively

(P \ 0.05). These reductions exceeded changes observed

in the control group (P \ 0.05).

Correlations amongst variables

Prior to the intervention, increases in [lac-]B during voli-

tional hyperpnoea did not correlate with any measure of

pulmonary function, MIP, endurance training status
_VO2 max; _W max
� �

; or ventilatory responses to volitional

hyperpnoea. Increases in [lac-]B during volitional hy-

perpnoea did not correlate with absolute _VE nor when

expressed as %MVV. The attenuated increase in [lac-]B

during volitional hyperpnoea after IMT was not correlated

with increases in MIP. However, baseline MIP was nega-

tively correlated with relative IMT-induced increases in

MIP (r = -0.70, P \ 0.05).

Discussion

The main finding of this study was that, 10 min of voli-

tional hyperpnoea approximately doubled resting [lac-]B,

and that 6 weeks of pressure-threshold IMT attenuated this

increase by 25%. These findings strongly support the

notion that the respiratory muscles are capable of increas-

ing [lac-]B and are the first to show that this can be

attenuated through specific IMT. This observation may

help to explain some of the IMT-mediated reductions in

[lac-]B, previously observed during whole-body exercise.

We report an increased [lac-]B of 0.96 ± 0.58 mmol L-1

(n = 22; range: 0.20–2.50 mmol L-1) from rest during

10 min of intense volitional hyperpnoea at 85% _VE max

(130.7 ± 19.7 L min-1, 77 ± 15% MVV10; n = 22).

Comparable increases in [lac-]B have been reported whilst

breathing at similar (72% MVV, Martin et al. 1984; 70%

MVV, Verges et al. 2007), but not at lower (62% MVV,

Spengler et al. 2000), relative intensities. Therefore it is

apparent that when _VE surpasses a certain level, the respi-

ratory muscles are capable of net lactate release. However,

the potential for respiratory alkalosis to elevate [lac-]B is

well documented (Davies et al. 1986; LeBlanc et al. 2002).

Consequently, we were careful to maintain, with consider-

able accuracy, resting PCO2 throughout the 10 min of

volitional hyperpnoea (see Fig. 1). Other measures of acid

base status also remained unchanged from rest during voli-

tional hyperpnoea in both the groups, pre- and post-

intervention. We are thus confident that the increase in

[lac-]B during volitional hyperpnoea was a consequence of

increased lactate efflux from the respiratory muscles rather

than respiratory alkalosis.
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The attenuated increase in [lac-]B during volitional

hyperpnoea following IMT is similar to that observed in

healthy subjects performing an exhaustive respiratory

endurance test at *70% MVV following VIH training,

although this reduction did not exceed that of a control

group (Verges et al. 2007). Given the aforementioned

importance of maintaining isocapnia, it is also unfortunate

that end-tidal CO2 and/or PCO2 was not controlled during

the respiratory endurance test. Furthermore, subjects were

prescribed a pre-determined arbitrary breathing pattern

which has previously received criticism for failing to

accurately represent the work of breathing during exercise

hyperpnoea (Coast et al. 1993). Notwithstanding this, VIH-

and IMT-mediated reductions in [lac-]B observed during

volitional hyperpnoea are similar to the reductions often

observed during submaximal, whole-body exercise (Grif-

fiths and McConnell 2007; Leddy et al. 2007; McConnell

and Sharpe 2005; Romer et al. 2002b; Spengler et al. 1999;

Volianitis et al. 2001); however, whether these observa-

tions during volitional hyperpnoea and exercise share a

common mechanistic explanation is unclear.

RMT-mediated reductions in [lac-]B, occur (e.g. see

Leddy et al. 2007; McConnell and Sharpe 2005; Spengler

et al. 1999; Volianitis et al. 2001) when net lactate pro-

duction from the respiratory muscles is probably negligible

given the relatively low _VE and minimal activation of less

efficient accessory muscles (Martin et al. 1984; Johnson

et al. 2006). Hence, under such conditions it seems more

likely that reductions in [lac-]B result from increased

uptake and metabolism of lactate by the trained respiratory

muscles (Griffiths and McConnell 2007; Spengler et al.

1999) rather than a decrease in net lactate release. Con-

versely, during high-intensity exercise where _VE relative to

MVV, approaches/exceeds levels achieved in the breathing

challenge of this study (e.g. see Edwards and Cooke 2004;

Kohl et al. 1997; Spengler et al. 1999), it is possible that

RMT-mediated respiratory muscle adaptation contributes

to lowering [lac-]B through affecting both lactate clearance

by and efflux from the trained respiratory muscles.

The plasticity of the inspiratory muscles has been well

documented (McConnell and Romer 2004; Powers et al.

1997). It is thus attractive to suggest that changes in

inspiratory muscle morphology may explain, in part, the

attenuated hyperpnoea-mediated increase in [lac-]B fol-

lowing IMT. An approximate 10% increase in diaphragm

thickness (Downey et al. 2007; Enright et al. 2006), and a

21% increase in the size of type II muscle fibres in the

external intercostal muscles (Ramı́rez-Sarmiento et al.

2002), has been reported following 6 and 5 weeks of IMT,

respectively. Increasing inspiratory muscle fibre cross-

sectional area and subsequent strength decreases the rela-

tive intensity for a given absolute work load, which may

reduce/delay fast twitch fibre recruitment and thus lactate

production (Marcinik et al. 1991). A decrease in the rela-

tive workload per muscle fibre may also decrease blood

flow occlusion, which may influence lactate production

and/or clearance (Marcinik et al. 1991).

Increased muscle monocarboxylate transport (MCT)

protein content, which facilitates inter- and intra-cellular

lactate shuttling in sarcolemmal and mitochondrial mem-

branes, respectively (Brooks et al. 1999; Dubouchaud et al.

2000), has been reported following endurance (Baker et al.

1998; Burgomaster et al. 2007) and strength (Juel et al.

2004) based training regimens. It is thus possible (cf.

McConnell and Sharpe 2005) that similar adaptations

would occur in the respiratory muscles following both IMT

(strength-orientated) and VIH (endurance-orientated)

training and may explain, in part, the decrease in [lac-]B

observed during whole-body exercise and volitional hy-

perpnoea following these dissimilar training stimuli.

Finally, the attenuated [lac-]B response to volitional

hyperpnoea following IMT (and VIH training) may also

reside in a training-induced increase in the oxidative

capacity of the inspiratory muscles. In support of this

notion, Ramı́rez-Sarmiento et al. (2002) reported a 38%

increase in the number of type I muscle fibres in the

external intercostals following 5 weeks IMT. Moderate

intensity, high repetition strength training, similar to the

IMT protocol used in the present study, can increase oxi-

dative enzyme activity (Costill et al. 1979; Sale et al. 1990)

thereby reducing net lactate production (Holloszy and

Coyle 1984). Since similar oxidative adaptations would be

expected to occur following VIH (endurance-orientated)

training (Holloszy and Coyle 1984), this also offers an

attractive explanation for the decrease in [lac-]B observed

during whole body exercise (Griffiths and McConnell

2007; Kohl et al. 1997; Leddy et al. 2007; McConnell and

Sharpe 2005; Romer et al. 2002b; Spengler et al. 1999;

Volianitis et al. 2001) and volitional hyperpnoea (present

study; Verges et al. 2007).

Conclusions

In summary, the present study provides novel evidence that

increases in [lac-]B when mimicking the breathing pattern

observed during heavy exercise can be attenuated follow-

ing IMT. These data suggest that the inspiratory muscles

were the source of at least part of this reduction, and

provide a possible explanation for at least some of the

IMT-mediated reductions in [lac-]B, previously observed

during whole-body exercise. The precise mechanisms that

underpin these changes remain unknown, but an IMT-

mediated increase in the oxidative and/or lactate transport

capacity of the inspiratory muscles is an attractive possi-

bility that merits further investigation.
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Determinants of Inspiratory Muscle 

Strength

Peter I. Brown1, 2, Michael A. Johnson2 & Graham R. Sharpe2

1 Optimal Performance Limited, Bristol, UK; 2 Nottingham Trent University, Nottingham, UK

INTRODUCTION

• Maximal inspiratory mouth pressure (MIP) reflects global inspiratory 

muscle strength

• MIP varies widely amongst individuals 

• It has been suggested that MIP is determined by the strength of the 

chest wall inspiratory muscles relative to the diaphragm

• MIP is also used to monitor changes in MIP during specific 

inspiratory muscle training (IMT)

• The increase in MIP following IMT is also highly variable

• It is unknown whether the baseline MIP or chest wall muscle 

activation affects the increases in MIP observed after IMT

AIM:

“ TO INVESTIGATE THE DETERMINANTS OF MIP 

PRIOR TO AND FOLLOWING IMT “

METHODS

• Experiment 1 (n = 38)

• MIP measured pre and post 4wk control and intervention (IMT)

• Experiment 2 (n = 20) 

• Control and IMT group

• MIP measured pre and post 4wk intervention (IMT or no IMT)

• Intrathoracic pressures measured during MIP using balloon catheters 

inserted into the oesophagus and stomach (Figure 1). 

• Relative chest wall and diaphragm recruitment: ratio Poe/Pdi

Figure 1. Placement of intrathoracic balloon catheters

Diaphragm (Pdi)

Oesophageal balloon (Poe)

Gastric Balloon (Pga)

RESULTS

• IMT-induced MIP Exp. 1 = 13  13%, Exp. 2 = 11  15% (P<0.05)

• Figure 2 shows how baseline MIP effects IMT-induced changes in 

MIP
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Figure 2. Left: n=38, effects of baseline MIP on IMT-induced MIP 

(P=0.055).                 Right: n=16 where compliance >93% (P=0.007).

•Figure 3 shows Poe/Pdi prior to and following the intervention
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Summary and Conclusions

• Increases in MIP following IMT are dependent upon baseline MIP

• Largest increase in MIP occurred in those with lowest Poe/Pdi

• Increases in chest wall inspiratory muscles strength permits the 

diaphragm to contract more forcefully which may increase MIP
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Figure 3. Relative chest wall muscle recruitment (Poe/Pdi) during MIP 

effort. *, significantly different to pre-IMT (P<0.05)

IMT GROUP                                               CONTROL GROUP

•Baseline MIP was correlated with baseline Poe/Pdi (r=0.582, 

P=0.014)

•Following IMT, the relative MIP was correlated with Poe/Pdi

(r=0.719, P=0.044)

*

Pdi = Pga - Poe
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performance and anaerobic work capacity
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Abstract We examined whether inspiratory muscle

training (IMT) improved cycling time-trial performance

and changed the relationship between limit work (Wlim)

and limit time (Tlim), which is described by the parameters

critical power (CP) and anaerobic work capacity (AWC).

Eighteen male cyclists were assigned to either a pressure-

threshold IMT or sham hypoxic-training placebo (PLC)

group. Prior to and following a 6 week intervention sub-

jects completed a 25-km cycling time-trial and three

constant-power tests to establish the Wlim–Tlim relationship.

Constant-power tests were prescribed to elicit exercise

intolerance within 3–10 (Ex1), 10–20 (Ex2), and 20–30

(Ex3) min. Maximal inspiratory mouth pressure increased

by (mean ± SD) 17.1 ± 12.2% following IMT (P \ 0.01)

and was accompanied by a 2.66 ± 2.51% improvement in

25-km time-trial performance (P \ 0.05); there were no

changes following PLC. Constant-power cycling endurance

was unchanged following PLC, as was CP (pre vs. post:

249 ± 32 vs. 250 ± 32 W) and AWC (30.7 ± 12.7 vs.

30.1 ± 12.5 kJ). Following IMT Ex1 and Ex3 cycling

endurance improved by 18.3 ± 15.1 and 15.3 ± 19.1%

(P \ 0.05), respectively, CP was unchanged (264 ± 62 vs.

263 ± 61 W), but AWC increased from 24.8 ± 5.6 to

29.0 ± 8.4 kJ (P \ 0.05). In conclusion, these data provide

novel evidence that improvements in constant-power and

cycling time-trial performance following IMT in cyclists

may be explained, in part, by an increase in AWC.

Keywords Respiratory muscle training �
Exercise performance � Ergogenic � Critical power �
Anaerobic work capacity

Introduction

There is now little doubt that the structure and function of

the respiratory muscles can be modified through specific

training. Respiratory muscle training (RMT) can be per-

formed using voluntary isocapnic hyperpnoea (VIH), flow-

resistive loading, and pressure-threshold loading, otherwise

commonly referred to as inspiratory muscle training (IMT).

All three techniques increase breathing endurance whilst

IMT increases diaphragm thickness (Downey et al. 2007),

and maximal inspiratory muscle strength, endurance,

shortening velocity and power output (for a full review see

McConnell and Romer 2004).

Whether RMT has an ergogenic effect remains some-

what more controversial (for reviews see McConnell and

Romer 2004; Sheel 2002). Comparisons of the literature

are complicated by the potentially variable outcomes with

each RMT technique (or concurrent IMT-VIH training

(Sonetti et al. 2001)) and by inter-study differences in

RMT protocols and durations. In addition, the mode,

intensity, duration and type (time-trial or constant-power)

of exercise performance evaluation test has differed con-

siderably between studies, which also hinders comparison

and interpretation. A further consideration is that some of

the literature has been characterised by weak experimental

design (McConnell and Romer 2004). A brief synopsis is

that VIH training improved 4-mile running time-trial per-

formance (Leddy et al. 2007) and constant-power cycling

endurance at moderate (70–85% maximum power or

maximal oxygen uptake, _Wmax and _VO2 max; respectively)
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(Boutellier et al. 1992; Markov et al. 2001; McMahon et al.

2002), but not high (90–95% _Wmax

�
_VO2 max) (Fairbarn

et al. 1991; Morgan et al. 1987), exercise intensities.

Accordingly, it is suggested that the efficacy of RMT is

more apparent when the performance evaluation test is

submaximal and prolonged, with performance gains

becoming less discernable, although not eradicated, at

higher exercise intensities (Leddy et al. 2007; McConnell

and Romer 2004). IMT improved constant-power cycling

endurance at both high 100% _VO2 max

� �
(Edwards and

Cooke 2004) and moderate (75–80% _Wmax= _VO2 max))

exercise intensities (Gething et al. 2004; Guenette et al.

2006; Sonetti et al. 2001), although others failed to observe

improved cycling and running endurance at 85% _VO2 max

(Downey et al. 2007; Williams et al. 2002). Improvements

of 1.0–4.6% have been observed for 6 min rowing and 20-

and 40-km cycling time-trials following IMT in trained

athletes (Griffiths and McConnell 2007; Romer et al.

2002a; Volianitis et al. 2001), whereas a 1.8% improve-

ment in 8-km cycling time-trial performance following

concurrent IMT and VIH training in trained cyclists failed

to surpass that observed in a sham training placebo group

(Sonetti et al. 2001). The lack of consensus is thus apparent

but may be explained by the principle of training speci-

ficity: RMT ergogenicity may be dependent upon the

nature of the performance evaluation test and the under-

lying mechanism(s) of action (McConnell and Romer

2004).

The mechanism(s) by which RMT may improve exer-

cise tolerance has yet to be fully revealed although it has

been argued that constant-power and time-trial exercise

performances are predominantly governed by the parame-

ters critical power (CP) and anaerobic work capacity

(AWC) (Brandon 1995; Bulbulian et al. 1986; Fernández-

Garcı́a et al. 2000; Fukuba and Whipp 1999; Smith et al.

1999). Therefore, if RMT elicits a genuine ergogenic effect

one might expect one or both of these parameters to be

affected. CP and AWC can be derived from a series of

exhaustive constant-power exercise tests in which exercise

duration (Tlim) is measured (Hill 1993). The power-Tlim

relationship is hyperbolic but can be linearised by plotting

total work performed (Wlim) against Tlim, with the resulting

gradient and y-intercept representing CP and AWC,

respectively (Hill 1993; Monod and Scherrer 1965). The-

oretically, CP is an inherent component of the aerobic

energy supply system that characterises the highest exer-

cise intensity at which a steady-state can be maintained in
_VO2; blood lactate concentration, and blood acid–base

balance (Hill et al. 2002; Poole et al. 1988). Conversely,

although the physiological mechanisms of AWC are less

clear, it may represent a constant, but finite, energy store

that can be utilised when exercise intensity exceeds CP

(Morton 2006). The magnitude of AWC may also be

determined by fatigue-inducing metabolite accumulation

(Fukuba et al. 2003), and/or the capacity to resist the

adverse consequences of metabolic perturbations in heavy

exercise (Jenkins and Quigley 1993).

The aim of this study was to examine whether IMT

improves cycling time-trial performance and results in a

corresponding increase in CP and/or AWC. Therefore, we

examined the effects of 6 weeks IMT upon 25-km cycling

time-trial performance and the Wlim–Tlim relationship in

competitive cyclists.

Methods

Subjects

Following approval from Nottingham Trent University’s

ethics committee, 18 non-smoking, competitive male

cyclists provided written informed consent to participate in

the study. Throughout the study subjects were instructed to

adhere to their usual training regimen and not to partake in

strenuous exercise the day before test days, during which

subjects abstained from ingesting caffeine and arrived at

the laboratory at least 2 h post-prandial. For each partici-

pant, tests were performed at a similar time of day.

Descriptive characteristics of the subjects are presented in

Table 1.

Experimental design

Subjects were initially familiarised with the test procedures

and subsequently performed pulmonary and inspiratory

muscle function tests. Subjects were then randomly, and

equally, assigned to either a pressure-threshold IMT group

or a sham hypoxic training placebo group. Prior to the

intervention subjects completed a simulated 25-km cycling

time-trial test and three constant-power cycling tests to

establish the Wlim–Tlim relationship. Both groups then

completed the prescribed training regimen for 6 weeks,

after which the battery of exercise tests was repeated in

random order, starting at least 48 h after the final training

session. All tests were completed on separate days and

separated by at least 48 h.

Pulmonary function and maximal inspiratory pressure

Pulmonary function was assessed using a pneumotacho-

graph spirometer (Compact II, Vitalograph, Bucking-

hamshire, UK) previously calibrated using a 1 l syringe.

Each test was repeated three times and the highest recorded

value was used for subsequent analysis (Cotes 1993). A
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hand-held mouth pressure meter (P.K. Morgan, Kent, UK)

measured maximal inspiratory mouth pressure (MIP) as an

index of global inspiratory muscle strength. The mouthpiece

assembly incorporated a 1 mm orifice to prevent glottic

closure during inspiratory efforts. Manoeuvres were per-

formed in an upright standing posture, were initiated from

residual volume, and were sustained for at least 1 s. Repeat

measurements separated by 30–60 s were taken until con-

sistent values within 5 cm H2O of each other were produced

(Volianitis et al. 2001). The highest recorded value was then

used for subsequent analysis.

25-km time-trial performance

Subjects performed a 25-km cycling time-trial on their own

racing bicycle, which was mounted on an air-braked erg-

ometry system (Kingcycle, High Wycombe,

Buckinghamshire, UK). Use of this system has been

described previously (Palmer et al. 1996). Subjects per-

formed a 2 min warm-up at a self-selected intensity and

began the test from a rolling start. Subjects were instructed

to complete the 25-km as quickly as possible and the only

feedback provided during exercise was the elapsed dis-

tance. Heart rate was recorded using short-range telemetry

(Accurex Plus, Polar, Kempele, Finland). During exercise

subjects wore a facemask (model 7940, Hans Rudolph,

Kansas City, Missouri) connected to a two-way, non-

rebreathing valve (model 2730, Hans Rudolph), and

expired air was collected in Douglas bags at 5-, 10-, 15-,

and 20-km intervals. Concentrations of oxygen and carbon

dioxide were determined by sampling through paramag-

netic and infrared transducers, respectively (Series 1440,

Servomex, Crowborough, UK), which were calibrated

using certified gases (BOC gases, Guilford, UK). Sample

volume was determined using a dry gas meter (Harvard,

Edenbridge, UK). Minute ventilation ð _VEÞ is presented at

BTPS, whereas _VO2 and carbon dioxide production

ð _VCO2Þ are presented at STPD. Upon completion of the

test, subjects performed a 3 min cool-down at a self-

selected intensity. MIP was measured prior to exercise,

following the 3 min cool-down, and 15 min thereafter.

Wlim–Tlim relationship

The Wlim–Tlim relationship was determined using three

separate, square-wave constant-power tests performed to

the limit of volitional tolerance on an electromagnetically-

braked cycle ergometer (Excalibur Sport, Lode, Groningen,

The Netherlands). Power outputs were chosen to elicit

exercise intolerance within each of the following time

domains: 3–10 (Ex1), 10–20 (Ex2), and 20–30 (Ex3) min.

Subjects adopted a spontaneous cycling cadence in order to

maximise Tlim (Hill 1993), although in practice the expe-

rienced cyclists participating in this study adopted their

usual working cadence (approximately 80–100 rpm) and

scarcely deviated from this throughout the duration of the

tests. Exercise was terminated when cycling cadence could

not be maintained above 60 rpm. A 3 min cool-down at

60 W was performed following exercise. MIP was assessed

prior to exercise, following the 3 min cool-down, and

15 min thereafter. For each subject Wlim was plotted

against Tlim and the slope and y-intercept of this relation-

ship were taken to represent CP and AWC, respectively

(e.g. see Bishop and Jenkins 1996; Monod and Scherrer

1965).

Training protocols

IMT was performed using an inspiratory pressure-threshold

device (POWERbreathe1, Gaiam, UK). The IMT group

performed 30 dynamic inspiratory efforts twice daily for

Table 1 Baseline anthropometric characteristics, pulmonary function, and maximal inspiratory pressure of IMT and placebo subjects

(mean ± SD)

Parameter IMT (n = 9) Placebo (n = 9)

Age (years) 31.6 ± 7.5 29.9 ± 8.9

Height (cm) 180.6 ± 4.7 177.5 ± 7.8

Body mass (kg) 75.5 ± 6.2 73.8 ± 7.9

FVC (l) 5.97 ± 0.56 (117 ± 11) 5.34 ± 0.83 (110 ± 14)

FEV1 (l) 4.90 ± 0.74 (119 ± 16) 4.56 ± 0.61 (111 ± 10)

FEV1/FVC (%) 82.6 ± 7.9 (104 ± 9) 86 ± 8.7 (105 ± 11)

PEF (l s–1) 10.2 ± 2.2 (98 ± 21) 10.2 ± 1.0 (99 ± 13)

MVV12 (l min–1) 188.4 ± 43.7 (124 ± 27) 166.7 ± 27.3 (110 ± 19)

MIP (cmH2O) 150 ± 29 (137 ± 26) 153 ± 32 (137 ± 23)

FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; PEF, peak expiratory flow; MVV12, maximal voluntary ventilation in 12 s;

MIP, maximal inspiratory mouth pressure. Values in parenthesis represent the percent of predicted value (Cotes 1993; Wilson et al. 1984)
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6 weeks against a pressure-threshold load of *50% MIP.

Thereafter, subjects periodically increased the load to a

level that would permit them to only just complete 30

manoeuvres. Subjects initiated each inspiratory effort from

residual volume and strove to maximise tidal volume. To

avoid hyperventilation and therefore hypocapnia due to the

increased tidal volume, subjects adopted a reduced

breathing frequency. This IMT protocol is known to be

effective in eliciting an adaptive response (Griffiths and

McConnell 2007; McConnell and Lomax 2006; McConnell

and Sharpe 2005; Romer et al. 2002a, 2002b; Volianitis

et al. 2001). The placebo group used a sham hypoxic

trainer for 15 min, 5 days week–1 (Sonetti et al. 2001). The

placebo device was identical to that used by the IMT

group, except that the resistance spring was removed and

the lower chamber was loosely packed with aquarium

gravel, which was promoted to the subjects as being oxy-

gen absorbent, thus reducing the oxygen content of inspired

air and mimicking altitude exposure. Subjects were

instructed to breathe normally through the device and not

increase their normal breathing effort. MIP was assessed

every 2 weeks during the intervention, at which time the

‘‘oxygen absorbent’’ gravel in the placebo device was also

replaced. All subjects completed a training diary through-

out the study to record training adherence and whole-body

training sessions.

Statistical analyses

Statistical analyses were performed using SPSS for Win-

dows (SPSS Inc., Chicago, IL, USA). Pre- and post-

intervention results and group interactions were compared

using one-way or two-way ANOVA for repeated measures

and Tukey’s HSD post-hoc analysis. Pearson product-

moment correlation coefficients were calculated to assess

the relationship between selected variables. Statistical

significance was set at P \ 0.05. Values are presented as

mean ± SD.

Results

Each subject’s habitual training regimen remained unchan-

ged during the intervention. Subjects’ training diaries

demonstrated excellent training compliance for both IMT

(95% adherence) and placebo (97% adherence) groups.

Pulmonary function and maximal inspiratory pressure

Baseline pulmonary function and MIP were all within

normal limits and were not different between IMT and

placebo groups (Table 1). Throughout the intervention

MIP remained unchanged in the placebo group. Con-

versely, relative to baseline, MIP increased following 2, 4

and 6 weeks of IMT by 8.4 ± 9.1% (P \ 0.05),

10.6 ± 8.3% (P \ 0.01), and 17.1 ± 12.2% (P \ 0.01),

respectively (Fig. 1).

Time-trial performance and physiological responses

Group mean changes in time-trial performance are shown in

Fig. 2. Time taken to cycle 25-km decreased by

2.66 ± 2.51% following IMT (pre vs. post:- 36.29 ± 3.64 vs.

35.33 ± 3.70 min, P \ 0.05) (average power output:

274 ± 66 vs. 290 ± 71 W), whereas no change was observed

following placebo (35.72 ± 1.97 vs. 35.98 ± 2.12 min,

P = 0.51) (average power output: 275 ± 37 vs.

271 ± 42 W). Changes in time-trial performance were also

different between groups, as indicated by a significant

group · time interaction effect (P \ 0.05). There was a

consistent improvement in 5-km split times following IMT

with significant group · time interaction effects being

observed at 15-, 20-, and 25-km (Fig. 2). Figure 3 shows

individual changes in time-trial performance for IMT and

placebo subjects. The regression line of pre- vs. post-inter-

vention time-trial performance for the placebo group is

similar to the line of identity indicating no change in time-

trial performance, whereas that for the IMT group was

below, but parallel to, the line of identity. This reflects the

improvement in time-trial performance following IMT and

also indicates that the improvement was not related to

baseline time-trial performance. With the exception of a

significant increase in _VCO2 at 20-km following IMT

(3.17 ± 0.73 vs. 3.34 ± 0.86 l min–1), physiological

responses to time-trial exercise were not changed at equal
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distances following IMT or placebo. Prior to the intervention

the average _VE; _VO2; _VCO2; RER; and heart rate during

time-trial exercise in IMT and placebo groups were

126.6 ± 39.9 and 116.8 ± 22.0 l min–1, 3.65 ± 0.86 and

3.51 ± 0.36 l min–1, 3.47 ± 0.82 and 3.33 ± 0.34 l min–1,

0.95 ± 0.03 and 0.95 ± 0.05, and 176 ± 11 and 176 ± 11

beats min–1, respectively. These responses remained

unchanged following IMT and placebo. HR measured upon

completion of time-trial exercise was also unchanged fol-

lowing IMT (189 ± 15 vs. 187 ± 12 beats min–1) and

placebo (189 ± 12 vs. 188 ± 12 beats min–1).

Wlim–Tlim relationship

Power outputs for Ex1, Ex2, and Ex3 in IMT and placebo

groups were 333 ± 74, 286 ± 63, and 281 ± 62 W, and

320 ± 37, 288 ± 28, and 272 ± 29 W, respectively. Con-

stant-power cycling endurance times are shown in Fig. 4.

Ex1, Ex2, and Ex3 cycling endurance times were

unchanged following placebo. Conversely, although Ex2

endurance time was unchanged following IMT (P = 0.11),

endurance times for Ex1 and Ex3 increased by 18.3 ± 15.1

and 15.3 ± 19.1%, respectively (P \ 0.05), although

group · time interaction effects were not significant

(P = 0.08 and 0.11 for Ex1 and Ex3, respectively).

Changes in CP and AWC are shown in Fig. 5. The

relationship between work and cycling endurance time was

well described by the Wlim–Tlim model in both IMT

(R2 = 1.000 ± 0.000 vs. 1.000 ± 0.000) and placebo

(R2 = 0.999 ± 0.002 vs. 0.999 ± 0.002) groups. There was

no change in CP following either IMT or placebo, and no

change in AWC following placebo. Conversely, AWC

increased following IMT (P \ 0.05), although a group ·
time interaction effect was not observed.

Exercise-induced changes in maximal inspiratory

pressure

Prior to the intervention MIP measured 3 min after time-

trial exercise was reduced relative to baseline by 11.8 ± 9.6

and 10.4 ± 7.2% in IMT and placebo groups, respectively

(P \ 0.01). Following 15 min recovery there was, relative

to baseline, a non-significant 6.6 ± 8.8% reduction in MIP

in the IMT group, and a 8.2 ± 5.6% reduction (P \ 0.05)

in the placebo group. Prior to the intervention no decreases

in MIP were observed following constant-power exercise

except following Ex2 in the IMT group where 7.7 ± 6.0

and 5.9 ± 5.1% decreases (P \ 0.05) in MIP were

observed 3 and 15 min post-exercise, respectively. When

expressed relative to pre-exercise MIP, exercise-induced

decrements in MIP were unchanged following IMT and

placebo.

Correlations among variables

Relative improvements in cycling time-trial performance

following IMT were not correlated with relative IMT-

induced changes in MIP or AWC. Increased MIP following

IMT was also not correlated with changes in Ex1 and Ex2

endurance times, or increases in AWC. Conversely,

although the relative increase in AWC following IMT was
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not correlated with changes in Ex2 (r = 0.14) or Ex3 (r = –

0.42) endurance times, it was correlated with the relative

improvement in Ex1 endurance time (r = 0.73, P \ 0.05).

Pre- and post-intervention values for CP and time-trial

performance were also significantly correlated in IMT

(r = –0.89 and –0.93, P \ 0.01) and placebo (r = –0.69

and –0.75, P \ 0.05) groups separately, and when pooled

together (r = –0.82 and –0.89, P \ 0.01).

Discussion

Main findings

The present study examined the effects of 6 weeks IMT

upon 25-km cycling time-trial performance and the Wlim–

Tlim relationship in competitive cyclists. The main finding

was that IMT improved cycling time-trial performance to a

greater extent than that observed in a sham training placebo

group, and that this was accompanied by an increase in

AWC.

Inspiratory muscle strength

The 17.1% increase in MIP after 6 weeks IMT is consistent

with previous IMT studies (Downey et al. 2007; Edwards

and Cooke 2004; Griffiths and McConnell 2007; Hanel and

Secher 1991; Inbar et al. 2000; McConnell and Sharpe

2005; Wells et al. 2005), but less than the 30–50% increase

reported by others (Gething et al. 2004; Guenette et al.

2006; Huang et al. 2003; Leith and Bradley 1976; Romer

and McConnell 2003; Volianitis et al. 2001; Williams et al.

2002). Established training principles appear to apply to

IMT (Romer and McConnell 2003), thus these discrepan-

cies may be related, in part, to inter-study differences in

IMT mode, intensity, and duration. It is also striking that

baseline MIP was high in our subjects (137% predicted,

Wilson et al. 1984). The scale of physiological adaptation

within a system is dependent upon its baseline status

(Åstrand et al. 2003), thus compared to previous studies a

smaller window for adaptation may have existed in our

subjects. Despite this we observed a rapid increase in MIP

of 8.4% following just 2 weeks of IMT. This surprisingly

swift pattern of change has been reported elsewhere with

*14 and *28% increases in MIP observed after 1 and

2 weeks of IMT, respectively (Downey et al. 2007; Huang

et al. 2003). Such rapid training-induced increases in limb

muscle strength are usually ascribed to neural adaptations,

with structural alterations becoming evident after about 6–

8 weeks of training (Kraemer et al. 1996). However, the

signalling pathways that elicit structural alterations in

inspiratory muscles might arise earlier than anticipated

because of the greater training frequency with IMT (up to

14 sessions week–1) (Kraemer et al. 1996). In support,

diaphragm thickness and type II fibre size in the external

intercostals increased by 8–12 and 21%, respectively, fol-

lowing 4–5 weeks of IMT (Downey et al. 2007; Ramı́rez-

Sarmiento et al. 2002).
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Increased MIP per se is, however, unlikely to explain

IMT-induced improvements in exercise performance, since

these variables do not correlate (present study; Griffiths

and McConnell 2007; Guenette et al. 2006). Rather, IMT-

induced alterations to the structure and function of the

inspiratory muscles probably elicit systemic and perceptual

repercussions that are beneficial to performance (McCon-

nell and Romer 2004).

Time-trial performance and physiological responses

In trained cyclists using the Kingcycle variation in cycling

time-trial performance lasting *30 min is 1.1% (Palmer

et al. 1996). The 2.66% improvement in 25-km cycling time-

trial performance observed following IMT exceeds half of

the variation between individual performances and can thus

be considered worthwhile (Hopkins et al. 1999). Similar

improvements in 20- and 40-km cycling (3.8–4.6%) (Romer

et al. 2002a), and 6-min rowing (1–3.5%) (Griffiths and

McConnell 2007; Volianitis et al. 2001), time-trial perfor-

mances have been reported in trained athletes following

IMT, whereas Leddy et al. (2007) observed a 4% improve-

ment in 4-mile running time following VIH training. The use

of an identical sham hypoxic trainer to that used by Sonetti

et al. (2001), which anecdotal evidence suggests fully

deceived our subjects, contests the notion that placebo

effects underpin the efficacy of RMT. Sonetti et al. (2001)

argue that the sham hypoxic trainer is superior to the placebo

regimens used in other IMT studies, which typically involve

training with negligible resistance. Our findings thus suggest

a genuine ergogenic effect of IMT on time-trial performance

in cyclists. The absence of an ergogenic effect reported by

Sonetti et al. (2001) may be because their concurrent IMT-

VIH training regimen provided conflicting training stimuli,

as evidenced by the modest 8% increase in MIP.

Following IMT physiological responses ð _VE; _VO2;
_VCO2; and heart rateÞ to time-trial exercise were

unchanged despite an increased power output. This is

consistent with previous studies showing reduced meta-

bolic and heart rate responses during constant-power

exercise following pressure-threshold IMT (Downey et al.

2007; Gething et al. 2004; Griffiths and McConnell 2007;

Romer et al. 2002a). The improvement in time-trial per-

formance following IMT may therefore be linked to an

ability to sustain a higher intensity of exercise for the same

metabolic and cardiovascular demand.

Wlim–Tlim relationship

The IMT-induced improvement in cycling time-trial per-

formance was not associated with an increase in CP. This

finding is supported by those of McConnell and Sharpe

(2005) who observed no change in maximal lactate steady-

state cycling power following a similar IMT regimen.

Whilst maximal lactate steady-state and CP share similar

definitions intra-subject comparisons suggest that CP

occurs at a slightly higher power output (Pringle and Jones

2002). Notwithstanding this it appears that adaptations

resulting from IMT do not lead to an increase in maximum

sustainable power output. It appears more likely that IMT-

mediated increases in time-trial performance are linked, in

part, to the observed 12% increase in AWC. Unlike CP,
_VO2 max; and ventilatory/lactate threshold, AWC is not

correlated with time-trial performance (Bulbulian et al.

1986; Smith et al. 1999). Furthermore, we found no cor-

relation between IMT-induced increases in AWC and

improvements in 25-km cycling time-trial performance.

Conversely, IMT-mediated increases in AWC were corre-

lated with increases in Ex1 cycling endurance. This is

perhaps unsurprising given that AWC is related to the

ability to perform high-intensity exercise with a large

anaerobic component (Hill 1993; Jenkins and Quigley

1993). However, although considered a limiting factor

(Brandon 1995; Bulbulian et al. 1986; Fernández-Garcı́a
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et al. 2000; Fukuba and Whipp 1999) the contribution of

AWC to more prolonged endurance exercise performance

is difficult to assess (Brandon 1995). This is reflected by

the lack of correlation between IMT-induced increases in

AWC and Ex2 and Ex3 cycling endurance. During cycling

time-trial exercise lasting *30 min power output fluctu-

ates above and below CP, thus AWC is utilised periodically

(Tucker et al. 2006). Presumably therefore, the IMT-

mediated increase in AWC would have allowed the cyclists

to perform a greater volume of work above CP, although

the 4.2 kJ increase in AWC alone cannot explain the 16 W

increase in mean time-trial cycling power output. Other

adaptations, for example perceptual changes, may have

influenced the intrinsic system control mechanisms that

regulate power output (c.f. Tucker et al. 2006) thereby

reducing the volume of work performed below CP and

increasing the time spent exercising at, or close to CP.

Our baseline AWC was broadly similar to that reported

by others (Bishop and Jenkins 1996), although these values

underestimate the true AWC because the Wlim–Tlim model

does not account for the temporal lag in oxidative ATP

synthesis at the onset of square-wave exercise (Morton

2006). Previous studies have also shown that strength and

high-intensity interval training increase AWC indepen-

dently of CP (Bishop and Jenkins 1996; Jenkins and

Quigley 1993). AWC is thought to reflect finite intramus-

cular energy stores comprising a phosphagen pool, an

anaerobic glycolytic component, and an oxygen store

(Morton 2006). Increases in AWC with high-intensity

training have thus been attributed to upregulation of

phosphofructokinase activity and/or increased buffering

capacity within the locomotor muscles (Jenkins and

Quigley 1993). It is highly unlikely that IMT would stim-

ulate such adaptations (within the locomotor muscles), thus

other mechanisms must explain the increase in AWC. An

attractive hypothesis resides in the potential effects of

exercise-induced diaphragm fatigue on exercise perfor-

mance. High-intensity exercise causes diaphragm fatigue,

which may reduce limb vascular conductance via a me-

taboreflex and exacerbate locomotor muscle fatigue (for a

review see Dempsey et al. 2006). Since IMT attenuates this

metaboreflex (McConnell and Lomax 2006), the increase

in AWC may be explained, in part, by improved perfusion

of, and oxygen transport to, locomotor muscles and a

subsequent reduction in the accumulation of fatigue-

inducing intramuscular metabolites. Unfortunately, exer-

cise-induced changes in MIP before and after IMT did not

support this hypothesis. However, inferences regarding

peripheral diaphragm fatigue cannot be made from MIP

measures, which are unable to discriminate either fatigue in

different inspiratory muscles, or peripheral and central

components of fatigue. Therefore, our data do not exclude

the possibility that exercise-induced diaphragm fatigue was

attenuated following IMT, as was recently reported fol-

lowing VIH training (Verges et al. 2007). It is also possible

that following IMT the same absolute decrease in MIP

imparts a smaller influence on limb muscle endurance

(McConnell and Lomax 2006).

Ventilatory work during heavy endurance exercise may

contribute to the accumulation of metabolites (Johnson

et al. 2006) that exacerbate respiratory and locomotor

muscle fatigue. One of the most consistent observations

following both IMT (Edwards and Cooke 2004; Griffiths

and McConnell 2007; McConnell and Sharpe 2005; Romer

et al. 2002b; Volianitis et al. 2001) and VIH training (Kohl

et al. 1997; Leddy et al. 2007; Spengler et al. 1999; Verges

et al. 2007) is a reduction in blood lactate concentration.

Although the origin of this reduction remains unknown, it

may reflect favourable changes in acid-base balance and/or

a delay in the accumulation of fatigue-inducing metabo-

lites, which may also partly explain the increase in AWC

following IMT.

It is well known that even after exhaustive exercise

locomotor muscle function is preserved and intramuscular

glycogen stores are only partially depleted (Morton 2006).

It follows that exercise tolerance (and presumably the

capacity to deplete AWC) is not exclusively determined by

physiological factors; it is likely that perceived effort and

feelings of discomfort also play a significant role. Indeed,

perhaps the most consistent feature of humans at the limit

of exercise tolerance is the reporting of maximal ratings of

perceived exertion (Noakes 2004). IMT attenuates ratings

of limb discomfort and dyspnoea during exercise

(McConnell and Romer 2004) and this may provide a

mechanism by which AWC can be more fully exploited.

In summary, IMT-induced improvements in 25-km

cycling time-trial performance in competitive cyclists are

not explained by an increase in CP, but might be explained,

in part, by an increase in AWC. Mechanisms underpinning

an IMT-mediated increase in AWC remain unknown, but

might be partly related to a reduction/delay in the accu-

mulation of fatigue-inducing metabolites. That IMT

resulted in comparable improvements in Ex1 (+18%) and

Ex3 (+15%) cycling endurance disputes the notion that the

efficacy of RMT is inversely proportional to the intensity

of the performance evaluation test (Leddy et al. 2007;

McConnell and Romer 2004).
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         Investigations of the Lactate Minimum Test    

and the test has been recommended over other 
methods of MLSS prediction  [27] . 
 The ability to determine MLSS in one session has 
been used to advocate the use of the lactate min-
imum test  [27] . However, Tegtbur et   al.  [28] , and 
others thereafter  [3,   17] , used prior knowledge of 
subjects ’  training status to determine the incre-
mental phase exercise intensities, whilst others 
 [13,   21,   23,   24,   26]  have used pre-tests (time-tri-
als and maximal incremental tests) to achieve 
the same end. Thus the test would be improved if 
the incremental phase exercise intensities could 
be resolved within the same test. Smith et   al.  [26]  
found that lactate minimum cycling power was 
independent of whether the lactate elevation 
phase comprised a maximal incremental ramp 
test or sprint exercise. Thus, modifying the origi-
nal protocol of Tegtbur et   al.  [28]  by replacing the 
short, high-intensity exercise of the lactate eleva-
tion phase with incremental exercise ought not 
to aff ect lactate minimum test validity but should 
also allow concurrent determination of maximal 
oxygen uptake. Therefore, in study 1 the aim was 

 Introduction 
  ▼  
 Tegtbur et   al.  [28]  proposed the lactate minimum 
test as a method to predict maximal lactate 
steady state (MLSS). The test comprises three 
consecutive exercise phases: a lactate elevation 
phase, a short recovery phase, and an incremen-
tal phase in which with increasing intensity 
blood lactate concentration ([lac     −     ] B ) decreases 
(net lactate clearance) to a nadir (the lactate min-
imum) and then increases (net lactate appear-
ance). The [lac     −     ] B  is determined by rates of lactate 
release into the interstitium or circulation, and 
consumption by adjacent or remote lactate-con-
suming oxidative muscle fi bres or organs (the 
lactate shuttle  [9] ). The lactate minimum test has 
considerable value since MLSS is an important 
physiological determinant of endurance exercise 
performance  [17,   21,   24] . Collectively, with the 
exception of one confl icting report  [17] , the lit-
erature suggests good agreement between lac-
tate minimum and MLSS intensities  [3,   21,   24,   28]  

 Authors    M. A.       Johnson       ,     G. R.       Sharpe     ,     P. I.       Brown    

 Affi  liation         School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom     

  Abstract 
  ▼  
 We evaluated: the agreement between lactate 
minimum and maximal lactate steady state 
(MLSS) cycling powers (study 1); whether rates 
of change of blood lactate concentration during 
the lactate minimum test refl ect that of constant 
power exercise (study 2); whether the lactate 
minimum power is infl uenced by the muscle 
groups used to elevate blood lactate concentra-
tion (study 3). Study 1: 32 subjects performed a 
lactate minimum test comprising a lactate eleva-
tion phase, recovery phase, and incremental 
phase (fi ve 4   min stages); MLSS was subsequently 
determined. Study 2: 8 subjects performed a 
lactate minimum test and fi ve 22   min constant 
power tests at the incremental phase exercise 

intensities. Study 3: 10 subjects performed two 
identical lactate minimum tests, except during 
the second test the lactate elevation phase com-
prised arm-cranking. Lactate minimum and MLSS 
powers demonstrated good agreement (mean 
bias    ±    95    %  limits of agreement: 2    ±    22 W). Rates 
of change of blood lactate concentration during 
each incremental phase stage and correspond-
ing constant power test did not correlate. Lactate 
minimum power was lowered when arm-crank-
ing was used during the lactate elevation phase 
(157    ±    29 vs. 168    ±    21 W; p    <    0.05). The lactate 
elevation phase modifi es blood lactate concen-
tration responses during the incremental phase, 
thus good agreement between lactate minimum 
and MLSS powers seems fortuitous.          
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to evaluate the agreement between lactate minimum and MLSS 
cycling powers using a modifi ed lactate minimum protocol in 
which the incremental phase intensities are based upon a maxi-
mal incremental ramp test performed in the lactate elevation 
phase. 
 Another feature used to promote the lactate minimum test is its 
 “ sound theoretical basis ”   [21] . This refers to the observations of 
Davis and Gass  [11]  on which Tegtbur et   al.  [28]  based their pro-
tocol. Davis and Gass  [11]  introduced the innovation of examin-
ing  Δ [lac     −     ] B  /  Δ t (where t    =    time) during incremental exercise 
commencing with hyperlactaemia and proposed that such 
changes have  “ predictive value for steady-state work ” . However, 
this central premise remains unexplored and therefore in study 
2 the aim was to examine whether  Δ [lac     −     ] B  /  Δ t during each stage 
of the incremental phase refl ects  Δ [lac     −     ] B  /  Δ t measured during 
constant power exercise (after the initial transient change that 
occurs over the fi rst 12   min of exercise  [16] ) at intensities identi-
cal to those performed during the incremental phase. 
 Prior exercise using the same muscle groups profoundly aff ects 
physiological responses to subsequent exercise, including 
reduced lactate production and release from the  “ primed ”  mus-
cles  [5,   10,   15] . Thus it seems likely that the lactate elevation 
phase will aff ect subsequent physiological responses and there-
fore the outcome of the test. To explore this issue the aim of 
study 3 was to examine whether  Δ [lac     −     ] B  /  Δ t and the lactate 
minimum cycling power during the incremental phase are infl u-
enced by the muscle groups used (leg cycling vs. arm-cranking) 
during the lactate elevation phase.   

 Methods 
  ▼   
 Participants, equipment and measurements 
 Following local ethics committee approval, 50 non-smoking, 
recreationally active male subjects provided written informed 
consent to participate in the study. Subjects refrained from 
strenuous exercise during the 24   h preceding an exercise test. On 
test days subjects abstained from alcohol and caff eine and 
reported to the laboratory at least 2   h post-prandial. Successive 
tests were separated by at least 48   h, but no more than 1 week, 
and were performed at a similar time of day. 
 Exercise was performed on an electromagnetically-braked cycle 
ergometer (Excalibur Sport, Lode, Groningen, The Netherlands) 
and also, during study 3, an electromagnetically-braked arm-
cranking ergometer (Angio, Lode, Groningen, The Netherlands). 
The same self-selected cycling cadence was used throughout all 
tests. Arterialised venous blood samples were taken from a 
heated dorsal hand vein via an indwelling cannula  [22]  and ana-
lysed for [lac     −     ] B  (P-GM7 MicroStat, Analox Instruments, London, 
UK). During the lactate elevation phase of study 1, subjects wore 
a facemask (model 7940, Hans Rudolph, Kansas City, Missouri) 
and respiratory variables were measured breath-by-breath (Pul-
molab EX670, Ferraris Respiratory Europe, Hertford, UK).   

 Study 1  –  agreement between lactate minimum and 
MLSS powers 
 Subjects (n    =    32; age 29.9    ±    6.9 years, height 179.1    ±    6.9   cm, body 
mass 79.5    ±    10.3   kg) initially performed a lactate minimum test 
comprising 3 consecutive phases: (I) lactate elevation phase 
comprising maximal, incremental exercise; (II) 8   min recovery 
phase at 60 W; and (III) incremental phase comprising fi ve con-
secutive 4   min stages at intensities of 45, 50, 55, 60, and 65    %  of 

the maximum power ( &W max) achieved during the lactate ele-
vation phase. Changes in intensity during the incremental phase 
were based upon the original protocol of Tegtbur et   al.  [28]  and 
pilot work was used to determine a range of intensities that 
would encompass the lactate minimum power in all subjects. 
Like previous studies  [13,   17,   24]  the incremental phase com-
prised a fi xed number of submaximal exercise stages rather than 
a maximal incremental exercise test, and the use of 5 stages was 
based upon the work of Jones and Doust  [17] . The stage duration 
of 4   min was based upon the work of Tegtbur et   al.  [28] . Blood 
samples were taken from 11 subjects at the start of the incre-
mental phase and every minute thereafter, and  Δ [lac     −     ] B  /  Δ t was 
taken as the gradient of a linear regression of [lac     −     ] B  against time 
during each stage. Blood samples were taken from the remaining 
subjects at the end of each incremental phase stage. During the 
lactate elevation phase power increased every 15   s by a constant 
amount (8 – 10 W, depending upon the subject ’ s training history) 
chosen so that exercise intolerance (cadence     <    60 revs    ·    min     −    1 ) 
occurred in  ~ 10   min. The fi nal power defi ned  &W max and the 
highest oxygen uptake recorded over any 30   s period defi ned 
maximal oxygen uptake. 
 Maximal lactate steady state was resolved using 30   min constant 
power tests preceded by 3   min of cycling at 50    %  of the prescribed 
power. The fi rst test was performed at lactate minimum power, 
and for subsequent tests power was adjusted by     ±    2.5    %  until 
MLSS was verifi ed. Blood samples were taken every 2   min from 
16 – 30   min, inclusive, and MLSS power was defi ned as the high-
est power at which a positive gradient of a linear regression fi t-
ted through the plot of [lac     −     ] B  against time was not observed 
 [16] .   

 Study 2  –  comparison of the [lac     −     ] B  response to the 
lactate minimum test and constant power cycling  
 Subjects (n    =    8; age 23.4    ±    5.2 years, height 180.4    ±    6.4   cm, body 
mass 79.9    ±    5.5   kg) initially performed a lactate minimum test 
(see study 1) with blood samples being taken at the start of the 
incremental phase and every minute thereafter. Subsequently, 
subjects performed, in random order and on diff erent days, fi ve 
22   min cycling tests with blood samples being taken every 2   min 
from 0 – 22   min, inclusive. Cycling powers in each of the fi ve tests 
corresponded to those used in the incremental phase, except 
that the initial 12   min of each test was always performed at 60    %  
 &W max to elevate [lac     −     ] B . The magnitude of [lac     −     ] B  is known to 
infl uence  Δ [lac     −     ] B  /  Δ t  [11,   26] , thus it was essential that [lac     −     ] B  at 
the start of the lactate minimum incremental phase and corre-
sponding constant power were closely matched; note also that 
pilot work showed that [lac     −     ] B  remained unchanged from rest 
during square-wave exercise at 45 and 50    %   &W max. The initial 
12   min allowed for the rapid, transient increase in  Δ [lac     −     ] B  /  Δ t 
from rest  [16]  and the total test duration (22   min) was chosen as 
pilot work showed that this corresponded to the limit of exercise 
tolerance when cycling at 65    %   &W max. During constant power 
exercise  Δ [lac     −     ] B  /  Δ t was taken as the gradient of a linear regres-
sion of [lac     −     ] B  against time (14 – 22   min, inclusive). Our analysis 
of  Δ [lac     −     ] B  /  Δ t was therefore performed over an 8   min period: 
this was the maximum possible time allowed by our subjects ’  
ability to tolerate cycling at 65    %   &W max (22   min) and the need 
to allow the initial transient increase in  Δ [lac     −     ] B  /  Δ t during the 
initial 12   min of exercise  [16] .   



Training  &  Testing450

 Johnson MA et   al. Investigations of the Lactate    …    Int J Sports Med 2009;   30: 448 – 454 

 Study 3  –  eff ect of muscle groups used during the 
lactate elevation phase 
 Subjects (n    =    10; age 23.5    ±    5.5 years, height 178.8    ±    6.9   cm, body 
mass 78.0    ±    7.5   kg) initially performed a lactate minimum test 
(see study 1, hereafter termed LM LEG ). On a separate day, sub-
jects repeated LM LEG , except that the lactate elevation phase 
comprised maximal incremental arm-cranking exercise (hereaf-
ter termed LM ARM ). The centre of the arm-crank shaft was 
aligned to shoulder level and subjects were seated so that the 
elbow was slightly fl exed when the hand was most distal. Fol-
lowing 15   s unloaded exercise, power was increased every 15   s 
by either 4 or 5 W up to the limit of exercise tolerance (cadence  
   <    40   revs    ·    min     −    1 ). Subjects then transferred to the adjacently-
positioned cycle ergometer and, following the recovery phase 
(8   min at 60 W), repeated the incremental phase (using identical 
cycling powers) performed in LM LEG . Thus, LM LEG  always pre-
ceded LM ARM . Blood samples were taken at the start of the incre-
mental phase and every minute thereafter.   

 Data analyses 
 Data analyses were performed using SPSS (version 15). The lac-
tate minimum power was determined from the zero gradient 
tangent to a cubic spline function fi tting the [lac     −     ] B  (measured at 
the end of each stage) vs. power data. Data were analysed using 
repeated measures ANOVA and paired t-tests where appropriate. 
Agreement between variables was assessed using a Bland-Alt-
man plot  [7] , along with the calculated bias     ±     95    %  limits of 
agreement. Pearson product-moment correlation coeffi  cients (r) 
were determined to assess the relationship between variables. 
Results are reported as mean     ±     SD unless otherwise stated. Sta-
tistical signifi cance was set at p    <    0.05.    

 Results 
  ▼  
 The [lac     −     ] B  profi le during the incremental phase was well 
described by the cubic spline function (r 2     =    0.94 and 0.98 in study 
1 and 2 respectively, and in study 3, r 2     =    0.95 and 0.99 for LM LEG  

and LM ARM , respectively). Also, in each study lactate minimum 
power was correlated with  &W max (r    =    0.97 and 0.98 in study 1 
and 2, respectively, and in study 3, r    =    0.93 for LM LEG ) (p    <    0.01).  

 Study 1  –  agreement between lactate minimum and 
MLSS powers 
 The  &W max and maximal oxygen uptake were 379    ±    42 W and 
3.99    ±    0.58 L    ·    min     −    1 , respectively. The lactate minimum power 
(205    ±    22 W; 54.2    ±    1.5    %   &W max) was not diff erent from MLSS 
power (208    ±    25 W; 54.9    ±    3.6    %   &W max), with which it was cor-
related (r    =    0.89, p    <    0.01) (    ●  ▶     Fig.   1A  ). Although the gradient of 
the regression line in     ●  ▶     Fig.   1A   (0.804) is diff erent from 1 
(p    <    0.05), this does not imply a lack of agreement between the 
two measurements  [1,   7] . Indeed,     ●  ▶     Fig.   1B  , which shows the 
diff erence between lactate minimum and MLSS powers against 
their mean (Bland-Altman plot)  [7] , along with the bias    ±    95    %  
limits of agreement (2    ±    22 W) for the comparison between the 
two variables, indicates good agreement between lactate mini-
mum and MLSS powers (for further commentary see Discus-
sion). Furthermore, the gradient of the regression line in 
    ●  ▶     Fig.   1B   (0.105) is not diff erent from zero (p    =    0.245), which 
indicates uniformity of systematic error across the range of 
measurements studied  [1] . The diff erence between lactate mini-
mum and MLSS powers was correlated with MLSS power 
(r    =    0.42, p    <    0.05). 
 Where  Δ [lac     −     ] B  /  Δ t during each stage of the incremental phase 
was determined (n    =    11), the power at which  Δ [lac     −     ] B  /  Δ t    =    0 
(220    ±    21 W; 58.5    ±    5.7    %   &W max; r 2     =    0.90    ±    0.12) was greater 
(p    <    0.01) than lactate minimum (203    ±    22 W; 53.7    ±    1.4    %   &W
 max) and MLSS powers (208    ±    26 W; 54.7    ±    2.7    %   &W max). The 
bias     ±     95    %  limits of agreement for the comparison of the power 
at which  Δ [lac     −     ] B  /  Δ t    =    0 and MLSS power was 12    ±    43 W.   

 Study 2  –  comparison of  Δ [lac     −     ] B  /  Δ t during the lactate 
minimum test and constant power cycling 
 The  &W max and lactate minimum power were 363    ±    42 W and 
193    ±    24 W (52.8    ±    1.2    %   &W max), respectively. During constant 
power exercise at 50    %   &W max, the [lac     −     ] B  at 14   min 

     Fig. 1            A:  Relationship between lactate minimum and MLSS powers, showing the line of identity.  B:  Agreement between lactate minimum and MLSS 
powers, showing the mean bias and 95    %  limits of agreement. Individual data are shown.  
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(4.8    ±    1.0   mmol    ·    L     −    1 ) (see     ●  ▶     Fig.   2A  ) was lower than that mea-
sured at the commencement of 50    %   &W max during the incre-
mental phase (5.5    ±    1.2   mmol    ·    L     −    1 ). There were no such 
diff erences at the other 4 intensities. 
 Compared to constant power exercise,  Δ [lac     −     ] B  /  Δ t was greater 
during the incremental phase at 60    %  (p    <    0.05) and 65    %   &W max 
(p    <    0.01) (    ●  ▶     Fig.   2B  ). The power at which  Δ [lac     −     ] B  /  Δ t    =    0 during 
the incremental phase (195    ±    24 W; 53.7    ±    1.9    %   &W max; 
r 2     =    0.84    ±    0.10) was not diff erent from that determined in con-
stant power exercise (200    ±    28 W; 55.1    ±    3.3    %   &W max; 
r 2     =    0.91    ±    0.06). However,  Δ [lac     −     ] B  /  Δ t during each incremental 

phase stage and corresponding constant power test did not cor-
relate (at each     %   &W max, r values were: 45    %     =    0.07, 50    %     =    0.00, 
55    %     =        −    0.03, 60    %     =    0.14, and 65    %     =    0.63) (e.g.,     ●  ▶     Fig. 3  ).   

 Study 3  –  eff ect of muscle groups used during the 
lactate elevation phase 
 The duration of the lactate elevation phase during LM ARM  
(9.13    ±    1.62   min) was not diff erent from that in LM LEG  
(9.49    ±    0.74   min), although  &W max was expectedly lower during 
LM ARM  (161    ±    44 vs. 317    ±    44 W) (p    <    0.01). All subjects demon-
strated a U-shaped [lac     −     ] B  vs. power profi le during the incre-
mental phase of LM LEG  and the lactate minimum power was 
168    ±    21 W (53.3    ±    2.9    %   &W max). Conversely, a clear U-shaped 
profi le was not observed in LM ARM  (    ●  ▶     Fig.   4A  ), and in one sub-
ject a lactate minimum power could not be determined because 
[lac     −     ] B  increased linearly (r 2     =    1). In the remaining subjects lac-
tate minimum power during LM ARM  (157    ±    29 W) was lower than 
that in LM LEG  (p    <    0.05). The [lac     −     ] B  at the end of each stage of the 
incremental phase was not diff erent between LM LEG  and LM ARM , 
although at 60    %   &W max there was a trend (p    =    0.055) for [lac     −     ] B  
to be higher during LM ARM . 
 The power at which  Δ [lac     −     ] B  /  Δ t    =    0 in LM LEG  (175    ±    24 W; 
55.4    ±    2.6    %   &W max; r 2     =    0.85    ±    0.13) was greater than that in 
LM ARM  (157    ±    31 W; 49.4    ±    6.3    %   &W max; r 2     =    0.88    ±    0.12) 
(    ●  ▶     Fig.   4B  ). There was a trial    ×    stage interaction eff ect for 
 Δ [lac     −     ] B  /  Δ t (p    <    0.01), and diff erences were observed between 
LM LEG  and LM ARM  at 50    %  (p    <    0.01) and 60    %  (p    <    0.05)  &W max.    

 Discussion 
  ▼  
 The main fi ndings of the present study were threefold: (I) there 
was good agreement between lactate minimum and MLSS pow-
ers using the modifi ed lactate minimum protocol; (II)  Δ [lac     −     ] B  /  Δ t 
during each stage of the incremental phase did not refl ect 
 Δ [lac     −     ] B  /  Δ t during constant power exercise; and (III) the [lac     −     ] B  

   Fig. 2            A:  Blood lactate concentration ([lac     −     ] B ) during constant power exercise.  B:   Δ [lac     −     ] B  /  Δ t during constant power exercise (see panel  ‘ A ’  for symbols) 
and each stage of the lactate minimum incremental phase (●). Note that  Δ [lac     −     ] B  /  Δ t for constant power exercise refl ects that measured over 14 – 22   min 
in  ‘ A ’ . Values are mean    ±    SD, except in  ‘ A ’  where for clarity error bars are shown only for the initial 12   min of exercise. Diff erence between trials,  * p    <    0.05, 
 *  * p    <    0.01.  

   Fig. 3           Individual rates of change of blood lactate concentration 
( Δ [lac     −     ] B  /  Δ t) during exercise at 55    %   &W  max during the lactate minimum 
incremental phase and constant power exercise. Line of identity is shown.  
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profi le of the incremental phase was dependent upon whether 
the lactate elevation phase was performed using the same or dif-
ferent muscle groups. 
 Given the resolution with which MLSS is typically determined 
(10 – 20 W)  [27] , the mean diff erence and 95    %  limits of agree-
ment (2    ±    22 W) for the comparison between lactate minimum 
and MLSS powers indicates that our modifi ed lactate minimum 
test provides an acceptable estimate of MLSS power. These fi nd-
ings support other work showing the lactate minimum to be a 
valid predictor of MLSS  [21,   24] , although others report confl ict-
ing evidence  [17] . Note also that statistical power analysis 
revealed that, in our study, the minimum detectable diff erence 
(based upon our sample size (n    =    32), an alpha level of 0.05, and 
power of 0.8) between lactate minimum and MLSS powers was 
6 W. This corresponds closely to our MLSS resolution and there-
fore may be considered the minimum diff erence of practical sig-
nifi cance  [27] . In addition to estimating MLSS, our lactate 
minimum protocol also allows determination of maximal oxy-
gen uptake and does not require detailed knowledge of subjects ’  
training status. This is an improvement on previously described 
lactate minimum protocols in which prescription of incremental 
phase exercise intensities has required either separate testing or 
familiarity with subjects ’  training status (see Introduction). Fur-
thermore, determining both maximal oxygen uptake and MLSS 
provides a more complete assessment of training status and 
training programme eff ectiveness. Our lactate minimum proto-
col was also well tolerated by subjects of varied training status 
(MLSS range: 166 – 253 W), which allayed our initial concerns 
that combining a maximal incremental test with the incremen-
tal phase may be too demanding for less-trained subjects. 
 Absolute [lac     −     ] B  values and  “ thresholds ”  in ventilatory, pulmo-
nary gas exchange, and [lac     −     ] B  responses to incremental exercise 
have also been used to predict MLSS, although the validity of 
such protocols is poorly documented. It is well recognised, how-
ever, that the large inter-individual variation in [lac     −     ] B  at MLSS 

(3 – 10   mmol    ·    L     −    1   [21] ,) precludes MLSS prediction from absolute 
[lac     −     ] B  values  [2,   17,   27] . Conversely, the  “ lactate turnpoint ”  may 
provide a good estimate of MLSS  [2,   18] , although Smith and 
Jones  [25]  report signifi cant over- or under-estimation in indi-
vidual subjects. The validity of the individual anaerobic thresh-
old test is also variable, providing close estimates of MLSS in 
cycling  [29]  and running  [4] , but overestimating MLSS in rowing 
 [6] . The respiratory compensation point often overestimates 
MLSS  [12,   20] , whereas Laplaud et   al.  [20]  suggest that MLSS cor-
responds to the intensity during incremental exercise at which 
the respiratory exchange ratio    =    1.00. However, the lack of reso-
lution in MLSS determination in this study (5    %   &W max,  ~ 16 W) 
could have masked signifi cant disagreement between the pre-
dicted and the  “ true ”  MLSS. When viewed collectively, no single 
test can accurately determine MLSS, and comparison of tests is 
complicated by inter-study diff erences in exercise modalities 
and protocols, participants, and MLSS determination methods. 
Unlike many of the aforementioned protocols, however, the lac-
tate minimum test provides a reliable, objective MLSS estimate 
 [21,   26]  that is insensitive to changes in muscle glycogen stores 
 [28] . It is therefore an attractive option amongst a plethora of 
single-test methods to predict MLSS. However, the level of exer-
tion required during the lactate minimum test renders the pro-
tocol impractical for clinical populations  [27] ; threshold 
determinations from submaximal exercise are more appropriate 
under these circumstances. 
 We avoided basing our MLSS criterion on absolute increases in 
[lac     −     ] B  over time (see MacIntosh et   al.  [21]  for a discussion) since 
this results in dissimilar relative physiological stress due to the 
large inter-individual variation in [lac     −     ] B  at MLSS (3 – 10   mmol    ·    L     −    1  
 [21] ,). We also used relatively small step changes at an intensity 
of     ±    2.5    %  ( ~ 4 – 6 W), which allows greater resolution of MLSS 
than those studies using increments of 4 – 5    %  or  ~ 10 – 20 W 
(reviewed in Svedahl and MacIntosh  [27] ). 

   Fig. 4            A:  Blood lactate concentration ([lac     −     ] B ) at the end of each lactate minimum incremental phase stage.  B:   Δ [lac     −     ] B  /  Δ t during each lactate minimum 
incremental phase stage. LM LEG  (●), LM ARM  ( ○ ). Values are mean    ±    SD. Diff erence between trials,  * p    <    0.05,  *  * p    <    0.01.  
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 Lactate minimum and MLSS agreement decreased as these 
cycling powers increased. Variability in MLSS prediction accu-
racy has been reported previously  [3,   21] , and though the 
reason(s) for this remains unclear, MacIntosh et   al.  [21]  suggest 
that prior training-related fatigue may aff ect the outcome of the 
lactate minimum test. Although our subjects refrained from 
exercise for at least 24   h prior to each test it remains possible that 
residual eff ects of the increased training volume associated with 
higher MLSS powers adversely aff ected the MLSS prediction. 
 The fi ndings of study 2 show that  Δ [lac     −     ] B  /  Δ t during the incre-
mental phase and constant power exercise did not correlate. To 
our knowledge, we are the fi rst to report such data and they 
challenge the proposition of Davis and Gass  [11]  that  Δ [lac     −     ] B  /  Δ t 
during incremental exercise commencing with hyperlactaemia 
has  “ predictive value for steady state work ” . Since the magni-
tude of [lac     −     ] B  partly determines  Δ [lac     −     ] B  /  Δ t  [11,   26] , we strived 
to match [lac     −     ] B  at the start of each incremental phase stage and 
corresponding constant power. This was achieved at all powers 
except 50    %  &W max and we feel that this diff erence is unlikely to 
explain the absence of a correlation for  Δ [lac     −     ] B  /  Δ t between the 
two conditions. Thus, our fi ndings not only challenge the theo-
retical underpinning that has been used to promote the lactate 
minimum test  [21] , but they also suggest that the dynamics of 
the lactate shuttle during the incremental phase diff er from that 
in constant power exercise at equivalent intensities. Further-
more, lactate minimum and MLSS powers have diff erent math-
ematical defi nitions:  Δ [lac     −     ] B  /  Δ P    =    0 (where P    =    cycling power) 
and  Δ [lac     −     ] B  /  Δ t    =    0, respectively, and the cycling powers corre-
sponding to these solutions were diff erent (see study 1). Also, 
paradoxically the agreement with MLSS power was stronger for 
 Δ [lac     −     ] B  /  Δ P    =    0 (lactate minimum) compared to  Δ [lac     −     ] B  /  Δ t    =    0. 
These fi ndings support previous conjecture  [17]  that good agree-
ment between lactate minimum and MLSS powers partly refl ects 
a fortuitous artefact of the protocol design. 
 The fi ndings of study 3 are the fi rst to show that the lactate min-
imum test is strongly infl uenced by the muscle groups used dur-
ing the lactate elevation phase. The LM ARM  protocol precluded a 
U-shaped [lac     −     ] B  profi le during the incremental phase, which 
resulted in consistently greater values for  Δ [lac     −     ] B  /  Δ t, and low-
ered the lactate minimum power compared to LM LEG . These 
fi ndings support previous observations of increased  Δ [lac     −     ] B  /  Δ t 
during cycling exercise preceded by heavy exercise using diff er-
ent compared to the same muscle groups  [8,   14] . Since  Δ [lac     −     ] B  /
  Δ t depends upon the magnitude of [lac     −     ] B   [11,   26]  we ensured 
that this was equal at the beginning of the incremental phase of 
LM ARM  and LM LEG , and thus attribute the diff erent responses to 
the eff ects of using the same or diff erent muscle groups in the 
lactate elevation phase. The infl uence of the lactate elevation 
phase may partially explain why  Δ [lac     −     ] B  /  Δ t during the incre-
mental phase and constant power exercise failed to correlate 
(study 2). The lactate elevation phase may well  “ prime ”  the 
working muscles prior to the incremental phase, thus reducing 
metabolic inertia (i.e., the delay in oxidative metabolism at the 
onset of exercise  [15] ). Such priming only occurs when prior 
exercise involves the same muscle groups  [8,   14,   19]  and is pre-
dominantly manifest early in the subsequent exercise bout  [10] . 
This is consistent with the data shown in     ●  ▶     Fig. 3  , where diff er-
ences in  Δ [lac     −     ] B  /  Δ t between LM LEG  and LM ARM  were manifest 
during the initial stages of the incremental phase. Therefore, the 
lactate elevation phase of LM LEG , unlike that of LM ARM , probably 
increased the aerobic contribution to the energy demand during 
the initial stages of the incremental phase, thus resulting in less 

lactate accumulation and greater lactate oxidation  [5,   10,   15] . 
This is supported by Sim õ es et   al.  [24]  who compared responses 
to the incremental phase with and without prior exercise and 
found elevated oxygen uptake and reduced respiratory exchange 
ratio in the former condition. 
 In summary, our modifi ed lactate minimum test protocol pro-
vides valid measures of both maximal oxygen uptake and MLSS. 
However,  Δ [lac     −     ] B  /  Δ t during the incremental phase fails to refl ect 
that of constant power exercise, possibly because the dynamics 
of the lactate shuttle, and therefore the [lac     −     ] B  response, are 
modifi ed by the high-intensity exercise performed in the lactate 
elevation phase. Consequently, good agreement between lactate 
minimum and MLSS powers seems fortuitous and requires a 
physiological explanation diff erent from that based on the prop-
osition of Davis and Gass  [11] .   
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