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Abstract. 

Oxidation of 1,5-bis(dimethylamino)naphthalene with iodine leads directly to a 

bis(dimethyliminium) derivative of acridino[2,1,9,8-klmna]acridine, containing six fused six-

membered rings, as a bis triiodide salt. The cation has a twisted structure due to the 

minimisation of peri interactions between each dimethyliminium group and a hydrogen atom. 

Use of TCNQ as oxidizing agent leads to the same dication as a tetrakis(TCNQ) salt, while use 

of TCNQ-F4  gave a related monocation which is dimethylated on a ring nitrogen atom.   
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Introduction. 

Large, conjugated, aromatic hydrocarbons composed of fused benzene rings, representing a 

fragment of graphene are potential conducting materials for molecular electronics. Among 

these, derivatives of dibenzo[def,mno]chrysene, 1, containing six fused benzene rings, has 

found potential for use in energy storage materials, solar cells and electroluminescent cells.1 

For example, push-pull dyes such as 2 containing this ring system have been assessed for use 

in solar cells and shown efficiencies > 5%.2 Substitution of two carbons  in 1 with nitrogens 

gives the diaza analogue 3, which can be seen as two acridines fused back to back, or more 

precisely as an acridino[2,1,9,8-klmna]acridine. A reduced version of this ring system is 4, 

which allows for two N-substitutions on the ring system, and derivatives such as 5 and 6, and 

also the bis(diarylamino) derivative 7, have been reported in the patent literature as having 

potential application in electroluminescent devices and as semiconductors for thin film 

transistors.3 The synthesis of the hexyl derivative 5 starts with the self-coupling of 8-

acetylamino-2-naphthol, but involves several further steps. Molecules based on 4 with further 

fused benzene rings have been reported as potential energy storage materials4 and also for use 

in OLEDs.5 Here we report the remarkable direct oxidation of 1,5-

bis(dimethylamino)naphthalene 8 to the dication 9, which contains the bis N-methylated 

derivative of 4 as a core and bearing two dimethylamino substituents to stabilise the charge. 

The naphthalene 8 has also been oxidized to the monocation 10, in which the positive charge 

is located at a quarternary heterocyclic N atom.  

          

Scheme 1. Structural diagrams 1-7. 
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Results and Discussion 

 

 

Scheme 2. Synthesis of dication 9 and monocation 10. 

 

Treatment of 1-,5-bis(dimethylamino)naphthalene 8 with iodine in pyridine and 1,4-

dioxane at room temperature for 12 hours, followed by addition of water, gave a dark 

precipitate of the bis triiodide salt of the dication 9 in high yield (82%) in a quite remarkable 

chemical reaction (Scheme 2). Two molecules of 8 have coupled through carbon atoms para 

to one dimethylamino group and then the second dimethylamino groups have ring closed on to 

adjacent meta positions from opposite molecules, with loss of a N-methyl group in each case, 

to form the dication 9.  The same product is obtained, in lower yield (57 %), if 8 is treated with 

N-iodosuccinimide. 

  The molecular structure of 9.(I3)2 was determined by X-ray crystallography. The crystal 

structure of 9.(I3)2 is triclinic, space group P-1, and the unit cell contains one dication, which 

is located on a centre of symmetry, and two triiodide anions which are centrosymmetrically 

related (Fig. 1 and Fig. S1).  In dication 9 the two peripheral dimethylamino groups adopt a 

bonding geometry near to planar, with a sum of angles at the nitrogen atom of 357.5o, so that 

their lone pairs can stabilise the 2+ charge on the ring system. The Me2N-C bonds are thus 

shortened to 1.337(7) Å.  However, there is steric repulsion between each dimethylamino group 

and its neighbouring peri hydrogen atom leading to a lengthening of the intervening ring C,C 
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bond attached to the nitrogen to 1.470(7) Å at both sides of the molecule, the longest C,C bonds 

in the ring system (Fig. 2). This repulsion also leads to a small twist about the long axis of the 

hexacyclic system (Fig. 1, right), as well as preventing perfect planar bonding at the 

dimethylamino groups. The stretching of the two bonds to 1.470 Å is accompanied by 

lengthening of parallel C,C bond in the ring system but by lesser amounts (Fig. 2).  The twist 

leaves each  dimethylamino nitrogen atom displaced by 0.433 Å to one side of the best plane 

of the dication, while the adjacent unsubstituted fused benzene ring moiety is twisted to the 

other side with the largest carbon atom displacement from the best plane of 0.161 Å. The 

bonding geometry at the heterocyclic N-CH3 group is exactly planar, and the two ring N-C 

bonds have lengths of 1.368(7) and 1.394(7) Å, with the N-CH3 bond being 1.467(7) Å.  In the 

crystal structure the dications and triiodide ions are packed in alternate layers along the c axis 

(Fig. S1).  

      

Fig. 1.  Structure of dication 9 face-on (left) and edge-on (right).  

                                                    

Fig. 2. Selected carbon-carbon bond lengths in dication 9, e.s.d.s (0.007-0.008 Å), showing 

the effects of the pair of peri-repulsions.  
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Scheme 3. Possible mechanism for the formation of 9.(I3)2 from 8 and iodine. 

A possible mechanism for the reaction is shown in Scheme 3. The first step is the formation of 

the radical cation 11, probably by reaction with the iodopyridinium cation, which then 

dimerises by formation of the bond between the two radical centres para to the dimethylamino 

groups. The second set of dimethylamino groups then react with the cationic centres with loss 

of a methyl group. Oxidations then complete the formation of dication 9. 

Calculations at the UB3LYP/6-31g(d,p) level6 on the singlet and triplet states of the 

isolated dication 9 suggest that the singlet structure is 1.29 eV  more stable. The calculations 

also support the particularly long  (N=C)C-C peri bond with a value of 1.473 Å, cf. the 

crystallographically determined value of 1.470 Å, the slight twist about the short axis of the 

molecular system, and the almost planar bonding  geometry of the dimethylamino group. 

Cyclic voltammetry measurements on 9.(I3)2 in 0.1 M n-Bu4NPF6 showed a reversible 

reduction peak at -0.56 V relative to Ag/AgCl. Thus, calculations were also carried out on two 

reduced species from dication 9: the radical cation 12 and the neutral molecule 13. Results  for 

9, 12 and 13 are summarised in Table S1 in the ESI. Most notably, in the neutral species the 

dimethylamino groups now have pyramidal structures at nitrogen and are oriented to have one 

methyl group lying roughly perpendicular to the hexacyclic structure. This reduces the peri 

repulsion between a hydrogen and the dimethylamino group, and the resultant distortion of 
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nearby bonds is reduced.  The calculated structure of the radical cation 12 is intermediate 

between  those of  the  dication and the neutral molecule with the dimethylamino group partially 

pyramidalised (sum of angles 351.9o).   

                               

The naphthalene 8 was treated with several other oxidizing agents (Scheme 2).  

Refluxing with TCNQ in acetonitrile gave crystals of the salt of the dication 9 with four TCNQ 

species as determined by X-ray crystallography (Fig. 3).  The dication 9 is packed at ca. 57o to 

a block of four, almost parallel, TCNQ species which must bear an overall charge of -2.  These 

four acceptor molecules lie in a slipped stacking arrangement, with the first two related to the 

second two by a centre of symmetry. The charge carried by each TCNQ can be estimated from 

its bond lengths, related to the effects of occupation of the LUMO orbital,7 and this indicates 

that the central two TCNQs carry about twice as much charge as the outer pair. Furthermore, 

two distinct C≡N stretches are seen in the infra-red spectrum (2185 and 2154 cm-1). The next 

block of four TCNQs along the b axis is strongly slipped with respect to its neighbour. Initial 

investigations of the electrical properties of both these salts of 9 suggest they are insulators. 

                                    

Fig. 3.   Crystal packing arrangement for 9.(TCNQ)4
2-  showing the stacking of groups of 

four TCNQ species along the b axis, the dication 9 is side-on. 

        In contrast, treatment of the diamine 8 with TNCQ-F4 led to the salt of a related 

monocation 10, as determined by X-ray crystallography (Fig. 4). Full details of molecular 

geometry are in Table S2. The new cation 10 has its positive charge localised at one quartenary 
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ring nitrogen atom which bears two methyl groups.  The dimethylamino groups are not 

involved in delocalising the positive charge, and so the Me2N-C bonds to the heterocyclic 

system (1.405(2) and 1.419(2) Å) are longer than in the dication 9 and these dimethylamino 

groups have pyramidal geometry (sum of angles:  338.7 and 341.8o). This leads to less 

distortion of the ring system due to reduced peri-repulsion with the adjacent hydrogen atom. 

At the dimethylated ring nitrogen atom the four long N-C bonds (1.509-1.518 Å) are typical of 

a quarternary nitrogen, while at the neutral monomethylated nitrogen atom the endocyclic bond 

lengths (1.392 and 1.395 Å) indicate involvement of the nitrogen lone pair in the conjugated 

system. Calculations at the UB3LYP/6-31g(d,p) level lead to a very similar geometry for this 

cation (Table S2).  The bond lengths of the TCNQ-F4 species are consistent with it carrying a 

charge of ca. -1.8 In the crystal structure pairs of cations and pairs of TCNQ-F4 radical anions 

are packed alternately along an axis (Fig. 4). The TCNQ-F4 radical anions lie parallel at a 

separation of  3.116 Å, and the centroid of a TCNQ-F4 radical anion lies at 3.389 Å from the 

best plane of the cation. 

   

Fig. 4.  Molecular structure of monocation 10 showing the heterocyclic positively charged 

nitrogen bearing two methyl groups (left);  crystal structure of 10.TCNQ-F4 showing the 

stacking of pairs of monocations 10 with pairs of TCNQ-F4 anions (right). 

 

 In summary, treatment of 1,5-bis(dimethylamino)naphthalene with iodine yields  an 

acridino[2,1,9,8-klmna]acridine derived dication in high yield. Further investigations show that 

treatment with TCNQ gives the same dication while treatment with TCNQ-F4 gave an 

alternative monocation with the charge located on a ring nitrogen.  The one step synthetic 

procedure using iodine opens up a direct route into preparing this hexacyclic ring system from 

a readily available naphthalene derivative, and thus provides opportunities to develop the 

chemistry of this system to provide new materials for use in electroluminescent materials and 

as semiconductors.   
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Experimental. 

General. Solution NMR spectra were measured on a Jeol ECLIPSE 400 spectrometer at 400 

MHz for 1H and at 100.6 MHz for 13C using CDCl3 as solvent and tetramethylsilane (TMS) as 

standard unless otherwise stated, and measured in p.p.m. downfield from TMS with coupling 

constants reported in Hz. IR spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR 

Spectrometer using Attenuated Total Reflection sampling on solids or oils and are reported in 

cm−1. Chemical analysis data were obtained from Mr Stephen Boyer, London Metropolitan 

University.  Note: there is a report of the carcinogenicity of the parent heterocycle 3.9 

 

Preparation of 9.(I3)2 

Pyridine (12 ml) and iodine (2.19 g, 8.63 mmol) were added to a solution of 1,5-

bis(dimethylamino)naphthalene (0.60 g, 2.80 mmol) in 1,4-dioxane (12 ml), and the resulting 

mixture was stirred overnight. Water (60 ml) was added to the mixture and the dark precipitate 

collected and washed with water and ethanol thoroughly and dried under vacuum to give bis 

triiodide  9.(I3)2 (1.33 g, 82 %) as a blue powder,  m.p. 259-261 ℃. δH (400 MHz, DMSO-d6): 

8.94 (2H, d, J = 8.8 Hz, 2×Ar-H), 8.83 (2H, d, J = 7.6 Hz, 2×Ar-H), 8.49 (2H, t, J = 8.4 Hz, 

2×Ar-H), 7.31 (2H, s, 2×Ar-H), 4.61 (6H, s, 2×N-CH3), 3.76 (12H, s, 2×N(CH3)2);  δC (100 

MHz, DMSO-d6): 160.1, 144.2, 137.7, 132.4, 127.9, 123.1, 121.3, 120.2, 115.1, 98.1 (20×Ar-

H), 45.8 (2× N(CH3)2), 38.2 (2×N-CH3);  νmax/cm-1:  2934,  2925,  2858,  1502,  1473,  1463,  

1395, 1288, 1244, 1220, 1211, 1025, 825, 770, 761, 738,  644, 534. Found: C, 27.13; H, 2.26, 

N 4.89%. Calc. for C26H26I6N4: C, 27.02; H, 2.27, N 4.85%.   

 

Preparation of 9.(TCNQ)4 

A solution of 1,5-bis(dimethylamino)naphthalene (10 mg) and TCNQ (10 mg) in acetonitrile 

(15 ml) was heated at reflux for 20 h., and then the solvent was  left to evaporate slowly. The 

residue was washed with DMF and ether to leave almost black crystalline blocks of 9.(TCNQ)4  

(5 mg),  m.p.  175-178 oC, νmax/cm-1: 3051, 2185, 2154, 1568, 1504, 1476, 1440, 1344, 1276, 

1174, 970, 858, 833, 784, 748, 690, 539, 473. 
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Preparation of 10.TCNQ-F4 

A solution of 1,5-bis(dimethylamino)naphthalene (9 mg) and TCNQ-F4 (10 mg) in acetonitrile 

(15 ml) was heated at reflux overnight. The solution was then left to evaporate slowly. The 

residue was washed with DMF and ether to give small black parallelopipeds (4 mg), m.p. > 

330 oC,  νmax/cm-1: 3054, 2228, 2193, 2178, 1584, 1545, 1516, 1506, 1391, 1354, 1339, 1319, 

1182, 1138, 1004, 964, 860, 826,  811, 749, 473. 

 

X-ray Crystal Structures.   

Full details of crystal data and methods are given in the ESI. Structures 9.(I3)2, 9.(TNCQ)4, 

and 10.TCNQ-F4 have been deposited at the Cambridge Crystallographic Data Centre with 

reference numbers:  CCDC -1951224-1951226. 
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