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Abstract 

    The present work attempts to investigate the influence of hygrothermal environments on the buckling of 

soft-core sandwich plates with laminated composite face sheets. The stability equations are derived based 

on piecewise low-order shear deformation theory (PLSDT) and then solved using different methods, 

depending on the boundary conditions. For fully simply supported sandwich plates, an analytical method 

is developed which results in some closed-form solutions. For sandwich plates with two parallel simply 

supported edges and two clamped edges, a semi-analytical solution is established using one-dimensional 

generalized differential quadrature (GDQ) technique. Finally, for fully clamped sandwich plates, two-

dimensional GDQ approach is applied to the governing equations. To validate the results of proposed 

methods, a comparative study with various examples is carried out verifying that the methods in the present 

work can accurately predict the buckling load of sandwich plates in hot and wet environments. Then, a 

comprehensive parametric study is performed to show the effects of temperature and moisture content on 

the buckling of sandwich plates for different parameters such as length to thickness ratio, core thickness 

and boundary conditions. It is concluded that both temperature and moisture content have significant 

influences on the buckling behavior of sandwich plates.  
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1. Introduction 

     Composite plates are used in most industries including marine, automotive, aerospace and construction 

due to their high strength, low weight, remarkable rigidity, high corrosion resistance and long fatigue life. 

When these structures are subjected to compressive loads, there is a possibility of buckling in them [1-10]. 

In many engineering applications, composite structures may be exposed to hot and wet environments. Since 

the hygrothermal environments play an important role on the stiffness of composite structures, the effects 

of two parameters of moisture and heat should be considered in the analysis of these structures [11-14]. 

     Depending on the geometry of the structures and boundary conditions, moisture-induced swelling and 

heat-induced expansion can seriously affect the buckling phenomenon in composite structures [15]. The 

first research work in this area is probably Whitney and Ashton’s study in which the effects of temperature 

and humidity of environment on the elastic response of laminated composited plates were investigated [16]. 

Based on classical plate theory (CPT), it was shown that swelling can significantly affect the stiffness of 

composite structures and therefore their bending, buckling and vibration. Flaggs and Vinson [17] developed 

a formulation for buckling phenomenon of general layered composite plates which extended the previous 

work [16]. The formulation included both hygrothermal and mechanical loadings and took into account the 

transverse shear and normal deformations. From this research work, it was found that hygrothermal 

environments can considerably decrease the in-plane mechanical loads necessary for buckling of composite 

structures. Therefore, it was also emphasized that the influence of temperature and moisture of environment 

should be considered in the analysis and design of composite structures. Ram and Sinha [18] studied free 

vibration and buckling of composite plates with cutout under hygrothermal environment. The researchers 

concluded that for thick plates, moisture has no significant effect on their buckling and vibration, but thin 

composite plates are highly affected by the moisture content. In another work, these researchers analyzed 

instability of layered composite plates exposed to moisture and heat [19]. The temperature and humidity-

dependent material properties were considered using experimental data. A parametric study was presented 

to show the influence of hygrothermal loads on the buckling of composite plates with respect to different 

geometric parameters, layups, boundary conditions, and temperature and moisture distributions. It was 

resulted that hot and wet environments can seriously change the stability of composite structures. The 

numerical results showed that uniform moisture concentration reduces critical buckling loads almost 

linearly. Concerning the role of temperature on the buckling of composite plates, it was concluded that at 

lower temperatures, the critical buckling load decreases almost linearly with increasing temperature, but at 

high temperatures, this decrease is almost nonlinear. Chao and Shyu [20] studied non-linear buckling of 

laminated composite plates subjected to hygroscopic and thermal conditions. The formulation was provided 
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for symmetric and unsymmetrical layups and then numerically handled for various boundary conditions. A 

parametrical study was performed to indicate the influence of fiber volume fraction, layups, geometric 

parameters, moisture content and temperature on the critical buckling load of the structure. The numerical 

results clarified that high temperature-humid environments can significantly reduce the buckling loads for 

plates. It was also found that with increasing moisture concentration, the mechanical buckling loads linearly 

decrease which is more pronounced in thin plates. Sreehari and Maiti [21] developed a finite element 

formulation to investigate the buckling and post-buckling of composite plates subjected to mechanical loads 

and hygrothermal environments. They examined the buckling response of the structure for different 

geometrical parameters, moisture content and temperature employing an inverse hyperbolic shear 

deformation theory. A conclusion was made that thermal and humid environments have a considerable 

effect on the buckling response of composite structures. Ghadirian et al. [22] studied vibration and stability 

of composite plates exposed to moisture and heat. They used trigonometric Ritz method to obtain the critical 

buckling temperature and moisture content, natural frequencies and mode shape for different types of 

boundary conditions. A comprehensive study was provided to show the effect of moisture-induced swelling 

and thermal expansions on the behavior of composite plates in buckling and vibration. Sreehari and Maiti 

[23] maximized buckling load of damaged layered composite plates under hygrothermal effects using 

particle swarm optimization (PSO) as one the most popular meta-heuristic algorithms for optimization 

problems. The orientations of fibers were considered as the design variables and a comparison was 

performed to evaluate the optimum results for a variety of aspect ratios and boundary conditions. Chen et 

al. [24] made a research to examine vibration and stability of initially stressed hybrid composite plates by 

considering the effect of hygrothermal environment. They provided a solution for composite plates with 

simply supported boundary conditions. From this study, it was concluded that buckling load is significantly 

affected by changes in humidity and temperature of environment. Amoushahi and Goodarzian [25] did a 

research work to demonstrate the influences of hygrothermal conditions on the dynamic and buckling 

response of composite plates with/ without strip delamination. The governing equations were obtained 

based on first-order shear deformation theory (FSDT) and solved using a finite strip method for different 

boundary conditions. The variations of critical buckling loads and natural frequencies of composite plates 

with respect to different configurations were thoroughly examined.  

     The unique characteristics of sandwich plates have led some researchers to study the thermal buckling 

of these types of structures.  Babu and Kant [26, 27] employed two finite element formulations for thermal 

buckling analysis of sandwich plates with layered composite face sheets. They performed a parametric 

investigation to show the influences of different types of boundary conditions, thickness of layers and angle 

of fibers on the critical buckling temperature of the sandwich plates. They found that as the face sheets 
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thicken, the buckling temperature of the structure decreases. Shiau and Kuo [28] analyzed thermal buckling 

of sandwich plates with laminated face sheets. It was inferred from this study that the optimum fiber 

orientation for a square sandwich plate with ( )/
s

Core  face sheets is 45+  while this amount for 

rectangular ones with aspect ratio greater than 2 is about 63+ . The researchers also concluded that 

composite materials with high 
1 2/E E and low 

1 2/   ratios result in high critical buckling temperature. 

Matsunaga [29, 30] studied thermal buckling of rectangular cross-ply and angle-ply composite and 

sandwich plates using two-dimensional higher-order shear deformation theory (HSDT). In these studies, 

different truncated mth-order theories were applied to obtain the buckling temperature of the sandwich 

plates. The accuracy of the results was evaluated in comparison with the results of three-dimensional layer 

wise solution. Vangipuram and Ganesan [31] conducted a research work to examine buckling and free 

vibrational behaviors of sandwich plates under thermal effects. It was observed that the coupling thermal 

conductivity term does not considerably affect thermal buckling of the structure. A decoupled thermo-

mechanical analysis was presented by Pradeep and Ganesan [32] to investigate thermal buckling and free 

vibration of multi-layered viscoelastic sandwich plates. The researchers showed the variations of the critical 

buckling temperatures, natural frequencies and mode shapes against various effective parameters like core 

thickness. Han et al. [33] developed a new, accurate and simple refined theory to examine buckling and 

free vibration of foam-filled corrugated rectangular sandwich plates with simply supported boundary 

conditions considering thermal influence of environment. They showed that foam filling can decrease the 

performance of the structure in buckling and vibration up to 13.7%. Based on the sublaminate generalized 

unified formulation, Vescovini et al. [34] studied thermal buckling behavior of sandwich plates. The 

proficiency of the applied approach was evaluated by comparing the results with three-dimensional 

solution. Zhai et al. [35] investigated buckling temperature and natural frequencies of simply supported 

soft-core sandwich plates with single-layer orthotropic skins under thermal environments effects. They 

studied the buckling and vibration characteristics of sandwich plates analytically and concluded that they 

are significantly affected by temperature-induced thermal stresses.  

    Sandwich plates with polymer composite face sheets are widely used for aerospace and marine structures. 

They may usually be subjected to hygroscopic and thermal environments during their service [36, 37]. 

Although the previous researches indicate that hot and wet environments can dramatically affect the 

stability performance of composite structures, to the best of authors’ knowledge, no research work has been 

performed on the buckling of sandwich plates by considering the simultaneous effects of humidity and 

temperature, or the number of these studies is very limited. Due to the lack of a comprehensive survey in 

this field of research, the present work is motivated to focus on the buckling response of sandwich plates 
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with soft cores and composite layered face sheets in hygrothermal environments. Since the exact analysis 

of this type of structures is very complicated and time consuming, a straightforward solution with high 

performance should be sought that can simplify the formulation of the problem and reduce the 

computational time and cost as much as possible. To this end, an appropriate stability formulation for 

sandwich plates under hygro-thermo-mechanical loads is developed here based on PLSDT [38]. The use of 

this theory has a complexity, which is the inequality of the number of governing equations and boundary 

conditions. For this reason, depending on the type of boundary conditions, the stability equations are solved 

using different methods of analytical, semi analytical and numerical techniques. For fully simply supported 

sandwich plates, an analytical method is applied and some close-form solutions are provided for estimation 

of critical buckling loads. For the case where the structure has two opposite simply supported and two 

opposite clamped boundary conditions, a semi analytical method is utilized using one-dimensional GDQ 

technique, as an efficient and powerful tool for solving partial differential equations [39-42]. Finally, for 

fully clamped sandwich plates, two-dimensional GDQ approach is implemented for the buckling analysis. 

Then, the influences of moisture content and temperature of environments on the critical buckling load of 

sandwich plates is comprehensively studied for different geometrical parameters and boundary conditions.  

 

2. Problem description 

2.1. Thermal buckling equations 

    Consider a rectangular sandwich plate of dimension a b h  , as shown in Fig. 1. The sandwich plate is 

assumed to be under compressive in-plane forces and exposed to hygrothermal environment. The 

thicknesses of each face sheet and core are 
fh  and 2 ch , respectively. Though the cores of sandwich 

structures are usually non-composite or non-laminated, a general formulation is provided here for sandwich 

plates consisting of laminated composite cores and face sheets. Based on PLSDT [38], the displacement 

fields for the structure can be expressed as: 

Transverse displacement 

component at any point: 
( , , ) ( , )w x y z w x y= , 

(1) 
In-plane displacement components 

in the top and bottom face sheets: 

0 1

0 2

2 2
( , , ) ( , ) ( )

2 2

2 2
( , , ) ( , ) ( )

2 2

c f c f
t
b

c f c f
t
b

h h h h w
u x y z u x y z

x

h h h h w
v x y z v x y z

y





+ + 
= − 


+ +  = −

 
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In plane displacement components 

in the core: 

0 1

0 2

2
( , , ) ( , ) ( )

2 2

2
( , , ) ( , ) ( )

2 2

c f f

c

c c

c f f

c

c c

h h h w
u x y z u x y z

h h x

h h h w
v x y z v x y z

h h y





+ 
= − −




+  = − −
 

 

where index c denotes the core layer, and indices t and b  represent the upper and lower face sheets, 

respectively. Moreover, 
1  and 

2  are the rotation angles of the straight line that connects the midpoint of 

the face sheets in the xoz and yoz planes, respectively. Considering Strain von-Karman’s nonlinearity 

terms, the strains of the face sheets can be written as: 

2 2 (0) (1)
20 1
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2 2 21 1
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2 21 1
( )

2 2 2 2
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  
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
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
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(0) (1)
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2 (0) (1)
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(2) 

Similarly, the strain components for the core can be obtained in the following forms: 
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(3) 

For the sandwich plate under hygrothermal environments, the stress components in the kth layer of the face 

sheets or core can be calculated in the forms of:   
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where 
ijQ  denotes the transformed reduced stiffness coefficients detailed in Appendix 1;   and   

represent the thermal expansion coefficient and moisture expansion coefficient described in Appendix 2;  

T  and C  are the temperature and moisture changes with respect to ideal environment (room 

temperature without moisture content), and kt , kb  and kc  refer to the kth layer in top face, bottom face 

and the core, respectively. It should be mentioned that some assumptions are taken into consideration in the 

present work that are: 

• The top and bottom face sheets are similar. 

• The layups of face sheets or core are cross-ply (
16 26 45 0Q Q Q= = = ) and symmetric with respect to their 

mid-planes. 

• The temperature and moisture are uniformly distributed. 

• The core and face sheets are considered to be isotropic or orthotropic.  

By using the above assumptions, the stress resultants in the face sheets can be defined as: 
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where 
fijA and 

fijD  are the extensional and bending stiffness coefficients for the skins, respectively, 

defined as: 
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(6) 

In Eq. (5), T

fxN and
T

fyN  denote the in-plane thermal forces, and H

fxN and
H

fyN  represent the in-plane 

hygroscopic forces in the face sheets calculated by the following relations: 
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(7) 

Also, the stress resultants for the core can be defined as: 
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 

       
=    

       

 
(8) 

in which, 

( ) ( )2

11 12

12 22

11 12

12 22

1

 

 

, ,
c

core

c

c

c

c

c

h

cij cij ij

h

T h
cx x

T
yhcy corecore

H h
cx x

H
yhcy corecore

A D Q z dz

N Q Q
T dz

Q QN

N Q Q
C dz

Q QN









−

−

−

=

       
=     

       

       
=     

       







 

(9) 

In the next step, the strain energy (U ) of the sandwich plate is calculated as: 

0 0 0 0 0 0

0 0 0 0

1 1

2 2

1 1

2 2

c f c f c f

c c c

c c

c f c f

t b c

h h h h h ha b a b a b

t tx ty txy tx tx ty ty txy txy

h h h

h ha b a b

b bx by bxy bx bx by by bxy bxy

h h h h

U U U U

U U U U dzdydx dzdydx dzdydx

U U U U dzdydx dzdydx dz

     

     

+ + +

− −

− − − −

= + +

= + + = + +

= + + = + +

        

     
0 0

0 0 0 0

0 0 0 0 0 0

1 1

2 2

c

c f

c c

c c

c c c

c c c

ha b

h h

h ha b a b

c cx cy cxy cxz cyz cx cx cy cy

h h

h h ha b a b a b

cxy cxy cxz cxz cyz cyz

h h h

dydx

U U U U U U dzdydx dzdydx

dzdydx dzdydx dzdydx

   

     

−

− −

− −

− − −

= + + + + = +

+ + +

  

     

        

 

(10) 

The work done by the external compressive loads ( xP  and 
yP  ) can be derived by: 

 22

0 0

1

2

b a

x y

w w
W P P dxdy

x y

    
= − +   

     
 

 
(11) 

Based on the principle of virtual work [43], we have: 

 ( ) 0U W + =  (12) 

By inserting Eqs. (10) and (11) into Eq. (12), five governing equations are obtained, two of which relate to 

in-plane equations and the remaining three equations relate to out of plane equations. By implementing 

adjacent equilibrium buckling criterion, performing pre-buckling analysis for sandwich plates with 

immovable simply supported and clamped boundary conditions, as well as linearization of the obtained 
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relations, the thermal buckling equations of the structure in terms of displacement components can be 

expressed as: 

( ) ( )

( ) ( )

3 3 34 4 4
(3) (3) (3) (3) (2) (2) (2)1 1 2
11 12 66 22 11 12 664 2 2 4 3 2 2

3 2 2 2 2
(2) 2 1 2
22 3 2 2 2 2

2 4 2

0T M T M

cxz cyz x x x y y y

w w w
g g g g g g g

x x y y x x y x y

w w w w
g S S N N P N N P

y x x y y x y

  

  

     
+ + + + + + + + 

         

        
+ − + − + + + + + + =   

         

 

(13) 

( ) ( )
2 2 23 3

(2) (2) (2) (1) (1) (1) (1)2 1 1
11 12 66 12 66 11 66 13 2 2 2

2 0cxz

w w w
g g g g g g g S

x x y x y x y x

  


     
− − + − + − − + − = 

        

 

( ) ( )
2 2 23 3

(2) (2) (2) (1) (1) (1) (1)1 2 2
22 12 66 12 66 22 66 23 2 2 2

2 0cyz

w w w
g g g g g g g S

y x y x y y x y

  

     

− − + − + − − + − = 
        

 

in which  

2

55

2

44

2

2

2
1

2

2
1

2

T T T T T T

x cx tx bx cx fx

H H H H H H

x cx tx bx cx fx

c f

cxz c

c

c f

cyz c

c

N N N N N N

N N N N N N

h h
S A

h

h h
S A

h

= + + = +

= + + = +

+ 
= + 
 

+ 
= + 
 

 

(14) 

and the coefficients of 
( )k

ijg  are presented in Appendix 3. The related boundary conditions can also be 

derived as: 

2 23 3
(2) (3) (2) (3)1 2
11 11 12 12 12 3 2

2 2
(2) (3) (2) (3)1 2
11 11 12 122 2

(1) (2)1
1 11 11

  0

            

0 ( )

0, : 0 0

0

cxzor

or

w w w
w g g g g S

x x x y x y x

w w w
x a g g g g

x x x y

or

y

g g
x

 
 

 





   
= − − − − + −

      

    
= = + + + 

     

 
= +



 
= 

 

 
= 

 
2 2

(1) (2)2
12 122 2

0
w w

g g
x y y












 
 + +

  

 
= 

 

 

(15) 
2 23 3

(2) (3) (2) (3)2 1
22 22 12 12 22 3 2

2 2
(2) (3) (2) (3)2 1
22 22 12 122 2

2
(1) (2)2

2 22 22

0 ( )

0, :

0

            0

0

0

cyzor

b or

or

w w w
w g g g g S

y y x y x y y

w w w
y g g g g

y y y x x

g g
y

 
 

 





 
= 

 

 
= 

 

   
= − − − − + −

      

     
= = + + + 

     

 
= +



2
(1) (2)1
12 122 2

0
w w

g g
y x x

 










 
 + +

 
=



 

 

It is worth noting that for the clamped boundary conditions, we have 
1 2  0

w w
w

x y
    

   
= = = = =  

    

, 

thus, Eqs. (15) are automatically satisfied.  

 

2.2. Solution methods 
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    This subsection attempts to explain how to solve thermal buckling equations of the rectangular sandwich 

plate with different boundary conditions, as presented in Eqs. (13) and (15). Here, depending on the type 

of boundaries, three different methods are provided.  

Simply supported boundary conditions (SSSS) 

    For sandwich plates with simply supported edges, an analytical solution is suggested in the form of: 

1 1

2 2

( , ) sin sin

( , ) cos sin

( , ) sin cos

mn

mn

mn

m n
w x y W x y

a b

m n
x y x y

a b

m n
x y x y

a b

 

 


 


=

= 

= 

 

(16) 

where m and n are the number of half-wave in x- and y-directions. As can be observed, the purposed solution 

can satisfy the boundary conditions of Eq. (15). Inserting Eq. (16) into Eq. (13) results in:  

11 12 13

21 22 23 1

31 32 33 2

0

0

0

mn

mn

mn

Wk k k

k k k

k k k

    
    
 =
    
        

 
(17) 

in which the coefficients of ijk  are expressed in Appendix 4. Then, a nontrivial solution is sought for the 

above equations as follows: 

11 12 13

21 22 23

31 32 33

det 0

k k k

k k k

k k k

 
 

=
 
  

 
(18) 

By defining parameter   as the load ratio (
y

x

P

P
 = ), solving Eq. (18) straightforwardly yields the buckling 

load in the following form. 

1 2

3

x

f f
P

f

−
=

 
(19) 

where 

   
( ) ( )

( ) ( )

4 (3) 2 2 (3) (3) 4 (3) 2 2

1 11 12 66 22

2 2

2

2 2

3

2 2 2

12 33 13 22 12 13 23 22 33 23

( ) ( ) ( ) (2 4 ) ( ) ( ) ( )

* ( ) ( )

( ) ( )

* 2 /

cxz cyz

T H T H

x x y y

m m n n m n
f g g g g S S

a a b b a b

m n
f f N N N N

a b

m n
f

a b

f k k k k k k k k k k

     

 

 


= + + + + +

= + + + +

= +

= + − −

 

(20) 

From Eq. (19), the buckling loads of the structure are calculated for different values of m and n. The 

minimum obtained value is considered as the critical buckling load signified by the symbol of 
crP . It should 
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be noted that in the absence of external mechanical loads, this is also possible for composite plates to buckle 

due to only hygroscopic or thermal loads which is called hygrothermal buckling. In this case, for a specified 

amount of moisture ( C cte = ), the buckling temperatures can be obtained as:  

1 4

5

f f
T

f

−
 =

 
(21) 

where 

2 2

4

2 2

5

/2

11 12 11 12

12 22 12 22/2

* ( ) ( )

( ) ( )

2 2

fc

c f

H H

x y

T T

x y

hT T T h
x x x x x

T T T
y yh hy y y corecore face

m n
f f N N

a b

m n
f N N

a b

N Nc Nf Q Q Q Q
dz

Q Q Q QN Nc Nf

 

 

 

 

++

− −

= + +

= +

              
= + = +                              

 
face

dz




  

(22) 

Again, the critical buckling temperature (
crT ) is the lowest value obtained for all m and n. Similarly, in 

the absence of external load and at a certain temperature ( T cte = ), the buckling moisture contents can be 

obtain using the following equation:  

1 6

7

f f
C

f

−
 =

  
(23) 

where 

2 2

6

2 2

7

/2

11 12 11 12

12 22 12 22/2

* ( ) ( )

( ) ( )

2 2

fc

c f

T T

x y

H H

x y

hH H H h
x x x x x

H H H
y yh hy y y corecore face

m n
f f N N

a b

m n
f N N

a b

N Nc Nf Q Q Q Q
dz

Q Q Q QN Nc Nf

 

 

 

 

++

− −

= + +

= +

              
= + = +                              

 
face

dz




  

(24) 

and the lowest value for different m and n is known as the critical moisture content (
crC ).  

 

Two opposite simply supported edges and two clamped edges (CSCS) 

    For this case, the boundary conditions are assumed to be clamped at   0,x a=  but simply supported at

  0,y b= . For sandwich plates with this type of boundaries, a semi analytical solution is presented. It can 

be seen that by adopting the following form for the displacement components, the boundary conditions at 

  0,y b= are satisfied. 
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1 1

2 2

( , ) ( )sin

( , ) ( )sin

( , ) ( ) cos

n
w x y W x y

b

n
x y x y

b

n
x y x y

b









=

= 

= 

 

(25) 

Substituting Eq. (25) into Eq. (13) leads to the following equations: 

3 24 2

1 1 2
1 2 3 4 5 6 7 24 2 3 2

23

1 2
8 9 10 11 1 123 2

22

1 2
13 14 15 16 17 22 2

0

0

0

W W
p p p W p p p p

x x x x x

W W
p p p p p

x x x x

W
p p W p p p

x x x

     
+ + + + + +  =

    

   
+ + +  + =

   

  
+ + + +  =

  

 

(26) 

where the coefficients of ip can be found in Appendix 5. It is worth noting that the coefficients 2p  and 

3p depend on temperature ( T ) and moisture ( C ). To solve the above partial differential equations in 

the x direction, GDQ method is employed. According to this technique, the rth-order partial derivative of a 

function ( )f x with respect to x  at a given point 
ix  is estimated as follows:  

1

   ; , 2,..., , 1,2( ,... 1)
xNr

r

i xkr xk

k

i N
f

r Nc f x
x =

== =



−

 
(27) 

where 
r

ikc  are the weighting coefficients which can be found in Refs. [44, 45]. By applying GDQ approach 

into Eq. (26), the following discretized equations are obtained. 

( ) ( )

( )

4 2 3 1 2

1 2 3 4 5 1 6 2 7 2

1 1 1

3 1 2 1

8 9 10 1 11 1 12 2

1 1 1

2 1

13 14 15

1

( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) 0

( ) ( )

x x x

x x x

x

N N N

ik ik k i ik ik k ik k i

k k k

N N N

ik ik k ik k i ik k

k k k

N

ik k i ik

k k

p c p c W x p W x p c p c x p c x p x

p c p c W x p c x p x p c x

p c W x p W x p c

= = =

= = =

=

+ + + +  +  +  =

+ +  +  +  =

+ +

  

  

 2

1 16 2 17 2

1 1

( ) ( ) ( ) 0
x xN N

k ik k i

k

x p c x p x
= =

 +  +  = 

 

(28) 

Next, after discretizing the partial differential buckling equations, the eigenvalue problem is obtained as:  

 

 

 

 

 1

2

0

d

d

d

W 
 
 = 

 
 

S

 
(29) 

in which  S  represents the stiffness matrix and  dW ,  1d and  2d  are defined as: 

     

2 2

3 3

1 1

1 22

1 23

1 2

1 1 2

, ,
... ... ...

x N Nx x

d d d

N

W

W
W

W



− −
−

     
           

= =  =     
     
           

 

(30) 



13 

 

It is crucial to note that, in general,         
1

dd db bb bdS S S S
−

= −S which is obtained by discretizing both 

governing equations and boundary conditions. But, since the boundaries at edges 0 ,x a=  are clamped, 

 bdS becomes zero. Therefore, only Eq. (28) requires to be discretized and there is no need to discretize 

the boundary condition relations. In other words,    ddS=S  which doesn’t include the nodes on the 

boundaries. Now, the method of obtaining the critical buckling load is explained. To this end, at specific 

values of n, T , C , and  , the amount of load 
xP  is gradually increased until the determinant of the matrix 

[ ]S  becomes zero. Similar loads are calculated for different values of n, finally, their lowest value is 

considered as the critical buckling load of the structure. 

 

Fully clamped boundary conditions (CCCC) 

    As the third type of boundary conditions, fully clamped sandwich plates are considered here. To obtain 

the critical buckling temperatures for this case, two-dimensional GDQ approach is implemented which 

approximates the partial derivatives of a continuous function ( , )f x y  at point ( , ) ( , )i jx y x y=  as: 

1

( , ) , 1,..., , 1,...,
( , )

xNr
r

ik k j x yr
ki j

f
c f x y i N j N

x yx =


= = =




 
 

1

( , ) , 1,..., , 1,...,
( , )

yNs
s

jl i l x ys
li j

f
c f x y i N j N

x yy =


= = =




 
(31) 

( )

1 1

( , ) , 1,..., , 1,...,
( , )

yx
NNr s

r s

ik jl k l x yr s
k li j

f
c c f x y i N j N

x yx y

+

= =


= = =

 


 
 

where 
r

ikc and 
s

jlc  are the weighting coefficients for x and y directions, respectively. By applying two-

dimensional GDQ method to Eq. (13), the following discretized equations are obtained.     

(3) 4 (3) (3) 2 2 (3) 4 (2) 3

11 12 66 22 11 1

1 1 1 1 1

(2) (2) 1 2 2 1

12 66 1 2

1 1 1 1

( , ) (2 4 ) ( , ) ( , ) ( , )

( 2 ) ( , ) ( , )

y yx x x

y yx x

N NN N N

ik k j ik jl k l jl i l ik k j

k k l l k

N NN N

ik jl k l ik jl k l

k l k l

g c w x y g g c c w x y g c w x y g c x y

g g c c x y c c x y



 

= = = = =

= = = =

+ + + + +


+ +



   

 

( ) ( )

(2) 3

22 2

1

1 2 1 2

1 2

1 1 1 1

2 2

1 1

( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) 0

y

y yx x

yx

N

jl i l

l

N NN N

cxz ik k j ik k j cyz jl i l jl i l

k k l l
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The above equations can also be re-written in the following compact form. 

 
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d

d
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 
 
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 
  

S

 
(33) 

where 
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d N N N N Ny x x x y

d N N N N Ny x x x y

T

d N N N N N

T

T

w w w w w w w

      

      

− − − − −

− − − − −

− − − − −=

=

=

 

  (34) 

To obtain the critical buckling load, 
xP is gradually increased until the determinant of the matrix becomes 

zero. This load is reported as the critical buckling load. 

 

3. Results and discussion 

3.1. Verification study 

    In this subsection, the validity of present results is investigated. Five different comparisons are made 

here to show the accuracy of the results for a variety types of sandwich plates with different boundary 

conditions under various loadings. As the first example, mechanical buckling of a sandwich plate with soft 

core and isotropic skins under uniaxial and biaxial compressive loads is examined. The plate consists of 

two identical face sheets of thickness 0.5334 mm  each and a core of 4.597 mm thick. The material 

properties of the sandwich plate in this example are as follows [46-48]:  

3 2 3 2

2

12

2

12

: 6.55 10 / 0.262 10 /

1

    ;    

                31.0 / 0.25  ;    

    : 65500.0 / 0.  ;    2  5 

x y xy

xz yz

Core E E N mm G N mm

G G N mm

Face sheets E N mm





− −= =  = 

= = =

= =
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The comparison results are provided in Table 1. In this table, critical buckling stress ( / 2cr x fN h = ) of 

the sandwich plate which is exposed to uniaxial load ( 0 = ) and biaxial loads ( 0.5 = ) is evaluated for 

two types of boundary conditions and three different aspect ratios (a/b) taking 596.  9b mm= . From the 

comparison study of Table 1, two conclusions can be inferred. The first point is that the present results are 

in a very good agreement with other reported data in the literature [46-48]. The second point is about the 

convergency of the GDQ results. Numerical results of Table 1 for sandwich plates with fully clamped 

boundary conditions clarify that the applied GDQ method converges very fast and this method needs only

13 13 grid points to yield the converged responses. 

    The second example is related to the mechanical buckling of simply supported composite plates with soft 

core and two identical single-layer orthotropic skins ( / /Core  ). The structure is assumed to be under 

uniaxial compressive loading ( 0 = ) and the results are tabulated for two different fiber orientations ( 0

and 90 ). The plate has a dimension of 
2225 225 mm and the thickness of core and skins is 10 mm and

0.2 mm , respectively. The martials properties are taken as follows [47, 49 and 50]: 

1 2 12 13

23 12

1 2 12 12

  ;      ;     

               

: 0.02 0.0146 0.146

0.0904 0.3

: 229 13.35 5.25 0.315

;   

    ;      ;      ;    1

Core E E GPa G GPa G GPa

G GPa

Face sheets E GPa GPa GPaE G





= = = =

= =

= = = =

 

As Table 2 shows, the present results are very close to those available in Refs. [47, 49 and 50] and the 

differences between the results, which come from using various plate theories and solution methods, is little 

and ignorable.  

    In the next step, the present results are verified by evaluating thermal buckling results of rectangular 

sandwich plates. As the third example, a comparison is performed between the numerical results of present 

work and the results obtained by Shuia [28] and Ko [52] for critical buckling temperature of sandwich 

structures with aluminum honeycomb core and isotopic titanium face sheets (as shown in Fig. 2). The 

material properties of the core and skins for this example are assumed to be [52]: 

4 2 4 2 5 2

6 2 5 2 5 2
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The comparison shown in Table 3 represents that all three solution methods implemented in the present 

study can predict the critical buckling temperature of honeycomb sandwich plates very well for different 

boundary conditions. To verify the present results for thermal buckling of sandwich plates, one more 

comparison is here made. To this end, the buckling temperature of sandwich plates with soft core and two 

identical single-layer orthotropic skins ( 0 / / 0o oCore ) are evaluated. The structure is presumed to be 

exposed to environment with uninform temperature distribution. The material properties of the core and 

face sheets are considered as [35]: 

6

12

1 2 12

6 6

12 1 2

   ;     ;     

    ;      ;      ;   

  

: 10 0.3 0.18 1

  

0 /

: 132 10.3 6.5

0.3 1.2 10 / 24 10                     ;   /      ;   

o

o o

IsotropicCore E MPa C

Face sheets E GPa GPa G

C

G PE a

C

 

  

−

− −

= = = 

= = =

= =  = 

 

Simply supported conditions are considered at all edges for this example. The comparison is performed for 

different /a h  ratios. It should be mentioned that the digitizer software with high accuracy was applied to 

obtain numerical data from the graphs of Ref. [35]. It can be concluded from Fig. 3 that the results obtained 

from the present research are so close to those reported by Zhai et al. [35] for thermal buckling analysis of 

sandwich plates. 

    Finally, a verification study is provided to compare the numerical results for hygrothermal buckling of a 

single-layer non-sandwich composite plate with thickness to length ratio of 0.01. For this example, the 

material properties of the orthotropic layer are assumed as [22]: 

1 2 12 12

6 6

1 2 1 2

 ;       ;       ;    

  ;      ;      ;  

130 9.5 6 0.3

0.3 10 / 28.1 10 / 0 0.44 

E GPa E GPa G GPa

K K



   − −

= = = =

= −  =  = =
 

In this case, the thickness of face sheets is set to zero ( 0fh = ). It is important to note that since there is 

no face sheets here, a shear correction factor (
sk ) is required to zero the amount of stress at the top and 

bottom levels. The value of this factor is considered to be 5/6 in this example [22]. The comparison is shown 

in Table 4 for three different boundary conditions and two fiber orientations. It should be mentioned that, 

like the previous example, the digitizer software was employed to obtain the numerical results from the 

figures in Ref. [22]. As Table 4 represents, there is an excellent agreement between the present results and 

those reported by Ghadirian et al. [22].  

    Based on the above comparisons, it can be concluded that the results presented in this study are accurate 

enough and reliable for analyzing the buckling of rectangular sandwich plates with soft core and laminated 

face sheets in hygroscopic and thermal environments.  
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3.2. Numerical Results 

    Now, buckling of soft-core sandwich plates with layered composite face sheets in hot and wet 

environments are studied. The results of this subsection are divided into two parts. As mentioned earlier, 

composite structures may buckle only due to heat expansion and moisture swelling without experiencing 

any mechanical pressure. Therefore, in the first part, the influences of operating temperature and humidity 

on the buckling of composite sandwich plates are examined when mechanical loads are not applied to the 

structure. Then, in the second part, the buckling of composite sandwich plates under hygrothermo-

mechanical loads are discussed. In this case, the structure is under mechanical compressive loads which the 

critical values of these forces are evaluated for different hygroscopic and thermal conditions. Due to the 

limitation in the experimental data for cores, the properties of applied materials in the present work are 

considered to be temperature and moisture-independent, based on Refs. [53, 54], as follow: 

6

1 2 12 13 23

6

12 1 2

     ;    0.4  ;       ;   

     ;       ;  

: 3 50 10 / 0.28

: 138 8.5 4.5 3.2

0.2

       ;     

                         ;     9 0.5 10 / 43 1    0  ;   

Soft Cor E GPae v K

Face sheets E GPa E GPa G G GPa G GPa

K

 

  

−

−

== =  =

= = = = =

= = −  =  6

1 2/ 0   ;       ;   .  0  4K  − = =

 

Throughout this subsection, a three-layered composite with lamination scheme of [0 / 90 / 0 ]o o o is 

considered for the face sheets. Moreover, the thickness of each layers is assumed to 0.2 mm which means 

the face sheets are 0.6 mm thick. 

 

3.2.1. Hygrothermal buckling of composite sandwich plates (in the absence of in-plane mechanical 

forces) 

    Fig. 4 illustrates the critical buckling temperatures and moisture contents for different core thickness 

values and three different types of boundary conditions. It is observed that in higher temperature 

environments, the critical moisture content which lead to buckling of the structure is lower. Similarly, this 

interpretation can be made that in environments with higher humidity, thermal buckling occurs at lower 

temperatures. Also, as expected, based on the hygrothermal loads term in Eq. (13) and considering that the 

properties of the materials do not depend on temperature and moisture, it is concluded that the graphs shown 

in Fig. 4 are changed linearly.  
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    One of the important issues in designing of sandwich structures is the estimation of the required core 

thickness. Therefore, in Fig. 5, the minimum core thickness required to avoid hygrothermal buckling in the 

sandwich structure is shown for different environments. As this figure elucidates, with the increase of 

temperature or humidity, the core of sandwich plate needs to be thicker. This is because with increasing the 

temperature or the moisture of the environment, the in-plane compressive loads increase which lead to a 

decrease in total stiffness of the structure. Thus, more thickness is needed to enhance the stiffness of 

structure and delay buckling phenomenon in the structure. In Fig. 8 the variations of critical buckling 

temperature as well as critical buckling moisture content are shown versus aspect ratio parameter ( /b a ).  

The structure is assumed to be simply supported at all the edges and the aspect ratio parameter varies from 

1 to 5. As the figure illustrates, there is a decreasing-increasing trend for the changes of 
crT  and 

crM . 

This is because the critical buckling temperature and critical buckling moisture content, depending on the 

aspect ratio value, may occur at different values of m and n , based on Eqs. (21-24). It can be also concluded 

that only 25 oC  increase in temperature or 0.1%  moisture in the structure can affectively decrease the 

buckling limits.  

 

3.2.2. Effects of hygrothermal environments on the buckling of composite sandwich plates under 

uniaxial/biaxial mechanical compressive loads  

    Consider the sandwich plate of Fig. 1 in which the structure is under uniaxial compressive load (

0 = ). For this case, as the humidity and temperature status changes, the critical load changes. Fig. 7 

depicts the variations of buckling load of simply supported sandwich plates for various hygroscopic and 

thermal conditions. The figure illustrates that with the increase of temperature or moisture content, the 

critical buckling load of the structure decreases. Similar to what mentioned before for Fig. 4, the variations 

of buckling load against both temperature or moisture is expected to be linear. Flaggs and Vinson [17] 

obtained almost similar conclusion for buckling analysis of non-sandwich composite plates under 

hygrothermal effects. From hygroscopic point of view, they assumed that the material properties are 

moisture-independent. But, considering the effect of temperature on the material features, they measured 

the material properties of the structure at two different temperature, 70 o F and 350 o F . Then, a linear 

variation was presumed for the properties between these two temperatures. As a result, it was shown that 

critical buckling linearly reduces with increasing moisture content or temperatures (if temperature is in a 

low range) but nonlinearly decreases at high temperatures (especially for  250oT F ). Similarly, Ram and 



19 

 

Sinha [19] concluded the same results for variations of buckling load versus moisture content or 

temperature.  

    Figures 9 and 9 show the role of core thickness in buckling of simply supported rectangular sandwich 

plates for a variety hygrothermal conditions. In Fig. 8, some comparisons are made for the response of the 

structure in buckling between when the structure is in the environment at room temperature without 

humidity, and when the structure is applied in hygroscopic and thermal conditions. In this figure, the 

variations of critical buckling load reduction rate (
0

0
100 cr cr

cr

N N

N

−
 ) are shown for different operating 

temperatures and moisture contents and various core thicknesses. 0

crN  denotes the critical buckling load of 

the structure in an environment with room temperature and without moisture. As expected, the 

hygrothermal environments play an important role in buckling of sandwich plates, especially when their 

cores are thinner. It is found that as the core thickness increases, the effect of moisture and temperature on 

critical buckling of the structure significantly decreases. By focusing on Fig. 9, it is inferred that the core 

thickness of sandwich structures considerably affects the performance of sandwich plates in buckling. For 

example, at conditions in which 0T =  and 1.5%C = , when the core is 11.125 mm  thick, the sandwich 

plate cannot withstand any compressive load. But, if the thickness of core is 20 mm , the structure can 

withstand about977  /KN m  uniaxial load. From Fig. 9, it is also seen that with the increase of core thickness, 

the critical buckling load non-linearly increase at different hygrothermal environments. For further 

investigation regarding the influence of core thickness on the behavior of sandwich plates, some numerical 

results are provided in Tables 5 and 6. In these tables, critical uniaxial buckling loads are calculated for 

different environments and three types of boundary conditions.   

    The effect of length to thickness parameter on buckling load of a simply supported square sandwich plate 

is investigated in Fig. 10. As it is observed, when the sandwich plate thins ( /a h ratio increases), its buckling 

load decreases. The graphs of Fig. 10 elucidate that hygroscopic and thermal conditions seriously affect the 

response of structure in buckling. It is worth noting that the /a h  ratio for which the buckling load becomes 

zero is the minimum length to thickness ratio which prevent buckling phenomenon in the structure. 

    Finally, the influence of aspect ratio parameter on the buckling of composite sandwich plates are depicted 

in Figs. 11 and 12 for various hygrothermal conditions and mechanical loads. In Fig. 11, it is assumed that 

a uniaxial load is applied on the structure. This figure indicates that as the plate gets longer, the critical 

buckling load continuously reduces. This figure also represents that all critical buckling loads occur at 1n =

, 1m = . Furthermore, it can be found that moisture content and temperature have an effective role in 

stability of sandwich plates. Another kind of loading is considered in Fig. 12 for soft-core sandwich plate 
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exposed to hygrothermal environment. In this case, the structure is supposed to be under biaxial 

compressive loads with 1 = . Like Fig. 6, there is a decreasing-increasing trend for variations of buckling 

load against /b a  parameter. The reason is that thermal buckling occurs at different half-wave numbers, 

depending on the geometry of the structure, as discussed earlier. 

 

Conclusion 

    In this research work, the buckling of sandwich plates with layered composite face sheets under hygro-

thermal environments was studied. The stability equations and related boundary conditions were derived 

based on a piecewise shear deformations theory. Depending on the type of boundary conditions, three 

analytical, semi-analytical and numerical methods were applied for the analysis. First, the accuracy of 

present results was shown by performing a comprehensive verification study. Then, a parametric study was 

carried out to indicate the effects of hot and wet conditions on the buckling of sandwich plates for different 

geometrical parameters and boundary conditions. From the present study, some conclusions can be drawn:  

• PLSDT can appropriately provide stability equations and boundary conditions for the buckling analysis 

of sandwich structures subjected to hygro-thermo-mechanical loadings.  

• Using PLSDT for analysis of sandwich plates creates the difficulty that the number of boundary 

conditions and the number of stability equations are not the same. The present study shows that this 

problem can be successfully overcome by using an analytical solution for simply supported boundaries 

and GDQ method for clamped edges.  

•  The numerical comparisons clarify that the applied methods in the present work can predict the 

buckling of sandwich structures subjected hygroscopic and thermal environments with high accuracy. 

• Results show that wet and hot environments significantly affect the buckling of sandwich plates, 

especially when their cores are thin.  
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where   is the angle that the fibers of kth lamina makes with the structure x-axis, and ijQ , called the plane 

stress-reduced stiffnesses, are given by: 
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Where, 1 2 12, ,     E E   and 12G  are the independent material constants [43]. 
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Appendix 2 

 

Thermal expansion coefficients [43]: 

( )

2 2

1 2

2 2

1 2

1 2

cos Sin

sin cos

2 Sin cos

x

y

xy

    

    

    

= +

= +

= −

 

where 1  and 2  are the longitudinal and transverse coefficients of thermal expansion of the composite 

material. 

 

Moist expansion coefficients[43]: 
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where 1  and 2  are the longitudinal and transverse coefficients of moisture expansion of the composite 

material. 
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Fig 1 Schematic of a rectangular soft-core sandwich plate with layered composite face sheets 

 

 

 

 

 

 

 

 

 

 

 

 



30 

 

 

 

Fig 2 Schematic of a rectangular sandwich plate with aluminum honeycomb core and titanium face sheets 
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Fig 3 Comparison of the present results for critical buckling temperature prediction of a simply supported 

sandwich structure with soft core and single-layer orthotropic skins 

( )0.4 , 0.3 , 10 , 0.5fa m b m h mm h mm= = = =  
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Fig 4 Variations of critical buckling temperature and critical buckling moisture content for different core 

thickness and various boundary conditions ( )0.4 , 0.4 , 0x ya m b m P P= = = =  
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Fig 5 Minimum core thickness required to prevent buckling phenomenon in simply supported 

sandwich plates due to hygrothermal environment effects ( )0.4 , 0.4 , 0x ya m b m P P= = = =  
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Fig 6 Critical values of temperature and moisture content for hygrothermal buckling of simply 

supported sandwich plates in the absence of mechanical loads 

( )0.4 , 15 , 0c x ya m h mm P P= = = =  
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Fig 7 Variations of critical buckling load of sandwich plates with simply supported boundary 

conditions under uniaxial load and hygrothermal effects ( )0.4 , 15 , 0ca b m h mm = = = =  
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Fig 8 Effects of hygrothermal environment on the critical buckling of sandwich plates with 

simply supported boundary conditions ( )0.4 , 0a b m = = =  
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Fig 9 Variations of critical buckling load of simply supported sandwich plates under uniaxial 

load against core thickness for various hygrothermal conditions ( )0.4 , 0a b m = = =  

 



39 

 

 

 

Fig 10 Variations of critical buckling loads of simply supported square sandwich plates versus 

/a h  ratio for a variety hygrothermal conditions ( ), 15 , 0a b hc mm = = =  
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Fig 11 Variations of critical buckling load of simply supported sandwich plates under uniaxial 

compressive load ( )0.4 , 15 , 0a m hc mm = = =  
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Fig 12 Variations of critical buckling load of simply supported sandwich plates under biaxial 

compressive load ( )0.4 , 15 , 1a m hc mm = = =  
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Table 1 Critical buckling stress ( 2       / 2 /cr x fN h in N mm = ) of soft-core sandwich plates with 

isotropic skins under uniaxial ( 0 = ) and biaxial ( 0.5 = ) loads  

Loading 
Boundary 

Conditions 
References 

 Aspect ratio ( /a b ) 

 0.5  0.7  1 

            

Uniaxial compression SSSS Present (Analytical method)  72.080  54.332  49.003 

( )0 =    [46]  73.305  54.924  49.373 

       [47]  73.227  54.877  49.334 

       [48]  73.1255  54.8445  49.3192 

                

                

           

Biaxial compression CCCC  Present (GDQ method) (7 7)   170.346  111.153  80.954 

( )0.5 =        (9 9)   170.290  111.197  80.892 

           (13 13)   170.286  111.153  80.890 

           (17 17)   170.286  111.153  80.890 

           (21 21)   170.286  111.153  80.890 

        [46]  170.91  112.41  81.45 

        [47]  170.11  111.15  80.95 

        [48]  168.9920  110.7877  80.7665 

 

 

 

Table 2 Critical buckling load (   /N m ) of simply supported sandwich plates with single-layer face sheets 

( / /Core  ) under uniaxial compressive loading 

References 
   

 0o   90o  

Present  417.03  213.67 

[47]  424.6  211.7 

[49]  423.8  213.8 

[50]  427.6  215.6 

[51]*   424.6  214.6 

          * The data have been obtained through Digitizer software  
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Table 3 Verification study for analytical, semi-analytical and numerical methods in critical buckling 

temperature ( o F ) estimation of sandwich plates with aluminum honeycomb core and titanium face sheets 

( 24 , 0.81 , 0.06fa in h in h in= = = ) 

Boundary 

Conditions 
/b a  

Present  [52] 
[28] 

Solution   Energy method Finite element 

SSSS 1 Analytical  627.5 (1,1)*  622 583 631 

 2  409.9 (1,1)  409 403 411 

 3  367.6 (1,1)  368 366 368 

 4  352.6 (1,1)  358 348 353 

        

CSCS 1 Semi-Analytical 1127.4 (1)**  1128 1093 - 

 2  1127.4 (2)  1128 1096 - 

 3  1127.4 (3)  1128 1095 - 

 4  1126.8 (3)  1126 1100 - 

        

CCCC 1 Numerical 1442.0  1428 1396 1456 

 2  1181.2  1175 1160 1173 

 3  1152.0  1150 1145 1148 

 4  1147.2  1140 1121 1136 
* The numbers in the parenthesis show half waves numbers (m, n) in Eq. (16) for analytical solution  

**The number in the parenthesis denotes half wave number (n) in Eq. (25) for semi-analytical solution  

 

 

 

 

 

Table 4 Comparative study for critical moisture content (%) for bucking of a single-layer composite 

square plate 

Boundary conditions References 
   

 0o   90o  

SSSS Present  0.434  0.434 

 [22]  0.441  0.441 

      

SCSC Present  0.367  0.246 

 [22]  0.369  0.247 

      

CCCC Present  0.182  0.182 

 [22]  0.184  0184 
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Table 5 Critical uniaxial buckling load of sandwich plates for various types of boundary conditions 

( )0.4 , 0.4 , 0%a m b m C= =  =  

Boundary 

Conditions 

 ( )ch mm   ( )oT C  

0 25 50 75 100 

SSSS  5  112.12 37.52 - - - 

  10  436.54 299.44 162.34 25.24 - 

  15  1018.4 818.81 619.20 419.60 220.00 

         

CSCS  5  265.22 200.50 135.35 69.789 3.856 

  10  978.90 860.05 740.60 620.72 500.37 

  15  2177.8 2005.0 1831.6 1657.6 1483.0 

         

CCCC  5  362.44 293.01 222.08 149.53 75.145 

  10  1339.6 1214.6 1088.1 960.06 830.45 

  15  2973.9 2795.6 2615.7 2434.1 2250.9 

 

 

Table 6 Critical uniaxial buckling load of sandwich plates for various types of boundary conditions 

( )0.4 , 0.4 , 0oa m b m T C= =  =  

Boundary 

Conditions 

 ( )ch mm   (%)C  

0 0.1 0.2 0.5 1 

SSSS  5  112.12 92.83 73.54 15.67 - 

  10  436.54 403.25 369.96 270.08 103.63 

  15  1018.4 971.11 923.82 781.95 545.50 

         

CSCS  5  265.22 248.54 231.84 181.53 97.126 

  10  978.90 950.10 921.27 834.59 689.54 

  15  2177.8 2136.9 2096.0 1973.1 1767.6 

         

CCCC  5  362.44 344.64 326.73 272.42 179.81 

  10  1334.0 1309.4 1279.1 1187.7 1033.6 

  15  2973.9 2931.8 2889.6 2762.6 2549.0 

 

 

  


