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ABSTRACT 11 

Named Entity Recognition (NER) is a basic prerequisite of using Natural Language Processing (NLP) for information retrieval. 12 

Arabic NER is especially challenging as the language is morphologically rich and has short vowels with no capitalisation 13 

convention. This paper presents a novel rule-based approach that uses linguistic grammar-based techniques to extract Arabic 14 

composite names from Arabic text. Our approach uniquely exploits the genitive Arabic grammar rules; in particular, the rules 15 

regarding the identification of definite nouns (معرفة) and indefinite nouns (نكرة) to support the process of extracting composite 16 

names. Based on domain knowledge and Arabic Genitive Rules (AGR), the developed approach formalises a set of syntactical 17 

rules and linguistic patterns that initially use genitive patterns to classify definiteness within phrases and then extracts proper 18 

composite names from the unstructured text. The developed novel approach does not place any constraints on the length of 19 

the Arabic composite name and our initial experimentation demonstrated high recall and precision results when the NER 20 

algorithm was applied to a financial domain corpus. 21 
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1. INTRODUCTION 25 

Nowadays, an ever-increasing amount of information is available on the Web, covering a plethora of domains in business, 26 

education and entertainment. The overwhelming majority of this information is available in unstructured format. This limits 27 

the possibility of employing software technologies to process the information and extract new knowledge for the benefit of the 28 

end-user. Unstructured data refers to information that either does not have a predefined data model and/or does not fit well 29 

into relational tables; examples include email messages, word processing documents, Web pages and many other kinds of 30 

business document. 31 

One of the approaches that are increasingly used to handle unstructured text is Natural Language Processing (NLP)  32 

[Rodrigues and Teixeira 2015], which is the core technology driving many applications such as Information Retrieval, Machine 33 

Translation, Data Mining and Question Answering [Ray and Shaalan 2016]. Named Entity Recognition (NER) is a fundamental 34 

task for NLP that is essential for extracting key terms related to a specific domain [Shaalan 2014]. Most reported Arabic NER 35 

efforts focus on techniques for extracting proper names in the text (e.g. persons, locations, and organisations) [Shaalan and 36 

Raza 2008][Alruily et al. 2014], but do not consider entities comprising composite names, i.e. entities identified by a 37 

concatenation of multiple words, where one or more of these words are names of a place, a person, an organization, etc.  38 

Processing Arabic text is especially challenging compared to other languages such as English and European languages 39 

[Harmain et al. 2004] . This can be attributed to the fact that the Arabic language is morphologically rich, with short unwritten 40 

vowels and lacks capitalisation convention [Shaalan 2014]. Moreover, Arabic is orthographic with diacritics, and is highly 41 

inflectional and derivational. For example, the preposition or conjunctive may appear in one word as a prefix to the nominal, 42 

such as “ ات لخدم ” (for services) or “وخدمات” (and services). In addition, the problem of extracting proper names is especially 43 

complex in the Arabic language, because the first letter of the word, which is capitalised in European languages,  cannot be used 44 

to recognise proper names. Saad & Ashour in  [Saad and Ashour 2010] and Shaalan & Raza  in [Shaalan and Raza 2007]  have 45 

mainly used indicator words, such as person indicators “ الرئيس” (the president) or “ الملك” (the King) or company indicator 46 

 to solve this problem. However, composite names can be composed of different phrases, such as place, or 47 (Company) ”شركة “

owner etc., and may contain several words, representing a mixture of nouns, adjectives and particles, which makes the 48 

automatic identification of Arabic composite names especially challenging. 49 

In this work, we suggest a new approach for extracting Arabic composite names, which is based on the analysis of the 50 

definiteness and indefiniteness of composite names, in accordance with the Arabic grammar genitive principles. Part of Speech 51 

(PoS) tags are assigned for each word in the text, such as noun, verb, preposition, etc. We devised several syntactical rules  to 52 

create linguistic patterns that match Arabic Genitive Rules (AGR) and composite organisation name patterns in financial and 53 



 

economic texts. We used recognition of Arabic organisation names as a use case, and the results of our initial experiments show 1 

high precision and recall scores. 2 

The paper is structured as follows: Section 2 reviews related work; Section 3 discusses the architecture and implementation 3 

of our Arabic NER approach; Section 4 presents and evaluates the experimental results; and Section 5 summarises the paper 4 

and presents plans for further research work. 5 

2. RELATED WORK 6 

Various works have been published on Arabic NER. Shaalan [Shaalan 2005] presents the Arabic GramCheck system that 7 

addresses common grammatical errors occurring in Arabic language texts. The system is based on deep syntactic analysis, with 8 

reliance on a feature relaxation approach for detection of ill-formed Arabic sentences. It has two parts, namely an Arabic 9 

morphological analyser and a syntactic parser, extended to include a grammar checker. The system was evaluated using black 10 

box testing. The proposed approach detects grammatical errors using sentences as a unit of analysis, but does not propose how 11 

to address the detected errors. In addition, the corpus used to evaluate the approach is quite limited in size (100 sentences). 12 

Zayed, El-Beltagy and Haggag [Zayed et al. 2013] present a new approach to Arabic person names recognition. A dictionary 13 

of Arabic named entity types was used to label Arabic names. They developed four rules to find the names of persons according 14 

to linguistic information about the names. The approach was applied in three domains, namely economics, sport and politics. 15 

The f-measure was used to compute performance in each domain, where the quoted scores were high, registering 92.04 for the 16 

economic domain, 92.66 for sport, and 90.43 for the political domain. However, the authors used Arabic dictionaries to 17 

recognise Arabic person names. This is a limited approach for some domains where it is not possible to provide dictionaries 18 

that contain an exhaustive list of names.  19 

Oudah and F. Shaalan in [Oudah and Shaalan 2012] integrated rule-based and Machine Learning (ML) approaches to create 20 

a new hybrid approach to address Arabic NER tasks. Their approach was able to recognise 11 different types of Arabic entities, 21 

such as person, location, organisation, etc. Three different ML classifications were applied to evaluate the performance of the 22 

hybrid NER system. The authors report that the result outperformed the state-of-the-art of Arabic NER, in terms of accuracy, 23 

scoring f-measure results of 94.4 for person, 90.1 for location, and 88.2 for organisation. However, the paper does not detail 24 

how the integrated linguistic rules assist in captures composite names. 25 

Elsebai, Meziane and Belkredim [Elsebai et al.  2009] developed and implemented systems to recognise person names in 26 

the Arabic language using a rule-based approach. The output of Buckwalter Arabic morphological analysis [Buckwalter 2004] 27 

was used as input to their system. They also used a set of keywords as indicators to phrases that contain a person name. The 28 

system was evaluated by comparing it with Person Name Entity Recognition for Arabic (PERA) [Shaalan and Raza 2007], which 29 

combines an initially collated NE lexicon (gazetteer) with a rule-based system that recognises the inflected form of the names. 30 

The authors state that the recorded precision, recall and f-measure registered 93%, 86% and 89% thus outperforming the 31 

PERA NER. However, their named enitiy recognition approach heavily relies on linguistic rules that are built specifically for 32 

Person name extraction, such as the introductory verb and word lists, a comprehensive list of names that start with letters “ 33 ”ال 

(AL-the), and a dictionary list with exclusion words (city and country names); this makes the suggested approach difficult to 34 

readapt for recognising different types of entinities such as organisation names. 35 

Traboulsi in [Traboulsi 2009] presents an approach that extracts Arabic NE by using local grammar rules, i.e. syntactic 36 

restrictions on certain sentences (e.g. verbal sentences) [Harris. 1991] to identify patterns of person names as function words 37 

clustered around Reporting Verbs (RV). Three analytical methods were used to find an Arabic person name: frequency, 38 

collocation, and concordance analyses. The author performed limited evaluation studies, which made it difficult to draw 39 

definitive conclusions about their achievement. 40 

Wajdi Zaghouani [Zaghouani 2012]  proposed an Arabic information extraction system called (RENAR) which aimed to 41 

extract different types of Arabic NE, such as person names, locations, organisations, date and numbers from different Arabic 42 

online news. The RENAR system relies on three main steps: pre-processing, lookup of full known names, and recognition of 43 

unknown names by using local grammars and a set of dictionaries. The authors reported that the system had performed well 44 

and provided good results with different Arabic named entities, except for the organisation category where the result was low 45 

due to several challenges, such as the extended length of the name and limited lexicon of the gazetteers. 46 

Yassine Benajiba, Mona Diab, and Paolo Rosso in [Benajiba et al.  2009] experimented with the impact of using different sets 47 

of features (explore lexical, contextual and morphological) in three special machine learning frameworks, namely, Support 48 

Vector Machines (SVM), Maximum Entropy (MEnt )and Conditional Random Fields (CRFs) for the task of NER. Their work 49 

makes valuable contribution to the understanding of the impact of learning features on the Arabic NE task and the reported 50 

results show that the CRFs approach achieves a better result than Support Vector Machines and Maximum Entropy, but the 51 

paper does not explicitly analyse the fitness of the reported work for multi-token composite NER. 52 

In [Omar and Al-Tashi 2018], Omar and Al-Tashi introduced a hybrid linguistic approach and a statistical method with a 53 

view to enhance the extraction of the Arabic nested noun compounds. The linguistic approach comprised part-of-speech 54 

tagging and named entities pattern, while the statistical method consisted of several association measures such as the 55 

combination-value, NLC-value, NTC-value, and NC-value. The authors  reported that the performance of the combination-value 56 

is better than the other three association measures in terms of identifying Arabic nested noun compounds achieving accuracy 57 

of 90%. The proposed approach relies on a pre-constructed list of named entities to assist in identifying noun compounds, 58 

which is not suitable for domains where the composite NE tokens cannot be compiled in advance.   59 

The authors in [Ali et al. 2018] present an NER approach for extracting several Arabic named entities such as people, 60 

location, organization and date. They use a neural networks approach and present a bidirectional long short-term memory 61 



 

(LSTM) model that is claimed to achieve high accuracy for Arabic NER. However, similar to Benajiba et al. above, no particular 1 

focus on composite NEs was investigated in the paper. 2 

A recent contribution in [Sayed et al. 2019] uses using a machine learning approach, which combines Conditional Random 3 

Fields (CRF) classifier and predefined gazetteers to improve NER accuracy. The approach is dependent on the availability of 4 

sufficient labelled data, hence the authors state that recognising NEs of organisations was poor “Due to the lack of tagged 5 

organizations in the training corpus”. It will be interesting to add the grammatical features (e.g. genitive patterns) to the feature 6 

matrix to investigate possible enhancement to their machine learning approach.  7 

The reviewed works rely on lexicon-based (gazetteers), morphological analysis, and local grammar and machine learning 8 

to extract Arabic named entities, but without considering Arabic grammar in the syntactic analysis of text and most of the 9 

methods do not explicitly address the challenges of processing Arabic composite names. In this work, we investigate the rules 10 

of Arabic language grammar, in particular the rules regarding using the definite noun (معرفة) and indefinite noun (نكرة), to 11 

support the process of extracting composite names. 12 

3. DEFINITENESS-BASED APPROACH FOR ARABIC NER 13 

Our approach to extracting Arabic composite names from Arabic unstructured data is part of a larger effort that aims to 14 

investigate Semantic Web (SW) support for handling documents that are authored and/or annotated in Arabic [Khalil and 15 

Osman 2014]. The proposed approach comprises two methods, compilation of a PoS tag list that is used to remove the non-16 

essential symbols and generate the PoS tag for each token in the Arabic sentence, and lexico-syntactic analysis for extracting 17 

Arabic composite names. The extracted entities are injected into a semantic knowledgebase, which forms the basis for 18 

document analysis of the next phase in our research. Fig. 1 shows the workflow of our Arabic NER approach. 19 

Fig. 1.  Workflow of the Definiteness-based NER approach 20 

3.1. Linguistic pre-processing 21 

The first component of the system architecture is compilation of a PoS tag list. This involves removing non-essential symbols 22 

and generation of the PoS list for each token. 23 

3.1.1. Removing Arabic variations and diacritics 24 

Pre-processing is a way to improve the text by removing unnecessary elements. After converting our text corpus into UTF-8 25 

encoding, in the first step, it is necessary to clean up the texts by removing punctuation marks, diacritics, numbers, non-Arabic 26 

letters. These pre-processing operations include: 27 

• Removing punctuation that is attached to the word (+,- ,/,*,( ,),_ ,&,%,.,),÷,×,],[,},{,<,>, \,|,@,#(; 28 

• Removing used diacritics and other signs (، ؛  ّ  ْ  ْ  ٌ  ُ ٍ  ِ  ً   َ ); 29 

• Normalising some writing forms that use different styles such as the optional inclusion of the letter “ء” (Hamza) as in 30 

 31 ;(Emirates) ”إمارات “ and (Ahmed) ”أحمد “

• Removing non-Arabic words for example “JVC”, “Vodafone”, etc. 32 

Here we note that removing the diacritics can lead to the incorrect interpretation of the word’s semantics as in “ ْ33 ”أمين 

(Ameen) which is a person’s name (proper noun) hence classified as Definite, while “ ٌامين” (Amenoun) is  translated as 34 

trustworthy (masculine adjective) and hence is Indefinite. However, considering that the overwhelming majority of documents 35 

published online are non-discretised, the impact is not significant for applications that chiefly process text from online material.  36 

3.1.2. Tokenisation and Sentence Splitting 37 

Initial tokenisation involves separating out individual words that are identified by the blank spaces or a special character 38 

between them; this is followed by splitting the document into individual sentences. 39 

 40 

 41 



 

3.1.3. Part of Speech (PoS) tagging 1 

Many processes are applied to the text to extract a PoS tag for each word using a PoS tagger, which assigns parts of speech to 2 

each word (token), such as noun, verb, and adjective [Rabiee 2011]. In this work, we used the Stanford PoS tagger that is based 3 

on the maximum-entropy model. It was originally developed for English at Stanford University [Green and Manning 2010], but 4 

now supports many languages, including Arabic, for which it claims 96.42% accuracy [Kanaan et al.  2005]. The Stanford PoS 5 

tagger was used to annotate each word with a PoS tag and saves the output in an initial list. This involved annotating more than 6 

1300 documents to build a POS dictionary, which will be used during the processing of the ANER pipeline to assign the POS for 7 

each token in sentences. The POS dictionary consists of 21100 different words with each word assigned a POS. Due to the 8 

complexity of the Arabic language’s morphology, some of the output of the PoS tagging process is erroneous; for the used 9 

corpus, the incorrect PoS tags represented 6%. Therefore, the initial output was reviewed by an Arabic language expert. The 10 

errors identified were encoded programmatically to improve the parser functionality.  11 

Examples of errors in the PoS tagging are shown in Table I below. 12 

Table I. Errors of Arabic PoS tagging 13 

Examle1:   للمصرف (For bank)  

 Error  "ل" (preposition ) "لمصرف" (NN) 

Correction  "ل" (preposition ) "لمصرف" (DTNN) 

Example2:   سهم (Share)  

Error  "س" (NN) "هم" pronoun  

Correction  "سهم" (NN) 

3.2. Basic Named Entity Recognition 14 

3.2.1. Build domain vocabulary 15 

Our knowledge-based approach assists the NER task in targeting specific entity classes that are of relevance to the problem 16 

domain; these classes result from the domain analysis that identifies the domain’s key concepts and its relations. We use 17 

gazetteer lists in a dictionary-based approach to extract explicit named entities of the identified classes such as the names of 18 

companies “ شركة” and shares “ سهم” and currencies “عملة”. The names of these classes are also used as indicator words to help 19 

recognise, via further linguistic processing, the named entities that are not explicitly mentioned in the gazetteer lists. 20 

The scarcity of Arabic language resources was evident in the poorly populated gazetteer lists in the GATE (General 21 

Architecture for Text Engineering) NLP engine [Zaidi et al.  2010] that was utilised for our NER efforts; for instance, it had over 22 

29K entries for City NE in English, 900 in Russian, but only 211 in Arabic. Hence, we resorted to public sources to enrich the 23 

gazetteer lists for the domain entity classes. Specifically, Maknaz (Arabic Thesaurus) [Maknaz.org 2001], which is an expanded 24 

Arabic resource with specialist list of descriptors or indexing terms integrated into an information system application, and also 25 

Linked Open Data (LOD), which refers to data published on the Web in machine-readable format [Bizer et al.  2011]. The most 26 

comprehensive LOD dataset is DBpedia, which is a community effort that aims to extract the structured information from 27 

Wikipedia for Information Extraction and Retrieval. Moreover, DBpedia contains more than 4.5 million entities and more than 28 

3 billion triples for different languages and domains, such as country, city, etc. Although the Arabic version of the RDF is not 29 

available in DBpedia, the English version was used to extract the Arabic NE by using ‘label property’ (RDF: DBpedia: label), 30 

while the list of Arabic NEs has been reviewed manually. The LOD DBpedia dataset has been used to improve several kinds of 31 

gazetteers, such as country, city, organisation, person name and location. For instance, at the time of completing this study, an 32 

additional 10,000 city names were extracted from DBpedia to update the gazetteer list inherited from GATE. 33 

3.2.2. Engineering of Arabic grammar rules for extracting Arabic Named Entity 34 

The rule-based approach was used for basic NER; it is based on a set of human-crafted patterns to extract the named entities. 35 

In this study, a set of rules based on Arabic grammar was developed in order to extract Arabic NE. The rules were implemented 36 

using GATE’s JAPE rule (JAVA Annotation Pattern Engine), which gives a finite-state transduction over annotations based on 37 

regular expressions. JAPE is a version of CPSL (Common Pattern Specification Language). The left-hand-side (LHS) of the rules 38 

consists of an annotation pattern description. The right-hand-side (RHS) consists of annotation manipulation statements. 39 

Annotations matched on the LHS of a rule may be referred to the RHS by means of labels that are attached to pattern elements 40 

[Zaidi et al.  2010] . 41 

The main processing is carried out by gazetteer lists and a set of grammar rules. The JAPE rules are used to annotate the 42 

text and detect named (classified) entities, such as company name, stock market name, share name, etc. Fig. 2 illustrates JAPE 43 

rule for extracting the city named entity. In this rule, the token “مدينة” “(city) will be used as an indicator to annotate the next 44 

word. If the next word’s kind of PoS is NNP or DTNNP, the system will recognise the phrase as a city name. The system will add 45 

several features to the city, such as: kind=“city”, rule=“EX_CITY”, category=“NNP”.  46 



 

 1 

Fig. 2. Screen shot of the JAPE rule to extract ‘city’ as named entity 2 

The rule in Fig. 2 illustrates the case of annotating the Arabic NE (Named Entity) based on the list of gazetteers and a set of 3 

rules, where the PoS for each Arabic named entity is noun (NNP). In some cases, the Arabic NE appears in the text in different 4 

forms that do not match the words in the gazetteer list. For example, the name of the country in the example below appears in 5 

adjective form, which adds a suffix to the general noun. In Arabic, suffixes can indicate the gender and plurality of the noun as 6 

illustrated in Table II below. 7 

Table II. Example showing the Country named entity in the text in adjective form 8 

ملايين طن من الاسمنت في الاشهر القليلة المقبلة  3كشف وزير التجارة الجزائري الهاشمي جعبوب أمس الاول ان بلاده قررت استيراد 

 لتلبية حاجات السوق المتزايدة

Algerian Trade Minister El Hachemi Djaboub revealed yesterday that his country has decided to import 
three million tons of cement in the following few months to meet the growing needs of the market.  

 9 

In the sentence in Table II above, the country name (“Algerian”,”  الجزائري”) is used as an adjective word by adding the suffix 10 

letter (“ ي”) to the original word (“ الجزائر”,” Algeria”). Therefore, the Jape rule illustrated in Fig. 2 was extended to remove the 11 

suffix and match the resulting token against the Country gazetteer list. 12 

Determining the token boundary of an Arabic named entity is considered one of the main challenges for Arabic NER [Shaalan 13 

and Raza 2009][Alanazi 2017]. Some Arabic NE’s are complex names that are composed of different phrases and may also 14 

contain several words, representing a mixture of nouns, adjectives and particle, which makes the automatic identification of 15 

Arabic composite names more challenging. There are some studies that have attempted to solve this problem by using gazetteer 16 

lists [Zaghouani 2012], but dictionary-based approaches are not suitable for recognising entities in continuously updated 17 

lexicon such as organisation names. Based on Arabic genitive grammar rules, this study presents a novel approach that uses 18 

domain knowledge, i.e. the problem domain’s key concepts and relations, to formalise a set of syntactical rules and linguistic 19 

patterns to extract Arabic composite names from unstructured texts. 20 

3.3. Linguistic analysis for composite name extraction 21 

Our approach involves two main stages, the first one is to classify the words as definite or indefinite nouns, and the second 22 

is pattern recognition to extract composite names. We devised two pattern recognition mechanisms, the first uses Genitive 23 

Patterns for classifying definiteness within phrases, and second develops Linguistic patterns to extract composite names. 24 

3.3.1. Grammar-based analysis to classify words as definite or indefinite  25 

Grammar-based analysis is applied to classify pronouns into definite noun ( الإسم المعرفة) and indefinite noun (الإسم النكرة), which 26 

is a key stage in our approach to extracting composite names. The definite noun is one that refers to a specific noun (person, 27 

animal, thing, etc.) such as “ محمد” (Mohammad) / “الشركة” (the company). The main Arabic grammar rules for definiteness and 28 

indefiniteness as explained in Table III below. 29 

Table III.  List of  the grammar rules for definiteness and indefiniteness 30 

Types of Definite Nouns  Example   English translation  

The Proper Noun (refers to a specific name of someone 

or something or someplace) 

 <اسم العلم>

 Mohammed محمد  

Definite Noun identified by the definite article (the) 

 < الإسم المعرف بـ (ال) >

 the house البيت

Possessive Pronoun (their) 

 < الضمير(هم) >

 their car سيارتهم 

Relative Nouns  (that) 

 <( الذي   < الأسماء الموصولة (

 scientist that invented العالم الذي اخترع



 

Demonstrative Nouns 

 < أسماء الإشارة (هذا) >

   this factory هذا المصنع

Indefinite Noun added before a definite noun 

 < المضاف الى معرفة >

 for computer services  لخدمات الحاسوب

The Object of Vocation يا رجلان Hey two men 

  1 

In the last Definite type in the table above: “لخدمات الحاسوب” (for the computer services), the word “لخدمات” (services) is 2 

indefinite, but it is considered definite as it is added to the proper noun “الحاسوب” (the computer) which defines which “3 ”خدمات 

(services) is meant. 4 

In Arabic grammar, the indefinite noun (الإسم النكرة), is one that refers to a common and non-particular noun (person, animal, 5 

thing, etc.). It can be given to any member under that category of nouns. For example, “مدينة” (a town); “شارع ” (a street); “6 ” دولة 

(a country). Based on the above, we devised rules to classify the tokens annotated at the previous stage into definite and 7 

indefinite nouns, based on the following conditions. Table IV shows the abbreviations that are used in the this work based on 8 

the Stanford tagger. 9 

 10 

• If the kind of token is DTNN or DTNNS or DTJJ or DTJJS or NNP, then the token will be identified as DE. 11 

• If the kind of token is NN, then the token will be identified as INDE. 12 

• If the kind of token indicates non-noun; for example, verb or preposition, the system will reject this token. We also 13 

needed to devise new rules to classify the tokens associated with genitive articles, such as preposition and 14 

conjunction, as explained below.  15 

o If a preposition is used, such as in “لخدمات” (for services), where the word “خدمات “(services) is combined with 16 

the preposition “ل” (for), then the word “خدمات " will be identified as indefinite. However, since it is combined 17 

with a preposition, it is identified as (INDEIN).  18 

o Where a conjunctive ( حرف عطف) “ و” (and) is used to join two or more tokens together, such as in “  19 لخدمات

 our system will classify this phrase as in the above explanation. So 20 ,(for services and maintenance) ”وصيانة

 is 21 (maintenance) ”وصيانة“ will be classified as INDEIN. Moreover, since the word (for services) ”لخدمات“

combined within the previous word using a conjunction, it will also be identified as Indefinite (INDECC).  22 

Table IV. Reference list of PoS tags 23 

Symbol  Description  Symbol  Description 

DT Articles including ‘a’, ‘an’, DTJJ  adjective with the determiner “Al” (ال) 

IN preposition  DTJJS a plural adjective with a definite article attached 

JJ adjective NN noun - singular or mass  

DTNN noun, singular or mass with 

the determiner “Al” (ال) 

NNP proper noun  

 

DTNNS noun, plural with 

the determiner “Al” (ال) 

NNPS proper noun – plural 

 

NNS noun – plural INDE Indefinite 

 

INDEIN Indefinite word attached with 

preposition 

INDECC Indefinite word attached with conjunctive 

DE Definite CC conjunction: “و” (and) 

3.3.2. Pattern recognition to extract composite names 24 

This section explains the development of linguistic patterns that are used to retrieve composite names from the unstructured 25 

text where the nouns were classified as definite and indefinite as detailed in the previous section. Our approach uses two types 26 

of patterns to extract the information. The first is used to construct phrases based on Arabic Genitive Rules. The second pattern 27 

is used to extract the composite name. 28 

 29 

3.3.2.1. Genitive Patterns for classifying definiteness within phrases 30 

The first pattern (the 4th (last) row in Table V  below) describes the syntactic sequence used to extract the definite phrase that 31 

contains an indefinite word "خدمات"  preceded by conjunctive "و"  (CC - حرف عطف) and succeeded by a definite word "النظافة " ; 32 

Arabic Genitive Rules (AGR) rules are then applied to tag the phrase as definite DE.  33 

 34 

 35 

 36 

 37 



 

Table V. Example illustrating the mechanism of the first Genitive Pattern (GP1) 1 

Example Construction and cleaning services company - شركة الانشاءات وخدمات النظافة    

Tokenisation  شركة الانشاءات و خدمات النظافة 

the cleaning services and The construction Company 

PoS tagging DTNN NN CC DTNN NP 

Classification pattern DE INDECC DE Indictor 

Definite tagging DE DE Indictor 

 2 

The second pattern deals with sentences that contain propositional phrases.  As illustrated in Table VI, AGR is applied to the 3 

classification pattern in the table to define the propositional phrase "لخدمات" (for service) as definite by associating it with the 4 

succeeding Definite noun "5 ."الحاسوب 

Table VI. Example illustrating the mechanism of the second Genitive Pattern (GP2) 6 

Example Garyounis Company for Computer Services   لخدمات الحاسوبقاريونس شركة  

Tokenisation 
 شركة قاريونس  ل خدمات الحاسوب

the computer service for Garyounis Company 

PoS tagging DTNN NN IN NNP NP 

Classification 

pattern 

DE INDE Preposition  DE Indictor 

DE Prepositional Phrase  DE Indictor 

Definite tagging DE  DE Indictor 

 7 

The third pattern above can be extended to include word(s) that join the propositional phrase with the conjunctive “8حرف ) ”و 

"صيانة" The classification pattern in Table VII illustrates how the two indefinite words  .(عطف  (INDECC) and  "برمجة"  that joined 9 

the propositional phrase "لخدمات " have also been added to the definite classification.  10 

Table VII. Example showing the mechanism of the third Genitive Pattern (GP3) 11 

Example 
 شركة قاريونس لخدمات وصيانة وبرمجة الحاسوب

Garyounis Company for Computer Services, Maintenance and Programming 

Tokenisation 

 شركة قاريونس  ل خدمات و صيانة  و برمجة  الحاسوب

the 

compute

r 

programmi

ng 
and 

maintenanc

e 
and 

servic

e 
IN Garyounis Company 

PoS tagging DTNN NP CC NN CC NN IN NNP NN 

Classification 

pattern 

DE INDE Conjunction INDE Conjunction INDE Preposition DE Indictor 

DE INDECC INDECC 
Prepositional 

Phrase 
DE Indictor 

Definite 

tagging 
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Now that each token has been correctly identified as a definite noun ”  الاسم المعرفة” or indefinite noun “الاسم النكرة”, taking 13 

into consideration the genitive rules at phrase level, the next stage is to apply patterns that were devised to extract the actual 14 

composite names. 15 

3.3.2.2. Linguistic patterns to extract composite names 16 

One of the greatest challenges in Arabic NER is the lack of capitalisation for proper nouns. This challenge is commonly 17 

addressed by using indicator words relevant to the problem domain in order to narrow down the search space for ca 18 

corresponding named entity. In this work, we also use indicators, which are referred to as trigger words within our patterns 19 

and are used for marking name phrases that might contain a corresponding domain-relevant name such as  “company” ( شركة) 20 

that aids to identify the name phrase “Arabian Gulf Oil Company” (شركة الخليج العربي للنفط) word locating named entities and 21 

their semantic meanings in unstructured text relevant to our targeted economic domain. 22 

For extraction of Arabic composite names from the unstructured text, we use two linguistic patterns that take into 23 

consideration the attachment of the definite article "ال" (the) to the Arabic composite names. The first pattern considers 24 

indicators that do not have a definite article attached, and the second pattern considers indicators that have a definite article 25 

attached. 26 



 

The first pattern is used to extract the composite names when indicated with “ال" (the), such as “المؤشر” (the share) indicator 1 

quoted in the example below. In this pattern, to construct the composite name, the consecutive definite (DE) words/phrases, 2 

succeeding the indicator word will be added to the composite name until an indefinite (INDE) word, such as “تداول” (Trading) 3 

as in Fig. 3 below, is encountered. 4 

 5 

 6 

Fig. 3. The mechanism of composite name extraction using the first Linguistic Pattern (LP1) 7 

The second pattern is used to extract the composite names that are not attached to the definite article “ال” (the), such as 8 

 in the text exemplified in Fig. 4 below. In this pattern, the word immediately following the indicator may be 9 (Sector) ”قطاع“

either DE or INDE. However, similar to the previous pattern rules, all the consequent words must be of type DE, as illustrated. 10 

 11 

 12 

 13 

Fig. 4. The mechanism of composite name extraction using the second Linguistic Pattern (LP2) 14 

The algorithm below explains the steps to extract the organisation’s composite names by using genitive processing of an 15 

organisation name extraction pattern. 16 

 17 

Algorithm1: Implementation of the linguistic analysis for composite name extraction (in pseudocode) 18 

START 19 

   Input: Raw Text, Indicator Words, Arabic Genitive Patterns (GP1, GP2, GP3), Linguistic Patterns (LP1, LP2) 20 

   //Stage I – identify definite nouns  21 

   Perform initial pre-processing: Tokenisation, Sentence Splitting, and Part of Speech Tagging 22 

   for each sentence in the pre-processed text 23 

      for each token in the sentence 24 



 

         if (the PoS of the token = (NNP OR DTNN OR DTNNS OR DTJJ ) then  1 

            token kind = DEFINITE noun 2 

         elseif (The PoS of token = NN or NNS or JJ) then  3 

            if (the first letter in token = "ل") then  4 

               The kind of token = INDEIN 5 

            elseif (token = "و" ) then  6 

                if the length. Token >3 7 

                   The kind of token = INDECC 8 

                endif  9 

             else  10 

                The kind of token = INDEFINITE noun  11 

             endif 12 

         endif 13 

       endfor  14 

   endfor 15 

   //Stage II – identify definite phrases  16 

   for each sentence in the text 17 

      use the indicator word to find domain-relevant phrases 18 

      use the Genitive Patters GP1, GP2, GP3 to identify the DEFINITE subphrase 19 

   endfor  20 

   //Stage III – Extract composite names 21 

   for each domain-relevant phrase 22 

       if the indicator word is DEFINITE //LP1 23 

          continue to add subsequent DEFINITE word or DEFNINITE phrase to the composite name 24 

          until end of phrase OR INDEFINITE word is encountered 25 

       else //indicator word is INDEFINITE – LP2 26 

          add next word to composite name whether DEFINITE OR INDEFINITE 27 

          continue to add subsequent DEFINITE word or DEFNINITE phrase to the composite name 28 

          until end of phrase OR INDEFINITE word is encountered 29 

       endif 30 

   endfor 31 

   Output: Composite Named Entities 32 

END 33 

4. SYSTEM EVALUATION 34 

This section documents the evaluation of the composite name extraction algorithm. The aim is to evaluate the performance of 35 

our NER system in extracting composite Arabic names with varied complexity in terms of length and grammatical structure. 36 

4.1. Data Collection 37 

At the first stage of evaluation, we collected a set of digital newspapers related to our case study (from the economic domain). 38 

The text corpus was collected from different websites that represent different authoring styles. For instance, documents 39 

published on websites related to the stock market domain have a special (bulletin – type) style compared to other general 40 

economic news websites. More than 1000 news articles were collected to evaluate our approach. Table VIII and  41 

Table IX show the contribution of the different online sources to the test data and the corpus specification of the collected 42 

documents. Manual annotation was performed for the document corpus, across all targeted entities. Even though this process 43 

is time consuming, it results in improved precision. The precision recall and f-measure were analysed in two experiments, the 44 

first experiment evaluates the effect the length of composite names and the second experiment compares the results of using 45 

different genitive patterns. 46 

 47 

Table VIII. Documents’ collections 48 

Resources  Share of test data  

http://www.fxnewstoday.ae/ 13% 

http://sa.investing.com/ 12% 

https://www.icn.com/ar/ 06% 

http://www.aljazeera.net/ebusiness 07% 

http://www.alborsanews.com 25% 

http://www.bbc.com/arabic/business 08% 

Other news  31% 



 

 1 

Table IX. Corpus specification 2 

Item Quantity  

Resourses  9 

Document  1300 

Sentences 6055 

Tokens 189290 

Composite names (CN)  4710 

- Two words CN - 1242 

- Three words CN - 1960 

- Four words CN - 1066 

- More than four CN  - 442 

4.2. Discussion of the results and limitations 3 

At the time of compiling this paper, we could not find any published research with public datasets and results that evaluated 4 

NLP efforts at extracting Arabic named entities comprising composite names for a specific problem domain. Hence, an 5 

evaluation could not be directly compared against published efforts in the field. The experiment aimed to evaluate the 6 

performance of our system in extracting the composite names dependent on number of words in the composite names and the 7 

AGR within the composite name. During the first experiment, we observed that the names, which contain two words 8 

demonstrated better performance in terms of precision (95.6%), as shown in Fig. 5, compared to three words (93%), four 9 

words (91.5%) and five or more words (92.5%). Hence, while we can note a slight decline in precision as the number of 10 

composite words increase, the developed entity recognition system maintains high accuracy.  11 

In a few cases, the definiteness-based pattern recognition can lead to false detection of composite named entities. For 12 

example in the phrase: “مليون سهم تقريباً بالجلسة الماضية” (the last session has almost a million shares), in which the word following 13 

the indicator “سهم” (share) is the indefinite word “ ًتقريبا” (almost). So, the definiteness-based pattern recognition system 14 

incorrectly determined that the “ ًسهم تقريبا” (almost share) is a composite name. 15 

 16 

Fig. 5. Impact of composite names’ length on precision 17 

The second experiment compares the use of different AGR patterns on composite name extraction. Arabic composite names 18 

can take different forms as illustrated in in Table X. The experiment evaluates the genitive NER patterns devised in section 19 

3.3.2. as mentioned above. As illustrated in Fig. 6, we observe that the names that used the first pattern recorded higher 20 

precision (100.0%) compared to the more structurally complex second (95% precision) and third patterns (96% precision) 21 

with consistent high recall and F-measure results. Therefore, we can claim that the genitive pattern method proved its 22 

consistency and accuracy for the recognition of Arabic composite names. 23 

Table X. Examples of the Arabic composite names recognised with AGR patterns 24 

Patterns  Arabic composite names example  English trans 

First   شركة التصنيع وخدمات الطاقة Industrialisation and Energy Services Company 

Second  شركة العربي الافريقي الدولي لتداول الاوراق المالية Arab African company for financial trading 

Third  سهم قاريونس لخدمات وصيانة وبرمجة الحاسوب Garyounes company for service, maintenance 
and computer programming 

0.88

0.9

0.92

0.94

0.96

0.98

2 words 3 words 4 words 5 words or more

Recall Precision F-M
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Fig. 6. Recall, precision, and F-measure of the AGR patterns 2 

It is noteworthy that the analysed results were affected by problems associated with the shortcomings of the PoS tagger, as 3 

well as grammatical mistakes in the original text. The deployed Stanford tagger erroneously tagged some words as nouns, 4 

although they were verbs. It also incorrectly tagged the word “سهم” as “هم +س”; it is separated into the proclitic (س) and (هم) as 5 

a pronoun. Similarly, the PoS Tagger currently cannot detect the proposition lam “ ل”, which can affect the accuracy of the 6 

composite NER in case the word following the indicator word starts with the lam “ل” letter; for instance, the word “لحية” (beard) 7 

can be parsed as “ل+حية” (with+snake). It also had problems with words translated from foreign language such as “8 ”جي في سي 

(JVC)   Although we have a mechanism to manually handle such exceptions as explained in section 3.1.3 above, however, where 9 

there is a significant impact on the information retrieval accuracy, a more systematic approach is required to fundamentally 10 

manage the above explained errors. 11 

Some syntactic analysis errors were caused by grammatical mistakes in the authored text, such as “شركة اسمنت ابيض” (White 12 

Cement Company). The rules of the Arabic language do not allow three words or more to be joined together to compose an 13 

indefinite Type (نكرة). Our approach cannot deal with these names, because the base of our algorithm does not allow three or 14 

more words to be joined together in an indefinite manner. 15 

5. CONCLUSIONS  16 

Arabic NER, especially for composite names, is a challenging task due to the complex morphology of the Arabic language and 17 

lack of advanced Arabic NLP tools. In this paper, we presented a novel approach for extracting composite names from 18 

documents authored in the Arabic language. Our approach to composite Arabic entity recognition is based on the genitive 19 

grammar rules of the Arabic language where we initially use grammar-based analysis to classify pronouns into definite noun 20 

 We then devised a set of genitive pattern recognition rules to retrieve composite 21 .(الإسم النكرة) and indefinite noun (الإسم المعرفة)

names from unstructured text; the first set of rules uses Genitive Patterns to classify definiteness within phrases. and the 22 

second set of linguistic patterns uses Arabic definite articles to extract the composite names from the classified phrases. 23 

Experimental evaluation was performed on financial documents with varied authoring styles and revealed good precision 24 

and recall results. It also confirmed that our error correction mechanism applied to the output of the PoS tagging process results 25 

in noticeable improvement in the effectiveness of our composite names extraction approach. The paper also highlights 26 

unresolved problems relating to the complex Arabic PoS tagging process, and to syntactic analysis errors stemming from 27 

common misuse of the Arabic language grammar. The next stage of our research will focus on relation extraction to capture 28 

events that are of relevance to the chosen domain of interest. This will complete, together with recognised named entities, the 29 

semantically tagged data that will be injected into a knowledgebase providing for the intelligent exploration of Arabic 30 

unstructured documents. 31 

As information retrieval challenges include unstructured text that is difficult to associate with specific domain, our future 32 

plans for future work involve investigating the utilisation of advanced Machine Learning techniques for NER [Yadav and 33 

Bethard 2018] in generic Arabic text that is not associated with a particular problem domain. 34 
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