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Abstract 
Regulatory T cells (Tregs) are a distinct subset of CD4+ T cells that play a vital role 

in maintaining immune homeostasis and peripheral tolerance, thereby preventing 

autoimmunity. Tregs are generally categorised into two main subsets; natural and 

induced Tregs. In cancer, Tregs are found extremely enriched in the tumour 

microenvironment and contribute to the inhibition of anti-tumour response and 

tumour progression. The origin of tumour-infiltrating Tregs (whether it is nTregs or 

iTregs) is still enigmatic, since there are no distinct biomarkers which can 

differentiate between the two subsets. Therefore, the aim of this study is to identify 

cell surface biomarkers that can differentiate phenotypic features of iTregs from 

nTregs in the context of cancer. With this aim, an in vitro murine model was 

successfully developed to generate CD4+CD25++Foxp3+ iTregs from purely sorted 

naïve CD4+CD25-Foxp3- T cells in the presence of TGF-β1. The induction of iTregs 

was assessed using flow cytometry. Methylation status of Foxp3-TSDR and Foxp3 

stability was assessed. Naïve CD4+CD25-Foxp3- T cells and CD4+CD25+Foxp3+ 

nTregs were purely sorted using cell sorting. Five biologically different subsets of 

CD4+ cells including naïve CD4+CD25-Foxp3- T cells, activated CD4+CD25-Foxp3- T 

cells, naïve CD4+CD25+Foxp3+ nTregs, activated CD4+CD25+Foxp3+ nTregs and 

CD4+CD25++Foxp3+ iTregs were subjected to quantitative proteomic profiling using 

SWATH-MS. Subcellular fractionation methods were employed to isolate membrane 

and  cytoplasmic proteins from each of the subsets. Quantitative proteomic data 

were analysed using artificial neural networks. The results revealed that 4 distinct 

membrane biomarkers (PLP2, ITIH4, HEM6 and MAVS) were differentially up-

regulated in iTregs compared to other subsets. EPHX1 (HYEP) was identified 

upregulated only in naïve nTregs and downregulated in iTregs and other subsets. 

The biomarkers were further tested. Pathway enrichment analysis of iTregs showed 

a distinct metabolic pathway enrichment in iTregs indicating a mechanistic insight 

into the iTreg development. Once validated in humans these proteins could be used 

as a biomarker for iTreg or as a drug target for the selective depletion for better 

immunotherapeutic outcome in cancer patients.  
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Chapter 1.  

General introduction 

1.1. Cancer – A brief overview 
Cancer is the second most common cause of death worldwide. In 2018, 9.6 million 

deaths have been reported due to cancer, which is about 1 in 6 deaths worldwide 

(WHO, 2018, www.who.com, Accessed on 20 Oct 2019). In UK, cancer incidence has 

been estimated about 363,000 new cancer cases in 2016; 178,000 (545 per 

100,000) cases are female and 185,000 (664 per 100,000) cases are male. Moreover, 

53% of all new cases have been diagnosed with breast, prostate, lung and bowel 

cancer. In 2017, 28% of all deaths in UK have been reported due to cancer (Cancer 

Research UK, www.cancerresearchuk.org, Accessed on 20 Oct 2019).           

Cancer is a group of diseases defined by uncontrolled cell growth through which 

cells acquire the ability to invade adjacent tissues and then disseminate 

(metastasise) from the primary site of origin to other sites in the body. More than 

100 types of cancer have been identified which are characterised based on the tissue 

of origin where tumour develops (Knowles and Selby 2005). For instance, cancers 

derived from epithelial tissue are categorised as “carcinomas” and constitute around 

85% of cancers. This include cancers come from glandular epithelial tissues which 

are called “adenocarcinomas”. Whereas cancers developed in mesoderm tissues 

(bone, muscle and connective tissues) are called “sarcomas”(Pecorino 2012). 

Several external and lifestyle factors can contribute to the development of cancer 

including smoking, infection, obesity, alcohol consumption, ionising and ultraviolet 

radiation and chemical reagents (Hesketh 2013). There is a broad consensus that 

cancer is a genetic disease in which accumulation of molecular lesions in the genetic 

material of somatic cells (DeVita 2015). In normal circumstances these molecular 

aberrations are corrected by our own DNA repair machinery or eliminated along 

with mutation bearing cells by the immune system (Bernstein, et al. 2013). Once the 

mutation/s evaded the repair/immune system favours the bearing cell proliferative 

and oncogenic advantage resulting in malignancy (Messerschmidt, Prendergast and 

Messerschmidt 2016).        

http://www.who.com/
http://www.cancerresearchuk.org/
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1.2. The immune system – A brief overview 
The main function of the immune system is to protect multicellular organisms from 

pathogens. The immune system generates an enormous array of cells and molecules 

which act together in a dynamic network to recognise and eliminate foreign 

invaders. The immune system can protect the body by two related activities; 

recognition and response. Immune recognition is characterised by the ability to 

discriminate foreign invaders from self-components. It can even perceive slight 

chemical differences that differentiate one foreign pathogen from another (Janeway, 

et al. 1996). In addition, the immune system can also recognise host cells that are 

abnormally transformed or on their way to become cancerous cells. Recognition of 

a pathogen by the immune system induces an effector response that eliminates or 

overcomes the invader. Each immune cell has a different pattern of response and is 

specialised to eliminate or neutralise a particular type of pathogen. Some exposures 

trigger a memory response that is characterised by a more rapid and powerful 

immune reaction upon later attack. This type of response is a remarkable feature of 

the mammalian immune system which protects the body from catching certain 

diseases a second time (Kindt, et al. 2007). 

In general, immunity is divided into two main categories; “innate” and “adaptive” 

immunity which both collaborate to protect the body. The innate immune system is 

known as the first line of defence which can effectively eliminate pathogens within 

hours of encounter with innate immune cells. The adaptive immunity provides a 

second, comprehensive line of defence in which adaptive immune cells recognise, 

eliminate and memorise the invading pathogens that evade the innate response 

(Roitt, Brostoff and Male 2001).  

Innate and adaptive immune cells are generated by a highly regulated process called 

“haematopoiesis” which takes place in the bone marrow. This process involves the 

production and development of red and white blood cells and starts when self-

renewing haematopoietic stem cells give rise to lymphoid and myeloid progenitors. 

Lymphoid progenitors give rise to T-cell progenitors, B-cell progenitors, dendritic 

cells and natural killer (NK) cells, whereas myeloid progenitor give rise to 

granulocyte-monocyte progenitor, eosinophil progenitor, basophil progenitor, 
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megakaryocyte and erythroid progenitor (figure 1.2) (Kindt, et al. 2007)   (Taniuchi 

2018) 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Schematic representation of haematopoiesis process by which red and white blood 
cells are produced in the bone marrow. The left panel shows innate immune cells that are 
developed from lineage committed progenitors derived from myeloid-lineage progenitors. The 
right panel shows adaptive immune cells that are developed from lineage committed 
progenitors derived from lymphoid-lineage progenitors. This figure was adaptive from (Kindt, 
et al. 2007).  
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1.2.1. Innate immunity 

The innate immunity provides the first primitive type of defence mechanism which 

is ready for immediate activation prior to invasion by a pathogen. The innate 

immune system consists of three different types of barriers to protect the body, 

including physical, chemical and cellular barriers. The key physical barriers are skin 

and mucous membranes which prevent the entry of invading pathogens into the 

body. Chemical barriers involve the acidity of the stomach contents and specialised 

soluble molecules such as lysozyme that have antimicrobial activities (Tosi 2005). 

Once a pathogen breaches these primary barriers, it will encounter the cellular 

barrier which consists of various types of cells that can initiate a rapid response 

within minutes of invasion (Gallo and Nizet 2008).     

As shown in figure 1.1, innate immune cells develop from myeloid progenitor in the 

bone marrow and are broadly grouped int two main classes. Mononuclear 

phagocytes include dendritic cells (DCs), monocytes and macrophages. 

polymorphonuclear phagocytes include neutrophils, basophils and eosinophils 

based on the shape of their nucleus (De Kleer, et al. 2014). 

Innate immune cells generally express pattern recognition receptors (PRRs) and 

Toll-like receptors (TLRs). PRRs allow innate cells to specifically recognise broad 

structural motifs (pathogen-associated molecular patterns (PAMPs)) that highly 

conserved within pathogens but are completely absent from the host. TLRs are a 

family of 11 versatile receptors, each reacts with a specific microbial product, 

allowing innate cells to detect different types of pathogens (Mogensen 2009). 

Innate immune responses are mediated by the participation of various cells. The 

major functional innate cells are neutrophils, macrophages, dendritic cells and NK 

cells (Beutler 2004). Neutrophils are the first cells to travel from the blood into the 

site of inflammation (pathogen invasion) where they kill and eliminate pathogen by 

phagocytosis (Kobayashi and DeLeo 2009). They are also important for the innate 

defence against bacteria and fungi. Neutrophils express several TLRs on their 

surfaces. The two key receptors are TLR2 and TLR4 which enables neutrophils to 

recognise the peptidoglycans of Gram-positive bacteria and the lipopolysaccharide 
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(LPS) expressed on the wall of Gram-negative microbes, respectively (Sabroe, et al. 

2003).  

Macrophages and dendritic cells are professional antigen presenting (Ito, et al. 

2013) cells that link innate and adaptive responses via antigen presentation on MHC 

molecules. Macrophages are generated in the bone marrow as immature monocytes 

that circulate in the blood to become mature monocytes. Mature monocytes further 

differentiate into macrophages once they enter peripheral tissues (Mosser and 

Edwards 2008). Interaction between PRRs expressed on macrophages and 

pathogen components (PAMPs) activates macrophages which induce phagocytosis. 

Activated macrophages then secrete proinflammatory cytokines such as 

interleukin-1 (IL-1), IL-6 and tumour necrosis alpha (TNF-α) which induce and 

support inflammatory responses (Arango Duque and Descoteaux 2014).  

DCs act as a bridge between innate and adaptive immunity as they can interact with 

T helper (Th) and T cytotoxic (Tc) cells. Immature DCs as innate cells recognise 

pathogens via PRRs and TLRs (Steinman 2006). This recognition induces 

maturation of DCs that results in the upregulation of MHC class II on their surfaces. 

In addition, as nucleated cells, DCs also express MHC class I (Dalod, et al. 2014). 

Upon maturation, DCs internalise pathogens components and then migrate to the 

lymphoid tissue (e.g. lymph nodes) where they introduce antigen (pathogens 

components) to MHC class II-dependent Th cells and MHC class I-dependent Tc cells. 

DCs can also produce IL-12, IL-6 and TNF-α (Guermonprez, et al. 2002). 

NK cells play an important role in the innate immunity by their ability to kill virus-

infected cells and pre-malignant transformed cells. NK cells lack membrane 

molecules and antigen-specific receptors (Hamerman, Ogasawara and Lanier 2005). 

Instead, NK cells express specific receptors which allow them to distinguish defects 

such as a reduction in the expression of MHC class I molecules, the unusual 

phenotypes expressed by tumour cells and cells infected by some viruses. NK cells 

have an essential role in the regulation of both innate and adaptive immunity (Brilot, 

Strowig and Munz 2008, Bellora, et al. 2010). They produce Interferon gamma (IFN-

γ) which activates macrophages and enhances their phagocytic and anti-microbial 

activities. IFN-γ produced by NK cells can also affect the Th1 versus Th2 lineage by 
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inhibition Th2 expansion and stimulation development of Th1 in the presence of IL-

12 derived from macrophages and DCs (Mailliard, et al. 2003). 

One of the hallmarks of innate immunity is the lack of antigenic specificity and 

immunogenic memory. Therefore, if there is a recognised antigenic challenge to the 

pathogen which may exceed the ability of innate immune cells during inflammation, 

adaptive immunity will be initiated to respond to the challenge with a high degree 

of specificity and immunologic memory (Kindt, et al. 2007). However, a recent 

evidence has revealed that NK cells develop antigenic specificity and immunological 

memory against viruses although they are involved in the innate immunity (Peng 

and Tian 2017).   

1.2.2. Adaptive immunity   

The adaptive immunity has four different features including antigenic specificity, 

diversity, immunologic memory and self-nonself recognition. The antigenic 

specificity allows adaptive immune system to discriminate finer differences among 

antigens. The adaptive system can produce tremendous highly-diverse receptors 

which can recognise many of unique structures with minor genetic variations of 

foreign antigens (Bonilla and Oettgen 2010). The adaptive system can also 

memorise the eliminated antigens by generating memory cells that specifically react 

to the same antigens for future exposure, conferring lifelong immunity to many 

pathogens after an initial exposure. Finally, the adaptive system is educated to 

distinguish between self and non-self molecules and initiate immune response 

against non-self molecules only. Failure of this ability leads to autoimmune diseases 

and can be fatal (Kurtz 2004). 

Adaptive immune responses are mediated by specialised cells including B and T cells 

in addition to other specialised antigen-presenting cells (macrophages and DCs). B 

cells are generated and mature in the bone marrow and express unique antigen-

binding receptor (B-cell receptor (BCR)) which is a membrane-bound antibody 

molecule. B cells are responsible for mediating humoral immune response (LeBien 

and Tedder 2008). Upon antigen binding to BCR, B cells undergo activation and 

differentiation into effector B cells (plasma cells) and memory B cells. A single 

plasma cell can secrete hundreds to thousands of antibodies per second. Secreted 
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antibodies are considered as key effector molecules of humoral immunity (LeBien 

and Tedder 2008). 

Unlike B cells, T cells are generated in the bone marrow as progenitor T cells that 

migrate to thymus where they become mature. T cell maturation includes 

rearrangements of the germ line TCR genes and the expression of various 

membrane markers such as CD3, CD4, CD25 and CD8 (Koch and Radtke 2011). 

Developing T cells in the thymus are defined as thymocytes that undergo a highly 

regulated selection process, called thymic selection. Positive thymic selection allows 

only T cells with TCRs that can recognise self-MHC molecules to continue as mature 

self-MHC-restricted T cells. T cells that react too strongly with self-peptide mounted 

on MHC molecules are eliminated by negative selection (Klein, et al. 2014a). 

Negative selection is responsible for the creation of primary T cells that are self-

tolerant (Takaba and Takayanagi 2017). Mature T cells are grouped into two main 

subpopulations; Th and Tc cells. Th cells express CD4, a membrane glycoprotein 

receptor that recognises antigens bound to MHC class II molecules. Tc cells express 

CD8 that recognises antigens bound to MHC class I molecules (Murphy and Weaver 

2016).  

The key event in the development of cell-mediated immune responses is the 

activation and clonal expansion of T cells. T cell activation is triggered by interaction 

of the TCR-CD3 complex with a processed antigenic peptide bound to either MHC 

class I (CD8+ T cells) or class II (CD4+ T cells) molecule expressed on the surface of 

antigen-presenting cells (APCs) (Smith-Garvin, Koretzky and Jordan 2009). 

However, this interaction is not sufficient to fully activate naïve T cells. For 

subsequent proliferation into effector cells, naïve T cells receive two essential 

activation signals. The first signal is initiated by interaction of an antigenic peptide 

with the TCR-CD3 complex. The second signal is a consecutive antigen-nonspecific 

costimulatory signal provided by interactions between CD28 on T cells and 

receptors of the B7 family expressed on the surface of APCs; B7-1 (CD80) and B7-2 

(CD86) (figure 1.2) (Chen and Flies 2013). B7 receptors are mainly expressed on 

dendritic cells and induced on activated macrophages and B cells (Mbongue, et al. 

2017). Costimulatory signals derived by CD28 are regulated by CTLA-4 (CD152), a 

glycoprotein which is structurally similar to CD28. CD152 provides inhibitory 
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signals that down-regulate the activation of T cells (Rudd, Taylor and Schneider 

2009). Activation of T cells by the interaction of TCR-CD3 with an antigenic peptide 

in the absence of CD28 costimulatory signalling leads to T cell anergy, which a state 

of nonresponsive characterised by failure of T cells to proliferate (Schwartz 2003). 

This confirms the importance of both signals in the activation of T cells. However, 

the strength of activation signals can also affect the function of T cells. It is found 

that persistent antigen-derived TCR activation signals lead to T cell exhaustion 

which is a state when T cells lose their functional ability as effector cells following 

prolonged antigen stimulation (Wherry 2011).  

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Signals of T cells activation and inactivation mediated by CD80/86 
receptors expressed on APC. Signa1 is generated by the interaction of antigenic 
peptide attached with MHC molecule. Signal 2 is a costimulatory signal derived 
by the interaction of B7 receptors family (CD80/CD80) with CD28 expressed on 
the surface of T cells. Costimulatory signal is regulated by CTLA-4 which induce 
inhibitory signals to deactivate T cells. This figure was adapted from (Sharma, 
et al. 2019). Copyright permission was obtained from the publisher (Elsevier, 
license number 4855390275342, license date on 24 Jun 2020 by Copyright 
Clearance Center).       

A B 



9 
 

Upon activation, naïve T cells differentiate into effector T cells. Naïve CD8+ T cells 

differentiate into CD8+ effector T cells with cytotoxic killing activity and memory 

CD8+ T cells. Naïve CD4+ T cells differentiate into several subpopulations based on 

secreted cytokines in the local microenvironment. Figure 1.3 shows differentiation 

of naive CD4+ T cells in the presence of cytokines that are required for lineage 

commitment of each subsets of CD4+ T cells.  
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Figure 1.3. Differentiation of naïve CD4+ T cells (Th0) upon activation by antigenic peptides 
represented by MHC class II molecule expressed on the surface of an antigen-presenting cell 
(APC) in the presence of other required cytokines. Th1 cells are differentiated in the 
presence of IL-12 cytokines and secrete IFN-γ and IL-2 after differentiation. The 
differentiation of Th1 is regulated by the transcription factor T-bet that maintains their 
lineage-specific development. The differentiation of Th2 cells is regulated by the 
transcription factor Gata-3 and induced in the presence of IL-4. Th2 cells are characterised 
by the secretion of various interleukins such as IL-4, IL-10, IL-5 and IL-13. Th17 cells are 
differentiated in the presence of TGF-β and IL-6, and their differentiation is controlled by 
the transcription factor RoRγt. Upon differentiation, Th17 cells secrete IL-17, IL-22 and 
TNF-α. Tregs are characterised by the expression of the transcription factor Foxp3 and 
differentiated in the presence of IL-2 and TGF-β. Tregs secrete TGF-β and IL-10 
immunosuppressive cytokines. Th9 cells are characterised by the expression of PU.1 
transcription factor and differentiated by the effect of TGFβ and IL-4. Th9 cells are found to 
secrete IL-9 and IL-10 to mediate their function. TfH (T follicular helper) cells are defined 
by the expression of Bcl-6 transcription factor and differentiated in the presence of IL-6. TfH 
cells produce high level of IL-21. This figure was adapted from (Russ, et al. 2013).           
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Th1 cells secrete several cytokines including IL-2, IFN-γ and TNF-α/β which can 

induce cell-mediated immune response by activating CD8+ T cytotoxic cells against 

invading pathogens or altered host cells. Production of IL-4 by Th2 can effectively 

induce humoral immune response by activating B cells to produce antibodies 

against pathogens (Zhang, et al. 2014). The function of other subsets of CD4+ T cells 

(Th17 and Th9 cells) is mentioned in the section (1.5.1.3). 

The innate and adaptive immune cells play pivotal role in the recognition and 

elimination host transformed-malignant cells. However, another evidence confirms 

that some of these immune cells contribute to the progression of tumour (Vesely, et 

al. 2011). The cellular interactions between immune and tumour cells which result 

in tumour escape from immune response will be discussed in the next section. 

 

1.3. Cancer and immune system 
The interaction between immune system and cancer is widely acknowledged in the 

literature. Inflammation in the context of cancer plays a significant role in the 

progression of cancer. Inflammation is a complex physiological process triggered by 

various immune cells in response to infection or tissue injury, thereby providing a 

full protection against dangerous pathogens (Barton 2008).  This highly regulated 

response can be detrimental if it becomes dysregulated which results in pathological 

consequences including chronic inflammatory diseases, autoimmunity, systemic 

sepsis, tissue damage and fibrosis, neoplasia (Medzhitov 2008). In cancer, it has 

been reported that inflammation is an essential process at different stages of tumour 

growth and progression as it can promote tumorigenesis by altering the host 

immune response to tumour (Grivennikov, Greten and Karin 2010). For instance, 

chronic Helicobacter pylori inflammation can lead to gastric cancer and mucosa-

associated lymphoid tissue lymphoma, whereas persistent infection with hepatitis 

B and C viruses is associated with hepatocellular carcinoma  (Kew 2013, Correa and 

Piazuelo 2011, J. B. Park and Koo 2014). In cancer-related inflammation, at the initial 

stage of tumorigenesis, the tumour microenvironment contains various immune 

cells which recognise tumour-expressed antigens and produce inflammatory and 

potentially protective anti-tumour responses. However, the subversion of these 

responses by tumour cells enables the establishment of a persistent inflammatory 
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microenvironment (low grade chronic inflammation) which further promote 

tumour development (Grivennikov, et al. 2010). A wide array of immune cells 

infiltrating with the tumour microenvironment, which include macrophages, 

neutrophils, mast cells, myeloid-derived suppressor cells (MDSCs), dendritic cells 

(DCs), natural killer (NK) cells, T and B lymphocytes (Mantovani, et al. 2008). The 

inflammatory tumour microenvironment can also be regulated by certain 

oncogenes such as MYC and RAS which can recruit leukocytes, lymphocytes, and 

maintaining a proinflammatory microenvironment tumour, thus remodelling the 

tumour microenvironment (Soucek, et al. 2007). 

Accumulating evidence confirms that there is a dynamic cellular communication 

between tumours and immune cells which can regulate tumour growth and 

progression. This evidence has been translated into a concept of “cancer 

immunoediting” which postulated that the host’s immune system can inhibit cancer 

growth and promote cancer progression simultaneously. Cancer immunoediting 

consists of three different phases including elimination, equilibrium and escape 

(Dunn, Old and Schreiber 2004). The concept of immunoediting which is 

characterised by three distinct phases is discussed in detail in the following sections. 
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Figure 1.4. Schematic representation showing the stages of cancer immunoediting. In the 
first phase (elimination), innate (NK, macrophages, DCs) and adaptive immune cells (CD4+ 
and CD8+ and γδ T cells) recognise pre-malignant lesions (newly transformed cells and kill 
growing tumours by producing several cytokines, thus maintaining protection against cancer. 
In the second phase (equilibrium), poorly-immunogenic tumour cells are thought to be 
specifically selected by the tumour to maintain its progression by avoiding the intensive, 
constant attack from the immune cells  (CD4+ and CD8+, NK cells ) that still have potential to 
eliminate the newly growing cells. In the third phase (escape), tumour cells that have gained 
the competency to evade immune recognition and destruction sprout progressively by 
creating immunosuppressive tumour microenvironment through recruiting Tregs, MDSCs 
that can inhibit the function of CD8+ T cells and NK cells and several other immune evasion 
mechanisms. This graph was adapted from (Schreiber, Old and Smyth 2011). Copyright 
permission was obtained from the publisher (The American Association for the Advancement 
of Science, license number 4855370109321, License date on 24 Jun 2020 by Copyright 
Clearance Center).    
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1.3.1. The phase of tumour elimination (Cancer 

immunosurveillance) 

The elimination phase (which is also known as “immunosurveillance”) starts when 

the innate and adaptive immune cells recognise pre-malignant lesions (newly 

transformed cells and kill growing tumours, thus maintaining protection against 

cancer (Shankaran, et al. 2001). It has been proposed that the initial anti-tumour 

immune response is induced by innate immune cells triggered due to the local tissue 

disruption. The tissue disruption occurs as a results of angiogenesis or tissue-

invasive growth (Carmeliet and Jain 2000, Hanahan and Weinberg 2000). These two 

processes are believed to promote the tissue-stromal remodelling which produces 

proinflammatory molecules that direct the innate immune cells to the site of tissue 

damage. These proinflammatory molecules include interleukin (IL-1), TNF-α 

(tumour necrosis factor alpha), type 1 IFNs (interferon), GM-CSF (granulocyte-

macrophage colony-stimulating factor) and IL-15 (Smyth, Dunn and Schreiber 

2006). These proinflammatory molecules mediate the differentiation and function 

of DCs which have a direct cellular communication with NK cells and T cells (Blanco, 

et al. 2008). DCs are thought to serve as sentinel cells that monitor tissue stress, 

damage and transformation, secretion of proinflammatory molecules derived from 

extracellular matrix breakdown, and secretion of heat-shock proteins (HSPs) as a 

result of tumour cell necrosis and damage (Hanke, et al. 2013). 

Several cells have been proposed to participate in the phase of cancer 

immunosurveillance. NK cells, macrophages, NKT cells, CD4+ and CD8+ T cells and 

γδ+ T cells are thought to be recruited to the site of pre-malignant transformed tissue 

in which they become fully activated and exert their protective response (Chow, 

Möller and Smyth 2012) (figure 1.4). NK cells are thought to be activated through 

their activating receptor NKG2D (natural killer group 2, member D) which can bind 

to the stress ligands expressed by the developing tumour cells, infected, stressed or 

transformed cells (Waldhauer and Steinle 2008). These stress ligands include MHC-

class І-polypeptide-related sequence A (MICA) and MICB. Upon activation, NK cells 

secrete perforin and various granzymes which can permeabilise the plasma 

membrane of tumour cells and initiate cascades of apoptosis (Zitvogel, Tesniere and 

Kroemer 2006). Secretion or expression of tumour necrosis factor (TNF)-related 
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apoptosis-inducing ligand (TRAIL) by NK cells can kill tumour cells which express 

the corresponding  receptor “TRAIL receptor” (Falschlehner, et al. 2009).  The 

developing tumours can also be recognised by T cells and NKT cells via the cellular 

interaction between T-cell receptors (TCRs) and MHC-tumour associated peptide 

complexes and glycolipid-CD1 complexes which are expressed by the growing 

tumour cells. Upon activation, cytotoxic effector cells, mainly CD8+ T cells and NKT 

cells, exert their cytotoxic mechanisms to eliminate tumour or premalignant-

transformed cells by secreting various types of IFNs including type І IFNs (IFN-α and 

IFN-β) and type ІІ IFN (IFN-γ) (Krijgsman, Hokland and Kuppen 2018). The 

production of IFNs, mainly IFN-γ, can mediate the recruitment of other innate 

immune cells to the site of growing tumour. The production of IFN-γ inhibits 

angiogenesis mediated by tumour cells and induce proapoptotic mechanisms within 

tumour cells which inhibit the growth of tumour cells (Sun, et al. 2014).  

Apoptotic or lysed tumour cells release intracellular molecules and antigens that 

recruit adaptive immune cells (DCs, macrophages, CD4+ and CD8+ T cells) and 

initiate the development of tumour-specific adaptive immune responses. Signals 

derived from tumour infiltrating innate immune cells can also induce the 

recruitment and activation of adaptive immune cells (Topfer, et al. 2011). For 

instance, immature DCs can be recruited to the site of growing tumour and activated 

by the cytokine milieu of innate immunity (Palucka, et al. 2011). Upon activation, 

immature DCs encounter and present tumour antigens on their cell surface in two 

different ways either directly by ingesting tumour cell apoptotic bodies or indirectly 

when tumour antigens become bound and chaperoned with heat shock proteins 

which are taken up by DCs (McDonnell, Robinson and Currie 2010, Murshid, Gong 

and Calderwood 2012). After antigen internalisation, DCs acquire a highly activated-

mature phenotype by which they can activate naïve tumour-specific T helper 1 

(Th1) CD4+ T cells via MHC (major histocompatibility complex) class ІІ signalling. 

Th1 mediate the activation of naïve tumour-specific CD8+ T cells induced through 

cross-presentation of antigenic tumour  peptides on DC-MHC class І complexes 

(Sánchez-Paulete, et al. 2017). 

The activation of tumour-specific adaptive immune response provides the host with 

a potential to effectively eliminate the growing tumour. At the site of developing 
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tumour, CD4+ T cells secrete IL-2 that maintains the function and viability of CD8+ T 

cells (Gajewski, Schreiber and Fu 2013). Production of IL-15 due to tissue-stromal 

remodelling can also maintain cytotoxic activity of tumour-specific CD8+ T cells 

which carefully recognise and attack antigen-positive tumour cells (Doedens, et al. 

2016). After interaction with tumour cells, tumour-specific CD8+ T cells can also 

secrete large amount of IFN-γ and thus kill tumour cell via IFN-γ-dependent 

mechanisms of apoptosis and angiogenesis inhibition (Bruno, et al. 2014). The 

contribution of tumour-specific adaptive immunity may vary among different 

tumours. Therefore, the elimination phase of cancer immunoediting is mainly based 

on the immunogenicity of antigens expressed by newly-growing tumour and must 

be repeated each time when new antigenically distinct tumour cells develop (Vesely 

and Schreiber 2013). 

1.3.2. The phase of equilibrium (cancer persistence) 

Tumour cells which have escaped the elimination phase can persist and resist the 

activated tumour-specific adaptive immune cells via expression of non-

immunogenic antigens (Quezada, et al. 2011) (figure 1.4). These non-immunogenic 

tumour cells are thought to be specifically selected by the tumour to maintains its 

progression by avoiding the intensive, constant attack from the immune cells that 

still have potential to eliminate the newly growing cells. This process has been called 

“immunoselection” (Zitvogel, et al. 2006). The equilibrium phase 

(immunoselection) is a period of cancer persistence in which tumour cells are 

prevented from expanding by immune resistance. In this stage, tumour cells show a 

functional state of dormancy and may reprogram their intrinsic mechanisms which 

block antigen-processing machinery and therefore inhibit expression of 

immunogenic molecules that can be recognised by immune cells (Teng, et al. 2008). 

Loss of MHC class І molecules, TAP1 (transporter associated with antigen 

processing 1), LMP2 (low-molecular mass protein 2) and IFN-γR (IFN-γ receptor) 

helps tumour cells to avoid adaptive immune response which is mediated via a 

process called immune-mediated tumour dormancy (Starling 2017). The molecular 

mechanisms of immune-mediated tumour dormancy in the equilibrium phase are 

still not comprehensively explained due to the difficulties of developing a mouse 

model that can represent the equilibrium phase (Mittal, et al. 2014). An evidence 
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confirming the existence of equilibrium phase has been reported by Koebel et al. The 

authors have showed that immunocompetent mice failed to develop any palpable 

tumours after receiving low-dose carcinogen (3’-methylcholanthrene (MCA)) which 

induced occult cancer cells within mice. However, 50% of these mice rapidly 

developed tumours at the site of MCA injection when their immune system was 

inhibited by administrating monoclonal antibodies targeting T cells and IFN-γ 

(Koebel, et al. 2007). The authors have also demonstrated that adaptive immune 

cells, specifically CD4+, CD8+, IL-12-secreting and IFN-γ-secreting T cells, but not 

innate immune cells were responsible for preserving  occult tumour cells in a 

dormant state (Koebel, et al. 2007). Another study has also used the MCA-induced 

occult tumour mouse model to investigate the equilibrium phase of immunoediting 

(Teng, et al. 2012). The authors suggested that this specific phase could be the 

longest in cancer immunoediting as primary tumours were apparent within mice 

after 10-20 weeks of carcinogen inoculation, while occult tumour cells in a state of 

dormancy for 200 days before T-cell depletion which promoted the tumour 

progression (Teng, et al. 2012). The authors have also demonstrated that IL-12 and 

IL-13 cytokines might be the main regulators that coordinate the molecular 

mechanisms of immune-mediated tumour dormancy in the equilibrium phase. IL-

23 has been shown to maintain tumour growth and persistence, whereas IL-12 was 

efficient to inhibit and control the outgrowth of occult primary tumour cells. 

Whereas, IL-4, IL-17A, TNF, and IFN-α and β cytokines were not shown to have any 

role in mediating the equilibrium phase (Teng, et al. 2012). Wu et al. have profiled 

immune cells enriched in the microenvironment of tumours at the equilibrium and 

escape phases. The authors have found that CD8+ T cells, NK cells and γδ+ T cells 

were predominantly enriched in tumours undergoing immune-equilibrium phase, 

whereas NKT cells, Tregs and MDCSs were present in very low percentages. 

However, the microenvironment of tumours in the immune-escape phase was 

heavily enriched with immunosuppressive cells, mainly T regulatory cells (Tregs) 

and MDSCs (Wu, et al. 2013). 

1.3.3. The phase of immune escape (cancer progression) 

Tumour cells that have gained the competency to evade immune recognition and 

destruction sprout progressively and therefore enter the escape phase,  which is the 
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last phase of cancer immunoediting (Kim, Emi and Tanabe 2007). Tumour escape is 

mediated through different mechanisms, including development of 

immunosuppressive tumour microenvironment by the recruitment and/or 

induction of immunosuppressive/immunoregulatory T cell populations, reduced 

immune recognition of T cells due to the absence of immunogenic antigens/MHCs 

expressed on tumour cells, overexpression of anti-apoptotic molecules by tumour 

cells  and immune exhaustion (Mittal, et al. 2014, Schreiber, Old and Smyth 2011) 

(figure 1.4). Understanding the molecular biology of these mechanisms has 

provided new insights for the development of immunotherapy against cancer 

(Beatty and Gladney 2015). These mechanisms will be discussed in more details in 

the next section.       

 

1.4. Immune escape mechanisms in the tumour 

microenvironment 
Accumulative evidence has suggested that immune evasion is mediated by tumour 

cell-mediated mechanisms and immune cell-mediated mechanisms; both of which 

contribute to resistance to cancer immunotherapies and promote tumour 

invasiveness, progression and metastasis (Bhutia, Mallick and Maiti 2010). 

1.4.1. Tumour cell-mediated mechanisms 

Several studies have reported that the cellular microenvironment may vary 

between tumours. Some tumours are heavily infiltrated by immune cells which have 

been called T-cell-inflamed tumours, while other that lack a baseline of  immune-

cell infiltration are called non T cell-inflamed tumours in which T cells and other 

immune cells are precluded from the tumour microenvironment (Trujillo, et al. 

2018). It has been reported that tumour cells can employ several intrinsic 

mechanisms that mediate T cell exclusion (Trujillo, et al. 2018). 

1.4.1.1. WNT/β-catenin pathway  

Tumour cell-intrinsic upregulation of the WNT/β-catenin pathway has been 

correlated with absence of T cell infiltration in the tumour microenvironment. 

Spranger et al. (2015) have found that genes related WNT/β-catenin pathway are 

significantly upregulated in non-T cell-inflamed metastatic melanoma tumours, 
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compared to T cell-inflamed tumours. By using inducible genetically engineered 

autochthonous mouse model, the authors have demonstrated that activation of 

WNT/β-catenin signalling due to gain-of-function mutations could inhibit the initial 

steps of T cell priming by tumour antigens. Moreover, the authors have revealed that 

tumours with active β-catenin failed to recruit and activate Batf3-encoded CD103+ 

DCs in the microenvironment, which was correlated with lacking T cell infiltration 

within the tumour microenvironment (Spranger, Bao and Gajewski 2015). Batf3 DCs 

are found to be indispensable mediators for priming and activation of CD8+ T cells 

in the tumour microenvironment via cross-presentation of tumour-associated 

antigens (Engelhardt, et al. 2012, Fuertes, et al. 2011, Hildner, et al. 2008). T cell 

exclusion due to activation of the WNT/β-catenin signalling has been found in the 

tumour microenvironment of other cancers including bladder cancer, head and neck 

and other types of cancer (Sweis, et al. 2016, Luke, et al. 2016). Abnormal activation 

of the WNT/β-catenin signalling has been found to suppress the expression of 

Eomesoderin (EOMES) which is the master regulator of the function of CD8+ T 

effector cells (Gattinoni, Ji and Restifo 2010). Activation of the WNT/β-catenin 

signalling due to functional mutations has found to affect the role of DCs and 

condition them to a regulatory state which inactivates anti-tumour immunity 

(Castañeda-Patlán, Fuentes-García and Robles-Flores 2018). Activation of β-catenin 

has also found to enhance the expression of the transcription repressor ATF3 that 

inhibits the transcription of CCL4. The insufficient production of CCL4 impairs the 

maturation and activation of Batf3-CD103+ DCs that are essential for CD8+ T cells 

priming and differentiation (Pai, et al. 2017). 

1.4.1.2. PTEN/PI3K pathway 

Another pathway found to mediate T cell exclusion within the microenvironment of 

non-T cell-inflamed tumours is loss of PTEN/PI3K activation pathway. PTEN (the 

phosphatase and tensin homologue) is a well-known tumour suppressor which 

negatively regulates the PI3K/Akt signalling pathway (Song, Salmena and Pandolfi 

2012). PI3K/Akt signalling pathway plays a pivotal role in maintaining cell growth 

and survival and has been found significantly upregulated in tumour cells, thereby 

maintaining the tumour progression (Porta, Paglino and Mosca 2014). In preclinical 

models of melanoma, loss of PTEN in tumour cells is found to promote the 

expression of immunosuppressive cytokines, suppress T cell-mediated anti-tumour 
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response and reduce T cell infiltration into the tumour microenvironment (Peng, et 

al. 2016). Loss of PTEN pathway in prostate tumour cells has also been found to 

induce immunosuppressive tumour microenvironment via downregulation of 

PTPN11/SHP2 which therefore maintains the activation of the JAK2/STAT3 

pathway (Toso, et al. 2014). The activation of STAT3 has been found to prevent anti-

tumour responses by blocking the activation of DCs, NK cells and T cells, thereby 

promoting tumour growth. Kortylewski et al. have demonstrated that blocking 

STAT3 signalling in haematopoietic cells could markedly activate and maintain the 

function of  DCs, T cells, NK cells and neutrophils, and suppress the tumour growth 

(Kortylewski, et al. 2005). Loss of functional PTEN pathway leads to persistent 

activation of PI3K/Akt signalling pathway which has been correlated with non T 

cell-inflamed tumours (Carnevalli, et al. 2018). In muscle-invasive bladder cancer, 

upregulation of PI3K signalling due to PIK3CA (phosphatidylinositol-4,5-

bisphosphate 3-kinase catalytic subunit alpha) mutations is found to be significantly 

correlated with the downregulation of 57 relevant immune genes, compared to 

unmutated-PIK3CA bearing tumours. Inhibiting PI3K signalling has been shown to 

promote T cell activation and trafficking within the tumour microenvironment of 

muscle-invasive bladder cancer (Borcoman, et al. 2019). In chronic myeloid 

leukaemia, activation of PI3K signalling is also found to inhibit the expression of 

NKG2D receptor on NK cells, thereby preventing NK cells activation within tumour 

microenvironment (Groh, et al. 2002, Boissel, et al. 2006). In melanoma, the PI3K 

signalling is found to promote the production of IL-10 following prolonged exposure 

to TGF-β through a crosstalk between Smad and PI3K/Akt signalling pathway. IL-10 

as an immunosuppressive cytokine could inhibit the activation and function of NK 

cells and DCs by reducing MICA expression on melanoma cell surface (Serrano, et al. 

2011). Loss of PTEN has been found to inhibit the maturation and activation of DCs 

and macrophages via blocking the expression of LC3І and LC3ІІ genes that regulate 

the process of autophagy (Peng, et al. 2016). Autophagy facilitates cross-

presentation of tumour-derived antigens by antigen-presenting cells, and thus 

activate innate and adaptive immune response (Zhong, Sanchez-Lopez and Karin 

2016). 
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1.4.1.3. c-MYC signalling pathway                        

c-MYC signalling as a tumour cell-intrinsic mechanism has also been found to affect 

anti-tumour immunity within the tumour microenvironment. c-MYC is one of three 

related proto-oncogenes that normally regulate cell cycle, cell growth and survival 

(Lin, et al. 2012). The expression of c-MYC is found significantly upregulated in many 

types of cancer and promote tumour initiation and maintenance (Gabay, Li and 

Felsher 2014). In leukaemia/lymphoma mouse model, inactivation of c-MYC 

signalling contributes to significantly reduction in the size of tumour in wide-type 

animals (Jain, et al. 2002), whereas, minimal reduction in the size of tumour with 

tumour recurrence has been noticed in immunocompromised mice, confirming the 

cellular link between c-MYC signalling and immune cells within the tumour milieu 

(Felsher 2010, Casey, Bellovin and Felsher 2013). For instance, Rakhra et al. have 

showed that CD4+ T cells, but not CD8+ T cells, are required for sustained tumour 

regression upon MYC inactivation. The authors have demonstrated that CD4+ T cells 

are found to be rapidly localised to the site of tumour after 4 days of MYC 

inactivation. The presence of CD4+ T cells is also found to significantly inhibit 

angiogenesis upon MYC inactivation via the expression of TSP-1 (thrombospondin-

1), a robust anti-angiogenic protein (Rakhra, et al. 2010). This study suggests that 

the activation of MYC by tumour cells may inhibit the activation and recruitment of 

innate immune cells to the site of tumour and prevents them activating adaptive 

immune cells, and therefore facilitate tumour progression (Rakhra, et al. 2010). 

MYC has also been found to regulate the expression of CD47 and PD-L1 (Casey, et al. 

2016). CD47 is found significantly expressed on the surface of tumour cells and acts 

as innate immune checkpoint which regulate immune response derived from innate 

immune cells such as macrophages and DCs (antigen-presenting cells (APCs)) 

(Jaiswal, et al. 2009). Upregulation CD47 by tumour cells inhibits the recruitment 

and activation of APCs and T cells into the site of tumour, thereby facilitating T cell 

exclusion within the tumour microenvironment through inhibition of tumour cells 

phagocytosis by APCs (McCracken, Cha and Weissman 2015). This finding is also 

supported by Kauder et al. The authors have demonstrated that blocking CD47 

enhances tumour cells phagocytosis by macrophages and promotes the activation 

of DCs and adaptive immune cells, thereby boosting anti-tumour immunity (Kauder, 

et al. 2018). PD-L1 (programmed death-ligand 1) is also found to be significantly 
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expressed on the surface of tumour cells and mediates coinhibitory mechanism via 

binding to its receptor PD-1 expressed on T cells to inhibit the activation of T cells, 

leading to T cell exhaustion within the tumour microenvironment (Wang, et al. 

2016). Casey et al. have proved that the expression of both CD47 and PD-L1 is 

correlated with the expression of MYC oncogene. Using MYC-induced T cell acute 

lymphoblastic leukaemia (MYC T-ALL) transgenic mouse model, the authors have 

showed that MYC inactivation could significantly reduce the expression of CD47 and 

PD-L1 on tumour cells at the mRNA and protein level in vitro and in vivo. The authors 

have also confirmed that MYC could induce the expression of both CD47 and PD-L1 

by binding directly to their gene promoters (Casey, et al. 2016). These finding have 

also been supported by Kim et al. The authors have confirmed the positive 

correlation between the expression of MYC and PD-L1 in non-small cell lung 

carcinoma (NSCLC). NSCLC tumours expressing both MYC and PD-L1 are 

significantly correlated with worse prognosis and decreased disease-free and 

overall survival rates, compared to MYCnegative PD-L1negative tumours (Kim, et al. 

2017). Another mechanism by which MYC controls anti-tumour immunity has been 

demonstrated by Kortlever et al. In this study, using KrasG12D-derive lung 

adenocarcinoma mouse model, MYC amplification could inhibit the infiltration of B, 

T and NK cells into the tumour microenvironment by inducing the production of IL-

23 from tumour cells. The authors have also found that MYC amplification could 

increase the induction of CCL9 from adenoma epithelial compartment, which 

promotes stromal angiogenesis (Kortlever, et al. 2017). 

1.4.1.4. Loss of antigenicity                                                         

Loss of antigenicity is also another tumour-cell intrinsic mechanism which is 

operated by tumour cells to avoid anti-tumour immune responses. Loss of 

antigenicity occurs when tumour cells fail to express immunogenic antigens that can 

be recognised by immune cells (Coulie, et al. 2014). Loss of antigenicity is either due 

to the selection of less immunogenic variants of tumour cell, down-regulation of 

Class I MHC molecule or defects in antigen processing machinery within tumour 

cells, which hinders cross-presentation of antigens by tumour cells. Loss of MHC 

class І expression is found to be one of main mechanisms by which malignant cells 

evade adaptive immune response (Schreiber, et al. 2011). Even if a tumour produces 

enough immunogenic antigens, immune recognition is based on the ability of 
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tumour cells to present antigen in the context of a peptide-MHC complex (Beatty and 

Gladney 2015). Loss of MHC class І expression is found in about 18-60% of common 

solid cancers including breast, head and neck squamous cell carcinoma, lung, colon, 

renal cell carcinoma, cervical cancer, bladder cancer, prostate and melanoma 

(Campoli and Ferrone 2008). Loss of MHC class І expression can be due to genetic 

alterations at the gene level or regulatory alteration at the transcriptional level. 

These alterations result in total loss of all class І molecules or selective 

downregulation of HLA class I alleles (Leone, et al. 2013). Mutations in the β2-

microglobulin gene are found highly correlated with the total loss of MHC class I 

expression. In addition, aberrations in the components of antigen processing 

machinery which include low-molecular weight proteins (LMPs), transporter 

associated with antigen presentation (TAP) isoforms and tapasin (TPN) contribute 

to the loss of MHC class I expression on tumour cells (Thuring, et al. 2015). 

Hypermethylation of MHC gene promoters may also affect cross-presentation of 

MHC class I expression on tumour cells (Leone, et al. 2013). 

1.4.2. Immune cell-mediated mechanisms 

Tumour escape is not only mediated by tumour cells, immune cells infiltrating into 

the tumour microenvironment can facilitate tumour evasion and progression 

through establishing an immunosuppressive tumour microenvironment (Croci, et al. 

2007). Several immune cells are found to play an essential role in the development 

of immunosuppressive microenvironment which promotes tumour progression, 

including MDSCs, T regulatory cells (Tregs), tumour-associated macrophages 

(TAMs), DCs, T helper 17 (Th17), mast cells and B regulatory cells (Kitamura, Qian 

and Pollard 2015). 

1.4.2.1. Tumour-associated macrophages 

 Growing evidence has confirmed the role of tumour-associated macrophages 

(TAMs) in promoting the tumour microenvironment. TAMs are found to be the more 

abundant among the inflammatory cells within the tumour microenvironment 

(Vitale, et al. 2014). TAMs are generated from circulating monocytes that are 

recruited to the site of tumour via tumour-derived chemokine CCL2, or from tissue-

resident macrophages (Sica, et al. 2007). Macrophages are conventionally classified 

into two main subsets including classical and alternative macrophages. “classical” 
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M1 macrophages are thought to boost anti-tumour response and regulate the 

functional activity of T helper 1 cells (Th1) by producing Th1-related cytokines such 

as IL-12 and TNF-α (Sica, et al. 2008). Whereas “alternative” macrophages, known 

as M2 macrophages, are involved in many mechanisms such as wound healing, 

tissue remodelling and angiogenesis, and secrete Th2-related cytokines such as 

TGF-β, IL-6, and IL-10 that regulate the function of  T helper 2 (Th2) cells (Solinas, 

et al. 2009). Many studies have confirmed that TAMs are unstable in tumour 

microenvironment in that they can switch their phenotypic signature from a M1 to 

a M2 phenotype, thus providing a favourable milieu for tumour growth (Sica, et al. 

2006). This polarisation of M2-TAMs is favoured by other immune cells including 

Tregs and dendritic cells (DCs), and also by tumour-related factors such as colony-

stimulating factor (CSF-1) and hypoxia-inducible factor 1 (HIF 1-α) (Noy and Pollard 

2014). Unlike classical macrophages, M2-TAMs are deficient in antigen-presenting 

capabilities and express PD-L1, and thus suppress anti-tumour immunity (Chanmee, 

et al. 2014). The immunosuppressive role of TAMs has been reported in many solid 

tumours including breast, hepatocellular and renal cell carcinomas, and thus several 

clinical trials have been designed for targeting TAMs for the treatment of cancer 

(Williams, Yeh and Soloff 2016, Shirabe, et al. 2012, Behnes, et al. 2014). 

1.4.2.2. Tumour-infiltrating dendritic cells 

Dendritic cells (DCs) also play an important role in mediating anti-tumour 

responses due to their functional ability as ‘professional’ antigen-presenting cells 

which have the capacity to activate adaptive immune cells (CD4+ and CD8+ T cells) 

(Moser 2003). However, a robust activation of anti-tumour responses requires only 

mature DCs which can cross-present antigens effectively. The maturation of DCs is 

regulated by several factors depending on the local milieu (Munz, Steinman and Fujii 

2005). For instance, the majority of infiltrating DCs in the tumour 

microenvironment are immature or “paralyzed” DCs that have become tolerogenic 

due to many factors such as IL-10 and vascular endothelial growth factor (VEGF) 

secreted by TAMs (Suciu-Foca, Berloco and Cortesini 2009). Immature DCs can also 

secrete IL-10 and TGF-β and induce the expression of IDO, and thereby can promote 

the expansion of Tregs. Thus, immature DCs elicit an immunosuppressive role which 

can suppress the activation of effector T cells, induce T-cell anergy, and then 

promote tumour progression (Benencia, Muccioli and Alnaeeli 2014). The 



25 
 

immunosuppressive function of immature DCs can also be mediated by Tregs 

through cell-cell contact mechanisms involving cytotoxic T-lymphocyte antigen-4 

(CTLA-4) expressed on Tregs, and CD80/CD86 expressed on DCs. This upregulates 

the expression of IDO in DCs, and thus promotes the immunosuppressive milieu 

(Hubert, et al. 2007). Furthermore, Tregs are thought to influence the maturation of 

DCs via IL-10 and TGF-β signalling and affect the ability for DCs to stimulate effector 

T cells via inhibition of co-stimulatory molecules expressed on DCs (Tran Janco, et 

al. 2015). 

1.4.2.3. Myeloid-derived suppressor cells (MDSCs)         

MDSCs are a heterogenous subpopulation derived from myeloid progenitor and 

immature myeloid cells. MDSCs are highly immunosuppressive cells which act as 

negative  regulators of immune response in various pathological conditions such as 

chronic inflammation and cancer (Gabrilovich and Nagaraj 2009). MDSCs can be 

grouped into two main subsets; monocytic-MDSCs (M-MDSCs) and 

polymorphonuclear-MDSCs (PMN-MDSCs). MDSCs are found highly enriched in the 

tumour microenvironment. Many studies have studied molecular features by which 

MDSCs are recruited and regulated in the tumour bed and found that several factors 

could mediate the expansion and activation of MDSCs in the tumour milieu. These 

factors include granulocytes-macrophage colony-stimulating factor (GM-CSF), G-

CSF, IL-6, prostaglandin-E2 (PGE2), VEGF and cyclooxygenase-2 (COX-2) 

(Obermajer, et al. 2011, Sinha, et al. 2007, Ostrand-Rosenberg, et al. 2012). Two 

main transcription factors are also found to play a significant role in the 

development and function of MDSCs including STAT transcription factors and 

C/EBP-β transcription factor, respectively (Qu, Wang and Lin 2016). The secretion 

of GM-CSF and G-CSF could regulate the development of MDSCs through 

downregulation of interferon-regulatory factor 8 (IRF-8) via STAT3 and STAT5- 

dependent pathways, confirming the role of IRF-8 as a negative regulator of MDSCs 

(Waight, et al. 2013). In addition, C/EBP-β transcription factor is also found to 

regulate the suppressive activity of tumour-induced MDSCs. Blocking C/EBP-β could 

significantly inhibit the activity of MDSCs, affect the differentiation of immature 

myeloid precursors and enhance the activity of CD8+ effector T cells (Marigo, et al. 

2010). The immunosuppressive activity of MDSCs is mediated by several factors 

including inducible nitric oxide synthase (iNOS), Cox-2, PGE-2, TGF-β and arginase-
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1 (Arg-1) (Li, et al. 2009, Bogdan 2010, Yang, et al. 2008, Parker, Beury and Ostrand-

Rosenberg 2015). In general, PMN-MDSCs are found more enriched in the tumour 

microenvironment than M-MDSCs, whereas the latter can elicit stronger 

immunosuppressive activity (Marvel and Gabrilovich 2015). The suppressive 

activity of M-MDSCs is linked with the metabolism of L-arginine which is used as a 

common substrate by Arg-1 and iNOS to produce urea or nitric oxide to inhibit 

proliferation and differentiation of T cells (Bogdan 2010). M-MDSCs are more plastic 

cells and found to have the potential to differentiate into tumour-associated 

macrophages (TAMs) within the tumour microenvironment. CCL2-CCR2 signalling 

pathway is found to mediate the recruitment of M-MDSCs into the tumour site where 

they can become TAMs (Tcyganov, et al. 2018). Unlike M-MDSCs, PMN-MDSCs can 

subdue anti-tumour immunity in an antigen-specific manner. These cells can take 

up and present antigens to antigen-specific T cells and then induce nitration of T cell 

receptors which makes T cells unresponsive to antigen stimulation (Dilek, et al. 

2012).  

Reactive oxygen species (ROS) plays an essential role in PMN-MDSCs mediated 

immune suppression. The production of ROS by PMN-MDSCs is found tightly 

regulated by NADPH oxidase (NOX2). Therefore, inhibition of NOX2 could suppress 

PMN-MDSCs mediated immune suppression, confirming the pivotal role of ROS in 

the functional activity of PMN-MDSCs (Corzo, et al. 2009). The presence of both ROS 

and nitric oxide (NO) could induce the production of peroxynitrite which mediates 

the nitration of TCR and thus blocks CD8+ T cell response (Feng, et al. 2018).  

MDSCs are also found to promote tumour progression by inducing Tregs expansion 

within the tumour microenvironment. The induction of Tregs by MDSCs is mediated 

via secretion of IL-10 and TGF-β (Nakamura and Ushigome 2018). The production 

of IFN-γ by activated T cells induces expression of immunoregulatory molecules PD-

L1 and CD40 on MDSCs (Lu, et al. 2016, Pan, et al. 2010). Upregulation of CD40 by 

MDSCs is found to mediate the induction of Tregs within the tumour 

microenvironment (Pan, et al. 2010).  

In addition, MDSCs are found to be implicated in the process of EMT (epithelial-to-

mesenchymal transition) which mediates tumour invasiveness and metastasis. The 

production of NO and TGF-β by MDSCs could induce upregulation of COX-2 in 
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tumour cells and then activate β-catenin/TCF-4 pathway (Li, et al. 2015). This 

pathway is found to play a critical role in mediating the process of EMT (Chang, et 

al. 2015). Moreover, MDSCs play a vital role in regulating the process of angiogenesis 

which facilitates tumour progression. MDSCs express matrix metalloproteinase-9 

(MMP-9) which can release VEGF stored in extracellular matrix, thereby promoting 

angiogenesis (Lee, et al. 2018). In addition, MDSCs produce VEGF and fibroblast 

growth factor (FGF) via STAT3-dependent mechanism which boosts angiogenesis 

within the tumour milieu (Kujawski, et al. 2008).                                                                                       

 

1.4.2.4. T regulatory cells (Tregs) 

Regulatory T cells (Tregs) are a distinct subset of CD4+ T cells that play a vital role 

in maintaining immune homeostasis and peripheral tolerance therby preventing 

autoimmunity (Fehervari and Sakaguchi 2004). Tregs are characterised by the 

expression of the transcription factor forkhead-box protein P3 (Foxp3) that is 

fundamental for their development and suppressive activity. In human, mutation of 

the foxp3 gene leads to develop a severe X-linked organ-specific autoimmune 

disease known as immune-dysregulation polyendocrinopathy enteropathy X-linked 

syndrome (IPEX) (Gambineri, Torgerson and Ochs 2003). A foxp3-mutant mouse 

strain called the Scurfy mouse is also found to show multi-organ autoimmunity (Le 

Bras and Geha 2006). Tregs are generally categorised into two main subsets 

according to their ontogeny including naturally thymus-derived Tregs (nTregs) and 

peripherally-derived or induced Tregs (p or iTregs) (de Lafaille, Maria A Curotto and 

Lafaille 2009). Both of these subsets of Tregs are phenotypically defined by the 

expression of CD4+CD25++Foxp3+CD127- and based on the methylation status of 

their Treg-specific demethylated region (TSDR) within the Foxp3 locus. The TSDR 

is found demethylated in nTregs, whereas it is methylated in i/pTregs (Floess, et al. 

2007).  

nTregs are developed in the thymic medulla from immature CD4+ T cells in response 

to high-affinity interaction with a self-peptide: major histocompatibility (MHC) 

complex expressed on medullary thymic epithelial cells (mTECs) and dendritic cells 

(DCs) (Bettini and Vignali 2010). Whereas, peripheral or induced Tregs are 

developed extra-thymically from mature naïve CD4+ T cells circulating in the 
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periphery in response to sub-optimal TCR signalling in the presence of several 

cytokines such as IL-2 and TGF-β (Lee, Bautista and Hsieh 2011). iTregs are also 

found to be generated at sites of inflammation or in a tolerogenic environment and 

have been characterised to have a various recognition of antigens (Workman, et al. 

2009).  

In cancer, Tregs are found extremely enriched in the tumour microenvironment and 

mediate several mechanisms that contribute to the inhibition of anti-tumour 

response and tumour progression (Facciabene, Motz and Coukos 2012). Several 

mechanisms are identified to mediate the recruitment of Tregs to the site of tumour. 

The production of CC-chemokines ligand 22 (CCL22) by tumour cells and 

macrophages can attract Tregs to the tumour bed via CC-chemokine receptor 4 

(CCR4) expressed on the surface of Tregs (Gobert, et al. 2009). Upregulation of 

CCL17 by tumour cells is also found to regulate recruitment of Tregs via CCR4 

(Mizukami, et al. 2008). Moreover, the overexpression of CCL28 by hypoxic tumour 

cells is found to recruit Tregs to the tumour milieu via binding to the cognate 

receptor CCR10 expressed on Tregs. Hypoxia-inducible factor 1α (HIF-1α) secreted 

by tumour cells is found to mediate Tregs recruitment by regulating upregulation of 

CCL28 in tumour cells (Ren, et al. 2016). CCL5 is also found to mediate Tregs 

recruitment to the tumour microenvironment via its corresponding receptor CCR5 

which is detected on the surface of Tregs. CCL5 can be expressed by macrophages, 

T lymphocytes, platelets, tubular epithelium and tumour cells (Aldinucci and 

Colombatti 2014). Tregs are also found to be recruited to the tumour 

microenvironment through CXCR3 (C-X-C motif chemokine receptor 3) expression 

which is a cognate receptor for CXCL9, CXCL10 and CXCL11. For instance, the 

expression of CXCL10 by tumour cells could recruit Tregs to the site of tumour in 

hepatocellular carcinoma (Li, et al. 2016).  

Upon recruitment to the tumour microenvironment, Tregs exert their 

immunosuppressive activities via various mechanisms including: (1) secretion of 

soluble immunosuppressive cytokines, (2) modulation of dendritic cells, (3) 

metabolic disruption and (4) suppression by direct cytolysis (Vignali, Collison and 

Workman 2008). Tregs are found to secret TGF-β cytokine which acts as a negative 

regulator for CD8+ T cells by affecting their proliferation and differentiation (Strauss, 
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et al. 2007). In addition, Tregs can also produce IL-10 which is an immunoregulatory 

cytokine and plays a pivotal role in the regulation of adaptive immunity by 

suppressing prolonged activation of CD8+ T cells (Ng, et al. 2013). Tregs can also 

inhibit anti-tumour response via production and secretion of IL-35 cytokine which 

is found to be required for Tregs to maintain their suppressive activity (Wei, et al. 

2017). IL-35 has showed the ability to arrest the proliferation of T helper 1 and 17 

cells at the G1 phase of cell division (Wirtz, et al. 2011). Another mechanism by 

which Tregs suppress anti-tumour immunity is via direct cytolysis of T effector cells. 

Although granzyme-mediated cytolysis has been widely considered the forte of NK 

cells and CD8+ T effector cells (Lieberman 2003), activated human Tregs are shown 

to express granzyme A and perforin which directly kill the target cells via the 

adhesion of CD18 (Grossman, et al. 2004). Furthermore, not only human Tregs, 

mouse Tregs are also found to mediate their functional suppression via upregulation 

of granzyme B expression (McHugh, et al. 2002, Herman, et al. 2004). Tregs derived 

from granzyme B-deficient mouse are found to be less suppressive in vitro, 

confirming the important role of granzyme B in the suppressive potential of Tregs. 

Tregs also shown to mediate cytolysis in a granzyme B-dependent and perforin-

dependent and independent manners (Herman, et al. 2004, Cao, et al. 2007). Tregs 

can also mediate their cytolytic function to kill CD8+ T effector cells by inducing 

apoptosis via the TRAIL pathway, especifically TRAIL-death receptor 5 (TRAIL-DR5) 

(Ren, et al. 2007). 

Treg can also induce apoptosis on effector T cells through the expression of galetin-

1 which is highly upregulated in human and mouse Tregs. Galectin-1-defecient 

Tregs have shown a significant reduction in their suppressive activity in vitro, 

confirming the importance of galectin-1 signalling in mediating regulatory activity 

of Tregs (Garin, et al. 2007). Tregs can also attenuate proliferation of CD8+ T effector 

cells metabolically. It has been suggested that Tregs can inhibit proliferation of 

effector T cells by depleting local IL-2 via the expression of CD25. Depleting IL-2 

induces cellular starvation and therefore apoptosis (Pandiyan, et al. 2007). However, 

IL-2 depletion alone is found not required for Tregs to inhibit effector T cells (Oberle, 

et al. 2007). Coordinated expression of CD39 and CD73 is shown to maintain 

suppressive activity of Tregs. These ectoenzymes allow Tregs to hydrolyse ATP 

(adenosine triphosphate) to adenosine which suppresses functional activity of CD8+ 
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T effector cells (Deaglio, et al. 2007). Exogenous ATP is hydrolysed to ADP 

(adenosine diphosphate) and 5’AMP (adenosine monophosphate), while CD73 

hydrolyses 5’AMP to adenosine (Bynoe and Viret 2008). Adenosine is shown to 

suppress T effector cells through stimulation A2A (adenosine 2A) receptor. Upon 

stimulation, A2A receptor signalling could inhibit production of proinflammatory 

cytokine IL-6 and enhance production of TGF-β which in turn promote the induction 

of induced Tregs (Zarek, et al. 2008).   

Tregs are also shown to inhibit T effector cells indirectly by modulating the 

maturation and function of DCs which act as robust activators of effector T cells 

(Whiteside 2012). It has been reported that Tregs can control the maturation and 

function of DCs through interaction between the inhibitory receptor “cytotoxic T-

lymphocyte antigen-4 (CTLA-4) and the co-stimulatory receptors “CD80/CD86” 

which is constitutively expressed by Tregs and CDs, respectively. This interaction 

could inhibit the expression of co-stimulatory receptors of DCs, thereby reducing 

their ability to activate T effector cells (Tadokoro, et al. 2006, Read, Malmstrom and 

Powrie 2000, Oderup, et al. 2006). Moreover, the interaction between CTLA-4 and 

CD80/CD86 could induce DCs to produce IDO (indoleamine 2,3-dioxygenase) which 

is a potent regulatory molecule that inhibit proliferation of T cells (Fallarino, et al. 

2003).   

IDO is one of three different heme-containing enzymes that catalyse the first rate-

limiting step of tryptophan breakdown into immune suppressive kynurenines 

(Prendergast 2008). IDO can activate the GCN2 stress-response kinase, which 

inhibits the proliferation of T cells and mediates the differentiation of naïve CD4+ T 

cells into Tregs cells. Also, IDO produces soluble factors, such as kynurenines, which 

bind the aryl hydrocarbon receptor (AhR) to induce Treg differentiation (Nguyen, et 

al. 2014).  

Tregs can also affect the function of DCs through lymphocyte-activation gene-3 

(LAG-3) which is found expressed on Tregs, activated T effector cells and NK cells 

(Liang, et al. 2008). LAG-3 is homologous to CD4 and has high affinity to bind MHC 

class ІІ complexes. LAG-3 is required to maintain immunosuppressive activity of 

Tregs. Upon binding to MHC class ІІ expressed on immature DCs, LAG-3 initiates an 

immunoreceptor tyrosine-based activation motif (ITAM) which mediates an 
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inhibitory pathway to constrain DC maturation and their immunostimulatory ability 

(Huang, et al. 2004, Liang, et al. 2008). Consistence with this, it has been found that 

human MHC class ІІ-expressing Tregs are more suppressive than MHC class ІІ-

negative Tregs, supporting the notion that MHC class ІІ-positive Tregs might inhibit 

activated T cells by ligating LAG-3 expressed on them (Baecher-Allan, Wolf and 

Hafler 2006). It has also been reported that Tregs could modulate the function of 

DCs via neuropilin-1 which is found differentially expressed on Tregs (Sarris, et al. 

2008).                                                                                                

1.4.2.5. T helper 17 (Th17) cells 

Th17 cells are highly plastic cells differentiated independently from a CD4+ T cell 

lineage distinct from Th1, Th2 and Tregs (Harrington, et al. 2005). Development of 

Th17 from naïve CD4+ T cells is mediated by several cytokines including IL-1β, IL-6 

and TGF-β. In addition to IL-21 and IL-23 cytokines that maintain the developed 

Th17 cells for long-term (Stritesky, Yeh and Kaplan 2008). Th17 cells are identified 

by their ability to secrete IL-17A, IL-17F, IL-21, IL-22 and CCL20 (Liang, et al. 2006, 

Chang and Dong 2007, Dong 2008). Th17 cells have shown the capability to 

transdifferentiate mainly into Th1 or Tregs, and occasionally into Th2, T follicular 

helper (TFH) cells and type 1 regulatory (Tr1) cells based on the presence of 

cytokines and chemokines secreted in the local microenvironment (Guéry and 

Hugues 2015). For instance, the enrichment of proinflammatory cytokines including 

IL-1β, IL-23,  IL-6 and IL-12 could mediate the conversion of Th17 into Th1 which 

promotes activation of CD8+ T cells in the local milieu, whereas Th17 cells could be 

converted into Tregs in the presence of TGF-β, but in the absence of IL-6 (Bailey, et 

al. 2014).  

In cancer, Th17 are found to play a paradoxical role in tumour immunity as they can 

boost tumour progression by acquiring and initiating immunosuppressive activities 

and induce anti-tumour immune responses by secreting proinflammatory cytokines 

which can enhance the function of CD8+ T cells and NK cells. Th17 cells are found to 

have no direct cytotoxic effect on tumour cells as they do not produce perforin and 

granzymes (Kryczek, et al. 2009, Yen, et al. 2009). Instead, Th17 cells can mediate 

anti-tumour responses indirectly by mediating recruitment of other immune cells 

into the tumour site. For instance, by secreting IL-17, Th17 cells can induce tumour 



32 
 

cells to upregulate CXCL9 and CXCL10 chemokines which in turn recruit effector T 

cells into the tumour microenvironment (Kryczek, et al. 2009). IL-17 can also 

stimulate macrophages to produce IL-12 which mediates the expension of CD8+ 

cytotoxic T cells and boots their functional activities (Markiewicz, et al. 2009). 

However, Th17 cells can promote tumour progression by inhibiting anti-tumour 

responses. IL-17 secreted by TH17 is found to induce angiogenesis in tumour 

context by stimulating stromal cells (myeloid cells and fibroblasts) and epithelial 

cells to produce VEGF and angiogenin-2 (Chung, et al. 2013). IL-17 is found also to 

provoke tumour-related fibroblasts to generate G-CSF which triggers myeloid cells 

to generate MMP-9, prokineticin-2/Bv8 and proinflammatory S100A8/9 molecules 

to mediate angiogenesis (Chung, et al. 2013). The interaction between IL-17 and 

stromal cells-related cytokines is found to be correlated with the increased levels of 

TGF-β (Jeon, et al. 2007). It has been reported that Th17 cells can upregulate CD39 

and CD73 on their surface in the presence of TGF-β, and therefore acquire the ability 

to hydrolyse ATP to adenosine which suppresses CD8+ T cells proliferation (Bailey, 

et al. 2014), thereby exerting its regulatory activity. IL-17 is also found to stimulate 

upregulation of CCL17 and CCL22 by DCs which in turn recruits Tregs to the tumour 

site (Halim, et al. 2017). IL-17 mediates the migration of MDSCs into the tumour 

milieu. Injection of IL-17 has significantly increased in the number and suppressive 

activity of MDSCs within the tumour microenvironment in IL-17R-/- tumour -bearing 

mice (He, et al. 2010). IL-17 has shown to trigger tumour cells to activate the COX-

2/PGE2 pathway which mediate the differentiation of M2 macrophages that 

promotes tumour progression (Li, et al. 2014). IL-17 has also been found to trigger 

hepatocellular tumour cells to upregulate expression of MMP-2 and MMP-9 via NF-

kB pathway which promotes tumour invasiveness and metastasis (Li, et al. 2011). 

1.4.2.6. Mast cells  

Mast cells are generated in the bone marrow as precursor cells that migrate to 

peripheral tissues where they become fully mature. Mast cells belong to granulated 

innate immune cells and express various receptors such as Toll-like receptors 

(TLRs), Nod-like receptors (NLRs), Fc receptors and complement receptors. These 

receptors allow mast cells to mediate several immunological responses including 

pro-inflammatory and anti-inflammatory immune responses (Galli, Nakae and Tsai 

2005, Gurish and Austen 2001). Mast cells have been found dramatically enriched 
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within tumour microenvironment and correlated with worse prognosis and 

reduced survival in many types of human cancer including B-cell chronic 

lymphocytic leukaemia (Molica, et al. 2003), Hodgkin lymphoma (Glimelius, et al. 

2005), melanoma (Ribatti, et al. 2003), prostate (Nonomura, et al. 2007), pancreatic 

adenocarcinoma (Strouch, et al. 2010) and oesophageal-squamous cell carcinoma 

(Elpek, et al. 2001). It has been reported that tumour-derived stem cell factor (SCF) 

mediates migration and activation of mast cells into tumour bed by binding to 

CD117 (KIT receptor) which is highly expressed on mast cells. Activation SCF/Kit 

pathway in mast cells mediates tumour progression (Huang, et al. 2008). Mast cells 

are found to mediate angiogenesis by releasing several angiogenic molecules 

including TGF-β, VEGF, fibroblast growth factor-2 (FGF-2), angiopoietin-1, IL-8, 

tryptase and chymase (Ribatti and Crivellato 2012). Mast cells are also found to 

produce IL-10 which can inhibit anti-tumour immune response (Galli, 

Grimbaldeston and Tsai 2008). Recently, it has been reported that tumour-derived 

TNF-α stimulates tumour-infiltrating mast cells to upregulate expression of PD-L1 

via activation NF-kB pathway, and contribute to immune suppression and tumour 

progression in gastric cancer (Lv, et al. 2019). 

1.4.2.7. B regulatory cells (Bregs) 

Bregs are a unique subset of B cells and found to play a pivotal role in regulating and 

balancing immune responses in inflammatory diseases, autoimmune diseases and 

cancer (Berthelot, et al. 2013). Several subpopulations of Bregs have been identified 

in human and mouse models including IL-10-producting Bregs, TNF-α-secreting 

Bregs, Fas-ligand (Fas-L+) Bregs, granzyme-B+ Bregs, TGF-β-producing Bregs, GITR+ 

Bregs and STAT+ Bregs (Zhang, Gallastegui and Rosenblatt 2015). In pancreatic 

cancer, it is found that increased levels of IL-18 produced by tumour cells mediate 

the induction and immunosuppression of Bregs in vitro and in vivo. IL-18-induced 

Bregs have shown to upregulate expression of PD-L1 and  produce IL-10 which both 

maintain their immunosuppressive activity (Zhao, et al. 2017). In gastric cancer, it 

is found that IL-35-secreting Bregs are significantly enriched in the peripheral blood 

of patients with advanced gastric cancer. Also, the accumulation of IL-35-secreting 

Bregs is found to be positively correlated with high frequencies of Tregs and MDSCs, 

confirming the potential role of Bregs in tumour progression (Wang, Liu and Li 

2018). Bregs are also found to significantly enriched in the peripheral blood of 
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patients with lung and oesophageal cancer, compared to healthy individuals (Zhou, 

et al. 2014, Shi, et al. 2014). In 4T1 breast cancer mouse model, Bregs are detected 

significantly enriched in axillary and inguinal lymph nodes, spleen and blood. The 

accumulation of Bregs is found to promote lung metastasis in tumour-bearing mice. 

Also, Bregs are shown to produce high levels of TGF-β and therefore mediate the 

induction of Tregs from naïve CD4+CD25- T cells (Olkhanud, et al. 2011). It has been 

reported that IL-21 can mediate the induction of Bregs in the microenvironment of 

several human tumour types including prostate, colorectal, breast and cervical 

carcinoma. IL-21-drived Bregs are found to express high levels of granzyme-B, along 

with IL-10, CD25 and IDO which inhibit T cell proliferation and function. These 

granzyme-B positive Bregs have also been found existed adjacent to IL-21-secreting 

Tregs, suggesting that Tregs may mediate the induction of Bregs through IL-21 

expression (Lindner, et al. 2013).   

According to what discussed above, it seems that TGF-β is a multifunctional master 

cytokine which contributes for the promotion of immunosuppressive tumour 

microenvironment through molecular interactions with different 

immunosuppressive T cells. The role of TGF-β in the biology of T cells and cancer 

will be discussed in the next section.  

1.5. TGF-β cytokine 
Transforming growth factor β (TGF-β) is a multifunctional cytokine that belongs to 

a family consisting of three distinct isoforms including TGF-β1, TGF-β2 and TGF-β3, 

while TGF-β1 is the prevalent isoform expressed in the immune system (Chin, et al. 

2004). TGF-β is a pleiotropic cytokine that regulates a variety of essential cellular 

events including cell development, proliferation, differentiation, homeostasis and 

apoptosis. TGF-β is initially translated as a precursor form “pre-pro-TGF-β”, which 

consists of pre-region signal peptide, pro-region latency-associated peptide (LAP) 

(N terminal peptide) and mature TGF-β peptide (C terminal peptide). The pre-pro-

TGF-β resides within the endoplasmic reticulum where it undergoes post-

translational modifications that result in the removal of signal peptide from LAP and 

the cleavage of the mature TGF-β peptide from LAP by a furin convertase (Annes, 

Munger and Rifkin 2003). To preserve TGF-β activity, the homodimeric LAP binds 
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and wraps the homodimeric mature TGF-β by noncovalent bonds, forming a soluble 

small latent complex (SLC) (Lawrence 2001) (Figure 1.5).  

The SLC is then released from the cell to the extracellular matrix (ECM) where it can 

associate with milieu molecules such as LTBPs (latent TGF-β binding proteins) and 

LRRC32 (leucin rich repeat containing 32, which is also known as glycoprotein A 

repetitions predominant (GARP)). LTBP attaches the SLC by covalent bonds to form 

a large latent complex (LLC). LTBP facilitates the deposition of the LLC to the ECM 

(figure 1.6). The SLC can also bind the LRRC32/GARP to form a membrane-latent 

TGF-β (mLTGF-β). The LRRC32/GARP acts as a cognate receptor for the SLC (Unsold, 

et al. 2001, Wang, et al. 2012) . Therefore, TGF-β can be identified in three different 

forms; soluble SLC (small form), LLC (large form) and mLTGF-β (membrane form). 

These three forms represent the latent “inactive” state of TGF-β which is unable to 

bind its receptors and, therefore, requires activation to free the TGF-β as an active 

form to initiate TGF-β downstream signalling pathways (Tran 2011). Activation of 

TGF-β is mediated by several mechanisms that involve acidification, matrix 

metalloproteases, thrombospondin-1, plasmin, αv-integrins and proteases 

(Henderson, et al. 2013, Murphy-Ullrich and Poczatek 2000, Jenkins 2008, 

Hyytiäinen, Penttinen and Keski-Oja 2004). Once being exposed to these activator, 

the latent form of TGF-β undergoes proteolytic cleavage and structural 

modifications that result in conformational changes to the LAP structure and 

liberation of the bioactive TGF-β (Kubiczkova, et al. 2012). 
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Figure 1.5. Mechanism of production of TGF-β. Initially, TGF-β is translated 
as a precursor form “pre-pro-TGF-β” which consists pre-signal peptide, pro-
region latency associated peptide (LAP) and mature TGF-β. After 
dimerization, homodimeric pre-pro-TGF-β is released to the endoplasmic 
reticulum where it undergoes post-translational modifications that leads to 
the removal of pre-signal peptide. Then TGF-β is cleaved from pro-LAP 
peptide by Furin at cleavage site. Then, pro-LAP attaches to the free TGF-β to 
prevent its activity in the cytoplasm. Attachment pro-LAP to TGF-β initiates 
structural modifications that results in the generation of soluble small latent 
complex (SLC) which is inactive form of TGF-β.  
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The bioactive form of TGF-β initiates its biological activities by ligation to TGF-β type 

І (TGF-βRІ) and type ІІ (TGF-βRІІ) receptors which are serine/threonine kinases. 

The bioactive TGF-β has a high affinity binding to TGF-βRІІ (Shi and Massagué 2003). 

Upon binding, TGF-βRІІ undergoes autophosphorylation and triggers TGF-βRІ, 

forming a tetrameric receptor complex which comprises of two TGF-βRІІ and two 

TGF-βRІ molecules (figure 1.7). This activated tetrameric complex induces 

downstream signalling pathways. Two key mechanisms have been identified to 

mediate TGF-β-downstream signalling, including Smad-dependent and Smad-

independent signalling pathways (Derynck and Zhang 2003). Smad-dependent 

pathway is triggered through phosphorylation and activation of Smad2/3 complex 

Figure 1.6. Mechanism of formation of large latent complex (LLC) from SLC. 
TGF-β is released from the cell as an inactive form “soluble SLC”. Free soluble 
SLC binds to latent TGF-β binding protein (LTBP) which is released from the 
extracellular matrix (ECM), forming large latent complex (LLC). LLC is 
deposited and stored in the ECM as inactive form of TGF-β.     
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by the activated TGF-β ligand-receptor tetrameric complex. Smad-2 and Smad-3 are 

receptor-regulated effector proteins which are also known as “R-Smads” (Shi and 

Massagué 2003). Transphosphorylation of TGF-βRІ mediates its binding to other 

specialised scaffold proteins called SARA (Smad anchor for receptor activation) and 

Hrs (hepatic growth factor-regulated tyrosine kinase substrate). This binding  

induces phosphorylation of R-Smads at a C-terminal SSXS motif leading to activation 

of R-Smads (Chen 2009). The activated R-Smads can associate with Smad-4 (Co-

Smad) in the cytoplasm forming a heterodimeric complex which is then transported 

to the nucleus where the complex attaches to the regulatory sequences of target 

genes in corporation with other transcriptional factors to regulate the expression of 

hundred genes (Massague, Seoane and Wotton 2005) (figure 1.7). The bioactive 

TGF-β can also induce several cell type-specific Smad-independent signalling 

pathways which are mediated by PI3K-Akt, mitogen-activated proteins kinase 

(MAKP), Rh0-like GTPases, protein phosphatase 2A (PP2A) and partition-defective 

6 (Par6) signalling (Zhang 2017). 
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Figure 1.7. Schematic representation of Smad-dependent TGF-β pathway. Upon 
activation, free active TGF-β binds its receptor TGF-β type II (TGF-βRІІ). Upon binding, 
TGF-βRІІ undergoes autophosphorylation and stimulates TGF-βRІ to form a tetrameric 
receptor complex consisting of two TGF-βRІІ and two TGF-βRІ receptors. The activated 
tetrameric complex initiates downstream signalling cascade by mediating 
phosphorylation and activation of Smad2/3 complex (R-Smads) via SARA molecule 
which is a scaffold acting protein and functions to facilitate the phosphorylation process 
of R-Smads complex. The activated R-Smads complex phosphorylates and activates 
Smad4 to form a heterodimeric molecule which is directed to the nucleus where the 
heterodimeric binds to the regulatory sequences of targets genes.       
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1.5.1. The role of TGF-β in T cell biology 

TGF-β plays a fundamental role in T cell development, differentiation, homoeostasis 

and tolerance. TGF-β has a paradoxical regulatory function that mediates both 

suppressive and inflammatory immune responses based on the status of the local 

microenvironment. This context-dependent function has enabled TGF-β to be the 

master of all T cell decisions (Li, et al. 2006). 

1.5.1.1. TGF-β in the thymus  

In the thymus, T precursor cells are subjected to a series of molecular and 

phenotypic modifications before they differentiate into mature T cells. The most 

critical stage in T cell differentiation is when immature CD4+CD8+ (double positive) 

T cells undergo thymic selection and lineage commitment. At this stage, TGF-β is 

found to play an important role in the differentiation of conventional CD8+ T cells 

that requires TCR engagement and expression of IL-7 receptor that are the main 

requirements for CD8+ T-cell lineage commitment (Park, et al. 2010). TGF-β is found 

to regulate the expression of IL-7 receptor α-chain (IL-7Rα) on the surface of 

developing CD8+ T cells by repressing the expression of Gfi-1 (growth factor 

independent 1), a well-known transcription repressor, that inhibits the expression 

of Il7Rα in CD8+ T cells (Ouyang, et al. 2013) (figure 1.8A). 

TGF-β also controls the development of regulatory and innate-like T cells during 

thymic selection, including thymus-derived nTregs, invariant NK T (iNKT) cells and 

CD8αα+ TCRαβ+ intraepithelial lymphocytes (IELs) (figure 1.8A). The development 

of these specific subsets is based on their interactions with MHC-presenting self-

ligands (agonist ligands) in a high-affinity manner. TGF-β is found to mediate and 

promote these interactions (Stritesky, Jameson and Hogquist 2012). The 

development of intrathymic nTregs is based on a combination of rigorous TCR 

interactions, co-stimulation and cytokines signals. Early studies have reported that 

TGF-β signalling is not required for nTregs development in mice with T cell-specific 

Tgfbr2 (TGF-β receptor II) deletion as these mice have been shown to possess 

normal populations of  Foxp3+ thymocytes (Li, Sanjabi and Flavell 2006, Marie, 

Liggitt and Rudensky 2006). However, Liu et al. (2008) have confirmed the 

contribution of TGF-β signalling to the early development of intrathymic nTregs 

based on the finding that 3 to 5 day-old mice with T cell-specific Tgfbr1 (TGF-β 
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receptor I) deletion have shown a significant reduction in the frequency of Foxp3+ 

thymocytes (Liu, et al. 2008). Tone et al. have identified a conserved Smad3-binding 

sequence in the Foxp3 enhancer which maintains Foxp3 expression in intrathymic 

nTregs. Smad3 signalling is found to be required for activating the enhancer and 

thereby inducing Foxp3 expression, confirming the role of TGF-β in enhancer-

related activation of Foxp3 expression in intrathymic nTregs (Tone, et al. 2008). 

However, Schlenner et al. have confirmed that the development of intrathymic 

nTregs is not regulated by TGF-β based on the finding that conserved Smad3-

binding sequence-deficient mice have shown normal intrathymic Tregs 

development identical to wild-type mice (Schlenner, et al. 2012). Zheng et al. have 

also supported this finding and demonstrated that conserved noncoding sequence-

1 (CNS1), which includes the conserved Smad3-binding sequence, at the Foxp3 locus 

is dispensable for nTregs development within the thymus (Zheng, Josefowicz, 

Chaudhry, Peng, Forbush and Rudensky 2010a). However, although TGF-β 

signalling is dispensable for nTregs development and lineage commitment, it is 

found to be required for maintaining the nTregs survival and viability within the 

thymus. Intrathymic nTregs have been found to  express high levels of proapoptotic 

molecules and undergo negative selection-induced apoptosis in TGF-βRII-deficient 

mice compared to wild-type mice, confirming the role of TGF-β for promoting T cell 

survival by antagonising thymic negative selection (Ouyang, et al. 2010). 

iNKT cells are characterised by their ability to induce both innate and adaptive 

immune responses, and recognise lipids presented by the MHC Class I-like molecule 

CD1d. These cells develop from CD4+CD8+ thymocytes and, like intrathymic nTregs, 

are induced by high-affinity interactions with agonist ligands (figure 1.8A) (Brennan, 

Brigl and Brenner 2013). The finding that TGF-βRII-deficient mice have failed to 

develop thymic and peripheral iNKT cells has indicated the requirement of TGF-β 

signalling in iNKT cells development (Li, et al. 2006, Marie, et al. 2006, Doisne, et al. 

2009). TGF-β is found to maintain iNKT cells development by suppressing the 

apoptosis of their precursor cells (Doisne, et al. 2009). 

CD8αα+ TCRαβ+ IELs are innate-like T cells that have an essential role in intestinal 

homeostasis (Cheroutre, Lambolez and Mucida 2011) (figure 1.8A). These cells are 

thought to be developed and differentiated within and outside the thymus and 
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induced by high-affinity TCR interactions with their agonist ligands (Pobezinsky, et 

al. 2012). The importance of TGF-β signalling in the development of these cells has 

confirmed by the finding that deletion of TGF-βRI has led to a significant reduction 

in the frequency of  CD8αα+ TCRαβ+ IELs population and their thymic precursors 

(Konkel, et al. 2011). 

 

 

 

 

 

 

 

Figure 1.8. Regulation of T-cell biology by TGF-β. (A) In the thymus, TGF-β regulates the expression 
of IL-7R (IL-7 receptor) that is essential for the CD8+ T cells lineage commitment. TGF-β also maintain 
the survival of tTregs, CD8αα+ and iNKT cells which reacts with MHC-mounted self-ligand s (agonist 
ligands) with high-affinity by blocking apoptotic signals directed against tTregs, CD8αα+ and iNKT 
cells. (B) In the periphery, TGF-β maintains homeostasis of the low-affinity CD4+ and CD8+ T cells by 
maintaining the expression of IL-7, whereas (C) TGF-β inhibits the proliferation of CD4+/CD8+ T cells 
that react with high-affinity to self-molecules. (D) TGF-β blocks the differentiation of Th1/Th2 cells, 
while it promotes the differentiation of other subpopulations of CD4+ T cells in a cytokine-dependent 
context. In the presence of IL-2 and retinoic acid, TGF-β mediates the development of peripheral 
(induced) Tregs from naïve CD4+ T cells. TGF-β also mediates the development of Th17 and Th9 in 
the presence of IL-6 and IL-4, respectively. The differentiation of TFH (T follicular helper) cells is also 
mediated by TGF-β in the presence of both IL-21 and IL-23 cytokines. This figure was adapted from 
(Soyoung and Ming 2013).      
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1.5.1.2. TGF-β in peripheral homeostasis 

A competent immune system must produce and preserve a diverse naïve T cell pool 

within the confines of a relatively constant number of peripheral T cells. TGF-β is 

found to play a pivotal role in the maintenance of an efficient naïve T cell population 

by regulating T cell homeostasis, proliferation and repertoire diversity (McKarns 

and Schwartz 2005). During T-cell priming,  TGF-β can suppress T cell proliferation 

by blocking transcription of the Il-2 gene and thereby suppressing IL-2 production 

via Smad3-mdiated signalling (McKarns, Schwartz and Kaminski 2004). However, 

the capability of TGF-β in regulating T cell proliferation is based on the status of T 

cell proliferation and the presence of other co-stimulation signalling pathways 

involved in cell activation. For instance, TGF-β can suppress the proliferation of 

naïve T cells only, while it has no effect on activated T cells which reduce expression 

of TGF-βRII after activation (Cottrez and Groux 2001, Sanjabi, Mosaheb and Flavell 

2009). In addition, CD28 co-stimulatory signalling is found to challenge and 

abrogate inhibitory effect of TGF-β on naïve T cells once being engaged with CD28. 

This confirms that TGF-β is unable to suppress the ability of activated APCs (antigen-

presenting cells) to prime naïve T cells (Sung, Lin and Gorham 2003). 

T cell proliferation must be properly controlled to maintain homeostasis under 

steady-state conditions and during immune challenges. Deletion or absence of TGF-

β signalling affects homeostasis of both CD4+ and CD8+ T cells (Li, et al. 2006). For 

instance, TGF-βRII-deficient mice have shown a dramatic decrease in the peripheral 

T cell population. In addition to its role in CD8+ T cell lineage commitment, TGF-β is 

found to mediate the homeostasis of peripheral CD4+ T cells by maintaining the 

expression of IL-7Rα during their development in the thymus, which enables naïve 

peripheral CD4+ T cells to recognise IL-7 for their survival in an IL-7-dependent 

manner (Ouyang, et al. 2013) (figure 1.8 B). Interestingly, TGF-β is found to 

specifically preserve the homeostasis of naïve peripheral CD4+ T cells expressing 

low-affinity TCR (low-affinity CD4+ T cells) (figure 1.8 B, C). TGF-βRII-deficient mice 

in which T cells are engineered to express TCR with high affinity, TGF-βRII-deficient 

T cells with high-affinity TCR have been shown to express high levels of IL-7Rα and 

thereby maintaining their homeostatic survival, whereas T cells with low-affinity 

TCR show impaired homeostatic survival in the absence of TGF-β (Robinson and 

Gorham 2007). These findings confirm that the strength of both TGF-β and TCR 
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signalling contribute to IL-7Rα expression. Therefore, loss of TGF-β signalling can 

affect TCR diversity and repertoire changes of naïve peripheral T cells resulting from 

selective loss of low-affinity T cells (Robinson and Gorham 2007). TGF-β is also 

found to regulate the homeostasis of peripheral CD8+ T cells by promoting IL-7Rα 

expression. Impaired TGF-β signalling has resulted in altered homeostasis and 

aberrant activation of CD8+ T cells with limited TCR diversity (Johnson and Jameson 

2012) (figure 1.8 C). 

1.5.1.3. TGF-β in T cell differentiation 

TGF-β generally suppresses T cell activation by interfering with TCR signalling. It 

also inhibits differentiation of specific T cells including T helper 1 (Th1) and Th2 

cells (Chen, et al. 2003). TGF-β suppresses differentiation of Th1 cells by inhibiting 

the expression of transcription factors T-bet and Stat4 and thereby inhibiting 

production of IFN-γ via Smad2/3 signalling pathway (Gorelik, Constant and Flavell 

2002, Lin, et al. 2005, Takimoto, et al. 2010) . TGF-β also inhibits Th2 differentiation 

by blocking the expression of GATA-3, a lineage-defining transcription factor that 

mediates Th2 differentiation (Gorelik, Fields and Flavell 2000). The inhibition of 

GATA-3 expression is mediated by Smad-signalling pathway which results in the 

induction of Sox-4, a transcription factor that binds and inhibits GATA-3 (Kuwahara, 

et al. 2012) (figure 1.8 D). 

TGF-β can also induce IL-9- and IL-10-secreting Th9 cells in co-operation with the 

Notch pathway and IL-4 signalling. Although Th9 cells produce abundant levels of 

IL-10, they act mainly as effector cells not regulatory cells (Dardalhon, et al. 2008). 

TGF-β is also found to promote the differentiation of T-follicular helper (Tfh) cells. 

Here, TGF-β acts as a pivotal co-factor in the presence of IL-12 and IL-23 which in 

turn induce Tfh cells (Schmitt, et al. 2014) (figure 1.8 D). 

TGF-β can also regulate the differentiation of Th17 cells that are characterised by 

the expression of retinoic acid receptor-related orphan receptor C (RORC) in 

humans and retinoic acid receptor-related orphan receptor-γ t (RORγt) in mice 

(Gutcher, et al. 2011). TGF-β, in the presence of IL-6, induces the expression of  

RORγt/RORC that promotes the differentiation of Th17 in a Smad2-dependent and 

-independent manner (Ivanov, et al. 2006, Takimoto, et al. 2010, Martinez, et al. 

2010). In addition, TGF-β mediates Th17 differentiation by suppressing the 
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expression of STAT4, GATA-3, GFi-1 and Eomesodermin, thus curbing Th1- and Th2-

cell differentiation (Das, et al. 2009, Ichiyama, et al. 2011, Zhu, et al. 2009) . 

Therefore, TGF-β enhances the differentiation of Th17 cells both directly and 

indirectly by blocking T-cell differentiation into other cell lineages. It is well-known 

that Th17 are highly plastic cells which function paradoxically as immunoregulatory 

or inflammatory cells based on cumulative signalling pathways mediated by 

different cytokines within the local microenvironment (Sharma, Kaveri and Bayry 

2013). The presence of TGF-β within the local milieu affects the cellular decision of 

Th17 to act as immunoregulatory or inflammatory. The absence of TGF- β, but in the 

presence of IL-6, IL-1β and IL-23 induces differentiation of Th17 (Ghoreschi, et al. 

2010), whereas the presence of TGF-β, IL-6 and IL-1β mediates the induction of 

regulatory Th17 (McGeachy, et al. 2007) (figure 1.8D), therefore suggesting its 

strong role in the developing regulatory T cells. 

Differentiation of Th17 cells can be interfered with by the differentiation of 

peripheral or induced Tregs based on the concentration of TGF-β in the local 

microenvironment. At low concentrations, TGF-β can cooperate with IL-6 and IL-21 

to induce the expression of IL-23 receptor, thus promoting the differentiation of 

regulatory Th17 cells. However, at high concentrations, TGF-β inhibits the 

expression of IL-23 receptor and induces iTregs or pTregs differentiation 

(Knochelmann, et al. 2018, Sanjabi, Oh and Li 2017). The divergent effects of TGF-β 

on pTregs versus Th17 cell-fate indicate the context-dependent function of this 

versatile cytokine. 

Beside of nTregs that are generated in the thymus, naïve T cells can gain Foxp3 

expression and differentiate into induced Tregs  (iTregs) cells in peripheral tissue 

(Abul 2003). Peripherally induced Tregs constitute 20-40% of the fully-mature 

Treg-cell pool in naïve steady-state mice and act in a cooperation with nTregs to 

maintain immune tolerance (Petzold, et al. 2014). Activated CD4+CD25- or 

CD4+Foxp3- T cells can be converted into CD4+CD25+Foxp3+ iTregs in vitro in the 

presence of TGF-β which maintain their immunosuppressive activities (Huber and 

Schramm 2006). The induction of Foxp3 expression in iTregs is mediated by Smad3 

which can be recruited to bind to the conserved Smad3-binding sequence in the 

Foxp3 enhancer CNS1 region which activates the induction of Foxp3 expression 
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(Tone, et al. 2008). In addition to TGF-β, other factors are found to essential for the 

induction of iTregs, including TCR activation-derived signals and the presence of IL-

2. IL-2 is found to stimulate the transcription factor STAT5 which binds to the Foxp3 

promoter, thus inducing Foxp3 expression (Burchill, et al. 2007). Suboptimal TCR 

signals with decreased CD28 signalling can also promote Foxp3 induction and 

iTregs generation in the presence of IL-2 and TGF-β (Josefowicz, Lu and Rudensky 

2012). 

iTregs can also be developed in the gut-associated lymphoid tissue (GALT). GALT-

related CD103+ DCs are found enriched at the mucosal site and implicated in the 

generation of iTregs there (Kushwah and Hu 2011). CD103+ DCs mediate the 

recruitment of T cells to the gut by inducing the expression of α4β integrin and CCR9 

(homing receptors) on T cells (Del Rio, et al. 2010). In addition, CD103+ DCs are 

found to expressed high levels of retinal dehydrogenase which is an enzyme that 

converts vitamin A into retinoic acid (RA). RA is redundantly required for CD103+ 

DCs to upregulate gut-homing receptors on T cell (Iwata, et al. 2004). CD103+ DCs 

are found to preferentially express αvβ8 integrin which support their ability to 

activate TGF-β, thus promoting induction of iTregs (Boucard-Jourdin, et al. 2016). 

The generation of iTregs by DC103+ DCs is found to be mediated by RA and TGF-β-

dependent manners (Coombes, et al. 2007). Moreover, CD103+ DCs are also found 

to express TGF-βR1 which has a pivotal, cell-intrinsic role in the development of 

these cells, suggesting that 103+ DCs may require TGF-β to maintain their 

maturation and in turn mediate the induction of iTregs (Bain, et al. 2017). 

1.5.1.4. TGF-β in T cell tolerance 

The immune system has two main mechanisms to prevent autoimmunity. Central 

tolerance is an essential process in which self-reactive T cells are carefully removed 

in the thymus. Peripheral tolerance is developed to monitor autoreactive T cells that 

have escaped central tolerance and released to the periphery (Mueller 2010, 

Hogquist, Baldwin and Jameson 2005). The fatal inflammatory disorders that have 

occurred in mice with deficiency or total loss of  TGF-β signalling reflect the crucial 

role of TGF-β in immune tolerance (Marie, et al. 2006, Li, et al. 2006). Loss of 

tolerance that emerges in the absence of TGF-β is not only caused by impaired 

activity of Tregs as the adoptive transfer of Tregs to TGF-β-deficient mice fails to 
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completely manage inflammatory disorder (Marie, et al. 2006). These findings 

indicate that peripheral tolerance is regulated directly and indirectly by TGF-β 

signalling. TGF-β can directly regulate peripheral tolerance by maintaining 

homeostatic survival of low-affinity CD4+ T cells which maintain a unique regulatory 

population of CD4+ T cells, called “deletor” T cells. These deletor cells control TCR 

repertoire and diversity of T cells and restrict the frequency of antigen-specific T 

cells that are highly reactive to the same antigen in the peripheral T cell pool (Singh, 

Bando and Schwartz 2012). Loss of TGF-β signalling in the developing T cells may 

contribute to establishment a lymphopenic environment which lacks low-affinity T 

cells and is preferentially enriched with high-affinity autoreactive T cells in humans 

(Singh, et al. 2012). TGF-β is also found to curb tissue damage by converting 

pathogenic, autoreactive CD4+ T cells to a non-pathogenic phenotype (Reis, et al. 

2013). In a transgenic diabetes mouse model,  the absence of TGF-β signalling leads 

to activation of pathogenic CD4+ T cells that promote disease progression by 

destroying pancreatic islets by autoreactive CD4+ T cells (Ishigame, et al. 2013). 

TGF-β can also control peripheral tolerance in an indirect way by promoting the 

development of peripheral iTregs that inhibit activation and proliferation of highly-

autoreactive T cells thereby preventing the development of autoimmune diseases 

(Oh and Li 2013). The role of TGF-β in the generation of iTregs in peripheral tissues 

has been mentioned in the previous section (1.6.1.3).  

1.5.2. TGF-β in cancer  

TGF-β, as a pleiotropic cytokine, is found to have two conflicting roles in cancer 

development and progression. In initial stages of cancer, TGF-β serves as a tumour 

suppressor by promoting inhibition of cell proliferation and induction of apoptosis. 

However, in advanced stages of cancer, TGF-β acts as a tumour promoter which 

enhances cell motility, invasion, metastasis and maintenance of cancer stem cells. 

This opposite switch in the function of TGF-β is defined as “TGF-β paradox” (Wendt, 

Tian and Schiemann 2012).         

TGF-β-mediated growth inhibition is mediated by the suppression of cyclin-

dependent kinases (CDKs) and the down-regulation of MYC. TGF-β exerts its 

inhibitory activity during the G1 phase of cell cycle where TGF-β inhibits the 

activation of several CDKs including cyclin D-CDK4, cyclin D-CDK6, cyclin E-CDK2 
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and A-CDK2 via several mechanisms which results in dephosphorylation of 

retinoblastoma protein (pRb) and thereby cell cycle arrest (Zhang, Alexander and 

Wang 2017). Inhibition of the MYC gene by TGF-β is mediated via Smad3/Smad4 

signalling pathway in which Smads complex is recruited to the nucleus to bind to a 

transcriptional inhibitory element on the MYC promoter and thus curb MYC 

expression. TGF-β can also induce cell apoptosis by promoting expression of several 

pro-apoptotic genes via Smad-dependent pathway. These genes include the TGF-β-

inducible early-response gene (TIEG1), the death-associated protein kinase and the 

SH2 domain-containing inositol-5-phosphatase (Drabsch and Ten Dijke 2012). 

This antimitogenic capacity of TGF-β is usually overwhelmed by the potent 

mitogenic cancer cells that can mutate both TGF-β receptors and Smads thereby 

switching the role of TGF-β to enhance cell growth, motility and invasion. This mis-

regulation of TGF-β signalling contribute to the cancer progression and metastasis 

(Massagué 2008). Biallelic inactivation of TGF-βRII by mutations is found in many 

types of cancer including colon, gastric, biliary, ovarian, oesophageal and head and 

neck cancer (Levy and Hill 2006). TGF-βRII mutations are also highly associated 

with microsatellite instability and promote cancer progression through altered TGF-

β signalling pathway (Levy and Hill 2006). TGF-βRI is also found mutated in ovarian 

and head and neck cancers (Chen, et al. 2001b, Chen, et al. 2001a) . In addition to 

mutation in the coding region of TGF-βRII and TGF-βRI, loss of expression of both 

receptors is also another type of TGF-β signalling alterations found frequently in 

cancer. Loss of expression of TGF-βRII is frequently detected and associated with 

poor prognosis in non-small cell lung carcinomas (NSCLCs), bladder cancers, head 

and neck squamous cell carcinomas (HNSCC), ovarian carcinomas, oesophageal 

carcinomas,  prostate and breast cancers (Malkoski, et al. 2012, J. Bian, et al. 2013, 

Weber, et al. 2008, Roane, Arend and Birrer 2019, Fukai, et al. 2003, Tu, et al. 2003, 

Busch, et al. 2015). Although mutations in TGF-βRI are somewhat rare, loss of 

expression of TGF-βRI is more frequently found (Levy and Hill 2006). It is very 

commonly identified in HNSCC and bladder carcinomas (Fukai, et al. 2003, 

Tokunaga, et al. 1999).                         

Smad proteins, as key components of TGF-β signalling pathway, have been found 

mutated within certain cancers. Smad2 protein is found mutated at very low 
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frequency in 8% of cervical cancers, 8% in colorectal cancer, 3% in hepatocellular 

carcinoma (HCC) and 2% in NSCLC. Loss of Smad2 expression contribute to the 

delay in P15 upregulation and failure to inhibit c-MYC by TGF-β, thereby promoting 

tumour-cell growth (Samanta and Datta 2012). Loss of the expression of Smad3 is 

also found in some of gastric cancers and is associated with increased tumorigenesis. 

In choriocarcinoma, a subtype of uterine cancers, loss of Smad3 expression is found 

to be correlated with down-regulation of TIMP-1 (tissue inhibitor of 

metalloprotease-1 and thus promotes the activity of matrix metalloproteinases for 

supporting tumour invasion (Xu, Chakraborty and Lala 2003). Loss of Smad4 

expression is also found and correlated with metastasis and poor prognosis in 

certain cancers including breast (Liu, et al. 2015), pancreas (Shugang, et al. 2016), 

colon(Yan, et al. 2016) and lung (Bian, et al. 2015).  

TGF-β is found to mediate tumour progression by a process called epithelial-

mesenchymal transition (EMT) in which tumour cells lose epithelial phenotype and 

acquire mesenchymal phenotype thereby promoting their migratory and invasive 

properties. This dynamic process is normally occurred during embryonic 

development, wound healing, tissue regeneration and fibrosis (Moustakas and de 

Herreros 2017). However, EMT is exploited by tumour cells to maintain cancer 

progression and metastasis. The essential features of EMT include interruption of 

cell-cell adhesion and cellular polarity, remodelling of the cytoskeleton and defects 

in cell-matrix adhesion (Guarino, Rubino and Ballabio 2007). TGF- β signalling is 

found to downregulate the expression of epithelial markers; E-cadherin, zona 

occludins-1 (ZO1), B4-integrin, α- and γ-catenin that maintain architecture of 

epithelial tissues. Whereas, upregulation of mesenchymal markers; vimentin, 

fibronectin, N-cadherin, smooth-muscle actin and Twist, is enhanced in response to 

TGF-β signalling to mediate tumour cell survival, migration and invasion (Drabsch 

and Ten Dijke 2012).                

 

1.6. TGF-β enriched tumours  
Overexpression of TGF-β and increased its plasma level has been correlated with 

advance tumour progression and metastasis in certain types of cancer.  
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In breast cancer, increased TGF-β1 serum levels in the blood of patients  have been  

correlated with advanced stages of the disease (Sheen-Chen, et al. 2001). Also, TGF-

β1 is found to be highly expressed in breast cancer tissues and is corelated with poor 

prognosis and shorter disease-free survival (Desruisseau, et al. 2006). In addition, 

high expression of TGF-β1 in breast tumours has been associated with increased 

lymph node metastasis (De Kruijf, et al. 2012). In triple negative breast cancer 

(TNBC), which is the most aggressive subtype of breast cancer, high expression of 

TGF-β1 is found to be significantly correlated with advanced tumour histological 

grade, axillary lymph node metastasis and shorter 5-year disease-free survival rate 

(Ding, et al. 2016).  

In colorectal cancer, the expression of TGF-β1 is found to be higher in both tissue 

and plasma of patients with metastatic disease compared to those with non-

metastatic disease. Even in patients with non-metastatic colorectal cancer, the 

expression of TGF-β1is found significantly correlated with lymph node involvement 

(Langenskiöld, et al. 2008). Xiong et al. have also found that patients with stage 3 

and 4 of metastatic colorectal cancer show higher serum levels of TGF-β1 than those 

with stage 1 and 2 of non-metastatic tumours (Xiong, et al. 2002). 

In prostate cancer, Reis et al. have found that TGF-β1 is highly overexpressed in 33% 

of prostate tumour tissues and is correlated with poor prognosis, confirming the 

importance role of TGF-β1 as a prognostic biomarker for prostate cancer (Reis, et al. 

2011). Wu et al. have also found that elevated TGF-β1 expression is found highly 

correlated with aggressive advanced stages of prostate cancer and with 

accumulation of Tregs within tumour tissues (Wu, et al. 2015). The same author has 

also found that increased expression of TGF-β1 is significantly correlated with 

tumour-cell resistance to radiation therapy in patients with prostate cancer (Wu, et 

al. 2015). 

In pancreatic cancer, Zhao et al. have demonstrated that high serum levels of TGF-

β1 are dramatically correlated with reduced survival rate, advanced stages of 

disease and lymph node metastasis in patients with pancreatic ductal 

adenocarcinoma (PDAC) (Zhao, et al. 2016). Park et al. have found that serum level 

of TGF-β1 could be used as prognostic biomarkers at the diagnosis of unresectable 

pancreatic cancer patients. The authors have demonstrated that patients with high 
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serum levels of soluble TGF-β at the time of diagnosis have shown shorter overall 

survival rate compared to patients having low serum levels of TGF-β1 at the time of 

diagnosis (Park, et al. 2018). Javle et al. have also supported these findings. The 

authors have found that high expression of TGF-β1 in PDAC tumour tissues and high 

serum levels of TGF-β1 are significantly correlated with reduced overall survival 

rate in patients with advanced PDAC (Javle, et al. 2014). 

In lung cancer, Li et al. have confirmed that high expression of TGF-β correlates 

positively with worse prognosis in patients with lung cancer (Li, et al. 2019). Luo et 

al. have found that lung cancer patients who have high serum levels of TGF-β1 

following radiotherapy show unresponsive progressive disease than those with low 

levels of TGF-β1. The authors have also found that high serum levels of TGF-β1 are 

significantly correlated with CD4+ T cells and CD8+ T cells percentages, suggesting 

the impact of TGF-β1 on circulating T cells for promoting disease progression (Luo, 

et al. 2018). Kim et al. have also found that high serum levels of VEGF, IL-1β and TGF-

β1 in patients with advanced non-small cell lung carcinoma are significantly 

correlated with shorter overall survival rate. The authors also found that high serum 

levels of these cytokines are significantly correlated with increased number of 

leukocytes (Kim, et al. 2013). Moreover, Xie et al. have demonstrated that tumours 

with positive expression of TGF-β1 have been correlated with late stages, lymph 

node involvement and reduced overall survival rate in patients with lung 

adenocarcinoma (Xie, He and Wei 2015). 

In hepatocellular carcinoma (HCC), Kohla et al. have found that increased serum 

levels of TGF-β1 are associated with disease aggressiveness and shorter overall 

survival rate in patients with HCC (Kohla, et al. 2016). Lin et al. have also found that 

elevated serum levels of TGF-β1 are significantly correlated with advanced stage of 

disease and reduced progression-free survival and overall survival rates in patients 

with HCC. The high levels of TGF-β1 are also found associated with increased 

resistance to sorafenib, a multikinase inhibitor (Lin, et al. 2015). An et al. have also 

confirmed that high serum levels of TGF-β are significantly correlated with high 

percentage of TGF-β-expressing Tregs in the blood of patients with HCC, and both 

TGF-β serum levels and TGF-β-expressing Tregs percentage are correlate with  

reduced 5-year overall survival rate (An, et al. 2018). 
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In oesophageal cancer, Von Rahden et al. have found that TGF-β1 is found 

significantly overexpressed in tissues derived from patients with primary 

oesophageal adenocarcinoma and its overexpression is significantly associated with 

advanced stages of disease, poor prognosis and low cumulative survival rate (von 

Rahden, et al. 2006). Sun et al. have also noticed that  elevated serum levels of TGF-

β1 in patients with oesophageal carcinoma following radiotherapy are significantly 

correlated with advanced unresponsive disease and very shorter overall survival, 

compared to patients who have low serum levels of TGF-β1 (Sun, et al. 2007). 

According to the results of studies discussed above, it seems that the expression of 

TGF-β1 could be used as a prognostic and predictive biomarker for cancers in which 

TGF-β1 is significantly enriched within tumour tissue or in the peripheral blood. In 

addition, some of studies have shown that the expression of TGF-β1 is significantly 

correlated with increased percentage of Tregs in the blood of patients, confirming 

the clinical importance of this correlation as prognostic biomarkers for TGF-β1-

enriched cancers. The clinical importance of Tregs in cancer will be discussed in the 

next section.              

1.7. The clinical importance of Tregs in cancer 
In cancer, immunosuppressive T regulatory cells (Tregs) are found to inhibit 

immune responses directed against tumour cells and promote immune evasion and 

cancer progression (Elkord, et al. 2010). Many studies have confirmed that tumour-

infiltrating Tregs are associated with a worse prognosis in various types of cancer, 

including breast cancer, ovarian cancer, lung cancer, hepatocellular carcinoma, 

glioblastoma, pancreatic ductal adenocarcinoma, renal carcinoma, non-Hodgkin’s 

lymphomas, melanoma and other malignancies (Zhang, et al. 2017, Curiel, et al. 2004, 

Tao, et al. 2012, Sun, et al. 2017, Sayour, et al. 2015, Tang, et al. 2014, Yang, et al. 

2014, Yang, et al. 2006, Li, et al. 2010, Gerber, et al. 2014, Shang, et al. 2015a). 

In breast cancer, Merlo et al. have found that increased Foxp3 expression within 

tumour microenvironment is significantly associated with poor overall survival rate. 

The authors have also found that Foxp3-positive tumours is significantly associated 

with lymph node metastasis, distant relapse and shorter distant-metastasis (DM) 

free survival rate (Merlo, et al. 2009). Sun et al. have confirmed that increased 

frequency of Foxp3+ Tregs and PD-1+ immune cells in breast cancer patients is 
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significantly correlated with reduced survival rate (Sun, et al. 2014). Kim et al. have 

also found that increased frequency of  Foxp3+ Tregs within the tumour stroma 

derived from breast cancer patients is significantly correlated with decreased 

infiltration of CD8+ T cells and reduced 5-year disease free survival rate (Kim, et al. 

2014). Zhou et al. have also found that high Foxp3+ Tregs infiltration with the 

tumour microenvironment is correlated with high histological grade, HER2+ 

tumours and reduced recurrence-free survival rate in breast cancer patients (Zhou, 

et al. 2017). Li et al. have also found that high expression of PD-L1 is significantly 

correlated tumour-infiltrating Foxp3+ Tregs and both are correlated with reduced 

overall and recurrence-free survival rates in patients with breast cancer (Li, et al. 

2010).  

In lung cancer, Liu et al. have demonstrated that Tregs are significantly enriched in 

the blood of patients with NSCLC at first relapse following radiotherapy. The authors 

have also found that the accumulation of Tregs in the peripheral blood is 

significantly correlated with reduced progression-free survival rate (Liu, et al. 

2017b). Tao et al. have also demonstrated that increased tumour-infiltrating Tregs 

within the tumour tissue derived from patients with NSCLC is significantly 

associated with shorter overall and relapse-free survival rate (Tao, et al. 2012). 

Kotsakis et al. have also confirmed that the frequency of circulating Tregs is 

significantly elevated in the peripheral blood derived from untreated NSCLC 

patients compared to healthy individual. Increased circulating Tregs is found 

significantly correlated with reduced progression-free and overall survival rate 

(Kotsakis, et al. 2016). Hanagiri et al. have also found that increased proportions of 

Tregs in the regional lymph node lymphocytes in patients with NSCLC following 

surgery is significantly correlated with lymph node metastasis and shorter overall 

survival rate (Hanagiri, et al. 2013). 

In ovarian cancer, Sato et al. have demonstrated that high Tregs frequency relative 

to total T cells or CD8+ T cells is significantly associated with reduced overall 

survival rate in patients with ovarian compared to low Tregs frequency group of 

patients (Sato, et al. 2005). Curiel et al. have also found that enrichment of tumour-

infiltrating Tregs is correlated with advanced stages of ovarian cancer. Increased 

infiltration of Tregs within the tumour tissue is also significantly correlated with 
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reduced overall survival rate in patients with ovarian cancer from stage 1 to 4. In 

addition, patients with ovarian cancer stage 4 have shown more significant 

reduction in the overall survival rate than those at stages 1 to 3, confirming the role 

of Tregs in the progression of ovarian cancer (Curiel, et al. 2004). 

In pancreatic cancer, Hwang et al. have found that increased frequency of  tumour-

infiltrating Foxp3+ Tregs within the microenvironment is significantly correlated 

with low frequency of granzyme B+ CD8 T cells and reduced overall survival rate in 

patients with PDAC (Pancreatic ductal adenocarcinoma) following distal 

pancreatectomy (Hwang, et al. 2016). Liu et al. have also confirmed that elevated 

percentages of circulating Tregs in the peripheral blood of patients with 

unresectable PDAC prior to chemotherapy is significantly correlated with reduced 

overall survival rate. The author have also found that high percentage of circulating 

Tregs following chemotherapy treatment is significantly correlated with decreased 

ratio of circulating CD8+ T cells and reduced overall survival rate in patients with 

unresectable PDAC (Liu, et al. 2017a). Tang et al. have also demonstrated that 

Foxp3+ Tregs are significantly enriched in the juxtatumoural stroma immediately 

beside tumour epithelial cells in patients with PDAC and their enrichment is 

significantly correlated with reduced frequency of CD8+ T cells and reduced overall 

rate. The enrichment of Foxp3+ Tregs in the tumour stroma is also found highly 

correlated with undifferentiated tumour cells and high histological grades (Tang, et 

al. 2014). 

In hepatocellular carcinoma (HCC), Sun et al. have performed a comprehensive 

meta-analysis on 3854 patients with HCC collected from 27 cohort studies. The 

authors have found that high frequency of Foxp3+ Tregs in the tumour tissues and 

peripheral blood derived from HCC patients is significantly correlated with 

advanced disease stages, high histological grades with poorly undifferentiated 

tumour cells and reduced overall and disease-free survival rate (Sun, et al. 2017). 

In gastric cancer, similar findings have been found by Lee et al. The authors have 

confirmed that elevated expression of Foxp3+ Tregs is significantly correlated with 

poor prognosis and reduced overall survival rate in 2941 patients with gastric 

cancer (Zheng, et al. 2017).  
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In brain cancer, Yue et al. have demonstrated that elevated infiltration of Foxp3+ 

Tregs within the tumour tissue derived from patients with glioblastoma (GBM) is 

significantly corelated with reduced overall and progression-free survival rat, 

compared to patients with low Tregs infiltration (Yue, et al. 2014). 

Taken together, the presence and infiltration of Foxp3+ Tregs within the tumour 

microenvironment contributes to the tumour progression and poor prognosis in the 

most common types of cancer as mentioned above. Therefore, inhibiting their role 

within tumour milieu will improve the treatment outcomes of cancer therapy, 

especially cancer immunotherapy (Shitara and Nishikawa 2018).      

Several approaches have been followed for targeting tumour-infiltrating Tregs 

which represent a major obstacle for effective anti-tumour immunotherapy. These 

approaches including: (1) nonspecific depletion or modulation of Tregs using 

conventional anticancer drugs such as cyclophosphamide, sunitinib, sorafenib and 

imatinib (Galluzzi, et al. 2012, Ge, et al. 2012, Adotevi, et al. 2010, Desar, et al. 2011),  

(2) specific depletion of Tregs using Daclizumab (anti-CD25 monoclonal antibody) 

and Denileukin Diftitox which is an engineered protein combining IL-2 and 

Diphtheria toxin (Rech, et al. 2012, Attia, et al. 2005), (3) targeting mechanisms 

mediating Tregs recruitment into tumours using Mogamulizumab ( anti-CCR4 

monoclonal antibody) (Kurose, et al. 2015), (4) depletion of Tregs using checkpoint 

inhibitors such as Ipilimumab (anti-CTLA-4 monoclonal antibody) and Nivolumab 

(anti-PD-1 monoclonal antibody) (Hellmann, et al. 2018, Larkin, et al. 2015). 

However, these therapies are designed to deplete Tregs systemically and have found 

to induce severe autoimmune problems (Bakacs, Mehrishi and Moss 2012, Kurose, 

et al. 2015, Larkin, et al. 2015). Therefore, therapeutic agents that can selectively 

deplete tumour-infiltrating Tregs are still required. However, developing such 

agents requires an in-depth understanding of the difference between tumour-

infiltrating Tregs and other circulating Tregs at normal tissue sites, in addition to 

identification additional markers that can selectively distinguish tumour-infiltrating 

Tregs from other circulating Tregs (Liu, Workman and Vignali 2016a, Togashi, 

Shitara and Nishikawa 2019). 

 The origin of tumour-infiltrating Tregs is still controversial. Studies have found that 

most of Tregs within tumour are induced Tregs (iTregs) developed from naïve CD4+ 
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T cells in the presence of tumour-drived TGF-β and other co-stimulatory cytokines 

secreted by DCs and tumour-infiltrating macrophages (Valzasina, et al. 2006, Liu, et 

al. 2007, Ghiringhelli, et al. 2005). Other studies have reported that natural Tregs 

(nTregs) are also enriched within the tumour nest and contribute to tumour 

immunosuppressive. Moreover, several studies have assessed the crucial role of 

chemokines receptors in the recruitment of both naïve CD4+ T cells and circulating 

Tregs into the tumour microenvironment (Gobert, et al. 2009, Mizukami, et al. 2008, 

Facciabene, et al. 2011). However, it is difficult to identify the origin of tumour-

infiltrating Tregs without finding a distinct biomarker that can discriminate iTregs 

from nTregs since both subsets rise from CD4+ T cells and share many features.    

 

1.8. Aims and objectives 
The main aim of this study is to identify cell surface biomarkers that can 

differentiate phenotypic features of peripherally-induced Tregs (iTregs) from 

thymic-drived natural Tregs (nTregs) in the blood and tissue of cancer patients. The 

identification of such biomarkers will enable us to further delineate the origin of 

tumour-infiltrating Tregs and circulating Tregs in the tissue and blood of cancer 

patients, respectively by understanding their biology in detail. This will also 

facilitate development of therapeutic agents that can selectively target iTregs 

without inhibiting the function of nTregs, thereby enhancing the efficacy of 

immunotherapy in combination with other conventional anti-cancer therapies for 

better treatment outcomes and minimising the chance of development autoimmune 

diseases. Identification of such biomarkers will also help to predict the prognosis of 

cancer patients at the time of diagnosis based on their immunological profiling.  

To achieve the main aim, objectives are as follows: 

1- Establishment of mice model for generating CD4+CD25+Foxp3+ induced Tregs 

from purely sorted naïve CD4+CD25- T cells in the presence and absence of tumour 

cells in vitro. 

2- Isolation of a pure population of naïve natural Tregs, in vitro-induced Tregs, naïve 

CD4+CD25- T cells using cell sorting. 
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3- Optimisation of a quantitative proteomics approach to profile iTregs and nTregs 

populations 

4- Verification and validation of any discovered biomarker/s.  

 

The reasons of establishing a mice model instead of human model are that; first, 

establishing a successful mice model will help in validating the discovered 

biomarkers pre-clinically and will be required as a routine step of any clinical trial 

for biomarker validation. Second, based on the main aim of this project, finding 

healthy individuals living in a pathogen-free environment and who have not 

exposed to any infection during their lives is impossible. Therefore, isolation and 

sorting Tregs from healthy donors’ blood based on the expression of CD25 and 

Foxp3 will not give a clue whether the sorted Tregs are natural or induced Tregs. 

Thus, studying phenotypic features and discrepancies between nTregs and iTregs 

will be very difficult. 
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Chapter 2.    

Development of an in vitro murine model to study 

induced T regulatory cells 

2.1. Introduction 

The most critical trait of immune system is the ability of maintaining homeostasis in 

the periphery. Based on this feature, immune system prevents the development of 

autoimmunity. Regulatory T cells (Tregs) are specialised subsets of CD4+ T cells and 

function to maintain immune homeostasis and tolerance in the periphery. Tregs can 

be divided into two main subpopulations: thymic-derived natural Tregs (nTregs) 

and peripherally-derived Tregs or induced Tregs (p/i Tregs). nTregs are developed 

within the thymus during medullary thymic selection and function to maintain 

immune tolerance against auto-antigens, thus preventing autoimmunity. Induced or 

peripheral Tregs are developed in the peripheral tissues, mainly the intestine, to 

maintain immune tolerance against innocuous antigens expressed by commensal 

microflora. The early process of the development of both nTregs and p/i Tregs that 

occurs in the thymus where all T-cell populations develop and mature will be 

discussed in the introduction of this chapter.       

2.1.1. Thymopoiesis 
Thymopoiesis is defined as the process by which thymocytes differentiate into 

mature T-lymphocytes in the thymus. It is a highly regulated process which involves 

migration of the earliest T-lineage progenitors (ETPs) from bone marrow niches to 

the thymus where further development and differentiation of mature T cells occurs 

(Schwarz and Bhandoola 2006). The thymus is a specialised lymphoepithelial organ 

and consists of  two main compartments: the cortex and the medulla, each of which 

contains particular populations of thymic epithelial cells, dendritic cells and 

endothelial cells, thus furnishing an exceptional microenvironment for the optimal 

production of a diverse T cell repertoire (Gordon and Manley 2011). 

The origin of the ETPs settled in the thymus is thought to be unknown. However, to 

be qualified as a T-lineage progenitor, a bone marrow progenitor must achieve two 
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key requirements. First, it must show the ability to effectively generate T cells in the 

thymus. Second, it must have the potential to migrate from the bone marrow to the 

thymus (Witt and Robey 2005). Several bone marrow progenitors are found to have 

the potential of T-lineage progenitors, including pluripotent self-renewing 

haematopoietic stem cells (HSCs), committed myeloid-lymphoid progenitors 

(MLPs) that lack the potential for erythroid and megakaryocyte lineage, and 

common committed lymphoid progenitors (CLPs) (Wu 2006). Although the definite 

identity of the bone marrow cell precursors that generate T cells is still debated, the 

origin of the ETPs has been proposed to be derived from HSCs that can self-

differentiate into LSK progenitors that show a phenotype Lineagenegative Sca-1hi c-

Kithi (LSK) (figure 2.1). The LSK progenitors have the potential to differentiate into 

two main subpopulations; CD62L+ IL-7Rα- LSK progenitors and CD62L- IL-7Rα- LSK 

progenitors that are also called early lymphoid progenitors (ELPs) (Wu 2006). The 

CD62L+ LSK and  ELP progenitors are thought to be released from the bone marrow 

into the bloodstream where they may migrate to thymus via the expression of 

CD62L (L-selectin) which is function as a cell adhesion molecule (Wu 2006). The 

migration of ELPs to the thymus is through to be via the expression of P-selectin, 

however this is still enigmatic. In the thymus, CD62L+ LSK progenitors undergo 

further differentiation to become ETPs which is mediated by Notch-1 signalling (Wu 

2006) (figure 2.1). 
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2.1.2. Ontogeny of T cells 
After arriving the thymus, T-cell precursors (ETPs) face Notch-1 ligands that are 

amply expressed by the thymic epithelium. Notch-1 signalling is considered as a key 

mediator of T cell-lineage commitment and regulates the early decision between 

whether to become a T or B lymphocytes (Deftos and Bevan 2000). After interaction 

with with Notch-1 ligands, T-cell precursors migrate to the outer thymic cortex 

where they start to develop their T-cell receptors. The primitive T cell precursors 

lack the expression of CD4 and CD8 and therefore recognised as double negative 

(DN) cells. These DN cells can be further classified into four subsets, DN1 – DN4, 

based on certain cell surface antigens including c-Kit (CD117), CD44 and CD25 

(Germain 2002). T-cell precursors at the stage DN1 of development show 

phenotypic features of CD117++CD44+CD25- on their surface, and then after being 

cross-linked with Notch-1 ligands for T-cell lineage commitment, they travel to the 

cortex where they acquire the expression of CD25, becoming DN2 thymocytes 

(CD117++CD44+CD25+). At this critical stage of development, the rearrangement for 

genes of the T cell receptors β, γ, and δ occur. At the end of DN2 stage, thymocytes 

or T cell precursors are entirely committed to the T-cell lineage (Wu 2006). During 

DN3 stage, thymocytes begin to reduce their expression of CD117 and CD44 and can 

Figure 2.1. A proposed representation for initial stages of early T cell progenitors (ETPs) 
development from the bone marrow to the thymus. HSC: haematopoietic stem cell, LSK: Lineage 
Sca-1 c-Kit phenotype, ELP: early lymphoid progenitor, ETP: early T-lineage progenitor, DN: 
double negative. This figure is modified from (Wu 2006). 
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be identified as (CD117+/-CD44-CD25+) thymocytes. DN3 cells then progress to 

develop their TCR-γ, -δ, and –β chains, and have the potential to make the first 

critical decision in T-cell development to become TCR- γδ or TCR-αβ T-cell lineage 

via a process called β-selection (Germain 2002). This process includes a 

glycoprotein called the pre-Tα chain that is specifically expressed at this stage. The 

pre-Tα plays as a surrogate for the actual TCR-α which has not been rearranged yet 

and binds to the successfully rearranged β chains and CD3 complex. This Immature 

TCR/CD3 complex is called the pre-T cell receptor (pre-TCR) (Spits 2002). At DN4 

stage, DN4 thymocytes that have successfully developed their pre-TCR begin to lose 

the expression of CD25 and CD117 to become CD117-/lowCD44-CD25- thymocytes 

and mature directly to CD4+CD8+ double positive (DP) thymocytes after completing 

TCR-α chain locus rearrangement. CD4+CD8+ DP thymocytes express mature TCR-

αβ on their cell surface (Harrington 2019). 
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2.1.3. Thymic selection of the T-cell repertoire 
The random rearrangement of TCRs genomic loci during thymocytes development 

leads to generate a diverse TCR repertoire with different recognition specificities in 

the newly developed CD4+CD8+ DP thymocytes. At this stage, unlike mature CD4+ 

and CD8+, the DP thymocytes lack a well-programmed affinity for foreign antigen 

Figure 2.2. Schematic representation showing developmental stages of T cells in the murine 
thymic outer cortex. Upon arrival the thymus, ETPs migrate to the outer cortex where they 
differentiate into DN1 thymocytes (c-Kit+CD44+) that lack the expression of CD4 and CD8. DN1 
thymocytes acquire CD25 expression during their development to become DN2 (c-
Kit+CD44+CD25+). During DN2 developmental stage, the rearrangement for genes of the T cell 
receptors β, γ, and δ occur. At DN3 stage, DN3 thymocytes lose the expression of c-Kit and CD44 
and develop their TCR-β, -γ, and -δ. DN3 thymocytes undergo β-selection process by which they 
give rise to either γδ T cell or αβ T cell lineage. At DN4 stage, DN4 thymocytes develop expression 
of pre-αβ TCR  and mature to CD4+CD8+ DP thymocytes after losing the expression of CD25. ETP: 
early T-lineage progenitor, DN: double negative, DP: double positive. This figure is modified from    
(Germain 2002). 
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plus a self-MHC (major histocompatibility complex) molecule; in theory they should 

have the potential to recognise soluble antigens either foreign or self, self-MHC 

molecules or antigen bound with a non-self MHC molecule (Singer, Adoro and Park 

2008). However, to be qualified as a mature functional T cell, the T cell must 

recognise only foreign antigen attached with self-MHC molecules before leaving the 

thymus to peripheral tissues. To reach this level, DP thymocytes undergo two 

selection processes: positive selection that ensures MHC restriction, and negative 

selection that confirms self-tolerance (Starr, Jameson and Hogquist 2003) (figure 

2.3). Positive selection is for DP thymocytes expressing receptors that can bind self-

MHC molecules either class I or class II which are expressed by cortical thymic 

epithelial cells (cTECs). Cells that do not interact with MHC molecules will die by 

apoptosis (Takahama 2006). Then, positively selected thymocytes travel to the 

thymic medulla where they encounter with a variety of antigen-presenting cells 

including haematopoietic dendritic cells (DCs) and medullary thymic epithelial cells 

(mTECs). mTECs are found to produce a wide range of self-proteins, tissue specific 

self-molecules and display the majority of self-antigens, providing the thymocytes a 

test environment for negative selection (figure 2.3). Negative selection is a process 

of elimination thymocytes expressing receptors with high-affinity for self-MHC 

molecules or self-antigen presented by self-MHC (Klein, et al. 2014b, Sprent and 

Kishimoto 2002). The successful thymocytes that pass the negative selection will 

then leave the medulla as self-tolerant, mature naïve CD4+ and CD8+ T cells to the 

periphery (figure 2.3). A small subpopulation of thymocytes with high-affinity for 

self-MHC can survive the elimination of negative selection and are destined to 

become T regulatory cells (Tregs) (Sakaguchi, et al. 2008).  
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Figure 2.3. Schematic representation showing positive and negative thymic selection of the T-cell 
repertoire. After maturation, DP thymocytes migrate to the thymic inner cortex where they undergo 
positive selection that ensures MHC restriction. During this selection, DP thymocytes are exposed 
to self-MHC molecules expressed by cTECs. DP thymocytes that recognise self-MHC class II pass the 
selection to become CD4-commited DP thymocytes, whereas those recongise self-MHC class I 
become CD8-committed DP thymocytes. DP thymocytes that do not recognise self-MHC molecules 
are eliminated by apoptosis. Positively-selected CD4-commited and CD8-commited DP thymocytes 
migrate to the thymic medulla where they undergo negative selection that ensures self-tolerance. 
During this selection, both CD4-commited and CD8-commited DP thymocytes are exposed to self-
MHC molecules attached with self-antigens that are expressed by mTEC and H-DC. CD4-commited 
DP thymocytes that recognise self-MHC class II with high affinity are eliminated by apoptosis, 
whereas those recognise self-MHC class II with low affinity are selected to become mature CD4+ T 
cells. CD8-commited DP thymocytes that interact with self-MHC class I with low affinity are selected 
to become mature CD8+ T cells, while those interact with high affinity are eliminated by apoptosis. 
Both mature CD4+ and CD8+ T cells are then released into the periphery. cTEC: cortical thymic 
epithelial cell, DP: double positive, mTEC: medullary thymic epithelial cell, H-DC: Haematopoietic 
dendritic cell, MHC: major histocompatibility complex. This graph is modified from (Germain 2002).   
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2.1.4. The role of thymic medulla microenvironment in Thymic 

tolerance  
The negative selection imposed by the thymic medulla ensures that αβ-T cells 

leaving the thymus can recognise the self-MHC proteins and are tolerant to self -

antigens simultaneously. The specialised mTECs and DCs, by expressing most of self-

antigens enforce CD4+ and CD8+ single-positive (SP) thymocytes to undergo 

negative selection if they show high-affinity recognition for self-antigens. Thus, this 

clonal deletion is programmed to eliminate most of the self-reactive thymocytes 

(Klein, et al. 2014b). However, thymic tolerance machineries do not ensure the 

elimination of all autoreactive thymocytes, while efficiently prune the frequency of 

self-reactive cells leaving the thymus to the periphery through a process that may 

bypass the presence of flaws in the αβTCR repertoire. To compensate for the chaotic 

inefficiencies in negative selection, the medulla also distorts a subpopulation of 

CD4+ SP thymocytes into the Foxp3+ Tregs lineage (Kakugawa, et al. 2017). When 

migrated to the periphery, these cells are highly efficient in inhibiting autoreactive 

responses introduced by self-reactive T cells that evade thymic tolerance (Fan, et al. 

2018).  

Although, the precise mechanisms by which the mTECs select T cell repertoire is not 

fully elucidated, it is believed  that the mTECs and thymic DCs are thought to act as 

key regulators for the development of Foxp3+ Tregs, thereby confirming the 

important role of the thymic medulla in that process (Cowan, et al. 2013, Perry, et 

al. 2014). The complex heterogeneity of mTECs and DCs allows the medulla to 

manage the maturation of diverse T cells populations including conventional SP T 

cells and CD4+Foxp3+ Tregs (Takahama, et al. 2017).  

In the murine thymus, mTECs are generally stratified into two distinct mTECslow 

(MHC-ІІlowCD80low) and mTECshigh (MHC-ІІhighCD80high) subpopulations. The 

mTECslow have been proposed to function as precursors for mature mTECshigh as 

they both share a linear developmental progress (Rossi, et al. 2007). Of note, the 

conversion of mTECslow to mTECshigh can be regulated by certain TNF receptor 

superfamily (TNFRSF) signals such as RANK and CD40, the upregulation of the 

autoimmune regulator (Aire), and the expression of different peripheral tissue 
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antigens (PTAs) including insulin-2 and salivary protein-1 (Rossi, et al. 2007), 

(Anderson, et al. 2002), (Irla, et al. 2008, Hikosaka, et al. 2008, Akiyama, et al. 2008). 

The murine thymic DCs contain many subpopulations that are different in their 

developmental origins, and perhaps in their functional contributions to thymic 

tolerance. The thymus is thought to involve thymic conventional DCs (cDCs) that can 

be classified into cDC1 cells (CD8α+ Sirpα- CD11b-) and cDC2 (CD8α- Sirpα+ CD11b+) 

cells, and plasmacytoid DCs (pDCs) that are characterised by the expression of 

PDCA-1  (Liu and Nussenzweig 2010). cDCs arise from pre-cDC precursors that 

evolve within the bone marrow and egress into the periphery before developing into 

cDC1 and cDC2 cells (Liu, et al. 2009). Whereas pDCs are generated directly from 

the common DC progenitor within the bone marrow. Both cDCs and pDCs have the 

expression of CD11c on their surfaces. After maturation in the peripheral tissues, 

cDC2 cells and pDCs are attracted to the thymus via the expression of CCR9 and 

CCR2 that bind to the chemokine ligands CCL25 and CCL8, respectively, which are 

produced by thymic stroma (Baba, Nakamoto and Mukaida 2009, Hadeiba, et al. 

2012). By contrast, unlike cDC2, cDC1 cells are developed within the thymus from 

migrant immature pre-cDC progenitors that express CCR7 and are recruited to the 

thymus via the secretion of CCL21 from the mTECs. Also, these intrathymic DCs can 

be regulated by mTECs via the chemokine XCL-1 that is produced in an Aire-

dependent manner (Schlitzer, et al. 2015, Lei, et al. 2011). Migration of cDC2 cells, 

pDCs and pre-cDC progenitors to the thymus must be tightly balanced as it may be 

essential for efficient thymic tolerance. It has been proposed that the exact location 

of DCs within the thymic medulla plays a crucial role in tolerance mechanisms. A 

study has confirmed that in both Aire-deficient and XCL-1 deficient mice intrathymic 

cDC1 cells were displaced and unsettled in the thymic medulla that lack the 

expression of Aire and XCL-1. This DC mispositioning was also followed by deficient 

self-tolerance and insufficient induction of Tregs. These findings suggest that mTECs 

via the expression of Aire and XCL-1 can direct cDC1 cells to migrate to the relevant 

medullary areas for optimal thymic tolerance and sufficient development of Tregs 

(Lei, et al. 2011). 
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2.1.5. The development of intra-thymic natural T regulatory cells 

(nTregs) 
Despite the crucial role of the thymic medulla in the development of Foxp3+ Tregs, 

the initial mechanisms that control commitment to the thymic Treg lineage remain 

controversial. However, two main subpopulations of CD4+ SP thymocytes have been 

proposed to act as direct precursors of mouse CD4+CD25+Foxp3+ Tregs, including 

CD25+Foxp3- and CD25-Foxp3+CD4+ SP thymocytes (Lio and Hsieh 2008, Tai, et al. 

2013) (figure 2.4). CD25+Foxp3-CD4+ thymocytes were found to induce 

CD25+Foxp3+ Tregs after being transferred intrathymically (Lio and Hsieh 2008). 

Whereas CD25-Foxp3+CD4+ thymocytes were found to give rise to 

CD25+Foxp3+CD4+ Tregs following intrathymic adoptive transfer (Tai, et al. 2013). 

These findings suggest that both subsets may act as Tregs precursors 

intrathymically. However how both subsets contribute to the newly developed 

intrathymic Tregs is still enigmatic, especially when two separate development 

pathways are involved in the process. However, a recent mouse model (Nr4a3-

Tocky) has been developed by Bending et al. to study the dynamics of Tregs 

development and differentiation via TCR signalling within the thymus using a 

fluorescent timer protein. In this model, TCR signalling generates unstable 

chromophore that spontaneously shifts its emission from blue fluorescence to red 

fluorescence when it becomes maturely stable. Thus, upon receiving a TCR trigger 

cells emit only blue fluorescence and become blue+ red-. Then, with persistent TCR 

engagement cells shift the emission to become blue+ red+, whereas they express red 

fluorescence only (blue- red+) when TCR signals are disrupted. This model has 

shown that CD25+Foxp3-CD4+ SP thymocytes were mainly blue+ red-, while both 

CD25+Foxp3+ Tregs and CD25-Foxp3+ thymocytes were mostly blue+ red+. These 

findings suggested that CD25+Foxp3-CD4+ SP thymocyte could act as main 

precursors for thymic Treg lineage as they received persistent TCR signals to 

generate CD25+Foxp3+ Tregs, compared to CD25-Foxp3+ thymocytes that found to 

be enriched with mature Foxp3+ cells that have received less TCR signals. These 

findings confirm the important role of persistent TCR signals for generating 

intrathymic Tregs (Bending, et al. 2018). However, another mouse model (Rag2GFP) 

has reported that CD25-Foxp3+CD4+ SP thymocytes might have the potential to play 

as precursors for intrathymic Tregs development (Cowan, McCarthy and Anderson 
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2016). Both mouse models support the hypothesis that intrathymic Tregs 

development may rise from two distinct precursor subsets.  

Figure 2.4. The development and recirculation of Foxp3+ nTregs in the murine thymus. The thymic 
medulla provides a suitable microenvironment for the commitment and development of 
CD4+CD25+Foxp3+ intrathymic Tregs from newly selected CD4+ SP thymocytes. These CD4+ SP 
thymocytes are found to give rise to CD25+Foxp3- and CD25-Foxp3+ thymocytes which function as 
precursors for the development of de novo CD4+CD25+Foxp3+ intrathymic Tregs. De novo Tregs have been 
reported to be a heterogeneous population containing Triplehi (CD25hi PD1hi GITRhi), Triplelo (CD25lo 
PD1lo GITRlo) and central Tregs (CD62L+ CD44-). De novo Tregs depart the thymus as RTE Tregs to the 
periphery where they join the mature peripheral Treg pool. Mature peripheral Tregs are found to acquire 
the expression of CCR6+ during their maturation in the periphery, which enables them to re-enter the 
thymus again in response to the production of CCL20 from Aire+ mTEC. SP: single positive, RTE: recent 
thymic emigrants, mTEC: medulla thymic epithelial cell. This figure is modified from (Inglesfield, et al. 
2019).      
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The presence of two different precursors for intrathymic Treg-lineage commitment 

may highlight the ability of the thymic medulla of producing heterogeneous Treg 

subsets that are phenotypically and functionally distinct. Indeed, mature Tregs that 

are exported to peripheral tissues show distinct function with diverse phenotypic 

features especially in the expression of chemokine receptors and adhesion 

molecules. This phenotypic heterogeneity may boost their ability to maintain 

various immune responses across different body organs (Smigiel, et al. 2014, Wyss, 

et al. 2016). However, whether this heterogeneity is formed intrathymically during 

Tregs development or after leaving the thymus is obscure. Accordingly, two Foxp3+ 

Treg populations have been identified in mice including central Tregs (cTregs) and 

effector Tregs (eTregs) that are CD44-CD62L+ and CD44+CD62L-, respectively.  By 

using the Rag2GFP mouse model, cTregs have been found to be phenotypically 

similar to the newly developed intrathymic Tregs, proposing that cTregs might be 

initially developed in the thymus before travelling to peripheral tissues where they 

mature to eTregs (figure 2.4) (Wyss, et al. 2016). Similar results have been shown 

using adoptive transfer of sorted cTregs which displayed CD44+CD62L-, the 

phenotype of eTregs, following transfer in mice (Smigiel, et al. 2014). By contrast, 

another study has found two distinct subsets of intrathymic Tregs including triple 

high cells (CD25hi PD-1hi GITRhi) and triple low cells (CD25lo PD-1lo GITRlo), and both 

subsets have shown to involve newly developed intrathymic Tregs in Rag2GFP mice, 

supporting the hypothesis of the heterogeneity of Tregs development within the 

thymus (figure 2.4). Moreover, this study has shown that both triple high and low 

cells express different sequenced TCR repertoire and have different affinity for self-

antigens, based on the strength of TCR signals using Nur77-GFP reporter expression. 

Triple high cells have shown higher expression of Nur77-GFP than triple low cells, 

confirming that they might receive stronger TCR signals than triple low cells. Also, 

triple cells have shown higher affinity for self-antigens than triple low, suggesting 

that the heterogeneity of Tregs development in the thymus might be based on the 

affinity of their TCR for self-antigens (Wyss, et al. 2016). 

It has also been proposed that the heterogeneity of the de novo Tregs in the thymus 

may due to the presence of mature recirculated Tregs that have been found 

alongside their newly developed Tregs in the thymic medulla (figure 2.4). This has 

been widely demonstrated using Rag2GFP mice where thymocytes undergoing 
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intrathymic development can be characterised as GFP+, whereas fully mature T cells 

are GFP-. In these mice, the newly developed intrathymic Tregs are found to be 

densely contaminated by GFP- Tregs, suggesting that GFP- Tregs might recirculate 

back to the thymus or be recruited to the thymus from the periphery (Cowan, et al. 

2016, E. Yang, et al. 2014, Thiault, et al. 2015). Studies have been carried out to 

understand the mechanisms that regulate the process of thymic recirculation and 

its possible effect on thymus function. A study by Thiault et al. has shown that the 

migration of mature peripheral Tregs to the thymus might be mediated by the 

expression of CXCR4 that is expressed by GFP- Tregs in the thymus. Also, the number 

of Tregs homing to the thymus is reduced about 50% following injection of Tregs 

into mice treated with a CXCR4 inhibitor (Thiault, et al. 2015). However, another 

study has disproved this finding by using Cd4cre/Cxcr4floxed mice where the number 

of intrathymic Tregs is not affected (Lucas, et al. 2017). A recent study has shown 

that the intrathymic recirculating Tregs are decreased in Ccr6-/-Rag2GFP mice 

compared to wild-type controls. Also, it is found that the newly developed 

intrathymic Tregs are CCR6-CCR7+GFP+, whereas mature Tregs show CCR6+CCR7-

GFP-, proposing that mature thymic Tregs acquire the expression of CCR6 in the 

periphery, which is a key regulator for Tregs recirculation to thymus. These findings 

highlight the possibility of involvement of the thymic medulla in Tregs recirculation 

mechanism as CCR6+ Tregs may be attracted to the thymus via the secretion of 

CCL20 by mTECs. Relevant to this, it has been found that mTECs from Aire-/- mice 

show a significant reduction in the expression of CCL20 compared to the wild-type 

controls, and then a reduction in the GFP- recirculating Tregs, proposing the role of 

AIRE-derived mTECs in the process of thymic Tregs recirculation via CCR6-CCL20 

signalling (Cowan, et al. 2018) (figure 2.4). This finding also supports the role of 

AIRE-derived mTECs in controlling and directing the thymic DCs within the medulla 

via XCL-1 signalling as mentioned above (Lei, et al. 2011). 

Recirculating Tregs have been found to inhibit the development of intrathymic 

Tregs, particularly when mice become old; as older mice show a reduction in thymic 

Treg pool and an increase in the number of mature recirculating Tregs within the 

thymus compared to younger (Thiault, et al. 2015). However, other experiments on 

osteoprotegerin (OPG)-deficient mice where recirculating Tregs are increased has 

not shown any reduction in the development of intrathymic Tregs compared to 
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wild-types controls (McCarthy, et al. 2015). Taken together, there are still many 

unanswered questions such as to what extent does the thymus need recirculating 

Tregs? Do thymus recirculating Tregs need to travel back to the periphery again? 

How do recirculating Tregs mediate their function in the thymus? Which peripheral 

tissues do recirculating Tregs come from?. 

2.1.6. The development of peripherally-induced T regulatory cells  
In addition to natural or intrathymically derived Tregs, another population of 

regulatory cells has been identified to maintain immune homeostasis in the 

periphery. Unlike natural Tregs, peripherally-induced T regulatory cells (iTregs) are 

immunosuppressive cells that differentiate from naïve CD4+ T cells in peripheral 

tissues following exposing to antigen stimulation in the presence of certain 

cytokines including interleukin-2 (IL-2), transforming growth factor (TGF-β1) and 

interleukin-10 (IL-10) (Abul 2003). Different abbreviations have been used to 

describe induced Tregs including “iTreg” when cells are generated in vitro, or 

“pTregs” or adaptive Tregs when generated in vivo. Despite pTregs constituting only 

a small percentage of Tregs as a whole, these populations are found highly enriched 

in particular organs including maternal placenta and the gut (Mizrahi and Ilan 

2009). Therefore, pTregs are thought to sustain immune tolerance against 

commensal bacteria, foods, allergens and the fetus in the uterine (Samstein, et al. 

2012, Luu, Steinhoff and Visekruna 2017). 

In humans, the development of pTregs is found to occur mainly in the intestine 

where mucosal DCs and commensal bacteria are enriched. Mucosal DCs, particularly 

CD103+ lamina propria DCs, can secrete TGF-β1 that is known as a master regulator 

of pTregs, and retinoic acid (RA) that shows a potential of induction of pTregs from 

naïve CD4+ T cells (Darrasse-Jeze, et al. 2009, Yamazaki, et al. 2007). Also, 

commensal bacteria including Bacteroides fragilis and Clostridia are found to 

promote the production of pTregs in the gut in a process to protect the host against 

inflammatory bowel diseases such as ulcerative colitis. B. Fragilis have shown to 

directly induce pTregs by triggering Toll-like receptor 2 (TLR2) that is expressed on 

activated T cells via the expression of capsular polysaccharide A of B. Fragilis. B. 

Fragilis – induced Tregs are found to secrete IL-10, an anti-inflammatory cytokine, 

and protect the host against colitis (Round and Mazmanian 2010). A specific 
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pathogen-free (SPF) mice model has been proposed by Atarashi et al. to study the 

impact of indigenous Clostridium species on intestinal CD4+ T cells. Clostridium 

bacteria, especially cluster XIVa and IV, are found predominantly enriched in the 

colonic mucosa and work to maintain immune homeostasis by secreting antigens 

which attract intraepithelial lymphocytes and IgA+ cells. These antigens are directly 

presented by CD103+ DCs which then activate naïve CD4+ T cells to become either 

pTregs or effector CD4+ T cells based on the physiological condition (Atarashi, et al. 

2011) . CD103+ DCs play an essential role in manipulating the immune responses, 

for examples during steady state, DCs produce TGF-β1 and RA regulatory molecules 

to induce pTregs, whereas during inflammatory conditions DCs secrete 

inflammatory molecules such as IL-23 to initiate the inflammation response by 

promoting differentiation of effector CD4+ T cells (Lathrop, et al. 2011). 

The development of pTregs/iTregs is mainly mediated by TGF-β1 signalling that 

promotes the induction of Foxp3 expression. The main signalling pathway initiated 

by TGF-β1 is the activation and phosphorylation of its downstream transcription 

factors “Smads”; mainly Smad2 and Smad3. Smad2/3 are key mediators for the 

induction of Foxp3. Once activated, Smad2/3 are recruited into the conserved non-

coding sequence 1 (CNS1) region in the Foxp3 gene locus (Xu, Kitani and Strober 

2010). IL-2 is also found to be an essential factor for the induction of Foxp3 

expression, which stimulates transcription factor STAT5 to bind the Foxp3 

promoter and CNS2 region which is the major Treg-specific demethylated region 

(TSDR) (Kanamori, et al. 2016). 

pTregs are thought to have a different TCR repertoire compared to nTregs as they 

develop in various conditions in the periphery. pTregs, unlike nTregs, are found to 

be more specific for foreign or non-self antigens, given that they are differentiated 

from naïve conventional T cells (Haribhai, et al. 2011). Although both pTregs and 

nTregs are biased for different TCR-antigen affinities, it has been found that both 

subsets share minimal overlap between their TCR repertoire, suggesting that this 

shared overlap may be required for both subsets in the resolution of autoimmune 

diseases as the combination shows a more diverse TCR repertoire (Schmitt and 

Williams 2013). Moreover, another study has shown that pTregs derived from the 

intestinal mucosa had a distinct TCR repertoire compared with Tregs from other 
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location, confirming that pTregs are originally developed outside the thymus 

(Lathrop, et al. 2011). In the periphery, various types of antigen-presenting cells 

could generate different peptide-MHC complexes by processing and displaying 

tissue-derived proteins/peptides, and then trigger TCR on T cells. These 

interactions have been found to induce Foxp3+ T cells with a broader TCR repertoire 

that could recognise a diverse pool of antigens (Yadav, Bluestone and Stephan 

2013). By contrast, other studies on TCR repertoire have demonstrated that the 

generation of pTregs in non-mucosal tissues such as the central nervous system and 

the pancreas might be restricted as both T conventional cells and Tregs found to 

share a minimal overlap in TCR repertoire, suggesting that Tregs could be recruited 

to rather than induced at these locations (Liu, et al. 2009, Wong, Mathis and Benoist 

2007). These findings imply that tumours developed in mucosal cells may be more 

enriched with peripheral or induced Tregs. 

 

2.1.7. Aim of this study 
The aim of this chapter is to establish a mice model for generating CD4+CD25+Foxp3+ 

induced Tregs from purely sorted naïve CD4+CD25- Foxp3- T cells in the presence 

and absence of tumour cells in vitro. The objectives of this chapter are: 

1- Selection of an appropriate model to generate and study iTregs. 

2- Purification of naïve CD4+CD25-Foxp3- T cells and CD4+CD25+Foxp3+ nTregs 

using beads and cell sorting based technology. 

3- Optimisation of Tregs induction parameters including CD3/28 TCR activation 

signal, the concentration of TGF-β1 and the duration of induction. 

4- Validation of the induction of Tregs from naïve CD4+CD25- T cells using flow 

cytometry, Foxp3-TSDR methylation status and functional assay. 

5- Scaling up the model for obtaining sufficient cell number for MS-based profiling. 
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2.2. Materials and Methods 

2.2.1. Mice and Cell lines 
Female naïve BALB/c and C57 mice, 8-12 week of age, were brought from Charles 

Rivers laboratories (UK) and maintained in pathogen-free environment at the 

animal unit of the John van Geest Cancer Research Centre in accordance with 

established guidelines of the Animal Care and Use of Nottingham Trent University. 

4T1 cells (ATCC® CRL-2539™), a highly metastatic epithelial breast cancer cell line 

derived from BALB/c mice, were cultured in complete 4T1 cell medium (RPMI 1640 

medium supplemented with 10% FCS, 10 mM HEPES, 2 mM L-glutamine, 1 mM 

sodium pyruvate and 2250 mg/500 mL glucose).  

2.2.2. Isolation of CD4+CD25+ and CD4+CD25- T cells and Cell 

sorting 
CD4+CD25+ T cells were purified from mouse spleens using a mouse CD4+CD25+ T 

Regulatory Cell Isolation Kit (Miltenyi Biotec, Cat no: 130-091-041) according to the 

manufacturer’s instructions.  

CD4+CD25- T cells were purified from mouse spleens using two different ways. First, 

by using the mouse CD4+CD25+ T Regulatory Cell Isolation Kit (mentioned above), 

CD4+CD25- T cells were obtained from the flow-through tube during positive 

selection of CD4+CD25+ cells by MS columns. Second, naïve CD4+ T cells were 

purified using Dynabeads™ Untouched™ Mouse CD4 Cells Kit (Invitrogen, Thermo 

Fisher Scientific, Cat no: 11415D) according to manufacturer’s instructions. The 

isolated CD4+ T cells were stained with mouse anti-CD4 monoclonal antibody 

(eFluor 450, Clone GK1.5, eBioscience™, Thermo Fisher Scientific, Cat no: 48-0041-

82) and mouse anti-CD25 monoclonal antibody (PE, Clone PC61.5, eBioscience™, 

Thermo Fisher Scientific, Cat no: 12-0251-82). The stained cells were then sorted 

using a Beckman Coulter MoFlo XDP cell sorter (sorting mode: purify, the purity of 

sorting was ≥ 98%). The strategy for sorting a pure population of naïve CD4+CD25-

Foxp3- T cells and naïve CD4+CD25+Foxp3+ nTregs is discussed in detail in the 

chapter 3 (section 3.2.2.1). 
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2.2.3. Flow Cytometry 
Single-cell suspensions of splenocytes, purified, sorted and cultured T-cells were 

prepared using 40µm cell strainers (Greiner Bio-one). Red blood cells were lysed 

using RBC lysis buffer 1X (BD Pharm LyseTM, BD Biosciences, Cat no: 555899). Cell 

counting and viability were assessed following staining with solution 18 

(Chemometec, Cat no: 910-3018), which contains Acridine Orange (AO, 80 µg/mL) 

for staining total living and dead cells, and 4′,6-diamidino-2-phenylindole (DAPI, 40 

µg/mL) for counterstaining only dead cells, using NucleoCounter cell counter 

(NucleoCounter® NC-250™, Chemometec). For flow cytometry, cells were washed 

twice with DPBS buffer, centrifuged at 350 x g for 5 min at room temperature and 

stained with Fluorochrome-conjugated monoclonal antibodies (mAbs) (table 2.1) 

and analysed using a flow cytometer (Gallios, 10 channels, Beckman Coulter). 

Details about the Gallios flow cytometer are summarised in table 2.2. To prevent 

non-specific binding, mouse FCR blocking reagent (purified anti-mouse CD16/32 

antibody, BioLegend, Cat no: 101302) was used before staining with Fluorochrome-

conjugated antibodies. LIVE/DEAD™ Fixable Yellow Dead Cell Stain Kit (405 nm 

excitation, Thermo Fisher Scientific) was used to detect the viability of cells prior to 

intracellular staining. 

Table 2.1: List of antibodies that were used for flow cytometry analysis.  

Channel mAbs Fluorochrome Clone Company Cat no. 

FL1 CD73 FITC TY/11.8 BioLegend 127219 

FL2 CD25 PE PC61.5 ThermoFisher 12-0251-82 

FL3 Tim-3 PE/Dazzle B8.2C12 BioLegend 134013 

FL3 CTLA-4 PE/Dazzle UC10-4B9 BioLegend 106317 

FL5 CD39 PE/Cy7 Duha59 BioLegend 143806 

FL5 LAG-3 PE/Cy7 C9B7W BioLegend 125225 

FL5 GITR PE/Cy7 DTA-1 BioLegend 126317 

FL6 FOXP3 eFluor 660 FJK-16s ThermoFisher 50-5773-82 

FL8 CD127 APC-eFluor 780 A7R34 ThermoFisher 47-1271-80 

FL9 CD4 eFluor 450 GK1.5 ThermoFisher 48-0041-82 

FL10 DEAD/LIVE Yellow 405  ThermoFisher L34959 
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Table 2.2: List of lasers and filter that are available on the Gallios flow cytometer.  

Laser Channel Filters Fluorochromes 

 

 

Blue Laser  

488nm 

FL-1 525/40 FITC 

FL-2 575/30 PE 

FL-3 620/30 ECD, PE Tx Red, PE/Dazzle 

FL-4 695/30 PerCP-Cy5.5 

FL-5 755LP PE-Cy7 

 

Red Laser  

638nm 

FL-6 660/20 EFluor 660, APC 

FL-7 725/20 Alexa-Fluor 700 

FL-8 755LP APC-eFluor 780, APC-Cy7 

Violet Laser 

405nm 

FL-9 450/40 Pacific Blue 

FL-10 550/40 Krome Orange 

   

2.2.4. Generation of induced T regulatory cells in vitro 
Naïve CD4+CD25- T cells were purified and sorted (as mentioned in section 2.2.2) 

and rested overnight in complete T cell medium (RPMI 1640 supplemented with 

10% FCS, 1% penicillin/streptomycin, 20 mM HEPES buffer, 50 µM β-

mercaptoethanol, 2 mM L-glutamine) at 37⁰C, 5% CO2. Then, a 24-well culture plate 

was prepared by adding 900 µL of complete T cell medium in each well. Hanging cell 

culture inserts for 24 well plate, PET (polyethylene terephthalate) membrane 

bottom, transparent, pore size 0.4 µm (SARSTEDT, Cat no: 83.3932.041) were 

placed in each well of the 24-well plate. After that, 2.5x105 of sorted naïve 

CD4+CD25- T cells resuspended in 200 µL of complete T cell medium were 

transferred into each of hanging cell culture inserts. Then, cells were activated using 

Dynabeads™ Mouse T-Activator CD3/CD28 for T-Cell Expansion and Activation Kit 

(Invitrogen, Thermo Fisher Scientific, Cat no: 11452D) according to the 

manufacturer’s instruction at ratio 1:1 (naïve CD4+CD25- T cells: CD3/38 beads). 

The cells were grown in the presence of IL-2 (30 U/mL) (Recombinant Murine IL-2, 

PeproTech, Cat no: 212-12), and TGF-β1 (5 ng/mL) (Mouse TGF beta 1 Recombinant 
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Protein, Thermo Fisher Scientific, Cat no: 14-8342-80) for 5 days at 37⁰C, 5% CO2. 

The overall steps of the iTregs genertion in vitro are shown in figure 2.5. 

 

 

 

 

2.2.5. Generation of induced T regulatory cells in vitro in the 

presence of tumour cells (contactless co-culture) 
Murine breast cancer tumour cells (4T1) resuspended in 900 µL of the complete 4T1 

cell medium (mentioned in section 2.2.1) were seeded in a 24-well plate and 

incubated overnight at 37⁰C, 5% CO2. Hanging cell culture inserts were placed over 

Figure 2.5. A diagrammatic representation showing the process of iTregs generation in vitro. 
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already seeded tumour cells. Subsequently, 2.5x105 of sorted naïve CD4+CD25- T 

cells resuspended in 200 µL of complete T cell medium were transferred into 

hanging inserts to be separately co-cultured with tumour cells at ratio 1:20 (tumour 

cells: CD4+CD25- T cells). The sorted naïve CD4+CD25- T cells were activated using 

CD3/28 beads and cultured in the presence of IL-2 (30 U/mL) and TGF-β1 (5 

ng/mL) for 5 days at 37⁰C, 5% CO2. 

2.2.6. Intracellular (nuclear) staining of Foxp3 
For intracellular nuclear and cytoplasmic staining, eBioscience™ Foxp3 / 

Transcription Factor Staining Buffer Set (Thermo Fisher Scientific, Cat no: 00-5523-

00) was used. For nuclear staining, Fixation/Permeabilisation (F/P) solution was 

prepared by mixing one part of F/P concentrate with three parts of F/P diluent. 

Then, 1x solution of Permeabilisation buffer (PB) was prepared by mixing one part 

of 10x PB with nine parts of nano-pure distilled water. After staining with cell 

surface antibodies and live/dead stain, cells were fixed by F/P solution (1 mL for 

1x106 cells) in the dark at room temperature for 40 min. After the incubation, the 

cells were washed by DPBS (2 mL for 1x106) and centrifuged at 350 x g for 5 min. 

The cells were resuspended in 200 µL of PB buffer and stained with Foxp3 mAb for 

30 min in the dark at room temperature. For intracellular cytoplasmic staining, the 

same protocol of nuclear staining was followed. However, cells were fixed by F/P 

concentrate only (500 µL/1x106 cells) without mixing with F/P diluent. 

2.2.7. Establishment of functional assay 
Induced T regulatory cells were generated as shown in figure 2.5. At day 5 of iTregs 

generation, naïve CD8+ T cells were purified using Dynabeads™ Untouched™ Mouse 

CD8 Cells Kit (InvitrogenTM, Thermo Fisher Scientific, Cat no: 11417D) according to 

the manufacturer’s instructions from the spleen. The purified CD8+ T cells were 

washed twice with DPBS and stained with anti-mouse CD8 mAb (Alexa Fluor® 700, 

clone: 53-6.7, BioLegend, Cat no: 100730) for cell sorting using purify mode as 

mentioned above. Sorted CD8+ T cells were rested for 4 h and stained again with 

CD8 mAb to assess the purity of cell sorting which was ≥ 98% using the flow 

cytometer. Then induced CD4+CD25- T cells were harvested, washed and stained 

with CD4, CD25 and Foxp3 mAbs to assess the percentage of induction of Foxp3 after 

5 days of culture using flow cytometer. After that, sorted CD8+ T cells were 
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resuspended in DPBS supplemented with 0.1% BSA (1 mL/1x106 CD8+ T cells). 

While vortexing, 1 µL of 5 µM CFSE (carboxyfluorescein succinimidyl ester) dye was 

added into the cell suspension at (1:1000) dilution using CellTrace™ CFSE Cell 

Proliferation Kit, for flow cytometry (InvitrogenTM, Thermo Fisher Scientific, Cat no: 

C34554). Then cells were incubated for 10 min in the dark at 37°C. after that, while 

vortexing, cells were washed by adding 10 mL of pre-warmed complete T cell 

medium and incubated for 5 min in the dark at room temperature. After incubation 

cells were centrifuged at 350 x g for 8 min at room temperature. Washing step was 

repeated twice to ensure removing extra CFSE dye in the solution. Then cells were 

centrifuged, counted and seeded into a 96-well plate, rounded bottom. After that, 

CFSE-stained CD8+ T cells were activated using Dynabeads™ Mouse T-Activator 

CD3/CD28 for T-Cell Expansion and Activation Kit in the presence of IL-2 (30 U/mL). 

Then, induced CD4+CD25+Foxp3+ T cells (iTregs) were co-cultured with CFSE-

stained CD8+ T cells at six different ratios including 1:2, 1:1, 2:1, 4:1, 8:1, 16:1 (CD8+ 

T cells : iTregs), in addition to controls that contain CD8+ T cells cultured without 

iTregs,  for 4 days at 37°C, 5% CO2. Cells were co-cultured in 96-well plate in 200 µL 

of complete T cells medium as a total volume.  At day 4, co-cultured cells were 

harvested, washed twice. CD3/28 beads were magnetically removed. Then cells 

were stained with Dead/Live stain and CD8 mAb, and then analysed on flow 

cytometer for assessing the proliferation of CD8+ T cells in the presence and absence 

of iTregs. The steps of establishment the functional assay are shown in figure 2.6. 
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2.2.8. The stability of Foxp3 expression of induced Tregs 
Induced Tregs were generated as shown in figure 2.5 for 5 days. At day 5, total CD4+ 

Cells, which contain both activated CD4+CD25- T cells and CD4+CD25+Foxp3+ iTregs, 

were harvested and washed twice with DPBS. CD3/28 beads were magnetically 

removed. The Cells were centrifuged at 350 x g for 5 min and then resuspended in a 

fresh complete T cell medium. The cells were counted and 1x106 of cells were 

stained with Live/Dead dye, anti-CD4, -CD25 and -Foxp3 mAbs to assess the 

percentage of induction of Foxp3 expression. After that, the remaining cells were 

cultured again in a fresh T cell medium in the presence of IL-2 (30 U/mL) for another 

5 days at 37°C, 5% CO2. The expression of Foxp3 of iTregs was assessed at day 3 

(day 8 of Fox3 induction) and day 5 (day 10 of Foxp3 induction) of the second 

culture period. 

Figure 2.6. A diagramatic representation showing the steps of establishment of functional assay 
for assessing the suppressive activity of iTregs. 
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2.2.9. Foxp3-TSDR methylation assay 
The methylation status of Foxp3-TSDR region was assessed in 6 different 

subpopulation of CD4+ T cells including naïve CD4+CD25- T cells, activated 

CD4+CD25- T cells, TGF-β1-drived CD4+CD25+Foxp3+ iTregs, TGF-β1/4T1-drived 

CD4+CD25+Foxp3+ iTregs, naïve CD4+CD25+Foxp3+ nTregs and activated 

CD4+CD25+Foxp3+ nTregs. Naïve CD4+CD25- T cells were purely sorted as 

mentioned in section 2.2.2. The cells were activated using CD3/CD28 beads at ratio 

1:1 (naïve CD4+CD25- T cells: CD3/28 beads) in the presence of IL-2 (30 U/mL) for 

5 days at 37°C, 5% CO2. TGF-β1-drived CD4+CD25+Foxp3+ iTregs were generated as 

mentioned in section 2.2.4. TGF-β1/4T1-drived CD4+CD25+Foxp3+ iTregs were 

generated as mentioned in section 2.2.5. naïve CD4+CD25+Foxp3+ nTregs were 

purely sorted using the cell sorter as mentioned in section 2.2.2. The sorted naïve 

nTregs were then activated using CD3/28 beads as mentioned above. The generated 

iTregs were purely sorted following the sorting strategy that is mentioned in the 

chapter 3 (section 3.2.2.1). 1x106 cells from each of the 6 subpopulations were 

carefully washed twice with DPBS, centrifuged at 350 x g for 5 min. a cell pellet from 

each of the subpopulations was freezed at -80°C and shipped to EpigenDX company 

(MA, USA) for assessing the methylation status of Foxp3-TSDR.  

The mouse Foxp3 methylation assay (Assay ID: ADS568-FS2) was carried out by 

EpigenDX, MA, USA. This assay was optimised to assess the methylation status of 4 

different CpGs within TSDR region, intron 1, location (-2238 to -2207) from ATG, 

and +4442 to +4473) from TSS. Table 2.3 shows the list of CpG regions that were 

assessed during the assay.  

Table 2.3: List of CpG regions that were examined to assess the methylation status of mouse 
Foxp3 interon1-TSDR region. 

Assay ID ADS568-FS2 (Intron 1-TSDR Region, Foxp3, Mouse) 

CpG# CpG# -22 CpG# -21 CpG# -20 CpG# -19 

From ATG -2238 -2219 -2215 -2205 

From TSS +4442 +4461 +4465 +4473 
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2.3. Results 

2.3.1. Establishment of a murine model to generate induced T 

regulatory cells from naïve CD4+CD25-Foxp3- T cells 
To develop a representative murine model for studying the difference between 

nTregs and iTregs, two most appropriate mouse strains were selected based on the 

availability of commercial mouse tumour cell lines that are compatible with the 

mouse strain. The percentage of nTregs in the spleen of BALB/c and C57BL/6 mice 

was assessed. The results showed that the percentage of naïve CD4+CD25+Foxp3+ 

nTregs from total naïve CD4+ T cells was significantly higher in the spleen of BALB/c 

(mean=12%) than C57BL/6 mice (mean=2.7%) (Figure 2.7).  

 

 

 

 

 

 

 

 

 

 

Figure 2.7. The percentage of naive CD4+CD25+Foxp3+ nTregs from total naive CD4+ T cells in the spleens 
of BALB/c and C57BL/6 mice. (A) Flow cytometric density plots showing the expression of CD25+Foxp3+ 
(gate D) in naïve nTregs of both BALB/c and C57BL/6. These plots were gated on live CD4+ T cells. (B) 
Scatter plots showing the mean of the percentage of naïve CD4+CD25+Foxp3+ T cells in the spleens of 
BALB/c (12%) and C57BL/6 (2.7%). The results were statistically significant (p>0.0015). Three 
independent experiments were carried out, a spleen from each of mouse strains was analysed in each 
experiment, (n=3). The statistical analysis was carried out on a limited data set (n=3) and hence is not 
powered adequately. However, the results shown here confirmed the reproducibility and robustness of 
the data.   Bars errors represent the standard error (SE) of the mean. Unpaired t test was used using 
GraphPad Prism 8.0.1 software. Kalusa software (version 1.3) was used for analysing flow cytometric 
data.  
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 According to the results shown in figure 2.7, the BALB/c mice strain was selected 

to develop the model.  

Then it was decided to deplete naïve CD25+Foxp3+ Tregs within naïve CD4+ T cells 

population to obtain pure naïve CD4+CD25-Foxp3- T cells as a control population for 

the model. To achieve this, it was assessed whether all naïve CD25+ T cells express 

positively Foxp3; since depletion of nTregs based on the expression of Foxp3 was 

not suitable in this model; as Foxp3 is mainly expressed in the nucleus. Therefore, 

the depletion of CD4+CD25+Foxp3+ nTregs was based on the co-expression of CD4 

and CD25 as both are surface markers. The mouse CD4+CD25+ T Regulatory Cell 

Isolation Kit (Miltenyi Biotec) was used as it could isolate both CD4+CD25+ T cells 

and CD4+CD25- T cells simultaneously. The results of isolation confirmed that 92% 

of CD25+ T cells were positive for Foxp3 expression, confirming that CD25 

expression could be useful for depleting CD25+Foxp3+ T cells in this model (figure 

2.8). The results also confirmed the efficiency of that kit for isolating naïve nTregs 

from purified CD4+CD127- T cells. 

  

  

 

 

 

  

 

Figure 2.8. The percentage of Foxp3+ cells within the naïve CD4+CD25+ T cells population after isolating 
naïve CD4+CD25+ T cells from purified naïve CD4+ T cells using the Miltenyi kit. (A) Flow cytometric density 
plots showing the percentage of CD25+ T cells that positively express Foxp3. The plots also show the gating 
strategy for analysing flow cytometric data; Foxp3+CD25+ cells (gate D) were gated on CD4+CD127- cells (gate 
J) that were gated on singlets cells (gate G) of total stained cells. (B) Column bar graph displaying the 
effectiveness of the Miltenyi kit in isolating nTregs from purified CD4+ T cells; the isolation purity was ≥ 90%. 
Three independent experiments were carried out, a spleen from each of mouse strains was analysed in each 
experiment, (n=3). The statistical analysis was carried out on a limited data set (n=3) and hence is not 
powered adequately. However, the results shown here confirmed the reproducibility and robustness of the 
data.   Bars errors represent the standard error (SE) of the mean. GraphPad Prism was used for drawing bar 
graph. Kalusa software (version 1.3) was used for analysing flow cytometric data. 
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The same kit was used to deplete CD4+CD25+ T cells nTregs for obtaining pure 

CD4+CD25-Foxp3- T cells as a control population to generate iTregs. Accordingly, 

naïve nTregs were depleted, and CD4+CD25- T cells were stained with CD4, CD25 

and Foxp3 mAbs as well as live/dead staining to assess the purity of depletion. Then 

CD4+CD25- T cells were cultured for 3 days in the presence and absence of IL-2 to 

confirm the purity of the control population in this model. Surprisingly, the results 

showed that CD4+CD25- T cells (control population) were positive for CD25 

expression (38%) after 3 days of culture, whereas they showed a negativity for CD25 

expression (0%) on day 0 of culture after depletion in the absence of IL-2, 

confirming that the CD25+ T cells were not originally depleted. To confirm these 

results, the same experiment was repeated and a different conjugated anti-CD25 

mAbs (PerCP-Cy5.5-conjugated) was used to assess the expression of CD25 after 

depletion; because PE-conjugated anti-CD25 antibody and anti-PE microbeads were 

included in the kit. The results of staining showed that CD25+ T cells were 

completely depleted following depletion using both CD25 mAbs, however after 3 

days of culture 30-42% of CD25 depleted cells were positive for CD25 expression 

(figure 2.9). 

As the purity of depletion of CD25+ T cells using the Miltenyi kit was ~ 62%, it was 

suggested to use cell sorting for obtaining pure CD4+CD25- T cells. The results of cell 

sorting showed that CD4+CD25- T cells were 100% negative for the expression of 

CD25 following cell sorting at day 0 and after 5 days of culture (figure 2.10). As a 

result, cell sorting using purity mode was selected to be used in this model.  
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Figure 2.9. The percentage of CD25+ T cells following depletion of CD25 expressing cells using the 
Miltenyi kit. (A) Flow cytometric density plots showing the staining of CD25 (gate D) following 
depletion of CD25+ T cells ex-vivo at day 0 and after 3 days of culture in the presence and absence of 
IL-2. Gate D was gated on CD4+CD127- T cells (gate J) which was gated on live CD4+ T cells. (B) Column 
bar graph showing the percentage of CD25+ T cells after their depletion ex-vivo on day 0 and day 3 of 
culture in the presence and absence of IL-2 (30 U/mL). Four independent biological experiments were 
carried out, (n=4). The statistical analysis was carried out on a limited data set (n=4) and hence is not 
powered adequately. However, the results shown here confirmed the reproducibility and robustness 
of the data.  Bars errors represent the standard error (SE) of the mean.  Control: naïve CD4+CD25- T 
cells were cultured in the complete T cell medium in the absence of IL-2.  
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Figure 2.10. The percentage of CD25+ T cells before and after sorting of CD4+CD25- T cells from total 
purified CD4+ T cells. (A) Flow cytometric density plots showing the staining of CD25 expression (gate 
D) on total CD4+ T cells (pre-sorting) and sorted CD4+CD25- T cells (post-sorting) at day 0 and day 5 of 
culture. Gate D was gated on live CD4+ T cells (gate J.). (B) Column bar graph illustrating the percentage 
of CD25+Foxp3+ T cells within total CD4+ T cells (pre-sorting) and sorted CD4+CD25- T cells (post-
sorting) at day 0 and day 5 of culture. Three independent biological experiments were carried out, (n=3). 
The statistical analysis was carried out on a limited data set (n=3) and hence is not powered adequately. 
However, the results shown here confirmed the reproducibility and robustness of the data.  Bars errors 
represent the standard error (SE) of the mean.   
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2.3.2. Conversion of naïve CD4+CD25- T cells to CD4+CD25+Foxp3+ 

iTregs in vitro 

 Generation of iTregs with and without CD3/CD28 TCR activation 

signals 

It is known that TCR activation signals are essential for generating iTregs from naïve 

CD4+CD25- T cells. To assess whether 4T1 tumour cells could induce naïve 

CD4+CD25- T cells to iTregs without CD3/28 TCR activation in the presence and 

absence of TGF-β1 cytokine. The results showed that only 1.3% of naïve CD4+CD25- 

T cells were induced to iTregs in the presence of tumour cells, whereas 2.2% of 

iTregs were generated in the presence of both 4T1 cells and TGF-β1 (figure 

2.11).The results confirmed that 4T1 cells were able to generate iTregs even in a 

small percentage in contactless culture, suggesting that 4T1 cells might secrete 

molecules for mediating that induction independently of TCR activation despite the 

difference in the induction between both culture conditions was not statistically 

significant. Although iTregs could be generated without TCR activation in the 

presence of tumour cells and TGF-β1, the induction was in a very small percentage. 

To assess the effect of CD3/CD28 TCR activation signals on the differentiation of 

iTregs from naïve CD4+CD25- T cells, we repeated the same experiment. Naïve 

CD4+CD25- T cells were co-cultured with 4T1 cells in the presence of CD3/28 T cell 

activator beads and IL-2, and in the presence and absence of TGF-β1 for 5 days. The 

co-culture was contactless using hanging culture inserts. The results (figure 2.12) 

showed that only 2%-3% (mean = 2.6 %) of naïve CD4+CD25- T cells were induced 

to iTregs in the presence of 4T1 cells, IL-2 and CD3/28 beads, whereas the induction 

of iTregs was significantly increased in range from 58% to 67% (mean = 61.3%) in 

the presence of 4T1, IL-2, CD3/28 beads and TGF-β1 (figure 2.12). The results also 

confirmed that the induction of iTregs was mainly due to the presence of TGF-β1 

and CD3/28 beads as 4T1 cells alone could yield that much induction. However, 

comparing these results with the results shown in figure 2.11, it is clear that the 

induction of iTregs results from CD3/28 TCR activation signals and TGF-β1 as the 

induction was 2.6 % in the presence of 4T1 cells and TGF-β1 without CD3/28 beads, 

while it was significantly increased to 61.3 % in the presence of 4T1, TGF-β1 and 

CD3/28 beads.  
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Figure 2.11. The percentage of induction of iTregs from naïve CD4+CD25- T cells that were co-cultured 
with 4T1 tumour in a contactless system using hanging culture inserts in the presence and absence TGF-
β1 (5 ng/mL) without TCR CD3/CD28 activation. IL-2 (30 U/mL) was added into all culture conditions. 
Culture ratio of 4T1 cells to naïve CD4+CD25- T cells was 1 : 5, respectively. Cells were cultured for 5 days. 
Control cells were cultured alone in the presence of IL-2 only. (A) Flow cytometric density plots displaying 
the percentage of CD25+Foxp3+ iTregs (gate D) differentiated from naïve CD4+CD25- T cells (gate J’). (B) 
Column bar graph illustrating the percentage of iTregs raised from naïve CD4+CD25- T cells cultured in 
different conditions as mentioned above. Three independent biological experiments were carried out, 
(n=3). The statistical analysis was carried out on a limited data set (n=3) and hence is not powered 
adequately. However, the results shown here confirmed the reproducibility and robustness of the data. 
Bars errors represent the standard error (SE) of the mean. Control: naïve CD4+CD25-Foxp3- T cells were 
cultured in the complete T cell medium in the presence of IL-2 only.   
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Figure 2.12. The percentage of induction of iTregs from naïve CD4+CD25- T cells that were co-cultured 
with 4T1 cells (contactless co-culture) and CD3/CD28 beads in the presence and absence of TGF-β1 
(5 ng/mL) for 5 days. Culture ratio of 4T1 cells to naiveCD4+CD25- T cells was 1 : 5, respectively. IL-2 
(30 U/mL) was added into all cultures. Control cells (naïve CD4+CD25-) were cultured alone in the 
presence of IL-2 and CD3/28 beads. (A) Flow cytometric density plots illustrating the percentage of 
induction of iTregs (gate D) from live CD4+CD25- T cells (gate J’). (B) Column bar graph showing the 
percentage of CD25+Foxp3+ iTregs generated from naïve CD4+CD25- T cells cultured with 4T1 tumour 
cells in the presence and absence of TGF-β. Three independent biological experiments were carried 
out, (n=3). The statistical analysis was carried out on a limited data set (n=3) and hence is not powered adequately. 
However, the results shown here confirmed the reproducibility and robustness of the data.  Bars errors represent 
the standard error (SE) of the mean. Control: naïve CD4+CD25-Foxp3- T cells were cultured in the 
complete T cell medium in the presence of IL-2 only. (p ≤ 0.0001). Ordinary one-way ANOVA test was 
used for analysis using GraphPad Prism 8.0.1.     
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 Generation of iTregs using contact and contactless co-culture models 

To define the contribution of 4T1 cells in the induction of iTregs. Then, naïve 

CD4+CD25- T cells were cultured in the presence of IL-2, CD3/28 beads and TGF-β1 

in the presence and absence of 4T1 cells using hanging culture inserts (contactless 

co-culture), in addition to the control where naïve CD4+CD25- T cells were cultured 

in the presence of IL-2 and CD3/28 beads only. The results (figure 2.13) showed that 

the percentage of induction of iTregs by adding TGF-β1 was 50.7%, whereas it was 

significantly increased to 61.3 % by adding TGF-β1 in the presence of 4T1 tumour 

cells, although 4T1 cells contributed to only 2.5 % of induction in the absence of 

TGF-β1 (figure 2.13). These results suggested that TGF-β1 might direct 4T1 cells to 

contribute to the induction of iTregs.   

To assess whether the presence of 4T1 cells in a cell-cell contact with naïve 

CD4+CD25- T cells could affect the percentage of iTregs induction. Naïve CD4+CD25- 

T cells were co-cultured with 4T1 cells in a contact co-culture without using hanging 

inserts in the presence and absence of TGF-β1. The results of this experiment 

showed (figure 2.14) that cell-cell contact co-culture between 4T1 tumour cells and 

naïve CD4+CD25- T cells yielded 62.7 % of iTregs induction, while contactless co-

culture showed 61.3 % (figure 2.13), confirming that 4T1 secretome (4T1-

conditioned media) was enough for mediating the induction of iTregs in the 

presence of TGF-β1. This shows that naïve CD4+CD25- T cells do not require cell-cell 

contact with tumour cells to be differentiated to iTregs. Therefore, the contactless 

co-culture system was used in this model. 
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Figure 2.13. The percentage of induction of iTregs from naïve CD4+CD25- T cells that were cultured 
in different conditions for 5 days in vitro. Here the co-culture of naïve CD4+CD25- T cells and 4T1 cells 
was contactless. IL-2 (30 U/mL) was added into all cultures. TGF-β1 (5 ng/mL) was added into the 
relevant cultures (+TGF-β). Culture ratio of 4T1 cells to naiveCD4+CD25- T cells was 1 : 5, respectively.  
Control cells (naïve CD4+CD25-) were cultured alone in the presence of IL-2 and CD3/28 beads. (A) 
Flow cytometric density plots illustrating the percentage of induction of iTregs (gate D) from live 
CD4+CD25- T cells (gate J’). (B) Column bar graph showing the percentage of CD25+Foxp3+ iTregs 
generated from naïve CD4+CD25- T cells as mentioned above. Three independent biological 
experiments were carried out, (n=3). The statistical analysis was carried out on a limited data set (n=3) 
and hence is not powered adequately. However, the results shown here confirmed the reproducibility 
and robustness of the data.  Bars errors represent the standard error (SE) of the mean. Control: naïve 
CD4+CD25-Foxp3- T cells were cultured in the complete T cell medium in the presence of IL-2 only. (p 
≤ 0.0001 (****), p ≤ 0.01 (*)). Ordinary one-way ANOVA test was used for analysis using GraphPad 
Prism 8.0.1.  
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Figure 2.14. The percentage of induction of iTregs from naïve CD4+CD25- T cells that were cultured in 
different conditions for 5 days in vitro. Here the co-culture of naïve CD4+CD25- T cells and 4T1 cells was 
cell-cell contact. IL-2 (30 U/mL) was added into all cultures. TGF-β1 (5 ng/mL) was added into the 
relevant cultures (+TGF-β). Culture ratio of 4T1 cells to naiveCD4+CD25- T cells was 1 : 5, respectively. 
Control cells (naïve CD4+CD25-) were cultured alone in the presence of IL-2 and CD3/28 beads. (A) Flow 
cytometric density plots illustrating the percentage of induction of iTregs (gate D) from live CD4+CD25- T 
cells (gate J’). (B) Column bar graph showing the percentage of CD25+Foxp3+ iTregs generated from naïve 
CD4+CD25- T cells as mentioned above. Three independent biological experiments were carried out, (n=3). 
The statistical analysis was carried out on a limited data set (n=3) and hence is not powered adequately. 
However, the results shown here confirmed the reproducibility and robustness of the data. Bars errors 
represent the standard error (SE) of the mean. Control: naïve CD4+CD25-Foxp3- T cells were cultured in 
the complete T cell medium in the presence of IL-2 only. (p ≤ 0.0001 (****), p ≤ 0.01 (*)). Ordinary one-
way ANOVA test was used for analysis using GraphPad Prism 8.0.1.    
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 The presence of TGF-β1 is essential during CD3/28 TCR activation 

signals for optimal induction of iTregs 

As both CD3/28 TCR activation and TGF-β1 were required for inducing iTregs from 

naïve CD4+CD25- T cells in vitro. Next, it was assessed whether the initiation of 

CD3/28 TCR activation signals simultaneously in the presence of TGF-β1 is required 

for iTregs differentiation from naïve CD4+CD25- T cells. To achieve that, naïve 

CD4+CD25- T cells were activated with CD3/28 beads in the presence of IL-2, then 

TGF-β1 was added into cultures at different time points: immediately following 

adding CD3/28 beads (0 h), 2 hours after adding CD3/28 beads (2 h), 5 hours after 

adding CD3/28 beads (5 h) and 24 hours after adding CD3/28 beads (24 h). This 

experiment was done in the presence and absence of 4T1 tumour cells. Cultures 

were incubated for 5 days at 37oC, 5% CO2. The results showed that the presence of 

TGF-β1 immediately during CD3/28 TCR activation signals was substantial for 

generating iTregs (figure 2.15). The mean of the percentage of TGF-β1-derived 

iTregs induction was 54.3%, 43.6%, 38.8% and 11.6% at 0 h, 2hrs, 5 h and 24 h, 

respectively. These results showed that the induction of iTregs was significantly 

declined by increasing the period between CD3/28 TCR activation of naïve 

CD4+CD25- T cells and the addition of TGF-β1. Similarly, the mean of the percentage 

of TGF-β1/4T1-derived iTregs was significantly decreased from 66% at 0 h to 

15.06 % at 24 h of adding TGF-β1 into CD3/28 activated CD4+CD25- T cells in vitro 

(figure 2.15). Taken together, these results confirmed that the induction of iTregs is 

tightly dependent on the time when naïve CD4+CD25- T cells received TCR-

activation signals and the availability of secreted TGF-β1 in the induction milieu. 

Moreover, these results suggest that naïve CD4+CD25- T cells might resist TGF-β1 

signalling after prolonged CD3/28 TCR activation and become differentiated to 

effector CD4+ T cells.  
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Figure 2.15. The percentage of induction of TGF-β1-derived iTregs and TGF-β1/4T1-derived iTregs from 
CD3/28-activated CD4+CD25- T cells following adding TGF-β1 (5 ng/mL) at different time points. Cells were 
cultured for 5 days in vitro. IL-2 (30 U/mL) was added into all cultures. Culture ratio of 4T1 cells to naïve 
CD4+CD25- T cells was 1 : 5, respectively. (A) Flow cytometric density plots illustrating the percentage of 
induction of TGF-β1-derived iTregs and TGF-β1/4T1-derived iTregs (gate D) that was gated on live 
CD4+CD25- T cells (gate L (not shown)). (B) Column bar graph showing the percentage of CD25+Foxp3+ TGF-
β1-derived iTregs and TGF-β1/4T1-derived iTregs generated from CD3/28-activated CD4+CD25- T cells. 
Three independent biological experiments were carried out, (n=3). The statistical analysis was carried out 
on a limited data set (n=3) and hence is not powered adequately. However, the results shown here confirmed 
the reproducibility and robustness of the data.  Bars errors represent the standard error (SE) of the mean. (p 
≤ 0.0001 (****), p ≤ 0.0007 (***), p ≤ 0.0020 (**)). Two-way ANOVA test was used for analysis using GraphPad 
Prism 8.0.1.   
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 Generation of iTregs using different concentrations of TGF-β1 

Due to the crucial role of TGF-β1 for mediating the induction of iTregs from naïve 

CD4+CD25- T cells following CD3/28 TCR activation signals. Next, the induction of 

iTregs using different concentrations of TGF-β1 was assessed in vitro. Here, naïve 

CD4+CD25- T cells were activated with CD3/28 beads and cultured in the presence 

and absence of 4T1 cells. Then TGF-β1 was added into cultures at different 

concentrations including 5 ng/mL, 3 ng/mL, 1 ng/mL, 0.5 ng/mL, 0.05 ng/mL and 

0.005 ng/mL. The results (figure 2.16B) showed that the induction of iTregs was 

significantly decreased from 58.8% at concentration 5 ng/mL to 41.3% at 

concentration 0.5 ng/mL, 4.46% at concentration 0.05 ng/mL and 1% at 0.005 

ng/mL (figure 2.16B). Also, the results confirmed that the induction of iTregs was 

increased with the increase of TGF-β concentration. Although there were no 

significant differences between concentrations 5 ng/mL, 3 ng/mL and 1 ng/mL, the 

concentration 5 ng/mL yielded the highest induction of iTregs. These results also 

suggested that the concentration 0.05 ng/mL of TGF-β could be the minimum 

concentration required for inducing iTregs in vivo. Moreover, the induction of iTregs 

was significantly increased in the presence of 4T1 tumour cells with all 

concentrations of TGF-β, however the highly significant difference in the induction 

of iTregs in the presence and absence of 4T1 cells was at concentration 0.05 ng/mL 

of TGF-β (20.6% and 4.46%, respectively) (figure 2.16C). Accordingly, the 

concentration of 5 ng/mL was selected to be used for the next experiments.   
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Figure 2.16. The percentage of induction of TGF-β1-derived iTregs and TGF-β1/4T1-derived iTregs from 
CD3/28-activated CD4+CD25- T cells following adding TGF-β1 at different concentrations. Cells were cultured 
for 5 days in vitro. IL-2 (30 U/mL) was added into all cultures. Culture ratio of 4T1 cells to naïve CD4+CD25- T 
cells was 1 : 5, respectively. (A) Flow cytometric density plots illustrating the percentage of induction of TGF-
β1-derived iTregs and TGF-β1/4T1-derived iTregs (gate D) that was gated on live CD4+CD25- T cells (gate L 
(not shown)). (B) Column bar graph showing the percentage of CD25+Foxp3+ TGF-β1-derived iTregs and TGF-
β1/4T1-derived iTregs generated from CD3/28-activated CD4+CD25- T cells using different concentrations of 
TGF-β1. (C) Column bar graph illustrating the percentage of iTregs induction in the presence and absence of 
4T1 using different concentrations of TGF-β1. Three independent biological experiments were carried out, 
(n=3). The statistical analysis was carried out on a limited data set (n=3) and hence is not powered adequately. 
However, the results shown here confirmed the reproducibility and robustness of the data.  Bars errors 
represent the standard error (SE) of the mean. (p ≤ 0.0001 (****), p ≤ 0.0065 (**)). Two-way ANOVA test was 
used for analysis using GraphPad Prism 8.0.1.   
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 Optimising the duration of induction of iTregs in vitro 

As “5 days” period of culture was followed for all experiments mentioned above for 

generating iTregs in vitro. Next, the induction of iTregs was tracked over 6 days 

period of time to assess whether the induction of iTregs would increase with time 

in the presence of CD3/28 beads, IL-2 and TGF-β1. Here, naïve CD4+CD25- T cells 

were activated with CD3/28 beads and cultured in the presence of TGF-β1 and IL-2 

and in the presence and absence of 4T1 cells for 6 days at 37oC, 5% CO2. Then, the 

induction of iTregs was observed in each day of culture. The results (figure 2.17) 

showed that the percentage of induction of iTregs was significantly increased from 

day 1 (11.3%; with TGF-β, and 18.3%; with TGF-β1 and 4T1 cells) until day 6 (51%; 

with TGF-β1, and 63%% with TGF-β1 and 4T1 cells). However, although there were 

no significant differences in the induction of iTregs between day 4, day 5 and day 6, 

day 5 showed the highest percentage of iTregs induction (figure 2.17). As a result, 5 

days period of culture was selected to be used in the model. These results also justify 

why 5 days period of culture was followed in the previous experiment.  

 

 Optimising the co-culture ratio of naïve CD4+CD25- T cells and 4T1 

tumour cells for generating iTregs in vitro 

As the induction of iTregs was significantly increased in the presence of 4T1 cells 

and TGF-β1, compared to cells cultured in the presence of TGF-β1 only. It was 

assessed whether iTregs induction could be affected by the number of tumour cells 

co-cultured with naïve CD4+CD25- T cells. Next, 4T1 cells were co-cultured with 

naïve CD4+CD25- T cells at different ratio in the presence of TGF-β1, IL-2 and 

CD3/28 TCR activation beads. The results (figure 2.18A,B) showed that the 

percentage of iTregs induction was significantly higher at ratio 1:2 (70%) and 1:3 

(69%), compared with the control (56.1%) where naïve CD4+CD25- T cells were 

cultured in the absence of 4T1 (figure 2.18A,B). Even in the presence of 4T1 cells, 

the induction of iTregs was significantly increased at ratio 1:4 (67%) and 1:5 

(64.3%), compared with the control. There were no significant differences in the 

induction of iTregs between ratios 1:25 (61%), 1:50 (58.8%) and the control (figure 

18A,B). These results suggest that the number of naïve CD4+CD25- T cells infiltrating 

to the tumour microenvironment might contribute to increase the differentiation of 



98 
 

iTregs within tumour milieu, particularly if the infiltration ratio was 1:2 or 1:3 

(tumour cells: naïve CD4 T cells). 

However, although the induction of iTregs was increased when naïve CD4+CD25- T 

cells were co-cultured with 4T1 cells in the presence of TGF-β1, it was noticed that 

the number of CD4+ T cells recovered after 5 days of culture was significantly 

reduced, compared to the control population where naïve CD4+CD25- T cells were 

cultured in the absence of tumour cells. The results (figure 2.18C) showed that an 

average of 6.4 x 106 total CD4+ T cells (which include activated CD4+CD25+Foxp3- 

and CD4+CD25+Foxp3+ iTregs) were proliferated from 1 x 106 CD4+CD25- T cells in 

the presence of CD3/28 beads, IL-2 and TGF-β1 for 5 days of culture, whereas the 

average number of  total CD4+ T cells proliferated from 1 x 106 in the presence of 

4T1 cells was in range between 1.52 x 106 cells (ratio 1:2) and 3.93 x 106 cells (ratio 

1:50) (figure 2.18C). This significant reduction in the cell recovery after 5 days in 

the presence of 4T1 suggest that: (1) 4T1 cells might secrete stress signals that could 

affect the proliferation of naïve CD4+CD25- T cells even in the presence of CD3/28 

TCR activation beads, or (2) iTregs that were induced in the presence of 4T1 might 

be more suppressive cells that could inhibit the proliferation of activated 

CD4+CD25+Foxp3- T cells than TGF-β1-derived iTregs. 
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Figure 2.17. The percentage of induction of TGF-β1-derived iTregs and TGF-β1/4T1-derived iTregs from 
CD3/28-activated CD4+CD25- T cells over 6 days of culture in vitro. The induction of iTregs was assessed 
in each day. IL-2 (30 U/mL) was added into all cultures. Culture ratio of 4T1 cells to naiveCD4+CD25- T 
cells was 1 : 5, respectively. (A) Flow cytometric density plots illustrating the percentage of induction of 
TGF-β1-derived iTregs and TGF-β1/4T1-derived iTregs (gate D) that was gated on live CD4+CD25- T cells 
(gate L (not shown)). (B) Column bar graph showing the percentage of CD25+Foxp3+ TGF-β1-derived 
iTregs and TGF-β1/4T1-derived iTregs generated from CD3/28-activated CD4+CD25- T cells in each day 
for 6 days period of culture. Three independent biological experiments were carried out, (n=3). The 
statistical analysis was carried out on a limited data set (n=3) and hence is not powered adequately. 
However, the results shown here confirmed the reproducibility and robustness of the data.  Bars errors 
represent the standard error (SE) of the mean. (p ≤ 0.0001 (****), p ≤ 0.0003 (***), p ≤ 0.0095 (**), p ≤ 
0.0118 (*)). Two-way ANOVA test was used for analysis using GraphPad Prism 8.0.1. 
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Figure 2.18. The percentage of induction of iTregs from CD3/28-activated CD4+CD25- T cells co-cultured with 
4T1 tumour cells at different culture ratios (4T1 cells : naïve CD4+CD25- T cells) in vitro for 5 days. IL-2 (30 
U/mL), TGF-β1 (5 ng/mL) were added into all cultures. (A) Flow cytometric density plots illustrating the 
percentage of induction of TGF-β1-derived iTregs and TGF-β1/4T1-derived iTregs (gate D) that was gated on 
live CD4+CD25- T cells (gate L (not shown)). (B) Column bar graph showing the percentage of TGF-β1/4T1-
derived iTregs generated from CD3/28-activated CD4+CD25- T cells co-cultured with 4T1 cells in different 
ratios. Ordinary one-way ANOVA test was used for analysis using GraphPad Prism 8.0.1. (C) Column bar graph 
illustrating the average of total number of CD4+ T cells that were proliferated from 1x106 of naïve CD4+CD25- 
T cells co-cultured with 4T1 cells at different ratios. Control population includes naïve CD4+CD25- T cells 
cultured without 4T1 cells. Ordinary one-way ANOVA test was used for analysis using GraphPad Prism 8.0.1. 
Three independent biological experiments were carried out, (n=3). The statistical analysis was carried out on 
a limited data set (n=3) and hence is not powered adequately. However, the results shown here confirmed the 
reproducibility and robustness of the data.  Bars errors represent the standard error (SE) of the mean. (p ≤ 
0.0001 (****), p ≤ 0.0003 (***), p ≤ 0.0035 (**)). Control: naïve CD4+CD25-Foxp3- T cells were cultured in the 
complete T cell medium in the presence of IL-2 and TGF-β1, in the absence of 4T1 tumour cells. 
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 Establishment of functional assay 

To assess whether iTregs generated in this model could function as 

immunosuppressive cells, a functional assay was developed by co-culturing the 

generated iTregs with purely sorted CD8+ T cells that were stained with CFSE dye 

for 4 days. To achieve this, first, the purity of CD8+ T cell sorting was assessed, and 

then the proliferation of naïve CD8+ T cells following CFSE staining in the presence 

of IL-2 and CD3/28 TCR activator beads (1:1 ratio (CD8+ cells:CD3/38 beads)) for 4 

days was assessed in vitro. The results of the purity of cell sorting shown in figure 

2.19. After pure sorting, naïve CD8+ T cells were stained with CFSE (5µM), activated 

with CD3/28 beads and cultured in the presence of IL-2 (30 U/mL) for 4 days. The 

results of the proliferation of CFSE-stained CD8+ T cells showed that 8 generations 

of activated CD8+ T cells were proliferated from CD8+ paternal T cells after 4 days of 

culture. The results also showed that the staining of CFSE was nicely shifted from 

paternal cells with higher CFSE intensity to the 8th generation with lower CFSE 

intensity (figure 2.20).      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19. Flow cytometric density plots showing the percentage of purity of CD8+ T cells 
sorting. CD8+ T cells (gate N) that were gated on singlets cells (gate O). 93% of CD8+ T cells were 
live after cell sorting. (n=4).    
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Figure 2.20. The percentage of proliferating CD8+ T cells from CFSE-stained paternal CD8+ T cells cultured 
in the presence of CD3/28 beads and IL-2 (30 U/mL) in vitro for 4 days. (A) Flow cytometric density plots 
showing the shift of CFSE-intensity of proliferating CD8+ T cells from higher intensity (right, log 103) to lower 
intensity (toward left, log 100), gate P (parental unstimulated CD8+ T cells), gate G1 (generation 1 of 
proliferating CD8+ T cells after CD3/28 TCR activation), gate G8 (generation 8 of proliferating CD8+ T cells). 
Kalusa software was used for analysing flow cytometric data. (B) Column bar graph illustrating the 
percentage of proliferating CD8+ T cells in each generation following staining with CFSE cell trace dye for 4 
days of culture in vitro. GraphPad Prism 8.0.1 software was used for drawing the graph. Four independent 
biological experiments were carried out, (n=4). The statistical analysis was carried out on a limited data set 
(n=4) and hence is not powered adequately. However, the results shown here confirmed the reproducibility 
and robustness of the data.  Bars errors represent the standard error (SE) of the mean.  
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As the trend of proliferation of CD8+ T cells in vitro was tracked and achieved in this 

model. Next, the functional activity of the generated iTregs was assessed by co-

culturing them with sorted, CFSE-stained CD8+ T cells as mentioned above at 

different ratios. The results (figure 2.21) of the functional assay showed that the 

generated iTregs were highly immunosuppressive cells which could significantly 

inhibit the proliferation of CD8+ T cells even in the presence of CD3/28 TCR activator 

and IL-2. The results showed that the percentage of CD8+ T cells proliferation was 

only ~3% at 1:2 ratio (CD8+ cells:iTregs), compared to the control (100%) where 

CD8+ T cells were cultured without iTregs. Also, at ratio (1:1) the inhibition of CD8+ 

T cells proliferation was ~95% by TGF-β1-derived iTregs and ~97% by TGF-

β1/4T1-derived iTregs (figure 2.21). Even at ratio (16:1) the inhibition of CD8+ T 

cells proliferation was 18% by TGF-β1-derived iTregs and 22.8% by TGF-β1/4T1-

derived iTregs, which was significant compared to the control. The results also 

showed that iTregs induced in the presence of 4T1 were slightly more suppressive 

than iTregs induced by TGF-β1 only at specific ratios including (1:1), (2:1), (4:1) and 

16:1), however these results were not statistically significant (figure 2.21). 

 The stability of Foxp3 expression of iTregs  

As the generated iTregs were functionally immunosuppressive cells, it was assessed 

whether iTregs could maintain foxp3 expression after induction. The results showed 

(figure 2.22) both TGF-β1-derived iTregs and TGF-β1/4T1-derived iTregs lost about 

5% of their Foxp3 expression after 5 days of removing TGF-β1 and CD3/28 TCR 

activator beads. Although there was a reduction in the expression of Foxp3 of iTregs, 

the reduction was not statistically significant (figure 2.22). These results suggest 

that the generation of iTregs might be based on the secretion of cytokines such as 

TGF-β1 with persistent TCR signals in vivo. 



104 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21. The percentage of proliferating CD8+ T cells from CFSE-stained parental CD8+ T cells cultured in 
the presence of TGF-β1/4T1-derived iTregs and TGF-β1-derived iTregs at different ratios for 4 days in vitro. 
CD3/28 beads (1:1 ratio (CD8:CD3/28 beads) and IL-2 (30 U/mL) were used for activating CD8+ T cells. (A) 
Flow cytometric density plots showing the percentage of proliferating CD8+ T cells (gate P) co-cultured with 
iTregs at different ratios (CD8 : iTregs). The proliferation of CD8+ T cells is illustrated by the change of CFSE 
staining intensity from higher intensity (right, log 103) to lower intensity (toward left, log 100). Kalusa software 
was used for analysing flow cytometric data. (B) Column bar graph illustrating the percentage of proliferating 
CD8+ T cells cultured in the presence of iTregs as mentioned above. By adding iTregs, the proliferation of CD8+ 
T cells was significantly reduced according to the culture ratio. Three independent biological experiments were 
carried out, (n=3). The statistical analysis was carried out on a limited data set (n=3) and hence is not powered 
adequately. However, the results shown here confirmed the reproducibility and robustness of the data.  Bars 
errors represent the standard error (SE) of the mean. Control: naïve purely sorted CD8+ T cells were cultured in 
the complete T cell medium in the presence of IL-2, in the absence of iTregs. (p ≤ 0.0001 (****), p ≤ 0.0010 (***), 
p ≤ 0.0099 (**), p ≤ 0.0301 (*). Two-way ANOVA test was used for statistical analysis using GraphPad Prism 8.0.1 
software. 



105 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22. The percentage of Foxp3 expression of TGF-β1/4T1-derived iTregs and TGF-β1-derived iTregs 
after 3 and 5 days of removing TGF-β1 and CD3/28 TCR activator beads (which is 8 and 10 days of induction). 
iTregs were induced as mentioned above for 5 days. Then cells were cultured in a fresh complete T cell medium 
supplemented with IL-2 (30 U/mL) only. CD3/28 beads were removed magnetically. Then cells were cultured 
for another 5 days, and the expression of Foxp3 was assessed at day 3 and 5. (A) Flow cytometric density plots 
showing the percentage of Foxp3 expression of iTregs (gate D). gate D was gated on live CD4+ T cells (gate L (not 
shown)). Kalusa software was used for analysing flow cytometric data. (B) Column bar graph illustrating the 
percentage of the expression of Foxp3 in both TGF-β1/4T1-derived iTregs and TGF-β1-derived iTregs at day 5, 
8 and 10 of induction as mentioned above. Three independent biological experiments were carried out, (n=3). 
The statistical analysis was carried out on a limited data set (n=3) and hence is not powered adequately. 
However, the results shown here confirmed the reproducibility and robustness of the data.  Bars errors 
represent the standard error (SE) of the mean. Two-way ANOVA test was used for analysis using GraphPad Prism 
8.0.1 software.  
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 Foxp3-TSDR methylation status of the generated iTregs 

The methylation status of Foxp3-TSDR of iTregs generated in this model was 

assessed. The results (figure 2.23) showed that all CpG regions were significantly 

hypermethylated within the Foxp3-TSDR of naïve and activated CD4+CD25- T cells 

as the percentage of methylation was more than 90% for all CpGs compared to the 

percentage of methylation of the CpGs of naïve CD4+CD25+Foxp3+ nTregs, which 

was between 2.5% and 8.5%. However, the percentage of methylation of the CpGs 

of TGF-β1-drived iTreg, TGF-β1/4T1-drived iTregs was between 71% and 78 %, 

which was significantly lower than the methylation status of naïve and activated 

CD4+CD25- T cells (figure 2.23). However, the percentage of methylation of CpGs of 

iTregs was significantly higher than those of naïve nTregs. Surprisingly, the CpGs of 

activated nTregs were significantly hypermethylated (57-63%), compared to naïve 

nTregs (figure 2.23). Taken together, these results confirmed that the methylation 

status of 4 CpGs within Foxp3 TSDR was decreased in iTregs due to the presence of 

TGF-β1 mainly and the 4T1 cells, compared to naïve CD4+CD25- T cells and activated 

CD4+CD25- T cells. Although the generated iTregs were not as hypomethylated as 

naïve nTregs, they were slightly similar to activated nTregs.  
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Figure 2.23. The percentage of methylation of 4 different CpG regions within Foxp3-TSDR locus of naïve 
CD4+CD25- T cells that were cultured in different conditions, and naïve and activated CD4+CD25+Foxp3+ nTregs. 
Here, CD3/28 TCR activator beads were used to activate cells. IL-2 (30 U/mL) and TGF-β1 (5 ng/mL) were 
added into the relevant culture conditions as shown in the legend of the graph and heatmap. (A) Column bar 
graph showing the percentage of methylation of 4 different CpG regions within mouse Foxp3-TSDR gene. Two-
way ANOVA was used for statistical analysis using GraphPad Prism software 8.0.1. (p ≤ 0.0001 (****), p ≤ 0.0056 
(**)). (B) Heatmap showing the percentage of methylation of 4 different CpG regions within Foxp3-TSDR locus. 
Heatmap was drawn using GraphPad Prism software 8.0.1. Three independent biological experiments were 
carried out, (n=3). The statistical analysis was carried out on a limited data set (n=3) and hence is not powered 
adequately. However, the results shown here confirmed the reproducibility and robustness of the data.  Bars 
errors represent the standard error (SE) of the mean. 
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2.4. Discussion 

The immune tolerance is one of key features of the immune system, which 

recognises and eliminates autoreactive immune cells that induce immune reactions 

against self-tissue. The T regulatory cells (Tregs) are professional cells with 

suppressive activity and employed by the immune system to maintain the immune 

tolerance by inhibiting and eliminating autoreactive immune cells. There are two 

main population of Tregs: nTregs and iTregs. nTregs are found to develop within the 

thymus and function to govern central tolerance. Whereas iTregs are generated in 

the periphery and function to maintain peripheral tolerance. Both subpopulations 

share similar phenotypic features by the expression of Foxp3 and CD25, however, 

they differ in the origin of development and functional stability within the local 

microenvironment. nTregs are originally generated as immunosuppressive cells by 

the immune system, whereas iTregs are generated from niave CD4+ T cells in the 

periphery under certain conditions in the presence of cytokines such as TGF-β and 

IL-2. Therefore, in this study, a mouse model was developed to study the difference 

between nTregs and iTregs.   

To develop the mouse model, both mouse strains; BALB/c and C57BL/6 were 

analysed and compared to select the appropriate strain for generating and studying 

iTregs. The BALB/c mice strain was selected to establish the model since it had 

significantly more nTregs (12% of total CD4+ T cells) in the spleen, compared to 

C57BL/6 mice (~ 3% of total CD4+ T cells). Similar findings were also found by a 

study conducted by Chen et al. the authors demonstrated that the percentage of 

nTregs in the lymphoid organs of BALB/c mice was significantly higher than in 

C57BL/6 mice. Also, nTregs of BALB/c mice were more suppressive than those of 

C57BL/6 mice (Chen, Oppenheim and Howard 2005). Moreover, Volgelsang et al. 

have demonstrated that BALB/c mice shown to have significantly more nTregs and 

plasmacytoid dendritic cells (pDCs) in the blood and spleen than C57BL/6 

(Vogelsang, et al. 2009a). Another study also has reported that Foxp3+ Tregs of 

BALB/c mice were significantly more functional to suppress IL-9-driven mast cells 

than those of C57BL/6 (Blankenhaus, et al. 2014a). 
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In this model, the results showed that the induction of iTregs was significantly 

enhanced following TCR activation of naïve CD4+CD25- T cells in the presence of IL-

2 and TGF-β1. However, there was no induction in the presence of IL-2 and TGF-β1 

without TCR activation, highlighting the importance of TCR signals for initiating 

iTregs induction in the presence of TGF-β1 and IL-2. Vahl et al. have found that TCR 

signals are essential for the generation and activation of peripheral Tregs. Also, the 

authors have demonstrated that TCR-deficit Tregs were unable to supress T cells 

responses in vivo (Vahl, et al. 2014). Moreover, Vaeth et al. have found that 

suboptimal TCR signals were essential for the generation of iTregs from naïve 

CD4+CD25- T cells by promoting the expression of Foxp3 via NFAT (nuclear factor 

of activated T cells) pathway (Vaeth, et al. 2012). Also, Ruan et al. have confirmed 

the importance of TCR stimulation in inducing Foxp3 expression of iTregs via 

activation NF-kB pathway in which c-Rel could bind Foxp3 promoter and then 

initiate iTreg differentiation (Ruan, et al. 2009). Taken together, the TCR 

engagement seems to play a crucial role in the development and differentiation of 

iTregs in vitro and in vivo by mediating the downstream signals for inducing the 

expression of Foxp3. 

However, TCR signals alone were not sufficient for generating iTregs as the 

induction of iTregs following TCR activation in the presence of IL-2 did not occur.  

Whereas the induction of iTregs was significantly increased following adding TGF-

β1, confirming the decisive role of TGF-β1 signalling in the development of iTregs. 

Li et al. have supported these findings. The authors demonstrated the critical role of 

TGF-β1 by modulating the expression of Foxp3 of iTregs, and how TGF-β1 

antagonised TCR signalling via p38 pathway for maintain the expression of Foxp3 

of iTregs. The author also demonstrated the mutual effort of both TCR and TGF-β 

signalling in controlling the methylation of Foxp3 locus during iTregs generation. 

(Li, Ebert and Li 2013). Recently, a study has demonstrated that the importance of 

both TGF-β receptor and IL-2 receptor in mediating Foxp3 expression via CNS2-5-

azacytidine (5-aza-C) mechanisms (Freudenberg, et al. 2018). Another mechanism 

of TGF-β-induced Foxp3 expression was found to be mediated by the activation and 

recruitment of Smad2/3, a downstream transcription factor complex of TGF-β 

signalling, to a Foxp3 enhancer element which induces the expression of Foxp3 

during iTregs development (Zheng, et al. 2010a, Tone, et al. 2008). 
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The results also showed that following receiving the same strength of TCR signals, 

the induction of iTregs from naïve CD4+CD25- T cells was significantly increased by 

increasing the concentration of TGF-β1, confirming that TGF-β signalling could 

predominantly antagonise TCR signalling and mediate the Foxp3 induction. 

Moreover, the induction of iTregs was significantly reduced following prolonged 

TCR activation in the absence of TGF-β. These results confirmed the dominant role 

of TGF-β for generating iTregs in the presence of strong TCR signals, and the 

dominant role of TCR signals for resisting iTregs induction in the presence of TGF-

β1 at lower concentrations. These finding also were supported by Li et al., as 

mentioned above (Li, et al. 2013). Another study has also found that CD3/28 co-

stimulation could overcome TGF-β-mediated repression of the proliferation of 

activated T effector cells. This means that after persistent CD3/28 co-stimulation, 

effector activated T cells become more resistant to the influence of TGF-β signalling 

(Koehler, et al. 2007). These results have also been supported by the finding that 

activated T cells following CD28 engagement downregulate the expression of TGF-

β receptor II (TGF-βRII), thereby bypassing the effect of TGF-β signalling (Sanjabi, 

et al. 2017).    

The results also revealed that the induction of iTregs was significantly increased in 

the presence of 4T1 tumours cells, compared to those induced in the presence of 

TGF-β1 only. However, 4T1 cells could convert only ~ 3% of naïve CD4+CD25- T cells 

to CD4+CD25+Foxp3+ iTregs in the absence of TGF-β1. These results suggested that 

4T1 cells might secrete insufficient amount of TGF-β1, so that could not induce 

iTregs or 4T1 cells might need a cellular interaction with other mediator cells such 

as dendritic cells and macrophages for inducing iTregs in vitro. Sun et al. have 

demonstrated the crosstalk between M2-macrophages and laryngeal squamous 

cancer cells for inducing iTregs. The authors have confirmed that cancer cell-

activated M2-macrophages were able to induce iTregs from naïve CD4+CD25- T cells. 

Moreover, it was found that M2-marcrophages-derived iTregs were able to distort 

the differentiation of monocytes towards M2-macrophages, thereby establishing a 

positive-feedback cycle (Sun, et al. 2017). These findings have also been found 

within the tumour microenvironment of nasopharyngeal carcinoma where tumour 

cells predominantly could induce M2-macrophages from monocytes via TGF-β1 and 
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IL-10, which leaded to the development of M2-macrophages-derived iTregs (Wang, 

et al. 2017a).  

The results in this chapter also demonstrated that the percentage of methylation of 

4 CpGs within Foxp3-TSDR of iTregs was significantly lower than those of naïve and 

activated CD4+CD25- T cells. However, iTregs were significantly hypermethylated 

compared to naïve inactivated nTregs. These results were also found in a study 

conducted by Schmidt et al. where the authors assessed the methylation status of 15 

different CpG regions within human Foxp3 gene locus and found that iTregs were 

significantly hypermethylated compared to unstimulated naïve nTregs. However, 

the iTregs and stimulated CD4+CD25- T cells were similar in the methylation status 

(Schmidt, et al. 2016). Compared to the results in this model, however, the generated 

iTregs were significantly less methylated compared to activated CD4+CD25- T cells. 

This also was demonstrated by the stability of the expression of Foxp3 of iTregs that 

were generated in this model. The results revealed that ~ 95% of the Foxp3 

expression of iTregs was stable and maintained after 5 days of induction in the 

presence of IL-2 (30 U/mL) without re-activated with CD3/28 beads and TGF-β1. 

Although the demethylation status of Foxp3-TSDR is considered as a marker for the 

stability of Foxp3 expression, particularly in naïve nTregs, iTregs without TSDR 

demethylation could maintain their Foxp3 expression and suppressive activities 

(Hippen, et al. 2011, Lee, Lydon and Kim 2012, Gu, et al. 2014). 

Interestingly, the results showed that naïve nTregs lost their demethylation status 

and became significantly hypermethylated following TCR activation. These results 

were also supported by Zhang et al.; where the authors demonstrated that nTregs 

lost their Foxp3 expression after TCR engagement and experienced re-methylation 

of the CNS1 region within Foxp3 locus (Zhang, et al. 2017). These findings were also 

found in an earlier study by Bailey-Bucktrout et al. in 2013. There the authors found 

that nTregs underwent Foxp3 instability and secreted pro-inflammatory cytokines 

following self-antigen-driven activation during inflammation in the CNS (Bailey-

Bucktrout, et al. 2013). Taken together, it seems that both iTregs and nTregs can 

lose their stability in vivo after activation. This may stand with the idea that the 

immunosuppressive activity acquired by Tregs is induced upon the presence of 

stressful stimuli that promote prolonged acute or chronic inflammation, which can 
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make Tregs behaving with more flexibility based on the physiological condition in 

the milieu. 

In summary, the BALB/c mouse model was successfully developed to generate and 

study the iTregs. In this model, iTregs (CD4+CD25++Foxp3+) were generated in vitro 

from purely sorted CD4+CD25-Foxp3- T cells in the presence of TGF-β1 (5 ng/mL) 

and IL-2 (30 U/mL), and in the presence and absence of 4T1 tumour cells for 5 days. 

CD4+CD25-Foxp3- T cells were activated with CD3/CD28 TCR activation beads 

during the culture period for maintaining the induction of iTregs. The percentage of 

iTregs induction was 55-70% of total CD4+CD25-Foxp3- T cells after 5 days.  The 

induction of iTregs was enhanced in the presence of both TGF-β1 and 4T1 tumour 

cells, confirming the role of tumour cells in the induction of iTregs. The iTregs were 

successfully generated by different concentrations of TGF-β1, while 0.05 ng/mL of 

TGF-β1 was the lowest concentration required for inducing iTregs from naïve 

CD4+CD25- T cells. This study has also revealed that the generation of iTregs is based 

on a simultaneous synergy of TCR/CD28 and TGF-β1 signalling since activated 

CD4+C25- T cells were less responsive to the effect of TGF-β1. The generated iTregs 

showed potent immunosuppressive activities by inhibiting the proliferation of CD8+ 

T cells. In this model, the generated Tregs could maintain their Foxp3 expression for 

5 days in the absence of TGF-β1, although their Foxp3-TSDR was hypermethylated 

compared to naïve nTregs. Finally, the percentage of iTregs induction and the 

percentage of nTregs in this mouse model was sufficient for profiling using mass 

spectrometry-based proteomics. Based on these results, optimisation for MS-based 

proteomic profiling of iTregs, nTregs and other subpopulation of naïve CD4+ T cells 

will be discussed in the next chapter.  
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Chapter 3.  

Optimisation of sample preparation for proteomic 

analysis 

3.1. Introduction  
Advances in ‘omic’ technologies, which include genomics, transcriptomics, 

proteomics and metabolomics, have contributed to the discovery of biomarkers that 

are currently used in the clinic as screening, diagnostic, prognostic and predictive 

biomarkers. Also, these technologies are increasingly being used in drug discovery 

and evaluation of their potency and toxicity (Quezada, et al. 2017). The omic based 

high throughput platforms have enabled the scientists to understand the 

relationship between the genotype and the phenotype in a scale which was never 

possible few decades ago. However, each of the above-mentioned technologies has 

its own advantages and disadvantages which will be discussed in the following 

section. 

3.1.1. Profiling techniques used for biomarker identification 

3.1.1.1. Genomics 

Genomics is the comprehensive study of an organism’s genome that includes the 

total DNA and its genes. There are several levels at which genome information can 

be derived such as structural and numerical alterations of chromosomes and 

sequence alterations at genome level. Chromosomal abnormalities have found to 

contribute to the emergence of many developmental diseases and malignancies 

(Theisen and Shaffer 2010). Numerical chromosomal abnormalities are 

characterised by the gain or loss of a single chromosome (Russo, et al. 2015). 

Structural abnormalities occur when there is an alteration in the structure of the 

chromosome arms and involve deletions, duplications, translocations, 

amplifications and inversions (Grade, Difilippantonio and Camps 2015). Advances 

in genome-based techniques such as next-generation sequencing, single-nucleotide 

polymorphism array, fluorescence in situ hybridisation, microarray-based 

comparative genome hybridisation and spectral karyotyping have contributed to 

the detection of chromosomal aberrations and mutations that cause genetic 
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diseases and malignancies (da Silva, et al. 2017, Ratan, et al. 2017, Braun, et al. 2019, 

Aleksandrova, et al. 2016, Song, et al. 2017). These chromosomal aberrations and 

mutations have been used as diagnostic biomarkers for several types of cancer 

including breast cancer, multiple myeloma, bladder cancer, endometrial cancer, 

colorectal cancer, cervical cancer, prostate cancer, renal cell carcinoma and acute 

lymphoblastic leukaemia (Yap, et al. 2015, Vargas-Rondón, Villegas and Rondón-

Lagos 2017). 

3.1.1.2. Transcriptomics 

Transcriptomics is the global analysis of an organism’s transcriptome that consists 

of all RNA transcripts expressed within cells. The transcriptome is the initial product 

of gene expression and plays as a biological bridge between DNA and functional 

proteins, the final products of the genome (Horgan and Kenny 2011). Different 

techniques have been developed for analysing gene expression including serial 

analysis of gene expression (SAGE), cap analysis of gene expression (CAPE), gene 

expression microarrays and RNA-sequencing (RNA-Seq). RNA-Seq is the most 

recent technology developed which superseded conventional array-based platforms 

and now widely adapted for transcriptome profiling with better dynamic range and 

accuracy. (Lowe, et al. 2017).  

Transcriptomic profiling has been extensively used for biomarker discovery in 

many diseases such as cardiovascular diseases, tuberculosis, autoimmune diseases 

and cancer (Pedrotty, Morley and Cappola 2012, Van Rensburg and Loxton 2015, 

Ostrowski, et al. 2018, Sager, et al. 2015). However, information derived from 

transcriptomic profiling reflects the level of RNAs abundance, not proteins. 

Therefore, the interpretation of transcriptomic data is difficult to predict the 

phenotypic feature of a cell or tissue (Misra, et al. 2018). This limitation has been 

solved by the integration of genomic and transcriptomic datasets with data 

generated from proteomics and metabolomics that provide information about 

epigenetic and phenotypic variations (Misra, et al. 2018). 

3.1.1.3. Proteomics 

Proteomics is the field of studying the “proteome” that is defined as the collection of 

all proteins expressed within a cell, tissue or organism. One of the key aims of 

proteomics is to characterise phenotypic signatures of a cell or tissue through 
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proteins pathways and networks and describe the structure and function of proteins 

on a global scale (Theodorescu and Mischak 2007, Petricoin, et al. 2002). Like the 

transcriptome, the proteome is also dynamic in nature and can be easily altered or 

modified according to the condition of the biological microenvironment 

surrounding the cell or tissue. Proteins are the primary targets of most approved 

drugs, confirming the importance of identifying proteins that may have the potential 

for drug-target (Bull and Doig 2015) and also act as the mean for the most FDA-

approved tests in the clinic, particularly plasma protein targets that constitute 45% 

of FDA-approved tests (Anderson 2010). However, the complexity of the proteome 

renders various challenges for comprehensive analysis (Merrick, et al. 2011). 

Proteins are more complex in nature than nucleic acids as they undergo post-

translational modifications that are required to maintain the bioactivity of proteins 

within a cell or tissue. These modifications are one of the major reasons for the 

increased complexity of the proteome in any organism (Seo and Lee 2004). These 

complexities have contributed to the development of various proteomic platforms 

that facilitate the quantification and identification of different types of proteins and 

its post-translational modifications with comprehensive data analysis. These 

platforms will be described later in the following section (3.1.2). 

3.1.1.4. Metabolomics 

Similar to the transcriptomic characterisation of cellular RNAs and the proteomic 

characterisation of entire proteins expressed at a given time, cells can also be 

analysed for detecting metabolites that are final-end products of complex 

biochemical pathways that link genotype to phenotype (Goodacre, et al. 2004). The 

study of total low-molecular-weight compounds (metabolites) within a cell or 

organism is called “metabolomics” (Kamburov, et al. 2011). Theoretically, 

metabolomics has more advantages over the other omics technologies. First, since 

metabolites are the final downstream products, changes in the level of metabolites 

expression are correlated with changes in the transcriptome and proteome. Second, 

the cellular metabolome reflects a functional signature of the cellular proteome 

(Urbanczyk‐Wochniak, et al. 2003, Fiehn 2002). The evolution of metabolomic 

technologies such as mass spectrometry (MS), high-resolution nuclear magnetic 

resonance spectroscopy (NMR), ultra-performance liquid chromatography (UPLC) 

and bioinformatics has enabled more comprehensive quantification of the 
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metabolome (Tsutsui, et al. 2011). Also advances in mass spectrometry have 

improved the accuracy, reliability and efficiency of metabolic profiling (Liang, Wang 

and Li 2015). Metabolomics-derived biomarkers can also be used as targets for 

clinical laboratory tests. For instance, recently, metabolic profiling using 1H NMR 

has been carried out to identify biomarkers that can predict renal failure in patients 

who received contrast medium before undergoing angiography. This analysis has 

identified a panel of six urinary metabolites that can predict renal damage including 

glutamic acid, uridine diphosphate, glutamine and tyrosine (Dalili, et al. 2019). Also, 

another study has analysed metabolomic changes in tissues derived from patients 

with adenocarcinoma lung cancer and squamous cell lung carcinoma. This study has 

identified 851 metabolites that were aberrated in lung cancer tissue compared to 

the normal tissues (Moreno, et al. 2018). Such studies have confirmed the 

importance of metabolomic profiling to identify robust biomarkers that can be used 

clinically for monitoring patients. However, metabolomics approach suffers from 

several challenges that make it more complex than other omics approaches. First, 

the cost of experiments and instrumentations as metabolomic profiling requires 

multiple analytical platforms to study the complexity of biochemical pathways 

(Wishart 2016, Pinu, et al. 2019). Second, metabolites are present with different 

molecular weights and lower concentrations and varied in their stability and 

turnover rates within cells, thereby measuring them using a single universal 

analysis method is difficult (Beale, et al. 2018, Fiehn, et al. 2007). Third, the accuracy 

and reproducibility of metabolite quantification is another challenge due to the 

variations of sample extraction and different instrumental standardisation steps 

(Broadhurst, et al. 2018). Finally, the validation of a metabolite fingerprint is also 

challenging due to the complexity of metabolites networks within cells (Zhang, et al. 

2015). 

3.1.2. Mass spectrometry-based proteomics 
In general, proteomics is used to link genotype to phenotype through a large-scale 

determination of gene and cellular function at the protein level. The complexity of 

the cellular proteomes and the presence of many low-abundant proteins require 

highly sensitive techniques for proteomic analysis (Tyers and Mann 2003). Mass 

spectrometry (MS) has been evolved for analysis of complex protein samples. MS-



117 
 

based proteomics has proven itself as a powerful technology to characterise the 

structure and function of proteins. To date, proteomic analyses such as protein 

primary sequencing, post-translational modifications, protein-proteins interactions 

and secretome (proteins that are secreted extracellularly) have been carried out 

using MS-based instruments (mass spectrometers) (Mishra 2010). In general, mass-

spectrometers have three main parts (figure 3.1). The first is the ionisation source, 

which converts peptides or proteins mixture into positively and negatively charged 

ions based on the nature of a mixture. The second is the mass analyser, which sorts 

and separates ions based on their mass to charge (m/z) ratio. The third part is the 

detector, which detects the ions sorted by the mass analyser (Lemière 2001). The 

development of soft-ionisation methods such as MALDI (matrix assisted laser 

desorption ionisation) and ESI (electrospray ionisation) has enabled the proteomics 

field to accurately measure peptide masses and identify their sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Schematic representation of the basic structure of a mass spectrometer. Upon injection, 
samples (peptides) are directed to the ion source where they become ionised with positive and 
negative charge based on their nature. After ionisation, peptide ions are eluted to travel through a 
high-pressure atmosphere to reach the mass analyser which sorts and separates peptide ions based 
on their m/z ratios. The sorted ions continue flying in a speed based on their m/z ratios to finally hit 
the ion detector which produces a signal which represents the time of flight for each ions to hit the 
detector. The signals are then processed and recorded as peaks or mass spectra. 
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3.1.2.1. MALDI-TOF MS Instruments 

MALDI-TOF instruments represent the conventional MS technology which are 

generated to measure peptide masses. These instruments consist of the ionisation 

source “MALDI” and the mass analyser; time of flight (TOF). In the MALDI source, 

the sample of interest is mixed with matrix chemical compounds such as 2,5-

dihydroxybenzoic acid, 3,5-dimethoxy-4-hydroxycinnamic acid and α-cyano-4-

hydroxycinnamic acid, in addition to acetonitrile and water (Liebler 2001). The 

admixture of sample and matrix compounds is then loaded as spots onto a target 

plate and allowed to dry in air. Once dried, spots usually look like a powdery deposit 

or crystal lattice into which the peptide or protein sample is combined. The target 

plate is then placed into the source equipped with a laser which produces a beam of 

light at the target (figure 3.2). Once spots of sample are introduced to the laser beam, 

matrix compounds become electronically excited and transfer this energy to the 

peptides or proteins in the sample which are then expelled from the target plate into 

the gas phase(El-Aneed, Cohen and Banoub 2009). Each peptide can pick up a single 

proton, and therefore most of peptide ions produced by MALDI are singly charged 

ions and defined as [M+H]+ ions; M is the actual mass of a peptide or protein and H 

is the proton (charge) bound to the peptide or proteins. Then the positive singly 

charged ions ([M+H]+ ions) are directed to the TOF mass analyser (Demeure, 

Gabelica and De Pauw 2010) (figure 3.2).  

The mass analyser measures the time needed for the ions to fly from the beginning 

to the end of the analyser until they hit the detector. The speed of ions flying through 

the analyser is proportional to their m/z values. Ions with high m/z values strike the 

detector faster than those with low m/z values (Demeure, et al. 2010). TOF analyser 

operates in two different modes; linear and reflectron mode. Linear mode is where 

ions are produced from the source and fly through the analyser tube until reach the 

detector. However, TOF analysers with linear mode are not sensitive as the 

resolution of MS analysis is very poor. The resolution in MS is defined as the ability 

of the instrument to discriminate between ions that are slightly different in their 

m/z values. The poor resolution in linear-mode TOF is due to differences in the 

velocities of ions having the same m/z values as they fly, which leads to create peak 

broadening during analysis (Kinter and Sherman 2005, Demelbauer, et al. 2004). In 

contrast, a TOF analyser operating in reflectron mode shows better resolution 
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where the reflectron acts as a speed controller for ions flying through the analyser, 

and therefore ions of the same m/z values are focused by the reflectron to reach the 

detector at the same time. This leads to better resolution as sharp, narrow peaks will 

be produced from analysis (Demelbauer, et al. 2004). Given the development of 

MALDI-TOF instruments with different modes, they have some limitations. First, 

these instruments are designed to measure peptide masses, and this type of 

information is not useful in obtaining true sequence data for peptides or proteins. 

Second, MALDI-TOF instruments are not linked directly with separation systems 

such as HPLC (high performance liquid chromatography) which separate 

contaminants such as urea, glycol, and Tris, and therefore the resolution and 

sensitivity of the analysis will be very poor (Byrd and McEwen 2000, Müller, et al. 

2001, Liebler 2001), although offline chromatographic spotting/fractionation can 

overcome this it adds time and complexity to the analysis . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Schematic representation showing the principle of MALDI ionisation method. The 
peptides samples are mixed with the matrix compounds. The mixture of peptides and matrix 
compounds is then loaded into the target plate as spots. The target plate is then introduced into the 
source of ionisation supplied with a laser. Upon activation, the laser produces a beam directly to the 
target plate which makes matrix spots become electronically excited by acquiring protons (H+). 
Excited matrix spots transfer protons to the peptides spots to produce positively-charged peptide 
ions ([M+H]+ ions). The [M+H]+ ions are then directed to the mass analyser for MS analysis.  
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3.1.2.2. ESI Tandem MS Instruments       

ESI tandem MS or (ESI-MS-MS) instruments have been evolved to improve the 

sensitivity and reproducibility of proteomic analysis. ESI is electrospray ionisation, 

the source of ions production in the instrument. Tandem mass spectrometry (MS-

MS) refers to mass analysers that are designed to carry out two- or multi-stage mass 

analyses of generated ions (Pitt 2009). The main principle of ESI method is the 

generation of multiple charged ions from a mixture of peptides or proteins. In this 

method, samples in liquid form are injected into the source via a flow stream that 

comes often from the HPLC linked with the source. Samples then enter a capillary, 

which has a shape of a cone, supplied with high electric voltages on its tip (figure 

3.3). As the samples exit the capillary, they are sprayed out in a fine mist of droplets. 

The continuous application of electric voltages to the capillary’s tip leads to the 

formation of charged droplets. These droplets are in a state of solvation and contain 

peptides or proteins in addition to ingredients (e.g. water, acetonitrile and acetic 

acid) from the HPLC mobile phase. All these steps occur under an atmospheric 

pressure (Ho, et al. 2003). The charged droplets (solvated droplets) are then 

dispersed from the capillary cone to the mass analyser which is held in high vacuum 

region. Before entering the mass analyser, ions of peptides of proteins will be 

purified and separated from the HPLC solvents by the source in a process called “ion 

desolvation”. Ion desolvation can be achieved in different ways based on the type of 

the source. In some sources, the droplets pass through a heated capillary which 

assists evaporation the solvents (Banerjee and Mazumdar 2012). In other sources, 

a curtain of nitrogen gas cross through against the direction of the droplets’ flow, 

which facilitates evaporation of the solvents and reduction in the size of the droplets. 

In both ways, the peptides or proteins ions are released from the source into the 

mass analyser, whereas the solvents from the droplets are bumped away by the 

vacuum system (Janusson, et al. 2015) (figure 3.3).  
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ESI-MS-MS instruments have been designed with different types of mass analysers 

including TOF, quadrupole, ion trap, Fourier transform mass spectrometry, Fourier 

transform-ion cyclotron resonance, orbitrap. Other instruments have hybrid mass 

analysers which are a combination of two or three mass analysers to obtain better 

performance. These instruments include triple/tandem quadrupole, quadrupole-

TOF (Q-TOF), TOF-TOF, linear trap quadrupole-orbitrap (LTQ-orbitrap) and others. 

Each of these instruments has specific features for ions analysis, and therefore the  

use of such instruments is based on the proteomic approach required to sequence 

and characterise proteins of interest (Matthiesen and Bunkenborg 2013). All these 

analysers are the best examples of MS-MS technology which is now indispensable 

for any kind of proteomic approaches. There are three primary steps in any MS-MS 

mass analysers. First, selection of precursor ions (desolvated ions) that are 

produced by the ESI source. This step is mostly called “ions scanning or filtration” in 

which ions with a specific m/z value will proceed to the next stage of analysis. This 

is usually achieved by quadrupole analysers, specifically Q1, and ion trap analysers. 

Second, fragmentation of the selected precursor ions to generate fragment or 

Figure 3.3. Schematic representation showing the principle of ESI ionisation method. The peptide 
samples are injected into the ionisation source via a flow-stream coming from the HPLC that is 
linked with the source. In the source, samples enter a capillary which has a shape of a cone 
supplied with high electric voltages on its tip where peptide ions become positively charged. The 
samples are then ejected from the tip in a fine mist of droplets with multiple charges. The multiple 
charged droplets contain peptides and other ingredients such as water and  acetonitrile. These 
charged droplets are directed into a heated, high pressure zone in a process called desolvation 
that results in a reduction the size of droplets and liberation of free positively-charged peptides 
ions. The peptide ions are then directed into the mass analyser for MS analysis.    
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product ions. This step is achieved by a process called “collision-induced 

dissociation (CID)”. This process occurs when the selected precursor ions are 

subjected to collide with “neutral collision gas”, which is usually helium, nitrogen or 

argon, in a region called collision cell (Dawson 2013). This region of the analyser is 

usually supplied with radiofrequency voltages that facilitate fragmentation of the 

selected precursor ions by applying kinetic energy which exceeds the internal 

energy of the precursor ions, leading to dissociation of precursor ions into small 

fragments (product ions). Third, these product or fragment ions are further 

analysed based on their m/z values to generate a spectrum for each product ions. 

This MS-MS spectrum is usually used to deduce the sequence of a peptide 

(Matthiesen and Bunkenborg 2013). 

3.1.2.3. Proteomic approaches for sequencing and characterisation of 

proteins 

Sequencing of proteins can be accomplished either by analysing proteins using their 

intact from or by digesting them. Although modern MS instruments are still able to 

measure the molecular weight of intact proteins, it is still very difficult to sequence 

them using their intact structure, especially high molecular weight and hydrophobic 

or complex  protein mixtures (Chait 2006). Also, the sensitivity of analysing intact 

proteins is not as high as sensitivity of analysing peptides. For this reason, proteomic 

analysis using digested proteins is more commonly carried out than using intact 

proteins (Feist and Hummon 2015). 

There are three main proteomic approaches to sequence and identify proteins, 

including bottom-up approach, top-down approach and middle-down approach. 

3.1.2.3.1. Bottom-up (BU) approach  

BU approach is the most common technique used to identify proteins and their 

amino acid sequences by digesting proteins into small peptides prior to analysis 

using MS-based instruments. With regard to digestion, the proteins are either  

introduced to enzymatic proteolysis (e.g. Trypsin, Glu-C, Lys-C, Asp-N and 

Chymotrypsin) or chemical proteolysis (e.g. cyanogen bromide) (Kinter and 

Sherman 2005, Liebler 2001) . Each of these proteases can cleave proteins at specific 

amino acid residues. BU is a peptide-based approach for identification of a proteins, 

which means that complete digestion of proteins is ideally required to obtains 
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numerous fragments of peptides with length of ~ 7-20 amino acids, which is the 

ideal length for MS analysis. By this strategy, the identity of a protein is deduced by 

unequivocal detection of peptides that have unique sequences for that protein (Xie, 

Smith and Shen 2012). However, obtaining complete digestion of proteins is not 

straightforward as it depends on the complexity of the sample that will be analysed 

and the abundance of specific amino acid residues in the structure of proteins. For 

example, trypsin, which is the most common protease enzyme used for protein 

digestion in BU approach, cleaves proteins at the carboxyl side (C-terminal side) of 

the lysine and arginine amino acid residues. However, trypsin does not cleave 

proteins if the C-terminal of the lysine and arginine amino acids is followed by 

Proline residues (Olsen, Ong and Mann 2004). Therefore, the number of peptides 

fragments resulting from the digestion of a protein will be based on the number and 

site of lysine and arginine residues of that protein and whether the lysine and 

arginine are linked with Proline. (Tsiatsiani and Heck 2015). As a consequence, 

limited sequence coverage of proteins is a major obstacle in BU approach due to the 

incomplete digestion of proteins, which hampers detection of post-translational 

modifications and isoforms of proteins (Catherman, Skinner and Kelleher 2014). 

3.1.2.3.2. Top-down (TD) approach  

The TD approach is referred to identification and sequencing of proteins using their 

intact structure without introducing to any kind of digestion. The TD approach has 

been found more useful for studying and detecting post-translational modifications 

and isoforms of proteins than BU approach (Savaryn, et al. 2013). However, applying 

MS-based proteomics is relatively limited using a TD approach, although trials have 

been done to develop a realistic method for sequencing and characterising proteins 

using MS-based TD analysis (Toby, Fornelli and Kelleher 2016). 

3.1.2.3.3. Middle-down (MD) approach  

The MD approach is an emerging method for sequencing proteins by combining the 

principles of both BU and TD approaches. MD approach has been suggested and 

invented based on the advantages and disadvantages of BU and TD approaches 

(Garcia 2010). By MD strategy, digested proteins would be analysed instead of intact 

proteins by introducing them to enzymatic and chemical proteolysis as mentioned 

in BU approach. However, in MD approach, incomplete digestion of proteins is 
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typically required, compared with BU where complete digestion of proteins is 

needed. Therefore, the incomplete digestion would produce polypeptides fragments 

with length of ~20-100 amino acids, which are significantly longer than peptides 

resulted in BU approach (Cristobal, et al. 2017). Therefore, the number of peptides 

generated by MD approach would be fewer than the number of peptide produced by 

BU approach, which means that the complexity of the peptides mixture resulted in 

the MD approach would be significantly lower than the peptide mixture resulting 

from the BU approach (Pandeswari and Sabareesh 2019). Thus, the percentage of 

sequence coverage would be increased high enough to identify proteins and 

characterise their post-translational modifications (PMTs) and isoforms using  MD 

compared to the BU approach where detection and identification PMTs and 

isoforms of proteins is very limited (Pandeswari and Sabareesh 2019). 

3.1.2.4. Separation methods of peptides/proteins prior to MS analysis 

Due to the complexity of proteomic samples that include a complex mixture of 

peptides or intact proteins, several methods have been used to reduce the 

complexity of proteomic samples, which allow the MS instruments to analyse 

maximum number of peptides and generate useful information for identifying 

proteins, especially low-abundant proteins (Shi, et al. 2004, Fonslow and Yates Iii 

2009) . The separation methods can be classified into two main methods; gel-based 

and gel-free method. Gel-based methods include one-dimensional and two-

dimensional gel electrophoresis that can separate proteins based on their isoelectric 

points and molecular weights, respectively (Baggerman, et al. 2005). Gel-free 

methods include liquid chromatography methods such as reverse phase high 

performance liquid chromatography (HPLC), ultra-high performance liquid 

chromatography (UHPLC) and multi-dimensional liquid chromatography (Mitulović 

and Mechtler 2006). In liquid chromatography, the degree of separation of peptides 

or intact proteins is based on the features of mobile phase (solvents) and the 

stationary phase (separation column). The mobile phase facilitates elution of 

analytes (peptides or proteins) that are attached to the stationary phase. The 

analyte’s elution by the mobile phase is correlated with the strength of interaction 

between the analytes and the stationary phase (Pandeswari and Sabareesh 2019). 

Thus, the selection of columns and solvents is highly important to achieve great 

separation of complex mixture of peptides or intact proteins. The HPLC method is 
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mostly used in proteomic studies, where the mobile phase or solvents are water, 

acetonitrile and methanol (Ali, et al. 2010). These solvents are compatible to ESI-

MS-MS instruments, and for this reason the HPLC technology has been successfully 

linked with most of ESI-MS-MS instruments, which is denoted as LC-MS or LC-MS-

MS proteomics (Arrivault, et al. 2009). Another method is also used for separation 

peptides or intact proteins, which is called capillary electrophoresis (CE) (Simpson 

and Smith 2005). CE can be classified either gel-based or gel-free methods based on 

several operation modes including capillary gel electrophoresis, capillary zone 

electrophoresis, capillary isoelectric focusing, capillary isotachophoresis and 

capillary affinity electrophoresis (Sun, et al. 2016, Storms, et al. 2004, Nesbitt, Zhang 

and Yeung 2008). 

3.1.2.5. Shotgun and targeted proteomics 

3.1.2.5.1. Shotgun proteomics 

Shotgun proteomics is a discovery-based method that is widely used in proteomic 

studies to acquire a broad overview of the proteins expressed in a sample that would 

be analysed (McDonald and Yates 2002). The shotgun method is broadly utilised as 

a high-throughput tool for biomarker discovery in which potent clinical validation 

may or may not be accomplished. Although the shotgun method is highly efficient in 

identifying hundreds or thousands of proteins in any biological samples, it is rarely 

used to analyse specific molecules within a cell or tissue at different conditions. This 

means that shotgun method is not suitable for hypothesising or answering a specific 

question (Faria, et al. 2017). Rather, the shotgun method has already been designed 

to provide complex answers for somewhat non-specific questions. For example, 

identifying a significant number of proteins that are upregulated and 

downregulated in various experimental conditions can be achieved using the 

shotgun method, however, knowing the main cause for the up- and down-regulation 

of the proteins will be very limited (Martins-de-Souza, et al. 2010, Castagnola, et al. 

2012) . Also, shotgun proteomics has a very limited potential of identifying low-

abundant proteins because it is based on the analysis of fragmented peptides that 

are usually identified relative to the abundance of each protein in a sample, thus only 

the highly enriched proteins will be identified (Wang, et al. 2017b). However, this 

does not mean that the shotgun approach is irrelevant or time-consuming in nature. 
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This approach has opened the doors for other methodologies such targeted 

proteomics that can investigate the proteome in a selective way (Faria, et al. 2017). 

3.1.2.5.2. Targeted proteomics 

Targeted proteomics is a question-based or hypothesis-based method that is widely 

used in proteomic studies to answer specific questions more quickly and more 

accurately than classic shotgun approach (Marx 2013). Targeted approach is mainly 

used to monitor or analyse a selection of proteins that are already known 

beforehand. Therefore, by using a targeted approach, it is compulsory to select 

proteotypic peptides (PTPs) that have unique amino acid sequences which 

constantly determine a specific protein in a given proteome investigated by MS 

(Domon and Gallien 2015). There PTPs play as a marker or signature for the selected 

protein of interest and are tracked throughout the experimental run on MS. Thus, 

the selection of PTPs is the most critical step in the targeted approach, which 

requires in-depth knowledge about the protein of interest (Gallien, Duriez and 

Domon 2011). There are two main strategies used in targeted proteomics including 

selection reaction monitoring (SRM) or multiple reaction monitoring (MRM) and 

parallel reaction monitoring (PRM). In SRM, a panel of peptides is selected to 

quantify the protein of interest and analysed on a mass spectrometer, usually triple 

quadrupole mass analysers in which the first mass analyser is used a mass filter with 

a narrow isolation window to isolate a specific peptide precursor ion generated 

from the selected peptide (Ebhardt 2014). Then the isolated precursor ion is further 

fragmented to generated small fragment ions, and one of the generated fragment 

ions is monitored by the next mass analyser which is set to filter a specific m/z value 

(Picotti and Aebersold 2012a). The double selection of the peptide precursor ion 

and fragment ion by the tandem mass analysers is called a transition process. This 

transition is highly specific and produces highly sensitive measurements for 

proteins of interest. In contrast, PRM method (such as from a Q-TOF instrument) 

operates in a different way where all fragments ions generated from the pre-

selected peptide precursor ion are analysed simultaneously (Borràs and Sabidó 

2017). In PRM method, a peptide precursor ion of interest is filtered and selected by 

a narrow isolation window setting of the first mass analyser. The selected peptide 

precursor ion is then fragmented, and the resulting fragment ions are together 

analysed by the next mass analyser set to screening mode (Bourmaud, Gallien and 
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Domon 2016). Then chromatographic peaks resulted from fragment ions are 

analysed to determine the best fragment ions for peptide identification and 

quantification. Therefore, PRM is more flexible method than SRM because it can 

analyse a broad range of fragment ions  instead of monitoring only one fragment ion, 

and generate highly sensitive and specific data with dynamic range for peptide and 

protein quantification (Rauniyar 2015, Borràs and Sabidó 2017) . Thus, the PRM 

method can be specifically used for monitoring low-abundant proteins (Faria, et al. 

2017). However, the limitation of using targeted proteomics in the clinic is the 

requirement of extremely sensitive and specific biomarkers for targeted analysis 

(Faria, et al. 2017). 

3.1.2.6. Methods of quantifying proteins 

There are two main methods commonly used for protein quantification in MS-based 

proteomics, including label-based and label-free methods. 

3.1.2.6.1.  Label-based method  

Label-based method is a comparison analysis of proteins quantification between 

samples that are labelled with different mass tags which allow detection of proteins 

based on specific change in mass. These tags share the same chemical structure and 

are different in their isotopic affinity (Domon and Aebersold 2010). There are three 

different types of labelling, including metabolic, chemical and enzymatic labelling 

(Zhang, et al. 2010).  

3.1.2.6.1.1. Metabolic labelling  

Metabolic labelling is one of the most favoured method of labelling because samples 

of interest are labelled at the early stage of sample preparation, which leads to 

decrease experimental variabilities between samples (Bantscheff, et al. 2007). By 

metabolic labelling, different samples are introduced to an isotopically defined 

medium containing distinct labels that can incorporate with the proteome of 

samples during the process of protein metabolism. The samples are then equally 

pooled together and analysed on MS (Iliuk, Galan and Tao 2009). This generates two 

forms of each peptide with different isotopic structure, but with identical reaction 

to sample preparation and MS analysis, thus allowing quantification of proteins of 

the labelled samples without affecting their biochemical features (Geiger, et al. 

2011). Initially 15N-modified media was used for labelling, in which all 14N 



128 
 

(nitrogen) isotopes were replaced by 15N isotopes (Oda, et al. 1999). However, using 

this media showed several limitations including partial or inadequate labelling of 

samples and difficulties in data analysis as well as higher costs (Anand, et al. 2017). 

A more effective labelling technique known as SILAC (stable isotope labelling of 

amino acids in cell culture) was developed by Ong et al. (Ong, et al. 2002). SILAC is a 

non-selective method of labelling proteins where heavy isotopes of specific amino 

acids are used as labels. By this technique, two different medium are used to grow 

two different populations of cells in vitro; one medium contains normal (light) 

amino acids and the second contains isotopically-labelled heavy amino acids (Chen, 

et al. 2015). This labelling is achieved by replacing the natural atoms of H, 14N and 
12C to 2H, 15N and 13C, respectively. Leucine, lysine, methionine and arginine are the 

most suitable amino acids have been used for effective isotopic labelling (Mann 

2006). The labelled amino acids can then integrate into the newly synthesised 

proteins of the labelled sample. Then samples are mixed and prepared to be 

analysed by MS. The MS analysis can distinguish between samples by the molecular 

weight of the heavy and light isotopes of the specific amino acids that were used 

during cell culture (Harsha, Molina and Pandey 2008). There are key advantages of 

using SILAC including an effective labelling due to the high integration rate of 

labelled amino acids into the proteome of interest, efficient labelling without any 

chemical manipulation to the samples, and reducing experimental variabilities as 

the samples are labelled in the early steps (Ong, et al. 2006). SILAC has been broadly 

used to study PTMs, protein signalling pathways and enzyme substrates, as well as 

identification of cancer-related biomarkers (Chen, et al. 2015). A major limitation of 

using SILAC is that the number of heavy forms of amino acids used for labelling is 

very limited, so that only 5 different biological states can be analysed within a single 

experiment (Anand, et al. 2017). 

3.1.2.6.1.2. Chemical labelling 

Chemical labelling is also another labelling technique which is mostly used for 

protein quantification. It is a flexible labelling technique as the isotopic labels can be 

selectively introduced into any of desired position in a peptide or a protein of 

interest (Chahrour, Cobice and Malone 2015). Chemical labelling is relatively similar 

to metabolic labelling except that isotopic labels of a peptide or a protein are 

mediated by chemical reactions (Kainosho, et al. 2006). Isotope-coded affinity 
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tagging (ICAT) is of the earliest chemical labelling methods, which has been 

introduced by Gygi et al. (Gygi, et al. 1999). ICAT reagent consists of thiol-reactive 

iodoacetamide group that labels cysteinyl thiols residues in proteins, a linker region 

that contains heavy or light deuterium atoms and biotin tag used for affinity 

purification (Smolka, et al. 2001). The limitation of  ICAT is that the rate of peptide 

recovery during purification  is very low due to the presence of deuterium atoms in 

the linker region (Zhang, et al. 2001). 

There are other techniques of chemical labelling including tandem mass tag (TMT) 

and isobaric tag for absolute and relative quantification (iTRAQ). These techniques 

are amine-based labelling in nature, which target only amine functional group of the 

peptides (Savitski, et al. 2013). Using these techniques, the proteins are essentially 

labelled with chemical groups which are equal in mass (isobaric) and are 

fragmented under the pressure of tandem MS to produce reporter ions in a various 

mass range (Evans, et al. 2012). TMT is designed to analyse a maximum of ten 

samples, whereas iTRAQ allows analysis of up to eight samples in a single 

experiment (Latosinska, et al. 2015, Zhang, et al. 2016) . TMT and iTRAQ have been 

widely used due to their flexibilities of analysing multiple samples with a relative 

accuracy of protein quantification (Huang, et al. 2017). However, there are some 

limitations to using TMT/iTRAQ including the requirement of MS instruments with 

higher resolving powers, higher costs, non-specificity of reporter ions for peptides 

due to the impact of peptide co-isolation process during the MS run, and inaccuracy 

between peptide quantity and identity (Karp, et al. 2010). 

3.1.2.6.1.3. Enzymatic labelling 

Enzymatic labelling is another labelling technique used for protein quantification. 
18O labelling technique is an example of enzymatic labelling which uses protease 

enzymes such as trypsin to integrate two 18O atoms instead of 16O atoms in peptides, 

making a shift in peptides mass (Reynolds, Yao and Fenselau 2002). However,  it is 

not widely used in quantitative proteomics due to instability of enzymatic labels 

(Ramos-Fernandez, Lopez-Ferrer and Vazquez 2007, Zhang, et al. 2013) . 

3.1.2.6.2. Label-free quantitation methods 

Label-free quantitation methods have been widely used in proteomic studies as it 

provides easy options for global analysis of biological samples. Unlike label-based 
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methods, label-free methods allow analysis and comparison of many samples that 

are injected individually into MS (Wang, et al. 2008). Label-free approach is cost-

effective, does not require expensive labelling reagents, and is not time consuming 

as compared to label-based methods (Megger, et al. 2014). All these advantages have 

allowed label-free method of the favoured approaches for large-scale protein 

quantification (Wang, et al. 2008) . Using label-free method, thousands of proteins 

can be identified from even complex samples such as blood, plasma, saliva, urine, 

cell line and tissues. Moreover, label-free approach produces highly sensitive MS 

analysis and is less vulnerable to technical or experimental errors (Megger, et al. 

2013). 

3.1.2.6.2.1. Spectral counting 

Spectral counting that determines the relative abundance of a protein by measuring 

the frequency of peptide identified of a protein. In spectral counting, the amount and  

size of a protein is directly equivalent to frequency of peptide spectra identified that 

belong to a protein (Arike and Peil 2014). Protein abundance index (PAI) is also used 

in spectral counting method to measure the abundance of a protein in a given sample 

(Cutillas and Vanhaesebroeck 2007). PAI is defined by the number of identified 

peptides divided by the number of theoretically observable peptides for each 

protein. However, the spectral counting method is biased for MS analysis due to the 

frequent detection of peptides with various physico-chemical features (Zhang, et al. 

2013).  

3.1.2.6.2.2. Ion intensity  

Ion intensity that measures the MS chromatographic signal intensity of peaks for 

peptides of a protein. This intensity-based method, which is also known as “the area 

under the curve” (AUC), quantifies proteins by integration and measuring of all 

chromatographic peak areas of identified peptides of a protein (Neilson, et al. 2011, 

Podwojski, et al. 2010) . However, several factors should be considered before using 

this method to ensure the accuracy and reproducibility of MS data analysis. These 

factors are co-eluting peptides that can affect peptides retention time, multiple 

signals of the same peptide, MS speed and sensitivity, and background noise due to 

chemical overlapping (Listgarten and Emili 2005, Cui, et al. 2013, Zhang, et al. 2013). 
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3.1.2.6.2.3. Data-dependent acquisition 

Data-dependent analysis or acquisition (DDA) has also been used for protein 

quantification. DDA is a conventional mode of the most tandem MS instruments, 

where the first mass analyser (MS1) is set to run a scan survey for all peptide-

precursor ions  that are eluted from the LC column for multiple cycles (Wu and 

MacCoss 2002). In each cycle, the most abundant ions represented by “LC-MS peaks” 

are then recorded, selected and consecutively isolated for fragmentation by the 

second mass analyser to identify structural features and identity of proteins 

(Bateman, et al. 2014). MS1 quantification can be carried out in two different ways 

based on the method used for chromatogram processing. First, LC-MS feature-based 

MS1 quantification, where every LC-MS peak (feature) is detected and characterised 

from the MS1 data, and then all peaks are annotated using the peptide identifications 

from the MS2 data (Bilbao 2019). Examples of open source software packages 

implementing this method include SuperHirn (Mueller, et al. 2007), VIPER (Monroe, 

et al. 2007) and MzMine-2 (Pluskal, et al. 2010). Second, extracted ion 

chromatograms (XIC or EIC)-based MS1 quantification, this method is targeted 

analysis, where precursor ion signals from each confidently-identified peptide are 

extracted from MS1 data. Then XICs are listed to determine m/z targets of the 

confidently-identified peptides (Bilbao 2019). Skyline software package is used 

process the targeted MS analysis (Pino, et al. 2017, MacLean, et al. 2010) . However, 

DDA method is biased as only abundant peptides are selected for further analysis to 

identify and quantify proteins, whereas low-abundant peptides which may 

represent important low-abundant proteins are excluded from the analysis, thereby 

leading to irreproducible results specially for complex proteomic samples (Bateman, 

et al. 2014). 

3.1.2.6.2.4. Data-independent acquisition 

The limitations of DDA for protein quantification and identification have been 

overcome by the recent developments in hybrid MS instruments and data analysis 

software by which all precursor ions of peptides eluted from the LC-MS are 

fragmented and analysed regardless of their abundance levels and intensities in an 

operation mode called “data-independent acquisition (DIA)” (Hu, Noble and Wolf-

Yadlin 2016). DIA is unbiased method which comprehensively and frequently 

analyses all peptide precursor ions of a given sample in a wide precursor isolation 
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window , generating a complex set of mass spectra (peaks) (Chapman, Goodlett and 

Masselon 2014). Also, DIA provides a broad range of detected peaks (signals) with 

different m/z values of detected ions, and therefore increases the coverage rate of 

peptides and proteins identification with highly sensitive and reproducible results 

(Bilbao, et al. 2015). In addition, the efficient performance of DIA has enabled label-

free shotgun approach to be as a valid alternative to isotope-labelling-based 

methods (Navarro, et al. 2016). The aforementioned successes of DIA has also been 

applied in another more specialised proteomics approach; middle-down approach, 

wherein the size of proteolytic peptides is much larger than those resulting from 

bottom-up approach. Carvalho et al. have developed another version of DIA, which 

is called XDIA (extended data-independent acquisition) for protein quantification 

using middle-down approach. The authors have confirmed that applying XDIA has 

increased the number and accuracy of peptide spectra and improved protein 

sequence coverage using middle-down approach which targets large molecules and 

detects post-translational modifications and various isoforms of proteins (Carvalho, 

et al. 2010). However, one of the considerations of using DIA is the complexity of 

data yielded post MS analysis which contains ions spectra of all detected peptides. 

Accordingly, several informatics acquisitions have been evolved to process these 

sophisticated MS datasets, including SWATH-MS (Gillet, et al. 2012), DIANA 

(Teleman, et al. 2014)and Skyline (Pino, et al. 2017). Another obstacle of DIA in the 

increased probability of interference due to the overlapping of fragments ion 

yielded from co-fragmented precursor ions, which can mislead the identification 

and quantification of proteins (Zhang, et al. 2015). However, several computational 

approaches have been developed to handle this issue to further extend the benefits 

of DIA, including SwathTUNER and NOFI (non-outlier fragment ion) (Bilbao, Lisacek 

and Hopfgartner 2016).  

3.1.2.7. Subcellular fractionation 

The complexity of the proteome within organisms is due to the presence of various 

types of tissues in which each cell undergoes a specific-lineage differentiation and 

thereby acquires a specific functional specialisation. A cell is also 

compartmentalised in nature, which means that each cell contains different 

organelles (subcellular components) performing specific functions within a cell. 

This compartmentalisation provides distinct and appropriate environments for 
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synthesis, localisation and interaction of subcellular proteins (Dreger 2003). The 

proteome of subcellular organelles within a cell is significantly less complex than 

the proteome of whole cells. Thus, this has allowed development different methods 

for Isolation and enrichment of subcellular components of a cell, which is called 

“subcellular fractionation” (Yates Iii, et al. 2005). Subcellular fractionation method 

has been widely used to reduce the complexity of proteomic samples, thereby 

leading to identify and quantify more proteins or interest. Subcellular fractionation 

has also enabled detection of peptides that belong to low-abundant proteins, 

thereby increasing the coverage rate of protein quantification using MS-based 

proteomics (Lee, Tan and Chung 2010). Subcellular fractionation has also enabled 

identification and quantification of plasma membrane proteins which are the key 

target of antibody-based therapies (Leth-Larsen, Lund and Ditzel 2010). There are 

several methods have been developed for subcellular fractionation, including 

differential centrifugation, density-gradient centrifugation, differential detergent 

fractionation, free-flow electrophoresis, immunoaffinity purification and 

fluorescent-assisted organelle sorting (Satori, Kostal and Arriaga 2012). Differential 

centrifugation is one of the conventional methods for subcellular fractionation and 

involves subsequent centrifugation of the cell or tissue homogenate to isolate 

organelles such as nuclei, mitochondria and lysosomes. The isolation or separation 

of organelles in this method is based on variations in size and density of organelles. 

However, the high organelles contamination with poor separation purity is the 

major disadvantage of differential centrifugation (Lee, et al. 2010). Density-gradient 

centrifugation is the most common conventional method for subcellular isolation, 

which separate organelles using various density-gradient media with different 

osmolarities, viscosities and densities. There are many types of media used in this 

method including Ficoll, Percoll, Nycodenz, Metrizamide and Sucrose. Sucrose is the 

most common medium used in this method as it is inexpensive and biologically inert 

(Araùjo, Hube and Stasyk 2008). The separation of organelles in density-gradient 

centrifugation is based on the differences between organelle and medium density 

which is affected by the organelle content and lipid to protein ratio (Graham 2001). 

However, the disadvantages of density-gradient centrifugation are time-consuming 

centrifugation steps and poor isolation purity. To overcome the disadvantages of 

deferential and density-gradient centrifugation methods, differential detergent 
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fractionation (DDF) method has been developed to isolate proteins in their native 

state from four subcellular localisations (cytosolic, membrane, membrane-

associated and nuclear and cytoskeleton proteins) using different detergent-

containing buffers (Abdolzade‐Bavil, et al. 2004, McCarthy, et al. 2005). Free-flow 

electrophoresis (FFE) is an alternative method which has been developed to 

segregate organelles such as peroxisomal membranes, secretory vesicles, plasma 

membrane vesicles and mitochondria (Satori, et al. 2012). By FFE, such organelles 

are separated according to their net isoelectric charges. FFE can also isolate proteins 

in their native state which is ideal for functional proteomic analysis (Weber, et al. 

2004, McDonald, et al. 2006). However, FFE can result in co-migration of organelles 

that have similar isoelectric charges, thereby leading to isolation contamination and 

low isolation purity (Lee, et al. 2010). Immunoaffinity purification and 

immunoprecipitation are robust methods used to isolate organelles based on the 

interaction between antibodies (ligands) that are immobilised on solid plate and 

organelles of interest (targets). This affinity-based method yields high isolation 

purity as the purification process can be repeated for optimal organelle enrichment. 

However, immunoaffinity purification method is expensive and requires more time 

and effort for optimal purification (Fang and Zhang 2008). Fluorescent-assistance 

organelle sorting (FAOS) is a cell sorting-based method which has been used to sort 

and isolate subcellular organelles such as mitochondria, phagosomes, secretory 

granules and endocytic vesicles (Satori, et al. 2012). FAOS requires a well-known 

protein biomarker that is specific for the organelle of interest. This specific 

biomarker must be tagged with green fluorescent protein (GFP) and then 

transfected into cells, enabling cell sorting based on its fluorescence (Cao, et al. 

2008).                   

3.1.3. Aims of this study 
The aim of this chapter is to optimise methods of sample preparation to generate 

global and subcellular proteomic profile of biologically different subsets murine of 

CD4+ T cells for identifying distinct proteins which can distinguish natural and 

induced Tregs from other subsets of CD4+ T cells either individually or in 

combination.  
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The objectives of this chapter are: 

1- Determination of minimum cell number required for the generation of 

quantitative proteomics data using murine T cells. 

2- Develop a suitable cell lysis condition to yield maximum amount of proteins from 

the optimised cell numbers 

3- Optimisation of tryptic digestion conditions for the proteins prior to mass 

spectrometry analysis. 

4- Determine cell sorting parameters for different subsets of CD4+ T cells 

populations including iTregs, naïve nTregs and naïve CD4 T cells. 

5- Optimisation of subcellular fractionation of CD4+ T cells subpopulation prior to 

mass spectrometry-based analysis. 
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3.2. Material and Methods 

3.2.1. Optimisation protocols for global proteomic profiling of 

mouse splenocytes using LC-MS-MS proteomics 

3.2.1.1. Determination of optimal cell number for global MS profiling 

Mouse splenocytes were harvested from the spleen and counted using 

NucleoCounter machine (NucleoCounter® NC-250™, Chemometec). Then, different 

numbers of cells were used as a part of optimisation to determine the best number 

of cells that yields more proteins, including 10x106, 5x106, 2.5x106, 1x106 and 

0.5x106. Cells were centrifuged at 350 x g for 8 min, washed twice using DPBS. Then, 

cell pellets were resuspended and lysed by adding Ericka’s lysis buffer (EB) which 

contains 9.5M urea (Sigma Aldrich), 2% of DTT (0.5M dithiothreitol) and 1% N-

Octyl-Beta-Glucopyranoside. 100 µL of EB were added into samples containing 

10x106 cells, whereas 50 µL of EB were added into the other samples.  MS-SAFE 

Protease and Phosphatase Inhibitor (PI, Sigma Aldrich) was added into cell lysates 

at ratio 1 to 100 dilution (1 µL of PI / 100 µL of EB). Cells were mixed thoroughly by 

vortexing. Cell lysates were sonicated for 5 minutes and placed on ice for other 5 

minutes to ensure complete lysis of cells. Sonication and ice incubation cycles were 

repeated until cells were completely lysed. Bradford protein assay (Dye Reagent 

Concentrate, Bio-Rad, Cat No. 500-0006) was conducted to estimate the protein 

concentration in each cell lysate. 25 ug of proteins were taken from each cell lysate 

for mass spectrometry sample preparation. Prior to trypsinisation, proteins were 

reduced by adding 1 µL of 0.5 M dithiothreitol (DTT, Sigma Aldrich) into protein 

solutions and incubated at 56⁰C for 20 min for reduction. Alkylation of proteins was 

followed by adding 2.7 µL of 0.55 M iodoacetamide (IAA, Sigma Aldrich) and 

incubated at room temperature in the dark for 15 min. After the reduction and 

alkylation, the volume of proteins solutions was increased up to 100 µL by adding 

50 mM of triethyl ammonium bicarbonate (TEAB) solution to reduce the 

concentration of urea in the protein solution below 1 M before trypsinisation. 

Protein digestion was carried out by adding trypsin (Trypsin Gold, Promega, UK) at 

a ratio 1:20 (1 µg trypsin : 20 µg protein) and incubated at 37⁰C with constant mixing 

for 16 h on a Bioer thermomixer. After the trypsinisation, the solutions of digested 

proteins were dried at 45⁰C using vacuum concentrator (Eppendorf). Dried pellets 
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were resuspended in 20 µL of 5% acetonitrile in 0.1% formic acid (LCMS grade, 

Sigma Aldrich, UK) and mixed well by pipetting several times. The resuspended 

samples were incubated at 37⁰C with constant mixing for 5 min and then centrifuged 

at 12000 x g for 3 min. The supernatants of samples were carefully transferred into 

300 µL high recovery liquid chromatography (LC) vials (Chromatography Direct, 

UK) to be analysed using a 6600 TripleTOF mass analyser (SCIEX). Table 1A (shown 

in the appendix) summarises the amount and concentration of reagents that were 

used to prepare samples for proteomic MS analysis. 

3.2.1.2. Effect of RBC lysis on total protein yield and identification 

The results of experiments detailed in section 3.2.1.1 showed that the number of 

proteins identified by MS analysis was very low in all samples irrespective of the cell 

number used for that study. Accordingly, it was hypothesised that the reduction of 

protein identification might due to the presence of red blood cells (RBCs) in murine 

splenocytes. Herein, mouse splenocytes were harvested from the spleen. Then RBCs 

of splenocytes were lysed and eliminated using RBC lysis buffer (BD Pharm LyseTM, 

BD Biosciences, Cat no. 555899) according to the manufacturer’s instructions. 

Subsequently, splenocytes were counted and prepared as per the protocol explained 

in section 3.2.1.1. Table 2A (shown in the appendix) summarises the concentration 

of proteins yielded in each sample, and the amount and concentration of reagents 

that were used to prepare samples for MS analysis.                

3.2.1.3. Optimisation of the volume of cell lysis buffer for improved protein 

recovery 

The results of experiments discussed in section 3.2.1.2 confirmed that the use of RBC 

lysis buffer was beneficial as it increased the number of proteins identified by MS 

analysis. However, the concentration of proteins yielded from cell lysis was not 

improved. To address this, it was suggested to reduce the volume of cell lysis buffer 

(EB) to increase or improve the concentration of proteins in each sample (cell 

lysate). Herein, splenocytes were harvested from the spleen. RBCs were lysed by 

RBC lysis buffer. Then splenocytes were counted and aliquoted into 5 different 

samples based on cell number as shown in table 3A (shown in the appendix). Then 

60 µL, 40 µL, 30 µL, 24 µL and 18 µL of EB were added to lyse samples containing 

10x106, 5x106, 2.5x106, 1x106 and 0.5x106 cells, respectively. Then samples were 
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prepared following the same steps mentioned in section 3.2.1.1. Table 3A (shown in 

the appendix) summarises the concentration of proteins resulted in each sample 

and the amount and concentration of reagents used for samples preparation. 

3.2.1.4. Effect of addition MS-compatible surfactant agent (protease max) on 

total protein yield and identification  

To assess the effect of a surfactant (Protease Max) to enhance protein solubilisation 

and enzymatic performance of trypsin on the identification of proteins, optimised 

experiments carried out in section 3.2.1.3 were repeated with the addition of 1.25 

µL of 1% protease max solution immediately after adding trypsin. The samples were 

further processed following the same protocol mentioned in section 3.2.1.1. Table 

4A (shown in the appendix) illustrates the concentration of proteins resulted in each 

sample and the amount and concentration of reagents used for samples preparation. 

3.2.1.5. Optimisation of enzymatic digestion of total proteins  

To improve the identification of proteins by MS analysis, the enzymatic performance 

of trypsin and trypsin Lys-C was compared in the presence and absence of protease 

max (P.Max). Mouse splenocytes were isolated from the spleen. RBCs were lysed 

using RBCs lysis buffer, splenocytes were counted and aliquoted into 2.5x106 cells 

aliquotes. Samples were processed for MS analysis following the protocol 

mentioned in the previous sections. However, herein, samples were diluted using 

50mM TEAB to reduce the final concentration of urea below 1 M prior to protein 

digestion. Also, two different proteases, trypsin (Sigma Aldrich) and trypsin-Lys-C 

(a mixture of trypsin and Lys-C, Promega, UK) were used to enzymatically digest 

proteins in samples with and without the addition of surfactant (P.Max). In each 

experiment, 4 samples containing the same quantity (25 µg) of proteins were 

prepared. One set of sample was digested with trypsin only, another sample was 

digested with trypsin in addition to P.Max, third set was digested with trypsin-Lys-

C, and the last was digested with trypsin-Lys-C in addition to P.Max. The total 

number of proteins identified by MS analysis was evaluated and compared between 

the 4 samples to determine the best enzymes cocktail for protein digestion by using 

the number of proteins identified as the readout. Table 5A (shown in the appendix) 

outlines the concentration of proteins yielded in each sample in all experiments, and 

the amount and concentration of reagents used for preparation samples.  
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3.2.1.6. Effect of urea concentration on tryptic digestion of total proteins  

To evaluate the impact of urea concentration on tryptic digestion of proteins, 6 

different lysis buffers were prepared and used for cell lysis. In this experiment, 

Ericka’s buffer (EB) and Urea solution buffer were used with titration in the molarity 

of urea in both buffers. The standard Ericka’s buffer which was used in the 

experiments mentioned above contains 9.5 M urea. However, in this section, EB with 

8 M urea and 7 M urea were prepared individually. In addition, urea 9.5 M, 8 M and 

7 M buffers were also prepared separately and used for cell lysis. Herein, samples 

containing 2.5x106 cells were lysed with the prepared buffers. Then they were toped 

up with 50 mM TEAB to reach 200 µL of volume as mentioned in section 3.2.1.5. 

Then samples were further processed for reduction, alkylation and trypsinisation 

following the same protocol mentioned in section 3.2.1.1. Herein, trypsin was only 

used for protein digestion. Table 6A (shown in the appendix) shows a summary of 

the concentration of proteins of each sample, and the amounts and concentrations 

of each reagent used for processing samples.  

3.2.1.7. Effect of peptide clean-up prior to MS analysis on total protein 

identification. 

To assess whether clean-up of peptides prior to MS analysis can efficiently purify 

tryptic peptides with higher recovery rates and improve the identification of 

proteins. Herein, samples were processed as mentioned in section 3.2.1.6. However, 

in this experiment, tryptic peptides of each sample were purified immediately after 

trypsinisation using C18 Hypersep columns (Thermo Scientific, UK) which were used 

to separate tryptic peptides from other interfering contaminants present in the 

digestion solution. Reagents required for the C18 Hypersep columns are as follows; 

releasing solution consists of 95% acetonitrile (ACN) and 0.1% formic acid (FA), the 

binding solution contains 0.1% FA. Labelled C18 columns were placed into 1.5 mL 

centrifuge tubes. C18 columns were then activated by washing with 50 µL of 

releasing solution and centrifuged at 4.5 x g for 45 sec at room temperature. This 

step was repeated three times. Flow-through solution was discarded, and the 

columns were equilibrated with 50 µL of binding solution and centrifuged again at 

the same settings. This step was also repeated three times. C18 columns were placed 

into new 1.5 mL centrifuge tubes to avoid contamination of flow-through solution. 

Then, samples were loaded into the C18 columns. Samples were loaded into the 
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columns in multiple batches; 50 µL of sample each time and centrifuged at 4.5 x g 

for 45 sec. This step was repeated until total volume of sample was completely 

loaded. After loading samples, columns were washed again with 50 µL of binding 

solution and centrifuged three times as mentioned above. C18 columns were then 

placed into fresh Lo-Bind Eppendorf tubes (Eppendorf, UK, Cat No 0030108116). 

Then, samples (peptides fragments) were eluted or released from C18 columns by 

washing with 50 µL of releasing buffer and centrifuged at 4.5 x g for 45 seconds. This 

step was repeated two times to ensure full recovery of samples. After elution, 

samples were dried in Eppendorf vacuum concentrator on V-AQ (vacuum-aqueous) 

setting at 60°C. Dried samples were then resuspended in 15 µL of 5% ACN in 0.1% 

FA solution and incubated at 37°C with constant mixing for 5 min. Then, samples 

were centrifuged at 12000 x g for 3 min. Supernatants of samples were transferred 

into LC (liquid chromatography) tubes for running on MS. Table 7A (shown in the 

appendix) shows a summary of protein concentrations of each sample and the 

concentrations and amounts of reagents used for preparation samples.   

3.2.1.8. Global shotgun proteomic profiling of purified murine T cells 

Mouse T cells were purified from splenocytes using Dynabeads™ Untouched™ 

Mouse T Cells Kit (Invitrogen, Thermo Fisher Scientific, catalog No. 11413 D). T cells 

were counted and aliquoted into several samples, each contains 2.5x106 cells. 

Samples were washed twice with DPBS and centrifuged at 350 x g for 8 min. Then, 

samples were lysed with Ericka’s buffer containing 8 M urea. Protease inhibitor (MS 

Safe Protease and Phosphate Inhibitor, Sigma Aldrich) was added into samples at a 

ratio of 1:100 dilution. Samples were sonicated and incubated on ice three times (5 

min each) to ensure full lysis. The concentration of total proteins in sample was 

measured using Bio-Rad Bradford assay (Dye Reagent Concentrate, Bio-Rad). After 

that, 25 µg of proteins from each sample were transferred into fresh 1.5 mL 

centrifuge tubes. According to the concentration of proteins, samples were topped 

up with 50mM TEAB to reach 200 µL total volume. After that, samples were reduced 

with 1 µL of DTT and incubated at 56°C for 20 min in a shaking thermomixer. The 

samples were then alkylated with 2.7 µL of IAA and incubated at room temperature 

in the dark for 15 min. The total volume of each sample before trypsinisation was 

203.7 µL and the concentration of urea was maintained between 0.49 M and 0.56 M 

prior to digestion to enhance the performance of trypsin. The samples were digested 
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with trypsin at a ratio 1:20 (1 µg trypsin: 20 µg protein) and incubated at 37°C with 

constant mixing for 16 h in a thermomixer. After trypsinisation, peptides of samples 

were cleaned up from interfering contaminants and purified using C18 Hypersep 

columns and prepared for MS analysis as mentioned in section 3.2.1.7. Table 8A 

(shown in the appendix) shows a summary of protein concentrations of each sample 

and the concentrations and amounts of reagents used for preparation samples. 

3.2.2. Optimisation protocols for subcellular proteomic profiling of 

mouse CD4+ T cells using LC-MS-MS proteomics 

3.2.2.1. Optimisation a strategy for sorting a pure population of induced Tregs 

(iTregs) and natural Tregs (nTregs) prior to MS profiling. 

Induced Tregs (iTregs) were generated in vitro as mentioned in chapter 2 (section 

2.2.4). Naïve CD4+CD25- T cells were sorted and rested overnight in complete T cell 

medium at 37⁰C, 5% CO2. A 24-well culture plate was prepared by adding 900 µL of 

complete T cell medium in each well with a hanging cell culture insert After that, 

2.5x105 of sorted naïve CD4+CD25- T cells resuspended in 200 µL of complete T cell 

medium were transferred into each of hanging cell culture inserts. Then, cells were 

activated using Dynabeads™ Mouse T-Activator CD3/CD28 for T-Cell Expansion and 

Activation Kit according to the manufacturer’s instruction with IL-2 (30 U/mL) and 

TGF-β1 (5 ng/mL). The cultures were further incubated for 5 days at 37⁰C, 5% CO2. 

At day 5, cells were harvested, washed with DPBS twice and counted. Prior to sorting, 

0.5x106 of cells were stained with anti-CD4, anti-CD25 and anti-Foxp3 antibodies to 

assess the induction of Foxp3 of iTregs and to gate CD4+CD25++Foxp3+ iTregs based 

on the intensity of CD25 staining.  Herein, the strategy of sorting iTregs was based 

on the intensity of CD25 staining, not on the intensity of Foxp3 staining as the latter 

requires cell fixation and permeabilisation which damages the surface membrane of 

cells. Cells were stained with anti-CD4 and anti-CD25 antibodies for sorting 

CD4+CD25++Foxp3+ iTregs from activated CD4+CD25+Foxp3- using MoFlo XDP cell 

sorter, sorting mode: purify. Cell sorter was set to sort CD4+CD25++Foxp3+ iTregs 

based on the same gate that was used for identifying Foxp3+ iTregs on flow 

cytometry. After sorting, sorted CD4+CD25++Foxp3+ iTregs were rested for three 

hours in complete T cell medium at 37⁰C, 5% CO2. Cells were then centrifuged at 350 
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x g for 8 min and counted. 0.2x106 of iTregs were stained again with anti-CD4, CD25 

and Foxp3 antibodies to assess the purity of iTregs sorting. 

The sorting of nTregs was mainly based on the intensity of CD25 staining. To achieve 

this, naïve CD4+ T cells were purified from splenocytes as mentioned in chapter 2 

(section 2.2.2). purified CD4+ T cells were stained with anti-CD4 and CD25 

antibodies and sorted into two separate populations CD4+CD25- T cells and 

CD4+CD25+ nTregs.  

3.2.2.2. Determination of the number of spleens required to obtain 2.5x106 of 

purely sorted CD4+CD25++Foxp3+ iTregs and CD4+CD25+Foxp3+ natural 

Tregs (nTregs) prior to subcellular fractionation. 

According to the optimised protocol used for global profiling of T cells, 2.5x106 was 

the optimal number of cells for identification higher number of proteins. Therefore, 

to obtain 2.5x106 of purely sorted iTregs and nTregs, splenocytes were harvested 

from two and three spleens in two separate experiments. After harvesting, 

splenocytes were pooled together and processed for isolation CD4+ T cells which 

were then processed for sorting naïve CD4+CD25+ nTregs and CD4+CD25- T cells as 

mentioned above. Then CD4+CD25- T cells were then cultured for generating iTregs 

in vitro as mentioned above.     

3.2.2.3. Optimisation subcellular fractionation of CD4+ T cells using Mem-PER 

Plus membrane protein extraction kit (pilot study). 

Subcellular fractionation of CD4+ T cells was carried out using Mem-PERTM Plus 

membrane proteins extraction kit (Thermo Fisher Scientific, Cat No. 89842) which 

has been designed to isolate and enrich integral membrane proteins and membrane-

associated proteins from cells. Following manufacturer’s instructions, 2x106 of CD4+ 

T cells were harvested and centrifuged at 350 x g for 8 min. The cell pellet was 

washed with 2 mL of cell wash solution which was included in the kit and 

centrifuged at 350 x g for 6 min. After washing, supernatants were carefully 

discarded, and the cell pellet was washed again with 2 mL of cell wash solution and 

centrifuged at 300 x g for 6 min. Following the final wash, 600 µL of permeabilisation 

buffer, which was included in the kit, was added to the cell pellet. Cells were 

resuspended by brief and gentle vortexing. After that, 6 µL of protease inhibitor (MS 

Safe, Sigma Aldrich) was added into the cell suspension at ratio 1 in 100 dilution. 
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The homogenous cell suspension was incubated for 20 min at 4⁰C with constant 

mixing using a rotary mixer. Permeabilised cells were centrifuged at 16000 x g for 

15 min at 4⁰C. The supernatants containing cytosolic or cytoplasmic proteins were 

carefully removed and transferred into a new 2 mL LoBind Eppendorf tube. The 

pellet containing membrane proteins fraction was resuspended with 300 µL of 

solubilisation buffer which was included in the kit to solubilise membrane proteins. 

The solution was mixed well by careful pipetting up and down for 2 min. Then, 3 µL 

of protease inhibitor was added into the protein solution at ratio 1 in 100 dilution. 

The protein solution was incubated at 4⁰C for 60 min with constant mixing. The 

protein solution containing solubilised membrane proteins was centrifuged at 

16000 x g for 15 min at 4⁰C. The supernatants containing membrane and 

membrane-associated proteins were transferred to a new 2 mL LoBind Eppendrof 

tube for further downstream analysis.  

3.2.2.4. Protein quantitation Assay. 

To quantify proteins in the cytoplasmic and membrane fractions enriched from cells, 

PierceTM 660 nm protein assay was carried out according to the manufacturer’s 

instructions. 

To purify and concentrate proteins of the cytoplasmic and membrane fractions 

isolated from the cells, proteins were precipitated using cold acetone. Acetone 

precipitation of proteins was also used to remove all interfering substances and 

detergents included in the permeabilisation and solubilisation buffers, which are 

incompatible with MS analysis. To achieve this, acetone was cooled to -20⁰C for a 

day. Then five times the sample volume of cold acetone (-20⁰C) was added into the 

cytoplasmic and membrane fractions. For cytoplasmic proteins fraction, the 

samples (600 µL volume) were transferred to a new 5 mL LoBind Eppendorf tubes, 

and then 3mL of cold acetone was added into the samples. For membrane proteins 

fraction, the samples (300 µL volume) were transferred to a new 2 mL LoBind 

Eppendorf tubes, and then 1.5 mL of cold acetone was added into the samples. Then 

both membrane and cytoplasmic proteins samples were incubated overnight at -

20⁰C. Samples were then centrifuged at 16000 x g for 30 min at 4⁰C. Supernatants 

were carefully discarded, and the protein pellet was precipitated again by adding 

1.5 mL of cold acetone and 300 µL of nano-pure distilled water to ensure removing 
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all interfering detergents in the protein solution. Proteins samples were then 

incubated for 60 min at -20⁰C. proteins samples were centrifuged at 16000 x g for 

15 min at 4⁰C. the protein pellet was then prepared for downstream process. 

3.2.2.5. Preparation of precipitated cytoplasmic and membrane protein 

samples for MS analysis. 

8 M urea dissolved in nanopore water was prepared. 1%, 0.1% and 0.2% protease 

max surfactant in 50 mM TEAB solutions were prepared. For membrane protein 

samples, the precipitated protein pellet was solubilised by adding 20 µL of 0.2% 

protease max in 50 mM TEAB and 15 µL of 8M urea. Samples were then incubated 

for 60 minutes at 4⁰C with constant mixing using rotary mixer. After the vortexing, 

60 µL of 50mM TEAB were added into samples. The samples were reduced by 

adding 1 µL of 0.5 M DTT into samples, and samples were incubated at 56⁰C for 20 

min. Alkylation steps were performed by adding 2.7 µL of 0.55 M IAA into samples 

which were incubated at room temperature in the dark for 15 min. Then proteins 

were digested by adding trypsin at a ratio 1:20 (1 µg trypsin: 20 µg protein) and 1 

µL of 1% protease max surfactant. Samples were incubated overnight at 37⁰C with 

constant shaking at medium speed (200 rpm) on a thermomixer.  

For cytoplasmic protein samples, the precipitated protein pellet was solubilised by 

adding 20 µL of 0.1% protease max in 50mM TEAB. Samples were then incubated 

for 60 min at 4⁰C with constant mixing by vortexing at 70 rpm. Then 75 µL of 50 mM 

TEAB were added into samples. Samples were then prepared similar to membrane 

proteins samples as mentioned above. Table 3.1 summarise the concentrations and 

volumes of reagents that were used for preparation membrane and cytoplasmic 

protein samples for MS analysis.  

After trypsinisation, samples were dried in an Eppendorf vacuum concentrator on 

V-AQ setting at 60°C. Dried samples were then resuspended in 15 µL of 5% ACN in 

0.1% FA solution and incubated at 37°C with constant mixing for 5 min. Then, 

samples were centrifuged at 12000 x g for 3 min. Supernatants of samples were 

transferred into LC (liquid chromatography) tubes for running on MS.    
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Table 3.1: Summary of in-solution solubilisation and digestion reaction volumes for 
membrane and cytoplasmic proteins. 

Reagents Membrane 
proteins  

Cytoplasmic 
proteins  

0.1% protease max in 50 mM TEAB  - 20 µL 
0.2% protease max in 50 mM TEAB 20 µL - 
8 M Urea 15 µL - 
50 mM TEAB 60 µL 75 µL 
0.5 M DTT 1 µL 1 µL 
0.55 M IAA 2.7 µL 2.7 µL 
Trypsin (1 µg/µL) 1.5 µL 1.5 µL 
1% protease max in 50 mM TEAB 1 µL 1 µL 
Total  101.2 µL 101.2 µL 
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3.3. Results 

3.3.1. Optimisation protocols for global proteomic profiling of 

mouse splenocytes and T cells using LC-MS-MS proteomics 

3.3.1.1. Determination of optimal cell number for global MS profiling  

To determine the minimum cell number required to obtain maximum amounts of 

total proteins in calorimetric protein assay and mass spectrometry-based 

identification, five different cell numbers were tested. Highest amounts of total 

proteins were obtained from samples containing 10x106 cells (mean = 195.3 µg, 

SEM 24.16), compared with samples containing 2.5x106 cells (mean = 42.1 µg, SEM 

7.15), 1x106 cells (mean = 16.8 µg, SEM 1.05) and 0.5x106 cells (mean = 7.5 µg, SEM 

2.81). There was no significant difference in the amounts of total proteins between 

samples containing 10x106 and 5x106 cells (mean = 77.8 µg, SEM 3.56) (figure 3.4 

A) as measured by the protein assay. Samples with 1x106 and 0.5x106 cells were not 

processed for MS analysis as they yielded less than 25 µg of total proteins. However, 

the number of proteins identified by MS analysis was not relatively correlated with 

the number of cells within samples. The number of proteins identified in samples 

with 10x106 cells was between 120 and 806 proteins (mean = 415 proteins, SEM 

158.9), whereas the mean of the number of proteins was 256 (SEM 38.18) and 226 

(SEM 35.44) identified in samples with 5x106 and 2.5x106 cells, respectively (figure 

3.4 B). There was no significant difference in the number of proteins identified by 

MS between samples with 10x106, 5x106 and 2.5x106 cells. These results also were 

seen in the number of distinct peptides and spectra as there was no significant 

difference in the number of distinct peptides and spectra between samples with 

10x106 (mean = 2615 (SEM 878.3) and 5364 (SEM 1631)), 5x106 (mean = 1667 

(SEM 219.3) and 3602 SEM 400.1)) and 2.5x106 (mean = 1534 (SEM 178.2) and 

3469 (SEM 350.7); peptides and spectra, respectively) (figure 3.4 C and D). However, 

compared to samples of 10x106 and 5x106 cells, samples containing 2.5x106 cells 

provided more reasonable results according to their cell number. These results 

confirmed that samples need further optimisation for MS analysis as the number of 

proteins, peptides and spectra identified in all samples was significantly low 

compared to the number of cells especially samples with higher number of cells. 
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Figure 3.4.  Bar graphs showing the amount and total number of proteins obtained from samples containing 
different cell number. (A) The amount of proteins in micrograms yielded from samples containing different 
number of cells. (B) The number of proteins that were identified in samples containing different number of 
cells using LC-MS-MS analysis. (C) The number of distinct peptides that uniquely match or belong to the 
identified proteins. (D) The number of peptides spectra that represent the MS-MS peaks of peptides 
fragments used to identify distinct peptides of proteins. Ordinary one-way ANOVA test was used for 
statistical analysis using GraphPad Prism 8.0.1 software. Four independent biological experiments were 
carried out, (n=4). The statistical analysis was carried out on a limited data set (n=4) and hence is not 
powered adequately. However, the results shown here confirmed the reproducibility and robustness of the 
data.  Bars errors represent the standard error (SE) of the mean. (****; P-value <0.0001, **; p-value <0.0046, 
*; p-value <0.0138). 



148 
 

3.3.1.2. Effect of RBC lysis on total protein yield and identification 

One of the potential problems with using total splenocytes for MS analysis is the 

presence of RBC in the cell preparation which may interfere with cell lysis, protein 

assays and other downstream processing. To improve the identification of total 

proteins by MS, the RBC lysis buffer was used to remove RBCs from splenocytes. The 

results showed that the amounts of proteins yielded after using RBC lysis buffer 

were decreased in samples with 10x106 cells (mean = 147.5 µg, SEM 32.5) and 5x106 

(mean = 52.50 µg, SEM 2.5), whereas the amounts of proteins were significantly 

increased in samples with 1x106 cells (mean = 39 µg, SEM 1) and 0.5x106 (mean = 

32.5 µg, SEM 0.5) (figure 3.5 A), compared to the results in section 3.3.1.1. The 

results also showed that there was no significant difference in the amounts of 

proteins yielded between all samples, especially samples with 5x106, 2.5x106, 1x106 

and 0.5x106 cells as they showed approximately similar values. These results 

suggested that there might be a background noise within samples, which might 

affect the accuracy of proteins quantitation assay. However, the results showed a 

significant increase in the number of proteins, distinct peptides and spectra in all 

samples after using RBC lysis buffer, compared to the results in section 3.3.1.1 where 

samples were processed without using RBC lysis buffer. According to the results, the 

mean of the number of proteins identified by MS was higher in samples with 5x106 

cells (1336, SEM 19) compared to samples with 10x106 (1133, SEM 43), 2.5x106 

(1202, SEM 28.5), 1x106 (473.5, SEM 84.5) and 0.5x106 cells (565, SEM 75) (figure 

3.5 B). Also, the number of distinct peptides and spectra detected by MS was 

proportional to the number of proteins in all samples. The mean of the number of 

distinct peptides and  peptides spectra was higher, of course,  in samples with 5x106 

cells (7250 (SEM 103) and 11463 (SEM 162.5), respectively) compared to other 

samples with 10x106 (6183 (SEM 79) and 9541 (SEM 80)), 2.5x106 (6678 (SEM 

158.5) and 10567 (SEM 250.5)), 1x106 (1821 (SEM 324.5) and 2786 (SEM 496.5)) 

and 0.5x106 (2612 (SEM 347) and 3954 (SEM 525.5), respectively) (figure 3.5 C and 

D). Nevertheless, the number of proteins, peptides and spectra detected by MS was 

not correlated to the number of cells within samples. For example, the number of 

proteins identified in samples with 0.5x106 cells was ~50% less than number of 

proteins identified in samples with 10x106 cells which have 20 times more cells than 
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samples with 0.5x106 cells, although the same amounts of proteins (25 µg) were 

digested from both samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Bar graphs showing the amount and total number of proteins obtained from samples 
containing different cell number after using RBC lysis buffer.  (A) The amount of proteins in micrograms 
yielded from samples containing different number of cells. (B) The number of proteins that were 
identified in samples containing different number of cells using LC-MS-MS analysis. (C) The number of 
distinct peptides that uniquely match or belong to the identified proteins. (D) The number of peptides 
spectra that represent the MS-MS peaks of peptides fragments used to identify distinct peptides of 
proteins. Ordinary one-way ANOVA test was used for statistical analysis using GraphPad Prism 8.0.1 
software. Four independent biological experiments were carried out, (n=4). The statistical analysis was 
carried out on a limited data set (n=4) and hence is not powered adequately. However, the results shown 
here confirmed the reproducibility and robustness of the data. Bars errors represent the standard error 
(SE) of the mean. (*; p-value < 0.0225, **; p-value <0.0044, ***; p-value <0.0006).         
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3.3.1.3. Optimisation the volume of cell lysis buffer for improved protein 

recovery 

To improve the yield of total proteins, samples were lysed with different volumes of 

cell lysis buffer based on the number of cells they contain. The results showed the 

amounts of proteins yielded in all samples were relatively correlated to the number 

of cells after titrating the volume of lysis buffer, compared to the results in section 

3.3.1.2 where there was no significant difference in the amount of proteins obtained 

from samples containing 5x106, 2.5x106, 1x106 and 0.5x106 cells. The results 

revealed that the amount of proteins yielded were higher, of course, in samples 

containing 10x106 cells (mean = 149 µg, SEM 11), compared to samples with 5x106 

(mean = 60 µg, SEM 4), 2.5x106 (mean = 38.3 µg, SEM 2.3), 1x106 (mean = 24.4 µg, 

SEM 1.6) and 0.5x106 (mean = 14.5 µg, SEM 0.8) (figure 3.6 A). 

For proteins identification by MS, the results generally showed an increase in the 

mean of the number of total proteins identified in all samples after reducing the 

volume of lysis buffer during preparation samples, except samples containing 5x106 

cells which showed a reduction in the mean of the number of total proteins (mean = 

1096, SEM 4) compared to the results in section 3.3.1.2. The results also showed that 

samples with 2.5x106 cells specifically had the highest number of proteins (mean = 

1597, SEM 74) identified by MS, compared to samples with 10x106 (mean = 1316, 

SEM 74), 5x10 (1096, SEM 4), 1x106 (979, SEM 8) and 0.5x106 cells (mean = 803, 

SEM 50) (figure 3.6 B). The number of distinct peptides and spectra detected by MS 

analysis was correlated with the number of proteins identified in all samples (figure 

3.6 C and D).  
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Figure 3.6. Bar graphs showing the amount and total number of proteins obtained from samples 
with different cell number which were lysed using different volumes of cell lysis buffer. (A) The 
amount of proteins in micrograms yielded from samples containing different number of cells. (B) 
The number of proteins that were identified in samples containing different number of cells using 
LC-MS-MS analysis. (C) The number of distinct peptides that uniquely match or belong to the 
identified proteins. (D) The number of peptides spectra that represent the MS-MS peaks of peptides 
fragments used to identify distinct peptides of proteins. Ordinary one-way ANOVA test was used for 
statistical analysis using GraphPad Prism 8.0.1 software. Four independent biological experiments 
were carried out, (n=4). The statistical analysis was carried out on a limited data set (n=4) and hence 
is not powered adequately. However, the results shown here confirmed the reproducibility and 
robustness of the data. Bars errors represent the standard error (SE) of the mean. (*; p-value < 
0.0275, **, p-value <0.0099, ***; p-value <0.0004, ****; p-value < 0.0001).         

  



152 
 

3.3.1.4. Effect of addition MS-compatible surfactant agent (protease max) on 

the protein identification 

To achieve higher identification of proteins by MS, protease max (P.Max), a 

surfactant agent compatible with MS, was added into samples immediately after 

addition of trypsin to enhance the enzymatic function of trypsin. The results showed 

a reduction in the number of total proteins identified by MS in samples containing 

10x106 and 2.5x106 cells, whereas samples with 5x106, 1x106 and 0.5x106 cells 

showed a slight increase in the number of total proteins (figure 3.7 A), compared to 

the results shown in section 3.3.1.3. Despite of the reduction and increase in the 

number of proteins after using P.Max , samples with 2.5x106 cells provided the 

highest number of proteins ( mean = 1467, SEM 35.5) compared to samples with 

10x106 (mean = 1172, SEM 52), 5x106 (mean = 1160, SEM 30.5), 1x106 (mean = 

1121, SEM 41) and 0.5x106 (mean = 820, SEM 44) (figure 3.7 A). The number of 

distinct peptides and spectra was also correlated with the number of proteins 

(figure 3.7 B and C). 
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Figure 3.7. Bar graphs showing the total number of proteins, distinct peptides and peptides spectra 
identified in samples with different cell number which were digested in the presence of surfactant protease 
max. (A) The number of proteins that were identified in samples containing different number of cells using 
LC-MS-MS analysis. (B) The number of distinct peptides that uniquely match or belong to the identified 
proteins. (C) The number of peptides spectra that represent the MS-MS peaks of peptides fragments used to 
identify distinct peptides of proteins. Ordinary one-way ANOVA test was used for statistical analysis using 
GraphPad Prism 8.0.1 software. Four independent biological experiments were carried out, (n=4). The 
statistical analysis was carried out on a limited data set (n=4) and hence is not powered adequately. 
However, the results shown here confirmed the reproducibility and robustness of the data. Bars errors 
represent the standard error (SE) of the mean. (*; p-value < 0.0202, **, p-value <0.0069, ***; p-value 
<0.0004). 
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According to the results shown in sections 3.3.1.1, 3.3.1.2 and 3.3.1.3, samples with 

2.5x106 cells showed a significant increase in the number of total proteins identified 

by MS analysis and were corresponding to the optimisation of experimental 

protocols as mentioned in sections 3.3.1.1, 3.3.1.2 and 3.3.1.3 (table 3.2). Also, the 

mean of the amounts of total proteins yielded from samples with 2.5x106 was in 

range between 34.8 and 45.25 µg (range 10.45, SEM 5.23), which means that there 

were no significant variations in the amounts of proteins yielded from 2.5x106 cells 

in different experiments. For these reasons, 2.5x106 cell number was selected as an 

optimal cell number for optimising a protocol for global proteomic profiling of 

mouse T cells. 

Table 3.2: Summary of results representing the mean of the number of proteins identified 
by MS in samples containing different number of cells.  

Optimisation methods The mean of the number of identified 
proteins by MS analysis  

Lysis Buffer RBC lysis 
Buffer 

Digestion  0.5x106 1x106 2.5x106 5x106 10x106 

Ericka’s NO Trypsin - - 226.3 255.5 415 

Ericka’s Yes Trypsin 565 473.5 1202 1336 1133 

Ericka’s 

 (low volume) 

Yes Trypsin 803 979 1597 1096 1316 

Ericka’s   

(low volume) 

Yes Trypsin+P.Max 820 1121 1467 1160 1172 

        

3.3.1.5. Optimisation of enzymatic digestion of total proteins 

To achieve higher identification of proteins by MS, two different proteases, trypsin 

and trypsin-Lys-C, were used for protein digestion with and without addition of 

P.Max. The results showed that the number of proteins identified by MS analysis was 

significantly higher in samples in which proteins were digested using trypsin alone 

(mean = 1484, SEM 58.5) compared to samples in which proteins were digested 

using trypsin-Lys-C alone (mean = 1249, SEM 20.5) and trypsin-Lys-C with addition 

of P.Max (mean = 1044, SEM 26.8) (figure 3.8 A). The results also showed that there 

was no significant difference in the number of proteins identified between samples 

digested with trypsin and samples digested with trypsin in addition to P.Max (mean 
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= 1265, SEM 15.9), however samples digested with trypsin showed the highest 

number of identified proteins (figure 3.8 A). The results also showed a reduction in 

the number of proteins identified in samples which were digested in the presence of 

P.Max, compared to samples digested in the absence of P.Max (figure 3.8 A). The 

number of distinct peptides and spectra was also correlated with the number of 

proteins (figure 3.8 B and C). 

Figure 3.8. Bar graphs showing the total number of proteins, distinct peptides, peptides spectra 
identified from protein samples that were digested in different conditions. (A) The number of 
proteins that were identified in samples in which proteins were digested using different 
proteases with and without addition of P.Max. (B) The number of distinct peptides that uniquely 
match or belong to the identified proteins. (C) The number of peptides spectra that represent 
the MS-MS peaks of peptides fragments used to identify distinct peptides of proteins. Ordinary 
one-way ANOVA test was used for statistical analysis using GraphPad Prism 8.0.1 software. Four 
independent biological experiments were carried out, (n=4). The statistical analysis was carried 
out on a limited data set (n=4) and hence is not powered adequately. However, the results shown 
here confirmed the reproducibility and robustness of the data. Bars errors represent the 
standard error (SE) of the mean. (**, p-value <0.0083, ****; p-value <0.0001). 
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3.3.1.6. Effect of urea concentration on tryptic digestion of total proteins 

To assess the impact of urea concentration on the enzymatic performance of trypsin, 

cells were lysed using two different lysis buffers; Ericka’s buffer (EB) and urea buffer. 

Both buffers were prepared using different concentrations of urea. The results 

showed that there was no significant difference in the amounts of proteins yielded 

in samples lysed with different lysis buffers containing different concentrations of 

urea including EB 9.5 M, EB 8 M, EB 7 M, urea 9.5 M, urea 8 M and urea 7 M (figure 

3.9 A). 

The results also showed that the number of proteins identified in samples that were 

lysed by EB containing 8 M of urea concentration was the highest (mean = 1927 

proteins, SEM 28.5) compared to other samples lysed with different lysis buffers 

(figure 3.9 B). The results showed that the number of identified proteins was 

significantly higher in samples lysed by EB with different concentrations of urea 

than samples lysed by urea buffer with different concentrations, especially at 

concentration 9.5 M and 7 M of urea (figure 3.9 B). The mean of number of proteins 

identified in samples lysed with EB 9.5 M and EB 7 M was 1650 (SEM 20) and 1429 

(SEM 78.5), respectively, whereas it was 1089 (SEM 84) and 972 (85.5) in samples 

lysed with urea 9.5 M and 7 M, respectively (figure 3.9 B).  However, although the 

difference in the number of identified proteins between samples lysed with EB 8 M 

(mean = 1927 proteins, SEM 28.5) and urea 8 M (mean = 17347, SEM 67) was not 

significant, samples lysed by EB 8 M yielded more proteins than samples lysed with 

urea 8 M. Moreover, according to the results, the concentration 8 M in both buffers 

was sufficient to yield more soluble proteins from cells than concentrations 9.5 M 

and 7 M. The number of distinct peptides and spectra was also correlated with the 

number of proteins (figure 3.9 C and D).            
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Figure 3.9. Bar graphs showing the amount and total number of proteins obtained from samples lysed 
with different lysis buffers containing different concentrations of urea (in molarity (M)).  (A) The 
amount of proteins in micrograms yielded from samples that were lysed with different lysis buffers 
containing different concentrations of urea (in molarity (M)). (B) The number of proteins that were 
identified in samples lysed with different lysis buffers containing different concentration of urea using 
LC-MS-MS analysis (C) The number of distinct peptides that uniquely match or belong to the identified 
proteins. (D) The number of peptides spectra that represent the MS-MS peaks of peptides fragments 
used to identify distinct peptides of proteins. Ordinary one-way ANOVA test was used for statistical 
analysis using GraphPad Prism 8.0.1 software. Four independent biological experiments were carried 
out, (n=4). The statistical analysis was carried out on a limited data set (n=4) and hence is not powered 
adequately. However, the results shown here confirmed the reproducibility and robustness of the data. 
Bars errors represent the standard error (SE) of the mean. (*; p-value < 0.0275, **, p-value <0.0099, 
***; p-value <0.0004 ****; p-value < 0.0001). 
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3.3.1.7. Effect of peptide purification prior to MS analysis on total protein yield 

and identification 

To assess the impact of peptide purification prior to MS analysis on identification of 

total proteins. In this experiment, tryptic peptides were purified and isolated from 

contaminants (such as urea) within digestion solution prior to MS analysis using C18 

Hypersep columns. In general, the results showed that the number of proteins 

identified by MS analysis was significantly increased after using peptides 

purification columns compared to the results mentioned in section 3.3.1.6 where 

samples were analysed on MS without peptide purification (figure 3.10 A). The 

increase in the number of proteins was in range between 116 and 628 more proteins 

identified in samples after using C18 columns compared to samples prepared 

without using C18 columns (section 3.3.1.6) (figure 3.10 A). The results also showed 

that samples lysed with EB containing 8 M urea concentration yielded the highest 

number of proteins (mean = 2427, SEM 133.5) identified after using C18 columns 

compared to other samples that were lysed by different lysis buffers (figure 3.10 A). 

The results also showed that the number of distinct peptides was significantly 

increased after peptides purification in samples that were lysed with EB 9.5 M, urea 

9.5 M, EB 8 M, urea 8 M and urea 7 M lysis buffer. However, there was no significant 

increase in the number of peptides before and after purification in samples lysed 

with urea 7 M lysis buffers (figure 3.10 B). For peptide spectra, the results showed 

that there was a significant increase in the number of peptides spectra after peptide 

purification in samples that were lysed with EB 9.5 M, urea 9.5 M and EB 7 M only, 

compared to other samples lysed with EB 8 M, urea 8 M and urea 7 M (figure 3.10 

C). These results confirmed the efficiency of the C18 columns in peptide purification 

which could enhance the identification of proteins.    
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Figure 3.10. Bar graphs showing the total number of proteins, distinct peptides and peptides spectra 
identified pre- and post-purification of peptides derived from samples lysed with different lysis buffers. 
(A) The number of proteins that were identified before and after purification of peptides using LC-MS-MS 
analysis. (B) The number of distinct peptides that uniquely match or belong to the identified proteins. (C) 
The number of peptides spectra that represent the MS-MS peaks of peptides fragments used to identify 
distinct peptides of proteins. Ordinary one-way ANOVA test was used for statistical analysis using 
GraphPad Prism 8.0.1 software. Four independent biological experiments were carried out, (n=4). The 
statistical analysis was carried out on a limited data set (n=4) and hence is not powered adequately. 
However, the results shown here confirmed the reproducibility and robustness of the data. Bars errors 
represent the standard error (SE) of the mean. (*; p-value < 0.0275, **, p-value <0.0099, ***; p-value 
<0.0004 ****; p-value < 0.0001). 
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3.3.1.8. Global shotgun profiling of purified murine T cells 

To create a library of proteins derived from mouse T cells using MS shotgun analysis, 

mouse T cells were isolated from splenocytes and lysed by EB 8 M lysis buffer to 

extract proteins. Proteins were digested and processed prior to MS analysis 

according to the optimised protocol mentioned in section 3.2.1.8. The results 

showed that the number of proteins identified from 2.5x106 of purified T cells was 

in range between 1053 and 1232 at 1% of false discovery rate (FDR) and 50% of 

confidence score based on four separate experiments as shown in table 3.3. Proteins 

showing confidence score ≥ 50% were defined as “confident proteins”. Functional 

information and subcellular location of proteins were retrieved from Uniprot 

database, an online resource of protein sequence and functional information 

(www.uniprot.org).  Figure 3.11 shows an example of how biological information of 

identified proteins was acquired from Uniprot database online.  

 

Table 3.3: Summary of the results of the total number of proteins, distinct peptides and 
peptides spectra that were identified from global proteomic profiling of murine T cells in 
four separate experiments. 

Experiment Cell Type Cell No. Proteins 
No. 

Distinct peptides Spectra 

1 Purified T 
cells 

2.5x106 1225 6723 12940 

2 Purified T 
cells 

2.5x106 1101 5553 11585 

3 Purified T 
cells 

2.5x106 1232 6795 12907 

4 Purified T 
cells 

2.5x106 1053 5254 11009 

 

For the first experiment, the results showed that the total number of proteins 

identified at 1% FDR was 1225. 272 (22.2%) of them showed confidence score 

≥50%, whereas 953 (77.8%) of proteins had confidence score < 50%. Of 272 

confident proteins, 177 proteins (14.45% of total) were cytoplasmic and nuclear, 

while 95 (7.75%) proteins were identified as membrane proteins. 52 (4.24%) of 

membrane proteins were characterised as plasma membrane proteins or cell 

http://www.uniprot.org/
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surface membrane proteins, whereas the remaining 43 (3.51%) were characterised 

as organelles membrane proteins (Figure 3.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the second experiment, the results showed that the total number of proteins 

identified at 1% FDR was 1101. Out of which 265 (24.07%) showed confidence 

score ≥ 50%, whereas 836 (75.93%) of proteins had confidence score < 50%. Of 265 

confident proteins, 171 proteins (15.53% of total) were cytoplasmic and nuclear, 

Figure 3.11. An example of Bar graph showing subcellular locations of 226 confident proteins, which 
was obtained from Uniprot database. Membrane proteins highlighted by Red rectangle can be sorted 
by Uniprot into different subcellular locations of membrane-bound proteins including plasma 
membrane proteins and intracellular membrane proteins (organelles membrane and mitochondrial 
membrane).   
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while 94 (8.54%) proteins were identified as membrane proteins. 54 (4.91%) of 

membrane proteins were characterised as plasma membrane proteins or cell 

surface membrane proteins, whereas the remaining 40 (3.63%) were characterised 

as organelles membrane proteins (Figure 3.12). 

In the third experiment, the results showed that the total number of proteins 

identified at 1% FDR was 1232. 289 (23.46%) of them showed confidence score ≥ 

50%, whereas 943 (76.54%) of proteins had confidence score < 50%. Of 289 

confident proteins, 187 proteins (15.18% of total) were cytoplasmic and nuclear, 

while 102 (8.28%) proteins were identified as membrane proteins. 56 (4.55%) of 

membrane proteins were characterised as plasma membrane proteins or cell 

surface membrane proteins, whereas the remaining 46 (3.73%) were characterised 

as organelles membrane proteins (figure 3.12). 

In the last experiment, the results showed that the total number of proteins 

identified at 1% FDR was 1053. 226 (21.46%) of them showed confidence score ≥ 

50%, whereas 827 (78.54%) of proteins had confidence score < 50%. Of 226 

confident proteins, 147 proteins (13.96% of total) were cytoplasmic and nuclear, 

while 79 (7.50%) proteins were identified as membrane proteins. 45 (4.27%) of 

membrane proteins were characterised as plasma membrane proteins or cell 

surface membrane proteins, whereas the remaining 34 (3.23%) were characterised 

as organelles membrane proteins (figure 3.12). 

According to the results of four experiments mentioned above, the percentage of 

plasma membrane proteins was in range between 4.24% and 4.91% in samples that 

were prepared using the optimised protocol detailed in section 2.3.1.8. 

Identification of proteins that are exclusively expressed on the plasma membrane 

was relatively limited compared to other proteins (cytoplasmic and nuclear). 

Therefore, it was suggested to attempt subcellular fractionation to specifically 

enriched membrane-bound proteins. The overall results were summarised in figure 

3.12. 
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3.3.2. Optimisation protocols for subcellular proteomic profiling of 

mouse CD4+ T cells using LC-MS-MS proteomics 

3.3.2.1. Optimisation a strategy for sorting a pure population of induced Tregs 

(iTregs) and natural Tregs (nTregs) prior to MS profiling. 

The sorting of iTregs was mainly based on the intensity of CD25 staining. The results 

showed that over 90% of cells with higher intensity of CD25 expression (> log101) 

were positive for Foxp3 expression and defined as “pure iTregs population 

(CD4+CD25++Foxp3+)” (figure 3.13 A), whereas cells with intensity of CD25 lower 

than log101 were mixed populations of CD4+CD25+Foxp3+ and CD4+CD25+Foxp3- T 

cells (figure 3.13 A). The percentage of pure iTregs (gate R3) for sorting was in range 

between 20% and 23% of total activated CD4+CD25+ T cells, whereas the percentage 

Figure 3.12. Pie of Pie graphs showing the percentages of proteins identified from global profiling of 
purified murine T cells based on their confidence score and subcellular locations in four separate 
experiments. EXP: experiment, Conf: Confidence rate of identification, Cyto: Cytoplasmic, Nuc: Nuclear. 
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of total iTregs induced from activated CD4+CD25+ T cells was between 50% and 55% 

(Figure 3.13 A). Figure 3.15 B showed the gating strategy for sorting the pure iTregs 

population from total activated CD4+CD25+ T cells using MoFlo XDP cell sorter. The 

results showed that the purity of iTregs sorting was in range between 90% and 92%, 

which means that 90-92% of sorted CD4+CD25++ T cells positive for Foxp3 

expression based on the gating strategy which was followed (figure 3.13 B). The 

percentage of iTregs purity was significantly increased from 50-55% before sorting 

to 90-92% after sorting (figure 3.13 C). 

The sorting of naïve nTregs was also based on the expression of CD25. The results 

showed that the purity of sorting naïve nTregs from total purified CD4+ T cells was 

99.9%, which means that 99.9% of nTregs of total CD4+ T cells were effectively 

sorted (figure 3.14 A) following the optimised gating strategy (figure 3.15 A). The 

results also showed that 98% of sorted CD4+CD25+ nTregs were positive for Foxp3 

expression (figure 3.14 A). Similar results were obtained for sorting CD4+CD25- T 

cells as the purity of sorting was also 99.9%. after sorting, naïve CD4+CD25- T cells 

were completely negative for CD25 expression, confirming the effectiveness of the 

optimised gating strategy (figure 3.14 A). The results also showed that the 

percentage of purification of nTregs and CD4+CD25- T cells was significantly 

increased from 13% to ~100% and from 84% to ~100%, before and after sorting, 

respectively (figure 3.14 B). 
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Figure 3.13. Gating strategy for sorting a pure population of iTregs. (A) Flow cytometry density plots 
showing the gating strategy for sorting a pure population of iTregs from total activated CD4+CD25+ T 
cells. Gate R3 represents CD4+CD25++Foxp3+ iTregs (22.82% of total activated CD4+CD25+ T cells) that 
were selected for sorting based on the intensity of CD25 staining at log101. Gate N represents 
CD4+CD25+Foxp3+ iTregs (26.13%) that were mixed with CD4+CD25+Foxp3- T cells (gate S (46.99%). 
Gates R3 and N represent the percentage of total iTregs (48.95%) induced from the total activated 
CD4+CD25+ T cells. Gate S represents the percentage of activated CD4+CD25+ T cells (46.99%) that 
were not converted to iTregs. All gates were gated on live CD4+CD25+ T cells (gate L).  the percentage 
of total Foxp3+ iTregs (gate R3 and N) induced from total activated CD4+CD25+ T cells (gate L). (B) 
Flow cytometry density plots showing the percentage of Foxp3+ iTregs (R3 (92%)) sorted from 
CD4+CD25++ T cells based on the intensity of CD25 staining. (C) Bar graph representing the percentage 
of iTregs purification before and after cell sorting. Unpaired T test was used for statistical analysis 
using GraphPad Prism software 8.0.1. Three independent biological experiments were carried out 
(n=3). The statistical analysis was carried out on a limited data set (n=3) and hence is not powered 
adequately. However, the results shown here confirmed the reproducibility and robustness of the 
data. Bars errors represent the standard error (SE) of the mean. (***; p-value < 0.0002).     
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Figure 3.14. Gating strategy for sorting a pure population of naïve CD4+CD25- T cells and naïve 
CD4+CD25+Foxp3+ nTregs. (A) Flow cytometric density plots showing the gating strategy for sorting naïve 
CD4+CD25- T cells and CD4+CD25+ nTregs from total population of purified naïve CD4+ T cells. Gate L represents 
live CD4+ T cells. Gate R14 represents naïve CD4+CD25- T cells. Gate R3 represents naïve CD4+CD25+ nTregs. 
Both R14 and R3 were gated on gate L. Gate D represents the percentage of Foxp3+ expression gated on the 
sorted naïve CD4+CD25+ nTregs. Gate Q represents the percentage of Foxp3+ expression gated on the sorted 
naïve CD4+CD25- T cells. (B) Bar graph showing the percentage of purification of both naïve CD4+CD25- T cells 
and CD4+CD25+ nTregs before and after cell sorting. Four independent biological experiments were carried out, 
(n=4). The statistical analysis was carried out on a limited data set (n=4) and hence is not powered adequately. 
However, the results shown here confirmed the reproducibility and robustness of the data. Bars errors 
represent the standard error (SE) of the mean. (*; p-value < 0.019, ***; 0.0009). 2way-ANOVA test was usded 
for statistical analysis using GraphPad Prism software 8.0.1. 
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Figure 3.15. Density plots showing the gating strategy that was followed for sorting CD4+ T cell subsets. 
(A) The gating strategy for sorting naïve CD4+CD25- T cells (gate R14) and naïve CD4+CD25+ nTregs (gate 
R3) from total population of purified naïve CD4+ T cells. (B) The gating strategy for sorting CD4+CD25++ 
iTregs (gate R3) from total population of activated CD4+CD25+ T cells. All gates were gated on gates R1 
and R2 which represent total live cells and total singlets cells, respectively. Density plots were taken 
from cell sorting software (Summit 5.4). 
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3.3.2.2. Determination of the number of spleens required to obtain 2.5x106 of 

purely sorted CD4+CD25++Foxp3+ iTregs and CD4+CD25+Foxp3+ natural 

Tregs (nTregs) prior to subcellular fractionation. 

Despite the high purity of sorting, the number of iTregs and nTregs recovered after 

sorting was very low and insufficient for subcellular fractionation. For instance, the 

pure population of iTregs represented only 20-23% of total activated CD4+ T cells at 

50% of total iTregs induction, which theoretically means that ~ 12.5x106 of 

activated CD4+ T cells are required to obtain 1x106 of purely sorted iTregs. For this 

reason, the number of spleens was increased to obtain enough number of cells after 

sorting for subcellular fractionation. The results showed that the mean of number 

of sorted iTregs and nTregs derived from one spleen was 0.53x106 each. Whereas 

the number of sorted iTregs and nTregs was significantly increased to 1.3x106 and 

1.4x106 after processing two spleens. The highest number of purely sorted iTregs 

and nTregs obtained was 2.6x106 and 2.4x106, respectively, after processing three 

spleens (figure 3.16).   

        

       

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Bar graph showing the cell number of purely sorted nTregs and iTregs derived from different 
number of spleens. 2way ANOVA test was used for statistical analysis using GraphPad Prism 8.0.1. Three 
independent biological experiments were carried out, (n=3). The statistical analysis was carried out on a 
limited data set (n=3) and hence is not powered adequately. However, the results shown here confirmed the 
reproducibility and robustness of the data. Bars errors represent the standard error (SE) of the mean. (*; p-
value < 0.025, **; p-value 0.0016).  
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3.3.2.3. Subcellular fractionation of CD4+ T cells using Mem-PER Plus 

membrane protein extraction kit (pilot study). 

A pilot study was conducted to assess the efficiency of the Mem-PER Plus extraction 

kit for subcellular fractionation of CD4+ T cells. The results showed that the 

percentage of total purified membrane proteins was significantly increased using 

the fractionation kit. The results showed that the percentage of membrane proteins 

identification was significantly increased to 57% (mean) using the fractionation kit 

compared to the whole cell lysate protocol (section 3.3.1.8) where only ~ 8% 

(mean) of total membrane proteins were identified (figure 3.17). The results also 

showed a significant increase in the identification of plasma membrane proteins 

specifically; as 26% (mean) of plasma membrane proteins were identified using 

subcellular fractionation, whereas only 4.5% (mean) of plasma membrane proteins 

were identified using whole cell lysate without fractionation (figure 3.17). 

Subcellular location and functional information of identified membrane proteins 

were obtained from Uniprot database. Figure 3.18 displays an example of how total 

membrane proteins were searched and sorted using Uniprot database.  

 

 

 

 

 

 

 

Figure 3.17. Bar graph showing the percentage of identification of total membrane and plasma membrane-
bound proteins using two different approaches including whole cell lysate and subcellular fractionation. 
Four independent biological experiments were carried out, (n=4). The statistical analysis was carried out 
on a limited data set (n=4) and hence is not powered adequately. However, the results shown here 
confirmed the reproducibility and robustness of the data. Bars errors represent the standard error (SE) of 
the mean. (***; p-value < 0.0007, **; p-value < 0.0016). 2way ANOVA test was used for statistical analysis 
using GraphPad Prism 8.0.1.   
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Figure 3.18. An example of Bar graph showing subcellular locations of 647 confident proteins, which was 
obtained from Uniprot database. 352 (54% of total confident proteins) membrane proteins highlighted by Red 
rectangle were sorted by Uniprot into different subcellular locations of membrane-bound proteins including 
plasma membrane proteins (26%) and intracellular membrane proteins (31%) (organelles membrane and 
mitochondrial membrane).   
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3.3.2.4. Protein quantitation Assay. 

The limitation of using the Mem-PER Plus membrane protein extraction kit was that 

the enriched cytoplasmic and membrane proteins were resuspended in a high 

volume of permeabilisation buffer (600 µL) and solubilisation buffer (300 µL), 

respectively. Therefore, the results of protein assay showed that the concentration 

of both cytoplasmic and membrane proteins was too low and even out of the 

experimental linear range of the protein assay. As a result, it was suggested to 

concentrate the proteins using acetone precipitation and subsequent resuspension 

in a small volume buffer prior to mass spectrometry. 

3.3.2.5. Acetone precipitation of proteins. 

The cytoplasmic and membrane proteins were precipitated using cold HPLC-grade 

acetone to concentrate proteins and replace permeabilisation and solubilisation 

buffers with MS-compatible reagents. Proteins pellet was clearly seen from the both 

proteins fractions, however the protein assay was not carried out after acetone 

precipitation to avoid losing more proteins. Therefore, subcellular proteomic 

profiling was carried out based on the number of cells not on the concentration of 

proteins. The number of cells used in each group was uniform and all samples were 

uniformly processed thereafter.    
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3.4. Discussion 
Advances in the MS-based proteomics instrumentations have enabled a global 

identification of proteins from complex biological samples, thereby elucidating the 

overall picture of the expression of functional proteins and their post-translational 

modifications that regulate protein cellular interactions and functions within a cell 

or tissue (Aebersold and Mann 2016). In contrast, although the development of 

transcriptomic profiling technologies, especially RNA-sequencing (RNA-Seq), has 

provided invaluable insights into discovering networks regulating gene expression 

at the RNA level, most of transcriptomic data have failed to translate into the clinic. 

These failures can be attributed to the poor correlation of transcriptome data to the 

protein expression. This highlights the importance of proteomic analysis as a 

powerful technology to investigate and discover the proteins as biomarkers and also 

druggable targets in the clinical settings (Kumar, et al. 2016). 

In the last decade, several studies have been carried out to the study the 

development and differentiation of human and murine CD4+ T cells using high 

throughput transcriptomic and proteomic analysis (Elo, et al. 2010, Tuomela, et al. 

2012, van den Ham, et al. 2013, Tuomela, et al. 2016, Proserpio, et al. 2016, 

Mohammad, et al. 2018, van den Ham, et al. 2019). However, all of these studies were 

focused only on the differentiation of T helper 1 (Th1), T helper 2 (Th2) and Th17 

cells. Limited number of studies has analysed the development and function of Tregs 

using global proteomic analysis. Procaccini et al. have carried out a global 

comparative proteomic analysis between human CD4+CD25hi Foxp3+ CD127- Tregs 

and CD4+ CD25-Foxp3- T conventional (T conv) cells at the metabolic level. The 

authors have identified a set of distinct metabolic proteins which have a pivotal role 

in the proliferation of Tregs and T conv cells (Procaccini, et al. 2016). Another study 

by Duguet et al. has applied global label-free quantitative proteomics to identify a 

proteomic signature of both CD4+Foxp3+ Tregs and CD4+Foxp3- T cells. The authors 

have identified a specific nuclear protein called “Themis-1” that regulates the 

suppressive function of Tregs (Duguet, et al. 2017). A recent study by Cuadrado et 

al. has been conducted to identify human Tregs cell identity at the molecular levels 

using label-free quantitative proteomics in a combination with transcriptomic 

analysis. The authors have compared naïve subpopulations of CD4+CD25hiCD45RA+ 
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Tregs and CD4+CD25-CD45RA+ T conv cells with CD4+CD25hiCD45RA- effector Tregs 

and CD4+CD25-CD45RA- memory T conv cells and identified distinct proteins that 

govern and maintain cellular identity of each of the subpopulations (Cuadrado, et al. 

2018). Another recent study by Schmidt et al. has also applied global transcriptomic 

and proteomic analysis to study the differentiation of human induced Tregs (iTregs) 

from naïve CD4+CD25- T cells based on the induction of the expression of Foxp3 at 

different time points. The authors have found a panel of 37 distinct nuclear 

molecules that function as regulators of Foxp3 (Schmidt, et al. 2018). A final recent 

study by Mohammad et al. has analysed and compared the proteome signature of 

murine Th17 and iTregs during their differentiation in vitro from naïve CD4+CD62L+ 

T cells using global label-free proteomic profiling. The authors have only focused on 

the metabolic pathways that are implicated in the differentiation of Th17 and iTregs 

(Mohammad, et al. 2018). 

However, all of these studies mentioned above have not analysed the difference in 

the phenotypic features between natural Tregs (nTregs) and induced Tregs (iTregs) 

at the level of cell-surface membrane proteins, particularly plasma membrane 

proteins that are the main targets in the development of therapeutic agents, using 

subcellular fractionation. To date, no studies have reported the identification of 

membrane biomarkers that can distinguish induced Tregs from other subsets of 

CD4+ T cells, therefore it is an area which required further investigation. 

Identification of such biomarkers would help facilitate the development of 

therapeutic agents that can selectively target iTregs which could be generated as a 

result of highly inflamed tumour microenvironment. 

Accordingly, in this study, two different methods; global (total cell lysate) and 

subcellular fractionation were optimised to identify membrane biomarkers that 

could differentiate iTregs from other subpopulations of CD4+ T cells using a state-

of-the-art MS-based instrumentation TripleTOF 6600 mass spectrometer with 

SWATH-MS acquisition, SCIEX. The novelty of this study is represented by 

optimising a protocol for subcellular fractionation of membrane and cytoplasmic 

proteins derived from five different subpopulations of CD4+ T cells for label-free 

quantitative proteomic analysis. 
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The results of optimisation of global proteomics profiling showed that the total 

number of proteins identified from whole cell lysate containing 2.5x106 T cells was 

in range between 1053 and 1232 at 1% FDR. Out of which, the total number of 

membrane proteins with confidence score ≥ 50% was in range between 79 (7.5%) 

and 102 (8.3%) (n=4), respectively. The percentage of plasma membrane proteins 

identified was in range between 4.2% and 4.9% from the total number of proteins. 

These results were not sufficient to meet the main aim of this stud as the 

optimisation of proteins isolation using whole cell lysate lysed by Erika’s or urea 

buffer has failed to purify sufficient percentage of membrane proteins. There are 

several limitations associated with the purification of plasma membrane proteins 

including low recovery rate, protein insolubility and hydrophobicity (Orsburn, 

Stockwin and Newton 2011). These limitations could justify the low percentage of 

membrane proteins identified by the global whole cell lysate protocol. As a result, 

subcellular fractionation was approached to overcome the limitation of the whole 

cell lysate method for isolation membrane proteins.  

As mentioned in the introduction (section 3.1.2.7), there are several methods for 

subcellular fractionation such as density-gradient centrifugation with sucrose 

medium as a common conventional method. However, some of these methods 

require a long processing with multiple centrifugations that might result in the loss 

of proteins during the isolation process. Also, the number of cells (2x106) from 

which membrane proteins were isolated has put another barrier for the selection of 

an appropriate method for the subcellular fractionation. For these reasons, the 

Mem-PERTM Plus membrane proteins extraction kit was selected for the isolation of 

membrane and cytoplasmic proteins from CD4+ T cells since it has been optimised 

for isolation membrane and cytoplasmic proteins in 2 hours using permeabilisation 

and solubilisation buffers. The time required for processing samples was of the main 

aims for isolation membrane proteins from in vitro cultured cells, especially induced 

Tregs, to prevent experimental variations in the processing of samples.  This kit was 

the most appropriate among other commercially available kits since it has been 

optimised to extract both membrane and cytoplasmic proteins from 5x106 T cells, 

whereas other kits require at least 10x106 or more for extraction membrane 

proteins which is 5 times higher than the cell number used in this study. 
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The results showed that the mean of the percentage of membrane proteins 

identified following subcellular fractionation was significantly increased to 57% 

compared to the results of whole cell lysate where the mean of the percentage of 

membrane proteins was only 8%. The results also revealed that the mean of the 

percentage of the plasma proteins was significantly increased to 26% of the total 

proteins identified following subcellular fractionation, while it was only 4.5% using 

the protocol of whole cell lysate. These results were relatively satisfactory since only 

2x106 cells were processed for the isolation of membrane proteins.  

In summary, in this chapter, a subcellular fractionation method has been 

successfully optimised to isolate membrane proteins from 2x106 of murine CD4+ T 

cells for label-free quantitative proteomic analysis. 57% of membrane proteins and 

26% of plasma membrane proteins were successfully identified from 2x106 cells. 

These results are sufficient to conduct a comprehensive quantitative proteomic 

profiling of five different subpopulations of murine CD4+ T cells using LC-MS-MS and 

SWATH-MS proteomics which will be discussed in more details in the next chapter 

(chapter 4). 
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Chapter 4.  

Identification, selection and verification of novel 
membrane markers of natural and induced T 
regulatory cells 
 

4.1. Introduction 
T regulatory cells (Tregs) play a pivotal role in maintaining immune tolerance by 

eliminating autoreactive T cells that induce immune response against self-tissues. 

However, in cancer, Tregs play a detrimental role by inhibiting the proliferation and 

activity of CD8+ effector T cells, thereby promoting the tumour progression and 

metastasis. The presence of tumour-infiltrating Tregs in the tumour 

microenvironment is of main obstacles for successful immunotherapy (Liu, 

Workman and Vignali 2016b). It has been proposed that the tumour-infiltrating 

Tregs might be nTregs which are recruited into the tumour microenvironment or 

iTregs that are developed from circulating naïve CD4+CD25- T cells (Chaudhary and 

Elkord 2016, Deng 2018). To date, distinct biomarkers that can differentiate 

between thymic-derived natural Tregs(nTregs) and peripheral-derived induced 

Tregs (iTregs) are still required to be identified for specifically targeting iTregs. This 

chapter will discuss the process of identification and verification of biomarkers 

using SWATH-MS proteomics. 

4.1.1. SWATH-MS based proteomics 
SWATH-MS (sequential window acquisition of all theoretical mass spectra) 

acquisition was initially developed to process the complicated datasets yielded by 

data independent acquisition (DIA)-MS analysis. SWATH-MS acquisition combines 

the high reproducibility and sensitivity of a DIA-MS approach and a targeted data 

extraction strategy to read out the complex datasets of fragments ions (Gillet, et al. 

2012) (figure 4.1).  
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Figure 4.1. Data Dependent versus Data Independent versus Selected Reaction Monitoring.  A comparison 
between the three different strategies for quantitative identification of proteins. DDA is biased untargeted 
acquisition that is widely used in conventional proteomics. MRM/SRM is targeted strategy used in targeted 
proteomics which is used to selectively analyse proteins of interest. Targeted proteomics require prior 
knowledge about the protein of interest; therefore, it is not suitable for biomarker discovery despite of its high 
sensitivity and accuracy. SWATH-MS has been developed to combine the features of conventional proteomics 
in terms of biomarker discovery with unlimited identification of proteins and the feature of targeted 
proteomics by which SWATH-MS allows to selectively analyse the identified proteins in a targeted data 
processing and analysis. Image was taken from Sciex.com website. Copyright permission was obtained from 
AB Sciex team.   
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The original framework of SWATH-MS acquisition consisted of 32 sequential, 

slightly overlapping precursor isolation windows with isolation width of 25 m/z 

each. These windows were constructed to cover the mass range 400 – 1200 m/z 

(figure 4.2). 

The key principle of SWATH-MS is to obtain optimal correlation between precursor 

and fragment isotopes peaks at any time they elute from LC. This is achieved by 

setting consecutive isolation windows with (+1 m/z) overlap between windows to 

Figure 4.2.  Q1 Isolation Strategy in SWATH.  The width of the SWATH or Q1 window in blue has a correlation 
with the specificity of the analysis.  In a fixed SWATH window strategy, the smaller SWATH, window the 
more specific (fewer different peptides will be fragmented) the analysis will be and vice-versa.  Sensitivity 
of the analysis directly correlates with the cycle time (how long the instrument takes to fragment all the 
SWATH windows) and accumulation time (how long the instrument dwells on fragmenting each packet of 
precursor ions (contained in one SWATH window).  These can be optimised depending on the 
chromatographic conditions of the analysis, for analyses where each peptide peak from the chromatographic 
column is around 20 seconds wide, then approximately 2-3 seconds cycle time would be optimal to get 
enough data points for quantitation across a peak.  Typical accumulation times would be 25-50 msec. . Image 
was taken from Sciex.com website. Copyright permission was obtained from AB Sciex team.   
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ensure the transfer of any given precursor ions in at least one window. More 

recently SWATH methodologies have been optimised to use a higher number of 

variably sized windows (typically 100 windows), with larger windows in peptide 

sparse m/z regions and smaller windows over the m/z range where more peptides 

exist in the sample (figure 4.2). 

 

Figure 4.3. Schematic representation showing the workflow of SWATH-MS acquisition. In SWATH-MS mode, once 
peptides become ionised by the ion source, they enter the first mass analyser (quadrupole Q1) which scans and records 
the m/z values of eluted peptides. Ions of peptides within a “SWATH window” are then fragmented (second quadrupole 
or Q2/collision cell) to produce small fragment ions that enter the second mass analyser (TOF) which records the m/z 
values of the fragment ions with respect to the retention time and their intensity. By plotting the fragment ions within a 
SWATH-MS window over time,  specific ions spectra (coloured fragments) can be deconvoluted and assigned to a 
“parent” or precursor ion (peptide), based on the theory that the same type of molecule eluting off the chromatographic 
column at the same time will share the same peak apex.  These peptide ion fragments can then be matched to sequences 
and retention times using a pre-generated spectral or ion library derived by more standard Information/Data Dependent 
Acquisition (IDA/DDA) mode. This figure was adaptive from (Ludwig, et al. 2018). 
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SWATH-MS acquisition can also deal with complex samples in which many peptides 

of different size are able to co-elute simultaneously from the LC in a process called 

“coelution”. These co-eluting peptides are then differentially selected in the 

precursor ion selection window and undergo co-fragmentation by the scheme of 

SWATH-MS acquisition, generating multiplexed and complicated spectra of 

fragment ions (Ludwig, et al. 2018) as schematically represented in figure 4.3. To 

handle this issue, a novel data analysis approach has been proposed by Gillet et al., 

which is based on peptide centric scoring that requires previous information of a 

peptide of interest. This is called “peptides query parameters (PQPs) which can be 

acquired from previously generated spectral libraries (Gillet, et al. 2012). PQPs 

include the sequences of peptides that belong to proteins, the optimal or dominant 

precursor ion m/z values of peptides, four to six fragment ions with highest m/z 

values and intensities, precursor and fragment ions charges, types of fragment ions 

and normalised retention time of both precursor and fragment ions (Collins, et al. 

2017). The primary strategy of SWATH-MS as a targeted data extraction method 

using information from spectral libraries has been modified, automated and 

improved by other tools such as OpenSWATH and SWATHProphet which accurately 

identifies and quantifies peptide fragment ions and automatically uncovers and 

removes interfering precursor ions (Röst, et al. 2014, Keller, et al. 2015). The main 

advantage of SWATH-MS acquisition is its ability to quantitatively analyse peptides 

covering thousands of proteins with a high consistency and accuracy. It is perfectly 

tuned for projects that require proteomic analysis of a large number of samples with 

more accuracy and reproducibility (Ortea, et al. 2016). However, there are two main 

drawbacks of SWATH-MS. First, it is still significantly less sensitive in peptide 

quantification compared to the conventional methods of targeted proteomics (SRM 

and PRM) which are the best option for quantifying low abundant proteins. Second, 

SWATH-MS, until recently required a prerequisite spectral library and/or PQPs for 

peptides and proteins quantification, which adds additional effort to the data 

analysis  (Schmidlin, et al. 2016).  While SWATH/DIA data can now be searched 

directly against known proteomes by various software in a way similar to IDA/DDA 

data (PEAKS Studio X from Bioinformatic Solutions Inc,  Spectronaut Pulsar from 

Biognosys  AG) it is more optimal and much faster to reduce the search space with a 

reduced list of  peptide and peptide fragments corresponding to  proteins at known 
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retention times in the mass spectrometer’s acquisition file.  This is termed a spectral 

library.  The most basic spectral library contains the precursor ion m/z (Q1 m/z or  

peptide ion), the fragment m/z (Q3 m/z corresponding to the peptide 

sequence/amino acids), retention time of the peptide, and the protein accession it is 

part of.  A spectral library may also contain other optional information such as 

charge state, intensity, modifications etc.  The key point to remember if searching 

using a spectral library – if the protein/peptide is not in the library, then no 

quantitative data can be determined for that peptide/protein.  It is therefore of 

paramount importance to have as comprehensive a spectral library as possible.  To 

this end there are various projects, such as the SWATHAtlas project at the Institute 

of Systems Biology, Seattle, USA that are generating large high quality spectral 

libraries that are publically available (http://www.swathatlas.org/) to complement 

locally generated libraries from the same samples that are being quantitified.  This 

is useful as the nature of SWATH/DIA means it can be inherently more sensitive than 

traditional IDA/DDA workflows which alone may not generate a good quality 

comprehensive library. 

4.1.2. Biomarker validation – journey toward the clinic 
The evolution of candidate biomarkers undergoes rigorous steps in order to be 

clinically approved. The first step is pre analytical validation which focuses on 

preparation and processing of samples that will be tested using a proposed assay. 

Several factors can affect the preparation of samples including time and storage 

conditions between sample collection and processing, the efficiency of reagents 

used for sample processing and the time of sample processing (Henry and Hayes 

2012). The second step is analytical validation which tests the technical efficiency of 

the biomarker assay through assessing sensitivity, specificity, limit of detection, 

linearity and potency of the assay. In addition to the accuracy and reproducibility of 

the biomarker assay (Masucci, et al. 2016). The final step is clinical validation which 

assesses the clinical validity and utility of the biomarker. To achieve this, several 

parameters must be measured including clinical sensitivity and specificity, false 

positive and false negative values as well as relative risk vales of the biomarker 

(Dobbin, et al. 2016). 

http://www.swathatlas.org/
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4.1.3. Proteomics biomarker pipeline: from discovery to the clinic 
The validation of proteomic biomarkers is a step-wise process consisting of long-

term distinct steps (figure 4.4). First, the discovery or screening step where 

candidate biomarkers are identified using shotgun proteomics. This step is usually 

carried out on small number of samples in which proteins will be extracted and 

analysed by LC -MSMS proteomics. Two main methods are used to quantify proteins 

in samples including label based and label free methods which have been mentioned 

in chapter 3 (section 3.1.2.6) (Surinova, et al. 2010). Second, the verification step by 

which proteins with high fold change values between the samples are selected for 

verification using targeted proteomics analysis. This step requires more samples to 

be analysed than the first step (Hathout 2015).  Different methods can be used for 

targeted proteomics analysis including SRM MS and MRM MS (mentioned in chapter 

3, section 3.1.2.5.2) and SWATH-MS. The final step is the validation of candidate 

biomarkers in the clinic. In the validation step, large cohort of samples is needed to 

assess the clinical validity and utility of the biomarker (Parker and Borchers 2014). 

Due to these long, expensive and uncertain steps, a large number of proteomics 

biomarkers has failed to reach the final stage of clinical validation (Chauvin and 

Boisvert 2018).   

 

4.1.4. Methods for biomarker verification 

4.1.4.1. Targeted proteomics 

SRM (Selected Reaction Monitoring, also known as MRM, multiple Reaction 

Monitoring) is one of the LC-MS-MS targeted proteomics methods that have been 

Figure 4.4. Schematic steps for the development of proteomics biomarkers. LC-MS-MS: liquid chromatography- 
tandem mass spectrometry, LFQ: label-free quantification, LBQ: label-based quantification, MRM: multiple 
reaction monitoring, SRM: selected reaction monitoring, SWATH: sequential window acquisition of all theoretical 
fragment ion spectra. This figure was adapted from  (Chauvin and Boisvert 2018) and (Parker and Borchers 
2014).     



183 
 

developed complementary to untargeted shotgun proteomics. SRM has substantial 

potential to close the chasm between biomarker discovery and the translation to 

clinical use (Harlan and Zhang 2014). It involves simultaneous targeted analysis of 

peptides that play as surrogates for the protein targets of interest which are usually 

selected from discovery proteomics assays. SRM based assays are highly specific, 

accurate and they can be multiplexed assays in which enormous number of peptides 

can be quantified in one assay (Thomas and Zhang 2016). However, SRM assay have 

shown some challenges including the detection sensitivity for the targeted proteins, 

establishment of a standardised methods for samples preparation and maintaining 

reproducibility of targeted peptides (Thomas and Zhang 2016, Picotti and Aebersold 

2012b). Also, SRM requires tremendous optimisation for selecting the optimal 

ionised peptides that carefully represent the protein of interest, assessing linearity 

and quantitative dynamic range coverage of targeted peptides (Hathout 2015). 

SWATH-MS, which is not considered as targeted proteomics approach, but is 

targeted data analysis method, has developed with potential to overwhelm some of 

SRM challenges. SWATH-MS is a powerful method for biomarker verification as a 

broad range of identified peptides that uniquely represent the identity of a protein 

can be selected for further analysis to measure the fold change of a proteins between 

samples (Thomas and Zhang 2016, Narasimhan, et al. 2019). 

4.1.4.2. Enzyme linked immunosorbent assays (ELISA) 

ELISA technique is the most common assay for biomarker validation as it can 

efficiently measure many samples simultaneously with low experimental variation. 

This technique is mainly used to validate secreted proteins (Katsila, et al. 2014, 

Chauvin and Boisvert 2018). As antibody based technique, ELISA requires highly 

specific antibodies that bind with high affinity to the target biomarker to assess the 

reliability and accuracy of the biomarker assay (del Campo, et al. 2015). Four 

different assays of ELISA are available including direct, indirect, sandwich and 

competitive ELISA. Among these assays, sandwich ELISA is the most accepted assay 

used in biomarker verification and validation as it is highly specific and sensitive 

(Aydin 2015). By this assay, the target biomarker will be detected by two different 

antibodies; capture and detection, where each antibody is specific for a particular 

epitope of the target biomarker (Aydin 2015). However, for numerous candidate 
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biomarkers, commercially specific antibodies are not available and required to be 

developed initially in order to design a new ELISA assay. The development of a novel 

ELISA assay entails an attentive design to provide more accurate measurements for 

the target biomarker (Kelley and DeSilva 2007). The workflow for designing ELISA 

assay includes antibody design, ELISA development, assay validation and clinical 

assessment. The most important step is the antibody design which requires optimal 

selection of the epitope (unique peptides) of the candidate biomarker detected in 

the proteomics discovery stage (Cox, et al. 2004). Selection the optimal epitope 

improves the specificity and sensitivity of the developed antibody and therefore 

increases the robustness of the biomarker assay. Thus, it is essential to have 

information about biological traits of the protein (marker) of interest, including its 

3D structure, binding sites, hydrophobicity and post translational modifications. For 

examples, if the selected epitope of the protein of interest belongs to a highly 

glycosylated or hydrophobic portion of the protein, it may not be appropriate for 

ELISA as the target epitope can be masked by native conditions (Ramos-Vara 2005, 

del Campo, et al. 2015). 

4.1.4.3. Flow cytometry 

Flow cytometry (FC) is a powerful method that is widely used in verification and 

clinical validation of new biomarker. FC is used to assess the phenotypic and 

functional features of cells and quantify large number of cells by assessing their 

subsets percentage, distribution, activation status and other cellular functions 

(Baumgarth and Roederer 2000). Different assays can be carried out using FC, 

including immunophenotyping, intracellular staining, cell cycle, cell proliferation, 

apoptosis and phosphor flow assays. These applications enable FC to have more 

advantages over other similar assays such as ELISA and ELISPOT (enzyme linked 

immunospot) which measures only the total amount of secreted proteins or 

cytokines and detects a cell that secretes a specific protein or cytokine, respectively 

(Millán and Brunet 2015). In oncology, immunophenotyping is widely used in 

clinical laboratories for diagnosis and classification of various hematologic 

malignancies and leukaemias. The availability of clinically useful antibodies has 

enabled profiling complex immunophenotypic signatures. In addition to the 

advances in FC multicolour instrumentations that allow profiling co expression of 

different cell surface markers or cytokine receptors in a single experiment, 
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facilitating identification phenotypic signatures of specific subpopulations of cells 

(Maecker, McCoy and Nussenblatt 2012). Metrock et al. (Metrock, et al. 2017) have 

demonstrated the clinical importance of immunophenotyping as a non-invasive 

procedure for monitoring and diagnosing paediatric patients who are suspected to 

have acute leukaemia. The authors confirmed that immunophenotyping by FC could 

be more sensitive and specific for detecting the residual tumour cells after 

chemotherapy than bone marrow aspiration which is an invasive procedure 

(Metrock, et al. 2017). FC can also be used to predict the prognosis of many cancers 

by analysis the enrichment of T cells in the peripheral blood or tumour sections of 

patients. For example, in melanoma, low baseline of myeloid derived suppressor 

cells (MDSCs) and Tregs frequency, and high absolute eosinophil counts has been 

found associated with better outcome in patients who received ipilimumab 

(Martens, et al. 2016). Besides immunophenotyping, intracellular staining is an 

essential method used to assess functional pathways operating in the cytoplasm of 

a specific cell population. In immunology, intracellular staining is mainly used to 

detect expression of functional cytokines which are produced by a specific cell 

population of immune cells during an immune response. For instance, in organ 

transplantation, intracellular staining has been used to assess the production of 

interleukin 2 (IL 2), IL 10 and interferon gamma (IFN γ) as candidate biomarkers to 

predict the outcome of tissue grafting (Benítez and Najafian 2008). Akoglu et al. have 

found that IL 2 secreting CD8+ T cells were significantly enriched at the site of 

rejected liver tissue in patients who underwent liver transplantation, confirming 

that IL 2 production by CD8+ T cells could be as a biomarker for acute tissue rejection 

after organ transplantation (Akoglu, et al. 2009). Millán et al. have also identified 

that the percentage of IFN γ secreting CD4+ and IFN γ/IL 2 secreting CD8+ T cells was 

significantly increased in the peripheral blood of patients who experienced tissue 

rejection after receiving long term immunosuppression treatments for stable liver 

transplantation. The authors have suggested that soluble concentration and the 

intracellular expression of IL 2 and IFN γ could be used as predictive biomarkers of 

the risk of T cell mediated tissue rejection (Millán, et al. 2010). However, despite the 

advances in the application of FC, this technique has several limitations. First, 

complexity of optimisation the panel of fluorochrome conjugated antibodies which 

requires a careful multicolour compensation between different fluorochromes to 
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prevent signal overlapping between antibodies. Second, lack of method standards 

and external quality controls which are still needed for improving analysis and 

reporting of FC data and minimising subjectivity in the analysis of FC data (Millán 

and Brunet 2015). 

4.1.4.4. Bioinformatics  

The biological data generated from high throughput omics approaches such as 

proteomics for the development of clinical biomarkers have become significantly 

complex and exceeded the potential of conventional data analysis (Luscombe, 

Greenbaum and Gerstein 2001). Bioinformatics has developed in the past years and 

played an essential role in biomarker discovery and validation. It is a 

multidisciplinary field combining biology, computational science, mathematics and 

statistics to deduce knowledge from biological omics data (Mount and Pandey 2005). 

Database resources, computational algorithms and statistical models are usually 

involved in the framework of bioinformatics to efficiently manage, process and 

analyse the complex biological data (Huang, Sherman and Lempicki 2008). For 

instance, proteomics approaches integrated with bioinformatics tools have 

markedly promoted the discovery of new novel serum biomarkers to detect cancer 

(Ueda, et al. 2010). 

4.1.4.4.1. Artificial neural networks (ANN) as a tool of bioinformatics 

ANNs are a form of machine learning approaches and have been initially developed 

to determine a panel of biomarkers based on their high predictive performance 

(Lancashire, Rees and Ball 2008a). The ANNs are often used to model complex 

biological datasets such as gene and protein expression datasets based on predictive 

performance and predictive test error. The architecture of ANNs is derived from the 

workings of human brain, which consists of an artificial network of computational 

elements (neurons) that are mathematically interconnected to perform the learning 

process (Zafeiris, Rutella and Ball 2018). The principle of ANNs is to create multiple 

models based on a stepwise approach to predict a distinct panel of biomarkers that 

can differentiate between various samples within a dataset (Lancashire, Rees and 

Ball 2008b). The schematic workflow of the ANNs stepwise modelling approach is 

shown in figure 4.5. Due to the complexity of proteomics data, ANNs have been used 
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to analyse proteomics data in order to identify and verify a panel of novel 

biomarkers based on their predictive performance (Swan, et al. 2013).  

 

 

 

 

 

 

 

 

 

 

 

4.1.5. Aims of this study 
The aim of this chapter is to generate proteomic profiles to enable discovery of 

biomarkers (differentially expressed proteins) of induced Tregs, which can 

differentiate them from natural Tregs and other subpopulations of CD4+ T cells. 

The objectives of this chapter are: 

1. Confirm purified distinct populations of induced and natural Tregs and other 

control populations. 

2. Generate a list of all proteins and peptides identified in all Treg populations 

which can be used as a Spectral Library (ion library). 

3. Generate quantitative SWATH MS profiles for subpopulations of Tregs. 

4. Process data to identify differential biomarkers of iTregs. 

5. Pathway analysis of differentially expressed proteins. 

6. Verification and validation of identified biomarkers using bioinformatics 
tools and flow cytometry. 

Figure 4.5. The schematic workflow of the ANNs stepwise modelling approach. This 
figure was adaptive from (Lancashire, Rees and Ball 2008b). 
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4.2. Materials and Methods 

4.2.1. Proteomic profiling of mouse CD4+ T cells using mass 

spectrometry 
Five different subpopulations of CD4+ T cells were purified and sorted to create a 

library of subcellular proteins of CD4+ T cells, including naïve CD4+CD25 Foxp3  T 

cells, naïve CD4+CD25+Foxp3+ nTregs, activated (stimulated) CD4+CD25+Foxp3+ 

nTregs, activated (stimulated) CD4+CD25+Foxp3  T cells and activated (stimulated) 

CD4+CD25++Foxp3+ iTregs. Five separate replicates (samples) were processed from 

each of CD4+ subpopulations, each replicate contained 2x106 cells. Cytoplasmic and 

membrane proteins were isolated from each sample using the Mem PERTM Plus 

membrane proteins extraction kit as mentioned in chapter 3 section (3.2.2.3). Then 

proteins were precipitated using cold acetone (HPLC grade) as mentioned in section 

(3.2.2.4). Then protein samples were processed for MS analysis as mentioned in 

section (3.2.2.5) by the proteomics facility in the John van Geest Cancer Research 

Centre at Nottingham Trent University.  Cytoplasmic and membrane protein 

samples of 25 replicates were processed and digested simultaneously to minimise 

experimental variations between samples. Table 4.1 shows a summary of the 

subpopulations of CD4+ T cells and their culture conditions which were prepared for 

proteomic profiling. 

Table 4.1:  A summary of details of the CD4+ T cells subsets that were processed for 
proteomic profiling. Samples were processed to separate cytosolic and membrane fractions. 

CD4+ subsets Culture condition No. of 
cells 

No. of 
replicates 

Naïve CD4+CD25- Foxp3-    2x106 5 

Naïve CD4+CD25+ Foxp3+ nTregs   2x106 5 

Activated CD4+CD25+ Foxp3+ nTregs + CD3/CD28 beads + IL 2 (30 
U/mL) 

2x106 5 

Activated CD4+CD25- Foxp3- + CD3/CD28 beads + IL 2 (30 
U/mL) 

2x106 5 

Activated CD4+CD25++Foxp3+ iTregs + CD3/CD28 beads + IL 2 (30 
U/mL) + TGF β1 (5 ng/mL) 

2x106 5 
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4.2.2. Proteomic data generation, processing and identification of 

differentially expressed proteins 
4 μL of each sample was injected onto an Eksigent ekpert nanoLC 400 system 

(Eksigent 425 pump and autosampler) via a trapping column (YMC Triart-C18 trap 

column 300 μm ID, 0.3 × 5 mm) using mobile Phase A; 0.1% formic acid, B; 

Acetonitrile with 0.1% formic acid; at 10 μL/min mobile phase A for 2 min before a 

valve switch and gradient elution onto the analytical column (YMC Triart C18 150 × 

0.3mm ID, 3 μm).  The LC was hyphenated to a SCIEX TripleTOF 6600 mass 

spectrometer via the Duospray Source using a 50 μm electrode.  The instrument was 

set in positive mode +5500V. 

All samples were analysed both by SWATH (Data Independent Acquisition, to 

generate quantitative data) mode and by IDA (Information or Data Dependent 

Acquisition, DDA, for the generation of a list of identified proteins and peptides to 

create a spectral or ion library). The following linear gradients were used: for IDA, 

mobile phase B increasing from 2% to 30% over 68 min; 40% B at 72 min followed 

by column wash at 80% B and re-equilibration (87 min total run time). For SWATH, 

3-30% B over 38 min; 40% B at 43 min followed by wash and re-equilibration as 

before (57 min total run time). IDA acquisition mode was used with a top 30 ion 

fragmentation (TOFMS m/z 400-1250; product ion 100-1500) followed by 15 sec 

exclusion using rolling collision energy, 50 ms accumulation time; 1.8 s cycle. 

SWATH acquisition used a 100 variable window method (previously optimised in 

the laboratory for complex protein sample types) using an accumulation time of 25 

ms giving a 2.6 s total cycle time (over the range m/z 400-1250). IDA data was 

searched all together and by experimental group using ProteinPilot 5.0.2 (SCIEX) to 

generate a list of proteins and peptides for a local spectral library, with the following 

parameters; iodoacetamide alkylation, thorough search with emphasis on biological 

modifications (Swissprot human database Oct 2018). 

4.2.2.1. Generation of a local spectral library for SWATH data analysis 

The generated “.group” file from ProteinPilot search of the IDA runs contained all 

protein and peptide information from the samples.  This data was imported into 

PeakView 2.2 (SCIEX) using the SWATH microapp plugin (SCIEX) and aligned to the 
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SWATH data files using a selection of endogenous peptides with high intensity and 

unambiguous retention time. 

SWATH data was imported into the SCIEX OneOmics cloud processing software 

based on software developed from (Lambert, et al. 2013) and was extracted against 

a spectral library created from aligning both the locally generated library and a 

comprehensive mouse 3T3 cell external library (obtained from Dr Nick Morrice, 

SCIEX, UK) in OneOmics with the parameters 6 peptides per protein, 6 transitions 

per peptide, XIC width 30 ppm, 5 min retention time window.  This method has been 

previously published by the proteomics facility in the John van Geest Cancer 

Research Centre (Aldiss, et al. 2019). See figure 4.6 for schematic overview of the 

proteomics data generation and processing. 

4.2.3. Selection of novel membrane and cytoplasmic biomarkers of 

natural and induced Tregs using artificial neural networks (ANN) 
SWATH-MS protein peak area (intensity) data of confident 99 membrane and 344 

cytoplasmic proteins across the samples were subjected to ANN analysis, a robust 

bioinformatics tool (Abdel-Fatah, et al. 2016, Furini, et al. 2018, Wagner, et al. 2019), 

to statistically identify and select novel markers that can individually or in 

combination distinguish between nTregs and iTregs. 

Herein, a bespoke 3 layered backpropagation ANN, coupled with a stepwise search 

and cross validation procedure was applied to evaluate protein peak area data for 

the confidently identified membrane and cytoplasmic proteins (Lancashire, et al. 

2008a, Lancashire, et al. 2010).  

Membrane and cytoplasmic protein data were run on ANN using two different 

stepwise analysis runs. First, multiple stepwise analysis which included 20 loops, 

each loop consisted of 10 steps. Second, single stepwise analysis which included 20 

loops, each loop consisted of one step. The ANN analysis was carried out under the 

supervision of Professor Graham Ball using in house software developed for ANN 

(Stepwise OpenCL version 1.3.0).  Data was exported from Excel as a .csv file in the 

appropriate format for importing into the Stepwise software for processing with the 

following parameters: 2 hidden nodes, momentum 0.5, 60%:20%:20% split for 

training:testing: validation, running time 50 and 3000 epochs. 
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After ANN analysis, the results of stepwise analysis of both runs were collected. For 

multistep analysis, a panel of markers with the lowest average test error (ATE) from 

each step of 20 loops were selected. Then markers were sorted based on the time of 

repetition in the 20 loops. For single stepwise analysis, as it included only one step 

for each loop, then only one marker with the lowest ATE was selected among other 

markers in each step by ANN. Then the resulting 20 markers were sorted based on 

the time of repetition in the 20 loops. 
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Figure 4.6. Schematic representation showing the overall method that was followed 
for identification, selection and verification of proteins. 
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4.2.4. Verification/validation of novel biomarkers of nTregs and 

iTregs using flow cytometry and in silico tools 

4.2.4.1. Conjugated antibodies  

Conjugated anti mouse monoclonal antibodies, including anti CD25, CD4, Foxp3, 

CPOX and MAVS antibodies were purchased for flow cytometry as shown in table 

4.2. 

Table 4.2: List of conjugated monoclonal antibodies that were used for flow cytometry 
analysis. 

Monoclonal Abs  Fluorochrome Clone  Company Cat No. 

CD25 PE PC61.5 Thermo Fisher 12 0251 82 

CD4 eFluor 450 GK1.5 ThermoFisher 48 0041 82 

Foxp3 eFluor 660 FJK 16s ThermoFisher 50 5773 82 

MAVS PE E 6 Santa Cruz Biotechnology sc 365334 

CPOX (HEM6) PE B 9 Santa Cruz Biotechnology sc 393388 

 

4.2.4.2. Unconjugated antibodies 

Conjugated antibodies against EPHX1 (HYEP), PLP2 and ITIH4 were not 

commercially available. Therefore, unconjugated polyclonal antibodies tested for 

immunofluorescence (IF) application specifically were purchased as IF antibodies 

are compatible to be conjugated for flow cytometry. Unconjugated monoclonal 

antibodies were not commercially available against those three proteins. 

Table 4.3: List of unconjugated antibodies compatible for conjugation used for flow 
cytometry. 

Polyclonal Abs  Concentration Host/Species Reactivity  Company Cat No. 
EPHX1 
(HYEP) 

1 mg/mL Rabbit Human 
Mouse 
Rat 

Biorbyt Orb48363 

PLP2 0.5 mg/mL Rabbit Human 
Mouse 
Rat 

Biorbyt Orb312802 

ITIH4 0.5 mg/mL Rabbit Human 
Mouse 
Rat 

Biorbyt Orb1128 
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4.2.4.3. Conjugation of unconjugated antibodies with Phycoerythrin (PE) 

fluorochrome 

Lightning link® R Phycoerythrin conjugation kit (Expedeon, Cat No. 703 0010) was 

used to conjugate or label unconjugated antibodies with PE fluorochrome. The kit 

included vials of lightening link (LL) mix, LL modifier reagent, and LL quencher 

reagent. Each vial of LL mix was designed to conjugate 60 µL volume of an antibody 

when the concentration of antibody is 1 mg/mL to give a 1:1 (antibody:R PE) 

conjugation ratio. For setting up conjugation reaction, 6 µL of LL modifier reagent 

were added into 60 µL of antibody and mixed gently. Then the antibody sample with 

LL modifier was immediately added into the vial of LL mix which included 

lyophilised PE fluorochrome, and resuspended gently by pipetting the solution up 

and down twice. Then, the vial containing the conjugation reaction was incubated 

for 6 h at room temperature (20-25⁰C) in the dark on standing position. After 

incubation, 6 µL of LL quencher reagent were added into the vial containing 

conjugation reaction and mixed very gently. Then the vial was incubated again for 

an hour at room temperature in the dark on standing position. Then PE conjugated 

antibody was ready to use and kept at 4⁰C. 

The concentration of PLP2 and ITIH4 antibodies was 0.5 mg/mL which was lower 

than the ratio limit of the conjugation kit. Also, the solution of both antibodies 

included higher concentration of BSA (0.5%) which was five time higher than the 

recommended concentration (<0.1%) for conjugation reaction. Therefore, 

antibodies were concentrated, and the BSA was removed from their solution using 

AbSelect™ BSA removal kit (Expedeon, Cat No. 820 0100). This kit included a vial of 

BSA removal buffer and a vial of re suspension buffer. Then BSA removal buffer was 

heated in warm water at 37⁰C for 30 min to dissolve the contents. Once dissolved, 

the buffer was placed at room temperature ~20⁰C for 10 min to prevent the 

formation of crystal. Then the buffer was centrifuged at 13000 x g for 1 min. After 

centrifuging, 160 µL of supernatants of BSA removal buffer were added into the 

solution of antibody (200 µL) and mixed gently. The solution then was incubated for 

10 min at room temperature. After that, the solution was centrifuged at 13000 x g 

for 5 min. The supernatants were carefully discarded. The pellet of antibody was 

resuspended in 100 µL of re suspension buffer. After that, 60 µL of the concentrated 
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antibody were taken for conjugation with PE fluorochrome following the protocol 

mentioned above. 

4.2.4.4. Pathway analysis of differentially expressed and identified proteins 

Proteins uniquely expressed in each category of T cell population from the IDA runs 

were identified using the Venn diagram. The uniport IDs of the unique proteins were 

exported into MetaCore™ (Clarivate Analytics, accessed Oct 2019) for further 

analysis. MetaCore is a functional analysis integrated software suite for the analysis 

of high-throughput genomics, metabolomics and proteomics data using curated 

database of human and mouse gene and protein expression information from the 

peer reviewed publications. Significant pathway enrichments in each group was 

calculated by comparing the unique proteins identified in each group to the mouse 

database. Any pathways below a corrected p-value of 0.05 was considered as 

significant. An enrichment report was generated using each of the unique protein 

list and bar graph was generated in GraphPad prism. Similarly, Pathway enrichment 

analysis was performed using the differentially expressed proteins in iTregs 

compared to nTregs and nTreg depleted CD4 T cells along with its expression values. 

Significant pathways are plotted using a bar graph and important alterations in 

major pathways are highlighted as in the expression context.  

 

4.2.4.5. Analysis of public datasets of markers of interest in cancer 

To check the expression of markers on murine immune cells, each gene 

corresponding to the identified protein was surveyed using BloodSpot 

(http://servers.binf.ku.dk/bloodspot/ accessed Oct 2019), an online database of 

healthy and malignant haematopoiesis comprising large amounts of gene 

expression data of human and murine immune system.  Although the markers were 

identified using a murine in vitro model, its translational validity in humans was 

explored using publicly available datasets. This study used OncoLnc 

(http://www.oncolnc.org/ accessed Oct 2019), a web-based tool to analyse The 

Cancer Genome Atlas (TCGA). OncoLnc designed to derive survival relationships of 

a query gene with gene expression data and survival information of 8,647 patients 

from 21 cancer types performed by TCGA. Genes were queried singly (FOXP3, ITIH4, 

PLP2, MAVS, HEM6 (CPOX), HYEP (EPHX1)) among 21 cancer types. Poor prognosis 

http://servers.binf.ku.dk/bloodspot/
http://www.oncolnc.org/
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using survival information of FOXP3 data among all the cancer types was considered 

as a surrogate marker for T reg enriched tumour. Kidney Renal Clear Cell Carcinoma 

(KIRC) was identified as the top cancer with significant association of FOXP3 

expression and poor survival outcome. All the human equivalents of the shortlisted 

genes were subsequently queried in KIRC to see whether any of these genes explain 

similar survival outcome. The plots were generated using OncoLnc and the 

Significance of difference in survival probability between high and low group of each 

genes were calculated using Log rank p value, p-Value less than 0.05 was considered 

as significant.   
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4.3. Results 

4.3.1. Subcellular proteomic profiling of mouse CD4+ T cells using 

using LC-MS-MS. 
Membrane and cytoplasmic proteins derived from five different subsets of CD4+ T 

cells were profiled using LC-MSMS proteomics. The MS analysis was carried out in 

two different steps. First, a local library of proteins was created based on the total 

number of proteins identified from all subpopulations of CD4+ T cells using an 

information/data dependent acquisition approach (IDA/DDA). Second, samples 

were analysed by SWATH-MS, and the quantitative data extracted against this 

library combined with a comprehensive externally generated mouse library to give 

a list of proteins with relative quantitation across all samples. 

4.3.1.1. Information Dependent Acquisition (IDA) proteomic analysis of 

sorted mouse CD4+ cells (qualitative analysis) 

IDA acquisition was carried out on the 5 replicate samples in each sorted cell type 

for both membrane and cytosolic fractions and each set of biological replicates 

searched together.  Proteins were identified and enumerated in Table 4.4. 

 

Table 4.4: Number of proteins identified in each T cell subpopulation in both membrane 
and cytosolic fractions. 

 
Subsets of CD4+ T cells 

Membrane 
Fraction* 

Cytoplasmic 
Fraction* 

Total distinct 
protein groups 

Naïve CD4+CD25-  
 

656 677 1096 

Naïve CD4+CD25+Foxp3+ 
(nTregs) 

431 310 634 

Activated CD4+CD25-  

 

621 582 1000 

Activated CD4+CD25+Foxp3+ 
(nTregs) 

658 553 991 

CD4+CD25++Foxp3+ (iTregs) 
 

611 681 1090 

*Reversed sequences removed; results displayed at 1 % protein False Discovery Rate (FDR) 

cut off. 
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Qualitative analysis of the data showed that the fractionation into 

membrane/cytosolic fraction was not absolute with many proteins present in both 

samples for each cell type (figure 4.7).  The total cellular protein (membrane and 

cytosolic combined) is presented in figure 4.8 across all 5 sorted cell types. 

 

 

Protein data was also analysed for each sorted cell type by cross referencing the 

proteins for each cell type with the known protein localisations from the literature 

based on the Uniprot database (http://www. Uniprot.org, accessed April 2019) this 

is shown in table 4.5.  The IDs of shared, unique and differentially expressed proteins 

of the five CD4+ T cell subsets were mapped using MetaCore software to identify 

Naïve CD4
+
CD25

- Naïve CD4
+
CD25

+
Foxp3

+
 (nTreg) 

Activated CD4
+
CD25

+
Foxp3

+
 (nTreg) Activated CD4

+
CD25

- 

CD4
+
CD25

++
Foxp3

+
 (iTreg) 

409 479 202 

419 440 237 

418 379 203 

324 202 107 

438 333 220 

Figure 4.7. Venn diagrams showing the overlap of proteins identified in membrane versus cytosolic 
fractions by IDA acquisition and protein search in each group of 5 replicate samples from the sorted 
cell types. 
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significantly enriched pathways based on p value (< 0.05) and FDR (<0.05) (figure 

4.9 and 4.10). 

 

 

Table 4.5: Characterisation of the known subcellular location (as defined by Uniprot) of the 
identified proteins from the sorted CD4+ cells from the qualitative IDA analysis.  

 
Subsets of CD4+  
T cells 

Known 
Membrane 
Location 

Known 
Cytoplasmic 
Location 

Proteins with 
unknown 
location 

Naïve CD4+CD25   
 

466 708 15 

Naïve 
CD4+CD25+Foxp3
+ (nTregs) 

300 404 0 

Activated 
CD4+CD25  

 

409 687 4 

Activated 
CD4+CD25+Foxp3
+ (nTregs) 

438 643 6 

CD4+CD25++Foxp
3+ (iTregs) 
 

437 745 9 

 

Figure 4.8. Venn diagram comparing the total number of 
proteins identified in five different subsets of CD4+ T cells.  
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Figure 4.9. Significantly enriched pathways derived through mapping the IDs of proteins identified in the DDA-
library using Metacore analytics based on p-value < 0.05 and FDR < 0.05. (A) Significantly enriched pathways 
that are shared between five different subsets of CD4+ T cells. (B) Significantly enriched pathways derived from 
the IDs of the unique proteins of naïve CD4+CD25- T cells. (C) Significantly enriched pathways derived from the 
IDs of the unique proteins of activated CD4+CD25- T cells.   
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Figure 4.10. Significantly enriched pathways derived through mapping the IDs of proteins identified in the DDA-
library using Metacore analytics based on p-value < 0.05 and FDR < 0.05. (A) Significantly enriched pathways 
derived from the IDs of the unique proteins of naïve CD4+CD25+ nTregs. (B) Significantly enriched pathways 
derived from the IDs of the unique proteins of activated CD4+CD25+ nTregs. (C) Significantly enriched pathways 
derived from the IDs of the unique proteins of iTregs. 
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4.3.1.2. Generation of a local spectral library (ion library) for SWATH MS 

profiling 

A local (generated from the real samples) spectral library was generated from 

searching the mass spectrometer acquisition file of all fractions of all sorted cells 

together into a single result (.group) file (Table 4.6). 1414 proteins from 5441 

peptides were identified from the Swissprot Human database in all samples. 

 

Table 4.6 Summary of proteins, peptides and spectra identified in all the cell fractions and 

sorted cell types analysed by IDA mass spectrometry and searched in ProteinPilot. 

  Summary of Identification Yields 
  Data Level FDR Type  FDR ID Yield 

Id
en

tif
ic

at
io

n 
Yi

el
d 

at
 F

DR
 

Th
re

sh
ol

d 

Protein 

Local 
1% 1056 
5% 1429 

10% 1546 

Global 
1% 1414 
5% 1846 

10% 2050 

Distinct peptide 

Local 
1% 3753 
5% 5425 

10% 6169 

Global 
1% 5441 
5% 7657 

10% 9145 

Spectral 

Local 
1% 41703 
5% 57653 

10% 69601 

Global 
1% 59683 
5% 90162 

10% 115479 
  *Global FDR at 1% values accepted. 

The .group results file was then converted to the spectral library format (.txt) as 

previously described (section 4.2.2.1) after removal of all proteins with shared 

peptides. 

4.3.1.3. Improvement of the spectral library (ion library) 

While reasonably good, 1414 proteins and 5441 peptides in a spectral library will 

allow fewer than 1414 proteins to be quantified from SWATH data.  In order to 

improve the quantitation an external library was obtained from Dr Nick Morrice 



203 
 

(SCIEX) containing a large pre-generated (from a TripleTOF 6600 instrument) 

mouse 3T3 cell spectral library in .txt format.  This library contained 8,446 proteins 

and it was reasonably speculated that many of these mouse proteins would also be 

present in the cell lysate protein fractions from this study. 

4.3.1.4. SWATH-MS quantitative profiling 

As the subcellular profiling was carried out based on the number of cells (2x106) in 

each replicate of the five subsets of CD4+ T cells, the reproducibility in SWATH-MS 

profiling data of the five subsets of CD4+ T cells was firstly assessed based on the 

percentage of reproducible transitions of peptides detected in each sample. The 

results showed that the percentage of reproducible transitions of peptides was in 

range between 33% and 55% among 50 samples that were analysed on MS (figure 

4.6). The variability of SWATH MS data was relatively low in the most of samples 

(40/50) as the percentage of reproducible transitions of peptides to fragment ions 

was in range of 44 -55%, whereas only 10 samples showed higher variability with 

33-43% of reproducible transitions of peptides (figure 4.11).  A high % of 

reproducible transitions would not be expected here as the cells have been 

fractionated into different sub-types likely with significant differences in protein 

profiles, what matters is the variation between all samples.  While there are a few 

samples that vary more, having a reduced % reproducible transitions, on discussion 

Figure 4.11. The percentage of reproducible transitions of peptides in each of 50 samples of the five 
different subsets of CD4+ T cells that were prepared for SWATH-MS profiling. Cytoplasmic and membrane 
proteins samples derived from each replicate of the five subsets of CD4+ T cells. Five replicates for each 
subset were prepared. 
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with the OneOmics software application specialists at SCIEX, the advice was to keep 

all data in as the algorithm would take this into account when processing. 

After assessing the variability, the SWATH-MS data were then normalised to 

minimise the differences due to experimental artefacts and protein/peptide load 

between samples and improve the data quality using SCIEX OneOmics software. The 

data normalisation was performed internally in the software suite using MLR (Most 

Likely Ratio) normalisation strategy which has been found to be the best strategy 

for SWATH-MS data normalisation (Lambert, et al. 2013). Figure 4.12 shows the 

log10 transformed intensity ratios of peaks derived from peptide fragments within 

each sample before and after normalisation.  

        

 

 

Figure 4.12. The log10 intensity peaks of peptide fragments of 
samples before and after normalisation. (A) Pre-
normalisation. (B) Post-normalisation.  
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4.3.1.5. SWATH-MS quantitative profiling 

Using the combined locally generated and external mouse 3T3 cell spectral library, 

a total of 3910 proteins were detected and selected for quantitation by SWATH MS 

analysis based on their expression across all five subsets of CD4+ T cells. The 

expression (peak area, intensity) of each protein was compared between the five 

subsets of CD4+ T cells to identify up and down regulated proteins for each subset. 

Using the Uniprot database and website, among the 3910 proteins, 1236 (31.6%) 

proteins were identified as membrane proteins, whereas 2294 (58.7%) proteins 

were classified as cytoplasmic and nuclear proteins. The remaining 380 (9.7%) 

proteins were identified with unknown (not mapped) subcellular locations (figure 

4.13). 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Pie chart showing the number and percentage of SWATH-MS-identified proteins 
based on their subcellular locations. Cyto: Cytoplasmic, Nuc: Nuclear. 
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To assess the reproducibility of SWATH MS profiling normalised and log 

transformed peak areas (intensity) of 3910 proteins were subjected to a principle 

component analysis (PCA). Most of the variation in the data was captured using the 

first two components (PC1 and PC2). For membrane proteins, the percentage of 

variability in the data was 45% and 9.4% at PC1 and PC2, respectively (figure 4.14 

A). For cytoplasmic proteins, the percentage of variability in the data was 50.1% and 

7.4% at PC1 and PC2, respectively (figure 4.14 B). There was minimum intra 

replicate variability observed within each group indicating good reproducibility 

between the samples, while five biologically different groups were well separated. 

Moreover, the analysis showed that groups representing naïve subsets of CD4+ T 

cells were well separated from groups which represented activated subsets of CD4+ 

T cells confirming the trend of reproducibility between the samples of both 

membrane and cytoplasmic proteins. The results also showed that there was an 

increase in the variability within activated groups, which allowed the group of 

iTregs to be nicely separated from other activated groups in both membrane and 

cytoplasmic protein samples.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. PCA analysis showing the percentage of variability between five different subsets of CD4+ T cells at 
the first two principle components (PC1 and PC2). (A) PCA analysis for the samples of membrane proteins. (B) 
PCA analysis for the samples of cytoplasmic proteins. Group highlighted with green (naïve CD4+CD25- T cells), 
blue (naïve CD4+CD25+ nTregs), violet (stimulated/activated CD4+CD25- T cells), orange (stimulated/activated 
CD4+CD25+ nTregs) and red (iTregs). 
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 The SWATH MS identified proteins were then sorted based on their confidence 

score of identification from OneOmics (this confidence score is based on a 

proprietary algorithm from SCIEX and has no equivalent in any classical statistical 

test). Proteins with confidence score ≥ 50% were classified as “possible proteins 

with real expression changes between experimental groups” and selected for 

further analysis. The total number of confident proteins was 443 (11.3%) from the 

total 3910 identified proteins. Of 443 proteins, 99 (22.3%) proteins were classified 

as membrane proteins, whereas the remaining 344 (77.7%) proteins were classified 

as cytoplasmic and nuclear proteins (figure 4.15). 

 

                                                                                                                                                                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

The SWATH quantitative data (peak area/intensity) of confidently differentially 

expressed proteins were analysed based on two different approaches: OneOmics-

based approach and ANN-based approach.  

 

4.3.1.6. OneOmics-based approach 

The OneOmics-based results showed the fold change and confidence score of 

identified proteins based on a pairwise comparison of the 5 different 

Figure 4.15. Pie chart showing the number and percentage of SWATH-MS-identified 
“confident proteins” based on their subcellular locations. 
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subpopulations of CD4+ T cells against each other. The overall results of OneOmics 

algorithm can be found in the appendix (tables 9A, 10A, 11A, 12A). 

The expression of identified proteins was compared between the population of 

iTregs and naïve nTregs as a control population to identify distinct proteins that are 

exclusively upregulated in iTregs. The results showed that 239 membrane and 

cytoplasmic proteins with confidence score ≥ 50% were found highly expressed in 

iTregs compared to nTregs at fold-change 1.5 cut-off value (results shown in the 

appendix, table 10A). Table 4.7 shows a list of the top 32 of 239 membrane and 

cytoplasmic proteins that are differentially expressed in iTregs compared to naïve 

nTregs. 

Table 4.7. List of the top 32 cytoplasmic and membrane proteins that are differentially 
expressed in iTregs compared to naive nTregs. 

Protein ID Protein Name Fold-change OneOmics Confidence score* 
Q8BHX1 HAUS1 6.0 71% 
A2A4U6 ZFP334 5.0 55% 
Q80XI6 M3K11 4.7 57% 
Q3KNJ2 NHEJ1 4.5 55% 
E9Q1M6 ANKHD1 3.9 75% 
Q3UMA3 HGFS 3.9 57% 

A0A0R4J0F6 GAK 3.8 56% 
Q8BMC4 NOP9 3.8 59% 
Q9QYG0 NDRG2 3.8 64% 
Q8BV13 CSN7B 3.7 61% 
Q9R1Q7 PLP2 3.7 86% 
D3YXP6 PMVK 3.6 50% 
Q811B1 XYLT1 3.5 72% 
Q8VEJ9 VPS4A 3.5 53% 
Q9D1C1 UBE2C 3.4 60% 
Q0HA38 TT21B 3.4 64% 
A2A4U6 Zfp334 3.3 57% 
Q8BXQ2 PIGT 3.3 63% 
Q9CX56 PSMD8 3.2 83% 
Q920E5 FPPS 3.2 78% 

E9PWW6 Zc3h7a 3.2 60% 
E9PVX6 KI67 3.2 77% 

K3W4Q8 Basigin 3.2 78% 
Q8BKX1 BAIP2 3.2 69% 
P17751 TPIS 3.2 87% 
P57787 MOT4 3.1 55% 
Q80VJ2 SRA1 3.1 53% 
E9PX68 Slc4a1ap 3.1 57% 
P70333 HNRH2 3.1 51% 
Q99N92 RM27 3.1 51% 
Q05920 PYC 3.1 80% 
Q8VCF0 MAVS 3.1 55% 

* Confidence score is based on Sciex OneOmics proprietary algorithm. <50% unlikely to be a real     
fold change. 
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The results also showed that 79 membrane and cytoplasmic proteins with 

confidence score ≥ 50% were found upregulated in naïve nTregs compared to iTregs 

at 1.5-fold-change cut-off value (data shown in the appendix, table 10A). Table 4.8 

shows a list of the top 32 among 79 cytoplasmic and membrane proteins that are 

found to be upregulated in naïve nTregs compared to the population of iTregs.  

Table 4.8. List of the top 32 cytoplasmic and membrane proteins that are differentially 
expressed in nTregs compared to iTregs. 

Uniprot 
protein ID 

Protein Name Fold-change OneOmics Confidence score 

Q3KNJ2 NHEJ1 4.5 59% 
Q792Z1 Q792Z1 4.5 77% 
P58501 PAXB1 4.2 61% 
Q8VE19 MIO 4.0 76% 
Q8BGS2 BOLA2 4.0 61% 
Q8BHS6 ARMX3 3.9 57% 
Q64525 H2B2B 3.8 57% 
Q8R422 CD109 3.5 83% 
B0R091 B0R091 3.5 56% 
E9QA45 E9QA45 3.5 89% 
Q8BR76 MKS3 3.5 57% 
Q920Q2 REV1 3.5 57% 
Q8CC88 VWA8 3.4 51% 
O89079 COPE 3.4 63% 
Q9CZP3 Q9CZP3 3.4 65% 
Q9D379 HYEP 3.3 76% 
Q0PD20 Q0PD20 3.3 56% 
Q8K2M0 RM38 3.3 52% 

A0A0R4J0J3 A0A0R4J0J3 3.3 50% 
O35609 SCAM3 3.3 50% 
P16330 CN37 3.1 53% 
Q9CRD2 EMC2 3.0 51% 
Q9JIZ9 PLS3 2.9 57% 

Q64327 MEA1 2.9 51% 
Q9Z1R9 Q9Z1R9 2.9 85% 
Q9R207 NBN 2.9 50% 
O35598 ADA10 2.8 62% 
Q3UD82 PARP8 2.8 53% 
E9Q0G1 E9Q0G1 2.8 55% 
A2A513 A2A513 2.7 91% 
E9Q0A7 E9Q0A7 2.6 50% 
Q6NS45 CCD66 2.6 53% 

 

The expression of identified cytoplasmic and membrane proteins was also 

compared between the population of iTregs and stimulated CD4+CD25- T cells as a 

second control population. The results showed that 56 cytoplasmic and membrane 

proteins were found differentially expressed in iTregs compared to stimulated 

CD4+CD25- T cells population at 1.5-fold-change cut-off value (data shown in the 
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appendix, table 9A). Table 4.9 shows the top 32 among 56 cytoplasmic and 

membrane proteins that are upregulated in iTregs compared to stimulated 

CD4+CD25- T cells.  

Table 4.9. List of the top 32 cytoplasmic and membrane proteins that are differentially 
expressed in iTregs compared to activated CD4+CD25- T cells. 

Uniprot 
Protein ID 

Protein Name Fold-change OneOmics Confidence score 

A2AH22 AMRA1 5.2 66% 
A0A0R4J0F6 GAK 4.7 53% 

Q61545 EWS 4.4 64% 
A0A0R4J187 XRCC6 4.0 51% 

Q3UMA3 HGFRTKS 4.0 57% 
Q80TA6 MTMRC 3.7 52% 
A6PW84 P3H1 3.7 57% 
Q80XJ3 TTC28 3.3 59% 
P14094 AT1B1 3.3 74% 
P02798 MT2 3.2 51% 
Q8R2Y8 PTH2 3.2 60% 

D5MCW4 CUTA 3.2 63% 
Q8VDD8 WASH1 3.2 59% 
Q91W63 NRK1 3.2 65% 
Q3UL36 ARGL1 3.0 59% 
Q8C522 ENDD1 2.9 65% 
Q9ERE7 MESD 2.8 58% 
A2AQ07 TBB1 2.8 52% 
Q80U19 DAAM2 2.8 56% 
Q9EQ08 HNS 2.7 52% 
Q8BX09 RBBP5 2.7 62% 
Q61127 NAB2 2.6 52% 
O35215 DOPD 2.6 64% 
P97864 CASP7 2.5 69% 
Q80XI6 M3K11 2.4 77% 
Q8BVG4 DPP9 2.4 51% 
P84078 ARF1 2.3 50% 
Q8BI72 CARF 2.3 54% 
E9Q6R7 UTRN 2.2 66% 
P02089 HBB2 2.2 82% 
Q9CPX4 Ferritin 2.2 59% 
Q8CAK1 CAF17 2.1 51% 

 

The results also revealed that 98 cytoplasmic and membrane proteins were found 

expressed at high levels in stimulated CD4+CD25- T cells compared to iTregs at 1.5-

fold-change cut-off value (data shown in the appendix, 9A). Table 4.10 shows the top 

32 of 98 cytoplasmic and membrane proteins that are upregulated in stimulated 

CD4+CD25- T cells compared to iTregs population.   
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Table 4.10. List of the top 32 cytoplasmic and membrane proteins that are differentially 
expressed in activated CD4+CD25- T cells compared to iTregs.  

Uniprot 
Protein ID 

Protein Name Fold-change OneOmics Confidence score 

Q80UF4 SDCG8 6.643856 0.758175 
Q9D0S9 HINT2 6.485372 0.547028 
Q45VK7 DYHC2 5.343186 0.615735 
Q9CX56 PSMD8 4.357873 0.663257 
Q3KNJ2 NHEJ1 4.157255 0.600902 

A0A0R4J0J3 ADNHQ4 4.099722 0.582634 
Q9JLV1 BAG3 3.828483 0.615726 
P21981 TGM2 3.769342 0.842697 
G3X920 ARMC8 3.663181 0.729015 
Q792Z1 MCG140784 3.621907 0.623682 
Q8BYH8 CHD9 3.614892 0.586976 
B1ASU9 TLK2 3.478489 0.627116 
P43277 H13 3.454123 0.701737 
Q923D4 SF3B5 3.391455 0.626311 
A2APB8 TPX2 3.378938 0.741857 
Q8CAH8 GDPK 3.357312 0.590024 
P27661 H2AX 3.303716 0.604916 
Q91YR5 MET13 3.292886 0.551793 
Q9D824 FIP1 3.283845 0.53197 
Q8BH15 CNO10 3.249924 0.537365 
Q80UF4 SDCG8 3.197587 0.64159 
Q8BGS2 BOLA2 3.192564 0.828886 
P40336 VP26A 3.137329 0.591784 
P32037 GTR3 3.117137 0.87764 

B1AW21 Myotubularin 3.091522 0.554631 
Q91ZU1 ASB6 3.076995 0.631676 
P07356 ANXA2 3.070642 0.753384 
E9Q0G1 DRP 3.053311 0.600026 
Q8CGP7 H2A1K 3.02566 0.597722 
O35409 FOLH1 3.012569 0.881223 
Q64735 CR1L 3.004373 0.619048 
Q9ERH4 NUSAP 2.915646 0.635705 

 

The differentially expressed proteins were further analysed using MetaCore 
pathway enrichment tool. The most differentially regulated pathways in iTregs in 
comparison to nTregs and cultured CD25 depleted CD4 T Cells are depicted in figure 
4.16.  the significant pathways altered in each of the comparisons are represented 
in a pathway context using MetaCore (Figure 4.17-4.19). 
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Figure 4.16. Significantly enriched pathways in iTregs compared to stimulated CD4 (CD25- FOXP3-) and nTregs.  
(A). Bar graph showing significance of enrichment of pathways in iTregs compared to CD4 (CD25- FOXP3-) T 
cells cultured in the same way as iTregs for 5 days but without TGFβ. Y axis describe the pathways and the X axis 
represent corrected p value in log10 scale. Red colour indicating the upregulated and the green indicating down 
regulated pathways in iTregs. (B). Bar graph showing significance of enrichment of pathways in iTregs 
compared to pure population of nTregs (CD25+ FOXP3+). Y axis describe the pathways and the X-axis represent 
corrected p value in log10 scale. Dark Red colour indicating the upregulated and the green indicating down 
regulated pathways in iTregs comparison to nTregs. 
  

A 

B 
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Figure 4.17. Pathway maps of glycolysis and gluconeogenesis with significant downregulated proteins were 
highlighted using a thermometer icon. Differentially expressed proteins shortlisted by pairwise comparison of 
quantitative mass spectrometry data generated from iTregs and cultured nTreg depleted CD4 T-cells were 
analysed using MetaCore functional enrichment tool. Glycolysis and gluconeogenesis are one of the most 
significantly down pathways in iTregs compared to CD4 T cells, significant proteins upregulated in iTregs 
compared to CD4 T cells are overlaid in the whole pathway context.       
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Figure 4.18. Several HIF-1 targets were found to be down regulated in iTregs in comparison to cultured nTreg 
depleted CD4 T-cells. Pathway maps of HIF-1 targets proteins altered in iTregs compared to nTregs are 
highlighted using thermometer signs (red colour). Differentially expressed proteins shortlisted by pairwise 
comparison of quantitative mass spectrometry data generated from iTregs and cultured CD4 T-cells were 
analysed using MetaCore functional enrichment tool. Transcription of HIF-1 targets are one of the most 
significantly downregulated pathways in iTregs compared to CD4 T- cells. Significant proteins upregulated in 
iTregs compared to CD4 T cells are overlaid in the whole pathway context.   
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Figure 4.19. Ubiquinone metabolism with significant up regulated in iTregs compated to cultured CD4 T cells. 
The significant proteins were highlighted using a thermometer icon (red colour). Differentially expressed 
proteins shortlisted by pairwise comparison of quantitative mass spectrometry data generated from iTregs and 
cultured nTreg depleted CD4-T cells were analysed using MetaCore functional enrichment tool. Ubiquinone 
metabolism is one of the most significantly altered pathway in iTregs compared to CD4-T cells, significant 
proteins downregulated in iTregs compared to CD4 -T cells are overlaid in the whole pathway context.       
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4.3.1.7. ANN-based approach 

The quantitative protein data (peak area) of 99 membrane proteins and 344 

cytoplasmic proteins were analysed using ANN modelling stepwise approach to 

identify a predictive panel of proteins (biomarkers) that can differentiate iTregs 

among other CD4+ T cells subpopulations. Two different methods of ANN analysis 

were used to analyse proteomic quantitative data, including single stepwise and 

multiple stepwise analysis. 

 The results of single stepwise analysis showed that 7 distinct proteins among 443 

cytoplasmic and membrane proteins with the lowest average test error (ATE) were 

mathematically selected by the ANN as predictive biomarkers that differentiate 

iTregs from other CD4+ T cells subpopulations. The distinct proteins are MAVS, PLP2, 

ITIH4, HEM6, CUL4A, P85A, XYLT1. Table 4.1 shows the summary results of novel 

membrane and cytoplasmic markers of iTregs selected by the ANN single stepwise 

analysis. 

Table 4.11. A summary of the results of novel biomarkers of iTregs selected by the ANN 
single stepwise analysis. 

Protein Subcellular location Number of selection* Range of ATE 

MAVS Mitochondrial membrane 15 0.032 – 0.046 

PLP2 Membrane 6 0.048 – 0.060 

ITIH4 Membrane 5 0.050 – 0.058 

HEM6 Mitochondrial membrane 5 0.030 – 0.046 

CUL4A Cytoplasmic, Nuclear 4 0.049 – 0.059 

P85A Membrane 3 0.046 – 0.060 

XYLT1 Membrane, Intracellular 2 0.053 – 0.054 

* Number of selection represents how many times a biomarker has been selected by the 
ANN in the overall single stepwise analysis.  

 

The results of single stepwise analysis revealed that 6 distinct proteins among 443 

cytoplasmic and membrane proteins were also selected by the ANN as predictive 

biomarkers that distinguish naïve nTregs from other CD4+ T cells subpopulations. 

These proteins include HYEP, FERRITIN, SERPINB6A, NDKA, VWA8 and SAMH1. The 

summary results of novel membrane and cytoplasmic biomarkers of naïve nTregs 

are detailed in table 4.12. 
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Table 4.12. List of 6 novel biomarkers selected by the ANN single stepwise analysis to 
differentiate naive nTregs from other CD4+T cells subsets. 

Protein Subcellular location Number of selection Range of ATE 

HYEP Membrane 12 0.048 – 0.060 

FERRITIN Cytoplasmic 10 0.040 – 0.050 

SERPINB6A Membrane 8 0.042 – 0.054 

NDKA Cytoplasmic 5 0.043 – 0.049 

VWA8 Cytoplasmic, mitochondrial 3 0.041 – 0.053 

SAMH1 Cytoplasmic, Nuclear 2 0.045 – 0.055 

 

For multiple stepwise analysis, the results showed that 12 distinct proteins were 

selected by the ANN based on their ATE among 443 membrane and cytoplasmic 

proteins. These distinct proteins include MAVS, PLP2, ITIH4, CUL4A, HEM6, P85A, 

GSHR, SYAM, XYLT1, TFR1, CO4B and OGFR. Table 4.13 shows the summary results 

of novel membrane and cytoplasmic markers of iTregs selected by the ANN multiple 

stepwise analysis. 

Table 4.13. A summary of the results of novel biomarkers of iTregs selected by the ANN 
multiple stepwise analysis. 

Protein Subcellular location Number of selection Range of ATE 

MAVS Mitochondrial membrane 17 0.018 – 0.050 

PLP2 Membrane 12 0.017 – 0.039 

ITIH4 Membrane 11 0.018 – 0.053 

CUL4A Cytoplasmic, Nuclear 11 0.030 – 0.058 

HEM6 Mitochondrial membrane 10 0.013 – 0.046 

P85A Membrane 8 0.011 – 0.056 

GSHR Cytoplasmic, mitochondrial 5 0.006 – 0.025 

SYAM Cytoplasmic, mitochondrial 5 0.010 – 0.035 

XYLT1 Membrane, Intracellular 4 0.017 – 0.029 

TFR1 Membrane 3 0.015 – 0.036 

CO4B Extracellular 2 0.020 – 0.044 

OGFR Cytoplasmic, Nuclear 2 0.020 – 0.024 

 

The results of multiple stepwise analysis also showed that 10 proteins were selected 

by the ANN as predictive distinct biomarkers that characterise naïve nTregs from 
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other subsets of CD4+ T cells. The results of these distinct biomarkers are 

summarised in table 4.14. 

 

Table 4.14. List of distinct proteins selected by the ANN multiple stepwise analysis as 
predictive biomarkers of naive nTregs 

Protein Subcellular location Number of selection Range of ATE 

HYEP Membrane 22 0.010 – 0.056 

SERPINB6A Membrane 17 0.011 – 0.057 

SPA3F Extracellular  15 0.018 – 0.052 

VWA8 Cytoplasmic, mitochondrial 12 0.012 – 0.029 

NKDA Cytoplasmic 10 0.012 – 0.031 

FERRITIN Cytoplasmic 6 0.013 – 0.034 

TCTP Cytoplasmic 2 0.017 – 0.061 

MIC26 Membrane, Intracellular 2 0.013 – 0.035 

COF1 Membrane 2 0.015 – 0.033 

ENOA Membrane 2 0.020 – 0.057 

 

 

4.3.1.8. Differentially expressed proteins in the membrane fraction of CD4+ T 

cells 

The most significant results of fold change in the expression of membrane proteins 

identified by SWATH MS profiling were shown in figure 4.20. The results showed 

that ITIH4 (inter alpha trypsin inhibitor heavy chain 4), XYLT1 (xylosyltransferase 

1) and PLP2 (proteolipid protein 2) proteins were highly up regulated in iTregs 

compared to other subsets of CD4+ T cells in which these proteins were found 

significantly downregulated. The results also showed that P85A 

(Phosphatidylinositol 3 kinase regulatory subunit alpha) and CUL4A (proteins were 

significantly overexpressed in iTregs compared to other CD4+ T cell subsets which 

showed significant low expression for P85A and CUL4A proteins (figure 4.20). All 

the differentially expressed membrane proteins from all the pairwise comparisons 

are represented as a heatmap (Figure 4.21). 
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Figure 4.20. Scatter plots showing the protein peak area intensity (fold-change) of proteins identified 
significantly up-regulated in iTregs compared to other subsets of CD4+ T cells. Ordinary one-way ANOVA test 
was used for statistical analysis using GraphPad Prism 8.0.1 software. (****; p-value < 0.0001, **; p-value < 
0.0019). “Stim” means activated. Five independent experiments were carried out (n=5), each experiment 
compared five different cell populations. The statistical analysis was carried out on a limited data set (n=5) and 
hence is not powered adequately. However, the results shown here confirmed the reproducibility and 
robustness of the data. Bars errors represent the standard error (SE) of the mean. 
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Figure 4.21. Heatmap and hierarchical 
clustering showing relative fold-change 
protein expression values (log10 
transformed peaks intensity) of the 99 
differentially expressed membrane 
proteins identified in the five different 
subsets of CD4+ T cells using SWATH-MS 
proteomics. One minus pearson 
correlation metric with single linkage 
method was used for hierarchical 
clustering using MORPHEUS online 
software 
(https://software.broadinstitute.org/morphe
us/. (Accessed on Sep 2019). 

https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/


221 
 

The results also showed that the expression of GTR1 (solute carrier family 2, 

facilitated glucose transporter member 1), MOT4 (monocarboxylate transporter 4), 

NDRG1 (N myc downstream regulated gene 1 protein), ALDOA (fructose 

biphosphate aldolase A), PGK1 (phosphoglycerate kinase 1), KPYM (pyruvate kinase 

PKM), LEG1 (Gelectin 1) and RIPK3 (receptor interacting serine/threonine protein 

kinase 3) proteins was found significantly up regulated in activated nTregs and 

CD4+CD25  T cells subsets compared to iTregs and other naïve subsets (figure 4.22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22. Scatter plots showing the protein peak area intensity (fold-change) of proteins identified 
significantly down-regulated in iTregs compared to other activated CD4+CD25- T cells and activated nTregs 
subsets of CD4+ T cells. Ordinary one-way ANOVA test was used for statistical analysis using GraphPad Prism 
8.0.1 software. (****; p-value < 0.0001, ***; p-value < 0.0007, **; p-value < 0.0022). “Stim” means activated. Five 
independent experiments were carried out (n=5), each experiment compared five different cell populations. The 
statistical analysis was carried out on a limited data set (n=5) and hence is not powered adequately. However, 
the results shown here confirmed the reproducibility and robustness of the data. Bars errors represent the 
standard error (SE) of the mean. 
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The results also showed that the expression of HYEP (Epoxide hydrolase 1) protein 

was found significantly up regulated in naïve nTregs, while it was significantly down 

regulated in other subsets of CD4+ T cells. Another protein known as “SERPINB6A 

(serpin B6 domain A) was also found significantly up regulated in naïve nTregs 

compared to other CD4+ subsets (figure 4.23A). 

 

 

 

 

 

 

 

 

 

 

 

 

The results also showed that the expression SPA3F (serine protease inhibitor A3F) 

protein was identified significantly up regulated in stimulated or activated nTregs, 

while it was significantly down regulated or expressed at very low levels in other 

subsets of CD4+ T cells (figure 4.23B). 

Figure 4.23. (A) Scatter plots showing the protein peak area intensity (fold-change) of proteins identified 
significantly up-regulated in naïve nTregs compared to other subsets of CD4+ T cells. (B) The protein peak 
area intensity (fold-change) of proteins identified significantly up-regulated in stimulated nTregs compared 
to other subsets of CD4+ T cells.  Ordinary one-way ANOVA test was used for statistical analysis using 
GraphPad Prism 8.0.1 software. (****; p-value < 0.0001, ***; p-value < 0.0005, **; p-value < 0.0016). “Stim” 
means activated. Five independent experiments were carried out (n=5), each experiment compared five 
different cell populations. The statistical analysis was carried out on a limited data set (n=5) and hence is not 
powered adequately. However, the results shown here confirmed the reproducibility and robustness of the 
data. Bars errors represent the standard error (SE) of the mean. 
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4.3.1.9. Differentially expressed proteins in the cytoplasmic fraction of CD4+ 

T cells  

The results of cytoplasmic and nuclear proteins quantification showed that the 

expression of MAVS (mitochondrial antiviral signalling), HEM6 (oxygen dependent 

coproporphyrinogen ІІІ oxidase, mitochondrial (CPOX)), ICS10 (integrator complex 

subunit 10), SYAM (alanine tRNA ligase, mitochondrial), OGFR (opioid growth 

receptor) and TYSY (thymidylate synthase) proteins was significantly up regulated 

in iTregs compared to other subsets of CD4+ T cells in which the expression of these 

proteins was detected at low levels (figure 4.24). 

 

Figure 4.24. Scatter plots showing the protein peak area intensity (fold-change) of cytoplasmic and nuclear 
proteins identified significantly up-regulated in iTregs compared to other subsets of CD4+ T cells. Ordinary one-
way ANOVA test was used for statistical analysis using GraphPad Prism 8.0.1 software. (****; p-value < 0.0001, 
***; p-value < 0.0007, **; p-value < 0.0012, *; p-value < 0.0325). “Stim” means activated. Five independent 
experiments were carried out (n=5), each experiment compared five different cell populations. The statistical 
analysis was carried out on a limited data set (n=5) and hence is not powered adequately. However, the results 
shown here confirmed the reproducibility and robustness of the data. Bars errors represent the standard error 
(SE) of the mean.  
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The results also showed that among cytoplasmic and nuclear proteins identified, 12 

proteins were found significantly up regulated in all stimulated or activated subsets 

of CD4+ T cells, except iTregs in which the expression of proteins was significantly 

low compared to stimulated nTregs and CD4+CD25  T cells although iTregs were 

activated at the same level of nTregs and CD4+CD25  T cells. These proteins include 

TPIS (triosephosphate isomerase), G3P (glyceraldehyde 3 phosphate 

dehydrogenase), SERC (phosphoserine aminotransferase), SYYC (tyrosine tRNA 

ligase, cytoplasmic), RP10 (ribosomal protein 10), PGAM1 (phosphoglycerate 

mutase 1), PGM1 (phosphoglucomutase 1), GALK1 ( galactokinase 1), LDHA (L 

lactate dehydrogenase A chain), RL34 (60S ribosomal protein L34), TPP2 

(tripeptidyl peptidase 2) and SYSC (serine tRNA ligase, cytoplasmic) (figure 4.25).  

The results showed that the expression of SAMH1 (Deoxynucleoside triphosphate 

triphosphohydrolase SAMHD1) and VWA8 (von Willebrand factor A domain 

containing protein 8) proteins was found significantly up regulated in naïve nTregs 

compared to other four subsets of CD4+ T cells, especially stimulated nTregs in 

which the expression of SMAH1 and VWA8 proteins was significantly diminished 

after TCR activation (figure 4.26A). For cytoplasmic protein signature of activated 

nTregs, the results showed that the expression of CCS (Copper chaperone for 

superoxide dismutase) protein was significantly increased in activated nTregs, 

while its expression was detected at very low levels in naïve nTregs without 

activation (figure 4.26B). 

The results also showed that the expression of DYR (Dihydrofolate reductase) 

protein was identified significantly up regulated in activated CD4+CD25  T cells, 

while its expression was found significantly down regulated in other subsets of CD4+ 

T cells (figure 4.26C).
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Figure 4.25. Scatter plots showing the protein peak area intensity (fold-change) of cytoplasmic and nuclear proteins identified significantly up-regulated in activated nTregs and 
CD4+CD25- T cells, but down-regulated in iTregs. Stim CD4+CD25- T cells, stim nTregs and iTregs were received the same TCR activation signals. Naïve CD4+CD25- T cells and nTregs 
were not activated.  Ordinary one-way ANOVA test was used for statistical analysis using GraphPad Prism 8.0.1 software. (****; p-value < 0.0001, ***; p-value < 0.0007, **; p-value < 
0.0019, *; p-value < 0.0425). “Stim” means activated. Five independent experiments were carried out (n=5), each experiment compared five different cell populations. The statistical 
analysis was carried out on a limited data set (n=5) and hence is not powered adequately. However, the results shown here confirmed the reproducibility and robustness of the data. 
Bars errors represent the standard error (SE) of the mean.   
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Figure 4.26. Scatter plots showing the protein peak area intensity (fold-change) of cytoplasmic 
and nuclear proteins identified significantly up-regulated in (A) naïve nTregs, (B) activated nTregs 
and (C) activated CD4+CD25- T cells, compared to other subsets of CD4+ T cells.  Ordinary one-way 
ANOVA test was used for statistical analysis using GraphPad Prism 8.0.1 software. (****; p-value < 
0.0001, ***; p-value < 0.0004, **; p-value < 0.0030, *; p-value < 0.0444). “Stim” means activated. 
Five independent experiments were carried out (n=5), each experiment compared five different 
cell populations. The statistical analysis was carried out on a limited data set (n=5) and hence is 
not powered adequately. However, the results shown here confirmed the reproducibility and 
robustness of the data. Bars errors represent the standard error (SE) of the mean. 
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To distinguish naïve from activated subpopulations of CD4+ T cells, the results 

showed that six distinct proteins were identified overexpressed mainly in both 

naïve subsets of CD4+ T cells; naïve CD4+CD25  T cells and nTregs, whereas these six 

proteins were identified expressed at low levels in all activated subsets of CD4+ T 

cells (figure 4.27). These proteins included ACOT2 (Acyl coenzyme A thioesterase 2, 

mitochondrial), MDHC (Malate dehydrogenase, cytoplasmic), SPRE (Sepiapterin 

reductase), PGM2 (Phosphoglucomutase 2), TRNT1 (CCA tRNA 

nucleotidyltransferase 1, mitochondrial), and GSHR (Glutathione reductase, 

mitochondrial).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27. Scatter plots showing the protein peak area intensity (fold-change) of cytoplasmic and nuclear 
proteins identified significantly up-regulated in naïve subsets of CD4+ T cells, compared to stimulated subsets.  
Ordinary one-way ANOVA test was used for statistical analysis using GraphPad Prism 8.0.1 software. (****; p-
value < 0.0001, ***; p-value < 0.0008, **; p-value < 0.0026, *; p-value < 0.0387). “Stim” means activated. Five 
independent experiments were carried out (n=5), each experiment compared five different cell populations. 
The statistical analysis was carried out on a limited data set (n=5) and hence is not powered adequately. 
However, the results shown here confirmed the reproducibility and robustness of the data. Bars errors 
represent the standard error (SE) of the mean.   
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The results also showed that 11 distinct proteins were identified overexpressed 

particularly in activated subsets of CD4+ T cells including activated CD4+CD25  T 

cells, activated nTregs and iTregs compared to naïve subsets; naïve CD4+CD25  T 

cells and nTregs, in which these proteins were detected at low levels of expression 

(figure 4.28). these proteins were SYMC (Methionine tRNA ligase, cytoplasmic), 

SYVS (Valine tRNA ligase), IPYR (Inorganic pyrophosphatase), STATHMIN, IMPA2 

(Inositol monophosphatase 2), EF1G (Elongation factor 1 gamma), MCM2 (DNA 

replication licensing factor MCM2), MCM3 (DNA replication licensing factor MCM3), 

MCM5 (DNA replication licensing factor MCM5), MCM6, DNA replication licensing 

factor MCM6, MCM7 (DNA replication licensing factor MCM7). 

The overall results of the expression fold change of 344 cytoplasmic and nuclear 

proteins identified and compared between five different subsets of CD4+ T cells 

using SWATH MS proteomics are shown in figures 4.29, 4.30, 4.31 and 4.32). 
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Figure 4.28. Scatter plots showing the protein peak area intensity (fold-change) of cytoplasmic and nuclear proteins identified significantly up-regulated in activated subsets of CD4+ T cells, 
compared to naïve subsets.  Ordinary one-way ANOVA test was used for statistical analysis using GraphPad Prism 8.0.1 software. (****; p-value < 0.0001, ***; p-value < 0.0008, **; p-value < 
0.0032, *; p-value < 0.0404). “Stim” means activated. Five independent experiments were carried out (n=5), each experiment compared five different cell populations. The statistical analysis 
was carried out on a limited data set (n=5) and hence is not powered adequately. However, the results shown here confirmed the reproducibility and robustness of the data. Bars errors 
represent the standard error (SE) of the mean.  



230 
 

 

Figure 4.29. Heatmap and hierarchical 
clustering showing relative fold-change 
protein expression values (log10 transformed 
peaks intensity) of the 344 differentially 
expressed cytoplasmic and nuclear proteins 
identified in the five different subsets of CD4+ 
T cells using SWATH-MS proteomics. One 
minus pearson correlation metric with single 
linkage method was used for hierarchical 
clustering using MORPHEUS online software.    
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Figure 4.30. Heatmap and hierarchical 
clustering continued from figure 4.29.  



232 
 

Figure 4.31. Heatmap and hierarchical 
clustering continued from figure 4.29.  
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Figure 4.32. Heatmap and hierarchical clustering continued from figure 4.29. 
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4.3.1.10. Selection a panel of novels biomarkers of iTregs and nTregs for 

further verification and validation 

The selection criteria of novel biomarkers for further verification and/ or validation 

was based on the subcellular location of differentially expressed proteins, selection 

by the ANN approach in a correlation with the results of statistical analysis (as 

shown in the sections 4.3.1.8 and 4.3.1.9). The selection priority was for 

differentially expressed membrane proteins of iTregs and nTregs. Accordingly, 

MAVS, HEM6, PLP2 and ITIH4 proteins were selected as novel markers of iTregs for 

further verification and validation based on the results of the ANN approach and 

statistical analysis. HYEP protein was also selected as a novel biomarker of naïve 

nTregs for further verification and validation using flow cytometry.  

Prior to verification and validation, the results of ANN approach and statistical 

analysis were further tested using a receiver operating characterisation (ROC) 

analysis to assess the sensitivity and specificity of selected proteins and to assess 

the performance level of the ANN stepwise modelling approach in differentiating 

iTregs and naïve nTregs among other CD4+ T cells subpopulation. The results of ROC 

analysis showed that the combination of MAVS, HEM6, PLP2 and ITIH4 proteins 

could be used as novel biomarkers to distinguish iTregs from other CD4+ T cells 

subsets (figure 4.33). The results of ROC analysis also revealed that the panel of 

HYEP and SERPINB6A proteins could be used as novel biomarkers to differentiate 

naïve nTregs from other subpopulations of CD4+ T cells (figure 4.34). The results of 

ROC analysis confirm the efficiency of the ANN modelling approach in identifying 

biomarkers that can distinguish a group of samples among various groups.  
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Figure 4.33. (A) ROC curve showing the sensitivity and specificity of MAVS, HEM6, ITIH4 and PLP2 as a 
predictive panel of novel biomarkers that are differentially expressed in iTregs compared to other CD4+ T cells 
subpopulations. Extracted SWATH-MS quantitative data of protein were used for ROC analysis. (B) Table 
illustrating a summary of the area under the curve (AUC) results for the selected proteins. (C) Bar graph showing 
the overall model quality and performance of the proteins selected by the ANN modelling approach.  IBM SPSS 
Statistics 26 software was used for ROC curve analysis. 
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Figure 4.34. (A) ROC curve showing the sensitivity and specificity of HYEP and SERPINB6A as a predictive 
panel of novel biomarkers that are differentially expressed in naïve nTregs compared to other CD4+ T cells 
subpopulations. Extracted SWATH-MS quantitative data of protein were used for ROC analysis. (B) Table 
illustrating a summary of the area under the curve (AUC) results for the selected proteins. (C) Bar graph 
showing the overall model quality and performance of the proteins selected by the ANN modelling approach.  
IBM SPSS Statistics 26 software was used for ROC curve analysis. 
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4.3.1.11. Verification and/or validation of the selected proteins using flow 

cytometry and in silico tools 

Different commercial conjugated and unconjugated antibodies were used to validate 

the selected proteins using flow cytometry as mentioned in section 4.2.4. The four 

different subpopulations of CD4+ T cells were stained with anti- HEM6, MAVS, PLP2, 

ITIH4 and HYEP antibodies to verify the expression of the selected proteins in the 

population of iTregs and nTregs, in addition to the other subpopulations as negative 

controls (naïve CD4+CD25- and stimulated CD4+CD25- T cells). Unfortunately, the 

results of flow cytometry did not show any staining for the expression of the selected 

biomarkers in all of the subpopulations (figure 4.35).  Possible reasons are discussed 

in section 4.4 

BloodSpot in silico analysis of the shortlisted biomarkers highlighted its expression 

pattern in haematopoietic cell lineages. The analysis of the gene expression data 

found that there is a ubiquitous expression of MAVS and ITIH4 in most of the cell 

types in the murine immune system (Figure 4.36B and 4.38). The expression of PLP2, 

HEM6 (CPOX), and HYEP (EPHX1) were found to be minimum in most of the murine 

immune cells (Figure 4.36A, 4.37 A&B).  

Web-based analysis of The Cancer Genome Atlas (TCGA) using OncoLnc in 8,647 

patients of 21 cancer types indicated Kidney Renal Clear Cell Carcinoma (KIRC) as 

one of the top cancers with FOXP3 expression correlated with poor prognosis 

indicating a significant role of Tregs in KIRC (Figure 4.39A). Therefore, all the human 

equivalents of the shortlisted genes (ITIH4, PLP2, MAVS, HEM6 (CPOX), and HYEP 

(EPHX1)) were subsequently investigated in KIRC to see whether any of these genes 

explain similar survival outcome. Three out of five genes were found to be highly 

correlated with poor survival prognosis indicating possible role of induced Treg 

population in KIRC microenvironment (Figure 4.39 B, C, and D). This need further 

validation and confirmation using a human specific antibody against the above-

mentioned genes.  
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Figure 4.35. Flow cytometric density plots showing the results of verification of the selected proteins. Naïve 
nTregs were negative for the expression of HYEP, whereas iTregs showed negativity for the expression of 
HEM6, MAVS, ITIH4 and PLP2. Naïve and stimulated CD4+CD25- T cells as a control were also negative for the 
expression of all selected proteins. Kalusa software 1.3 was used for flow cytometry analysis. 
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Figure 4.36. Hierarchical differentiation tree of markers PLP2 and MAVS generated using normal 
murine haematopoiesis data set through BloodSpot online portal. The expression pattern of each 
gene from haematopoietic stem cell through its progenitors up to the effector cells are displayed. Red 
colour indicates maximum expression and blue colour represent minimum expression.   
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Figure 4.37. Hierarchical differentiation tree of markers HEM6 (CPOX) and HYEP (EPHX1) 
generated using normal murine haematopoiesis data set through BloodSpot online portal. The 
expression pattern of each gene from haematopoietic stem cell through its progenitors up to the 
effector cells are displayed. Red colour indicates maximum expression and blue colour represent 
minimum expression.   
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Figure 4.38. Hierarchical differentiation tree of marker ITIH4 generated using normal murine 
haematopoiesis data set through BloodSpot online portal. The expression pattern of each gene from 
haematopoietic stem cell through its progenitors up to the effector cells are displayed. Red colour 
indicates maximum expression and blue colour represent minimum expression.   
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Figure 4.39. Three out of five shortlisted markers associated with poor survival in cancer patients. 
(A-D). Survival analysis was performed using OncoLnc online survival analysis tool (TCGA). First, 
Tumour which showed high association of FOXP3 expression with poor survival outcome was 
identified as kidney renal clear cell carcinoma (KIRC) among 21 cancer types. The association of 
shortlisted biomarkers were then assessed in KIRC using upper and lower quartiles (33%). X- axis 
represent % survival and Y-axis represent number of days survived. Blue line indicates patient with 
low expression of corresponding gene and the red line indicates the high expression. Significance of 
difference in survival probability between high and low group of each genes were calculated using 
Log rank p value, p-Value less than 0.05 was considered as significant.   
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4.4. Discussion 
The presence of Tregs within the tumour microenvironment is found significantly 

correlated with poor prognosis in different types of cancer (Tanaka and Sakaguchi 

2017, Shang, et al. 2015b). Although the origin of tumour infiltrating Tregs is still 

controversial, a study has been reported that tumour infiltrating Tregs are mainly 

developed or induced from naïve CD4+ T cells that are recruited into the site of 

tumour (Su, et al. 2017a). Tumour infiltrating Tregs contribute to the progression of 

tumour growth via immune evasion by inhibiting anti-tumour immune response 

(Takeuchi and Nishikawa 2016).  Systemic depletion of Tregs has contributed to the 

development of autoimmune diseases in humans, thereby suggesting the 

requirement for approaches to selectively targeted tumour infiltrating Tregs to 

enhance anti-tumour immunity (Togashi, et al. 2019). Such approaches require 

sensitive and specific cell surface drug targets/biomarkers that can distinguish 

between naturally occurring Tregs (nTregs) and induced or peripherally developed 

Tregs (iTregs). To date, phenotypic signature of Tregs is defined by the expression 

of CD25 and Foxp3 proteins which are expressed in both nTregs and iTregs. 

Therefore, neither CD25 nor Foxp3 can be used for differentiating nTregs from 

iTregs (Lin, et al. 2013).  Many studies have been conducted to identify distinct 

biomarkers that can differentiate nTregs from iTregs. Neuropilin-1 (Nrp-1) was 

firstly identified as a surface marker expressed constitutively on nTregs (Bruder, et 

al. 2004). However, Milpied et al. have demonstrated that Nrp-1 is not a specific 

marker for nTregs as a population of CD4+Foxp3- T cells were found to express Nrp-

1. Also, the authors found that Nrp-1 expression was acquired by T cells after 

activation, suggesting that Nrp-1 could be used as an activation marker for T cells 

(Milpied, et al. 2009). Soon after, Thornton et al. have found that Helios is exclusively 

expressed on nTregs and can be used as a nuclear marker to differentiate nTregs 

from iTregs (Thornton, et al. 2010). However, Himmel et al. have found that not all 

nTregs express Helios as both Helios+ and Helios- cells were found within nTregs. 

The authors also found that both Helios+ and Helios-  nTregs have a similar 

suppressive activity, indicating that Helios cannot be used as a distinct marker for 

nTregs (Himmel, et al. 2013). 
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In the last three years, transcriptomic profiling of Tregs was the key topic for deeply 

understanding the biology of Tregs to identify specific molecular pathways which 

control the development and differentiation of Tregs. Cuadrado et al. have 

performed proteomics and transcriptomics on human naïve and effector nTregs and 

CD4+CD25+ T cells. The authors have identified the mechanistic pathways that define 

the identity of both naïve and effector nTregs with the difference between them at 

the RNA and protein level. The authors have found that there was no correlation 

between the transcriptomic and proteomic data for the expression of identified 

proteins, confirming the importance of proteomics analysis for the identification of 

proteins that are involved in the biological pathways (Cuadrado, et al. 2018). Similar 

approach has been conducted by Mohammad et al. the authors analysed the 

difference between T helper 17 (Th17) and iTregs using transcriptomic and 

proteomic profiling approach. The authors have demonstrated that the changes in 

the protein expression were not associated with changes in the transcriptional level, 

highlighting the importance of proteomics analysis since proteins are the functional 

product of the gene and easily targetable (Mohammad, et al. 2018). Another recent 

study conducted by Schmidt et al. has identified 37 novel molecules that regulate 

the induction of Foxp3 during the differentiation of iTregs in vitro (Schmidt, et al. 

2018). The results of all studies discussed above were only analysed mechanistic 

pathways at the transcriptional level. Also, none of previous studies have analysed 

or compared the differences between naïve CD4+CD25- T cells, naïve 

CD4+CD25+Foxp3+ nTregs, activated nTregs, activated CD4+CD25-  T cells and 

CD4+CD25++Foxp3+ iTregs at the protein level, particularly at the level of membrane 

proteins since membrane proteins can be easily targeted using antibody based 

applications either for targeting or for viable isolation using flow cytometry.                          

In this study, the high throughput proteomic subcellular profiling was performed on 

five different purely sorted subsets of CD4+ T cells including naïve CD4+CD25- T cells, 

naïve CD4+CD25+Foxp3+ nTregs, activated CD4+CD25- T cells, activated nTregs and 

CD4+CD25++Foxp3+ iTregs. Using SWATH-MS proteomics, 99 confident membrane 

proteins and 344 cytoplasmic and nuclear proteins were identified in the five 

different subsets of CD4+ T cells. The confident proteins were defined based their 

OneOmics confidence score at ≥ 50% cut-off value. The fold change of the confident 

proteins was compared pairwise manner in five subsets using OneOmics software. 
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The functional association of significant proteins were elucidated using pathway 

analysis in MetaCore. Several pathways found to be differentially regulated in iTregs 

in comparison to nTregs and CD25- T cells indicating completely different molecular 

mechanisms operating in iTregs. Major pathways upregulated in iTregs in 

comparison to the nTregs are mainly associated with cell cycle progression. This is 

not surprising because iTregs are cultured for 5 days in a proliferative condition for 

the induction, whereas, the nTregs have been isolated ex vivo without any 

manipulations. For that reason, an appropriate comparison would be iTregs against 

nTreg depleted CD4 T cells cultured in the same way as iTregs but without TGF-beta. 

Pathway analysis of this comparison showed a complete different metabolic status 

for induced Tregs indicating a possible mechanism for converting CD4 into iTregs. 

The major patways down regulated in iTregs in comparison to cultured CD4s are 

glycolysis, HIF1 targets whereas the upregulated pathway is Ubiquinone 

metabolism. Studies have previously shown that inhibiting glycolysis prevented 

TH17 progression and supported Treg differentiation. More over same study also 

revealed that HIF1-α downregulation possibly by abolishing mTOR patway was 

critical in the development of Treg differentiation (Shi, et al. 2011). Our studies 

showed that presence of TGF-beta in the proliferating condition is good enough to 

convert naïve CD4 T cells in to iTreg possibly through the same mechanism.  

An ANN based pattern recognition approach was employed to analyse the intensity 

of the expression of proteins in all of the subpopulations simultaneously in one run. 

The main advantage of using the ANN approach is due to its ability to recognise the 

pattern of variability, dimensionality and non-linearity of complex proteomics 

datasets and train the data by throughput stepwise modelling cycles with high 

performance to identify a panel of predictive biomarkers (Lancashire, Lemetre and 

Ball 2009). 

For the population of iTregs, the results showed that 5 different novel membrane 

proteins were significantly up regulated in iTregs including ITIH4, PLP2, XYLT1, 

CUL4B and P85A. The overexpression of these proteins might be mediated via TGF-

β1 signalling and could be linked to the suppressive activity of iTregs, while these 

proteins were detected at low levels in activated CD4+CD25- T cells and other 

subsets of CD4+ T cells analysed in this study. Activated CD4+CD25- T cells and iTregs 
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were received the same strength of TCR activation signals via CD3/CD28 co- 

stimulatory signalling in vitro in the presence of IL-2. However, the only difference 

was that iTregs were generated in the presence of TGF-β1.  

The results also showed that the expression of MAVS, HEM6 and SYAM proteins, as 

intracellular mitochondrial membrane proteins, was found significantly up 

regulated in iTregs compared to other subsets of CD4+ T cells. These proteins also 

could be correlated to the suppressive activity of iTregs which was acquired due to 

exposure to TGF-β1 after TCR activation. The results suggest that these novel 

intracellular proteins could be used for defining the phenotypic features of iTregs. 

To date, the expression of CD73 and CTLA-4 ,as intracellular membrane proteins,  

has been used to detect to both nTregs and iTregs (Zhao, Liao and Kang 2017), 

however the expression of MAVS, HEM6 and SYAM proteins was specifically up 

regulated in iTregs. Therefore, these results suggest that these proteins could be a 

suitable target for detecting iTregs from other CD4+ T cells subsets.   

The results also showed that 20 distinct proteins, including GTR1, MOT4, NDRG1, 

ALDOA, PGK1, KPYM, LEG1, RIPK3, TPIS, G3P, SERC, SYYC, RP10, PGAM1, PGM1, 

GALK1, LDHA, RL34, TPP2, SYSC were found significantly overexpressed in 

activated CD4+CD25- T cells and nTregs after TCR activation, while they were down 

expressed in iTregs. However, the expression of these proteins was detected at very 

lower levels in naïve subsets. When compared to naïve subsets, the overexpression 

of these proteins could be due to TCR activation, suggesting that these proteins are 

activation markers for CD4+ T cells. However, the expression of these proteins was 

significantly decreased in iTregs subset even after TCR activation, suggesting that 

the expression of 20 different proteins could be affected by TFG-β1 cytokine during 

the differentiation of iTregs in vitro. 

The phenotypic features of naïve nTregs are characterised by the expression of 

CD25 as a membrane protein and Foxp3+ as a nuclear protein. However, CD25 

protein is also upregulated upon TCR activation and considered as an activation 

marker for T cells (Bajnok, et al. 2017). Therefore, the expression of CD25 is not a 

good marker to distinguish naïve nTregs from other activated CD4+ T cells. 

Moreover, the expression of Foxp3 is not a distinct marker for naïve nTregs as it is 

also expressed in both activated nTregs and iTregs. However, the results of this 
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study showed that the expression of HYEP, a membrane protein, was significantly 

up regulated in naïve nTregs only, while it was significantly down regulated in other 

subsets of CD4+ T cells that were analysed in this study. The results also showed that 

the expression of SERPINB6A, an extracellular protein, was detected significantly up 

regulated in naïve nTreg, compared to other CD4+ T cell subsets. These results 

suggest that HYEP and SERPINB6A can be novel surface markers to distinguish 

naïve nTregs from activated nTregs and iTregs. To distinguish activated nTregs from 

naïve and iTregs, the results showed that the expression of SPA3F, an extracellular 

protein, was found significantly up regulated in activated nTregs, compared to other 

subsets of CD4+ T cells that were analysed in this study.  

The identified proteins mentioned above were subjected for further validation on 

the subpopulations of CD4+ T cells that were sorted and generated in the developed 

BALB/c mouse model. However, unfortunately, the validation experiment failed to 

show any positive staining for the identified proteins on the subpopulations of CD4+ 

T cells that were used for validation. The possible reasons of failing include: (1) the 

quality of commercially-available antibodies that were used for the validation as 

majority of them were unconjugated polyclonal antibodies that have not been tested 

for flow cytometry analysis. The multi-reactivity of polyclonal antibodies in 

different species such as human, rat and mouse could affect their recognition and 

specific binding pattern for the protein of interest (Voskuil 2014). (2) failure in the 

conjugation experiment; since incomplete or insufficient fluorochrome-conjugation 

might prevent the antibody to be recognised by the lasers of flow cytometer. (3) the 

selected proteins might undergo posttranslational modifications which alter the 

structure and stability of proteins and contribute to the production of neo-epitopes 

which might not be recognised by the already designed antibody. Alternative 

methods such as western blotting or ELISA will be tested in the future using the 

same antibodies to confirm the results.  Once validated in humans these 

markers/targets can be used to inhibit iTregs in tumours or any other inflammatory 

diseases. Also, all of the identified markers are on the cell surface will allow the user 

to purify the cells without fixing and permeabilising these cells. This will allow the 

scientist to understand the immunobiology of iTregs in more details.  
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All proteins identified in this study were searched in the literature using NCBI 

Pubmed and Google Scholar, however there were not any published studies found 

where the levels of these proteins were discussed in relevance to Tregs to confirm 

the results of this study. It is likely therefore, the lack of information in the literature 

confirms the novelty of the results of this study in identifying membrane markers 

that can discriminate iTregs from nTregs. 
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Chapter 5.  

Summary of Discussion 

5.1. Background and overall aim 
Tregs are a distinct immunosuppressive subpopulation of CD4+ T cells and function 

to control the immune homeostasis and tolerance by inhibiting the proliferation and 

function of autoreactive T cells, thereby preventing autoimmunity (Fehervari and 

Sakaguchi 2004). Tregs are broadly grouped into two main subpopulations based 

on the site of development, including thymic-derived natural Tregs (nTregs) and 

peripheral-derived induced Tregs (iTregs). Both nTregs and iTregs are 

characterised by the expression of CD25 and Foxp3. (de Lafaille, Maria A Curotto 

and Lafaille 2009). 

In cancer, Tregs are found to enhance tumour progression by inhibiting the 

proliferation and function of CD8+ T effector cells which induce anti-tumour immune 

response (Elkord, et al. 2010). The enrichment of CD4+CD25+Foxp3+ Tregs within 

the tumour microenvironment has been correlated with worse prognosis and 

reduced survival rates in various types of cancer including breast cancer, lung 

cancer, ovarian cancer, glioblastoma, hepatocellular carcinoma, renal carcinoma, 

pancreatic ductal carcinoma, non-Hodgkin’s lymphomas, melanoma and other 

malignancies (Zhang, et al. 2017, Curiel, et al. 2004, Tao, et al. 2012, Sun, et al. 2017, 

Sayour, et al. 2015, Tang, et al. 2014, Yang, et al. 2014, Yang, et al. 2006, Li, et al. 2010, 

Gerber, et al. 2014, Shang, et al. 2015a). The accumulation of Tregs within the 

tumour milieu is thought to be as a major hurdle for the development of effective 

immunotherapy (Liu, Workman and Vignali 2016c). Therefore, several attempts 

have been carried out to target Tregs within the tumour nest for enhancing anti-

tumour immunity. Tregs have been targeted through developing antibodies against 

the CD25, CTLA-4, PD-1, CCR4 and CCR8. However, targeting Tregs via the 

expression of these biomarkers has resulted in the development of autoimmune 

disease as a side effect of non-selective treatment since these specific surface 

receptors are also expressed by Tregs circulating in the periphery where they 

maintain the peripheral immune tolerance and homeostasis (Bakacs, et al. 2012, 

Kurose, et al. 2015, Larkin, et al. 2015). In addition, CD25 and CTLA-4 are also 
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expressed by activated T effector cells, and thus targeting Tregs via these receptor 

could inhibit both Tregs and T effector cells, thereby promoting tumour progression 

indirectly (Ha, et al. 2019). Therefore, to selectively inhibit or block the function of 

tumour-infiltrating Tregs without affecting the function of circulating Tregs and 

other T effector cells, biomarkers that are exclusively expressed tumour-infiltrating 

Tregs are still required (Liu, et al. 2016a, Togashi, et al. 2019). 

The question about the root of tumour-infiltrating Tregs is still debatable. It has 

been hypothesised that the origin of  tumour-infiltrating Tregs could be from (1) 

nTregs which have been recruited into the tumour microenvironment via the 

expression of various chemokine receptors including CCR4, CCR5, CCR10 and 

CXCR3, (2) naive CD4+CD25- T cells which have been recruited into the tumour 

microenvironment where they are converted into induced Tregs (iTregs) in the 

presence of TGF-β, or (3) from both nTregs and iTregs subpopulation (Chaudhary 

and Elkord 2016, Deng 2018). However, a novel study by Su et al. has proven that 

tumour-infiltrating Tregs within the tumour microenvironment of breast cancer are 

mainly developed from naïve CD4+ T cells that are recruited into the tumour bed, 

but not from circulating Tregs (Su, et al. 2017b). Therefore, to answer the question 

about the origin of tumour-infiltrating Tregs, it is still essential to identify 

biomarkers that can differentially distinguish iTregs that are generated from naïve 

CD4+CD25- T cells from nTregs and other T cells. Identifying such biomarkers would 

facilitate the development of selective Tregs targeting therapy without affecting the 

function and homeostasis of other T effector cells. 

Accordingly, the aim of this study was to identify membrane biomarkers that can 

differentially characterise phenotypic signature of iTregs from nTregs using 

SWATH-MS proteomics. To achieve this aim, the study was divided into 3 major 

objectives: (1) development of murine model for generating CD4+CD25+Foxp3+ 

iTregs from naïve CD4+CD25-Foxp3- T cells in the presence and absence of tumour 

cells in vitro, (2) optimisation of a quantitative proteomics method to profile iTregs 

and nTregs , and (3) identification and verification of novel biomarkers of iTregs and 

nTregs. 
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5.2. The generation of iTregs from naïve CD4+CD25- T cells 

in vitro 
In this study, the BALB/c mouse strain was selected to develop a murine model for 

studying nTregs and iTregs since the percentage of CD4+CD25+Foxp3+ nTregs in the 

spleen of BALB/c was significantly higher than in the spleen of C57BL/6 mice. These 

results have been supported by several previous studies (Chen, et al. 2005, 

Vogelsang, et al. 2009b, Blankenhaus, et al. 2014b). This higher percentage of nTregs 

was important to obtain a sufficient cell number for further downstream 

experiments. 

For generating iTregs, naïve CD4+CD25- T cells were purely purified and sorted 

using cell sorting. The purity of cell sorting was ≥ 98% and assessed by analysing 

the expression of CD25 on the sorted cells using flow cytometry. The sorted cells 

were grown in vitro in the presence of CD3/28 TCR activation beads, IL-2 (30 U/mL) 

and TGF-β1 (5 ng/mL) over a period of 5 days in the presence of tumour cells. The 

induction of iTregs from naïve CD4+CD25-Foxp3- T cells was confirmed by the 

positive expression of CD25 and Foxp3 on the generated iTregs using flow 

cytometry and defined as CD4+CD25++ Fxop3+ iTregs.   

 

5.2.1. The differentiation of iTregs requires a synergistic 

interaction of CD3/CD28 TCR and TGF-β1 signals in a time-

dependent manner 
The generation of iTregs in this model was mainly based on the activation of TCR in 

the presence of TGF-β1 and IL-2. In the absence of CD3/28 TCR activation signals, 

there was no induction of iTregs even in the presence of TGF-β1 and IL-2. However, 

the presence of both TCR activation signals, IL-2 and TGF-β1, the induction of iTregs 

was significantly increased, confirming the significance of the CD3/28 TCR 

activation signals in mediating the development of iTregs. These results were 

consistent with the finding that suboptimal TCR activation signals mediate the 

differentiation of iTregs from naïve CD4+CD25-Foxp3- T cells by promoting the 

expression of Foxp3 via NFAT (nuclear factor of activated cells) pathway (Vaeth, et 

al. 2012). Moreover, the stimulation of TCR signals has also been found to induce the 
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expression of Foxp3 in iTregs through the activation of NF-kB pathway in which c-

Rel, a member of NF-kB family, promotes the expression of Foxp3 by binding to the 

Foxp3 promoter (Ruan, et al. 2009). The pivotal role of the TCR activation signals in 

the development of iTregs has also been confirmed by the finding that TCR-deficit 

Tregs lost their suppressive activity and failed to inhibit T cells response in vivo 

(Vahl, et al. 2014).  

However, the stimulation of CD3/28- TCR signals solely was not enough to generate 

iTregs from naïve CD4+CD25-Foxp3- T cells in vitro in the presence of IL-2 in the 

absence of TGF-β1, whereas the induction of iTregs was significantly increased in 

the presence of IL-2 and TGF-β1 following TCR activation, confirming the crucial 

role of TGF-β1 signalling in the differentiation of iTregs. The role of TGF-β1 

signalling in the development of iTregs has been extensively acknowledged by many 

studies. Upon binding to its receptor, TGF-β1 activate its downstream transcription 

factor complex “ Smad2/3” which is recruited into the nucleus where Smad2/3 

binds the Foxp3 enhancer element, thereby inducing the expression of Foxp3 

(Zheng, et al. 2010a, Tone, et al. 2008). The induction of Foxp3 has been also found 

t to be mediated by TGF-β receptor and IL-2 receptor through CNS2-5-azacytidine 

(5-aza-C) mechanism (Freudenberg, et al. 2018).  

In this model, it was found that induction of iTregs from naïve CD4+CD25-Foxp3- T 

cells was significantly decreased following continuous TCR engagement in the 

absence of TGF-β1 for 24 hours, whereas the induction of iTregs was significantly 

increased when the TGF-β1 was immediately added following TCR engagement. 

This finding confirms that naïve CD4+CD25-Foxp3- T cells following constant TCR 

engagement become irresponsive to the TGF-β1 signalling, whereby preventing the 

differentiation into iTregs. These results also confirm that both TCR and TGF-β1 

signals synergistically act to mediate the induction of iTregs from naïve CD4+CD25-

Foxp3- T cells in a time-dependent manner. These results were consistent with the 

finding that that CD3/28 co-stimulation could overcome TGF-β-mediated 

repression of the proliferation of activated T effector cells, and after persistent 

CD3/28 co-stimulation, effector activated T cells become more resistant to the 

influence of TGF-β signalling (Koehler, et al. 2007). Moreover, it has been reported 

that activated T cells could reduce the expression of TGF-β receptor II (TGF-βRII) on 
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their surface following TCR activation via CD28 engagement, thereby avoiding the 

effect of TGF-β  signalling (Sanjabi, et al. 2017).             

5.2.2. The presence of 4T1 tumour cells significantly increases the 

development of iTregs in the presence of TGF-β1 
In this model, the induction of iTregs from naïve CD4+CD25-Fox3- T cells was 

significantly increased in the presence of 4T1 tumour cells, TGF-β1 and IL-2, 

compared to those induced in the presence of TGF-β1 and IL-2 only. However, the 

induction of iTregs was at very low percentages (2%) in the presence of IL-2 and 

4T1 cells but in the absence of TGF-β1, confirming that there is a cellular synergy 

between 4T1 cells and TGF-β1 signalling which in turn could enhance or increase 

the percentage of the iTregs induction. These findings suggest that the presence of 

TGF-β1 may influence 4T1 cells to initiate TGF-β1 signalling to produce TGF-β1 in 

an autocrine signalling loop-dependent manner (Daroqui, et al. 2012, Dumont, 

Bakin and Arteaga 2003), since 4T1 cells have been found to express functional TGF-

β receptors (McEarchern, et al. 2001). In addition, the increase in the induction of 

iTregs was also correlated with the number of 4T1 cells co-cultured with naïve 

CD4+CD25-Foxp3- T cells in the presence of IL-2 and TGF-β1. The results revealed 

that the increase in the ratio of 4T1 cells to naïve CD4+CD25-Foxp3- T cells in the 

presence of TGF-β1 and IL-2 results in the increase of iTregs induction. Even at low 

concentrations of TGF-β1, particularly at 0.05 ng/mL, the induction of iTregs was 

significantly higher (20.6%) in the presence of 4T1 cells and IL-2, where the 

induction of iTregs at the same concentration of TGF-β1 in the presence of IL-2 only 

was 4.46%. These results confirm that the presence 4T1 tumour cells under the 

effect of TGF-β1 signalling promotes the induction of iTregs. 

 

5.2.3. The generated iTregs are highly immunosuppressive 
A functional assay was optimised to assess whether the generated iTregs are 

immunosuppressive and can inhibit the proliferation of CD8+ T cells. To achieve this, 

naïve CD8+ T cells were purely sorted, stained with CFSE (5 µM) and activated with 

CD3/28 T cell activator beads. The CD8+ T cells were then co-cultured with the 

generated iTregs at different ratios. The overall results showed that the generated 

iTregs were highly immunosuppressive and could inhibit the proliferation of CD8+ 
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T cells. The percentage of the CD8+ T cells inhibition by iTregs was based on the co-

culture ratio of iTregs and CD8+ T cells. 

5.2.4. The Foxp3-TSDR of iTregs and stimulated nTregs is 

hypermethylated   
The methylation status of the Foxp3-TSDR at four different CpG sites was assessed 

in the five different subpopulations of CD4+ T cells. The naïve unstimulated nTregs 

were considered as a control population since their TSDR is completely 

demethylated (Schreiber, et al. 2014). The TSDR of the generated iTregs was 

significantly hypermethylated compared to naïve unstimulated nTregs. Similar 

results have been also found in a study carried out by Schmidt et al. where the 

authors assessed the methylation status of 15 different CpG regions within human 

Foxp3 gene locus and found that iTregs were significantly hypermethylated in all 

CpG sites, compared to unstimulated naïve nTregs (Schmidt, et al. 2016). It has been 

reported that the high methylation of the Foxp3-TSDR affects the stability and 

suppressive activity of iTregs (Huehn, Polansky and Hamann 2009, Zheng, 

Josefowicz, Chaudhry, Peng, Forbush and Rudensky 2010b, Baron, et al. 2007). 

However, the iTregs generated in this model were highly suppressive, could inhibit 

the proliferation of CD8+ T cells and were stable over 5 days after induction. Also, 

other studies have generated highly suppressive human and murine stable iTregs in 

which the TSDR was hypermethylated (Hippen, et al. 2011, Lee, et al. 2012, Strainic, 

et al. 2013, Gu, et al. 2014). These results confirm that the TSDR methylation status 

is not correlated with the suppressive activity of iTregs, although the demethylation 

status of Foxp3-TSDR is considered as a marker for the stability of Foxp3 expression. 

The stability of the Foxp3 expression of iTregs has been discussed to be affected by 

the experimental protocols used for the generation of iTregs. For instance, iTregs 

that were generated using CD3/28 T cell activator beads have been found to acquire 

stable Foxp3 expression more than iTregs which were generated using plate-bound 

anti-CD3 and soluble anti-CD28 antibody, confirming the importance of the quality 

and affinity of TCR signals for maintaining the stability of Foxp3 expression  (Geiger 

and Tauro 2012, Gottschalk, Corse and Allison 2010, Lu, et al. 2010, Hippen, et al. 

2011, Qian, et al. 2011, Gu, et al. 2014). These findings were consistent with the 

results of the Foxp3 stability revealed in this study. 
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Intriguingly, in this study, it was found that naïve nTregs lost their demethylation 

status and became significantly hypermethylated following TCR activation. This 

finding was also supported by Zhang et al.; where the authors demonstrated that 

nTregs lost their Foxp3 expression after TCR engagement and experienced re-

methylation of the CNS1 region within Foxp3 locus (Zhang, et al. 2017). A similar 

finding was also found in an earlier study by Bailey-Bucktrout et al. in 2013. There 

the authors demonstrated that nTregs underwent Foxp3 instability and secreted 

pro-inflammatory cytokines following self-antigen-driven activation during 

inflammation in the CNS (Bailey-Bucktrout, et al. 2013). Taken together, it seems 

that not only iTregs, but nTregs may lose their stability in vivo following TCR 

engagement. This may justify the notion that the acquired immunosuppressive 

activity of Tregs is inducible based on the presence of stressful stimuli that promote 

prolonged acute or chronic inflammation, which can make Tregs behave with more 

flexibility based on the physiological condition in the milieu. 

5.3. Optimisation methods for protein isolation and 

preparation for quantitative proteomic profiling  
The percentage of the induction of iTregs generated in this study allowed to obtain 

sufficient cell number of iTregs to be used for optimising different methods for 

quantitative proteomic profiling. 

Prior to approaching proteomics, it was initially planned to carry out transcriptomic 

profiling for five different subsets of CD4+ T cells to identify distinct biomarkers that 

can differentiate iTregs from nTregs and other control subpopulation of CD4+ T cells. 

However, information derived from transcriptomic profiling reflects the level of 

RNAs abundance, not proteins. Therefore, the interpretation of transcriptomic data 

is difficult to predict the phenotypic feature of a cell or tissue (Misra, et al. 2018). In 

addition, several studies have applied a transcriptomic profiling integrated with 

proteomic profiling on different subsets of T cells and confirmed that the differential 

changes in the expression of biomarkers at RNA level were not correlated with the 

changes at the protein level (Cuadrado, et al. 2018, Mohammad, et al. 2018). For this 

reason (and that of cost and logistics), it was decided to carry out proteomic 

profiling that enable discovery biomarkers to distinguish iTregs from nTregs and 

other control subpopulation of CD4+ T cells.                        
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In this study, two different methods were optimised for isolation and preparation 

protein samples for proteomic analysis, including whole cell lysate and subcellular 

fractionation. The main aims of the optimisation were to isolate sufficient quantity 

of proteins from samples containing a low cell number (2x106), to identify a 

sufficient number of proteins yielded from MS (mass spectrometry) analysis and to 

increase the identification coverage of membrane proteins of total proteins 

identified by MS analysis. 

Initially global (total cell lysate) proteomic profiling has been carried out using the 

method of whole cell lysate. Here, proteins were isolated from whole cell lysates 

derived from samples containing 2.5x106 of purified murine T cells. 25µg of proteins 

were then processed for MS analysis. The total number of proteins identified from 

each sample was in range between 1053 and 1232 at 1% FDR (false discovery rate). 

The percentage of the identified membrane proteins was in range between 7.5% and 

8.3% from total proteins, whereas the identified plasma membrane proteins 

constituted about 4.2-4.9% of total membrane proteins and more than 50% of total 

membrane proteins. These percentages were not sufficient to reach the aims of this 

study and confirm that the optimisation of proteins isolation using whole cell lysate 

lysed by Erika’s or urea buffer failed to purify sufficient percentages of membrane 

proteins. Purification of plasma membrane proteins using whole cell lysate method 

was limited due to insolubility and hydrophobicity of plasma membrane proteins 

and low recovery rate of lipid-anchored surface proteins (Orsburn, et al. 2011).  

To overcome the limitation of the whole cell lysate methods for identifying 

membrane proteins, the method of subcellular fractionation was optimised in this 

study to increase the coverage rate of quantification of plasma membrane proteins. 

Subcellular fractionation has also enabled identification and quantification of 

plasma membrane proteins which are the key target of antibody-based therapies 

(Leth-Larsen, et al. 2010). Moreover, Subcellular fractionation has enabled detection 

of peptides that belong to low-abundant proteins, thereby increasing the coverage 

rate of protein quantification using MS-based proteomics (Lee, et al. 2010).  

In this study, the subcellular fractionation for isolation membrane and cytoplasmic 

proteins was carried out prior to proteomic analysis. The percentage of total known 

membrane proteins identified following subcellular fractionation was significantly 

increased to 57% of the total proteins identified by MS analysis, while it was only 
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around 8% using the whole cell lysate method. For plasma membrane proteins, the 

main of the percentage of identification was significantly increased to 26% of total 

proteins identified using subcellular fractionation method, whereas it was only 4.5% 

using the whole cell lysate method. These results were relatively reasonable 

according to the low cell number (2x106) which was used for isolation of membrane 

proteins. It was noticed that the kit does not completely separate membrane and 

cytosolic proteins and both fractions share a significant (10-30%) proportion of 

proteins which was not unexpected. Based on these results, the optimised method 

of the subcellular fractionation was followed to carry out a comprehensive 

quantitative proteomic profiling of the five different subsets of CD4+ T cells using 

LC-MS-MS and SWATH-MS proteomics.  

 

5.4. Identification and verification of distinct biomarkers 

of nTregs and iTregs using LC-MS-MS/SWATH-MS 

proteomics 
3910 proteins were quantified from the five subpopulations of CD4+ T cells by 

SWATH-MS analysis. The quantified proteins were sorted based on their confidence 

score as mentioned in chapter 4 (section 4.3.1.1). Accordingly, 99 membrane 

proteins and 344 cytoplasmic and nuclear proteins with confidence score ≥ 50% 

were selected for further analysis. The data of protein peak area of 99 membrane 

proteins and 344 cytoplasmic proteins were further analysed the ANN as a powerful 

bioinformatics tool to identify a panel of biomarkers that can differentiate iTregs 

from nTregs and other subpopulations of CD4+ T cells. The ANN has been used as a 

machine learning approach to train and analyse complex proteomic data in order to 

identify and verify a combination of novel biomarkers (Swan, et al. 2013).      

A panel of proteins, including PLP2, IHIT4, MAVS and HEM6, was identified to be 

significantly upregulated in the population of iTregs compared to the other subsets 

of CD4+ T cells in which the proteins were detected at low levels. These proteins 

were also selected by the ANN as a predictive panel with the best predictive 

performance which can differentiate iTregs from other CD4+ T cells subsets included 

the analysis. The sensitivity and specificity of these biomarkers were further tested 
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using a receiver operating characteristic (ROC) analysis which confirmed that the 

combination of PLP2, IHIT4, MAVS and HEM6 proteins could be as novel biomarkers 

of iTregs. The upregulation of these proteins in iTregs might be mediated by TGF-β1 

signalling and could be associated with the suppressive activity of iTregs, since all 

other subpopulations were grown in vitro in the presence of CD3/28 T cell activator 

beads and IL-2, except iTregs were generated in the presence of CD3/28 beads, IL-

2 and TGF-β1. 

According to the Uniprot database, PLP2 (proteolipid protein 2) is classified as a 

multi-pass membrane protein which has been found predominantly localised on 

plasma membrane and endoplasmic reticulum membrane (www.uniprot.org, 

accessed on 25 Nov 2019). PLP2, which is also known as intestinal membrane A4 

protein, has been initially found to be enriched in the differentiated colonic 

epithelial cells (Oliva, Wu and Yang 1993). PLP2 has been found to play a role in the 

differentiation of colonic epithelial cells in which, upon activation, PLP2 could 

localise to the endoplasmic reticulum and multimerise to form ion channels 

(Breitwieser, et al. 1997). PLP2 has been also found to mediate the migration of 

human osteogenic sarcoma (HOS) cells via the interaction with CCR1 expressed on 

the surface of HOS cells, indicating that PLP2 might act as a chemotactic ligand for 

chemokines receptors such as CCR1 (Lee, et al. 2004). In melanoma, PLP2 has been 

found to promote the progression and metastasis of tumour cells by inducing the 

secretion of MMP-2 (metalloproteinase-2) which serves as invasion-related 

molecule (Sonoda, et al. 2010). A study by Li et al. has shown that IL-10- and TGF-β-

secreting Tregs promotes the invasiveness and proliferation of endometrial stromal 

cell derived from endometrial tumour cells by enhancing the expression of MMP-2 

(Li, et al. 2014). A recent study by Chen et al. has shown that the upregulation of 

PLP2 in glioma tumour cells promotes the aggressiveness of tumour via the 

expression of MMP-2 and is associated with poor prognosis (Chen, Hueng and Tsai 

2018). Based on these results, it seems that PLP2 can be as novel biomarker of iTregs 

that may promote the progression of tumour cells via the promotion of MMP-2 

expression. There was no published work found confirming the expression of PLP2 

in Tregs or any other T cells subsets, confirming the novelty of this discovery.  

ITIH4 (Inter-alpha-trypsin inhibitor heavy chain H4) was also identified in this 

novel study to be significantly upregulated in iTregs compared to other subsets of 

http://www.uniprot.org/
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CD4+ T cells. ITIH4 is a member of Inter-alpha-trypsin inhibitor family (ITIH1, ITIH2, 

ITIH3, ITIH4 and ITIH5), a family of plasma protease inhibitors. ITIH4 has been 

found to interact with hyaluronic acid (HA), which is of major molecules of the 

extracellular matrix, via forming a covalent bound (Hamm, et al. 2008). HA is a 

negatively-charged glycosaminoglycan which has been detected to be 

predominantly enriched on endothelial cells and in the extracellular matrix. HA has 

been found highly enriched in the tumour stroma of breast cancer. HA has also been 

found to mediate the recruitment of Tregs via the expression of CD44 and 

participate to enhance expression of Foxp3, thereby promoting the suppressive 

activity of Tregs. HA-binding Tregs have been found significantly enriched in the 

peripheral blood of patients with breast cancer (Perfilyeva, et al. 2015). HA has been 

found to function as a ligand with high affinity for the CD44 and HA-CD44 binding 

promotes the production of TGF-β1 and IL-10 by Tregs (Bollyky, et al. 2009)        

ITIH4 has been also found as an anti-inflammatory protein, and its expression was 

found highly correlated with the expression of IL-10 and IL-2 (Kashyap, et al. 2009). 

These finding could justify that ITIH4 might be a novel biomarker of iTregs that 

could recruited to the tumour microenvironment via the expression of HA on 

endothelial cells or in the extracellular matrix, since there was no any published 

work confirming the expression of ITIH4 on Tregs. 

MAVS (mitochondrial antiviral signalling protein) was also identified to be 

significantly upregulated in iTregs compared to other subsets of CD4+ T cells that 

were analysed in this study. MAVS has been found to mediate host innate immune 

responses against viral infection through the activation of the transcription factors 

NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) and IRF3 

(interferon regulatory factor 3). Both NF-kB and IRF3 have been found to regulate 

the expression of type-1 interferons (IFNs) including IFN-α and IFN-β which 

suppress viral replication (Seth, et al. 2005). As a signalling adapter protein, MAVS 

is activated by retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) which 

recognise and bind viral RNA in the cytoplasm of infected cells (Hou, et al. 2011). 

The activation of MAVS stimulates the cytosolic kinases IKK and TBK1 which in turn 

induce the activation of NF-kB and IRF3 (McWhirter and Maniatis 2005).  

RLRs have been found to be expressed by T cells including Tregs and T effector cells 

(Suthar, et al. 2012, Anz, et al. 2010). In Treg, the question whether MAVS signalling 
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has an impact on the function of Tregs has been investigated by Da Costa et al. where 

the authors found that MAVS signalling was not essential for the proliferation and 

suppressive activity of Tregs in MAVS-deficient mice following West Nile virus 

(WNV) infection (Da Costa, et al. 2017). However, the inhibition of MAVS signalling 

has been found to suppress the expansion of Tregs following WNV infection, and this 

was correlated with uncontrolled inflammatory response (Suthar, et al. 2010). A 

recent study by Kawano et al. has demonstrated that the overproduction of type 1 

IFNs by myeloma cells could induce the recruitment and expansion of Tregs within 

the tumour microenvironment via IFN-α/β receptor 1 (IFNAR1) expressed on Tregs. 

The authors also found that the immunosuppressive of Tregs was significantly 

diminished following blocking IFNAR1 on Tregs (Kawano, et al. 2018). Therefore, 

based on the studies discussed above, the expansion of Tregs in response to the 

overproduction of type 1 IFNs might be regulated by MAVS signalling which induces 

the production of type IFNs via the activation of NF-kB and IRF3. However, the 

question whether the expression of IFNAR1 on Tregs can be regulated by MAVS 

signalling remains unanswered. The answer of this question might help in 

understanding the upregulation of MAVS in iTregs that was identified in this study. 

HEM6, which is known as CPOX (Oxygen-dependent coproporphyrinogen-III 

oxidase, mitochondrial), was also identified to be significantly upregulated in iTregs 

compared to other subsets of CD4+ T cells. According to Uniprot online database, the 

CPOX (HEM6) is a mitochondrial inner membrane protein which is implicated in the 

biosynthesis of heme (Uniprot online database, accessed on 25 Nov 2019). The role 

or function of this proteins in the biology of T cells was searched, however there was 

no any published study investigated its role.    

Even though all proteins mentioned above are uniquely upregulated in iTregs, HYEP 

(epoxide hydrolase-1 (EPHX-1)) was found to be downregulated in iTregs compared 

nTregs and all other subsets of CD4+ T cells that were analysed in this study. EPHX-

1 is an enzyme localised in the endoplasmic reticulum membrane and involved in 

the metabolism of lipids (Uniprot online database, Accessed on 25 Nov 2019). There 

was no any published study investigated this protein in detail, therefore the role of 

HYEP in differentiating nTregs from iTregs should be further explored. 

Validation of the biomarkers identified in this study using antibody-based flow 

cytometry assay was attempted. Very few antibodies were commercially available 
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for the identified biomarkers, and those that were, were not originally developed for 

flow cytometry and were unlabelled (unconjugated). Therefore, it was attempted to 

label/conjugate the antibodies with PE (Phycoerythrin) fluorochrome. The labelled 

antibodies were further tested on the subpopulations of CD4+ T cells analysed in this 

model. However, the results showed that there was no positive staining for the 

antibodies on all the subpopulations, indicating that further work is needed to 

develop the identified panel of biomarkers for validation and testing in a large 

cohort of populations.  

 

Conclusion and future work 
 
Successfully established a murine iTreg induced model for studying its biology at 

proteome level and identification of markers which could distinguish iTregs from 

other CD4 subsets. As far as the literature search suggested, this is the first study 

carried out either in humans or mouse combining membrane fractionation with 

quantitative mass spectrometry.  The ANN based analysis have identified five 

markers (PLP2, MAVS, HYEP, HEM6 and ITH4) as potential biomarkers. However, 

attempted validation of these markers using commercially available antibodies 

were not successful due to the antibody failure to detect the protein in flow 

cytometry. This could be negotiated in the future by either using a different 

technique such as western blot using the same antibody or developing a completely 

new antibody panel specifically suited for flow cytometry. Pathway enrichment 

analysis using literature curated database (MetaCore) and most differentially 

expressed proteins in iTreg compared to its control CD4 cells suggested a potential 

mechanistic role as supressed metabolic glycolytic pathway and HIF-target protein. 

Which agrees with the existing literature using other murine models.  The role of 

TGF beta in metabolic alteration of iTregs were reported in the literature 

(Priyadharshini et al 2018). However, this study has identified precise molecular 

targets preferentially altered at protein level was identified. This study also has 

identified several target proteins involved in Ubiquinone metabolism (CoenzymeQ) 

up regulated in iTregs suggesting potential difference in mitochondrial activity. 

Further works needs to validate these findings which could not be completed within 

the time frame of this project. One of the potential drawbacks of this project is 

translation into human settings. Although, biomarkers and mechanistic insights 
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were gained using mouse model, its potential translation depend on how well these 

markers represent human iTreg counter parts, which was lacking at this moment 

due to the unavailability of suitable antibodies and human samples. This will be the 

priority in the immediate future. Overall this study achieved its objective in 

generating quantitative proteomics data using purified subsets of CD4 T cells and 

identified markers to distinguish iTreg, future validations needed to fully translate 

these findings into humans.  
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Appendix 
 

Table 1A summary of  the amount and concentration of reagents that were used to 
prepare samples for proteomic MS analysis. 

Cell Type 
(Splenocyte

) 

Cell 
No. 

(x106) 

EB 
(µL) 

Protein 
Conc. 

(µg/µL) 

25 µg of 
protein 

in 
volume 

(µL) 

TEAB 
(µL) 

DTT 
(µL) 

IAA 
(µL) 

Total 
volume 

at 
digestio

n 
(µL) 

Urea 
Conc. At 
digestio

n (M) 

Trypsin 
(µL) 

 
 

Experiment 
1 

10 100 2.36 10.6 89.4 1 2.7 103.7 0.97 1.25 
5 50 1.72 14.5 85.5 1 2.7 103.7 1.33 1.25 

2.5 50 1.25 20 80 1 2.7 103.7 1.83 1.25 
1 50 0.39 63.8 There two samples were excluded from preparation because 

there were no enough proteins yielded from cell lysis 0.5 50 0.15 166.6 
 
 

Experiment 
2 

10 100 2.63 9.5 90.5 1 2.7 103.7 0.87 1.25 
5 50 1.62 15.5 84.5 1 2.7 103.7 1.42 1.25 

2.5 50 0.83 30.2 69.8 1 2.7 103.7 2.77 1.25 
1 50 0.34 73.5  

0.5 50 0.18 136.4 
 
 

Experiment 
3 

10 100 1.41 17.8 82.2 1 2.7 103.7 1.63 1.25 
5 50 1.48 16.8 83.2 1 2.7 103.7 1.54 1.25 

2.5 50 0.67 37.4 62.6 1 2.7 103.7 3.43 1.25 
1 50 0.29 85.6  

0.5 50 0.27 91.5 
 
 

Experiment 
4 

10 100 1.68 14.9 85.1 1 2.7 103.7 1.36 1.25 
5 50 1.40 17.9 82.1 1 2.7 103.7 1.64 1.25 

2.5 50 0.62 40.5 59.5 1 2.7 103.7 3.71 1.25 
1 50 0.32 77.9  

0.5 50 0 0 

 

Table 2A. summary of summarises the concentration of proteins yielded in each 
sample, and the amount and concentration of reagents that were used to prepare 
samples for MS analysis.                 

Cell Type 
(Splenocytes) 

Cell 
No. 

(x106) 

EB 
(µL) 

Protein 
Conc. 

(µg/µL) 

25 µg of 
protein 

in 
volume 

(µL) 

TEAB 
(µL) 

DTT 
(µL) 

IAA 
(µL) 

Total 
volume 

at 
digestion 

(µL) 

Urea 
Conc. At 

digestion 
(M) 

Trypsin 
(µL) 

 
 
Experiment 1 

10 100 1.15 21.7 78.3 1 2.7 103.7 1.98 1.25 
5 50 1 25 75 1 2.7 103.7 2.37 1.25 

2.5 50 0.99 25.3 74.7 1 2.7 103.7 2.40 1.25 
1 50 0.76 32.9 67.1 1 2.7 103.7 3.13 1.25 

0.5 50 0.66 29.9 70.1 1 2.7 103.7 2.84 1.25 
 
 
Experiment 2 

10 100 1.8 13.9 86.1 1 2.7 103.7 1.32 1.25 
5 50 1.1 22.7 77.3 1 2.7 103.7 2.15 1.25 

2.5 50 0.82 30.5 69.5 1 2.7 103.7 2.89 1.25 
1 50 0.8 31.3 68.7 1 2.7 103.7 2.97 1.25 

0.5 50 0.64 35.7 64.3 1 2.7 103.7 3.39 1.25 
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Table 3A.  Summary of  the concentration of proteins resulted in each sample and 
the amount and concentration of reagents used for samples preparation. 

Cell Type 
(Splenocytes) 

Cell 
No. 

(x106) 

EB 
(µL) 

Protein 
Conc. 

(µg/µL) 

25 µg of 
protein 

in 
volume 

(µL) 

TEAB 
(µL) 

DTT 
(µL) 

IAA 
(µL) 

Total 
volume 

at 
digestion 

(µL) 

Urea 
Conc. At 

digestion 
(M) 

Trypsin 
(µL) 

 
 

Experiment 1 

10 60 2.5 10 90 1 2.7 103.7 0.95 1.25 
5 40 1.4 17.9 82.1 1 2.7 103.7 1.70 1.25 

2.5 30 1.35 18.5 81.5 1 2.7 103.7 1.75 1.25 
1 24 1.08 23.1 76.9 1 2.7 103.7 2.19 1.25 

0.5 18 0.85 29.4 70.6 1 2.7 103.7 2.79 1.25 
 
 
Experiment 2 

10 60 2.3 10.9 89.1 1 2.7 103.7 1.03 1.25 
5 40 1.6 15.6 84.4 1 2.7 103.7 1.48 1.25 

2.5 30 1.2 20.8 79.2 1 2.7 103.7 1.97 1.25 
1 24 0.95 26.3 73.7 1 2.7 103.7 2.49 1.25 

0.5 18 0.76 32.9 67.1 1 2.7 103.7 3.12 1.25 

 

Table 4A. Summary of the concentration of proteins resulted in each sample and 
the amount and concentration of reagents used for samples preparation. 

Cell Type 
(Splenocytes) 

Cell 
No. 

(x106) 

EB 
(µL) 

Protein 
Conc. 

(µg/µL) 

25 µg 
of 

protein 
in 

volume 
(µL) 

TEAB 
(µL) 

DTT 
(µL) 

IAA 
(µL) 

Total 
volume 

at 
digestion 

(µL) 

Urea 
Conc. At 

digestion 
(M) 

Trypsin 
(µL) 

P. 
Max 
(µL) 

 
 

Experiment 1 

10 60 1.8 13.9 86.1 1 2.7 103.7 1.32 1.25 1.25 
5 40 1.4 17.9 82.1 1 2.7 103.7 1.70 1.25 1.25 

2.5 30 1.09 22.9 77.1 1 2.7 103.7 2.18 1.25 1.25 
1 24 1.0 25 75 1 2.7 103.7 2.37 1.25 1.25 

0.5 18 0.77 32.5 67.5 1 2.7 103.7 3.08 1.25 1.25 
 
 

Experiment 2 

10 60 2.3 10.9 89.1 1 2.7 103.7 1.04 1.25 1.25 
5 40 1.6 15.6 84.4 1 2.7 103.7 1.48 1.25 1.25 

2.5 30 1.23 20.3 79.7 1 2.7 103.7 1.93 1.25 1.25 
1 24 1.02 24.5 75.5 1 2.7 103.7 2.33 1.25 1.25 

0.5 18 0.85 29.4 70.6 1 2.7 103.7 2.79 1.25 1.25 
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Table 5A. Summary of the concentration of proteins yielded in each sample in all 
experiments, and the amount and concentration of reagents used for preparation 
samples.  

Experim
ents 

Cell 
No. 

(x106) 

EB 
(µL) 

Protein 
Conc. 

(µg/µL) 

25 µg of 
proteins 

in 
volume 

(µL) 

TEAB 
(µL) 

DTT 
(µL) 

IAA 
(µL) 

Total 
volume 

at 
digestio

n 
(µL) 

Urea 
Conc. At 
digestio

n (M) 

Trypsin 
/ 

*Trypsi
n Lys-C 

(µL) 

P. Max 
(µL) 

Exp 1 

2.5 30 0.9 27.8 172.2 1 2.7 203.7 1.3 1.25  
2.5 30 1.2 20.8 179.2 1 2.7 203.7 0.97 1.25 1.25 
2.5 30 1.14 21.9 178.1 1 2.7 203.7 1.02 *1.25  
2.5 30 0.99 25.3 174.7 1 2.7 203.7 1.18 *1.25 1.25 

Exp 2 

2.5 30 0.98 25.5 174.5 1 2.7 203.7 1.19 1.25  
2.5 30 0.96 26 174 1 2.7 203.7 1.21 1.25 1.25 
2.5 30 1.21 20.7 179.3 1 2.7 203.7 0.96 *1.25  
2.5 30 1.10 22.7 177.3 1 2.7 203.7 1.06 *1.25 1.25 

Exp 3 

2.5 30 1.15 21.7 178.3 1 2.7 203.7 1.01 1.25  
2.5 30 0.99 25.3 174.7 1 2.7 203.7 1.18 1.25 1.25 
2.5 30 1.25 20 180 1 2.7 203.7 0.93 *1.25  
2.5 30 1.18 21.2 178.8 1 2.7 203.7 0.99 *1.25 1.25 

Exp 4 

2.5 30 0.96 26 174 1 2.7 203.7 1.21 1.25  
2.5 30 0.92 27.2 172.8 1 2.7 203.7 1.27 1.25 1.25 
2.5 30 1.3 19.2 180.8 1 2.7 203.7 0.90 *1.25  
2.5 30 1.05 23.8 176.2 1 2.7 203.7 1.11 *1.25 1.25 

 

 

Table 6A. Summary of the concentration of proteins of each sample, and the 
amounts and concentrations of each reagent used for processing samples.  

Cell 
No. 

(x106) 

1 EB 
9.5M 

2 EB 8M 
3 EB 7M 

(µL) 

1 Urea 9.5M 
2 Urea 8M 
3 Urea 7M 

(µL) 

Protein 
Conc. 

(µg/ µL) 

25 µg of 
protein 

in 
volume 

(µL) 

TEAB 
(µL) 

DTT 
(µL) 

IAA 
(µL) 

Total 
volume 

at 
digestio
n (µL) 

Urea 
Conc. At 
digestio

n 
(M) 

Trypsin 
(µL) 

 

2.5 1 30  1.05 23.8 176.2 1 2.7 203.7 1.11 1.25 
2.5  1 30 1.10 22.7 177.3 1 2.7 203.7 1.05 1.25 
2.5 2 30  1.2 20.8 179.2 1 2.7 203.7 0.82 1.25 
2.5  2 30 1.08 23.1 176.9 1 2.7 203.7 0.91 1.25 
2.5 3 30  0.9 27.8 172.2 1 2.7 203.7 0.95 1.25 
2.5  3 30 0.96 26.0 174 1 2.7 203.7 0.89 1.25 
2.5 1 30  1.2 20.8 179.2 1 2.7 203.7 0.97 1.25 
2.5  1 30 1.1 22.7 177.3 1 2.7 203.7 1.05 1.25 
2.5 2 30  1.02 24.5 175.5 1 2.7 203.7 0.96 1.25 
2.5  2 30 1.06 23.6 176.4 1 2.7 203.7 0.92 1.25 
2.5 3 30  0.87 28.7 171.3 1 2.7 203.7 0.98 1.25 
2.5  3 30 0.84 29.8 170.2 1 2.7 203.7 1.02 1.25 

 

 

 

 

Table 7A. Protein concentrations of each sample and the concentrations and 
amounts of reagents used for preparation samples.  
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Cell N
o. 

(x10
6) 

1 EB 9.5M 
2 EB 8M 
3 EB 7M 

(µL) 

1 Urea 9.5M 
2 Urea 8M 
3 Urea 7M 

(µL) 

Protein 
Conc. 

(µg/µL) 

25 µg of 
protein 

in 
volume 

(µL) 

TEAB 
(µL) 

DTT 
(µL) 

IAA 
(µL) 

Total 
volume 

at 
digestio
n (µL) 

Urea 
Conc. At 
digestio

n 
(M) 

Trypsin 
(µL) 

 

2.5 1 30  1.24 20.2 179.8 1 2.7 203.7 0.94 1.25 
2.5  1 30 1.1 22.7 177.3 1 2.7 203.7 1.06 1.25 
2.5 2 30  1.5 16.7 183.3 1 2.7 203.7 0.65 1.25 
2.5  2 30 1.04 24 176 1 2.7 203.7 0.94 1.25 
2.5 3 30  0.85 29.4 170.6 1 2.7 203.7 1.01 1.25 
2.5  3 30 0.91 27.5 172.5 1 2.7 203.7 0.94 1.25 
2.5 1 30  1.07 23.4 176.6 1 2.7 203.7 1.09 1.25 
2.5  1 30 1.17 21.4 178.6 1 2.7 203.7 1.00 1.25 
2.5 2 30  1.6 15.6 184.4 1 2.7 203.7 0.61 1.25 
2.5  2 30 1.2 20.8 179.2 1 2.7 203.7 0.82 1.25 
2.5 3 30  0.82 30.5 169.5 1 2.7 203.7 1.05 1.25 
2.5  3 30 0.89 28.1 171.9 1 2.7 203.7 0.97 1.25 

 

 

Table 8A. Summary of the Protein concentrations of each sample and the 
concentrations and amounts of reagents used for preparation samples.     

Cell 
No. 

(x106) 

EB 8M 
(µL) 

Protein 
Conc. 

(µg/ µL) 

25 µg of 
protein 

in 
volume 

(µL) 

TEAB 
(µL) 

DTT 
(µL) 

IAA 
(µL) 

Total 
volume 

at 
digestio

n (µL) 

Urea 
Conc. At 
digestio

n 
(M) 

Trypsin 
(µL) 

 

2.5 30 2.02 12.4 187.6 1 2.7 203.7 0.49 1.25 
2.5 30 1.86 13.4 186.6 1 2.7 203.7 0.53 1.25 
2.5 30 1.76 14.2 185.8 1 2.7 203.7 0.56 1.25 
2.5 30 1.98 12.6 187.4 1 2.7 203.7 0.49 1.25 
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Table 9A. List of upregulated and downregulated proteins in iTregs vs Stim CD4, sorted based on the 
fold-change and Confidence score ≥50%. 

Protein Fold-change Confidence Score 
EWS 4.42 64% 

A0A0R4J187 4.01 51% 
Q3UMA3 4.00 57% 
MTMRC 3.75 52% 

A6PW84 3.68 57% 
TTC28 3.30 59% 

MT2 3.24 51% 
D5MCW4 3.22 63% 

ARGL1 2.96 59% 
MESD 2.84 58% 

Q9EQ08 2.69 52% 
RBBP5 2.68 62% 
NAB2 2.60 52% 
DOPD 2.58 64% 
CASP7 2.46 69% 
ARF1 2.34 50% 
HBB2 2.18 82% 

Q9CPX4 2.18 59% 
WASH1 2.07 54% 
CS012 2.02 74% 
STAT2 1.98 54% 
HEM6 1.92 80% 
CAPG 1.92 87% 
HBB1 1.88 53% 
RING2 1.86 65% 

Q9DCC5 1.83 68% 
Q99LB4 1.81 86% 

RS23 1.78 51% 
CRYL1 1.77 52% 
CYTB 1.67 52% 
PTMS 1.56 63% 
PPP5 1.43 65% 
ALDR 1.36 90% 

MCRI1 1.35 61% 
CYH3 1.35 72% 
SUOX 1.13 58% 

TT39B 1.12 63% 
ASSY 1.10 77% 

PLRG1 1.08 54% 
A0A0A6YY34 1.07 84% 

DJC16 1.02 70% 
ORN 0.90 57% 

TBA1A 0.90 71% 
PNKP 0.87 56% 

E9Q9M1 0.84 60% 
SRSF1 0.81 72% 
P85A 0.77 51% 

E9PYG6 0.74 51% 
RUXG 0.74 65% 
RL30 0.72 54% 

RNH2C 0.69 60% 
UBCP1 0.68 71% 
TBCA 0.67 52% 

CNDP2 0.65 79% 
E9QA45 0.65 79% 
Q6ZWZ4 0.64 53% 

GSH0 0.64 53% 
LPXN 0.60 55% 

LKHA4 0.60 53% 
LGUL 0.59 59% 

KAPCB 0.58 62% 
GDIB 0.52 66% 
VIME 0.50 69% 
UBA1 0.48 75% 

COPZ1 0.47 61% 
PDCD4 0.44 59% 
TPM3 -0.29 59% 

MARK4 -0.30 52% 
MCM5 -0.31 62% 
RSSA -0.35 58% 

A2A547 -0.38 80% 
RS28 -0.39 66% 
RL19 -0.42 71% 
EYA4 -0.42 70% 
EF2 -0.42 54% 
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ARP5L -0.43 59% 
CLIC1 -0.43 51% 
PSDE -0.44 58% 

A0A0A6YX26 -0.44 63% 
PSB10 -0.44 57% 

D3Z6X7 -0.44 68% 
SH3L3 -0.45 54% 

SET -0.46 63% 
LRRF1 -0.46 58% 
PSA4 -0.47 52% 

Sep-05 -0.47 57% 
Q6ZWZ7 -0.47 63% 

IF4G1 -0.47 55% 
PDC10 -0.47 62% 
SRSF4 -0.47 57% 
EF1B -0.48 54% 

UH1BL -0.49 63% 
Sep-06 -0.50 65% 

Q9Z1A1 -0.51 57% 
SETD2 -0.51 80% 
CDK2 -0.52 74% 

D3Z5F7 -0.52 55% 
ALKB5 -0.52 54% 
PA2G4 -0.52 62% 
TCPD -0.53 62% 
IMB1 -0.53 63% 
RL11 -0.53 55% 

E9PYJ6 -0.54 56% 
LASP1 -0.54 79% 
CAC1H -0.54 61% 
PKHH2 -0.55 62% 

RL13 -0.55 78% 
RL31 -0.55 69% 
PLSL -0.55 65% 

MYG1 -0.55 57% 
A0A1B0GSG5 -0.55 58% 

RINI -0.55 57% 
AMRA1 -0.56 66% 

GBLP -0.56 50% 
ACLY -0.56 65% 

PCBP2 -0.57 53% 
SMYD5 -0.57 50% 
M3K12 -0.57 75% 
EI2BE -0.57 54% 
SBNO2 -0.57 72% 
RLA0 -0.57 80% 
ASC -0.57 57% 

DPY30 -0.58 54% 
TXD17 -0.58 68% 
RL17 -0.59 79% 

COR1C -0.59 55% 
COR1A -0.59 67% 
ARBK1 -0.60 60% 

E9PWW6 -0.60 71% 
BUB3 -0.60 64% 

MYO9B -0.60 52% 
A0A1L1SQA8 -0.61 78% 

PSB2 -0.61 60% 
PSA3 -0.61 58% 

CAPZB -0.61 61% 
ZCCHV -0.61 55% 
PFKAL -0.62 51% 
COF1 -0.62 56% 
INPP -0.63 73% 
RS20 -0.63 82% 
PSA1 -0.63 70% 

NH2L1 -0.63 77% 
FUS -0.64 56% 

RAC2 -0.64 83% 
Q8C605 -0.64 58% 
O08797 -0.64 64% 

NUCL -0.65 73% 
SRA1 -0.65 52% 

BCL10 -0.66 68% 
SYFB -0.66 55% 

ALDOC -0.67 66% 
GABR1 -0.67 54% 

IF2G -0.67 55% 
SYHC -0.67 74% 

1433G -0.67 66% 
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PAIRB -0.68 77% 
THADA -0.68 55% 

RL35 -0.68 66% 
S10AB -0.70 60% 
RLA1 -0.70 72% 

COX17 -0.70 56% 
FKBP5 -0.70 55% 
DGKA -0.70 79% 
PGP -0.70 53% 

RADI -0.70 60% 
ARC1B -0.70 80% 
TLK1 -0.71 61% 
ENOA -0.71 73% 
ZER1 -0.71 68% 
ACTC -0.72 59% 
RL34 -0.72 80% 

RL27A -0.72 70% 
ASPM -0.72 72% 

MIF -0.73 70% 
TEX10 -0.73 58% 
RL14 -0.73 61% 
RL26 -0.73 61% 

HNRPD -0.73 53% 
HDDC2 -0.73 55% 

SYYC -0.73 69% 
RIPK3 -0.73 69% 

SYG -0.73 70% 
ISG15 -0.74 68% 

Q3U741 -0.74 53% 
GRB2 -0.75 68% 
PYM1 -0.75 70% 

IF6 -0.76 59% 
HINT1 -0.77 73% 
RUVB1 -0.77 76% 
TPM4 -0.77 74% 

PGAM1 -0.78 69% 
THIO -0.79 68% 
RLA2 -0.80 77% 

AIMP1 -0.80 56% 
FKB1A -0.80 84% 
BIN2 -0.80 77% 
6PGD -0.80 74% 
RL29 -0.80 97% 

ELMO1 -0.81 62% 
F7DEU6 -0.81 80% 
UB2V1 -0.81 51% 
SR140 -0.82 55% 
GNPI1 -0.82 61% 
AEDO -0.82 61% 
ADK -0.83 52% 
RS25 -0.83 70% 

ECHD1 -0.83 68% 
SAP -0.83 55% 

F8WJB9 -0.84 50% 
NOP56 -0.85 51% 
RUVB2 -0.85 68% 
GIMA4 -0.85 89% 
TBCD1 -0.85 53% 
SYAC -0.86 63% 

SH3K1 -0.87 52% 
PRDBP -0.87 56% 
STK4 -0.88 54% 

G5E8E4 -0.88 75% 
PP1G -0.88 55% 
UFC1 -0.88 56% 

HDAC7 -0.88 57% 
H2AV -0.89 52% 
ROAA -0.89 72% 

A6ZI44 -0.90 63% 
GALK1 -0.90 78% 
GMFB -0.90 52% 
SERC -0.90 66% 
SYSC -0.91 68% 
CYC -0.91 63% 

KIF15 -0.91 76% 
KCC4 -0.92 64% 

E9Q5C9 -0.92 64% 
TAGL2 -0.92 68% 

A0A087WRY3 -0.93 54% 
Q6PE70 -0.93 67% 
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RAD50 -0.94 59% 
THIC -0.94 55% 

RL10A -0.94 71% 
F8WJI3 -0.95 74% 
TITIN -0.95 52% 
PGM1 -0.95 77% 
GBP1 -0.96 64% 
KCRB -0.96 76% 

A2AMV1 -0.98 57% 
MDHM -0.98 76% 
KPYM -0.99 71% 
AB17C -1.02 91% 
SAMH1 -1.02 79% 

TSN -1.02 50% 
SERB -1.02 58% 

PFKAP -1.03 82% 
STS -1.03 66% 

TPIS -1.03 75% 
A0A0R4J0J3 -1.05 67% 

SAP3 -1.05 78% 
DDRGK -1.05 52% 
DHPR -1.06 78% 
FPPS -1.07 74% 
CLCB -1.08 58% 
CH10 -1.08 53% 
GBB2 -1.09 58% 

A0A087WR57 -1.09 73% 
HPCL1 -1.10 80% 
ALDOA -1.10 73% 
LRCH1 -1.11 57% 
PGK1 -1.12 75% 
KAD2 -1.13 64% 
TCOF -1.13 63% 
AATM -1.14 76% 

SON -1.16 71% 
LSP1 -1.18 84% 

Q8BFQ1 -1.19 82% 
CCD66 -1.21 68% 

PML -1.21 83% 
THMS1 -1.22 82% 
SEC20 -1.23 66% 
HA1D -1.23 55% 

GAPR1 -1.24 76% 
F107B -1.26 68% 

F8WJE0 -1.27 88% 
NDRG1 -1.28 93% 
RU1C -1.30 76% 
RS2 -1.32 54% 

A2A6J4 -1.32 82% 
RL7A -1.32 77% 
RED -1.32 56% 

PTPRC -1.33 75% 
H9H9T1 -1.34 57% 

A0A0B4J1E7 -1.34 70% 
MLKL -1.34 57% 
TCP4 -1.36 60% 
IKZF1 -1.37 54% 

F6ZHD8 -1.38 65% 
E9QP46 -1.38 55% 
KI13A -1.39 75% 
CA198 -1.41 53% 
PRAF3 -1.41 72% 
KBTBB -1.42 76% 
PLXA2 -1.42 71% 
GNAS1 -1.45 54% 
PDLI2 -1.46 63% 

E9PUA7 -1.46 57% 
BRD2 -1.50 58% 

TT21B -1.54 70% 
ESYT1 -1.54 60% 
CO6A2 -1.54 63% 
HXK2 -1.67 56% 

E9Q8L9 -1.76 67% 
KTHY -1.77 58% 

G3X8R0 -1.79 55% 
Q5PPR2 -1.80 55% 

HIKES -1.80 57% 
GRIN3 -1.82 64% 
PPIL2 -1.84 78% 

Q8CBB6 -1.84 57% 
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DYST -1.86 58% 
RBP1 -1.96 53% 
SBP1 -2.00 75% 
APOB -2.05 69% 

RHG22 -2.07 93% 
SMU1 -2.17 65% 
KIN17 -2.17 57% 
SAHH3 -2.18 63% 
UGDH -2.20 56% 

GOGA5 -2.24 53% 
AQR -2.24 50% 

COX7C -2.31 61% 
UBE3C -2.32 51% 
ANXA2 -2.32 83% 

RP1 -2.40 51% 
CWC27 -2.47 54% 
CD97 -2.52 52% 
H14 -2.53 68% 
H15 -2.54 56% 

NOL10 -2.57 50% 
H2A2A -2.59 58% 

H4 -2.61 80% 
CO4B -2.64 52% 
ATG3 -2.64 52% 

RHG25 -2.69 54% 
GTR3 -2.72 82% 
AP4A -2.77 55% 

FOLH1 -3.01 88% 
H2A1K -3.03 60% 
ASB6 -3.08 63% 

B1AW21 -3.09 55% 
VP26A -3.14 59% 
BOLA2 -3.19 83% 
CNO10 -3.25 54% 

FIP1 -3.28 53% 
H2AX -3.30 60% 
SF3B5 -3.39 63% 

H13 -3.45 70% 
B1ASU9 -3.48 63% 

CHD9 -3.61 59% 
TGM2 -3.77 84% 
BAG3 -3.83 62% 
NHEJ1 -4.16 60% 
HINT2 -6.49 55% 
SDCG8 -6.64 76% 
AMRA1 5.16 66% 

A0A0R4J0F6 4.69 53% 
AT1B1 3.29 74% 
PTH2 3.22 60% 

WASH1 3.16 59% 
NRK1 3.16 65% 

ENDD1 2.92 65% 
TBB1 2.82 52% 

DAAM2 2.78 56% 
M3K11 2.45 77% 
DPP9 2.37 51% 
CARF 2.31 54% 

E9Q6R7 2.19 66% 
CAF17 2.09 50% 
SIVA 2.08 51% 

XYLT1 2.03 60% 
MAVS 1.92 84% 
ITIH4 1.84 72% 

Q0VBL3 1.78 66% 
PLP2 1.73 56% 

A2A6J4 1.67 71% 
E9QP00 1.61 52% 

A0A0N4SVQ1 1.58 89% 
Q91VB8 1.54 52% 
NDUA4 1.46 91% 

OAT 1.35 74% 
MYH9 1.19 74% 
MYL6 1.13 58% 

ML12B 1.07 83% 
COR1A 1.03 80% 
CS012 0.99 67% 
ACON 0.94 76% 

D3Z5F7 0.86 59% 
A2AP32 0.79 60% 
CX6B1 0.79 72% 
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VIME 0.78 75% 
CD47 0.73 56% 
P5CS 0.71 64% 

SP110 0.70 50% 
ADT2 0.70 64% 

NDUS7 0.67 68% 
PTN1 0.64 72% 
H32 0.63 52% 

CASP7 0.61 51% 
LAT 0.57 65% 

SUMO2 0.55 88% 
NDUB3 0.50 67% 
A2BIE1 0.46 54% 
E41L2 0.44 57% 
NDUA5 0.44 55% 
RAB8B 0.43 56% 
COX6C 0.42 55% 
NDUS3 0.42 57% 
NDUV2 0.32 55% 
CBR4 -0.27 52% 
RL31 -0.34 51% 

TM109 -0.40 57% 
RAC2 -0.40 57% 

FKBP2 -0.40 51% 
RL27A -0.41 61% 

Q6PE70 -0.43 59% 
RRBP1 -0.45 51% 
AT1A1 -0.47 57% 
H2AV -0.49 51% 
PDIA3 -0.50 71% 
GNAS1 -0.51 54% 
ROAA -0.51 54% 
RL10A -0.51 69% 

A0A1B0GX27 -0.53 52% 
RS28 -0.53 56% 

K2C79 -0.54 74% 
H14 -0.54 51% 

A0A1L1SQA8 -0.54 51% 
GRP78 -0.56 69% 
CBX5 -0.56 52% 
CD3G -0.57 56% 
MOT1 -0.57 67% 
RAP1B -0.58 55% 
RRAS2 -0.58 52% 
RL40 -0.59 50% 

LIMD2 -0.59 57% 
HA1D -0.60 59% 
DNJC9 -0.60 60% 
SET1B -0.61 55% 
CH60 -0.61 60% 

GLU2B -0.62 74% 
Sep-05 -0.63 50% 

ITB2 -0.65 53% 
CD2 -0.66 53% 

AT1B3 -0.68 62% 
EF1B -0.68 55% 
URP2 -0.70 55% 

SPTN1 -0.71 81% 
FLOT1 -0.73 55% 
ENPL -0.74 78% 
CATE -0.75 86% 

HMGN2 -0.75 58% 
ITAL -0.75 71% 
BASI -0.76 79% 

SPTB2 -0.76 74% 
RLA2 -0.77 70% 
MANF -0.83 52% 
Sep-07 -0.83 56% 
TXD12 -0.83 64% 
ARHG2 -0.86 66% 

RFC4 -0.87 62% 
RASA3 -0.89 57% 
KAD4 -0.89 58% 
H2AY -0.90 67% 
CD6 -0.93 74% 

FBLN1 -0.96 53% 
IKZF1 -0.99 50% 
PTCA -1.00 56% 

DHC24 -1.00 56% 
HXK2 -1.00 64% 
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D3YX85 -1.01 65% 
Q5SUH6 -1.01 54% 

CD48 -1.01 72% 
PTPRC -1.01 81% 
CD3D -1.02 83% 

K3W4Q8 -1.02 72% 
CD5 -1.03 93% 

TCB1 -1.05 86% 
SYYC -1.05 57% 
LY9 -1.06 81% 

ERO1A -1.08 74% 
PDIA1 -1.09 69% 
GAPR1 -1.12 87% 
NUCB1 -1.13 53% 
KI13A -1.17 68% 
GTR1 -1.23 77% 

GIMA5 -1.24 61% 
MIF -1.24 57% 

A0A0A0MQF6 -1.29 76% 
G3P -1.33 67% 

ALDOA -1.34 55% 
G3UZK1 -1.38 70% 
E9Q0A7 -1.39 51% 
Q9DC42 -1.44 53% 

WASP -1.45 64% 
MOT4 -1.49 84% 
PAXB1 -1.51 53% 
HMGA1 -1.52 60% 
KPYM -1.53 68% 
WAPL -1.61 51% 
AB17C -1.63 90% 
KRT85 -1.64 72% 
CD97 -1.66 81% 

SH3K1 -1.67 63% 
DDX54 -1.67 57% 
PROS -1.83 50% 

THMS1 -1.98 72% 
GRAB -2.00 75% 

SATB2 -2.09 86% 
SATB1 -2.16 82% 
INCE -2.19 61% 
RBX1 -2.19 52% 
MIO -2.48 61% 

UH1BL -2.51 54% 
Q3U125 -2.61 70% 

ITB3 -2.75 66% 
Z4YJR1 -2.88 64% 
NUSAP -2.92 64% 
CR1L -3.00 62% 

E9Q0G1 -3.05 60% 
ANXA2 -3.07 75% 
GTR3 -3.12 88% 

SDCG8 -3.20 64% 
MET13 -3.29 55% 

Q8CAH8 -3.36 59% 
TPX2 -3.38 74% 

Q792Z1 -3.62 62% 
G3X920 -3.66 73% 

A0A0R4J0J3 -4.10 58% 
PSMD8 -4.36 66% 
DYHC2 -5.34 62% 
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Table 10A. List of upregulated and downregulated proteins in iTregs vs nTregs, sorted based on the 
fold-change and Confidence score ≥50%. 

Protein Fold-change Confidence score 
HAUS1 5.976176337 71% 

E9Q1M6 3.947804713 75% 
Q3UMA3 3.915017274 57% 

NOP9 3.783097989 59% 
VPS4A 3.500980564 53% 
TT21B 3.39013993 64% 

A2A4U6 3.34175052 57% 
PSMD8 3.241019382 83% 

FPPS 3.232690314 78% 
E9PWW6 3.217973811 60% 

BAIP2 3.165469907 69% 
TPIS 3.153365419 87% 

HEM6 3.110451987 59% 
LRC47 3.055577367 65% 

MTMR2 3.052956905 61% 
D3Z5N2 3.022273833 77% 

PRI2 2.99301149 65% 
TRAF6 2.960251077 71% 
AB17C 2.936095762 91% 

Q9CQ43 2.893899119 64% 
PIGT 2.867384406 58% 
3BP1 2.862409805 57% 
TYSY 2.841712078 76% 

STMN1 2.838682374 83% 
MA2B1 2.789088052 50% 
SETD3 2.77106176 63% 
NUBP2 2.768789464 70% 
ALDOC 2.764492699 85% 
AACS 2.756559219 68% 

DHX57 2.741935108 52% 
SPA3F 2.728216736 77% 
BGAL 2.688703985 52% 
NXN 2.687786201 51% 

PSME3 2.662295271 53% 
ESPL1 2.656615938 56% 
PGK1 2.643863611 83% 

A6ZI44 2.639074038 83% 
RNH2C 2.636608515 53% 
MA2B2 2.592720359 59% 

VIME 2.576606747 82% 
FAS 2.575171276 77% 

GALK1 2.560187458 77% 
STAT2 2.542360335 77% 

Q5SRW8 2.524306234 51% 
E9Q496 2.507824385 56% 
Q8C605 2.473801304 73% 
ALDOA 2.464310915 85% 
PTN9 2.461547455 52% 

A2AGL5 2.443456543 53% 
4ET 2.43542392 54% 

PGAM1 2.429740756 79% 
Q9DCC5 2.408305778 54% 

DYR 2.400061967 74% 
PCH2 2.383706385 71% 

ENOPH 2.359927238 57% 
CCD25 2.356476431 53% 
PPP5 2.346188422 55% 

XYLT1 2.325469223 71% 
PFKAM 2.318423243 62% 

E9PW66 2.314192542 52% 
CCD43 2.311145198 51% 
ITPA 2.310923112 55% 

KIF15 2.30297472 53% 
DHX29 2.295129906 57% 
RL7L 2.264498293 61% 

SPF30 2.242098664 56% 
TBA1B 2.241235524 62% 
MCM4 2.236390131 74% 
PFKAL 2.229996817 63% 
NAMPT 2.227069358 74% 
BROX 2.225183009 57% 
ENOA 2.22360986 90% 
LDHA 2.218481401 77% 
KPYM 2.213124427 88% 

NDRG1 2.209128209 71% 
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TBB5 2.204592625 89% 
TF2AA 2.182018603 50% 
CNDP2 2.163824104 83% 
MARK4 2.150629986 70% 
MCM7 2.132796062 78% 

D3Z4B2 2.132703544 55% 
PCNA 2.130458947 64% 
RL5 2.12375492 57% 

Q564E2 2.070048597 81% 
NP1L1 2.04881197 51% 

D3Z7B5 2.045407879 68% 
RL8 2.032850948 53% 

RIR1 2.031533295 74% 
XPO1 2.025047568 51% 
OGFR 2.018750591 79% 

E9PYG6 2.006828693 58% 
FABP5 2.004846918 83% 
VAMP7 2.003756692 58% 

RL10 1.980682052 54% 
CRADD 1.971719346 76% 
IMPA2 1.944394486 73% 
PFKAP 1.911252199 73% 
SEC20 1.894501153 51% 

THADA 1.891698906 77% 
PA2G4 1.88381308 81% 
SERC 1.88318566 56% 

MCM2 1.860913467 77% 
SYK 1.851941703 57% 

NFAC2 1.834407739 71% 
CC186 1.831752371 58% 
MCM5 1.825241863 82% 
HPRT 1.794280606 74% 
OSTF1 1.783409931 61% 
IPO5 1.768907712 69% 
EF1B 1.757933732 77% 

TNC18 1.755830362 69% 
MCM3 1.752651383 80% 
PGM1 1.736356876 72% 

Q9QXJ2 1.731975426 84% 
RL27 1.728826923 55% 
ORN 1.72550424 57% 
P85A 1.710538315 57% 

ZN827 1.707143544 73% 
A2BHP6 1.706029751 54% 

PYR1 1.695693529 72% 
IMDH2 1.690839328 80% 

B1B1A8 1.688550334 63% 
MCM6 1.688462923 75% 
RL26 1.687992864 72% 

RIPK3 1.681862973 50% 
SYWC 1.679250802 70% 

Q5XJF6 1.66836229 70% 
COX17 1.658044526 58% 

MIF 1.645344938 89% 
UBQL1 1.636652037 69% 
UBE2K 1.631591734 59% 

G3P 1.5724389 83% 
IPYR 1.561162765 76% 
TLK1 1.558614959 50% 
TCPZ 1.557336829 70% 
EF1G 1.531146268 74% 

A0A0R4J1E2 1.519931528 63% 
A0A0A0MQF6 1.519015517 81% 

NUDC 1.517516049 57% 
E9PYH2 1.500569451 69% 

LEG1 1.495421145 53% 
KRT85 1.487862328 80% 
EF1A1 1.487034822 73% 
RL39 1.474656244 74% 

A0A0R4J138 1.466401373 53% 
RL29 1.464346999 88% 
ZER1 1.463157379 71% 

GRHPR 1.45800026 84% 
TBB4B 1.456429503 86% 
EEA1 1.454507141 50% 
IF4A1 1.451667011 59% 
CUL4A 1.451307141 50% 
G6PI 1.447645256 79% 
SAP3 1.444361431 75% 
SPEE 1.398736585 62% 
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TBA1A 1.388304409 68% 
IF5A1 1.374934077 80% 
SYVC 1.367969209 69% 
SERA 1.367452431 81% 

A0A0A6YX26 1.358182054 65% 
RS3A 1.356923041 71% 
THIO 1.351840481 82% 

RL23A 1.341293138 56% 
ANKL2 1.34027211 60% 

EF2 1.327727052 81% 
NDKA 1.32356167 70% 
EF1D 1.314252729 86% 
RLA2 1.310930885 82% 

RS15A 1.30910125 74% 
RS25 1.302317658 70% 
GALE 1.300421309 58% 
RFC4 1.285967475 57% 

RL10A 1.280392803 71% 
RS27 1.274944358 77% 
RL19 1.262343666 82% 
PTN6 1.259582568 74% 
BTF3 1.240861495 52% 

PAIRB 1.239814502 74% 
A2A5V4 1.221328507 53% 
F8VPV0 1.218844752 62% 

RS14 1.214249505 71% 
IMA4 1.211509959 61% 

Q6ZWZ7 1.206416727 75% 
A0A1B0GTA4 1.184590631 74% 

HNRH2 1.181683292 51% 
RL35 1.179136411 68% 

PRPS1 1.170845851 81% 
RL7 1.167450664 64% 

E9PZF0 1.164873514 71% 
G3UYV7 1.163791019 85% 

PDLI4 1.150034377 55% 
SYMC 1.147962468 66% 

M3K12 1.143498381 89% 
SYHC 1.14221261 60% 
NDKB 1.142086175 79% 

E9PVU0 1.140218058 58% 
Q8BFQ1 1.137245214 67% 

RS11 1.135658301 51% 
Q6ZWZ6 1.135390247 61% 

PUR6 1.133971147 52% 
RS13 1.133128273 68% 

AIMP1 1.126484354 58% 
SYYC 1.126305311 66% 
NPM 1.120060761 77% 
URP2 1.115548349 61% 
RL17 1.112931528 69% 
RL11 1.111591543 75% 
PPIA 1.1094904 81% 

PTMA 1.105381192 81% 
RS29 1.100403605 52% 

Q8R2P8 1.100069998 51% 
CALM 1.098891859 57% 

Q3UKW2 1.098891859 57% 
UMPS 1.098349016 51% 
TCPE 1.094121076 76% 

HS90B 1.093053431 77% 
NTAN1 1.091822827 56% 

RS18 1.080926284 79% 
GLRX3 1.061449173 51% 
RS20 1.059206356 85% 

1433F 1.058567154 74% 
RL13 1.058281259 71% 

RL27A 1.050752801 62% 
TCTP 1.050407451 66% 
RS7 1.050101572 72% 

Q8C3V4 1.043198793 68% 
RLA0 1.039473793 81% 
UBA1 1.034484634 79% 
CDK2 1.028900088 61% 
RL12 1.026560044 81% 
IIGP1 1.024528229 58% 
ERF1 0.999784978 55% 

A0A1L1SQA8 0.99586945 74% 
RS16 0.991578779 79% 
RS2 0.991412376 80% 
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RL34 0.986133915 50% 
EIF3G 0.985728436 50% 
DOK2 0.983235507 56% 
RS4X 0.983096934 73% 
TCPB 0.971956541 68% 
RL23 0.962146625 74% 

PRDX1 0.961155009 82% 
1433E 0.958981736 70% 

Q91V55 0.95615805 74% 
IF4E 0.951740658 50% 

PSD11 0.946182502 66% 
RL31 0.938696744 87% 
RL4 0.936012172 69% 

IMB1 0.932987815 60% 
SYSC 0.926338362 58% 
RS19 0.920804793 75% 

Q6ZWZ4 0.919466223 59% 
CAPG 0.918621095 74% 
RL6 0.916754952 54% 

PNKP 0.914344555 100% 
AGAP2 0.914032087 58% 
RS26 0.908594553 54% 
CATZ 0.899439817 54% 
TCPD 0.88990838 82% 

STAT1 0.881640735 62% 
HS90A 0.86865842 69% 
RSSA 0.863926767 82% 

Q99LB4 0.862002244 78% 
A2A547 0.862001121 80% 
ARPC3 0.861398782 57% 
EIF3I 0.857038637 55% 
TCPG 0.841910771 70% 
RS28 0.841035908 76% 

DPYL2 0.839158146 75% 
PSMG3 0.83889422 68% 
GDIB 0.832597611 74% 
TCPQ 0.827081546 72% 

Q9CPS5 0.803562305 64% 
CSK22 0.79620706 52% 
PKHH2 0.79501471 52% 

CATC 0.777690394 70% 
RAN 0.775742365 64% 
TKT 0.763445033 72% 

TCPH 0.759557535 71% 
AATC 0.754347194 62% 
RL18 0.75393001 57% 
TCPA 0.740563185 73% 

FKB1A 0.740391013 79% 
RL24 0.736755791 62% 

A0A0A0MQA5 0.735928861 58% 
TPP2 0.71591284 52% 

Q8C2Q7 0.710130508 53% 
PSB9 0.704755524 61% 
PSA1 0.704544265 60% 

5NT3B 0.685513127 55% 
SNX27 0.683191104 54% 

CCS 0.678453029 52% 
DDX3X 0.669260891 50% 
SERB 0.665037647 55% 

PCBP1 0.646977304 78% 
RL14 0.642916608 51% 
PSDE 0.632522582 65% 

RAB10 0.605001071 51% 
NUCL 0.600883627 67% 

A0A1C7CYV0 0.577432374 67% 
PSB4 0.577338146 62% 

AN32E 0.563990502 71% 
SAR1B 0.558312564 50% 
HSP7C 0.533118294 69% 
COF1 0.506969854 60% 
IF4G1 0.458176452 54% 

RAB3A 0.402610527 51% 
ML12B 0.350682789 50% 
SUMO2 -0.437906772 74% 
BAG5 -0.488128881 57% 

ARP5L -0.515388739 55% 
APEH -0.555301136 54% 

KBTBB -0.582750783 73% 
GIMA4 -0.586958532 82% 
LASP1 -0.605192482 81% 
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ISG15 -0.615980192 52% 
MYO9A -0.633907244 55% 

LSM7 -0.643097025 68% 
RAC2 -0.649705384 67% 

COR1A -0.656773075 74% 
SPRE -0.66364491 61% 

ANX11 -0.668745171 51% 
A2AQN4 -0.676396627 58% 

EYA4 -0.676961195 70% 
MIO -0.683987047 52% 

Q3UDM0 -0.69896521 54% 
NSF1C -0.699207077 68% 
GDIR2 -0.708360074 57% 
ANXA5 -0.716944179 73% 
NH2L1 -0.780835972 76% 

IL16 -0.790376457 77% 
Q924B0 -0.820365322 73% 
RAB35 -0.825073078 56% 
DCPS -0.832661562 57% 

MGDP1 -0.836458482 69% 
NAA35 -0.839041148 67% 
NC2B -0.847865948 56% 
PP1G -0.85088241 61% 

SH3L1 -0.870319261 66% 
ALDR -0.913791336 76% 
F193A -0.941189771 59% 

B7FAU9 -0.943674952 76% 
FLNA -0.98740393 83% 

E9QMV2 -0.990226805 80% 
SUMO1 -1.011031426 51% 
TRNT1 -1.023985754 61% 
COTL1 -1.070273899 66% 

THUM1 -1.090353667 68% 
ARHL2 -1.090762814 90% 

H4 -1.101741029 69% 
K1671 -1.127870326 71% 
COA7 -1.205892258 61% 
ADK -1.209179347 74% 

NCK5L -1.253254215 70% 
NT5D1 -1.260329357 52% 
FETUA -1.269541086 67% 

F8WIV2 -1.310106855 64% 
CRYL1 -1.318626918 75% 

Q9D3L3 -1.335593554 50% 
PI42A -1.350272376 51% 
ACTN1 -1.355551085 78% 
SH3L3 -1.382962303 84% 
CBR1 -1.384967919 73% 

Q9Z1R9 -1.407690967 64% 
RASF2 -1.432516526 77% 
LDHB -1.450042124 73% 
HBB2 -1.452646404 71% 
LSP1 -1.459802441 82% 
ALBU -1.472934882 54% 
RP1 -1.478193371 60% 

SAMH1 -1.509903903 84% 
PGM2 -1.530752445 63% 
NUF2 -1.562914648 68% 

E9QA45 -1.615720156 87% 
MDHC -1.618283509 84% 
ALG5 -1.643446007 55% 

CCD66 -1.716910781 55% 
A0A0N4SVU1 -1.741225317 51% 

AL3A1 -1.762505859 69% 
A2A6J4 -1.76861937 82% 
ZNFX1 -1.799250899 60% 
HBB1 -1.947805141 69% 
SMU1 -1.952024419 54% 
GDE1 -2.122937652 58% 
GSHR -2.167151945 87% 

NXP20 -2.188672871 51% 
F6QFD1 -2.203205713 82% 

2A5A -2.308269452 69% 
CO4B -2.363107995 59% 

PPM1A -2.412952867 52% 
DEGS1 -2.428721472 61% 

Q9CPX4 -2.474955864 70% 
A7L3B -2.502508629 55% 
SPT6H -2.566254597 63% 
PARP8 -2.784452396 53% 
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ADA10 -2.786631474 62% 
NBN -2.874122083 50% 

MEA1 -2.932147383 51% 
PLS3 -2.944291467 57% 
EMC2 -3.028877048 51% 
CN37 -3.06436379 53% 

SCAM3 -3.259336624 50% 
RM38 -3.280625557 52% 

Q0PD20 -3.29537635 56% 
COPE -3.416868567 63% 
VWA8 -3.430355112 51% 
REV1 -3.490632586 57% 
MKS3 -3.493715443 57% 

B0R091 -3.534464722 56% 
CD109 -3.53944641 83% 
ARMX3 -3.880537772 57% 
BOLA2 -4.010263922 61% 
PAXB1 -4.201515599 61% 
NHEJ1 -4.496686829 59% 

A2A4U6 4.982689692 55% 
M3K11 4.740146814 57% 
NHEJ1 4.515149001 55% 

A0A0R4J0F6 3.789269464 56% 
NDRG2 3.750100815 64% 
CSN7B 3.719436073 61% 
PLP2 3.689022256 86% 

D3YXP6 3.628123708 50% 
XYLT1 3.519154323 72% 
UBE2C 3.41624116 60% 
PIGT 3.295881594 63% 
KI67 3.178351861 77% 

K3W4Q8 3.176821273 78% 
MOT4 3.133896329 55% 
SRA1 3.128443865 53% 
MAVS 3.116232429 55% 
RM27 3.089410774 51% 

PYC 3.089339057 80% 
A0A0R4J0T5 3.068419193 59% 

NSMA3 3.052409218 55% 
E9PZ97 3.032865818 65% 
MFS10 3.029930613 60% 
RRS1 2.992391584 53% 

AT131 2.986363154 58% 
TFR1 2.950759968 77% 
BASI 2.938760399 77% 
RL39 2.85225458 53% 

E9PUQ5 2.840505581 51% 
AB17C 2.812938361 78% 

E9QP62 2.802208636 54% 
DNMT1 2.727523308 66% 
KAD4 2.724352103 69% 

DDAH1 2.710950923 50% 
NCBP3 2.708044334 51% 

A2AUM0 2.691828829 50% 
MIC26 2.682100351 72% 
GTR1 2.668670345 61% 
CBX5 2.662932355 62% 

E9PWG6 2.64845045 72% 
MYEF2 2.640070827 51% 
MSMO1 2.619052916 57% 

SMC2 2.589416922 66% 
SYNE3 2.523543649 63% 
DHB7 2.510119858 56% 
MCM5 2.508739148 66% 

Q3UNN4 2.461155731 63% 
NRM 2.449179585 59% 

TBA1A 2.445783927 51% 
BRI3B 2.442106192 56% 
SEC63 2.428361781 71% 
ERO1A 2.425634386 65% 
BCL7C 2.411474052 56% 
LRC59 2.385233562 76% 
TT21B 2.375570528 55% 
NCBP2 2.341750529 53% 
IL2RA 2.310505317 76% 
LRC8C 2.281477925 61% 
TERF2 2.273376489 64% 
S2539 2.260478731 57% 
K2013 2.237671604 51% 
RM17 2.225342186 57% 
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E9QAS5 2.224122917 58% 
A0JNY3 2.201726637 51% 
A2A5V4 2.201716211 50% 
NSDHL 2.193123487 77% 
E9PX68 2.101974524 57% 
E9QP00 2.081551819 51% 

VIME 2.073260383 82% 
PPIF 2.045078012 64% 

DDX27 2.025132612 58% 
AP2S1 2.017330939 64% 

Q9CZN7 2.008627512 81% 
MBB1A 1.952073224 75% 
F6ZBR8 1.944945527 52% 
ATIF1 1.844961515 51% 
GNAS1 1.828819526 57% 

A0A0R4J170 1.772732171 73% 
IMP3 1.755311086 58% 

A0A0R4J0V1 1.745982981 62% 
TNC18 1.744082202 60% 
ITIH4 1.720990902 69% 
GTR3 1.719255828 61% 

A0A0R4J0D3 1.715367511 70% 
Q8C2Q7 1.705611861 56% 
LAP2A 1.694158517 50% 
ABHGA 1.684692205 50% 
PGES2 1.674929385 65% 
SYAM 1.674713361 52% 
IIGP1 1.589790297 62% 
LAT 1.571947656 52% 

MOT1 1.543162215 57% 
FKBP8 1.530549418 78% 
CD47 1.521756522 57% 

TM9S4 1.511747048 71% 
4F2 1.50855694 54% 

GBG2 1.426500688 82% 
GAPR1 1.403211843 77% 
PYRD 1.393353099 59% 

ERG28 1.386334816 58% 
RSSA 1.370983006 52% 

FKBP2 1.341284766 57% 
PHB2 1.316208488 74% 
RPN1 1.307906372 78% 
SFXN1 1.240247886 79% 
ADT2 1.230661374 66% 
P5CS 1.222021762 72% 

FLOT1 1.215065514 51% 
SSRG 1.204912186 70% 

Q31093 1.20450616 52% 
PDIA6 1.200289106 80% 
ERP29 1.189546739 66% 

OAT 1.169299517 69% 
ENPL 1.163797268 72% 
CTL2 1.135686634 60% 

ICAM1 1.111363701 61% 
PHB 1.105551485 73% 

LS14A 1.101804273 54% 
SDF2L 1.08763238 70% 

Q3UJB0 1.081230351 54% 
SUV3 1.072920317 56% 

MYH7B 1.04837306 72% 
NOP2 1.047483349 53% 

RL27A 1.030620908 55% 
RBBP4 1.0130215 61% 
MTA2 1.009859995 54% 
E41L2 0.99525125 51% 
RL10A 0.967143477 69% 

J7NUP1 0.958626237 56% 
A0A1L1SUX8 0.933950976 87% 

THY1 0.899042313 61% 
LONM 0.896113946 51% 
PR40A 0.891082324 58% 

Q9D8L3 0.888433694 67% 
FUBP2 0.885628316 64% 
MFGM 0.879667225 64% 
PNKP 0.87918808 85% 

A0A0A0MQF6 0.860111589 60% 
RNH2B 0.850019537 58% 
IRGM1 0.833009637 79% 
ESYT1 0.811507111 73% 
RL19 0.799144763 75% 
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RUXF 0.794192962 52% 
Q3TCU5 0.786387113 53% 
SNRPA 0.780766765 58% 
URP2 0.723522629 51% 

F208B 0.723052921 58% 
VDAC1 0.668898776 59% 

G3UYV7 0.656685347 56% 
ROAA 0.647674179 52% 

VDAC2 0.620943323 54% 
GRP75 0.557654145 57% 
CATE -0.608240043 54% 
RAC2 -0.649188436 78% 

D39U1 -0.699734246 53% 
COR1A -0.710889411 68% 

CD5 -0.726835796 67% 
EFTU -0.729583272 66% 
PTCA -0.787351171 65% 

CHM1A -0.821679604 52% 
THIM -0.83078699 52% 
UBC9 -0.832849377 64% 

ACD10 -0.855542919 51% 
SODM -0.954900893 52% 
GIMA1 -0.981637575 60% 
ACO13 -1.002283757 55% 
LIMD2 -1.106030929 69% 

G3X9U9 -1.120982422 57% 
IVD -1.230495099 69% 

ACOT9 -1.234025867 64% 
ES1 -1.311787078 51% 
IL16 -1.335764945 66% 
ACTC -1.344187262 61% 

COX7C -1.35312901 65% 
CECR5 -1.405217941 54% 

ECI1 -1.470161359 67% 
ARHL2 -1.47219518 58% 
PRDX5 -1.54121843 65% 
FETUA -1.56103197 64% 

CYB -1.629090902 61% 
K1C17 -1.667139482 58% 
K1C16 -1.781354311 55% 
ACOT2 -1.866607248 87% 
EYA4 -1.941342071 63% 

NAA35 -1.987904367 57% 
TBC8B -1.99922149 63% 
K1C14 -2.011751053 56% 

E0CZ27 -2.03178395 72% 
K22E -2.045144758 58% 

MA2B2 -2.050546159 55% 
E9Q0F0 -2.075959586 55% 
K2C79 -2.167485783 81% 
ROCK2 -2.174853235 56% 
NEST -2.177505857 56% 

K1C10 -2.264287146 80% 
PDPR -2.291383666 56% 
F16B1 -2.292925895 52% 
K2C1B -2.440165523 76% 
HMGB1 -2.53477992 58% 
CCD66 -2.576701269 53% 

A2A513 -2.664352983 91% 
E9Q0G1 -2.778194168 55% 
Q9Z1R9 -2.897566049 85% 

A0A0R4J0J3 -3.268143068 50% 
HYEP -3.342961114 76% 

Q9CZP3 -3.401367187 65% 
E9QA45 -3.507008954 89% 
H2B2B -3.846890226 57% 

MIO -4.010402747 76% 
Q792Z1 -4.472107504 77% 
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Table 11A. List of upregulated and downregulated proteins in iTregs vs naïve CD4, sorted based on the 
fold-change and Confidence score ≥50%. 

Protein Fold-change Confidence score 
E9PWW6 5.559155236 64% 
PIGT 4.832151703 60% 
A2CG76 4.683056553 55% 
CUL4A 4.218718279 52% 
A2A4U6 4.004331271 54% 
IL2RA 3.989840648 86% 
A0A0R4J0F6 3.927736011 56% 
M3K11 3.862699048 77% 
F8WIA1 3.842171432 52% 
PSF3 3.829572051 57% 
PIGT 3.821267208 60% 
BASI 3.747434177 74% 
G3UW40 3.682472314 54% 
KAD4 3.658885869 61% 
SUGP1 3.630801647 51% 
SLIT2 3.615743029 61% 
KIF15 3.611043066 69% 
Q3UMA3 3.602690664 52% 
GALE 3.573333406 77% 
PDCD5 3.546400758 51% 
D3Z5N2 3.524383792 79% 
IFI4 3.507845444 57% 
MSMO1 3.483693611 57% 
GNAS1 3.459294559 58% 
DNM3A 3.393564932 63% 
S2539 3.366041142 64% 
K3W4Q8 3.360816069 73% 
KI67 3.340960314 79% 
IIGP1 3.330678165 84% 
SBNO2 3.323354638 70% 
CD2 3.296968449 50% 
RNH2B 3.284702392 59% 
NDRG1 3.280034785 75% 
BOREA 3.274421675 53% 
DOPD 3.268777389 65% 
ATIF1 3.233359566 66% 
4EBP1 3.2003607 62% 
ERG28 3.158011445 66% 
PYC 3.151068223 84% 
Q9CQ43 3.142918632 78% 
VPS4A 3.136851637 50% 
CBX5 3.111914523 69% 
SMC2 3.109652269 64% 
PSMD8 3.103586189 81% 
SUH 3.09436734 55% 
Q9EQ08 3.09335696 61% 
TPIS 3.076976336 83% 
GALM 3.044242329 55% 
STMN1 3.036256437 80% 
E9Q1M6 3.027505613 62% 
GTR1 3.023694626 64% 
GPAA1 3.00142856 55% 
TFR1 2.983734914 76% 
TERF2 2.979699407 78% 
ALDOC 2.970230418 85% 
MESH1 2.960810877 51% 
Q3UKN6 2.95931301 61% 
DYR 2.957170294 80% 
A0A0R4J0V1 2.955900269 70% 
HYI 2.92141074 50% 
STA5A 2.907566911 59% 
TNC18 2.90099338 65% 
NAMPT 2.897522132 78% 
AACS 2.89308307 72% 
NDUA8 2.883069609 62% 
RT06 2.879233288 58% 
SHCBP 2.873829522 63% 
FPPS 2.871557255 80% 
BAIP2 2.867752465 61% 
FABP5 2.846191754 82% 
E9PYG6 2.83949123 64% 
E9QP00 2.81844582 58% 
CK074 2.813915429 65% 
E9Q718 2.805532954 51% 
MCM4 2.795949987 77% 
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IMPA1 2.779843837 50% 
J3QMA2 2.741028464 70% 
NXP20 2.723781165 67% 
FAS 2.719077107 79% 
SPA3F 2.718619946 78% 
E9Q496 2.71718032 70% 
E9PWG6 2.705015172 66% 
PLP2 2.704603759 88% 
SETD3 2.701306318 58% 
A0A0A0MQ90 2.698801123 52% 
TOP2A 2.690370738 50% 
CAPG 2.664927486 86% 
MCM5 2.650982754 91% 
Q99LB4 2.649193605 84% 
ERGI1 2.64735627 52% 
CATZ 2.639800205 50% 
SRSF9 2.617679294 54% 
A0A0U1RP59 2.601792295 61% 
PCNA 2.592876153 73% 
E9PYH2 2.588704044 78% 
IMPA2 2.586731817 70% 
PFKAP 2.573353772 57% 
CDK6 2.569498455 76% 
TNC18 2.558653751 71% 
F6UHR6 2.551821316 53% 
RL7L 2.5501486 71% 
A2BHP6 2.545877507 69% 
ESPL1 2.534847943 52% 
ITIH4 2.519288988 76% 
BRI3B 2.518654628 58% 
B2RPU8 2.494793056 51% 
HAUS1 2.493639948 64% 
MOT4 2.479640796 70% 
MCM2 2.47509484 75% 
MAVS 2.467043417 82% 
Q3UNN4 2.459755016 64% 
E9PZ97 2.459544987 68% 
SPA3G 2.449753779 78% 
TM9S4 2.446434989 67% 
PRI2 2.441787802 73% 
3BP1 2.437179528 52% 
IIGP1 2.433734268 65% 
CMTD1 2.433597794 56% 
E9PWG6 2.429462828 78% 
MCM6 2.417444737 75% 
RIR1 2.403678379 77% 
XYLT1 2.399761071 71% 
Q52KC3 2.393455024 72% 
RFC4 2.389911836 50% 
FKBP2 2.377922052 59% 
MCM7 2.374954349 75% 
LRC59 2.365011568 77% 
MCM3 2.364746749 77% 
E9Q8A3 2.36025079 60% 
PGK1 2.346306028 82% 
ERO1A 2.340809611 64% 
HAT1 2.337554928 67% 
MARK4 2.337224834 77% 
ARHG2 2.333715051 80% 
DMAP1 2.329111577 58% 
TBA1B 2.328380379 80% 
DCAF8 2.325847354 76% 
GALK1 2.302387039 78% 
CNDP2 2.299759994 84% 
Q8C605 2.290971047 80% 
E9PW39 2.290770924 61% 
SYVC 2.263121452 80% 
NSDHL 2.240879661 66% 
MA2B1 2.232547174 55% 
SERC 2.22582669 74% 
AB17C 2.224911281 91% 
OGFR 2.223176253 54% 
T2EA 2.215388461 73% 
Q9CZN7 2.212182356 78% 
CAC1H 2.201571585 51% 
RPB7 2.189047433 53% 
DPOLA 2.183557266 58% 
PA1B3 2.180860215 64% 
SNTB2 2.161517247 54% 
A6ZI44 2.154366575 79% 
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CHD6 2.147292027 56% 
TLK1 2.147093049 56% 
STAT2 2.1467769 64% 
XYLT1 2.130477264 70% 
VIME 2.130196516 81% 
GLYC 2.12924806 75% 
E41L2 2.126801181 70% 
PPP5 2.104629423 58% 
TBB5 2.089422699 86% 
ICAM1 2.088484151 75% 
ENDD1 2.082881302 66% 
PFKAL 2.078124351 64% 
RNH2B 2.074334519 54% 
PDCL3 2.064675767 51% 
VIME 2.061522961 83% 
MP2K1 2.058629765 53% 
A0A0R4J138 2.042460314 65% 
A0A0B4J1E7 2.029864194 58% 
NFAC2 2.02483718 82% 
ALDOA 2.023559372 81% 
RPAP1 2.022005589 61% 
RFC4 1.987279854 62% 
STML2 1.985355633 72% 
SND1 1.979233844 58% 
DHB7 1.971263535 71% 
GBG2 1.969401634 82% 
MIF 1.968522247 52% 
HEM6 1.962878898 73% 
CDK2 1.944907077 50% 
CHD4 1.935840861 52% 
KPYM 1.929475817 85% 
LDHA 1.912384368 72% 
A0A0R4J170 1.911242674 56% 
ADA 1.905315422 53% 
A1L3S7 1.899933358 62% 
OAT 1.892847691 73% 
PPIF 1.890645245 51% 
IMP3 1.859463566 51% 
Q9QXJ2 1.84545505 74% 
ARMX3 1.839322416 53% 
A0A0A0MQF6 1.837020016 73% 
PYR1 1.824300903 72% 
Q3UE92 1.823171388 52% 
TBB2B 1.821006703 77% 
STN1 1.809933447 69% 
PUR6 1.806052401 58% 
IPO5 1.78536942 67% 
ADH7 1.783634354 57% 
CRADD 1.775646277 67% 
4F2 1.758453166 78% 
G3P 1.753386046 77% 
D3Z7B5 1.721490095 59% 
PDIA6 1.710162624 78% 
ENPL 1.708465071 69% 
CA198 1.702921616 55% 
COX17 1.696419399 61% 
PGAM1 1.692989898 80% 
ROA1 1.692583453 61% 
MYH7B 1.6795756 70% 
SERA 1.669320065 82% 
EF1G 1.669011448 77% 
PSMG3 1.662425733 71% 
OGA 1.658560256 57% 
GRHPR 1.648207833 80% 
MBB1A 1.645840468 75% 
E9PUQ5 1.635799069 52% 
A0A0R4J1E2 1.61621308 78% 
MICA1 1.602330095 50% 
P5CS 1.599882899 75% 
MIF 1.597179865 87% 
Q564E2 1.589577008 84% 
PHB2 1.588524208 53% 
DHX36 1.572690282 54% 
ENOA 1.567309792 87% 
TT21B 1.549117885 53% 
E9QNP0 1.539566891 56% 
TRAF6 1.522846749 70% 
DHX29 1.519335041 50% 
PSB7 1.510012511 57% 
Q31093 1.498033381 70% 
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SYTC 1.497845411 66% 
PGAM5 1.496061672 54% 
SYMC 1.487068742 67% 
RNH2C 1.477285553 62% 
CCS 1.475447159 60% 
M3K12 1.45785279 74% 
RL23A 1.456132094 53% 
Q8C2Q7 1.455006766 59% 
RL26 1.446939715 68% 
UMPS 1.432962884 53% 
AB17C 1.430177199 54% 
MOT1 1.413603563 56% 
IMDH2 1.406692428 78% 
TBA1B 1.389955705 59% 
EF1B 1.389369287 80% 
IPYR 1.383526393 55% 
A0A0A0MQF6 1.371039936 55% 
IF5A1 1.362846451 79% 
SYEP 1.361720183 59% 
GAPR1 1.357117614 57% 
PTMA 1.354998578 76% 
DAD1 1.352988021 54% 
A0A0R4J0D3 1.351135828 59% 
ADT2 1.344678287 72% 
TBB5 1.344341977 55% 
THIO 1.338384161 81% 
EF1D 1.326206589 78% 
NOP2 1.318071783 54% 
RIPK3 1.316804421 50% 
RS29 1.316718226 56% 
IF4E 1.310838381 50% 
BROX 1.309723463 54% 
ZER1 1.287441456 70% 
ADT1 1.279918167 54% 
YBOX1 1.276349573 51% 
WDR3 1.26512848 51% 
LS14A 1.246971579 73% 
PA2G4 1.214684399 75% 
URP2 1.211433566 59% 
SSRG 1.197982492 52% 
RPN1 1.194014959 80% 
Q8C2Q7 1.192867278 57% 
HNRPQ 1.190828981 52% 
MIC26 1.184683507 54% 
SAP3 1.17806936 52% 
TBA1A 1.17655849 64% 
ERF1 1.169421755 55% 
HPRT 1.146563114 56% 
RL19 1.143070962 82% 
Q8C3V4 1.141692881 55% 
AATC 1.136687692 69% 
EF2 1.133266328 80% 
Q8BG13 1.128935928 54% 
FKBP8 1.099878377 66% 
E9PW43 1.096909626 57% 
STAT1 1.085843415 50% 
RL6 1.083052811 52% 
RL19 1.08191587 81% 
ITPA 1.081146549 51% 
ROAA 1.080610158 72% 
GRP78 1.0785641 75% 
SNRPA 1.074266366 77% 
S10AD 1.070294986 59% 
PGES2 1.064467865 56% 
RL27 1.062161512 58% 
CASP7 1.057652884 51% 
GPSM1 1.057065685 52% 
EF1A1 1.051480432 69% 
PHB 1.048392902 73% 
IF2A 1.047079248 50% 
UBA1 1.044998548 79% 
G6PI 1.041903443 76% 
LPXN 1.036876116 54% 
RL10A 1.029569179 71% 
RBBP4 1.028278181 52% 
HDAC1 1.018936187 59% 
PPIB 1.009237446 79% 
EEA1 0.996993844 50% 
DEK 0.988629714 65% 
GBP1 0.984194799 57% 
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RL14 0.98302194 59% 
CTL2 0.978788974 76% 
HTR5B 0.973973679 88% 
PTN6 0.971391346 62% 
RAB10 0.971179383 59% 
HNRH1 0.958551784 83% 
RFA3 0.956030258 56% 
TBB4B 0.953977622 68% 
RL8 0.939331155 51% 
Q3TCU5 0.93724761 66% 
SFXN1 0.92869476 80% 
RL27A 0.924006855 51% 
Q9Z1A1 0.922285588 63% 
AN32E 0.919597655 56% 
KRT85 0.91739029 54% 
MTA2 0.915037968 54% 
A0A0A6YX26 0.910082515 74% 
RAB8B 0.903000604 57% 
C1TM 0.895060187 53% 
TCPB 0.874490194 56% 
OSTC 0.874058775 53% 
RL7 0.864567996 60% 
HS90B 0.864227695 76% 
FUBP2 0.860930387 65% 
STING 0.859196742 56% 
PPIA 0.85869303 81% 
YIPF4 0.853214957 57% 
GDIB 0.844906766 66% 
RL13 0.844492705 57% 
SPEE 0.840533447 67% 
A0A1B0GTA4 0.832047561 58% 
RS25 0.829755529 67% 
AT1A1 0.82115059 54% 
A0A1L1SQA8 0.818715112 56% 
1433F 0.81605988 70% 
PNKP 0.815304654 77% 
RL27A 0.79728746 56% 
TKT 0.796464877 61% 
A2A547 0.780974565 80% 
TCPG 0.772720765 70% 
TCPD 0.767603764 83% 
RS27 0.761183195 61% 
CN37 0.749809186 52% 
PRPS1 0.740501349 57% 
UBP3 0.731093474 55% 
OST48 0.729405619 52% 
PR40A 0.717399317 51% 
Q6ZWZ7 0.704555893 51% 
PRDX1 0.703942427 59% 
HS90A 0.702117829 71% 
RL31 0.689031861 60% 
RL17 0.683684578 63% 
RS3A 0.679492804 52% 
RL35 0.674449786 52% 
F208B 0.672359051 56% 
RS14 0.668101312 55% 
Q9D8L3 0.65764416 59% 
1433E 0.657499632 54% 
RL10A 0.6498865 66% 
DNM1L 0.645518054 55% 
RL31 0.635978157 70% 
PCBP1 0.626722243 75% 
IRGM1 0.612352468 61% 
RS18 0.606782635 52% 
RL12 0.596279164 50% 
PCBP1 0.595370864 63% 
RS7 0.593101251 50% 
HNRPK 0.579491287 58% 
PSB4 0.576415746 74% 
Q6ZWZ4 0.576043999 50% 
VDAC2 0.574906435 79% 
UBCP1 0.549088285 54% 
RLA2 0.547959766 50% 
G3UYV7 0.540616148 68% 
CATC 0.537165283 57% 
NUCL 0.531891746 56% 
PSDE 0.53161895 59% 
FKB1A 0.517983025 58% 
U2AF2 0.506144811 57% 
RL29 0.481448909 57% 



315 
 

RLA0 0.464531573 69% 
RSSA 0.456147974 61% 
PNKP 0.398051591 55% 
HSP7C 0.387396585 52% 
RS28 0.335413777 54% 
KAPCB -0.470857914 55% 
ARP5L -0.550545379 53% 
ARC1B -0.564631198 65% 
SORCN -0.572122368 53% 
NDUA4 -0.590489965 59% 
ELMO1 -0.594409681 60% 
CD5 -0.638900794 63% 
NSF1C -0.660526197 62% 
CLCB -0.666952343 53% 
ANXA6 -0.691317171 64% 
HCD2 -0.701369887 78% 
BIN2 -0.712069363 54% 
Q3UDM0 -0.717330187 55% 
ASC -0.729686054 70% 
A0A0N4SVT1 -0.741054097 61% 
EYA4 -0.744997917 68% 
LASP1 -0.755690577 77% 
Q99N15 -0.768015251 53% 
ANX11 -0.777212561 64% 
A0A0N4SVQ1 -0.778366989 64% 
GSTP1 -0.784517523 69% 
Q924B0 -0.793717767 66% 
CAZA1 -0.799841036 60% 
BIEA -0.799958815 57% 
CCD66 -0.802007204 61% 
PTCA -0.807579386 56% 
INPP -0.809855844 68% 
PROF1 -0.811687843 78% 
UBC9 -0.822117613 54% 
CBX3 -0.834326117 73% 
UBC9 -0.84329792 64% 
GIMA4 -0.85554105 87% 
IF4A3 -0.872231438 69% 
LSM7 -0.891835471 66% 
MGDP1 -0.903836934 63% 
COR1A -0.91111261 77% 
NHP2 -0.914958865 51% 
CRLF3 -0.927646997 75% 
COF1 -0.94141141 54% 
SP100 -0.944815874 80% 
SAMH1 -0.94936271 78% 
RPR1B -0.956373236 80% 
TAGL2 -0.956977577 68% 
RAC2 -0.957107882 84% 
A0A0R4J195 -0.959440335 70% 
U2AF2 -0.962340629 61% 
IL16 -0.96793139 84% 
Q5RKN9 -0.993656526 54% 
MGN -1.003309619 59% 
K22E -1.0042561 51% 
A0A0A6YY34 -1.004623611 68% 
LAMP1 -1.008024769 52% 
CNN2 -1.008254104 51% 
GLRX1 -1.013137832 64% 
E9QMV2 -1.016496052 81% 
TRNT1 -1.036411946 50% 
K1671 -1.044370197 72% 
A2A513 -1.048432426 78% 
TPM3 -1.052414196 56% 
OPA1 -1.054233874 52% 
Q6GT24 -1.066243206 72% 
PRDX6 -1.073920222 50% 
ALDR -1.079451626 88% 
CAP1 -1.087472527 70% 
THIM -1.089823745 62% 
F8WGL3 -1.0922213 56% 
MOES -1.097251805 73% 
NH2L1 -1.109045467 78% 
H4 -1.114510167 71% 
Q91VB8 -1.1209302 64% 
A0A0R4J0J8 -1.127067758 57% 
PKHA1 -1.127865275 53% 
ANXA5 -1.141691596 79% 
NOP58 -1.146317373 53% 
ARHL2 -1.154401189 69% 
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NCK5L -1.156445447 66% 
THUM1 -1.162496586 62% 
GDPP1 -1.165136767 59% 
ADK -1.175762857 68% 
E9Q0F0 -1.190445254 51% 
RMXL1 -1.192946013 54% 
CATE -1.193534417 89% 
B2RUG9 -1.196912924 70% 
PDXK -1.199200137 52% 
D39U1 -1.200422659 59% 
FUBP1 -1.2076978 52% 
HBB2 -1.226541892 61% 
ROA2 -1.22733264 78% 
DCPS -1.246104259 75% 
PI42A -1.25004861 77% 
F193A -1.267376018 63% 
LDHB -1.289491892 78% 
HNRPD -1.30849955 68% 
Q6ZWQ9 -1.316611498 58% 
FBRL -1.323596698 62% 
S10AB -1.329855686 70% 
KBTBB -1.332604766 65% 
CO6A2 -1.343800204 55% 
ROA3 -1.364167377 79% 
COX7C -1.368479124 84% 
FETUA -1.386146982 68% 
CBX1 -1.397948782 60% 
CATE -1.407538019 81% 
LIMD2 -1.409976024 76% 
GDIR2 -1.415366181 71% 
B7FAU9 -1.474612825 85% 
ROA0 -1.479440772 60% 
IL16 -1.506103682 77% 
HNRPC -1.514502888 61% 
A2A6J4 -1.515731388 82% 
FLNA -1.524219641 82% 
COTL1 -1.525748345 71% 
SH3L3 -1.543965971 82% 
BAG5 -1.574801689 82% 
CBR1 -1.583023149 77% 
HPCL1 -1.616369907 82% 
LSP1 -1.628432214 85% 
RASF2 -1.664829713 79% 
PGM2 -1.667656052 72% 
BRX1 -1.679977502 54% 
MDHC -1.708506835 87% 
TMCC3 -1.743178097 51% 
A2AQN4 -1.749531203 53% 
TBC8B -1.751181055 59% 
THRB -1.798281139 52% 
ACD10 -1.829842923 54% 
NUF2 -1.860929641 57% 
K1C17 -1.91191341 58% 
K1C16 -1.917822773 90% 
DDAH1 -1.932109472 51% 
ACOT2 -1.942605378 78% 
Q9Z1R9 -1.948313756 85% 
RASK -1.970742154 56% 
PKHO2 -2.013592645 51% 
E9QJT5 -2.035008499 80% 
EYA4 -2.041675267 51% 
NUD16 -2.064480502 66% 
GSHR -2.10542411 66% 
K1C10 -2.112424327 86% 
SET1B -2.121980488 71% 
K22E -2.167944004 61% 
PI42A -2.173163563 61% 
SPT6H -2.252464196 80% 
MRCKB -2.254648796 52% 
E9QA45 -2.264238531 83% 
H12 -2.295020308 51% 
G3X8X3 -2.314798048 53% 
IF4A2 -2.362177239 82% 
DAAM2 -2.388110879 52% 
K2C1B -2.402019745 81% 
SQRD -2.419766151 58% 
A2A513 -2.426828568 95% 
K2C1 -2.456747494 78% 
ACYP1 -2.472075023 76% 
DHB11 -2.485943772 54% 
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E9Q0F0 -2.505614478 69% 
ACTN1 -2.528755871 83% 
K2C79 -2.545858794 87% 
Q9EQ08 -2.589184426 56% 
E9Q0A7 -2.607330026 55% 
NAA35 -2.637379099 60% 
D3YX85 -2.650315559 70% 
NEST -2.662024848 61% 
GBG5 -2.688484175 60% 
HDDC2 -2.717227558 65% 
HYEP -2.742116187 69% 
K1C14 -2.787940779 71% 
Q9Z1R9 -2.807432235 75% 
HMGB1 -2.819757201 64% 
CCZ1 -3.024920159 57% 
UBE3C -3.045184245 62% 
A0A0R4J0J3 -3.209759287 63% 
PAXB1 -3.358714664 53% 
PSMD8 -3.386751388 50% 
Q8BH78 -3.416332776 51% 
2A5A -3.513004252 66% 
FARP1 -3.517023663 52% 
NOG2 -3.758666749 52% 
UH1BL -3.761452963 55% 
E9QA45 -3.823835615 88% 
LMNB2 -3.881132184 55% 
MIO -4.058872946 79% 
K2C73 -4.200880488 74% 
RUSD2 -4.4907361 65% 
AP3M2 -4.535437702 57% 
D3Z6X7 -4.614218008 51% 
HINT2 -4.884016944 59% 
Q792Z1 -5.602066665 97% 
A2CG76 4.683056553 55% 
A2A4U6 4.004331271 54% 
IL2RA 3.989840648 86% 
A0A0R4J0F6 3.927736011 56% 
M3K11 3.862699048 77% 
F8WIA1 3.842171432 52% 
PIGT 3.821267208 60% 
BASI 3.747434177 74% 
KAD4 3.658885869 61% 
SUGP1 3.630801647 51% 
PDCD5 3.546400758 51% 
MSMO1 3.483693611 57% 
GNAS1 3.459294559 58% 
DNM3A 3.393564932 63% 
S2539 3.366041142 64% 
K3W4Q8 3.360816069 73% 
KI67 3.340960314 79% 
CD2 3.296968449 50% 
BOREA 3.274421675 53% 
ATIF1 3.233359566 66% 
ERG28 3.158011445 66% 
PYC 3.151068223 84% 
CBX5 3.111914523 69% 
SMC2 3.109652269 64% 
SUH 3.09436734 55% 
GTR1 3.023694626 64% 
GPAA1 3.00142856 55% 
TFR1 2.983734914 76% 
TERF2 2.979699407 78% 
Q3UKN6 2.95931301 61% 
A0A0R4J0V1 2.955900269 70% 
TNC18 2.90099338 65% 
NDUA8 2.883069609 62% 
RT06 2.879233288 58% 
E9QP00 2.81844582 58% 
CK074 2.813915429 65% 
IMPA1 2.779843837 50% 
NXP20 2.723781165 67% 
PLP2 2.704603759 88% 
TOP2A 2.690370738 50% 
ERGI1 2.64735627 52% 
SRSF9 2.617679294 54% 
A0A0U1RP59 2.601792295 61% 
F6UHR6 2.551821316 53% 
RL7L 2.5501486 71% 
ESPL1 2.534847943 52% 
ITIH4 2.519288988 76% 
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BRI3B 2.518654628 58% 
MOT4 2.479640796 70% 
MAVS 2.467043417 82% 
Q3UNN4 2.459755016 64% 
E9PZ97 2.459544987 68% 
TM9S4 2.446434989 67% 
IIGP1 2.433734268 65% 
CMTD1 2.433597794 56% 
E9PWG6 2.429462828 78% 
XYLT1 2.399761071 71% 
RFC4 2.389911836 50% 
FKBP2 2.377922052 59% 
LRC59 2.365011568 77% 
ERO1A 2.340809611 64% 
DMAP1 2.329111577 58% 
NSDHL 2.240879661 66% 
Q9CZN7 2.212182356 78% 
CAC1H 2.201571585 51% 
RPB7 2.189047433 53% 
SNTB2 2.161517247 54% 
CHD6 2.147292027 56% 
E41L2 2.126801181 70% 
ICAM1 2.088484151 75% 
ENDD1 2.082881302 66% 
RNH2B 2.074334519 54% 
VIME 2.061522961 83% 
STML2 1.985355633 72% 
SND1 1.979233844 58% 
DHB7 1.971263535 71% 
GBG2 1.969401634 82% 
MIF 1.968522247 52% 
CHD4 1.935840861 52% 
A0A0R4J170 1.911242674 56% 
A1L3S7 1.899933358 62% 
OAT 1.892847691 73% 
PPIF 1.890645245 51% 
IMP3 1.859463566 51% 
ADH7 1.783634354 57% 
4F2 1.758453166 78% 
PDIA6 1.710162624 78% 
ENPL 1.708465071 69% 
CA198 1.702921616 55% 
ROA1 1.692583453 61% 
MYH7B 1.6795756 70% 
MBB1A 1.645840468 75% 
E9PUQ5 1.635799069 52% 
P5CS 1.599882899 75% 
PHB2 1.588524208 53% 
Q31093 1.498033381 70% 
PGAM5 1.496061672 54% 
Q8C2Q7 1.455006766 59% 
AB17C 1.430177199 54% 
MOT1 1.413603563 56% 
TBA1B 1.389955705 59% 
A0A0A0MQF6 1.371039936 55% 
GAPR1 1.357117614 57% 
DAD1 1.352988021 54% 
A0A0R4J0D3 1.351135828 59% 
ADT2 1.344678287 72% 
TBB5 1.344341977 55% 
NOP2 1.318071783 54% 
ADT1 1.279918167 54% 
WDR3 1.26512848 51% 
LS14A 1.246971579 73% 
SSRG 1.197982492 52% 
RPN1 1.194014959 80% 
HNRPQ 1.190828981 52% 
MIC26 1.184683507 54% 
FKBP8 1.099878377 66% 
E9PW43 1.096909626 57% 
RL19 1.08191587 81% 
ROAA 1.080610158 72% 
GRP78 1.0785641 75% 
SNRPA 1.074266366 77% 
PGES2 1.064467865 56% 
RL27 1.062161512 58% 
PHB 1.048392902 73% 
RL10A 1.029569179 71% 
RBBP4 1.028278181 52% 
HDAC1 1.018936187 59% 
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PPIB 1.009237446 79% 
DEK 0.988629714 65% 
CTL2 0.978788974 76% 
HNRH1 0.958551784 83% 
Q3TCU5 0.93724761 66% 
SFXN1 0.92869476 80% 
MTA2 0.915037968 54% 
RAB8B 0.903000604 57% 
C1TM 0.895060187 53% 
OSTC 0.874058775 53% 
FUBP2 0.860930387 65% 
STING 0.859196742 56% 
YIPF4 0.853214957 57% 
AT1A1 0.82115059 54% 
PNKP 0.815304654 77% 
RL27A 0.79728746 56% 
CN37 0.749809186 52% 
UBP3 0.731093474 55% 
OST48 0.729405619 52% 
PR40A 0.717399317 51% 
RL31 0.689031861 60% 
F208B 0.672359051 56% 
Q9D8L3 0.65764416 59% 
IRGM1 0.612352468 61% 
PCBP1 0.595370864 63% 
HNRPK 0.579491287 58% 
VDAC2 0.574906435 79% 
U2AF2 0.506144811 57% 
NDUA4 -0.590489965 59% 
CD5 -0.638900794 63% 
HCD2 -0.701369887 78% 
Q99N15 -0.768015251 53% 
A0A0N4SVQ1 -0.778366989 64% 
PTCA -0.807579386 56% 
UBC9 -0.84329792 64% 
LAMP1 -1.008024769 52% 
THIM -1.089823745 62% 
CATE -1.193534417 89% 
B2RUG9 -1.196912924 70% 
D39U1 -1.200422659 59% 
Q6ZWQ9 -1.316611498 58% 
COX7C -1.368479124 84% 
LIMD2 -1.409976024 76% 
IL16 -1.506103682 77% 
TBC8B -1.751181055 59% 
ACD10 -1.829842923 54% 
K1C17 -1.91191341 58% 
K1C16 -1.917822773 90% 
ACOT2 -1.942605378 78% 
RASK -1.970742154 56% 
EYA4 -2.041675267 51% 
K1C10 -2.112424327 86% 
SET1B -2.121980488 71% 
K22E -2.167944004 61% 
PI42A -2.173163563 61% 
K2C1B -2.402019745 81% 
SQRD -2.419766151 58% 
A2A513 -2.426828568 95% 
K2C1 -2.456747494 78% 
DHB11 -2.485943772 54% 
E9Q0F0 -2.505614478 69% 
K2C79 -2.545858794 87% 
Q9EQ08 -2.589184426 56% 
E9Q0A7 -2.607330026 55% 
NAA35 -2.637379099 60% 
D3YX85 -2.650315559 70% 
NEST -2.662024848 61% 
GBG5 -2.688484175 60% 
HDDC2 -2.717227558 65% 
HYEP -2.742116187 69% 
K1C14 -2.787940779 71% 
Q9Z1R9 -2.807432235 75% 
HMGB1 -2.819757201 64% 
A0A0R4J0J3 -3.209759287 63% 
PSMD8 -3.386751388 50% 
Q8BH78 -3.416332776 51% 
FARP1 -3.517023663 52% 
UH1BL -3.761452963 55% 
E9QA45 -3.823835615 88% 
MIO -4.058872946 79% 
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K2C73 -4.200880488 74% 
AP3M2 -4.535437702 57% 
Q792Z1 -5.602066665 97% 

 

 

Table 12A. List of upregulated and downregulated proteins in iTregs vs Stim nTregs, sorted based on the 
fold-change and Confidence score ≥50%. 

Protein Fold-change Confidence score  
A2CG76 5.657989106 56% 
M3K11 4.509704489 76% 
DUS2L 4.14225154 63% 
NDRG2 4.067892127 66% 
A2A4U6 4.005840853 51% 
PYRD 3.926554798 52% 
E9Q921 3.905628453 59% 
PLP2 3.577217635 63% 
E9PVS1 3.475987236 57% 
GCSH 3.460801273 51% 
AT1B1 3.460268379 73% 
LS14A 3.340596745 66% 
RIPL1 3.331845328 50% 
PTH2 3.132438217 52% 
HSDL1 3.127337017 62% 
RM01 3.114133088 69% 
HEM6 2.896277154 59% 
E9Q9M1 2.85709485 54% 
RT33 2.856289003 59% 
SYAM 2.807181974 53% 
COR1C 2.777681764 52% 
NEP1 2.753260303 53% 
PDLI4 2.713160944 63% 
ARL1 2.694743401 60% 
A2AUM0 2.667574288 55% 
A0A0R4J1W7 2.635598641 58% 
E9Q1R5 2.591113778 57% 
Q3UMA3 2.537521504 58% 
HBB2 2.50627012 82% 
SNX27 2.465747009 54% 
XYLT1 2.427943035 60% 
ITIH4 2.369637137 75% 
H7BWX9 2.212874309 56% 
EXOC3 2.195117169 64% 
ENDD1 2.055316868 72% 
WASH1 2.046238744 55% 
BABA1 2.044312994 52% 
Q9EQ08 1.952920588 61% 
VAMP7 1.946837719 58% 
A0A0N4SVQ1 1.927118411 88% 
MAVS 1.918304864 76% 
UB2D1 1.881335457 51% 
CE162 1.814775525 64% 
NEST 1.811374492 74% 
RRAS 1.794195303 52% 
F7DEU6 1.793348831 52% 
HBB1 1.782801113 55% 
WDR37 1.701282608 51% 
SUV3 1.676663277 58% 
NAA35 1.676247159 64% 
NDUA4 1.674278579 84% 
HBA 1.620753196 57% 
SP110 1.615521212 81% 
FOLH1 1.559357666 77% 
RAB35 1.538967971 57% 
F8VPV0 1.515456878 68% 
A0A0R4J0V1 1.45737645 51% 
RNH2B 1.449446056 56% 
Q91VB8 1.448690555 54% 
CASP7 1.400496445 54% 
A2AP32 1.36643211 60% 
K1C17 1.359503912 57% 
K2C79 1.357875187 64% 
H32 1.311871776 61% 
MYH9 1.292172134 68% 
NDUB8 1.279772753 70% 
ODPX 1.275758488 66% 
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NDUA5 1.273114407 69% 
ML12B 1.271526643 78% 
CATC 1.259888432 62% 
NDUS7 1.2571113 70% 
MBRL 1.248397752 51% 
Q91VB8 1.243211965 51% 
CYH3 1.233364146 70% 
H4 1.226259047 52% 
CS012 1.206407294 82% 
CILP1 1.195248824 64% 
D3YX85 1.189041772 71% 
A2A513 1.18756759 63% 
AL3A1 1.145773572 79% 
SUN2 1.126600942 72% 
CHD9 1.117373767 68% 
UBCP1 1.057800534 70% 
ALBU 1.049935047 61% 
ECHB 1.049259836 79% 
COTL1 1.033433252 51% 
ADT2 1.022358684 68% 
PNKP 0.983430056 76% 
P85A 0.954164446 63% 
SRSF1 0.951079509 85% 
E9QA45 0.93853452 86% 
Q9DCC5 0.901269961 54% 
COX6C 0.901238868 58% 
IDHG1 0.900135772 62% 
DJC16 0.892247918 52% 
CX6B1 0.8876547 79% 
ALDR 0.878933723 78% 
SUOX 0.870261818 57% 
ATPO 0.860886629 65% 
A0A0A6YY34 0.859472753 78% 
ECHA 0.858119424 66% 
PHB2 0.856149692 67% 
TT39B 0.855707346 60% 
B7FAU9 0.814184712 64% 
THIL 0.813818443 51% 
PYRD 0.809476313 52% 
MIO 0.806192253 67% 
Q8C3V4 0.789784289 67% 
THIM 0.786348742 52% 
NDUB3 0.775349041 71% 
ADA10 0.752922619 54% 
NDUS3 0.748538153 85% 
STAT1 0.745990076 73% 
COR1C 0.735238075 59% 
CD47 0.731799738 53% 
NDUBB 0.726149384 50% 
FBXL8 0.725992309 54% 
ATP5L 0.718152104 51% 
F6QFD1 0.714715698 72% 
Q6PFB2 0.710464373 53% 
BAG5 0.678019468 65% 
IRGM1 0.673175571 70% 
INPP 0.671660412 53% 
PHB 0.670677363 71% 
PR40A 0.66950428 52% 
VIME 0.649926391 67% 
ATPA 0.641585681 54% 
Q99LB4 0.640830052 77% 
CN37 0.636946223 52% 
CAPG 0.624199188 60% 
SUMO1 0.622779553 52% 
ACON 0.621769615 53% 
Q31093 0.615682627 54% 
NDUV2 0.591516994 54% 
SUMO2 0.580639633 90% 
CX7A2 0.545158408 65% 
A2BIE1 0.530821116 57% 
DNPEP 0.521207988 53% 
GRAP2 0.513419007 57% 
ATPD 0.471001881 62% 
UH1BL 0.452031222 56% 
VDAC2 0.430430054 63% 
TNC18 0.422158575 59% 
D3Z6X7 -0.275591631 52% 
RS28 -0.312331185 67% 
A2A6J4 -0.333886045 50% 
GPSM1 -0.364854389 55% 
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RAC2 -0.364936305 63% 
NDKB -0.383120763 50% 
SERA -0.394649492 58% 
LASP1 -0.424552177 56% 
PYM1 -0.425801219 61% 
PROF1 -0.429147049 56% 
PEBP1 -0.429930692 71% 
PCBP1 -0.431425263 73% 
PSDE -0.433821968 60% 
RL31 -0.43945428 54% 
COR1A -0.44297623 73% 
OSTC -0.444386077 54% 
ARF1 -0.445214421 51% 
DNM1L -0.445980346 59% 
PSA3 -0.45258416 52% 
RSSA -0.452784663 71% 
A0A0A6YX26 -0.458164129 55% 
COPD -0.464171455 52% 
HSP7C -0.472771834 66% 
GIMA4 -0.48893402 68% 
GALE -0.491554274 61% 
RL31 -0.492490454 80% 
CBX5 -0.494227663 53% 
IMB1 -0.518859931 65% 
RS27 -0.519428679 58% 
Q9D8L3 -0.526091815 55% 
DDX5 -0.528915817 52% 
A0A1L1SQA8 -0.529029258 64% 
Q9CQF7 -0.530895119 56% 
ADH7 -0.531422602 53% 
NHRF1 -0.531432639 51% 
TM109 -0.539196937 62% 
CAC1H -0.540208906 74% 
SH3L1 -0.542024535 59% 
RINI -0.542998092 54% 
PABP1 -0.545263988 61% 
Q9Z1A1 -0.546320164 55% 
F208B -0.546330964 54% 
RLA0 -0.546458547 77% 
RL10A -0.547849831 64% 
RAB5A -0.548893103 50% 
SKP1 -0.548916364 59% 
GRHPR -0.549776309 74% 
TEX10 -0.551448659 55% 
RL27A -0.552095235 64% 
LRRF1 -0.556288561 56% 
A0A0A6YX26 -0.561687475 68% 
STIP1 -0.570366259 58% 
ACTG -0.571484421 70% 
EYA4 -0.572955285 63% 
RBX1 -0.574720781 51% 
THMS1 -0.577589186 52% 
RS3A -0.577625148 63% 
Q8BFQ1 -0.579630725 62% 
RL14 -0.584184048 64% 
SYTC -0.585195661 56% 
Q3U2G2 -0.585381568 72% 
PDIA3 -0.586011844 61% 
A0A1B0GSG5 -0.590234591 59% 
AIMP1 -0.59131329 63% 
HS90B -0.592805791 69% 
LRC47 -0.592955984 54% 
SRP14 -0.595183548 58% 
BCL10 -0.5957755 57% 
ARP3 -0.597094364 61% 
ARBK1 -0.59980922 59% 
CLIC1 -0.601378279 72% 
RLA2 -0.603592092 62% 
IST1 -0.60453529 56% 
TES -0.604866284 64% 
NUCL -0.605967316 69% 
LY9 -0.608765695 51% 
Q6ZWZ7 -0.61058827 60% 
COF1 -0.615651332 77% 
RL17 -0.616208346 70% 
IF1A -0.616701099 69% 
UB2L3 -0.616890281 63% 
Q91YS7 -0.616991017 51% 
PLSL -0.618190397 79% 
THADA -0.618289837 55% 
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IGSF8 -0.618601797 58% 
F7A8H6 -0.619015891 57% 
RL10A -0.619138213 64% 
CDK2 -0.620400764 76% 
RL17 -0.621325117 54% 
ELOB -0.623792322 53% 
G3X8R0 -0.626636319 58% 
CAPZB -0.627358205 75% 
HINT1 -0.629229862 71% 
HS90A -0.629554533 53% 
RUVB2 -0.634754435 56% 
IMDH2 -0.635863747 50% 
RL27A -0.639486587 69% 
CAB39 -0.640744027 62% 
WDR1 -0.642126633 51% 
RL35 -0.644770395 62% 
CLCB -0.64751973 56% 
PDC6I -0.6478963 67% 
BAIP2 -0.648283668 65% 
RUVB1 -0.649305483 76% 
GLRX1 -0.654636642 69% 
PFD2 -0.655957673 63% 
PTPRC -0.661490977 51% 
HNRPD -0.673618912 55% 
SAHH -0.674723684 72% 
CHM4B -0.683315722 61% 
RS25 -0.685878079 70% 
ITB2 -0.686032425 63% 
THIO -0.693809938 63% 
FAS -0.694085768 71% 
RL34 -0.69580973 72% 
SSRA -0.696024299 73% 
KBTBB -0.696572229 71% 
NAGK -0.69723095 55% 
ITAL -0.697550865 59% 
PTMA -0.700170227 56% 
SND1 -0.701821488 55% 
DHPR -0.703019135 71% 
SSU72 -0.70404831 70% 
RS20 -0.707340262 88% 
TPM4 -0.709718354 75% 
KAD2 -0.709909136 57% 
A0A1C7CYV0 -0.710269825 68% 
A0A1B0GTA4 -0.712791894 59% 
SNX6 -0.712898929 58% 
1433G -0.720347614 74% 
MIF -0.727398692 85% 
IF4G1 -0.732267177 77% 
ARC1B -0.732905424 84% 
GBLP -0.734039823 73% 
IF5 -0.740944197 71% 
SAP3 -0.751000506 67% 
G6PI -0.752007616 68% 
Q3TJ22 -0.752525277 56% 
RL4 -0.755736292 56% 
PKN1 -0.75736667 59% 
FKBP4 -0.759652567 53% 
NUCL -0.76058686 68% 
HA1D -0.76255854 78% 
FLOT1 -0.766614316 57% 
Q564E2 -0.772561477 71% 
ECHD1 -0.775885802 57% 
RLA1 -0.780759604 78% 
E9QAZ2 -0.78121233 50% 
ZER1 -0.782658854 86% 
SYG -0.782765896 67% 
6PGD -0.78782033 76% 
E9PW43 -0.789526888 62% 
SYSC -0.797984072 82% 
CYC -0.801320953 59% 
TCB1 -0.804109032 72% 
RAB2A -0.805456372 56% 
Q3UE92 -0.814886376 60% 
RS28 -0.817269249 53% 
PCNA -0.8230427 71% 
LANC1 -0.824427021 51% 
SERB -0.825239365 59% 
1433E -0.82756698 63% 
FKBP5 -0.8276963 63% 
UGPA -0.83133097 53% 
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GAPR1 -0.834927111 85% 
Z4YJT3 -0.835694064 54% 
LDHA -0.838035987 71% 
RL37A -0.839208766 59% 
PGP -0.840459284 56% 
A2APM5 -0.842048962 56% 
PPIB -0.842465586 51% 
TAGL2 -0.844516828 68% 
URP2 -0.844781463 79% 
M3K12 -0.845842731 63% 
SYYC -0.85137823 82% 
FXYD5 -0.856899011 52% 
ACTC -0.858333468 78% 
GBB2 -0.858984432 50% 
HPRT -0.859299361 53% 
SR140 -0.863493335 55% 
TCPQ -0.867847089 50% 
G3UYV7 -0.871456166 53% 
EXOC4 -0.872539541 53% 
PFKAM -0.872931711 59% 
PP1G -0.876932607 65% 
MVD1 -0.879433116 56% 
PAIRB -0.886823037 83% 
IF2G -0.889014446 75% 
NSDHL -0.891372017 52% 
ENOA -0.892003652 83% 
RS3 -0.906220052 54% 
PFKAL -0.90760953 78% 
CALX -0.909398202 53% 
PIN1 -0.909785692 54% 
SMYD5 -0.911940648 60% 
Q8C605 -0.921885286 77% 
EF1B -0.92200363 60% 
CD2 -0.925669425 83% 
GMFB -0.942273999 54% 
MARK4 -0.94392759 51% 
PGAM1 -0.945093052 61% 
GLU2B -0.953378083 56% 
HAUS1 -0.957128854 71% 
RLA2 -0.958415818 79% 
FKB1A -0.973418195 91% 
RSSA -0.97365636 61% 
GLU2B -0.977127985 52% 
SYAC -0.979640987 76% 
AEDO -0.996255392 53% 
PDIA3 -0.996726904 78% 
E9QA45 -0.998134649 78% 
S10AB -1.015138187 76% 
KCC4 -1.01561214 62% 
ALDOC -1.017960262 82% 
EP400 -1.022304838 55% 
RU1C -1.027610045 56% 
CORO7 -1.027847783 84% 
A0A0R4J0Z1 -1.035481646 67% 
FPPS -1.054271408 88% 
GALK1 -1.055480896 72% 
NDRG1 -1.05669919 96% 
KIF15 -1.059074097 74% 
PDIA4 -1.064455457 67% 
PSB6 -1.066383133 54% 
F7DEU6 -1.080333131 72% 
A0A087WR57 -1.085449633 67% 
HNRPM -1.08815051 64% 
GRP78 -1.101663232 80% 
LEG1 -1.107036128 71% 
GLGB -1.112720906 54% 
SERC -1.114576146 72% 
LRCH1 -1.117817428 65% 
ZFAN6 -1.120131526 52% 
PPCE -1.145191178 84% 
PGM1 -1.147275203 82% 
KPYM -1.149878496 82% 
HYOU1 -1.154015606 58% 
Q9Z1R9 -1.162291571 63% 
RS20 -1.167131196 71% 
TCOF -1.182444543 56% 
A0A0A0MQF6 -1.192087026 76% 
ERP44 -1.195326517 52% 
RL7A -1.196419172 73% 
RAD50 -1.196853691 54% 
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STRN4 -1.198396157 60% 
STS -1.211731742 53% 
KI13A -1.226718251 56% 
SDF2L -1.236848012 81% 
LDHA -1.244345608 51% 
PRDX5 -1.24742343 77% 
PFKAP -1.252421892 82% 
G3P -1.263757268 62% 
TXD12 -1.281562117 62% 
TT21B -1.288855879 69% 
RIPK3 -1.305234238 87% 
PDIA6 -1.32030456 81% 
TLK1 -1.321792855 69% 
PGK1 -1.329200545 77% 
CCS -1.342127574 73% 
NOP2 -1.343842007 64% 
A6ZI44 -1.35945162 83% 
E9PUA7 -1.359682024 63% 
SODC -1.370081696 62% 
G3X920 -1.37224243 54% 
CH10 -1.389566424 67% 
AATM -1.393070268 85% 
DHC24 -1.400358972 58% 
SPA3G -1.403353719 66% 
CD48 -1.403672351 58% 
ALKB5 -1.404268477 54% 
TXLNA -1.41680287 54% 
MDHM -1.418027854 77% 
ALDOA -1.421907306 86% 
VATF -1.430204492 51% 
DYST -1.436120684 55% 
EGLN1 -1.436960932 60% 
ENPL -1.448612715 78% 
ACLY -1.453117773 95% 
APOB -1.457038943 67% 
GAPR1 -1.463095218 53% 
A0A0B4J1E7 -1.47102055 72% 
SPA3F -1.476304176 88% 
MT2 -1.480386624 65% 
S10AD -1.48860292 58% 
ENPL -1.500172608 71% 
MOT4 -1.501815381 82% 
G3UZK1 -1.507009855 70% 
RS27A -1.520178599 54% 
A0A087WSR7 -1.523329165 55% 
BASI -1.525014471 72% 
HMGA1 -1.52669643 57% 
GRP78 -1.536138384 78% 
PACN2 -1.558201563 55% 
NUCB1 -1.56056157 61% 
CDK6 -1.563025965 76% 
CC137 -1.564090467 51% 
KPYM -1.564594298 72% 
KCRB -1.566737076 81% 
RHG22 -1.578408503 68% 
F6ZHD8 -1.588726336 67% 
IL2RA -1.597345775 69% 
SEC20 -1.617906244 64% 
COX7C -1.629280439 67% 
AB17C -1.630170069 91% 
G5E8E4 -1.656800895 77% 
PDIA1 -1.678518041 75% 
AB17C -1.681696409 81% 
GTR1 -1.683074089 77% 
HXK2 -1.685988105 76% 
K3W4Q8 -1.696090034 72% 
PDIA6 -1.71458761 85% 
SATB1 -1.719932023 81% 
PLCD1 -1.726917233 58% 
PRAF3 -1.738156175 72% 
SATB2 -1.781314873 85% 
H2AV -1.826444551 71% 
CASPC -1.854176448 52% 
CASP6 -1.867183968 56% 
SHOC2 -1.868214409 53% 
RBX1 -1.881239854 58% 
MT1 -1.886086913 74% 
E9Q718 -1.891678897 62% 
PDIA1 -1.915141515 75% 
D3YVZ9 -1.984119994 67% 
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ERO1A -2.00943444 79% 
MTMR2 -2.012766593 55% 
MIO -2.023700216 67% 
GNAS1 -2.040515325 58% 
NUSAP -2.044346518 52% 
XPOT -2.052410116 56% 
ERO1A -2.107882786 82% 
PLXA2 -2.108376518 66% 
FAAA -2.169981388 51% 
D3YXP6 -2.181594237 53% 
ANGP4 -2.217129801 61% 
F7AAP4 -2.220912727 68% 
ZN593 -2.251456661 60% 
TPIS -2.325213721 81% 
CEPT1 -2.350904385 60% 
H12 -2.355236798 53% 
GRIN3 -2.367632202 64% 
SCAM3 -2.37872277 51% 
KRT85 -2.38792522 67% 
NDRG2 -2.398247871 65% 
SPA3G -2.412715444 55% 
ANXA2 -2.430981498 84% 
SACS -2.446702163 52% 
SATB2 -2.470664621 55% 
NDST1 -2.533993197 56% 
HMCS1 -2.544196329 83% 
SDF2L -2.722122677 62% 
A0A140T8R5 -2.731680021 55% 
SC61G -2.731768844 79% 
PROS -2.767237838 60% 
GTR3 -2.779761605 61% 
CO4B -2.810133413 57% 
CS025 -2.847717997 67% 
PSMD8 -2.848313712 57% 
Q8CBB6 -2.870354834 84% 
DDX54 -2.887269522 64% 
H14 -2.905267883 78% 
H2A1K -2.953415335 69% 
H15 -2.967253795 75% 
E9Q9B0 -2.975441426 54% 
CSTN1 -3.01698865 56% 
A0A140T8R5 -3.044404268 53% 
NPAT -3.048176435 51% 
ASB6 -3.074628505 70% 
Q792Z1 -3.08881418 90% 
ITB3 -3.10493335 67% 
JUND -3.123777656 56% 
SMU1 -3.135291138 62% 
CHD9 -3.149055364 50% 
SSF1 -3.163700243 55% 
CS043 -3.165420134 60% 
NEK9 -3.167121902 60% 
GRAB -3.175869528 87% 
SBP1 -3.205841696 91% 
GRAB -3.221427098 77% 
KLC3 -3.290931043 54% 
GTR3 -3.374183916 88% 
CCD91 -3.389296045 52% 
CR1L -3.414490283 54% 
SF3B5 -3.460499755 52% 
ECM1 -3.511618282 77% 
CLP1L -3.550379187 57% 
UBE3C -3.571273246 65% 
H4 -3.587128446 81% 
Q8C253 -3.59067114 71% 
SMAG2 -3.608447137 52% 
F8WI14 -3.649687631 85% 
ATG3 -3.697168054 52% 
F8WI14 -3.712162613 92% 
FOLH1 -3.755971889 78% 
ECM1 -3.815754469 83% 
G3X920 -3.93081132 73% 
H13 -3.933487547 70% 
F6V6T4 -3.960380673 54% 
HPDL -4.781425397 57% 
B1ASU9 -6.288779263 67% 

 

 



327 
 

 

 


	Chapter 1.
	General introduction
	1.1. Cancer – A brief overview
	1.2. The immune system – A brief overview
	1.2.1. Innate immunity
	1.2.2. Adaptive immunity

	1.3. Cancer and immune system
	1.3.1. The phase of tumour elimination (Cancer immunosurveillance)
	1.3.2. The phase of equilibrium (cancer persistence)
	1.3.3. The phase of immune escape (cancer progression)

	1.4. Immune escape mechanisms in the tumour microenvironment
	1.4.1. Tumour cell-mediated mechanisms
	1.4.1.1. WNT/β-catenin pathway
	1.4.1.2. PTEN/PI3K pathway
	1.4.1.3. c-MYC signalling pathway
	1.4.1.4. Loss of antigenicity

	1.4.2. Immune cell-mediated mechanisms
	1.4.2.1. Tumour-associated macrophages
	1.4.2.2. Tumour-infiltrating dendritic cells
	1.4.2.3. Myeloid-derived suppressor cells (MDSCs)
	1.4.2.4. T regulatory cells (Tregs)
	1.4.2.5. T helper 17 (Th17) cells
	1.4.2.6. Mast cells
	1.4.2.7. B regulatory cells (Bregs)


	1.5. TGF-β cytokine
	1.5.1. The role of TGF-β in T cell biology
	1.5.1.1. TGF-β in the thymus
	1.5.1.2. TGF-β in peripheral homeostasis
	1.5.1.3. TGF-β in T cell differentiation
	1.5.1.4. TGF-β in T cell tolerance

	1.5.2. TGF-β in cancer

	1.6. TGF-β enriched tumours
	1.7. The clinical importance of Tregs in cancer
	1.8. Aims and objectives

	Chapter 2.
	Development of an in vitro murine model to study induced T regulatory cells
	2.1. Introduction
	2.1.1. Thymopoiesis
	2.1.2. Ontogeny of T cells
	2.1.3. Thymic selection of the T-cell repertoire
	2.1.4. The role of thymic medulla microenvironment in Thymic tolerance
	2.1.5. The development of intra-thymic natural T regulatory cells (nTregs)
	2.1.6. The development of peripherally-induced T regulatory cells
	2.1.7. Aim of this study

	2.2. Materials and Methods
	2.2.1. Mice and Cell lines
	2.2.2. Isolation of CD4+CD25+ and CD4+CD25- T cells and Cell sorting
	2.2.3. Flow Cytometry
	2.2.4. Generation of induced T regulatory cells in vitro
	2.2.5. Generation of induced T regulatory cells in vitro in the presence of tumour cells (contactless co-culture)
	2.2.6. Intracellular (nuclear) staining of Foxp3
	2.2.7. Establishment of functional assay
	2.2.8. The stability of Foxp3 expression of induced Tregs
	2.2.9. Foxp3-TSDR methylation assay

	2.3. Results
	2.3.1. Establishment of a murine model to generate induced T regulatory cells from naïve CD4+CD25-Foxp3- T cells
	2.3.2. Conversion of naïve CD4+CD25- T cells to CD4+CD25+Foxp3+ iTregs in vitro
	2.3.2.1. Generation of iTregs with and without CD3/CD28 TCR activation signals
	2.3.2.2. Generation of iTregs using contact and contactless co-culture models
	2.3.2.3. The presence of TGF-β1 is essential during CD3/28 TCR activation signals for optimal induction of iTregs
	2.3.2.4. Generation of iTregs using different concentrations of TGF-β1
	2.3.2.5. Optimising the duration of induction of iTregs in vitro
	2.3.2.6. Optimising the co-culture ratio of naïve CD4+CD25- T cells and 4T1 tumour cells for generating iTregs in vitro
	2.3.2.7. Establishment of functional assay
	2.3.2.8. The stability of Foxp3 expression of iTregs
	2.3.2.9. Foxp3-TSDR methylation status of the generated iTregs


	2.4. Discussion

	Chapter 3.
	Optimisation of sample preparation for proteomic analysis
	3.1. Introduction
	3.1.1. Profiling techniques used for biomarker identification
	3.1.1.1. Genomics
	3.1.1.2. Transcriptomics
	3.1.1.3. Proteomics
	3.1.1.4. Metabolomics

	3.1.2. Mass spectrometry-based proteomics
	3.1.2.1. MALDI-TOF MS Instruments
	3.1.2.2. ESI Tandem MS Instruments
	3.1.2.3. Proteomic approaches for sequencing and characterisation of proteins
	3.1.2.3.1. Bottom-up (BU) approach
	3.1.2.3.2. Top-down (TD) approach
	3.1.2.3.3. Middle-down (MD) approach

	3.1.2.4. Separation methods of peptides/proteins prior to MS analysis
	3.1.2.5. Shotgun and targeted proteomics
	3.1.2.5.1. Shotgun proteomics
	3.1.2.5.2. Targeted proteomics

	3.1.2.6. Methods of quantifying proteins
	3.1.2.6.1.  Label-based method
	3.1.2.6.1.1. Metabolic labelling
	3.1.2.6.1.2. Chemical labelling
	3.1.2.6.1.3. Enzymatic labelling

	3.1.2.6.2. Label-free quantitation methods
	3.1.2.6.2.1. Spectral counting
	3.1.2.6.2.2. Ion intensity
	3.1.2.6.2.3. Data-dependent acquisition
	3.1.2.6.2.4. Data-independent acquisition


	3.1.2.7. Subcellular fractionation

	3.1.3. Aims of this study

	3.2. Material and Methods
	3.2.1. Optimisation protocols for global proteomic profiling of mouse splenocytes using LC-MS-MS proteomics
	3.2.1.1. Determination of optimal cell number for global MS profiling
	3.2.1.2. Effect of RBC lysis on total protein yield and identification
	3.2.1.3. Optimisation of the volume of cell lysis buffer for improved protein recovery
	3.2.1.4. Effect of addition MS-compatible surfactant agent (protease max) on total protein yield and identification
	3.2.1.5. Optimisation of enzymatic digestion of total proteins
	3.2.1.6. Effect of urea concentration on tryptic digestion of total proteins
	3.2.1.7. Effect of peptide clean-up prior to MS analysis on total protein identification.
	3.2.1.8. Global shotgun proteomic profiling of purified murine T cells

	3.2.2. Optimisation protocols for subcellular proteomic profiling of mouse CD4+ T cells using LC-MS-MS proteomics
	3.2.2.1. Optimisation a strategy for sorting a pure population of induced Tregs (iTregs) and natural Tregs (nTregs) prior to MS profiling.
	3.2.2.2. Determination of the number of spleens required to obtain 2.5x106 of purely sorted CD4+CD25++Foxp3+ iTregs and CD4+CD25+Foxp3+ natural Tregs (nTregs) prior to subcellular fractionation.
	3.2.2.3. Optimisation subcellular fractionation of CD4+ T cells using Mem-PER Plus membrane protein extraction kit (pilot study).
	3.2.2.4. Protein quantitation Assay.
	3.2.2.5. Preparation of precipitated cytoplasmic and membrane protein samples for MS analysis.


	3.3. Results
	3.3.1. Optimisation protocols for global proteomic profiling of mouse splenocytes and T cells using LC-MS-MS proteomics
	3.3.1.1. Determination of optimal cell number for global MS profiling
	3.3.1.2. Effect of RBC lysis on total protein yield and identification
	3.3.1.3. Optimisation the volume of cell lysis buffer for improved protein recovery
	3.3.1.4. Effect of addition MS-compatible surfactant agent (protease max) on the protein identification
	3.3.1.5. Optimisation of enzymatic digestion of total proteins
	3.3.1.6. Effect of urea concentration on tryptic digestion of total proteins
	3.3.1.7. Effect of peptide purification prior to MS analysis on total protein yield and identification
	3.3.1.8. Global shotgun profiling of purified murine T cells

	3.3.2. Optimisation protocols for subcellular proteomic profiling of mouse CD4+ T cells using LC-MS-MS proteomics
	3.3.2.1. Optimisation a strategy for sorting a pure population of induced Tregs (iTregs) and natural Tregs (nTregs) prior to MS profiling.
	3.3.2.2. Determination of the number of spleens required to obtain 2.5x106 of purely sorted CD4+CD25++Foxp3+ iTregs and CD4+CD25+Foxp3+ natural Tregs (nTregs) prior to subcellular fractionation.
	3.3.2.3. Subcellular fractionation of CD4+ T cells using Mem-PER Plus membrane protein extraction kit (pilot study).
	3.3.2.4. Protein quantitation Assay.
	3.3.2.5. Acetone precipitation of proteins.


	3.4. Discussion

	Chapter 4.
	Identification, selection and verification of novel membrane markers of natural and induced T regulatory cells
	4.1. Introduction
	4.1.1. SWATH-MS based proteomics
	4.1.2. Biomarker validation – journey toward the clinic
	4.1.3. Proteomics biomarker pipeline: from discovery to the clinic
	4.1.4. Methods for biomarker verification
	4.1.4.1. Targeted proteomics
	4.1.4.2. Enzyme linked immunosorbent assays (ELISA)
	4.1.4.3. Flow cytometry
	4.1.4.4. Bioinformatics
	4.1.4.4.1. Artificial neural networks (ANN) as a tool of bioinformatics


	4.1.5. Aims of this study

	4.2. Materials and Methods
	4.2.1. Proteomic profiling of mouse CD4+ T cells using mass spectrometry
	4.2.2. Proteomic data generation, processing and identification of differentially expressed proteins
	4.2.2.1. Generation of a local spectral library for SWATH data analysis

	4.2.3. Selection of novel membrane and cytoplasmic biomarkers of natural and induced Tregs using artificial neural networks (ANN)
	4.2.4. Verification/validation of novel biomarkers of nTregs and iTregs using flow cytometry and in silico tools
	4.2.4.1. Conjugated antibodies
	4.2.4.2. Unconjugated antibodies
	4.2.4.3. Conjugation of unconjugated antibodies with Phycoerythrin (PE) fluorochrome
	4.2.4.4. Pathway analysis of differentially expressed and identified proteins
	4.2.4.5. Analysis of public datasets of markers of interest in cancer


	4.3. Results
	4.3.1. Subcellular proteomic profiling of mouse CD4+ T cells using using LC-MS-MS.
	4.3.1.1. Information Dependent Acquisition (IDA) proteomic analysis of sorted mouse CD4+ cells (qualitative analysis)
	4.3.1.2. Generation of a local spectral library (ion library) for SWATH MS profiling
	4.3.1.3. Improvement of the spectral library (ion library)
	4.3.1.4. SWATH-MS quantitative profiling
	4.3.1.5. SWATH-MS quantitative profiling
	4.3.1.6. OneOmics-based approach
	4.3.1.7. ANN-based approach
	4.3.1.8. Differentially expressed proteins in the membrane fraction of CD4+ T cells
	4.3.1.9. Differentially expressed proteins in the cytoplasmic fraction of CD4+ T cells
	4.3.1.10. Selection a panel of novels biomarkers of iTregs and nTregs for further verification and validation
	4.3.1.11. Verification and/or validation of the selected proteins using flow cytometry and in silico tools


	4.4. Discussion

	Chapter 5.
	Summary of Discussion
	5.1. Background and overall aim
	5.2. The generation of iTregs from naïve CD4+CD25- T cells in vitro
	5.2.1. The differentiation of iTregs requires a synergistic interaction of CD3/CD28 TCR and TGF-β1 signals in a time-dependent manner
	5.2.2. The presence of 4T1 tumour cells significantly increases the development of iTregs in the presence of TGF-β1
	5.2.3. The generated iTregs are highly immunosuppressive
	5.2.4. The Foxp3-TSDR of iTregs and stimulated nTregs is hypermethylated

	5.3. Optimisation methods for protein isolation and preparation for quantitative proteomic profiling
	5.4. Identification and verification of distinct biomarkers of nTregs and iTregs using LC-MS-MS/SWATH-MS proteomics

	References
	Web references
	Appendix

