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Abstract

Assisted living environments are incorporated with different

technological solutions to improve the quality of life and well-being.

In recent years, there has been a growing interest in the research

community on how to develop evolving solutions to aid assisted

living. Different techniques have been studied to address the need

for technological systems which are intelligent enough to evolve their

knowledge to solve tasks which have not been previously

encountered. One such approach is Transfer Learning (TL), for

example, between humans and robots.

Humans excel at dealing with everyday activities, learning and

adapting to different activities. This comprises different complex

techniques which enable the lifelong learning process from

observation of our environment. To obtain similar learning in

assistive agents, TL is needed. The aim of the research reported in

this thesis is to address the challenge associated with learning and

reuse of knowledge by assistive agents in an Ambient Assisted Living

(AAL) environment. In this thesis, a novel approach to transfer

learning of human activities through the combination of three

methods; TL, Fuzzy Systems (FS) and Human Activity Recognition

(HAR) is presented. Through the incorporation of FS into the

proposed approach, uncertainty that is evident in the dynamic

nature of human activities are embedded into the learning model.

This research is focused on applications in assistive robotics. This is

with a purpose of enabling assistive robots in AAL environments to

acquire knowledge of such activities as are performed by humans. To

achieve this, an extensive investigation into existing learning



methods applied in human activities is conducted. The investigation

encompasses current state-of-the-art of TL approaches employed in

skill transfer across different but contextually related activities.

To address the research questions identified in the thesis, the

contributions of the methodology employed are in three main

categories; 1) Firstly, a novel framework for human activity learning

from information observed. Experiments are conducted on selected

human activities to acquire enough information for building the

framework. From the acquired information, relevant features

extracted are used in a learning model to recognise different

activities. 2) Secondly, the sequence of occurrence(s) of tasks in an

activity needs to be considered in the learning process. Therefore, in

this research, a novel technique for adaptive learning of activity

sequences from acquired information is developed. 3) Finally, from

the sequence obtained, a novel technique for transfer of human

activity across heterogeneous feature space existing between a

human and an assistive robot is developed. These categories form

the basis of the TL framework modelled in this research.

The framework proposed is applied to TL of human activity from

data generated experimentally and benchmark datasets of various

classes of human activities. The results presented in this thesis show

that exploring the process of human activity learning is an

important aspect in the TL framework. The features extracted

sufficiently distinguish relevant patterns for each activity. Also, the

results demonstrate the ability of the methodology to learn and

predict human actions with a high degree of certainty. This

encourages the use of TL in assisted living environments and other

applications. This and many more applications of TL in technology

would be a potential driver of the next revolution in artificial

intelligence.
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Chapter 1

Introduction

An individual who learns how to ride a bicycle, when faced with the task of riding

a motorcycle is able to learn faster than another person who has no knowledge or

experience of riding a bicycle. Correspondingly, think of a person who has never

used chop-sticks to have a meal and is faced with a task of learning how to use it

for the first time. Just by observing a second person who has experience of using

chop-sticks, the initial person is able to learn and acquire the necessary skills

to subsequently use chop-sticks to have a meal. Imagine the process involved

from the initial stage of zero knowledge to the stage of using the chop-sticks

conveniently or the process of reusing knowledge gained from riding a bicycle to

riding a motorcycle. In all these cases, the ability to transfer knowledge through

underlying processes involved is crucial to the successful completion of the tasks.

Therefore, in the context of assistive robots, when a robot is used for assisting a

human, the robot is required to learn tasks from a human. A Transfer Learning

(TL) process is necessary to endow the robot with abilities to exploit information

generated during the execution of tasks. This thesis investigates solutions for

tasks TL and proposes computational frameworks appropriate for an assistive

robot to learn tasks from observation of a human. All the work presented in this

thesis is in the context of human Activities of Daily Living (ADL).

This chapter presents an introduction to this thesis. In Section 1.1, the

background and motivation for the research conducted is presented. Section 1.2

moves on to discuss the overview of the research and describes the schematic of

the work proposed. The research questions identified are outlined in Section 1.3.
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Section 1.4 outlines the aim and objectives of this research and the major

contributions are highlighted in Section 1.5. The structure of the thesis with a

summary of the contents of each chapter is given in Section 1.6.

1.1 Background and Motivation

Understanding the process of learning in humans has been an area of interest

for decades. This has attracted interest from different areas of study which use

different approaches such as; Computational Intelligence (CI), biology,

psychology, amongst many other approaches. One key aspect of the learning

process that has been challenging to researchers in the artificial intelligence

community is designing systems which leverage knowledge gained from solving a

task into improved performance in solving similar or dissimilar problems. This

is where the concept of TL focuses on. The importance of TL cannot be over

emphasised; time spent learning new tasks is reduced, more situations can be

handled effectively and the information required of human experts is also

reduced.

With an increase in ageing population, performing ADLs by the ageing

population becomes challenging and this increases the cost of having to support

with caregivers and other measures. According to a survey conducted by the

Department of Health and Human Services [122], 423 respondents reported on

the use of assistive technology to provide care for their ageing relatives. Figure

1.1 shows the statistics of the respondents who used assistive technology in

different ADLs. This indicated a greater percentage of respondents incorporated

a form of assistive technology as care support for their ageing relatives.

Furthermore, these statistics are forecast to rise in the coming years. This

demand for assistive technology motivates researches related to Ambient

Assisted Living (AAL) to develop solutions to promote quality of life and

independent living. One such solution is the use of assistive robots to support

elderly people while carrying out ADLs. These robots are trained to perform

ADL. However, there are constraints that exist in performing pre-programmed

functions and the robots are not capable of utilising learned experiences in

solving new unseen problems. In the case of learning human activities,
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Figure 1.1: Assistive devices used in ADL by 423 respondents according to the
Department of Health and Human Services [122].

classifying them correctly from some given set of data is key to understanding

how these activities are learnt and how one experience relates to another. The

use of Machine Learning (ML) approaches to tackle these constraints is limited

due to the characteristics of the training and test data having to come from the

same feature space and data distribution. This limits its ability in situations

where there are differences in data distribution between the training and test

data, which can result in the predictive learner being degraded [106]. Obtaining

training data to match the feature space and predicted data distribution of test

data is often times expensive and difficult [130]. This prompts for creating

high-performance learners for target task(s) from related source task(s) i.e.

assistive robots that are able to autonomously learn skill options for target task

from related prior knowledge.

The initial process of learning a task(s) is required prior to the transfer of the

acquired knowledge to the target. Different approaches have been used to address

learning ADL: the proposed approaches include programming by demonstration

[87], an approach in which the robot imitates a task demonstrated either by a

human operator observed with a motion capture system or by manually moving

the robot itself. Statistical approaches like Hidden Markov Models (HMM) ,
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Gaussian Mixture Models (GMM) and Gaussian Mixture Regression (GMR) [18]

are used to recognise and reproduce different thought tasks. Dynamic Movement

Primitives (DMP) is another approach used [109]. The authors in [109] proposed

a Simultaneous On-line Discovery and Improvement of Robotic Skills (SODIRS)

algorithm that is able to autonomously learn skill options for task variations.

The CI techniques have been applied to TL, amongst which deep learning

approach has been widely researched [80]. This is one of the most popular CI

techniques that have been significantly applied to the domain of TL [70, 79, 117,

118]. However, it requires a large amount of training data and it also works

as a black box (learning only relationship between input and output without

providing knowledge of the relationship which is key in making decisions) due to

its computational framework.

Fuzzy TL (FTL) on the other hand has recently gained interest in the

research community and different researchers have used it in various

applications. Authors in [149, 150] proposed methods for FTL by incorporating

GMM for active learning while trying to address the problem of domain

adaptation occurring across heterogeneous spaces. In [104, 105], the author’s

proposed a framework of FTL to function as a model for prediction in

intelligent environments. These works demonstrate the advantages of

incorporating Fuzzy Logic (FL) framework over other CI techniques. The FL

framework is found to reduce computational complexities, addresses

uncertainties associated with data and is easily adapted. Therefore, considering

the diverse nature of human activities and how an activity executed by one

person can differ in process from another person executing the same activity. It

is expedient to take into consideration the associated imprecisions and

uncertainties. Thus the FL framework poses to be a tool which will greatly

improve on the constraints associated with computational complexities and also

providing a generalisable platform for TL across different activities.

From recent surveys [80, 130], the key challenge in TL has been defining the

evaluation metrics related to what to transfer, how to transfer and when to

transfer. This is mainly because there are various possible measurement options

and/or algorithms. The algorithms used so far focus on three main steps

namely; First, given a target task, select an appropriate source task or sets of
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tasks from which to transfer. Second, learn the relationship between the target

task and source task(s). Third, transfer knowledge effectively from source

task(s) to target task. The work in [126] focus on learning inter-task relations

which are modelled using a three-way Restricted Boltzmann Machine (RBM).

This model captures the similarity between samples from source task and target

task. The method, however, is computationally complex since it requires large

amount of training data and it also does not capture the uncertainties

associated in the task constraint. In [82], a TL technique is employed to speed

up learning robot models using Local Procrustes Analysis but this method

requires correspondence between data sets to be provided and requires large

amount of training data.

This research leverages the benefits of TL to promote human-assistive robot

transfer of ADL knowledge to aide the development of better solutions for

assistive technology. It is with much expectation that this will reduce the

learning curve associated with equipping assistive robots with the knowledge

required in executing tasks.

1.2 Overview of the Research

The prime motivation of the research presented in this thesis can be

summarised by a simple example as demonstrated in Figure 1.2 when an

assistive robot observes and learns a task from a human.

Assistive robots deployed in living environments for applications such as

elderly care and support for independent living should learn tasks by observing

human carers performing routine duties. To achieve this goal, the assistive

robots must be equipped with abilities to learn activities. This requires

extracting descriptive information of the activities and classify them while they

are performed by a human.

Learning human activities by an assistive robot can be classified under two

methods [130]: 1) Independent Learning which is concerned with learning an

activity from scratch and 2) learning by making use of transferred knowledge

and/or information which is referred to as Transfer Learning. Independent

learning is a method whereby an assistive robot learns to perform an activity
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Figure 1.2: An illustration transfer learning of a human activity from a human
to an assistive robot learning.

independently without any prior knowledge of the activity. For example, an

assistive robot learning an activity as illustrated in Figure 1.2 without prior

information of how a person would perform the activity - that is, the person

performing the task would not be present. This requires more time in learning

and more cost incurred which are limitations of the method. On the other hand,

TL methodology allows information acquired from prior experience to assist in

learning an activity [80].

In the context of this research, an assistive robot should be capable of learning

to perform an activity from knowledge acquired as it observes a person perform

similar activity. This enables faster learning of activities and allows collaboration

and adaptation of robots within living environments. Regardless of the method

applied to learning an activity, the availability of descriptive information affects

the understanding of an activity. Variations in information and understanding

about an activity performed by a person and a robot performing similar activity

can be defined as contained within a knowledge gap and TL helps to bridge this

gap.

Human activities are diverse in nature with imprecision, vagueness,

ambiguity and uncertainty in information about the way activities are

performed. Thus, variabilities are encountered when an assistive robot tries to
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learn activities. This can affect the correct classification of human activities

which is relevant in improving the amount of knowledge that can be used by a

robot in learning. To capture imprecisions and uncertainties, fuzzy logic has

proven to be a suitable method which allows incorporation of imprecisions and

uncertainty expressiveness within information [80, 105] and thus can be applied

to classify human activities. Combining this method with TL would improve

assistive robots learning human activities by observing while activities are

performed. Other learning techniques applied to learning or classifying human

activities are limited in their ability to handle vagueness, imprecision and

uncertainties in activities when considering acquiring knowledge that can be

transferred across different learners.

Prior to assistive robots performing a human activity through TL, the

information extracted by such robots is a vital component of the system.

Observing activities as they are performed through the use of visual or

non-visual sensors makes it a lot easier to obtain information of human

activities in an environment [38, 112, 113]. It would be extremely hard to

understand and interpret activities using a normal visual sensor such as RGB

cameras which provide 2D visual data [48]. These sensors provide limited

information for an activity performed in a real world environment. However,

recent development in RGB-Depth (RGB-D) sensors show that they are better

devices for observing human activities [48]. These sensors provide a means of

better observing the world to detect human poses used to build activity

recognition systems [38, 113]. They also provide a platform for exploiting depth

maps, body shape and skeleton joint detection of humans in 3D space which are

used in developing sophisticated recognition algorithms.

This research proposes a novel framework for TL in Human Activity

Recognition (HAR) through the use of depth information from an RGB-D

sensor. This is with the motivation of incorporating the framework in an

assistive robot. The schematic representation of the proposed framework is

given in Figure 1.3. The framework comprises five major steps: 1) observing

human activity with an RGB-D sensor, 2) extract sequence of joint motions, 3)

learning activities by recognition, 4) activity representation and 5) the transfer

of modelled activity to an assistive robot.
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Figure 1.3: Schematic representation of the proposed transfer learning framework
for human activities.

The first and second steps have to do with how human activity information is

obtained. This entails using the RGB-D sensor to extract point cloud information

of different joints of a human body. This gives information of the position of joints

throughout an activity. The third step involves activity recognition and learning.

This step is key since in TL an initial knowledge is required for transfer to be

achieved in a target. Therefore, the proposed framework is capable of recognising

activities and learns to predict the constituent tasks. Furthermore, the fourth

and fifth steps are concerned with activity representation and knowledge transfer

to a robot feature space.

1.3 Research Questions

Following the research overview, the main questions identified as the basis for

this thesis are as follows:

• How to learn human activities using a mode of information which is

computationally efficient? Most existing methods for recognising human

activities using visual information usually rely on the combination of
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multiple information modality (i.e. RGB, depth, infrared, etc.) to achieve

impressive performances. This often leads to increased computational

resources.

• Can activity sequences be modelled from unlabelled data? The differing

nature of human activities create challenges when trying to define the true

sequence of occurrence of constituent actions. Where unlabelled sequences

exist, the challenge is even greater, and thus a reliable method to obtain

true sequences required for the transfer knowledge base is needed.

• How can transferred human activity be adapted in a target domain? The

bottleneck many TL methods encounter is the adaptation of transferred

knowledge in the target domain such that it does not have a negative effect

on the primary goal of performance improvement.

To address these questions, the following section outlines the aim and

objectives of this research.

1.4 Research Aim and Objectives

The aim of this research is to investigate TL of human activities in an AAL

environment. This involves the combination of three concepts; Transfer Learning,

Fuzzy Logic and Human Activity Recognition to address the problem of learning

human activities and transferring the knowledge acquired to be used in performing

activities that have little or no direct contextual knowledge. A suitable method

/ algorithm for learning of tasks that have no prior direct contextual knowledge

will be developed, modelled through the data collected from visual observations

of humans executing tasks and a physical robot platform. This creates a refined

understanding of human ability to retain and use previously acquired knowledge

to solve tasks with no direct prior knowledge. To achieve this aim, the following

research objectives have been identified:

1. Investigate existing learning methods and models of human activities and

propose a model for recognising and learning activities from visual sensor

information.
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2. Propose a technique for modelling human activity sequences for better

understanding of constituents of human activities required in knowledge

transfer.

3. Investigate the current TL approaches employed in skill transfer across

different but contextually related activities.

4. Incorporate a rule-based approach with the proposed TL model to capture

uncertainties which are evident in performing tasks and also to simplify

the TL process. This will reduce the complexities associated with most

commonly used CI approaches which rely on large amount of numerical

data.

5. Propose a model for transfer of learned human activities to an assistive

agent which can be incorporated across different platforms.

6. Implement the improved learning model using an assistive robot simulator

environment.

1.5 Major Contributions of the Thesis

The major contributions of the work presented in this thesis are summarised as

follows:

• An extensive literature review of the state-of-the-art on TL which

encompasses algorithms proposed and validated results from experiments.

This also features its applications in human activities, specifically, in

human-robot interactions.

• A philosophical investigation and discussion into TL and its applications in

ambient assisted living applications.

• A novel framework for human activity learning using an ensemble method

from a combination of handcrafted and statistical features.

• A novel adaptive sequence learning methodology for human activities from

3D skeleton joint coordinates information.
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• A methodology for predictive modelling of human actions from limited

datasets.

• A novel proposal for TL of human actions to assistive robots through

heterogeneous feature space learning.

• Application of a TL framework on human activity datasets to achieve

learning of ADLs in assistive robots.

The outlined contributions of the thesis are addressed in different chapters of this

thesis. A summary of these chapters is presented in the following section.

1.6 Thesis Outline

This thesis consists of seven chapters. Figure 1.4 shows the structure of the thesis

with an indication of how the chapters are linked. This gives readers an overview

of the organisation of the thesis and a direction on how the chapters are grouped.

The summary of contents of this thesis are presented as follows:

Chapter 2 presents a comprehensive literature review of TL, its definition

and applications in pervasive computing. This covers approaches employed in

TL as related to human activities. The chapter also discusses literature in HAR

in the context of assisted living, comprising information obtained from visual

information. Details including, approaches, sensor information, preprocessing of

information, activity segmentation, feature computation and classification from

related literature are reviewed. Specifically, the technical and practical

applications of HAR in assisted living environments incorporating assistive

agents such as robots are discussed.

Chapter 3 presents a description of TL and how it is applied across

domains or across tasks. The chapter discusses TL challenges related to what to

transfer, how to transfer and when to transfer, and the limitations in realisation

of this concept in day to day applications. To address the challenges, this

chapter presents an overview of the concept of TL and how it can be applied in

human-robot interaction for assistive robots requiring to learn human tasks in
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Figure 1.4: Thesis structure showing the organisation of the chapters and their
respective dependencies.

AAL environments. The methodology proposed for TL in this thesis is also

introduced in this chapter.

Chapter 4 presents a novel Human Activity Learning (HAL) system

proposed for recognition of activities that can be incorporated in an assistive

robotics as the initial stage in the process of TL. An RGB-D sensor is used to

acquire information of human activities and a set of statistical, spatial and

temporal features for encoding key aspects of human activities are extracted

from the acquired information of human activities. The features are then fed as

input to a classifier for the learning and recognition of activities. The

experimental results show the overall performance achieved by the proposed

system is comparable to the state-of-the-art and has the potential to benefit

applications in assistive robots for reducing the time spent in learning activities.
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Chapter 5 presents a novel Adaptive Segmentation and Sequence Learning

method for the prediction of activities. Following from the recognition of

activities, to understand the composition of actions in an activity, it is

important to understand the actions that constitute an activity. This is key in

predicting future actions for robots learning an activity from observed

movements. This chapter aims at segmenting unlabelled observations of

recognised human activities and sequence learning of obtained segments to

provide assistive robots with intelligence for solving human activities. Results of

the process is evaluated experimentally on human activity dataset and

compared with existing models for sequence learning model based on

probabilistic inferences and regression.

Chapter 6 is directed towards addressing the challenge associated with

differing feature spaces when considering TL from human domain onto an

assistive robot domain. The chapter presents a novel method of effective TL

across heterogeneous feature spaces for the purpose of TL for an assistive robot.

A fuzzy latent space exploration is used to obtain mappings of feature spaces.

Then, representations of both feature spaces are obtained by applying

Labanotation for describing body joints movement. Afterwards, the knowledge

transfer is established. This approach is used in simplifying the learning of

primitive actions from predicted sequences of activities for assistive robots

seeking to execute human actions.

Chapter 7 presents a summary of the findings of this research. The major

findings obtained in this thesis are discussed with reflection to the research

questions identified in Chapter 1. Following the summary of the findings, the

chapter also presents recommendations for applications of the work in this

thesis and possible areas of future work.
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Chapter 2

Literature Review

2.1 Introduction

Transfer learning (TL) and Human Activity Recognition (HAR) are two broad

areas widely studied in Computational Intelligence (CI) applications with so much

effort put into developing more suited solutions to advance current performance

of existing systems. In this regard, many works have been published in these

areas. Therefore, it is important to review the current state-of-the-art related to

both areas to justify the intent of the work in this thesis. This chapter is focused

on the review of literature related to the work presented in this thesis.

This chapter is structured as follows: Section 2.2 gives an overview of HAR

based on RGB-D information of human activity as applied in this work. The

features extracted and CI methods so far applied in HAR are discussed. To give

a general understanding of TL as related to HAR, Section 2.3 reviews the current

research on TL using CI techniques including its applications in human activities.

In Section 2.4, assistive technologies related to human activities specifically in

AAL environments are discussed. This reviews different technological solutions

used, with a primary focus on assistive robots. Section 2.5 follows from the review

of previous research to identify the research gaps and highlights how this work

differs from previous research works. Section 2.6 summarises the chapter.
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2.2 Human Activity Recognition (HAR) with

RGB-D Sensors

Learning and classification of human activities using some CI techniques is often

referred to as HAR [55, 58]. Over the last few decades, the study of HAR has

been carried out to detect, recognise and/or classify activities of humans. The

advantages of HAR has seen many applications in several domains such as

security, health care, manufacturing, gaming, amongst many others. Owing to

this, several approaches have been investigated. An integral component of HAR

is how information of activities are obtained or observed. Based on the

published literature, HAR approaches are divided in two main categories: visual

sensor based and non-visual sensor based HAR. Observing activities through

the use of visual [38, 48, 112, 113] or non-visual sensors [19] makes it a lot easier

to obtain information of human activities in an environment. Non-visual sensor

based approaches utilise information such as environmental conditions - like

temperature, motion detection or ambient light, location and information from

wearable devices. A comprehensive review of HAR using non-visual sensors can

be found in [71] and more recently in [128]. Although these information have

some advantages, they are sometimes invasive and burdensome. On the other

hand, HAR using visual sensory information mainly rely on the interpretation

of images to predict activities [46, 48, 88].

One of the main objectives of HAR is to extract descriptive information (i.e.

features) from human activities to be able to distinctly characterise and classify

one activity from another. Visual sensor-based approaches are mainly based on

2D or 3D information obtained from the sensor devices. However, it would be

extremely difficult to understand and interpret activities using regular visual

sensors such as RGB cameras which provide 2D visual information [48]. These

sensors provide limited information for an activity performed in a real world

environment. Recently, most researches in HAR based on visual sensors have

employed RGB-D sensors which prove to be better devices for observing human

activities [38, 48, 83, 89]. These RGB-D sensors provide a means of better

observing the world to detect human pose used to build HAR systems [113].

They provide a platform for exploiting depth maps, body shape and detecting
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Figure 2.1: Classification of approaches widely used in human activity recognition
based on the source of information.

skeletal joints of humans in 3D space which are used in developing sophisticated

recognition algorithms. Furthermore, among the many approaches to human

representation based on 3D information [1, 10, 16, 48], the majority of the

existing methods can be generally grouped into local feature-based

representation [140] and skeleton-based representations [49, 111, 113]. Figure

2.1 summarises the categorisation of HAR based on the grouping of activity

information employed. Representations based on local features identify relevant

points in space-time dimensions, interpret patches at the points as features and

encode them into representations which can locate notable regions. However,

local feature-based representation methods do not take into consideration the

spatial relationships between features. As a result, they are unable to represent

multiple humans in the same scene. The local features-based methods can also

be computationally expensive due to the complexity involved in the extraction

process.

However, skeleton-based representations have shown promising performance in

real-world applications including gaming and assisted living [48]. These methods

consider the spatial relationships between features which enable the modelling of

human joints relationship for encoding the whole body structure. Also, skeleton-

based representations are robust to variations in illumination, scale, view and
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motion speed. Due to these advantages, such representations are used in real-

time applications and many researchers [1, 38] have introduced techniques to

facilitate different applications.

2.2.1 Background and Challenges of Vision-Based HAR

Over the past decades, research on HAR has seen much improvement with

technological advances in the field leading to the availability of low cost, small

and low power consumption sensors. Sensory devices used to obtain human

activity information have become less intrusive as they are able to be

incorporated in an AAL environment without being noticed. The sensor

networks are not left out of the advancements as well. Wireless technologies

[127] used in sensor networks have enabled unobtrusive recognition of activities

with information accessible from any location. The benefits of these

advancements cannot be over-emphasised; remote monitoring, individual

profiling, intrusion detection, abnormality detection and so much more.

In the field of computer vision, HAR with vision-based methods is one of the

most studied areas. The goal is usually to automatically detect and analyse

human activities from a sequence of images captured using camera sensors or

other vision sensing modalities. These activities take on different forms which

range from elementary actions to complex activities depending on the

environment. Aggarwal and Xia [1] categorised such activities into four groups:

atomic actions, activities containing sequences of distinct actions, activities

including person-object and person-person interactions, and lastly, group

activities. The most difficult of all the categories mentioned is group activities.

Research in this area has encountered several limitations which could be as a

result of the difficulty in collecting the data required or the limitation of

existing vision-based sensors.

Here, the challenges of vision-based HAR systems are discussed. From the

review of past researches on vision-based HAR, four main challenges are

identified. First, the low-level challenges encountered from occlusions, shadows,

varying illuminations and cluttered backgrounds [21, 88]. This type of

challenges are encountered in most cases when using visual sensors. They create
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difficulties in motion segmentation which alter the form in which actions are

observed. Zhou and Zhang [143] proposed a technique used in filtering

background clutter, occlusions and unstable camera motions for recognising

human activities. The technique used a combination of multiple-instance

formulation and Markov model in a framework to select elementary actions for

encoding movements of local parts. This technique allowed for long-range

temporal information of actions in video sequences to be encoded. Chen et al.

[22] also attempted to address the challenge of identifying human actions using

Conditional Random Fields (CRFs) to differentiate between unknown

movements and intentional actions which may occur in a scene through the

ordering of video regions and identifying the actors for actions. Also, 3D sensor

information [1] has been introduced as a solution to mitigate the low-level

difficulties due to their ability to provide structure information from a scene.

The second challenge has to do with changes in view of an activity [1, 10, 11,

133]. Information of the same human action can generate different representations

depending on the perspective such information is obtained. This poses a challenge

when using stand-alone cameras in acquiring activity information. To tackle

this challenge with a single camera is an extremely challenging task. However,

solutions proposed to address this challenge have adopted multiple synchronised

cameras. Although, implementing such cameras in applications can be a daunting

task. One of such solutions is the introduction of 3D Motion Capture systems

(MoCap) [1] which have enabled recognition algorithms to alleviate this challenge.

The use of depth information from such MoCap systems to obtain skeletal joint

information of a human can be used in constructing view-invariant information

for algorithms used in HAR [56].

The third challenge identified with vision-based HAR is scale variance [1, 133]

which occurs when a subject or different subjects appear to be different sizes

when viewed from differing distances to the camera. A solution to this when

using 2D information is by extracting features at multiple scales. Also, using 3D

information solves this challenge since the depth information of a subject is easily

known and can be adjusted through the activity sequence.

Finally, there is the challenge of inter-class similarity and intra-class variability

of actions [97]. This occurs as a result of the uncertainties in the way actions
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Figure 2.2: Typical steps involved in Human Activity Recognition.

are performed by humans. A single action can be carried out by individuals in

different directions with varying characteristics of body movements and similarly,

two actions may only be differentiated by subtle spatio-temporal information [1].

This poses a challenge for real-world applications of vision-based HAR and to

date, it remains a difficult problem for recognition algorithms using the different

modalities of visual data.

To achieve recognition of human activities, three main steps are involved.

Figure 2.2 identifies these steps which correspond to data input, processing and

classification. Data input step is the acquisition of human activity data with the

means of a sensory device and the data is then processed, which entails stages of

feature extraction, feature reduction, standardisation, etc. The processing step

prepares the data for fitting in the model which will be used in identifying

activities. The following sections discuss different methods proposed by

researchers that have been applied in the HAR steps presented in Figure 2.2.

In Table 2.1, a general taxonomy of vision-based HAR based on the

categorisation in Figure 2.1 is provided. The main features of both the 2D and

3D vision-based approaches are highlighted, example of sensors used, main

advantages and disadvantages are given.
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Table 2.1: Taxonomy of vision-based HAR based on the grouping of information
used.

Grouping Summary Benefits Short-comings Example
sensors

2D
information

Infer human
activities from
2D points
extracted from
images.

Processing does
not require as
much
computational
resources as 3D
information

- Information
obtained is
limited.

- Not robust
to variations
in scale of
subjects.

RGB
cameras.
E.g.
Webcams.

3D
information

Identifies
human
activities from
point clouds of
changes in
human
movement.

- Overcomes the
scale variance
problem.

- Provides more
information of
human activities.

- Are robust to
view changes in
activities.

- Usually
require more
computational
resources.

- MoCap
systems
require
installation of
multiple
sensors.

Motion
Capture
systems,
RGB-D
sensors.
E.g.
Microsoft
Kinect [86].

2.2.2 Data Collection of Human Activities in 3D Skeletal

Data Space

Data obtained from RGB-D sensors gives information relevant for a robot to

understand an activity. By exploring human pose detection using RGB-D

sensors, activity recognition has advanced recently [38, 112]. Using RGB-D

sensors extracts 3D skeleton data from depth images and body silhouette for

feature generation. In [38], the RGB-D sensor is used to generate a human 3D

skeleton model with matching of body parts linked by its joints. They extract

positions of individual joints from the skeleton in a 3D form x, y, z. Jalal and

Kamal [58] use similar RGB-D sensor to obtain depth silhouettes of human

activities from which body points information are extracted for the activity

recognition system. Zhou et al. [142] also used an RGB-D sensor to capture

human skeleton information as part of a system for controlling a mobile robot
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using human gestures which is also a similar application proposed by [20].

Another approach is shown in the work in [42] where the RGB-D sensor is used

to obtain orientation-based human representation of each joint to the human

centroid in 3D space. These researchers [20, 42, 142] use different devices for the

acquisition of data. In the following section, methods of acquisition of 3D

human skeletal data are discussed.

2.2.2.1 3D Human Skeletal Data Direct Acquisition from Sensors

Direct methods of acquisition of 3D skeletal data of human activities is carried

out using different devices commercially available which include, MoCap

systems [1], structured-light cameras and time-of-flight sensors. These devices

detect the kinematics of human body models in order to identify the relevant

joints in the body. Figure 2.3 shows an example representation of tracked

skeletal joints obtained from a Microsoft Kinect v2 RGB-D sensor [86].

MoCap systems obtain 3D skeletal information by tracking markers placed

on a human in its scene [48]. These systems are based on either visual cameras

which utilise multiple cameras at different positions around a subject to track

reflective markers that are attached to a subject’s body or 3-axis inertial sensors

that estimates body part rotations with reference to a fixed point. It should

be noted that the inertial sensor-based MoCap systems can obtain the skeletal

data without any visual cameras involved. The existing MoCap systems have the

software to enable collection of the 3D skeletal data with a high degree of accuracy.

However, most of the systems can only be used in controlled environments and

are typically expensive.

Structured-light cameras which are types of camera devices that utilise

infrared light to capture depth information is also used in the direct acquisition

of 3D skeleton data [86]. Light is projected through the infrared sensor in a

known pattern and the distortion observed in the pattern when it meets a

subject allows the device to decide the depth. The RGB image of the scene

observed can also be acquired. Most of the RGB-D sensors are inexpensive

which makes them available for use in most applications. This source has been

popularly used in research for HAR [38, 41, 89, 94].
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Figure 2.3: Example of skeletal body model obtained from a Microsoft Kinect
device. This shows the 20 tracked joints.

Time-of-flight sensors [48] acquire 3D information by emitting light and

measuring the time it takes for the light to be returned. Some examples of such

sensing technologies are radar and Light Detection and Ranging (LiDAR) [13].

These sensors acquire very accurate 3D information at high frame rates.

Comparing all three methods of direct acquisition of 3D skeletal information,

the RGB-D sensors are the most affordable and can be installed in an

environment. Also, they provide additional RGB data which can be accessed

and processed with the depth information.

2.2.2.2 3D Skeleton Construction from Pose Estimation

3D skeletal information can also be acquired through human pose estimation and

construction of skeleton [58, 88, 113, 146]. A number of approaches have been

proposed to estimate human joints and pose recognition from the knowledge
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of available data. Such approaches take advantage of depth images or extra

information accessible from the visual sensing device. A majority of the methods

are based on the identification of body parts which are fitted to models which

extract specific locations of the identified parts. This section provides a review

of such methods of human skeleton construction based on visual data.

The first approach considered is the construction of 3D human activity

information from depth images. Human skeleton can be constructed from a

single observed depth image or from acquired sequences of depth images. This

approach is widely used in acquisition of activity information due to the

additional geometric information depth images provide. Jalal and Kamal [58]

introduced a vision-based life logging system using depth images to track

human body points and location. Their work identifies 15 joints from a depth

silhouette and an additional 8 centre points of limbs joints are constructed using

Gaussian contours mechanism. The work was further extended in [59] using

temporal depth motion identification to obtain depth human silhouettes from

other objects within the scene. Recently, in [60] another model for human body

parts estimation and detection is proposed using depth imagery. A colour space

transformation based on heuristic thresholding segmentation technique [5] is

used to obtain salient regions and then skin tone detection through foreground

segmentation of silhouettes. Afterwards, the body parts are estimated using a

proposed body parts model through pixel-wise searching and computation of

the distance from the top to the bottom of the silhouette. A novel approach for

pose estimation from a single depth image called Model-based Recursive

Matching (MRM) was introduced in [132]. This approach combined a depth

image and 3D point cloud of the input to create a human skeleton model with

customised parameters based on T-pose to fit different body types. The results

reported from the work in [132] show the proposed method is able to give

accurate estimations in cases where there are occlusions in human pose. The

method used a MoCap for depth image acquisition which is able to handle

occlusions better than a single RGB-D sensor device. The downside to the use

of depth images for pose estimation is that most of the systems are

computationally complex to setup.

Another approach widely employed in human skeleton construction is from
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traditional RGB images. Typically, most of the methods using RGB images

extract visual features using Deep Learning (DL) architectures and other

methods to match poses of segmented silhouettes for identifying body parts.

Deep Neural Networks (DNN) have demonstrated their ability in construction

of human skeleton from RGB images [37, 56, 121]. Toshev and Szegedy [121]

applied DNNs in an approach to estimate human poses called ‘DeepPose’. They

formulate the pose estimation as a regression problem by proposing a cascade of

DNN regressors for high precision estimates. Fan et al. [37] adopt a Dual-Source

Deep Convolutional Neural Networks (DS-CNN) approach for both joint

detection and localisation from a single RGB image. The approach takes image

patches as input and learns the appearance of each body part by considering

the integrated views in the full body.

Apart from DNNs, other methods have also been used for human body parts

estimation from RGB images. For example, Li et al. [74] in a recent work

proposed an algorithm for estimating sequences of upper-body parts in

unconstrained videos. They use a two-step approach in which a spatial model is

constructed to capture relationships between adjacent parts and then a method

to select the best out of different pose configurations. Also, a general

parametrisation of body pose method to estimate 3D human poses from 2D

joint locations is seen in [2]. The method uses priors that are learned from joint

limits in poses. The use of multiple images acquired using multiple cameras in

different views can be used in observing human and then image processing

techniques employed in estimating human depth maps from the combined

images. After obtaining depth maps human skeleton models can be composed

using some of the methods already described. Although, there are solutions

using the construction of depth maps from multiple images to construct human

skeletons, such solutions are usually slow and encounter problems relating to

noisy depth data and correspondence search failures.
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2.2.3 Feature Extraction in HAR from 3D Skeletal

Human Activities Data

Feature extraction is a vital component of any HAR system. The goal of feature

extraction is to find recognisable characteristics of human activity data that can

be used in accurately differentiating between activities, one from another. Due

to the importance in the process of feature extraction and the role features play

in a HAR system, the performance of any HAR system is largely attributed to

the quality of features obtained from the available data.

Following the acquisition of human activity data using methods as reviewed

in Sections 2.2.2.1 and 2.2.2.2, the raw data obtained from these sensors have

to be preprocessed prior to feature extraction. This process is carried out to

reduce redundancy in data for better representation of features of an activity.

Most of the works [89, 102] employing 3D joint coordinates data of skeleton use a

preprocessing step to offset the data centroids (usually obtained with reference to

the sensor origin) to the human centroid as the origin. This makes the data scale-

invariant and easier for recognition algorithms to attain improved performances.

According to Subetha and Chitrakala [110], approaches to HAR using

RGB-D information fall into two categories: feature-based and model-based.

Feature-based techniques such as Histogram of Oriented Gradients (HOG) and

subspace clustering based approach (SCAR) are used to extract features for

recognising human activity from data acquired using sensors. Hussein et al. [54]

applied statistical covariance of 3D joints (Cov3DJ) as features to encode the

skeleton data of joint positions which are then used as input to an SVM model

for activity recognition. Another approach applied by [129] used a sequence of

joint trajectories and applied wavelets to encode each temporal sequence of

joints into features used in activity classification. Model-based techniques have

to do with the construction of a human model for recognition either as a 2D, 3D

or skeletal model. Vemulapalli et al. [124] construct models using kinematic

approach that extract features from frame sequences for human structure

representations. Du et al. [32] used a neural network technique to propose an

end-to-end hierarchical Recurrent Neural Network (RNN) for representing

skeleton based construction. They make use of the raw positions of human
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joints as input to the RNN. A combination of both feature-based and

model-based approaches for classification of activities is seen in [113]. The

authors used a Maximum Entropy Markov Model (MEMM) for classification of

activities using features from skeleton tracking combined HOG.

2.2.4 Recognition and Classification of 3D Skeletal

Human Activity

Following the extraction of features from 3D skeletal human activity data, the

processed features are used in a classification step for learning/recognition of

human activities. A number of approaches have applied different techniques which

range from statistical to CI methods in the recognition process of vision-based

human activities. The classification process involves grouping activities from

observed sequences based on the similarities identified from features.

2.2.4.1 Classification with Statistical and Machine Learning

Algorithms

Statistical and ML techniques such as Support Vector Machines (SVM),

K-Nearest Neighbour (KNN), Naive Bayesian, or Latent Dirichlet Allocation

(LDA) are some of the commonest methods applied in HAR from 3D human

skeleton data [120]. Classification of human activities is carried out by

extracting relevant features from data obtained using RGB-D sensors. The work

in [24] proposed a method for activity recognition using RGB-D data. The 3D

joint position information extracted from the sensor are transformed into

feature vectors by applying selected soft computing techniques to group key

postures of an activity. The posture features are used as input to a learning

algorithm for classification of human activities. SVM and KNN algorithms were

used separately in classifying activities and the results compared. The SVM

algorithm used in classifying 3D human activity skeleton data [24, 41, 88] works

by finding the optimal hyperplane which allows separation between distinct

classes in an observed feature space. It uses a kernel function φ that allows the

transformation of activity feature spaces to a higher dimensional space where

the data is separable. Nunes et al. [89] applied Random Forest (RF) in a
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framework using max-min features from human activity skeleton data. They

proposed an extension to the traditional RF which combines a DE

meta-heuristic algorithm with RF to optimise recognition performance.

In the work presented in [38], the authors propose using a probabilistic

classification in a framework that combines multiple classifiers to form a

Dynamic Bayesian Mixture Model (DBMM) for characterising activities from

features obtained from distances between different parts of the body. The use of

the Bayesian Mixture Model is integrated into a dynamic process that takes

into consideration the temporal information of activities. The use of

non-parametric approaches which are capable of dealing with large number of

classes and the problem of overfitting has been proposed as a solution for HAR

from 3D skeleton data. For example, Yang and Tian [135] proposed a Naive

Bayes Nearest Neighbour (NBNN) approach to recognise human actions from

the accumulated motion energy computed from 3D human skeleton joints. Such

methods require no learning process. Other techniques have been applied for

sequence-based classification of human activities using 3D skeleton information,

among which are Dynamic Time Warping (DTW) and Markov Models [96, 102].

Markov Models like HMMs are very useful in modelling activity sequences and

thus they are very resourceful in recognition of activities. By defining the

elements of a HMM which are given to be the prior distribution for initial

states, the emission matrix and the the transition matrix, a HMM can be used

to calculate the probability of an action for a given activity sequence consisting

of observed human key poses.

2.2.4.2 Recognition of Human Activities using Computational

Intelligence Techniques

Apart from the use of statistical ML techniques for 3D skeleton data HAR, CI

methods have also been extensively studied by researchers. CI is a collection of

nature-inspired computational models that are used to solve complex real-world

problems which traditional statistical or ML techniques might be incompetent due

to the reasons of - uncertainties inherent in the problems, such problems might

be too complex for mathematical inference or may be stochastic in structure.
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Human activity actions when observed through 3D visual information can be

complicated with a lot of uncertainties in distinguishing one activity from a set

of related activities. Computational methods such as Fuzzy logic [55, 75, 136],

neural networks [37, 56, 117] and evolutionary computation [78, 101] are suited

for such recognition applications.

Yao et al. [136] have used a fuzzy logic model for human behaviour recognition.

Silhouette slices and movement speed from human silhouettes are used as input to

the fuzzy system. A fuzzy c-means clustering algorithm is used to learn the fuzzy

membership functions and the human behaviour is then identified via selecting

the behaviour category with the highest membership degree. Similarly, the work

in [75] employed fuzzy logic in proposing a view invariant HAR system using

a single camera. They have used a fuzzy qualitative Poisson human model to

extract fuzzy qualitative human contour descriptor for human viewpoint analysis.

Clustering algorithms are then applied to classify the viewpoints. These methods

achieved reasonable performance in HAR. Other variations of fuzzy systems such

as evolving fuzzy systems in [55] have also been use. Fuzzy models are good at

handling uncertainties in human activity data which makes them a good tool in

HAR.

Traditional Artificial Neural Networks (ANNs) have been applied extensively

in 3D human skeleton based activity recognition. Parisi et al. [94] employed an

ANN model in their work on HAR. They extract pose and motion features from

video sequences of activities and apply a clustering technique for grouping

actions in prototypical pose-motion trajectories. The classification model

consisted of Self-Organising Growing When Required (SOGWR) networks to

obtain continuous representations of inputs and determine the latent

spatio-temporal dependencies. Other works using neural networks [117, 121]

take advantage of its ability to model complex and non-linear relationships

which occur in human actions to attain high accuracies. Also, ANNs when

compared to other ML techniques do not impose restrictions on input data due

to their ability to learn hidden relationships in data, which makes them good in

predicting scenarios.

With the recent evolution in technology, DL models [56] have also more

recently been applied in activity recognition problems with results showing
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robustness of the method in activity recognition. Du et al. [32] proposed an

end-to-end hierarchical RNN human skeleton recognition model that models

long-term contextual information of temporal activity sequences. DL models are

good at automatically learning the features from any dataset and this makes

them suitable for large and complex applications. Ijjina and Chalavadi [56]

applied extreme learning machines for classification of features obtained using a

Convolutional Neural Network (CNN). The method was tested on 5 human

activity datasets and achieved high performances. In [145], a

sequence-to-sequence model based on DL is used to recognise ADLs taking

advantage of activity state representations. Many other applications using DL

architectures in HAR can be seen in [37, 117, 121]. However, DL models require

large amount of data to achieve for concise predictions of activities and in most

cases more resources such as time and reliable processing architectures. Also,

using DL limits the flexibility of defining the features to be used in the

classification stage. To implement such DL architectures require high processing

power with a huge amount of computational resources to train the networks as

some architectures take several days or weeks to train.

2.2.5 Discussion

From the review presented, it is evident that HAR is a well-studied area with

applications seen in many disciplines, thus the need to further research into

solutions to improve current HAR systems. Although there have been many

successes recorded in vision-based HAR, the complexities associated with

occlusions, varying illuminations, changes in view, scale variance and activity

similarity, remain challenging in many applications. These have effects on the

computational requirements of many systems. The conclusions from the review

on HAR presented are outlined as follows:

• Suitable data for HAR systems must be obtained as this has a defining

impact on the system. In addition, the algorithms used for recognition

should be investigated and selected based on the performance obtained

with the information modality and other relevant factors.
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• Most research works focus on activity classification from single-persons,

however, action detection and activity pattern discovery require more

investigation to provide better understanding of the nature of activities.

2.3 Transfer Learning in Computational

Intelligence

TL methods usually employ various computational techniques as training

models such as neural networks [79], support vector machines [119], and

rule-based models [105, 150]. This section discusses TL methods which apply

such CI techniques as solutions to learning problems.

2.3.1 Neural Network Transfer Learning Methods

Neural network architectures have been used in TL applications over the years

with results demonstrating superior performance compared to statistical

models. However, most applications of neural network in TL apply deep ANN

architectures to propose solutions often referred to as Deep Transfer Learning

(DTL) solutions. In a recent survey by Tan et al. [117], DTL is defined as a case

of learning a target task where the objective predictive function, f(·), is a

non-linear function that reflects a deep neural network. The effectiveness of

deep neural networks in TL is the flexibility of its architectures in extracting

high level features which are transferable. This is possible due to the multiple

hidden layers which can capture sophisticated non-linear representations in a

dataset. In [123], a TL approach using deep neural networks is proposed for

vehicle classification. The authors investigated the possibility of TL of a

pre-trained CNN model parameters for classifying truck images generated from

3D point cloud data from LiDAR. Also, in [63] four strategies of TL based on

different configurations of CNN models are proposed for plant classification

applications. The success of the many applications DTL have been applied to

can mostly be attributed to the accessibility to DL architectures such as

AlexNet [70], GoogleNet [115], VGG [107] and other architectures which can be
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pre-trained and configured to suite a variety of applications. Other methods of

TL using neural networks for various applications can be found in [80].

2.3.2 Genetic Algorithms Transfer Learning Methods

Genetic Algorithms (GA) are evolutionary computation methods inspired by

natural selection to handle optimisation and global search problems. The

algorithms are based on biological evolution operators such as selection,

mutation and crossover. Initially, GA’s were used to solve complex non-linear

optimisation problems and later, they were used in hybrid techniques with other

CI methods (like fuzzy logic and neural networks) to solve classification and

clustering problems. The authors in [64] proposed a genetic TL model which

used two similar fitness functions to predict solutions for source and target

tasks. The model aimed at maximising both functions by choosing the best

samples and label variables. The results showed that the transfer of inter-task

mappings was able to reduce the time required to learn a more complex task.

However, there are not many researches focusing on the application of GA’s to

TL.

2.3.3 Fuzzy Logic Transfer Learning Methods

Attempts to learn activities when there are little information available are often

plagued with concerns of imprecision, vagueness, approximation and ambiguity of

information. Therefore, it can be drawn that the level of certainty in any activity

learning system and the availability of information are co-dependent. This is the

reason many researches have incorporated fuzzy logic techniques into TL [7, 103].

Incorporating fuzzy logic allows for approximation and expression of uncertainty

encountered in the transfer of knowledge as earlier mentioned in Chapter 1.

The concept of fuzzy logic was introduced in [138] as fuzzy set theory and

further expanded to include other aspects such as fuzzy rules [12]. The major

elements of fuzzy logic are the if-then rules and the linguistic variable which

captures imprecisions in a way similar to humans abilities, thus this makes it

relevant in TL. A fuzzy-based transductive TL model for predicting long-term

bank failure was developed in [7, 8]. The model applied a fuzzy similarity
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measure to refine predicted labels for samples in a target domain. Afterwards

the authors improved on the model by proposing a fuzzy refinement domain

adaptation method which considers the similarity and dissimilarity in the

refinement stage [9]. Shell [103] proposed a framework for Fuzzy Transfer

Learning (FTL) for prediction in intelligent environments. The framework

introduced the use of a transferable fuzzy inference system from a source

domain that is adapted to a target domain. The method was applied in two

simulated intelligent environments and the experimental results indicated the

proposed FTL framework outperformed classical prediction models, although

the model was not compared with other TL models.

2.3.4 Human Activities and Transfer Learning

Developing solutions to aid assisted living is an ever growing field of interest in the

research community. This involves the incorporation of a range of technological

solutions in assisted living environments to enhance the quality of life and well-

being. The rapid evolution of artificial intelligence techniques which are used to

learn and model real world behaviours has left the classical ML methods behind

in terms of the performance obtainable. The classical learning models usually rely

on situations where similar distributions of data are used in training and testing

the model [105]. When there are changes in data distribution, such models fail.

The models will need to be retrained from scratch which is a slow process and

learning a new model will require much data which is always not readily available.

The differences in data distributions can be observed in many applications

which involve AAL, for example, in assistive care for monitoring a person living

independently [91], detecting changes/abnormality in an AAL environment [35]

or learning daily routine activities of a person by an assistive agent. These and

many more applications are increasingly encountered in pervasive technologies

developed for assisted living. A solution to learning the difference in (or lack of

sufficient) data distribution is TL. TL applies the knowledge acquired from one

domain in a different but related domain to reduce the time needed for training

the models from scratch and performance improvement [92]. This method has

seen many applications in assisted living [26, 105].
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2.3.5 Discussion

The relationship between the feature spaces in which TL is targeted influences

the approach applied to achieve transfer of knowledge. This relationship can be

either homogeneous or heterogeneous [92]. In the case of homogeneous TL, the

feature spaces of the data in both source and target domains are equal.

Situations involving homogeneous TL are much simpler to accomplish when

compared to heterogeneous transfer. The work proposed in [93] attempts TL by

proposing a method of Transfer Component Analysis (TCA) for domain

adaptation. This work entails a dimensionality reduction framework for

reducing the distance between domains in a latent space with similar features.

The authors in [105] proposed a method of FTL for knowledge transfer. The

approach considered the case of applying fuzzy logic to learn and transfer

knowledge in intelligent environments. The authors showed that the

performance achieved using the proposed FTL framework was comparable to

other conventional methods of TL. Although the method in [105] performed

well, it considered a situation in which labelled data is only present in the

source domain and did not focus on the case of differing feature spaces.

Heterogeneous TL on the other hand is more challenging due to the fact

that the feature spaces in both domains are drawn from different distributions

of data [92]. The work in [150] proposed a method for a fuzzy rule-based

approach to TL in both homogeneous and heterogeneous spaces. Also, a

heterogeneous TL method is seen in [77]. An incorporation of fuzzy systems

computational technique as seen in [105, 150] show its advantage when applied

in transfer of knowledge to a target domain where critical information is

inadequate. The benefits of heterogeneous TL enables it to be applied in many

real world applications [26, 29].

The works reviewed in this section have used different approaches to TL.

Although these works achieve impressive performances when used in their

respective applications, not much attention is given to applications in activities

of daily living. Especially, when dealing with human activities in assisted living

environments which this thesis attempts to address, TL would be of great use in

driving technological advancements.
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2.4 Assistive Technologies Related to Human

Activities

Assistive Technology (AT) refers to the use of adaptive, rehabilitative and

assistive devices for either the aged population, people with disabilities or any

individual, as means to simplify activities. Such devices are used to improve the

functional capabilities of individuals. A categorisation of AT as proposed by [44]

is based on the devices and services used for AT. Due to the broad spectrum of

AT, the categories identified range from, aids for daily living, mobility,

communication, telecare/ telehealth and environmental controls among others.

These have applications in different areas of assisted living.

Focusing on the aids for daily living category of AT, devices in this category

promote independence in Activities of Daily Living (ADLs) which include

activities such as cooking, eating, dressing, moving objects and other daily

activities in and around a living environment.

Recently, assistive robots are widely used as aids for daily living. Such

robots are equipped with capabilities to carry out functions as required for

assisted living. However, the challenges of getting assistive robots to act

similarly to human abilities remains a bottleneck. A number of robots exist

which are able to perform some basic ADLs but are limited in functionality

since they are incorporated with preset information [141]. Koppula and Saxena

[67][66] proposed a method of robotic reactive response for anticipating human

activities by using object affordances. Human activity information were

obtained from videos collected while activities were performed. The system was

proposed to aid better incorporation of assistive robots in day-to-day human

activities such that the robots are able to anticipate human actions and respond

accordingly. To achieve the aim of the work, the authors used an anticipatory

temporal conditional random field to model rich spatio-temporal relations

through objects. Duckworth et al. [33] recently proposed an unsupervised

human activity analysis for intelligent mobile robots framework with the aim of

providing assistive robots with a means to understand human activities

performed from long-term observations in real-world environments. In the work

[33], the authors propose a method of learning human activities from visual
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information obtained from a mobile while a person performs an activity. The

approach used unsupervised ML techniques to learn activities from extracted

features. This approach was intended for assistive robots to be able to learn

activities by just observing while activities are performed. Through their

approach a mobile robot can be able to infer activities from visual observations

which are used to capture different aspects of relations between a human

subject and their environment. However, the proposed method focused on

analysis of the parameters of the unsupervised techniques used in

spatio-temporal representations of observed activities. Furthermore, the method

was not extended to practical implementations on a real robot.

To conclude this section, the key points considered in developing robust

assistive technological solutions for human activities are highlighted as follows:

• The need to capture the rich context for modelling human activities [67].

This would provide adequate information needed to acquire sufficient

knowledge of an assisted living environment. Taking advantage of visual

information in 3D space is one of the solutions to providing rich activity

information.

• The devices used should be capable of working independently in providing

assistance. For the case of assistive robots, the development of intelligent

robots which are able to sense, observe and act without human intervention

should be investigated more. This also links to the ability to improve the

knowledge base as new situations are encountered. Therefore, there is the

need for TL incorporated within assistive robots.

2.5 Research Gap

The gaps identified from current research as discussed in the review are

highlighted in this section. Also, the section discusses how this work differs from

previous research.

A different approach to HAR have used non-visual sensory information due

to the advantage that some of the sensors such as, Passive Infrared (PIR),

temperature and pressure sensors are non-intrusive. However, other non-visual
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sensors like wearable sensors can be intrusive, and as such may not be a best fit

for HAR. Also, people often find them uncomfortable and may forget to wear

them while carrying out activities. Furthermore, as human activities differ in

nature and sequence of occurrences, non-visual sensors are limited in the

information they provide. It is often difficult to understand the nature of human

actions such as the position/ orientation of different parts of the human body

during an activity using the information from non-visual sensors. This results in

limitations in effectively creating models for human activity. On the other hand,

vision-based approaches to HAR offer rich information (for example, depth, heat

map, coloured images and many others) from which a range of features can be

extracted for high performance activity modelling and recognition algorithms.

Previous approaches to vision-based in HAR mostly focused on the technical

aspects (a systems ability to accurately recognise activities) of the proposed

systems [38, 89]. These researches have been directed towards evaluating an

algorithm/model’s ability to attain good performances on AR. However, not

much has been directed towards the practical applications of HAR.

TL has been studied in many context and applications. Most successful

applications have been in object recognition from images [29, 115]. Other

applications in activity recognition [26, 39] and robotics [52] have not achieved

much success due to the complexities of TL. The work in [52] considered a

multi-robot TL system. The work addressed TL from a control systems

perspective by evaluating the performance of controllers. Feuz and Cook [39]

proposed TL through feature space remapping with tests on activity recognition

datasets. However, they only considered the case of a feature-rich dataset but

did not address situations with sparse data. A similar strategy is considered in

this work for human-robot TL which would be a novel approach by combining

HAR and TL for human-robot interaction.

To address the gaps identified, this research uses a vision-based sensor to

obtain information for developing a framework capable of TL human activities for

assistive robots. In the following chapter, the methodology applied in developing

the framework is described.
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2.6 Summary

This chapter presented the state-of-the-art research related to HAR, TL and

assistive technologies. The review presented HAR research works based on visual

sensory information as related to the work in this thesis. Different techniques

to recognise activities have been investigated. In assisted living, HAR plays a

major role in the development of technological solutions to meet the needs of

independent living. Although, there are still gaps in practical implementations

of such systems, its importance cannot be overemphasised.

TL as an alternative to traditional learning methods, exist to aid the transfer

of knowledge across different but related situations of learning, so as to reuse

knowledge and avoid having to train models from scratch which is the case with

traditional learning methods. By incorporating this concept in HAR, systems

such as assistive robots, can adapt to situations which require learning of activities

by knowledge transfer from a human to robot space. From the literature review,

it is seen that the use of simple, low-cost RGB-D sensors can be used to obtain

rich information (which is relevant to any computational system) of activities.

This is investigated in this research. To reiterate the focus of this research, an

RGB-D sensor is used to obtain information of human activities for the purpose

of TL of activities for assisted living applications, such as robots used for assisted

living.
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Chapter 3

Transfer Learning in Human

Activity Recognition:

Architecture and Methodology

3.1 Introduction

A motivation for Transfer Learning (TL) is to learn information from a source

reference which is transferred to improve on the performance achievable in a

target reference. This thesis draws on this motivation to accomplish TL in the

context of Human Activity Recognition (HAR). The idea is to develop a

framework for TL human activities from visual information which can be

adapted in a different setting, such as into a robot, to accomplish the task with

the acquired knowledge. In Chapter 2, a broad review of previous studies on

HAR with a focus of vision-based approaches, TL and assistive technologies

were discussed. This chapter presents the architecture and methodology of the

TL in HAR framework developed in this thesis. The main components of the

framework are outlined.

This chapter is structured as follows: Section 3.2 gives an insight into the

concept of TL and definitions of TL. Section 3.3 gives an ontology of TL as

applied in HAR. In this section, an in-depth discussion on how TL is carried

out is presented. Section 3.4 follows by presenting the approach employed in
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the thesis and the architectural framework detailing the key stages in proposed

methodology is presented in Section 3.5. Lastly, Section 3.6 draws conclusions to

summarise the chapter.

3.2 Background and Definitions of Transfer

Learning

TL is an area that has been well studied across different fields ranging from

psychology, education, biology, Computational Intelligence (CI) and many other

areas [105]. In psychology, TL which is often referred to as transfer of learning is

described as:

“the process and the effective extent to which past experiences (also

referred to as the transfer source) affect learning and performance in

a new situation (the transfer target). It should be conceptualised and

explained in the context of its prevalence and its relation to learning

in general” [36].

In CI, TL involves developing computational models which are capable of

mimicking humans ability to learn and reuse knowledge in different but related

tasks. For example, the knowledge acquired while learning to eat with a spoon

can be applied in learning to use chopsticks. This knowledge is transferred

across related tasks. Traditional ML techniques work under the assumption

that both source and target data are drawn from a similar distribution of

information or similar data domains. This assumption holds in situations where

the ML model is applied in classification of data which occur in both source and

target information. However, in situations when source and target data are

drawn from different information distribution, the traditional ML techniques

struggle to correctly identify the target data [105]. This poses a limitation to

ML techniques being used in such situations [105]. To address the limitation of

traditional ML techniques, TL models seek to apply knowledge learned from a

previous/source information to a new, but related target information to improve

the performance achieved and to reduce the time needed in training the model

from scratch [39].
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3.2.1 Notations and Definitions

The notations and definitions relating to TL are introduced in this section. From

the review of literature [80, 92, 149], the main elements of TL are domain and

task. Therefore, the relevant definitions of TL and its elements adopted from [92]

are given as follows:

Definition 3.2.1. Domain: A domain denoted by D and consists of a feature

space F and marginal probability distribution of instances of P (X), {x1, ..., xN},
where X = {x1, ..., xN} ∈ F [92]. For example, if the learning task is a HAR

problem and the 3D skeleton joint positions are the features, F is the space of all

joints vectors and X is a particular observation of an activity action. Therefore,

if two domains are different, they may have differing distributions and feature

spaces.

Definition 3.2.2. Task: A task T is defined as having a label space Y and an

objective predictive function f(·) which is not observed but is used to learn from

the available data [92]. The objective function is used to predict analogous labels

for new occurrences of X. For the HAR problem, Y is the set of activity labels

contained in the dataset.

Definition 3.2.3. Transfer Learning: Given a source domain Ds with a task

Ts and a target domain Dt with task Tt, TL aims to improve the learning of

target task Tt using the knowledge acquired in Ds and Ts by learning a predictive

function in Dt. It assumes that either Ds 6= Dt or Ts 6= Tt [92]. In other words,

when both the source and target domain and task are equal, the learning problem

is reduced to a traditional ML problem.

Practical implementations of TL aim to transfer as much knowledge from a

source task or domain over to the target task or domain. The knowledge

transferred varies depending on the application and data from the source

available. According to Pan and Yang [92], the key challenge in TL is defining

the metrics related to what to transfer, how to transfer and when to transfer.

This is mainly due to the fact that there are various algorithms that can be

applied in TL. In trying to solve this challenge, TL algorithms used so far have

focused on three main steps namely:
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• Given a target task Tt, select an appropriate source task Ts or sets of tasks

from which to transfer knowledge

• Learn the relationship f(·) between a target task Tt and source task Ts, and

• Transfer knowledge effectively from source task(s) Ts to target task Tt.

These steps have been used by many authors including [26, 92] to propose TL

models that can handle the challenges encountered in TL.

Effective implementations of TL aim to improve learning in a target task

with the advantage of knowledge acquired from the source task. To measure the

effectiveness of TL, Torrey and Shavlik [120] identified three measures by which

the transfer of knowledge might improve learning in the target task.

1. The initial performance achievable in the target task Tt using the transferred

knowledge before any further learning is carried out, compared to the initial

performance of an ignorant agent.

2. The cost in terms of time to fully learn the target task Tt given the

transferred knowledge compared to the time to learn it (i.e. target task)

from scratch.

3. The final performance attainable in the target task Tt compared to the final

performance without any transfer.

Adopting these measures in TL implementations guide in evaluating the

improvement of learning of target tasks. Thus, the same measures are employed

in the experimental chapters of this thesis.

3.2.2 Variations of Transfer Learning

Following the definitions and notations of TL given, the variations of TL

common in most survey papers [26, 92, 105, 130] are categorised under three

settings, inductive TL, unsupervised TL and transductive TL. The

categorisation is based on the differences in relationship between both source

and target domains and tasks. However, within each setting TL can be further
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grouped in relation to the type of knowledge transferred. These groups are

identified as instance transfer, parameter transfer, feature representation

transfer and relational knowledge transfer. Table 3.1 shows the classification of

TL based on the type of knowledge transferred in different settings .

Descriptions of the different settings are presented as follows:

Inductive TL: This is derived from traditional inductive learning. It defines

situations which the target learning task is different from the source task, i.e.

Ts 6= Tt. The aim of inductive TL is to improve learning of the target predictive

function with induced training data [92]. These are few labelled data contained

in the target domain. It should be noted that both Ds and Dt are known in

induced TL.

Unsupervised TL: unsupervised TL as with other forms of TL aims to improve

learning the predictive function in the target domain using information from the

source in the target [103]. Similar to inductive TL, Ts 6= Tt. The difference is

Table 3.1: Summary of classification of transfer learning based on the type of
knowledge transferred

TL approach Description TL setting

Instance transfer Reuses information in the source domain
to train a target learning model, usually
by re-weighting the source information
using a defined metric [26].

Inductive and
transductive TL.

Parameter
transfer

Explores the shared parameters between
the source and target domains/tasks
which are useful in transfer [26, 92].

Inductive TL.

Feature
representation
transfer

Discovers relevant features to reduce the
differences between source and target
spaces, usually by mapping of feature
spaces [92].

Inductive,
unsupervised and
transductive TL

Relational
knowledge
transfer

Assumes data is not independent and
identically distributed (i.i.d), although
both domains are relational. Therefore,
seeks to obtain mapping of relational
knowledge between both domains [26].

Inductive TL
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that the data contained in both Ds and Dt are not labelled.

A deviation from this explanation was proposed in [26]. The authors

distinguished learning based on labelled data in the source and target. The

terms informed and uninformed were used. Applying this to the standard

learning terms of supervised and unsupervised learning, Informed Supervised

(IS) TL describes when labelled data is available in both domains. Informed

Unsupervised (IU) TL implies labelled data is present only in the source

domain. By comparison, Uninformed Supervised (US) TL implies labelled data

is available in only the target domain and Uninformed Unsupervised (UU) TL

implies there is no availability of labelled data in either source and target

domains.

Transductive TL: Situations described as transductive TL situations require

Ts = Tt but Ds 6= Dt [6]. Following from Cook et al. [26] definition, TL techniques

fall under uninformed supervised methods.

3.3 Ontology of Transfer Learning of Human

Activities

Assisted living environments are incorporated with different technological

solutions to improve the quality of life and well-being. In recent years, there has

been a growing interest in the research community on how to develop evolving

solutions to aid assisted living, especially in areas of human activity recognition

and learning. Different techniques have been studied, as discussed in Chapter 2,

to address the need for technological systems which are intelligent enough to

evolve their knowledge to solve task which have not been previously

encountered. One such approach is TL, for example, getting assistive robots to

learn human activities through TL.

TL has recently attracted interest in recent years due to the potential

benefits it offers in artificial intelligence applications including assisted living

[105], computer vision [84] and robotics [52]. It has not recorded as much

success as the long existing traditional Machine Learning (ML) methods partly
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due to the challenges which yet remain unresolved in the research community

[39], although, it has potential to become a fundamental driver for the success

of ML in the coming years. As stated earlier in the literature review in Chapter

2, the challenges facing TL implementations depend on defining the metrics

associated with following aspects what to transfer, how to transfer and when to

transfer. Providing solutions to address these three aspects has been the focus

of many researches, thus, motivating the proposal of different TL algorithms.

In relation to assisted living, different applications of TL have been studied.

Shell and Coupland [105] proposed a model called Fuzzy TL which was applied

in an intelligent environment. Data from the source domain was learned by

constructing a fuzzy inference system from generated fuzzy rules. The

constructed fuzzy inference system is then applied to a new domain referred to

as the target domain through stages of adaptation of the generated fuzzy rules

with the target data. Results from the model tested on real datasets from two

intelligent environments (source and target environments) which were different

but related showed the model achieves better performance in the target with

transfer of knowledge when compared to performance attained without transfer.

Bócsi et al. [15] proposed a method for improving robot learning

manipulation tasks from data obtained from the robot performing other tasks

or from similar robot architectures. Their method has made an attempt to

address the challenge of how to transfer by considering two steps which include,

dimensionality reduction of data obtained from the robot to a low dimensional

space and manifold alignment of source and target robot dimensions through a

transformation function. The work in [52] also follows a similar approach of

finding how to transfer between multi-robots. Even though these works achieve

impressive performances, the challenges of what to transfer and when to transfer

prove to be difficult in TL applications. Addressing these challenges require

consideration of properties related to spatial and temporal occurrences of both

source/target domains.

This research considers the case of TL from human to robot domains in trying

to address some of the challenges of TL. Figure 3.1 shows an illustration of TL of a

human activity between a human and an assistive robot in which the robot learns

to perform a similar task by extracting relevant properties from the activity source
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Figure 3.1: An illustration of Transfer Learning of a human activity with an
Assistive Robot.

(a human). This thesis aims to follow a similar approach to TL in the context

of transfer of human activity between a human and a robot by: 1) identifying

requirements for TL in applications using human/robot as source/target domains

respectively, 2) propose a method to address the differences between both domains

through a remapping of feature spaces. From the review of related works [15, 105],

it is evident that once an optimal mapping between source and target domains

is known, what/when to transfer would be achievable.

3.4 Methodology for Transfer Learning of

Human Activities

To proceed with the description of the novel framework proposed, a number of

elements need to be predefined. Reiterating the definitions given earlier in this

chapter, a source domain Ds is defined as:

Ds = {Fs, P (X)} (3.1)
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where Fs is the feature space and P (X) is a marginal probability distribution

within the source domain, given that,

X = {x1, x2, . . . , xn, . . . , xN} ∈ F (3.2)

The source domain usually consist of a task Ts to be learnt and this is represented

as:

Ts = {Y, f(·)} (3.3)

where Y = {y1, y2, . . . , yn, . . . , yN} is a label space with an objective predictive

function f(·) to be learned by the pairs {xn, yn} within the source domain.

Therefore, for any given scenario, the source domain can be redefined more

specifically as:

Ds = {(xs1 , ys1), (xs2 , ys2) . . . , (xsn , ysn), . . . , (xsN , ysN )} (3.4)

where xsn is an observed instance of data input and ysn is a corresponding class

label for prediction in the given scenario. Similarly, for a target, the domain Dt,

feature space Ft and task Tt can be defined the same way.

Consider a source domain Ds with a feature space Fs and a target domain Dt

with a feature space Ft such that Ds 6= Dt, implying Fs 6= Ft. TL aims to learn a

task in Ds and the knowledge acquired is used in solving a different but related

task in Dt. An overview of the method proposed to address the challenges of TL

discussed in this work by a remapping of feature spaces between source and target

domains is presented in Figure 3.2. Information from both domains is required

as inputs from which the feature spaces are constructed. For a model applied in

a domain to be effectively transferred to a different domain, the features related

to both domains need to be studied. The proposed approach assumes transfer is

achieved when an effective mapping of Fs is obtained in Dt.

A human performing an activity is assumed to be the source domain Ds with

feature space Fs and an assistive robot needed in learning to perform a similar

activity is assumed to be the target domain Dt with feature space Ft. The goal is

to be able to learn an activity from a human and transfer the knowledge acquired
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Figure 3.2: Transfer Learning overview by a remapping of features in both source
and target domains.

to an assistive robot which would be capable of learning similar activity within

an assisted living environment such as the example presented in the illustration

in Figure 3.1.

Obtaining sufficient data from a robot to train a model for performing

activities is a daunting task with a lot of complexities. However, sufficient data

for a model to learn an activity can be obtained as humans perform activities

and transferred to a robot. This would also enable assistive robots to learn

human activities by observing while a human performs activities. As shown in

Figure 3.3, human activity data is obtained from visual cues as activities are

performed. The position and orientation features of joints of the human body

are extracted. In addition, features of temporal occurrence, velocity, space and

motion energy are formulated from the visual information of the activity

performed. These features from Ds are used in a learning model for identifying

the task performed within the activity.

For a robot to be able to learn to replicate a similar activity, it needs to
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Figure 3.3: Human activity TL from human to robot domains.

understand the feature space of the activity source and how it can be transformed

into its own space. The TL model requires the robot feature space Ft as input

as well. This feature space can be in the form of joint positions and orientations,

forward or inverse kinematics of the robot being used.

3.5 Overview of the System Design for the

Proposed Framework

This section describes the proposed framework of TL in HAR. The system design

incorporated in this thesis is given in Figure 3.4 and shows the four key stages

within the framework. These include:

1. Data acquisition from an RGB-D sensor. More details are presented in the

following section.
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Figure 3.4: System design for the transfer learning in human activity recognition
framework.
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2. Human activity recognition and learning. A description of the approach

used is presented in this chapter and Chapter 4 presents more details of the

methodology.

3. Adaptive segmentation and sequence learning of actions. A description of

the approach used is presented in subsequent sections of this chapter and

more technical details are presented in Chapter 5.

4. Activity transfer across heterogeneous feature spaces. Subsequent sections

present a description of the approach used with more details given in

Chapter 6.

3.5.1 Data Acquisition

In the framework as shown in Figure 3.4, the process starts with obtaining

RGB-D sensor information of activities performed by a human. Incoming data

are obtained using a single Microsoft Kinect RGB-D sensor [86] which tracks

human joint movements and their transitions over time. As mentioned in

Chapter 2, RGB-D sensors offer three modes of information which are: RGB

(colour), infrared and depth images. These modes of information can be

accessed for desired purposes. Figure 3.5 shows samples of different information

modes obtained from the sensor used in this work.

The depth information obtained from the sensor is used in this research. From

this information, tracking human joints position through each frame is possible.

This gives information of each tracked joint location in 3D space of humans during

activities. A visual example of tracked skeleton joints obtained from an activity

is shown in Figure 3.5(d). This is tracked from the depth information.

Data is obtained from 3D skeleton detection of an actor performing an activity.

The skeleton of the actor is tracked using an RGB-D sensor for obtaining positions

of joints of the human body. The data representing an activity consist of N

number of frames (observations or activity poses). In this work, an activity, a,

which is represented by:

a = {J1, J2, . . . , Jn, . . . , JN} (3.5)
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(a) (b)

(c) (d)

Figure 3.5: Sample frames for different information modalities obtained from an
RGB-D sensor; (a) RGB (colour), (b) depth image, (c) infrared image, and (d)
tracked skeleton.

where J corresponds to an observation within the activity. Also, each observation

consists of input, xn, and an associated activity label, yn, represented as:

Jn = {(xn, yn)}, (3.6)

and xn = [j1, j2, . . . , jm, . . . , jM ] are 3D human skeleton joint coordinates for jM

joints.

Therefore, by extension of the relation given in Equation 3.4, an activity, a,

is represented as:

a = {(x1, y1), (x2, y2), . . . , (xn, yn), . . . , (xN , yN)} (3.7)

The Kinect RGB-D sensor considers the skeleton frame of reference from the

sensor. Therefore, for better representation of activity features, preprocessing the
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data is necessary. The methods used in preprocessing are described in the next

section.

3.5.2 Human Activity Recognition and Learning

The second stage in the proposed framework is concerned with the recognition

and learning of human activities. This section gives a descriptive overview of

the methodology for this stage in the framework. Detailed descriptions of the

experimental setup and results evaluation are provided in Chapter 4.

Prior to TL of activities, there is an emphasis on the interpretation of activity

information as in the proposed case of activities TL across differing domains.

An example is its application in assistive robots. A robot required to perform a

human activity would need to be capable of distinguishing one activity from the

other which is the process of recognition of activities. This makes it necessary

for proper observation of the environment to rightly interpret activities. The

information acquired using the RGB-D sensor is used as input in this stage.

3.5.2.1 Data Preprocessing

Data preprocessing is a necessary step in the activity learning process. This is

because data obtained during the acquisition process is often noisy (for example

too many outliers), may contain missing values, and may be unbalanced in terms

of scale (data collected from different experiments could have varying ranges).

Therefore, the purpose of preprocessing is to transform the raw data into the

right form needed for a model. In this regard, the following steps are taken in

preprocessing the data acquired:

Handling Missing Data: Missing data usually occur due to software or

hardware faults. In general, there are three types of missing data. These are,

Missing At Random (MAR), Missing Completely At Random (MCAR), and

Missing Not At Random (MNAR) [62]. In MAR cases, a systematic relationship

exists between the inclination of missing data and some other observed data,

but not the actual values of the missing data. For instance, if the sensor used in

obtaining data is out of action, it is unlikely to be related to the activity

performed. Data MCAR occurs when the missing data are not related to either
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specific values to be obtained or observed. The missing data points are random

subsets of the data obtained. This is a more realistic case in the human activity

data used in this work, as the missing data points do not follow any systematic

order. For example, when a human carrying out an activity moves out of the

sensor’s range and the skeleton cannot be tracked or the sensor’s speed of

recording an activity is not sufficient leading to the loss of some samples. In the

case where the characteristics of the missing data do not meet those of MAR

and MCAR, they fall in the category of MNAR. The only way to tackle such

cases of MNAR is to model the missing data.

There are various techniques for handling missing data. The techniques

commonly used include, Pairwise deletion, listwise or case deletion, mean

substitution, regression imputation, multiple imputation, maximum likelihood,

Expectation-Maximisation and Last Observation Carried Forward (LOCF) [62].

The list-wise deletion technique is often used in many studies which involve

acquiring repeated measurements over a time series. It discards those

observations with missing data and uses the remaining data for analysis. This

work adopts this technique in handling missing data points of observed human

activities. Human skeleton data obtained using RGB-D sensors often contain

large amounts of samples due to the sensors [86] ability to attain high recording

frame rates. Since the data is large enough and the missing data assumptions

satisfies the MCAR, the list-wise deletion method is an ideal solution.

Data offset: Human activity data obtained using RGB-D sensors are

dependent on the position of the sensors. Therefore, when an activity is

performed by many subjects, there is an added variation in information due to

the distance of the sensor from the subject. A process of translation is applied

to offset the data from the sensor coordinate. This resolves the problem of scale

variance encountered in many vision-based human activity learning systems.

In addition to offsetting the data, in primitive human activity learning, there

are many variations in the way an activity is performed from one subject to

another. For instance, performing an activity of picking up an object, one subject

might be left-handed while another subject right-handed. This situation may lead

to limitations in a learning models performance. Therefore, in this work, each

subjects data obtained is transformed by rotating 180 degrees about the y-axis.
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Figure 3.6: A representation of spatial and temporal features from skeleton joint
coordinates information.

3.5.2.2 Feature Extraction

Feature extraction is an important aspect of any activity recognition system as

raw data obtained from activities do not provide enough information to allow

implementing an activity recognition system. Features obtained in HAR systems

can be computed using the human skeleton joints coordinates obtained from an

RGB-D sensor.

After the preprocessing step, the information obtained,

a = {(x1, y1), (x2, y2), . . . , (xn, yn), . . . , (xN , yN)}, are converted into a set of

useful feature vectors, F , that model human activities by passing the

information to a feature extraction system. The features extracted in this work

are based on raw joint positions and displacement-based representations when

considering temporal and spatial information, and statistical features in time

domain. Figure 3.6 illustrates representations of spatial and temporal

information features. Following the feature extraction, the output set of features

F = {f1, f2, . . . , fn, . . . , fN}, where fn is an identified feature vector within the

set. For example, the feature f1 is computed as the Euclidean distance between

two joints through the sequence of activity a. The computation of these features

are presented in Chapter 4.
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3.5.2.3 Activity Classification

The final stage in learning and recognising human activities is classification of

activities using the extracted feature vectors. This step aims to associate feature

vectors to the correct activity. From the literature review, it is observed that

there is no classification model that is best for HAR and works for all datasets.

Therefore, an ensemble of classifiers method is used in this work for classifying

instances of the input F = {f1, f2, . . . , fn, . . . , fN} to the corresponding labels

Y = {y1, y2, . . . , yn, . . . , yN}. Three classifiers namely, SVM, KNN and RF are

investigated and combined in the construction of the ensemble of classifiers. The

configuration of these three classifiers are summarised as follows:

• A multi-class SVM implementation similar to [24] is applied for activity

recognition. The multi-class SVM is an extension of the SVM from binary

classifier. A one against-one approach which is based on the construction of

several binary SVM classifiers is stated to be the most suitable for practical

use. This method is necessary for Y classes dataset, where, Y > 2. A

training phase is carried out during which the activity features are given

as input to the multi-class SVM together with activity labels. In the test

phase, activity labels are obtained from the classifier.

• KNN is among one of the simplest ML algorithms and is a method of

classifying objects based on closest training points in the feature space. An

object is assigned to a class most common among its K nearest neighbours

(where K is a positive integer) by a majority of votes of its neighbours.

In most cases, the Euclidean distance is used as the metric in finding the

nearest neighbours to an object. Applying this method in the proposed

approach, in the training phase, the activity feature vectors and activity

labels of the training set are stored. During the classification phase, the user

defined constant, K, and unlabelled activity feature vectors are classified

by assigning a label most frequent among the K training samples.

• RF is an ensemble learning method based on decision trees. A group of

decision tree classifiers are trained on different random subsets of the input
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information and the output is obtained as the class that gets the most votes

from the predictions of individual trees.

The ensemble method takes advantage of the performance achievable with

combined classifiers which is most times better than a single classifier model.

Evaluating the performance of a recognition model is important to know

how well the model performed in learning and recognising the activities. The

experiments carried out in this work to evaluate the performance of the activity

learning model employ a cross-validation technique. This technique takes a

proportion of the input data which is used for training the model and

afterwards, the trained model is tested on the data left - new data - out during

training. A Leave-One-Out Cross Validation (LOOCV) technique is used [51].

This is a k-fold cross validation method where k is the number of subjects in

this case. For example, for an activity performed separately by four subjects,

k = 4. The model is trained using three subjects leaving one subjects’ data for

testing. This is done iteratively and the average error is computed and used to

evaluate the model.

Several metrics are used to evaluate the performance of HAR models [128],

some of which are used in this work. These include the accuracy, precision and

recall, and are defined as follows:

1. Accuracy: is a widely used statistical metric in HAR to evaluate how well

a model correctly identifies a condition [128]. It is the proportion of true

results, that is, both True Positives TP, and True Negatives TN, to the

total number of cases considered. It can be represented as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.8)

where FP are the False Positives and FN are the False Negatives.

2. Precision: is the proportion of the True Positives to all positive results. In

terms of classification performance, the precision measures the substantial

results that are relevant. This is given as:

Precision =
TP

TP + FP
(3.9)
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3. Recall: also called the true positive rate is the proportion of correctly

identified positive instances to the total number of correctly classified

instances. The recall finds the true class accuracy from a given model and

is given as:

Recall =
TP

TP + FN
(3.10)

3.5.3 Adaptive Segmentation and Sequence Learning

Following the recognition of human activities in the second stage, the third

stage of the proposed framework is concerned with the adaptive segmentation

and sequence learning of actions in an activity. This section gives a descriptive

overview of the methodology for this stage in the framework. Detailed

descriptions of the experimental setup and results evaluation are provided in

Chapter 5.

Humans have the ability to learn activities by observing while activities are

executed by another human. One important aspect of this process is extracting

segments of key aspects of activities and exploiting this information to be able

to replicate the constituent actions. This involves generating activity

representations required to understand sequential movements of different body

parts towards actualising the activity. Therefore, to understand the constituent

actions, segmentation is performed and then the sequence of actions are learned

from obtained segments.

3.5.3.1 Action Detection

Activity information obtained using the RGB-D sensors contain several actions

and not all actions are relevant in determining the sequence of an activity.

Therefore, it is necessary to identify key actions. However, detecting key actions

can be a tedious task which requires much computational resources to process

the entire activity information obtained. To detect key actions, this work

investigates the motion energy, El feature of human skeleton joints in an

activity. The movement of joints through an activity show changes in

acceleration and deceleration. Therefore, by exploring this feature key actions

can be identified. For example, the motion energy for an observation, El(J), is
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Figure 3.7: An example of motion energy data for an activity sequence obtained
from one subject.

the cumulative energy of all joints in that observation given as:

El(J) =
M∑
m=1

El(jm) (3.11)

A key action, J , is identified using the functions max(El) and min(El).

Figure 3.7 shows an example of the motion energy for a sequence an activity

performed by a subject. The peaks of both acceleration and deceleration represent

key actions of an activity.

3.5.3.2 Activity Segmentation

Prior to sequence learning and prediction, the number of segments that an

activity comprises of need to be known. This information is not easily obtained

from mere observations of the extracted key actions. Similar key actions are

grouped using a clustering technique to obtain activity segments, Q. Clustering

techniques differ in terms of the way feature spaces are grouped. A generic

grouping of these techniques are based on parametric and non-parametric

methods in which clustering is done. Parametric methods rely on some

assumptions of certain parameters (for example, the number of clusters

expected) prior to analysis of the dataset [25]. However, in situations (like that

of this work) where such assumptions cannot be made, non-parametric
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Figure 3.8: An example of the predicted activity sequence for an activity
performed by a subject.

clustering methods are best suited. These methods provide a flexibility in the

analysis of complex multi-modal feature spaces [25]. Therefore, a

non-parametric clustering method is explored in this work for the segmentation

of the obtained key actions using the expression:

Qz = C(J b) (3.12)

where z = {1, 2, . . . , Z} for Z activity segments and represents each unique

segment, b = {1, 2, . . . , B}, for B key actions and C is a function assigning each

key action to a unique segment.

3.5.3.3 Sequence Learning and Prediction

This step aims to learn the sequence of actions from identified segments. This

work employs an RNN method in sequence learning and prediction. A Long

Short-Term Memory (LSTM) [53] network is used due to its ability to recall past

occurrences over a long period from time series information. The key actions, J b

and their respective segments, Qz are inputs to the network.

The performance of the sequence learning and prediction model is done using

the LOOCV method as described earlier in Section 3.5.2.3. Figure 3.8 shows

an example of predicted activity sequence for one subject. The figure shows the
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actual sequence obtained from motion energy of identified key actions and the

sequence predicted after learning. However, the metrics used in evaluating the

performance as with most time series prediction models are based on the Mean

Absolute Error (MAE), Mean Absolute Scaled Error (MASE), and Root Mean

Square Error (RMSE). These metrics are defined as follows:

1. Mean Absolute Error: is a measure of the average magnitude of errors in a

set of predictions, without consideration of the direction. It is obtained as

follows:

MAE =
1

B

B∑
b=1

|J b − f(J b)| (3.13)

where f(J b) is the predicted value of J b

2. Mean Absolute Scaled Error: is used as a measure of accuracy of predictions.

It is computed as the ratio of the MAE of predicted actions, f(J b) to the

MAE of in-sample one-step forecast.

3. Root Mean Square Error: is measured as the square root of the average of

squared differences between a predicted action, f(J b) and the actual action,

J b which is represented as:

RMSE =

√√√√ 1

B

B∑
b=1

(J b − f(J b))2 (3.14)

3.5.4 Activity Transfer Across Heterogeneous Feature

Spaces

The fourth and final stage of the proposed framework is concerned with the

transfer of the learned human activity across differing feature spaces. This

involves transfer of the activities and actions learned from human domain, Ds,

with a feature space, Fz to robot domain, Dt with feature space, Ft. This

section gives a descriptive overview of the methodology for this stage in the

framework. Detailed descriptions of the experimental setup and results

evaluation are provided in Chapter 6.
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Algorithm 1 Guided algorithm for TL by feature space remapping from source
to target domains.
Input:

Source domain feature space Fs and Target domain feature space Ft.
Output:

Mapping function f(s) from Fs to Ft.
Procedure:

1: Check and remove all duplicate features in Fs and Ft using the preprocessing
approach described in Section 3.5.2.1.

2: For every observation in the source domain Di
s, a weight W i

s is estimated for
each feature for i > 0.

3: Similarly, weights are constructed for the target features and represented by
a matrix Wt.

4: For identical features in Fs and Ft, return corresponding weights Ws and Wt.
5: For the non-identical features in Ft, find correlation between weights Ws and
Wt.

6: f(s) is obtained by running a similarity function on weights Ws and Wt

obtained, and a transformation of learned model to the target domain.

In situations where Fs = Ft, there can be a direct mapping from source to

target to achieve transfer. This case is a much simpler case of TL where the

challenges of what/when to transfer can be addressed with less computational

effort. However, in applications involving human-robot interaction where a robot

is required to learn an action from a human, the difficulty remains how transfer

can be achieved. The differences in both feature spaces makes it not feasible for a

direct mapping of features across the robot/human domains. This work assumes

the robot domain needed for transfer of knowledge differs in feature space from

that of a human, that is, Fs 6= Ft and therefore for TL across such domains this

thesis proposes a remapping of feature space from source to target domains.

The proposed method for a remapping of feature spaces is summarised in

Algorithm 1. It should be noted that this algorithm presented at this stage is a

guided algorithm. A more detailed algorithm is given in Chapter 6. The method

requires both source and target domain feature spaces as inputs and the output

obtained is a mapping function f(s) which is a transformation of source features

into relevant target features. Duplicate features within the feature spaces are

discarded and weights Ws and Wt are assigned to features through a measure
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of feature importance in both domains. Identical features are extracted in a

matrix while a method of correlation is applied to the weights of non-identical

features to deduce a relationship between the features. A rule-based approach is

used to identify the similarities between both feature spaces and as a common

ground for representation of complexities in activity sequences. Once this stage

is completed, a mapping function is defined which is used in the transformation

from Fs to Ft. It is worth noting that the proposed TL by feature remapping

method is generalisable to different applications. This is possible if the feature

spaces for transfer of knowledge are identified and not specific to an application

or information distribution.

3.6 Discussion

This chapter presented a detailed description of the framework - shown in Figure

3.4 - developed in this research. The concept of TL and its applications in an

assisted living environment is discussed with a proposed application in assistive

robotics - which is increasingly being incorporated in assisted living environments

and explored in other applications to provide meaningful services to the end-

users. The ontology of TL of human activities is discussed and a description of

the methodology adopted in this work which is based on learning the relationship

between feature spaces. This builds upon the primary motivation for assistive

robotics applications.

Furthermore, to achieve the aim of TL human activities, the chapter

presented the architectural framework showing the different stages involved.

This comprises of the acquisition of data from an RGB-D sensor, human

activity recognition and learning, the adaptive segmentation and sequence

learning of actions, and the transfer of activity across differing feature spaces.

In the following chapters, detailed descriptions of all the stages including the

technical formulation of methodologies, experiments conducted and evaluation

of results are presented.
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Chapter 4

Human Activity Learning and

Recognition for Assistive

Robotics

4.1 Introduction

Ambient Assisted Living (AAL) is an active research area that has attracted a lot

of interest in recent years through the development of various solutions to enable

independent living and promote quality of life and well-being for an ageing human

populace [14]. AAL solutions utilise assistive robots and other technologies to aid

in daily routine activities. The robots are incorporated in various applications

which involve human-computer interaction that traverse humans of all ages. Such

applications include care for older adults [61, 134].

Due to the dynamic nature of the environment in real world applications, it

is quite challenging to have assistive robots execute functions easily. A specific

case is assistive robots that can interact with older adults as carers. These

robots learn tasks by observing a human carer execute the tasks. Such robots

learn human activities by extracting descriptive information of the activities in

order to classify them as they are executed. This process involves a transfer of

knowledge/information of the activity performed which is Transfer Learning

[130].
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Step 3: Learning Human 
Activity of Daily Living

Step 2: Sequence of 
human joint motion

Step 1: Observing human 
activity with an RGB-D 

sensor 

Human Activity Learning

Figure 4.1: A conceptual overview of learning of human activity by an assistive
robot using information from an RGB-D sensor.

Regardless of the method applied to learning an activity by a robot, there is

a knowledge gap contained in the varied information acquired of a person

executing an activity and a robot carrying out a similar activity. Transfer

Learning (TL) helps to bridge this gap by providing faster learning of activities

and better collaboration of assistive robots in AAL environments [52]. A

conceptual overview of the processes involved in learning of human activities for

assistive robotics is given in Figure 4.1. It is evident in this context that the

ability to correctly recognise a human activity, and correctly learn (as

highlighted in steps 1-3 of Figure 4.1) such activity plays a significant role in the

amount of knowledge which can be transferred to an assistive robot to be used

in learning.
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This chapter presents a novel Human Activity Learning (HAL) system for

assistive robotics. This will act as part of the process of TL for assistive robots

as mentioned in the previous chapter. The focus is on the three steps shown in

Figure 4.1. An RGB-D sensor is used to obtain 3D skeleton information of body

joints during activities as they are executed by a human. Descriptive features

are then extracted from the skeleton information obtained and the most

informative features are selected to be used in training a classifier model. These

features are extremely valuable in evaluating the performance of the system

because redundant and noisy features can have negative effect on the system

performance. An ensemble of classifiers model is used in building the learning

model for activities. The approach presented here employs three classifiers -

Multiclass Support Vector Machines (MSVM), K-Nearest Neighbour (K-NN)

and Random Forest (RF) - in creating the ensemble model. These classifiers are

classical algorithms used in ML problems. The proposed method is not only

focused on using the selected algorithms but a combination of them in an

ensemble. The reason for using an ensemble of classifiers is to improve

performance compared with a single classifier model [116]. The results discussed

in subsequent sections show the improved performance.

The remaining sections in this chapter are structured as follows. In Section 4.2,

details of the methods applied in 3D data processing and feature representation

are explained. Section 4.3 explains the classifier ensemble model approach for

human activity learning. Section 4.4 presents experimental results and their

evaluation, Section 4.5 summarises the main results and provides discussion of

the future work.

4.2 Methodology for Human Activity Data

Processing and Feature Representation

The proposed approach to HAL described in this chapter works by extracting

features from 3D skeletal data and applying feature selection techniques for

selecting the most informative features used in building a learning model for

human activities. The overview of the system architecture shown in Figure 4.2
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4. Human Activity Learning and Recognition for Assistive Robotics

illustrates the main stages within the process. This is divided into two stages as

follows:

Stage 1: Model learning

• Data Input: Data input into the system from a dataset containing 3D

skeleton information of human joints. This data is captured using an

RGB-D sensor and pre-processed before it is used in training activity

classifier ensemble model.

• Feature Extraction and Selection: Features representing activities are

computed from the data. This step also includes the selection of

optimal features relevant for learning activities.

• Learning: Training selected classifier models through supervised

learning of activities. The output of this step is the learned classifier

ensemble model ready to be utilised in activity classification.

Stage 2: Activity classification

• New Data Input: Data input in this stage is similar to that described

in the model learning stage. However, this has to be unseen data in

order to validate the performance of the learned models. The data can

be obtained from a dataset or on-the-fly from an RGB-D sensor.

• Similar features are extracted from the data to be classified. The key

difference in this stage is the data used is unlabelled unlike the model

learning stage which is based on a supervised approach. The features

extracted are passed into the learned classifier ensemble model for

identification of activity classes.

4.2.1 3D Activity Data Preprocessing

Human activity is composed of a continuous transformation of a series of human

poses. Preprocessing the information is necessary to reduce irregularities in the

data obtained from the sensor. RGB-D sensors provide information in three

modes namely; 1) RGB image, 2) depth image and 3) skeleton joint coordinates.
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Joints selected in 
this work
1 - Head
2 - Neck
3 - Torso
4 – Left shoulder
5 – Left elbow
6 – Left hand
7 – Right shoulder
8 – Right elbow
9 – Right hand
10 – Left hip
11 – Left knee
12 – Left foot
13 – Right hip
14 – Right knee
15 – Right foot
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Figure 4.3: Skeleton representation of Microsoft Kinect V2 with 25 joints. 15
key joints (i.e. the highlighted joint labels) are used in this work as shown in the
label definition in the figure.

However, this work uses only the skeleton joint coordinates information. A

Microsoft Kinect v2 [86] RGB-D sensor which has a skeleton model consisting of

25 joints as shown in Figure 4.3 is used in this work. From the information

obtained from the Kinect sensor, 15 key joints (i.e. the highlighted joint labels)

as outlined in Figure 4.3 are selected for use. Data is acquired from the sensor

as frames containing different poses that make up an activity. 3D skeleton joint

coordinates J are obtained from pose approximation in each frame [135] with

coordinates relative to the sensor position where,

J = [j1, j2, . . . , jm, . . . , jM ], for J ∈ R3×M ,M = 15 (4.1)

jm represents a joint in the frame with coordinates x, y, z corresponding to

horizontal, vertical and depth positions respectively and M is the number of

skeleton joints in a frame.

To make the joint coordinates invariant of the sensor position, the origin of
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Figure 4.4: Translation of skeleton coordinate system from the sensor origin to
the torso centroid origin.

the skeleton is translated along the vector
−→
sojt, where so is the sensor

coordinates origin and jt represents the torso centroid joint of the skeleton.

Each joint coordinate position
−→
jm (jm is a vector representing each joint

coordinates of the skeleton) is computed with reference to the new origin of

torso centroid
−→
jm −

−→
jt . Thus, the skeleton is independent of the sensor position

as shown in Figure 4.4. Each sample posture of activity is then reformulated to

the torso centroid origin.

Another stage of pre-processing is done to symmetrise the data in order to

eliminate ambiguity in gestures performed by left and right-handed people. This

ensures each activity is represented in a variation of its original form as shown

in Figure 4.5. The symmetry is computed along the y− axis of the origin (torso

centroid).
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Figure 4.5: Skeleton symmetrisation of an activity posture about the y − axis.
(a) represents the original activity posture and (b) is the symmetry obtained of
same posture.

4.2.2 Extraction and Representation of 3D Features

Extraction of descriptive information from acquired raw sensor information is

crucial to any learning system as raw data does not provide adequate information

for learning. This is carried out after the data is pre-processed. In this work,

the features used are divided into two distinct categories: joint displacement

based features and statistical features in the time domain. Joint displacement

based features encode information relative to position and motion of body joints

[48, 135]. This information considers displacement between joints of an activity

pose and 3D position differences of skeleton joints across different time periods

of an activity. Similarly, statistical time domain features encode information of

variations across a collection of activity poses within a specified time domain.

The following sections provide details of the features used in this work.

4.2.2.1 Displacement-based features

Displacement-based features represent the features obtained as a result of a shift

in position of a human joint either with reference to a fixed position or change
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through time. These features are computed as follows:

1. Spatial displacement between selected skeletal joint coordinates is computed

as the Euclidean distance feature, f1, between any two joints described in

Equation 4.2. The joints are selected based on relevance to activities.

f1 =

√∑
x,y,z

(jm − ji)2, (4.2)

for 1 ≤ (m,i) ≤M and m 6= i. jm and ji are any pair of selected joints with

coordinates x, y, z.

2. Temporal joint displacement features consider the 3D consecutive motion of

joints, f2, and the overall motion dynamic of joints, f3, features through an

activity. f2 is computed as the joint coordinates position difference between

the current pose c and its preceding pose p in Equation 4.3 and f3, as the

temporal difference between the each joint current pose from the initial pose

J1 in Equation 4.4.

f2 = [jcm − j
p
m−1]; for jcm ∈ J cn and jpm−1 ∈ Jpn (4.3)

f3 = [jcm − jm]; for jcm ∈ J cn and jm ∈ J1 (4.4)

4.2.2.2 Statistical features in time domain

This is computed as the projected difference of joint coordinates of the current

pose J cn (also referred to as the current activity frame) from the mean, variance,

standard deviation, skewness and kurtosis of joint coordinates for an activity.

These features are computed as follows:

1. Joint coordinate-mean difference;

f4 = jm − jmean (4.5)
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where the mean of all positions for a joint coordinate is jmean = 1
N

∑N
m=1 jm

and N is the number of poses in an activity.

2. Joint coordinate-variance difference;

f5 = jm −
∑N

m=1(jm − jmean)2

N
(4.6)

3. Joint coordinate-standard deviation difference;

f6 = jm −

√∑N
m=1(jm − jmean)2

N
(4.7)

4. Joint coordinate-skewness difference;

f7 = jm −
∑N

m=1(jm − jmean)3

(N − 1)σ3
(4.8)

where σ refers to the standard deviation of each joint coordinate for all

poses in an activity.

5. Joint coordinate-kurtosis difference;

f8 = jm −
∑N

m=1(jm − jmean)4

(N − 1)σ4
(4.9)

All activity feature vectors computed are concatenated to form a matrix, F , of

extracted activity features in which the columns correspond to feature vectors

and the rows correspond to features extracted from different frames of activities.

F is represented by the following;

F = {f1, f2, . . . , f8} (4.10)

4.2.3 Features Normalisation

HAL systems can be problematic if the extracted features are not well

processed. This is due to the heterogeneity in features. A further pre-processing
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of extracted features is needed to deal with the issue of features heterogeneity

before classification. This is done through feature normalisation which is often

applied in many ML applications [19, 113]. Normalisation of each feature in the

activity features matrix obtained in Equation 4.10 is done according to:

Fnorm =
f ′,cn −min(f ′N)

max(f ′N)−min(f ′N)
(4.11)

where f ′,cn is a feature from the column feature vector, f ′, of the current pose Jn.

The obtained feature matrix after normalisation becomes Fnorm.

4.2.4 Feature Selection

Feature selection is performed on the normalised activity features matrix.This is

important to any learning model as it enables faster training, reduces over-fitting,

improves accuracy and reduces model complexity (making it easier to interpret

[19, 45]. In this work, a filter method for feature selection known as Relief-F

[65] is applied. Filter methods are preferred to other methods such as wrapper

methods since they do not require a fixed learning mechanism and therefore have

more generalisation across different learning models [45].

The Relief-F method uses a statistical approach rather than heuristic to

provide relevance weights to rank potential features. The features ranked above

a set threshold are selected for the model. In this chapter, the threshold is

determined from the number of features that provide the best substitution

accuracy with the learning model. The performance achieved using the selected

features is presented in the experimental results in Section 4.4.

4.3 Classifier Ensemble Model

The final stage in developing an activity learning system is training a classification

model with the selected features to achieve a good learning performance score. In

the work presented in [38], a selection of learning models were used separately to

identify activities. This thesis employs a combination of different learning models

in a framework referred to as a bagging ensemble of classifiers in order to achieve
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Figure 4.6: Overview of weighted voting architecture of classifier ensemble.

an improved performance of the system. The use of an ensemble of classifiers

model generally allows for better predictive performance than the performance

achievable with a single model [30, 137]. According to [116] Ensemble Models,

are learning models that construct a set of classifiers used in classifying new

information based on a weighted vote of individual classifier predictions. Three

base classifiers are used in this work to construct a bagging ensemble of classifiers;

Multi-class Support Vector Machines (SVM), K-Nearest Neighbour and Random

Forest classifiers. The pictorial overview of the bagging ensemble method applied

is shown in Figure 4.6.

The weighted votes works by computing the weighted majority vote q̂, through

allocation of weights ωr to each classifier Cr.

q̂ = arg max
i

3∑
r=1

ωr × (Cr(s) = i), (4.12)

where Cr(s) is a classifier characteristic function in a set of unique classifier labels.
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The weights assigned to individual classifiers in the ensemble are computed

during the learning phase by weighted votes. At the initial stage uniform

weights are set and updated at each iteration of cross-validation. The updated

classifier weights used in succeeding iterations are computed as ratios of the

average precision obtained in the preceding iteration of each classifier in the

ensemble.

The multi-class SVM model follows the configuration reported in [24] which

is an extension of a binary classifier. A one against-one approach based on the

construction of several binary SVM classifiers suitable for Y classes contained

in a dataset (Y > 2) is implemented as one of the base classifiers. The K-

NN classifier algorithm is one of the simplest ML algorithms used in classifying

observations based on the closest training points in the feature space. An instance

of observation is assigned to a class most common among its k nearest neighbours

by a majority of votes of its neighbours, where k > 0. Euclidean distance is used

in most cases as a metric in finding nearest neighbours. In the proposed HAL

model, a value of k = 5 nearest neighbour is used in the configuration. Random

Forest classifier consist of an ensemble of decision trees where each decision tree

is trained from randomly selected samples of an original training set. In this

work, RF is used with 10 decision trees. The configuration used is similar to [89]

implementation of RF.

4.4 Experiments and Evaluation

To evaluate the performance of the HAL system, data collected from our

experimental setup is used. This is used in order to verify the HAL system via a

limited test performed before it is tested on public datasets. Afterwards, the

system is also evaluated using publicly available benchmark human activity

dataset, Cornell Activity Dataset (CAD-60) [112]. The following sections

describe the experiments conducted in this work and discussion of the results

obtained.
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4.4.1 Experimental Setup

Skeletal data is collected from three actors using a Microsoft Kinect V2 RGB-

D sensor as mentioned previously in Section 4.2.1. The data is obtained at a

frame rate of 30 frames per second (fps). Four activities are carried out namely;

Brushing teeth, Pick up object (from the ground), Sit on sofa and Stand up. Each

actor performs a single activity for a duration of 45 - 90 seconds. Sitting on sofa

activity is performed by an actor going through a sequence of sitting and getting

up poses with more time spent in the sitting pose. While the Stand up activity is

performed in a similar way with more time spent staying standing. The summary

of the data collected is presented in Table 4.1.

The data acquired is pre-processed following the process earlier mentioned in

Table 4.1: Summary of experimental human activity data collected from 3
actors using Microsoft kinect V2 RGB-D sensor. Activities performed comprise:
Brushing teeth, Pick up object, Sit on sofa, Stand up.

Activity
Number of frames

Actor 1 Actor 2 Actor 3
Brushing teeth 2202 1876 1781
Pick up object 1804 1663 1355
Sit on sofa 1489 1672 2736
Stand up 2126 2059 2100
Total 7621 7270 7972

Table 4.2: Activity features computed from raw RGB-D sensor information of
skeleton with 15 joints used in this work.

Feature description Feature label
Spatial displacement δ between both hands, hands and
head, hands and feet, shoulders and feet, hip and feet.

1− 9

Temporal joint coordinate displacement tcp 10− 54
Temporal joint coordinate displacement tci 55− 99
Joint coordinate-mean difference j(i,mean) 100− 144
Joint coordinate-variance difference j(i,var) 145− 189
Joint coordinate-standard deviation difference j(i,std) 190− 234
Joint coordinate-skewness difference j(i,skw) 235− 279
Joint coordinate-kurtosis difference j(i,kur) 278− 324
Total number of computed features 324

76



4. Human Activity Learning and Recognition for Assistive Robotics

Section 4.2.1. Key features representing activities are extracted from the

processed data. Table 4.2 shows the number of activity features computed from

the RGB-D sensor skeleton with 15 joints. The number of joints used in

computing spatial displacement features are selected based on the importance of

the joints while carrying out the selected activities. Nine features are computed

which represent the Euclidean distance between both left and right hands, each

hand and head, each hand and its corresponding foot, each shoulder and

corresponding foot, each hip and corresponding foot. The other features are

obtained for each joint coordinate- given that 15 joints are used, each feature

description comprises 15× 3 = 45 features extracted.

Features selected from the experimental dataset are fed into the learning

model to test the performance of the system. A K-fold cross-validation test

strategy is applied with K = 4. This involves splitting the data into 4-folds in

which 3-folds are used as training data for the model and the remaining fold is

left out for validation. This process is repeated using each fold for validation

and the final result is the average performance of all test validation folds.

4.4.2 CAD-60 Dataset and Experiment

The CAD-60 dataset comprises RGB-D sequence of human activities acquired

using an RGB-D sensor at a frame rate of 15 fps. The dataset contains RGB

image, depth image and skeleton joint coordinates information of 15 skeletal joints

of activities carried out. However, the proposed HAL system utilises only the

skeleton joint coordinates information. Four different actors perform 12 activities

in five different locations namely; bathroom, bedroom, kitchen, living room and

office. The activities performed are; Rinsing mouth, brushing teeth, wearing

contact lens, talking on the phone, drinking water, opening pill container, cooking

(chopping), cooking (stirring), talking on couch, relaxing on couch, writing on

whiteboard, working on computer and a random + still activity. The random

+ still contains random movements sequence and a still pose performed by each

actor. The stages described in the proposed HAL system are applied, with the

CAD-60 dataset as raw input to the system. The same number of features as

shown in Table 4.2 are computed from the dataset.
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Table 4.3: Performance of the proposed HAL system on experimental dataset
comprising four activities: Brushing teeth, Pick up object, Sit on sofa, Stand up.

Activity
Performance result

Precision (%) Recall (%)
Brushing teeth 40.38 62.19
Pick up object 100 94.69
Sit on sofa 100 100
Stand up 54.10 35.13
Average 70.65 68.43

Learning the activities is done as a grouping of activities in the various

locations. The grouping shown in Table 4.4 follows the format used by all

approaches reported in the state-of-the-art in [27]. For testing the trained

model, a method of leave-one-out cross-validation is carried out in which the

model is trained on three actors and tested on the unseen actor. This is also

called a new person test strategy.

4.4.3 Evaluation and Discussion

The proposed HAL system is evaluated on both datasets mentioned in Sections

4.4.1 and 4.4.2 following the test methods described. The CAD-60 dataset tests

are performed following similar test methods described by [112] and other

approaches by the state-of-the-art in [27]. Test results and discussions are

presented in the following sections.

4.4.3.1 Experimental Dataset Results and Evaluation

Table 4.3 shows the results obtained from the performance of the HAL system on

the experimental dataset. These are presented in terms of Precision and Recall.

The system achieves an overall average precision of 70.65% and recall of 68.43%

with the dataset. In Figure 4.7, the confusion matrix shows the percentage of

correctly classified activities along with the percentage of false classified activities.

It can be noted that the performance in activities of Pick up object with recall

of 94.69% and Sit on sofa with recall of 100% are quite impressive. However, the

model did not perform as impressively in correctly classifying brushing teeth and
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Figure 4.7: Confusion matrix of the proposed HAL system on experimental data.

stand up activities activities. This is due to the fact that the both activities have

closely related poses as brushing teeth is performed while in a stand up pose. This

gives rise to more stand up data - i.e. 64.87% - characterised as brushing teeth

which affects the overall performance achieved. In order to adequately test the

robustness of a supervised learning system, the availability of more data samples

is required for proper training and validation of learning models. However, the

experimental dataset collected contains fewer data samples when compared with

other human activity datasets such as the CAD-60 dataset. This can also be a

reason for the performance achieved on the experimental dataset. Therefore, the

HAL system is also tested with the CAD-60 dataset which contains more samples

of human activity.

4.4.3.2 CAD-60 Dataset Results and Evaluation

The results obtained from the performance of the proposed HAL system on the

dataset are shown in Table 4.4. This is presented in terms of Precision and

Recall of the HAL system. The proposed system achieved an overall average

performance of 92.32% precision and 89.66% recall with features selected using

the Relief-F feature selection method described earlier and a performance 90.96%

precision and 88.52% recall when all the features extracted are used. In Table 4.5,

the result from different locations are shown. When compared with the results
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in Table 4.4, the system achieved a better performance with selected features

than with all the features as reported in Table 4.5. Table 4.6 shows the proposed

system performance compared to the state-of-the-art performances on the same

Table 4.4: Performance of the HAL system with selected features on the CAD-60
dataset using a “new person” test in different locations: Bathroom, Bedroom,
Kitchen, Living room and Office.

Location Activity
Proposed HAL system
Prec. (%) Rec. (%)

Bathroom

Rinsing mouth 100 99.97
Brushing teeth 96.97 75.16

Wearing contact lens 54.48 92.68
Random + still 99.98 100

Average 95.72 93.41

Bedroom

Talking on phone 98.58 74.55
Drinking water 91.47 60.99

Opening pill container 15.39 66.55
Random + still 100 100

Average 94.37 84.01

Kitchen

Drinking water 92.96 74.81
Cooking (chopping) 31.04 66.67
Cooking (stirring) 78.43 77.52

Opening pill container 74.49 75.49
Random + still 100 100

Average 86.85 84.76

Living room

Talking on phone 82.36 88.29
Drinking water 86.93 74.14

Talking on couch 94.27 100
Relaxing on couch 100 100

Random + still 100 100
Average 94.37 94.41

Office

Talking on phone 67.06 93.42
Writing on board 87.36 73.19
Drinking water 100 83.84

Working on computer 100 100
Random + still 100 100

Average 93.28 91.71
Overall average 92.32 89.66
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Table 4.5: Performance of the HAL system with all features extracted from the
CAD-60 dataset using a “new person” test. This shows the average performance
from different locations

Location
Performance result

Precision (%) Recall (%)
Bathroom 91.36 90.37
Bedroom 86.72 83.43
Kitchen 86.38 83.54
Living room 95.95 94.36
Office 94.41 90.92
Overall average 90.96 88.52

Table 4.6: Overall average precision and recall of the HAL system with the state-
of-the-art on the CAD-60 dataset in a “new person” setting as reported in [27].
The extended modality column indicates the mode of RGB-D information used by
different works i.e. Skeletal joint coordinates only (-) or skeletal joint coordinates
with a combination of either RGB image and depth image modes (3).

Method Prec. (%) Rec. (%) Extended modality
Sung et al. [112, 113] 67.9 55.5 3

Piyathilaka and
Kodagoda [96]

70.0 78.0 -

Yang and Tian [135] 71.9 66.6 3

Ni et al. [88] 75.9 69.5 3

Gaglio et al. [41] 77.3 76.7 -
Gupta et al. [46] 78.1 75.4 3

Koppula et al. [68] 80.8 71.4 3

Nunes et al. [89] 81.83 80.02 -
Zhang and Tian [139] 86.0 84.0 3

HAL system (with all
features)

90.96 88.52 -

Faria et al. [38] 91.1 91.9 -
Parisi et al. [94] 91.9 90.2 -
HAL system (with
selected features)

92.32 89.66 -

Zhu et al. [146] 93.2 84.6 3

Shan and Akella [102] 93.8 94.5 -
Cippitelli et al. [24] 93.9 93.5 -
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dataset [27]. The table also shows information of the state-of-the-art works which

employ extended modality of RGB-D sensor information which is a combination of

skeletal joint coordinates information with either of RGB image and depth image

sensor information modes. The proposed HAL system’s performance indicates

the features extracted in our system sufficiently discriminate the human activities

from skeletal joints information.

Comparison of the proposed HAL system’s performance with the

state-of-the-art based on the CAD-60 dataset is presented in Figure 4.8. The

results show that the proposed system is able to attain an impressive

performance. While some other proposed systems performance outperforms the

HAL systems performance, the proposed HAL system differs from the other

better performances in the following ways. The system proposed by [146]

reported a performance of 93.2% precision and 84.6% recall. Although their

precision exceeds that of the proposed HAL system, our system performs better

in terms of recall. Also, the system by [146] uses a fusion of spatio-temporal

interest point features obtained from combination of RGB-D sensor information

modalities, i.e. depth image, RGB image and skeleton information as indicated

in Table 4.6. This process can increase computational cost. The proposed HAL

system utilises only the skeleton information offered by the RGB-D sensor to

achieve such high performance. This shows that by adding more information for

computer vision processing our system has the potential to achieve a higher

performance.

Based on the results presented in Table 4.6, the performance attained by

[102] slightly out performs our proposed HAL system. This approach performed

tests excluding the random + still activity performed by all actors in the dataset

which is included in the tests performed using the proposed HAL system. This

information is relevant in generalising the robustness of the system across varying

human activities.

The proposed system by [24] on the CAD-60 dataset attained a higher

performance of both precision and recall of 93.9% and 93.5% respectively. Their

system is tested with the dataset in a similar way observed in the system by

[102] which excludes test on the random + still activity. Another reason could

also be due to the fact that the proposed HAL uses all 15 skeleton joints of the
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CAD-60 dataset whereas [24] used 11 selected skeleton joints to achieve the high

performance. The selected joints do not include relevant joints such as the

shoulders which are needed for our proposed application in assistive robots

effectively executing human activities via TL. However, the HAL system with

15 skeletal joints achieves higher performance when compared with the 87.9%

precision and 86.7% recall of [24] using the same number of joints.

With the performance achieved using the proposed HAL system with both

experimental and publicly tested CAD-60 datasets, this shows the systems

potential in applications of assistive robots learning of human activities.

4.4.3.3 Comparison of Classifier Ensemble with Single Classifier

Performance

The method of using a classifier ensemble as proposed in this work shows the

increase in activity learning accuracy when compared with other proposed

methods using single classifiers. Table 4.7 shows the performance of the

proposed classifier ensemble method with other methods which apply single

classifiers in learning human activities. Also, it can be noticed that majority of

the other approaches apply SVM in recognising human activities which is also

used in the proposed classifier ensemble method and results show the classifier

ensemble outperforms the other single classifier methods. In addition, the

Table 4.7: Proposed classifier ensemble method performance comparison with
single classifier performance on CAD-60 dataset

Proposed by Method Prec. (%) Rec. (%)
Yang and Tian [135] Naive Bayes

Nearest Neighbour
71.9 66.6

Ni et al. [88] Latent SVM 75.9 69.5
Gaglio et al. [41] SVM 77.3 76.7
Koppula et al. [68] Structural SVM 80.8 71.4
Nunes et al. [89] RF 81.83 80.02
Zhang and Tian [139] SVM 86.0 84.0
Parisi et al. [94] Neural Network 91.9 90.2
HAL system Classifier

Ensemble
92.32 89.66
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classifier ensemble approach proposed also has the benefit of attaining higher

accuracies with a small amount of training samples. This has an advantage over

other widely used methods such as deep learning neural networks [56] which

require a lot of data and more time in training such networks for concise

predictions.

4.5 Discussion

The work presented in this chapter proposes a novel system for human activity

learning with the use of skeletal data obtained using an RGB-D sensor. The

work has shown explicitly the process of refining the raw sensor data obtained,

computing relevant features and training the learning model. The main objective

of this work is to have an activity learning system which is able to distinctly

recognise activities as they are performed. The system can then be incorporated

in an assistive robot to aid learning to perform the activities. The performance

attained by the proposed system on the CAD-60 benchmark dataset shows its

reliability if used with an assistive robot.

Although a selection of three base classifiers are used in building the

ensemble model, this could be extended to include more classifiers which may

improve performance and also deep learning neural networks which are

increasingly used in human activity recognition systems. The system could also

be extended to learning activities on-the-fly as they are carried out by an actor.

The direction of research following this chapter is to segment different aspects of

each learned activity into representations that any assistive robot platform can

adopt in reliably executing human activity. This is presented in the following

chapter.
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Chapter 5

Adaptive Segmentation and

Sequence Learning of Human

Activities

5.1 Introduction

There are two main categories of learning algorithms suitable for human

activity learning: Batch learning and Sequence learning. Classical batch

learning algorithms predict output for new data when a complete training set of

data is used. In this case, the new data samples are presented simultaneously

when desired. However, a complete training dataset is often not available in

advance for most practical applications. In applications such as human activity

prediction [72], healthcare monitoring [91] and industrial functions [114] in

which temporal changes within a task are being observed, the classical batch

learning algorithms are rather infeasible for learning. Sequence learning is

executed in a series of occurrences of samples within a given training dataset.

Samples are used in the algorithm one after another and discarded after

learning. This implies that the computational time and memory required for

learning is reduced, and the learning process can accommodate temporal

changes associated with tasks [114]. In most cases of humans executing tasks,

the path of actions may vary, however, each path contains approximately a
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similar order of true segments. To effectively learn such sequences of tasks,

there are two key challenges which are often encountered. Firstly, the

segmentation of tasks wherein given the observed task path, the start and end

positions of constituent actions through the path are identified. Secondly, the

sequential learning of essential underlying actions [76]. The task segmentation is

critical in sequence learning for modelling and interpreting tasks information as

it facilitates the adaptation of learning sequences in unseen situations [69].

The remainder of this chapter is organised as follows: Section 5.2 presents

an overview of segmentation and sequence learning of activities. Section 5.3

describes the research methodology explaining an overview of the proposed

framework. In Section 5.4, the method proposed in this work for unsupervised

human activity segmentation is presented and Section 5.5 follows with a

description of the sequence learning method used in learning the activity

segments constructed. Section 5.6 describes the application of the proposed

model to human activity datasets and the results obtained. In Section 5.7, the

performance of the proposed ASSL is compared with other sequence learning

approach and conclusions of the work are drawn in Section 5.8.

5.2 Overview of Segmentation and Sequential

Modelling of Activities

There is a growing interest in research related to learning human activity

sequences. This section presents a review of relevant works in two categories;

the segmentation of human activities for detecting constituent actions, and

activity modelling through sequential learning/prediction.

5.2.1 Action Detection and Segmentation

Most of the proposed activity recognition models [98] can attain impressive

performances in their respective areas of application. The majority focus on

supervised approaches to activity recognition in which there is a sufficient

amount of labelled data available to build training models. However, in

real-world situations where obtaining labels for activities is a rather daunting
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task, supervised methods for activity recognition may not be feasible [104]. On

the other hand, unsupervised learning methods, like clustering [25] are best

suited for such applications.

An aspect of activity recognition which tends to be a challenge for many

systems is detecting underlying/constituents actions in activities. This

information is important in determining the structure of activities which is

important when considering trends or sequences in such activities [72].

Therefore, segmentation is performed on data to obtain partitions which

represent certain characteristics in activities. This is a vital step in investigating

activity sequences. Existing approaches to segmentation of human activity

differ in terms of the following categories [3, 4]; the activity types that are

modelled, the sensing technology used to acquire information and the

Computational Intelligence (CI) methods used in the segmentation process.

With a focus on Human Activity Recognition (HAR) from 3D human

skeleton joints information, i.e. the joint positions or angles, different methods

have been proposed for detecting actions in an activity. The authors in [72]

proposed a method for detecting atomic actions which they call actionlets using

motion velocity. The method combined the Harris corner detector and Lucas

Kanade (LK) optical flow to get velocity magnitudes. Some works using the

kinetic energy poses to determine key poses in activities are found in [89, 102].

These methods then apply different Machine Learning (ML) algorithms for

classification of actions obtained for activity recognition.

5.2.2 Sequential Modelling of Activities

Sequence learning algorithms are used for the analysis of patterns generated

through a series of observed information for recognition or classification of

activities [145]. Researchers have studied sequence learning over many decades.

This led to the development of statistical models such as Hidden Markov

Models (HMM) [40, 99] and Autoregressive Integrated Moving Average

(ARIMA) [34] which were introduced for time series and temporal pattern

recognition problems [28]. Recurrent Neural Networks (RNNs) have since

evolved to solve sequence prediction problems due to their recurrent lateral
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structure. Long-Short Term Memory (LSTM), a type of RNN, have a unique

ability to selectively pass information across time and are able to model

significantly long-term dependencies due to the gating mechanism they possess

[53]. LSTMs also can deal with the vanishing gradient problem. This has seen

impressive performances in a variety of real-world applications.

Concerning human activities, attempts to model human activity sequences

have been studied by various researchers [85, 131] using different temporal

models for HAR. Discriminative models for example, Conditional Random

Fields (CRF) are employed in modelling human actions. The CRF is used in

[50] to estimate motion patterns that correspond to manifold subspace of 3D

joint position features for human action recognition. Generative models are also

used for modelling human actions. HMM is used over predefined motion

features of 3D joint positions to learn the dynamics of human actions [81].

Similar approaches employing generative models to model activities are also

proposed in [90, 102]. The 3D joint positions obtained through skeleton tracking

tend to be noisy. Therefore, when the change between actions is small, without

the accurate selection of features, recognising precise action states becomes

difficult. This tends to undermine the performance of generative models. Such

models require an adequate amount of data for training as they are prone to

over-fitting. Dynamic Time Warping (DTW) [23] is another solution used in

modelling actions by defining the distance between two temporal sequences of

activity actions. The learning can then be achieved through nearest-neighbour

classification. However, the performance of DTW is dependent on a good

measure of the samples similarity. It could also suffer from temporal

misalignment when handling periodic actions which could lead to degrading its

performance [73].

These works demonstrate the effectiveness of segmentation and sequence

modelling in exploring the underlying patterns in sequential data. Following

from the identification of key actions, the non-parametric segmentation of 3D

skeletal data of human activities obtained. This is then used in an LSTM model

for the prediction of activity actions. In the following section, the problem

statement is described and key definitions used in this work are presented.
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Figure 5.1: Overview of the proposed approach to the Adaptive Segmentation
and Sequence Learning (ASSL) of human activity.

5.3 Methodology

To address the challenges of segmentation and sequence learning of human

activities, a novel framework for Adaptive Segmentation and Sequence Learning

(ASSL) is proposed using visual information of activities. An overview of the

ASSL framework is depicted in Figure 5.1. There are three distinct steps in the

proposed ASSL framework as described below:

1. Initially, key actions from observed human activity information are

obtained. Human activities contain a large number of actions for which

only the key aspects are relevant. By exploiting the temporal accumulated

motion energy of each action through the sequence, the key actions can be

extracted from the points of change in acceleration and deceleration of

activity motion.

2. While segments of activities can be inferred from manual annotations, this

creates a burden in supervised situations where high-dimensional data would

require large amounts of annotations to obtain feasible segments which can

be learned. A non-parametric technique for feature space analysis is applied

for unsupervised segmentation of relevant activity actions.

3. From the segments obtained, a Recurrent Neural Network (RNN) method

for sequence learning called Long Short-Term Memory (LSTM) is used to

learn activity sequences.
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Figure 5.2: An illustration of learning underlying patterns of simple primitive
human activity sequences from 3D temporal information.

Figure 5.2 illustrates the underlying concept of how human activity patterns

can be inferred and learned from processing extracted visual 3D information. This

work will benefit applications which require learning the underlying sequences in

human actions through activities.

5.3.1 Definitions

Given a set of observed human activities A = {a1, a2, . . . , an, . . . , aN} performed

by actors, the observations are obtained using an RGB-Depth (RGB-D) sensor.

Each demonstration of an activity an within the observed activities set is a discrete

time sequence of activity poses. An activity pose Jn as represented by:

Jn = [j1, j2, . . . , jm, . . . , jM ], for J ∈ R3×M , (5.1)

is a feature space which represents 3D human skeleton joints with coordinates. M
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represents the total number of joints in Jn with each joint, jm, with coordinates

xm, ym, zm corresponding to horizontal, vertical and depth positions respectively.

Definition 5.3.1. Key action, J is defined as the important atomic level action

performed during an activity. Key actions extracted from an activity represent a

subset of poses J ⊂ an, for n = 1, 2, ..., N , which occurs in varying time instants

of an executed activity.

Definition 5.3.2. Activity segmentation is defined by a function C in which

each key action, J b, b = 1, 2, ..., B, of an activity an is assigned a value, Qz,

z = 1, 2, ..., Z, corresponding to a unique activity segment represented as:

C : an 7−→ (J b)1,2,...,B, for J b ∈ Qz (5.2)

where b is the index of the key action through the activity sequence and B is the

number of key actions contained in an. Each segment derived comprises similar

activity key actions through a temporal sequence.

Definition 5.3.3. Activity action sequence, S, is defined as the temporal

ordering of all B key actions obtained from activity an. A repetition of similar

key actions may be observed in the sequence at points where an contains actions

which are repeated at different temporal instances. A representation of this

definition is presented as:

S = (J b)
B
b=1 (5.3)

5.3.2 Assumptions

For the research presented in this chapter, certain assumptions are made. They

are:

- The observed sequence of a human activity comprises of unlabelled atomic

actions which this work aims to identify through a process of adaptive

segmentation.

- The number of key poses JB that make up an activity is not given. This

is drawn from the fact that each activity can be segmented into key poses
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which make up for the relevant aspects that define the activity. However,

this number is not pre-defined from activity observations in the proposed

model.

5.3.3 Problem Statement 1

Given an observed sequence of a human activity obtained using an RGB-D

sensor, the first phase is the segmentation of an unlabelled sequence into

meaningful representations of similar actionlets. The segments obtained

represent a collection of similar actions which may (or may not) fulfil temporal

order relationship constraints.

The task of segmentation from an unlabelled activity sequence is addressed in

this work using an adaptive approach to segmentation. The following steps are

proposed for use in obtaining the function C for the segmentation of an activity.

Detection of key actions (or poses): Key actions of an activity are relevant

in the process of learning an activity sequence. This is mainly because an

activity can be executed in different forms whilst certain key aspects through

the observation of an activity can uniquely identify it. As mentioned in the

Introduction section, the motion energy feature of actions through an activity

can be used in obtaining these key actions. The key actions are therefore

identified by applying a filtering method of moving average crossovers of the

motion energy. The description of how this is implemented is presented in the

next Section.

Non-parametric feature space clustering: The key actions obtained from

the filtering process of the motion energy feature are clustered using a Mean-

Shift feature space analysis method. This method performs the clustering in

terms of similarity of the motion energy of key actions.

5.3.4 Problem Statement 2

To learn the sequence S of transition of actions from one activity segment to

another, it is important to note that an activity is not executed in only one

possible sequence. An activity can be executed with different temporal orders of
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Figure 5.3: Architecture of the proposed ASSL approach for human activities
from 3D skeleton information which comprises activity input, segmentation and
sequence learning stages respectively.

constituent actions. This results in a challenge of learning a generalised sequence

for an activity.

The sequence of actions from one segment to another occur in intervals. The

LSTM-RNN algorithm, which is predominantly used in predicting time series, is

applied in learning the sequence of distinct actions within the activity segments.

This method is used as the algorithm is able to capture infinitely long sequences

and predict succeeding occurrences based on the memory gates.

The architecture of the ASSL approach for human activities from 3D

skeleton information as proposed in this thesis is depicted in Figure 5.3. This

comprises three stages of activity data input from an RGB-D sensor,

segmentation of human activity and sequential learning and prediction. Details

of these stages are provided in the proceeding sections.
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5.4 Activity Segmentation

Segmentation of human activity is relevant in the analysis of trends in transitions

from one activity state to another. This section describes the process of activity

segmentation using the extracted human activity information.

5.4.1 Key Action Point Detection with Motion Energy

Human activity consists of movement sequences generated by different body

parts. It is worth noting that not all aspects of an activity movement sequence

are necessary to define an activity. Certain aspects of the sequence can be

executed in different forms and still result in a similar activity. To simplify an

activity to the relevant action points that constitute the sequence, key poses are

selected. This is achieved by leveraging the motion energy obtained from

activity sequences.

5.4.1.1 Extraction of Motion Energy

The motion energy of activity poses as first proposed by [102] is based on the

fact that joints show changes in acceleration and deceleration through an

activity. This information is significant when considering the identification of

the key action points of activities. Following from the representation of an

activity pose given in Equation 5.1, the motion energy El for each pose is

computed as the sum of motion energies for each joint in the pose;

El(Jn) =
M∑
m=1

El(jm) (5.4)

where jm is a joint in the pose. It is assumed that the mass of all joints to be

equally one unit due to the fact that it is impossible to obtain the actual mass

of a joint from the information obtained using RGB-D sensors. Computing the

joint velocities using the temporal change ∆T in the position d of joints during
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an activity, the motion energy can be expressed as:

El(Jn) =
1

2

M∑
m=1

(vjm)2 (5.5)

where, vjm represents the velocity of joint jm and is expressed as vjm = dcm−d
p
m

∆T
,

dcm is the current joint position and dpm is the previous joint position. By

substituting vjm in Equation 5.5, the motion energy of each joint is computed

using the following equation:

El(Jn) =
1

2

M∑
m=1

(
dcm − dpm

∆T

)2

(5.6)

5.4.1.2 Moving Average Crossover of Motion Energy

The Moving Average (MA) is a filtering technique often applied to get overall

trends in data. This technique is used to highlight long-term cycles in time series

data by smoothing out short-term variations [31]. It works by creating series of

averages of different time windows from a dataset over a given distribution.

Most of the works employing motion energy for identifying key action points

of activities set threshold values of energy from a random exploration of selected

points in order to extract the relevant points of interest in an activity [89, 102,

144]. The energy thresholds are selected by repeated experiments of different

threshold values and the observations below the threshold value are selected as

key poses. The MA of the extracted motion energy of poses are used in filtering

the motion energy signal extracted from an activity sequence.

A different approach is proposed to use crossovers of two Simple Moving

Averages (SMA) of the extracted motion energy in identifying the relevant key

poses of an activity. The SMA is an un-weighted mean of a set of data points.

This is taken from equal sets of data to ensure variations in the mean and data

points are aligned and not shifted in time. Given the motion energy obtained in

Equation 5.4, the SMA for the motion energy signal of an activity can be
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computed using the following expression:

SMA =

∑α−1
r=0 El(Jn)t−r

α
(5.7)

where α is the value of the period selected for MA and t− r is the position of the

selected observation within α. This is expressed in a simplified form as follows;

SMAEl =
El(Jn)t + El(Jn)t−1 + ...+ El(Jn)t−(α−1)

α
(5.8)

Two moving averages are selected in this work - a short-term average (fast

moving average) αf and a long-term moving average (slow moving average) αs.

The MA crossovers are obtained from points where the SMAs for both αf and αs

intersect. These points indicate significant changes in motion energy of activity

poses and are used as reference points for their corresponding key actions in an

activity sequence as presented in the following equation.

Jb = SMAαs ∩ SMAαf (5.9)

Following the acquisition of the key action points, activity segments are obtained

by application of a non-parametric feature space analysis technique - In this case,

mean-shift clustering for associating key actions to clusters of similar actions.

5.4.2 Non-Parametric Clustering for Segmentation

Prior to learning the sequence of actions in an activity for prediction, it is

necessary to know the segments that make up an activity. This information is

not easily determined by mere observation of the key actions obtained from

exploration of the motion energy feature. Also, the number of segments that

can be defined for an activity can vary depending on the sequence observed.

Therefore, the use of a non-parametric method of clustering key actions is

proposed to determine the number of segments in an activity sequence and

assign the obtained key actions to their respective segments before learning can

be achieved. A mean-shift clustering approach is adopted here [25]. The

mean-shift approach builds upon the concept of Kernel Density Estimation

(KDE) [95] which estimates the hidden distribution for a dataset by placing a
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Algorithm 2 Segmentation of human activity from joints coordinate skeleton
information.
Input:

Instances of 3D skeleton joints coordinate of human activities
A = {a1, a2, . . . , an, . . . , aN}, in which each observation of activity an
is a pose Jn = [j1, j2, . . . , jm, . . . , jM ];
Activity time window t;
Moving average periods αs, αf ;

Output:
Activity segments obtained as a function C for assigning each key action to
a segment;

Procedure:

1: for an, n = 1 to N do
2: Find the velocity of each observation Jn within t;
3: Compute the motion energy for Jn: El(Jn) =

∑M
m=1El(jm);

4: Compute the simple moving average of the motion energy with the periods

αs, αf : SMA =
∑α−1
r=0 El(Jn)t−r

α
;

5: Key action points, Jb = SMAαs ∩ SMAαf ;
6: end for
7: Assign J b to a cluster Qz which is determined by a non-parametric mean-shift

clustering technique;
8: return QZ = C(J b).

kernel on each point contained in the dataset. The description of the mode of

application for the proposed segmentation of human activity is provided below.

Given B key action points, Jb, b = 1, ..., B, on a 2-dimensional space computed

for an activity. As described in Section 5.4.1, these points correspond to the

motion energies of key action positions. The kernel density estimate for the key

action points with kernel K with a bandwidth parameter h is:

f(J) =
1

Bh2

B∑
b=1

K

(
J − Jb
h

)
(5.10)

with K satisfying the following two conditions:

1.
∫
K(J)dJ = 1, and

2. K(J) = K(|J |) for all values of J .
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The first condition is required to ensure normalisation of the density estimate

while the second condition relates to the symmetry of the data space containing

all key action points of an activity. By applying a Gaussian symmetric kernel

function for K(J), the gradient of the density estimator in Equation 5.10 takes

the form:

∇f(J) =
2

Bh4

(
B∑
b=1

g

( ∣∣∣∣J − Jbh

∣∣∣∣ )
)
~X(J) (5.11)

where ~X(J) is the mean-shift vector pointing in the direction of increasing density

and is represented as:

~X(J) =

(∑B
b=1 Jbg

( ∣∣∣J−Jbh

∣∣∣ )∑B
b=1 g

( ∣∣∣J−Jbh

∣∣∣ ) − J
)

(5.12)

and g(|J |) is the derivative of the Gaussian kernel.

With the KDE computed, the mean-shift procedure is carried out by

successive:-

– Computation of the mean-shift vector ~X(Jb) at the location of each key

action point Jb,

– Translation of each action point Jb → Jb + ~X(Jb),

– Repeat until convergence, that is, where the gradient density function is

zero.

Afterwards, the key action points identified at the same points are segmented

as belonging to the same cluster Qz. For further details of convergence, readers

are referred to [25]. Algorithm 2 list the procedure for activity segmentation

proposed in this thesis.

5.5 Sequence Learning and Prediction Model

The sequence learning stage involves the learning of activity sequences from the

segmented key actions. An LSTM network [53] is used to learn the long-term
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Figure 5.4: LSTM structure for sequential learning and prediction of key action
segments of human activity.

contextual dependencies between key actions of an activity. The segmented key

actions are used as input to the network for learning the dependencies between

the action segments. This is further extended to predicting sequential actions of

activities. Figure 5.4 illustrates the structure of an LSTM network as applied

in this work. The LSTM comprises of the following components: input gate it,

forget gate ft, a cell with a self-recurrent connection and output gate ot. The key

action segments obtained for an activity are normalised for standardisation of the

values, thus resulting in Qnorm = {J1Q1 , ..., JBQZ}norm. By taking Qnorm as input

to the network, the network is updated every t timestep by iterating through all

instances of the normalised key actions using the following equations;

it = σ(W i(J bQz(t)) + U iHt−1 + V i) (5.13)

ft = σ(W f (J bQz(t)) + U fHt−1 + V f ) (5.14)

ot = σ(W o(J bQz(t)) + U oHt−1 + V o) (5.15)

gt = tanH(W g(J bQz(t)) + U gHt−1 + V g) (5.16)
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ct = ft � ct−1 + it � gt (5.17)

Ht = ot � tanH(ct) (5.18)

where, σ(·) and tanH(·) are the sigmoid and hyperbolic functions respectively.

W,U, V are parameters of the LSTM model. The operation � denotes the

element-wise multiplication of two vectors. The use of LSTM is due to its

ability to map input activity sequences by recursively transforming current

inputs Qnorm with the output hidden vector of previous steps Ht−1. Also, the

vanish gradient problem inherent with RNN’s is overcomed by the memory cell

ct which is computed, allowing the error derivatives to flow in a different path.

5.6 Application of the ASSL Framework to 3D

Skeleton Data of Daily Human Activity

This section reports the experimental procedure and results of applications of

the proposed ASSL framework on 3D skeleton human activity datasets. To

illustrate the application of the proposed work of ASSL of human activity

sequences, the model proposed was applied to selected human activities. The

proposed model is adaptive to different activities and thus gives it the ability to

deal with complexities in activities.

To understand the methodology and its ability to solve the problems identified

in the earlier Sections 5.3.3 and 5.3.4, the following hypotheses are proposed and

evaluated.

Hypothesis 5.6.1. Where an unlabelled sequence of activity data is available,

the segmentation technique proposed can be used to identify unique segments of

an activity used for label assignments of actions in the sequence.

Hypothesis 5.6.2. Activity segments identified can be used to learn sequences

for prediction with a reliable performance.

To address these hypotheses, two activities are selected from two real world

human activity datasets; Dataset 1 - An experimental human activity dataset
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collected for this work and Dataset 2 - A benchmark public dataset, Cornell

Activity Dataset (CAD-60) [112].

5.6.1 Experimental Design and Datasets

The motivation for the proposed ASSL framework is to address the issue of

unlabelled sequences of human activities, in such cases where there is no

knowledge a priori of constituent actions and their order, whilst there is the

need to develop a system for identifying the patterns of activities. The

experimental design and datasets used in evaluating the proposed framework

are presented in this section.

5.6.1.1 Dataset 1 - Experimental Human Activity Dataset

The dataset generated to evaluate the proposed system in this work consists an

activity which involves a person picking up an object placed on a surface. A

Microsoft Kinect version 2 RGB-D sensor [86] is used to acquire the 3D joint

coordinate information of person. This information is obtained at 30 fps. This

activity is chosen due to the proposed work being focused on enhancing the

ability of assistive robots learning activity sequences for independent prediction

of actions. Figure 5.5 shows sample frames of the selected activity carried out by

a person.

To obtain adequate amount of data to evaluate the ASSL framework, the

activity is performed by three people. Each person is required to pick up an

object from a flat surface repeatedly eight to ten times while the joint positions

are recorded throughout the sequence. Table 5.1 shows the number of frames

acquired from each person while carrying out the activity.

Table 5.1: Experimental dataset acquired from three actors for an activity - pick
up object from a flat surface.

Activity
Number of frames

Total
Person 1 Person 2 Person 3

Pick up object 1804 1663 1355 4822

102



5. ASSL of Human Activities

Figure 5.5: Sample frames of pick up object activity obtained from the
experimental activity dataset using an RGB-D sensor.

Figure 5.6: Sample frames of drinking water activity obtained using an RGB-D
sensor contained in the CAD-60 dataset [112]. The sample shows RGB images
and the corresponding depth image with the tracked skeleton overlaid.

5.6.1.2 Dataset 2 - Cornell Activity Dataset (CAD-60)

The CAD-60 dataset [112] is based on human activity data obtained using an

RGB-D sensor. The dataset comprises three modes of human activities data,

RGB images, Depth images and 3D skeleton joint coordinates observed from a

person performing an activity. The skeleton joint data consists of joint

coordinates information of 15 joints. The dataset is recorded at a frame rate of

15 fps using a Microsoft Kinect sensor and includes recordings for 12 human
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activities namely; rinsing mouth, brushing teeth, wearing contact lens, talking

on the phone, drinking water, opening pill container, cooking (chopping),

cooking (stirring), talking on couch, relaxing on couch, writing on whiteboard,

working on computer and a sequence of random plus stationary activities. The

data is collected from four participants with each performing each activity.

Most applications of this dataset are based on activity classification and

therefore involve the use of all activities within the dataset. However, to

demonstrate the work proposed in this thesis, a single activity from the dataset

is selected and used in our evaluations. The activity chosen is the drinking

water activity as there are more motions involved in the activity when

compared to the remainder activities available in the dataset. This creates a

scenario with varying motion patterns to test the robustness of the framework.

Sample frames of varying actions occurring throughout the activity sequence are

shown in Figure 5.6. The samples show a person drinking water with the

tracked skeleton joints overlaid on the depth images. The activity is performed

repeatedly 2− 3 times.

5.6.2 Experimental Human Activity Dataset Results and

Evaluation

To evaluate the performance of the proposed framework on the experimental

dataset, it is implemented in stages, starting with the segmentation process -

the computation of motion energy, detection of key action points and the non-

parametric clustering for key action segmentation. This is then followed by the

sequence learning and prediction of the obtained key actions.

5.6.2.1 Key Action Identification using Motion Energy

Applying the approach to identifying key action points of an activity, the motion

energy is computed for 3D joint positions data obtained from each person. A

window size, ws, of one second is used which corresponds to 30 frames of activity

to compute the motion energy. Figure 5.7(a) shows the motion energy obtained

from person 1 of the experimental dataset. The figure shows the changes in
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(a)

(b)

Figure 5.7: Key action identification for pick up object activity from person
1 in the experimental dataset; (a) Motion energy plot for person 1 from the
experimental dataset. The energy is computed using a 1 second window
= 30 frames, (b) Motion energy plot with identified crossover points of two
moving averages which represent the identified key action points of the activity.
SMAαf = 15 and SMAαs = 30.
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the cumulative motion energy which is a result of continuous acceleration and

deceleration of body joints through the activity sequence.

In the proposed framework, the key actions are identified at points of

minimum and maximum motion energies. Applying the simple moving average

technique, after multiple experiments with different values of SMAαs and

SMAαf , 30 and 15 frames are selected for both moving averages respectively.

Figure 5.7(b) depicts the key action points identified from the motion energy

computed in Figure 5.7(a). The green plot shows the SMAαs while the red plot

shows the SMAαf . The crossover points of both moving averages are identified

by the blue dots in Figure 5.7(b). These points represent the key actions JB in

the activity sequence from the data. Similarly, the key actions are obtained for

all participants in the experimental dataset.

5.6.2.2 Non-parametric Clustering of Experimental Dataset

Due to the varying nature of the activities performed from one individual to

another, there are variations in motion energy values from person to person. To

tackle this difficulty, the motion energy of the key actions identified for each

participant’s activity are normalised for standardisation across all participants.

Figure 5.8 shows the representation of normalised motion energies of identified

key actions for all persons in the dataset. A total of 202 key action frames are

identified from all three participants which shows a significant reduction when

compared to the total number of frames 4822 as shown in Table 5.1. This

emphasises the need for the segmentation process to reduce the computational

complexities when learning the activity sequence.

The normalised values are then clustered using the non-parametric method

described earlier. The results obtained from clustering is also represented in

Figure 5.8. It can be observed that for the selected activity three segments

corresponding to Q1, Q2 and Q3, are identified and the boundaries of the segments

as obtained from the results are represented by the horizontal line plots (green

and orange) shown on the figure. Figure 5.9 shows the distribution of the number

of key action points identified in each activity segment for all participants.
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Figure 5.8: Normalised motion energy with action segment identification of
key actions for all participants in the experimental human activity dataset
corresponding to the pick up object activity.

Figure 5.9: Activity segmentation distribution for participants in the
experimental human activity dataset.

5.6.2.3 Sequence Learning of Experimental Human Activity Dataset

The sequence learning model is grounded on the results obtained from the

activity segmentation process. To investigate the performance, the outputs from

the segmentation process are fed as input to the learning model and a

comparison is made between the results obtained and the actual activity

sequence observed. This comparison is done in terms of the MAE, MASE and
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(a)

(b)

(c)

Figure 5.10: Performance of sequence learning model on the prediction of
experimental dataset activity sequence; (a) Person 1, (b) Person 2 and (c) Person
3.
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RMSE for the predictions made as defined in Chapter 3. The performance of

the sequence learning model in this work depends on a proper segmentation of

the unlabelled activity sequences observed.

The performance of the sequence learning framework is evaluated on the

experimental dataset. Considering the dataset consists of 3 participants, a

leave-one-out cross validation approach is used in experiments to learn

sequences of key action occurrences for an activity. Two participants are used in

training the model and the remainder is left out for testing. This is done

through consecutive iterations with each participant used in testing the model.

Figure 5.10 shows the result of the sequence learning model on the prediction

of the activity sequence contained in the experimental dataset. Table 5.2 shows

the result when the experimental dataset is applied to the proposed ASSL model.

The results produced RMSE values of 0.055, 0.049 and 0.050 respectively for all

three participants in the dataset when each was tested using the leave-one-out

cross validation. The lower the RMSE value the better the result in predicting the

sequence. The variation in the structure of the sequence between the remainder

two person’s data used when training the model and the structure of the person

1 used in testing the model produced a higher RMSE value (0.055) in comparison

with the RMSE value obtained for other two. This can be attributed to the

nature of the activity sequence for person 1, that is, the speed of the activity.

5.6.3 CAD-60 Dataset Results and Evaluation

The segmentation process applied to the CAD-60 dataset using the same values

of simple moving averages as in the case of the experimental activity dataset to

identify key actions which are segmented resulted in a similar number of activity

segments. The distribution of key actions identified in each segment is given

Figure 5.11. This shows a similar ratio in the distribution of key actions identified

for all actors except for the case of Actor 1. This infers that for the activity -

drinking water - performed by all actors, there are three atomic actions that define

the activity. The order in which the actions occur define the activity sequence.

It is important to note that the segments identified in the experiments with

the CAD-60 experiment are not the same as those of the experimental activity
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Figure 5.11: Distribution of key action points in identified activity segments for
all actors in the CAD-60 dataset.

dataset.

Evaluating the performance of the sequence learning framework with the

CAD-60 dataset is implemented in a similar method to the experimental

dataset. A leave-one-out cross validation approach is also applied with each

participant data used in testing while the remainder three are used in training

the model. This is performed in consecutive iterations. In Figure 5.12, the

prediction results for all actors are shown. The plots in the figure represent

when each actors’ activity data is left out from the training process and used to

test the trained sequence learning model. Table 5.3 shows the prediction results

obtained for the dataset with the ASSL. The RMSE values produced from

predicting activity sequences for the data tested correspond to 0.092, 0.053,

0.025 and 0.078 for Actor’s 1, 2, 3 and 4 respectively. The low RMSE values

show the model is able to learn with a high degree of reliability the activity

sequence.

5.7 Comparison with other Sequence Learning

Model

This section presents a comparison of the proposed ASSL framework’s

performance with another statistical model widely used in learning sequences
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from time series data. The adaptive segmentation and sequence learning of 3D

skeleton data of human activities framework primarily demonstrates that

unlabelled actions and sequences of activities can be modelled for accurate

prediction of unseen actions. This is beneficial for applications that require

exploiting the underlying patterns to understand human tasks from visual

observations while they are executed. This was demonstrated in the previous

sections. To further emphasise the ability of the proposed framework to learn

activity sequences, a comparison is made with another method of sequence

learning used in forecasting applications, an Autoregressive Integrated Moving

Average (ARIMA). The basis for selecting this model is because it comes from a

well established area of CI. ARIMA models are also widely used in analysis of

temporal pattern recognition and time series prediction. The algorithm is

applied to both the experimental dataset and CAD-60 dataset described earlier

in the experimental design, with the same validation technique already

described.

Autoregressive Moving Average (ARMA) models are amongst the most

widely used statistical algorithms for modelling and predicting time series

information [108]. A generalisation of this model is the Autoregressive

Integrated Moving Average (ARIMA) which is applied in situations where there

is evidence of non-stationarity in data. In such cases, a differencing step, d,

corresponding to the Integrated part of the model is applied to remove

non-stationarity points [17]. Afterwards, the ARMA model is applied on the

stationary data. The implementation of ARIMA in this work follows the

method described in [17]. The Auto-Regressive, AR, component uses weighted

linear combinations of previous values of the data sequence and performs a

regression of the sequence against itself. Similarly, the Moving Average, MA,

component attempts predicting a target using regression based on past forecast

errors. The parameters of the ARIMA model corresponding to coefficients of

the orders of the model are d, p and q. p represents the number of time lags to

consider. When p = 0, the mode is reduced to a MA model of q order.

Similarly, if q = 0, the model becomes AR of p order. Details of the selection of

the optimal parameters for the ARIMA model used are beyond the scope of this

work. Readers are referred to [17] for more insight into ARIMA.
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5.7.1 Result of ARIMA Model on Experimental Dataset

The normalised key action points of the motion energy extracted from the

experimental human activity are used as input to the ARIMA model. The

results shown in Table 5.2 present the performance of the ARIMA model on the

experimental dataset. As observed from the table, the proposed ASSL model

had a better performance in terms of the MAE and RMSE than the ARIMA

model across all participants in the dataset. There is a significant difference in

the MAE and RMSE performance obtained with the ASSL method

outperforming the ARIMA model. However, the ARIMA model did better in

terms of the MASE performance. As with most unsupervised learning

structures, the ARIMA is able to predict data sequences with only the targeted

data.

Table 5.2: Comparison of the proposed ASSL model performance with an
Autoregressive Integrated Moving Average (ARIMA) model on the experimental
human activity dataset.

Method Metric Person 1 Person 2 Person 3

ASSL
MAE 0.044 0.025 0.032
MASE 0.867 0.630 0.690
RMSE 0.055 0.049 0.050

ARIMA
MAE 0.228 0.135 0.132
MASE 0.586 0.272 0.291
RMSE 0.298 0.198 0.175

Table 5.3: Comparison of the proposed ASSL model performance with an
Autoregressive Integrated Moving Average (ARIMA) model on the CAD-60
dataset.

Method Metric Actor 1 Actor 2 Actor 3 Actor 4

ASSL
MAE 0.072 0.044 0.023 0.062
MASE 0.914 0.921 1.074 0.968
RMSE 0.092 0.053 0.025 0.078

ARIMA
MAE 0.307 0.202 0.220 0.255
MASE 0.865 0.690 0.983 0.802
RMSE 0.339 0.267 0.264 0.326
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5.7.2 Result of ARIMA Model on CAD-60 Dataset

Table 5.3 shows the results obtained for the comparison of the ASSL framework

with the ARIMA model on the CAD-60 dataset. The performance attained

using the ARIMA model showed higher RMSE and MAE values for all actors

when compared to that of the ASSL. The only exception is in terms MASE, the

ARIMA did better than the ASSL by attaining lower MASE values across all

four actors. Based on these results, it can be concluded that the proposed ASSL

approach outperformed the ARIMA model.

The ARIMA model works as a regression model and therefore does not require

labelled samples. However, the proposed approach is able to obtain labels through

a non-parametric approach which is used in the later stage of sequence learning.

This gives the ASSL method an edge over the ARIMA.

5.8 Discussion

In this chapter, a novel adaptive technique for the segmentation and sequential

learning of human activities is presented. The goal is to enable the discovery

unknown activity patterns for prediction of future actions in an activity sequence,

especially, for use in assistive robotics. Due to the dynamic nature of human

behaviour, there are uncertainties associated with modelling actions performed

in an activity. This work focused on proposing a model capable of adapting

to variations that exist in actions through activity sequences. The use of 3D

skeleton joint data obtained with RGB-D sensors makes it possible to acquire

representations of actions for learning such activities.

The motion energy of skeleton joints is used as a feature in the segmentation

process. This is due to changes in acceleration and deceleration observed in

skeleton joints through a continuous sequence of activities. This feature is used

in identifying key actions in an activity sequence from the moving average

crossovers of the computed motion energy. This step acts as a filter stage as not

all actions of an activity are relevant in predicting the activity sequence. This

work leverages the ability of LSTM model in learning activity sequences for

predicting future actions of activities based on previous instances. The results
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show the performance of the LSTM sequence learning model is better than the

unsupervised sequence learning approaches. Furthermore, learning sequences of

activity from unlabelled activity structures are addressed. The segmentation

approach used to identify labels from the structures made it possible to solve

the unsupervised learning problem with a supervised technique of learning

sequences.
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Chapter 6

Activity Transfer Across

Heterogeneous Feature Spaces

6.1 Introduction

As stated in the framework design in Chapter 3, Transfer Learning (TL) aims to

improve performance on a target using the knowledge learned from a source. The

transferal of knowledge between domains involves considerations of the nature of

the data contained in each domain and the relationship between feature spaces.

Traditional machine learning approaches work with the assumption that the

data for training (within the source domain) and test (within the target domain)

are drawn from the same probability distributions and have the same feature

spaces [39, 147]. However, in practical situations, it is often not the case. If

the data distribution or feature space of the target changes, the trained models

become unfit and new models would need to be rebuilt. For example, in the case

of human-robot TL of activities. Based on the activities recognised through the

HAL model, the robot is required to perform the activities. Due to the different

feature space distributions between a human and robot, if the activity model is not

well adapted to the robot’s feature space, the accuracy in actualising movements

will be significantly affected. TL techniques are applied to handle such situations.

Most methods that have been proposed for TL focus on the differences in

task labels or the differences in the probability distribution of data between
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Figure 6.1: Illustration of an activity executed by a human which is intended to
be learnt by an assistive robot with a different feature space distribution.

both source and target domains [105, 149]. This chapter presents a novel

activity transfer across heterogeneous feature spaces model which is contained

in the framework. The method incorporates fuzzy sets concept in a

computational approach to acquiring membership states of activity instances

from a source domain (observed human carrying out the activity) which are

used to identify task states from unlabelled data of human activities. These

states are mapped to the target feature space (assistive robot) for effective

learning and prediction of activities. The use of a fuzzy computational approach

is due to the fact that directly mapping the source and target features would

not be feasible. Differences in data distribution in both domains creates a

limitation for a direct mapping and thus, the fuzzy approach is important in

transformation across the feature spaces. For better understanding of the

challenge, consider the illustration in Figure 6.1, the difference in feature spaces

prompts for a suitable method of knowledge transfer to enable the robot to

learn the activity from the human. This motivates the work in this chapter.

The remainder of the chapter is organised as follows; Section 6.2 presents

an overview of TL in heterogeneous feature spaces. In Section 6.3, the method

for activity transfer across heterogeneous feature spaces is presented in detail.

Section 6.4 describes the application of the proposed method for activity transfer

and Section 6.5 follows with discussions and a summary of the chapter.
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6.2 Overview of Transfer Learning in

Heterogeneous Feature Spaces

Much work has been done relating to TL and this section discusses some of the

works related to the methodology in this chapter. TL of a human activity usually

involves a process of learning the activity in the source domain to acquire relevant

knowledge of the activity which is transferred to the target domain. Exploring the

feature spaces in both domains helps in understanding the approach employed in

knowledge transfer. Most existing solutions to TL consider cases of homogeneous

spaces [147, 148]. This is the case in which the feature space and probability

distribution of information in the source and target domains are similar. In

homogeneous TL, the methods for the adaptation of the transferred knowledge to

the target domain have employed representative models that include information

theoretical learning, Transfer Component Analysis (TCA), transfer deep network,

feature level domain adaptation, scatter component analysis and a host of other

models.

In heterogeneous spaces, the typical methods often applied in the target

domain adaptation are alignment-based models, semi-supervised kernel

matching for domain adaptation, heterogeneous spectral mapping and kernel

Canonical Correlation Analysis (CCA) [150]. These methods have had success

in handling the issues in heterogeneous domain adaptation, however, they do

not consider the uncertainty inherent in most cases of knowledge transfer

problems. The amount of information available in the target domain determines

the degree of uncertainty in transfer. Problems with few data in the target

domain have a high degree of uncertainty due to the limited amount of

information which can be extracted. However, the development of fuzzy systems

have had some success in addressing this problem.

6.3 Methodology

This section describes the methodology for human activity transfer when

considering situations of heterogeneous feature space relationships. This works
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considers the case of human activities involving human-robot interaction where

a robot is used in an assisted living environment as an assistive agent. This

entails having to carry out activities as a human would. The challenge of

learning human activities by an assistive robot requires an adaptation of the

source feature space which are the features observed from a human in the target

(or robot) feature space. Before going into details of the methodology used in

this work, it is important to define some preliminary terms used in this work.

Definition 6.3.1. Heterogeneous feature space transfer: Heterogeneous feature

space transfer is a branch of TL in which the feature spaces of both source and

target domains differ, Fs 6= Ft. Given the difference between human and robot

features, transfer of activities in both domains involves exploring heterogeneity

in both feature spaces.

In the next section a description of the framework proposed in this work is

given.

6.3.1 Description of Activity Transfer Model

In Figure 6.2, an overview of the method proposed in this work for fuzzy TL

of human activities in heterogeneous feature spaces is given. The source feature

space consists of unlabelled human activity data in the form of angles, θ, between

selected joints of the body. These data is extracted as human skeleton coordinates

data obtainable using an RGB-D sensor. In order to get labels to identify the

states of the joints at any point, Labanotation [43] is used to determine the

states of joints. This information is also important to obtain the number of

fuzzy membership functions used in building partitions for the fuzzy inference

system in the source domain. The model in the source domain is trained and the

membership degrees for T inputs are determined. The trained model is applied

in the target domain. Since the feature spaces differ, an adaptation of the trained

model in the target domain is necessary. To this end the limits of the membership

functions are adapted to the target feature space intervals. Knowledge transfer is

executed by a transfer of the combined membership degrees from source domain

to target domain.
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Figure 6.2: Overview of activity transfer across heterogeneous feature spaces
methodology.

6.3.2 Extraction of Joint States

An activity performed by a human consists of various movements of human

joints. Such movements can be described using Labanotation. This method was

introduced by Rudolf Laban as a means of movement notation [43]. It

comprises of four components namely; body, time, space and dynamics. The

body component represents the moving body part, time represents the

movement duration, space stands for the description of motion in terms of

distance, directions, degree, or level, while dynamics represent the emotional

components of motions. This work makes use of the body, time and space

components while excluding the dynamics.

The computation of a Labanotation score is drawn in two dimensions, time

rows and body columns. Figure 6.3 shows an illustration of these dimensions.

The columns correspond to body parts and these contain Labanotation symbols

representing the movement of each body part through time. The Labanotation

symbols are normalised to fit the starting and ending times which flows from

the bottom to the top. The gaps between symbols in a column show a lack of

motion in that period of time or the continued previous pose. Also, in Figure

6.3 the columns are divided into the left and the right which correspond to the

left and right sides of the body. In Labanotation, the shapes of the symbols
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Figure 6.3: Illustration of Labanotation dimensions and score.

represent the direction of motion of different body parts. This is specified in the

x, y and z coordinates system with the centre of the body as reference and the

shape symbols are presented in Figure 6.4.

Each body part identified in the Labanotation a local coordinate system which

is parallel to the part is defined at the joint near that body part. Depending

on the local coordinate system, the Labanotation defines 11 shapes for azimuth

directions and 3 types of shadings for levels of movements which is also known

as zenith directions [57] as represented in Figure 6.4(b).

When constructing fuzzy models, the optimal number of membership

Table 6.1: Degree of contraction and extension of joints.

Degree of change
Arm and Leg Position

Identifier Membership Label
1 HM High Movement
2 NM Normal Movement
3 LM Low Movement
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(a) (b)

Figure 6.4: Labanotation illustration for describing the coordinates of human
body movements. (a) shows the representation of joints of a human and (b)
shows direction symbols for joints with 3 levels; high, middle and low.

functions required is often not known. Most applications involving fuzzy logic

select the number of membership functions at random by using a value of

2N + 1, where N is a positive integer. Also, the human joint states are not

known through an activity from either joint angles (or positions) information. It

is difficult to identify labels of these joints as to whether it is in a maximum,

minimum, high or low state. Labanotation helps to simplify these difficulties.

In this work, Labanotation is employed in generating the joint states of

human movement which is used to obtain labels of joint states and the number

of fuzzy membership functions needed in the fuzzification process of the source

features of an activity. The angles between human joints are considered as the

input data. Table 6.1 categorises the degrees of movement of vital body parts

(arms and legs) used in most activities. These categories determine the selection

of membership labels and number of membership functions used to express the

movement of human joints. The membership labels as shown in Table 6.1

correspond to the labanotation levels which in this work are High Movement

(HM), Normal Movement (NM) and Low Movement (LM). The high and low

movements correspond to joint angle movements towards the upper and lower

limit values of joints respectively and the normal movement representing joint

movements at mid-position.
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6.3.3 Fuzzy Activity Model

The fuzzy activity model describes the formulation of fuzzy partitions used in

creating the inference system for learning activities. Joint states extracted from

the source data are fuzzified in an attempt to get the membership degrees

representing tasks within an activity. The initial parameters used in defining

the fuzzification process are determined from the extraction of joint states

described in the previous section. A Takagi-Sugeno fuzzy model [47] is applied

in this work in the initial process of determining the antecedent membership

functions of the source activity features. The model is composed of s rules with

the representation as follows:

if f is Ai(f, vi), then p is Bi(f, ai) i = 1, ..., s. (6.1)

where f = (f1, . . . , fn, . . . , fN) is the set of input features of an activity. Ai is the

set of membership functions obtained with each rule, vi are centre parameters

of the fuzzy partitions and ai are coefficients of linear functions for the input

activity features of the fuzzy rules.

The conditions of the rules used to obtain the sets A1, ..., As are constructed

using a fuzzy space grid partitioning method [125]. This method is applied to

divide the input activity features into the specified number of partitions

determined by the membership functions. Each partition defines a fuzzy set Ai

associated with a Gaussian membership function, which is normalised and

represented by µAi(f) as shown in Equation 6.2.

µAi(fi) = exp

(
−(fi − vi)2

2δi

)
(6.2)

where δi is the width of the fuzzy space partition.

6.3.4 Knowledge Transfer Across Domains

The model proposed in this work is aimed at achieving transfer of human activities

from a human domain to an assistive robot domain as mentioned in Section 6.1 by

considering both domains as source and target domains respectively. The source

domain consists of m-dimensional input variables of human joint angles denoted
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by Ds = (f s1 , ..., f
s
m). The target domain also denoted by Dt = (f t1, ..., f

t
m).

In this case, the model is built for obtaining fuzzy membership degrees in

the human domain. This model cannot be directly applied to an assistive robot

domain to perform similar activities due to the reason that the rules need to be

modified to fit the robot feature space. In order to achieve this, the following

steps are outlined to modify the fuzzy activity model obtained from the human

domain for use in the target robot domain:

Step 1 - Applying labanotation to extract states of a robots feature space: This

process is used to determine the similarity between Fs ∼ Ft in order to obtain

the relevant joints that correlate in both domains. Since labanotation is used

in the human domain to determine the joint state which gives an indication

of the number of membership functions used. Similar representations of joints

information is used to describe a robot feature space. Therefore the selected

membership functions in both domains are similar.

Step 2 - Fuzzify the target feature space: The target feature space is

represented as a fuzzy system. A method of generating fuzzy rules from

numerical data as proposed by [125] is applied. Using the number of

membership functions obtained in Step 1 represents the number of regions and

the limits of each feature in the target as the interval for the feature.

Step 3 - Adaptation of the target feature space to transferred fuzzy activity

model : The fuzzy activity model trained in the source domain is adapted in the

target domain. This involves the mapping of a robots features space to fit the

model obtained from source activity feature space.

Step 4 - Transfer of fuzzy membership degrees from source to target space:

Due to the fact that joint movements cannot be assumed to be crisp values for

a particular activity, the membership degrees obtained for each task Ts of an

activity is taken and mapped to a corresponding label in Dt.

The transferred knowledge is intended to be used by the robot in acquiring

the information needed to drive the joints in performing the activity similar to a

human. The algorithm for the proposed method of fuzzy TL of human activities

in heterogeneous feature spaces is given in Algorithm 3.
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Algorithm 3 Transfer Learning of human activities in heterogeneous feature
spaces.

Input:

Source domain Ds, Target domain Dt, Activity input an, Fuzzy partitions
δi.

Output:

µs for target domain Dt.

Procedure:

Step 1:
1: Extract the joint information of human activity using the data processing

method described in Chapter 4.
2: Determine the membership functions using Labanotation. See Section 6.3.2.

Step 2:
3: Fuzzify the input feature space. See Section 6.3.3.
4: Obtain the fuzzy membership degrees using the highest degree of membership

of input.
Step 3:

5: Determine the transition sequence of source feature space. See Chapter 5.
6: Determine the intervals of the target feature space and obtain membership

functions using Equation 6.2.
Step 4:

7: Use the fuzzy membership degrees obtained from source feature space in
target domain to obtain the target features.

6.4 Application of Methodology and Results of

the Activity Transfer Framework

To demonstrate the application of the proposed method for activity transfer, the

framework is evaluated on human activities obtained from the human (source

domain) feature space which is transferred to an assistive robots (target domain)

feature space. The activity performed involves a sequence of the left and right

arm gestures starting with both hands held down and raised up repeatedly. An

RGB-D sensor is used to obtain data of human joint angles while carrying out

the activity. Figure 6.5 shows selected key frames of the activity collected for the

experiment. Each frame represents a task Ts within the activity.

The activity performed is mostly concerned with arm movements, therefore
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Figure 6.5: Examples of activity frames from a sequence of arm movements
from down to up activity positions. The highlighted areas show the joint angles
extracted.

four joint angles considered to be the most used in the activity are selected.

These are considered as the source feature space and correspond to the angles at

the left elbow, θLE, right elbow, θRE, left shoulder, θLS and right shoulder, θRS.

The movement trajectory of these angles in the activity depicted by the sample

frames in Figure 6.5 are represented in Figure 6.6. These trajectories show the

movement of the selected joint angles through the observed activity. Considering

the nature of human movements which are not smooth through the trajectory,

a filtering process is applied as a preprocessing step to smoothen the raw data

extracted. The fuzzy model for the activity is obtained using the approach earlier

described. Three membership functions are used in the fuzzy partitions. These

are determined with respect to the degree of joint movement obtained through

the label definitions in Table 6.1.

In the experiment, a two-arm Baxter robot [100] as shown in Figure 6.7(a) is

considered as the target domain for assistive applications. The robot consists of

seven Degrees of Freedom (DoF) on each arm that are identified in Figure 6.7(b).

These include two DoFs around the shoulder (roll and pitch), S0 and S1, two

DoFs around the elbow (roll and pitch), E0 and E1, and three DoFs around the

wrist, W0, W1, and W2.
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(a)

(b)

Figure 6.6: Joint angles trajectory for source (human) activity with up and down
sequential movement of arms. (a) represents elbow movements for both arms and
(b) shoulder movements for both arms.
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(a) (b)

Figure 6.7: Research robot used in this work. (a) two-arm Baxter robot and (b)
Baxter robot joints identification.

6.4.1 Result of Joint States Extraction

The activity used in the experiments describe the movement of both the left and

right arms of a human subject. This involved the roll directional movement of

the joints. The work in this thesis is limited to only the roll movement. However,

it can be extended to more complex cases that involve the three axes of rotation

(i.e roll, pitch and yaw). It can be observed that the poses in the activity are also

limited to frontal poses. Naturally human activities can have more complicated

motions, such as arm movement in a backwards direction. Such motions are

ignored in this work because this work focuses on assistive robots observing human

activities that are intended to be viewed by a robot in front of a human subject

performing the activities.

Following the description of Labanotation presented earlier in this chapter,

the joint movements are digitised into the three levels identified: high, normal

and low. Figure 6.8 shows the representation of joint states for the activity

conducted. The figure shows four columns that correspond to the Labanotations

of the selected joints; the shoulder and elbow joints of the left and right arms.
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Figure 6.8: Extracting joint states of the elbow and shoulder joints of an activity
using Labanotation.

6.4.2 Knowledge Transfer Through Fuzzification

The representation obtained from the Labanotation is used in generating the fuzzy

partitions for each joints space. The use of Gaussian membership functions are

employed in the fuzzification for each partition. The joint angle variables [θLE θRE

θLS θRS] are partitioned in the universe of discourse [0◦ 180◦] which represent the

limit of the joint’s movement. Three Gaussian membership functions representing

the labanotation joint states; High Movement (HM), Normal Movement (NM)

and Low Movement (LM) are defined as shown in Figure 6.9.
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Figure 6.9: Fuzzy partitions using Gaussian membership functions of human
elbow and shoulder joint angles.

The fuzzy membership degrees corresponding to the identified key frames in

the human feature space are obtained. This creates a latent space for the mapping

of joint movements from the human (source) to robot (target) spaces.

In the experiments, the joints of the robot, E1 and W1, corresponding to the

roll directional movements of human shoulder and elbow joints respectively are

selected. Table 6.2 shows the universe of discourse of the robot’s joint’s with the

limits, θmin and θmax, of joint angles. The joints used in this work are highlighted

in the table. Fuzzy partitions of the selected joint’s are created using Gaussian

membership functions as applied in the human domain. This makes it possible to

transfer the fuzzy membership degrees obtained from the human feature space to

Table 6.2: Baxter left and right arm joint’s angle limit.

Joint Name Joint Variable θmin θmax θrange
S0 θ1 +51◦ −141◦ 192◦

S1 θ2 +60◦ −123◦ 183◦

E0 θ3 +173◦ −173◦ 346◦

E1E1E1 θ4θ4θ4 +150◦+150◦+150◦ −3◦−3◦−3◦ 153◦153◦153◦

W0 θ5 +175◦ −175◦ 350◦

W1W1W1 θ6θ6θ6 +120◦+120◦+120◦ −90◦−90◦−90◦ 210◦210◦210◦

W2 θ7 +175◦ −175◦ 350◦
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Figure 6.10: Final motions of Baxter assistive robot from the transferred human
activity information.

the robot’s feature space. The fuzzy membership degrees mapped into the robot’s

feature space are defuzzified to obtain crisp values for the joint angles that are

used in determining the directional movements of the robot’s arm joints.

Figure 6.10 shows the final motions performed by the robot. The poses shown

are based on the key frames identified for the activity. Based on the visual

inspections, it can be concluded that the system can reproduce the original motion

to a high degree of certainty. It can be observed from the system implementation

that the universe of discourse for the human and robot joints have different range.

This can be the case with any assistive robot, thus, the need for applying a

fuzzy inference system to handle such uncertainty. Also, the intermediate poses

captured between two key frames are neglected. This is because while observing

an activity, humans tend to neglect small changes in motion and focus on the key

aspects of the activity.
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6.5 Discussion

In this chapter, an approach to fuzzy TL of human activities in heterogeneous

feature spaces is presented. The proposed method facilitates faster learning of

activities by assistive agents which are used in assisted living environments. The

method uses a combination of Labanotation and fuzzy logic in representing the

observed joint states from a subject while performing an activity. Labanotation

is used to determine the number of fuzzy partitions to be created and provides a

high level feature space for both source and target feature representation. This

approach is experimented on a simple human activity which is transferred to an

assistive robot platform. The intervals of the feature space in the target domain

are obtained to adapt the membership functions of the trained source model. The

outcome from the experiment proves that the proposed methodology for human

activity transfer across heterogeneous feature spaces is a useful tool in equipping

an assistive robot with skills necessary to perform human activities in an assisted

living environment.

Although attempts to address the challenge of differences feature spaces across

the domains are currently under much study, the proposed fuzzy approach for

knowledge transfer proves to be efficient in achieving the goal of learning and

predicting human actions from visual information of observations.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The work in this thesis presented a novel framework for fuzzy Transfer Learning

(TL) in human activity recognition with the purpose of enabling assistive agents

in AAL environments to acquire the knowledge of human activities as are

performed by humans. The motivation for the work is from the perspective of

humans ability to excel in dealing with everyday activities through the process

of learning and adapting to different activities. This comprises the application

of different complex techniques that enable a lifelong learning process from

observations.

The thesis attempted to answer the research questions identified when viewed

from the theoretical and practical perspectives. Three research questions were

identified in Chapter 1 which are summarised as follows:

• How to learn human activities using a computationally efficient information

modality?

• Can activity sequences be modelled from unlabelled data?

• Lastly, how can transferred human activities be adapted from a source

domain to a target domain?

The chapters in the thesis focused on addressing the questions identified.

Hence, the following sections in this chapter summarise the findings and
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conclusions drawn from the thesis. The major contributions are discussed along

with considerations for future work. The following sub-sections outline the

findings of the thesis.

7.1.1 Source Information Can be Considered as 3D

Human Activity Data

The use of visual human activity information obtained as 3D skeleton joint

coordinates of the human body is used in this thesis for recognising daily human

activities. The framework developed for TL in human activity recognition uses

an RGB-D sensor capable of extracting information in a 3D space to obtain

information while humans perform activities. These RGB-D sensors can be

obtained at low cost and deliver reliable information of objects tracked.

Therefore, not much processing is required to obtain the skeleton joints’

information. It can be observed from the results presented in Table 4.6 of

Chapter 4 that the accuracy of the system modelled for human activity learning

using only the joint coordinates information obtained higher accuracies in

comparison to other methods proposed which use a combination of information

modalities.

7.1.2 Human Actions Can be Identified from Unlabelled

Data

The results presented in Chapter 5 shows how human actions can be identified

from unlabelled human activity information. The method shows that the use

of a non-parametric clustering approach described by Equations 5.10, 5.11 and

5.12, simplifies the process of identifying the number of key actions in an activity

sequence. Furthermore, the number of key actions in each cluster can be used

to infer the difference in activities performed by different people. For example,

identifying the difference in speed.
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7.1.3 Transfer Learning is Effective When Activities are

Well Interpreted

The strategy used in this work in achieving TL of human activities is based on

the interpretation of activity information in a manner capable of being adapted in

a target domain. Hence, the stages of recognition of activities, segmentation and

sequence learning of actions within activities. Afterwards, an effective transfer is

performed by employing fuzzy logic for interpreting each movement made during

an activity. The realisation of this is obtained using the procedure presented in

Algorithm 3. This ensures the differences between both source and target domains

are handled so as to enable generalisation across different target platforms.

7.2 Summary of Major Contributions

The approach employed to achieve the aim set out in this thesis resulted in

significant contributions. These contributions are discussed as follows:

7.2.1 A Novel Framework for Human Activity Learning

This thesis presented a novel framework for the learning and recognition of

human activities from data obtained using RGB-D sensors. The fundamental

part of the TL of human activities for application in assisted agents such as

robotics is first the ability to recognise activities. This process involved the

development of a model for activity recognition from observed information.

Human activity information is obtained as coordinates of key joints in a human

extracted using an RGB-D sensor. Experiments are conducted on selected

activities to acquire enough information for building the model. From the

information acquired, relevant features (traditional and hand-crafted) used in

identifying activities are detected and are used in a novel classifier ensemble

model to recognise different activities. The results obtained in Chapter 4 show

the ability of the framework to identify activities with the feature set over

state-of-the-art models on experimental and benchmark datasets.
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7.2.2 A Novel Framework for Action Segmentation and

Sequence Learning from Unlabelled Sequences

The fuzzy TL in human activity recognition framework encompasses the ability to

understand constituent actions within each activity identified. Therefore, a novel

framework is developed for the adaptive segmentation and sequence learning of

the actions of activities. The framework developed consists of three stages with

each stage defined as:

1. Extraction of key actions from observed unlabelled human activity

information which is described using the process described by Equation

5.4 - Equation 5.9. Key actions through activities are identified as not all

actions in an activity are relevant in defining a sequence for representing

the activity.

2. Activity segmentation of key actions via clustering presented in Algorithm

2. Similar key actions are grouped and assigned labels used in identifying

the sequence order.

3. Sequence learning of the segmented key actions using Equation 5.13 -

Equation 5.18. This enables the ordered representation of actions in the

identified segments.

7.2.3 A Novel Framework for Human Activity Transfer

using Fuzzy Generated Rules from Human to Robot

Spaces

The transfer of the learned activity from the source domain to the target domain

is based on the exploration of heterogeneous features spaces of both domains. A

method of remapping feature spaces is developed using the steps in Algorithm 3

to enable effective mapping of the source features to the target. The framework

uses an approach of fuzzy latent space exploration in Equation 6.1 to obtain

mappings of the features. The case study used is the transfer of human activity

features to an assistive robot.
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The thesis developed a novel fuzzy activity model that describes the

formulation of fuzzy partitions from human joints states for creating an

inference system that derives feature maps. Each joint is represented by a set of

membership functions that determine the rules for its movement in activities.

These rules are then used to obtain joint movements in a robot’s feature space.

In summary, the fuzzy activity model comprises the following steps:

1. Extraction of joint states movements: the joint states are obtained by

applying labanotation to determine a relation describing the degree of

movement across each joint.

2. Fuzzification of the feature spaces: both source and target feature spaces

are fuzzified through defined fuzzy membership functions. The fuzzy rules

are then generated for movement sequences.

3. Adaptation of the activity model to the target feature space: The model

trained in the source domain is adapted in the target domain.

4. Transfer of fuzzy membership identities from source to target feature

spaces: The final stage involves mapping fuzzy membership identities for

the modelled activity in the source to obtain membership identities in the

target for movement actualisation.

7.3 Future Work and Recommendations

Similar to any research, the need for future work for the improvement of the

framework is evident. This section identifies the directions for future research

and recommendations for improvement of the framework for fuzzy TL in human

activity recognition.

• Extension of the HAL model.

Although the classifier ensemble model applied three base classifiers, this

could be extended to include more classifiers which may improve

performance and also deep learning neural networks which are increasingly

used in HAR systems. Additionally, the ensemble model presented can be
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used in other applications such as fall detection systems. The system

could also be extended to learning activities on-the-fly as they are carried

out by an actor. This is important as the performance of current

technology systems are now directed towards real-time applications.

• The incorporation of cloud-based applications for processing activity

information.

The framework developed in this thesis is proposed for assistive robotics

applications. To achieve fast processing of the recognition and learning of

activity sequences, the incorporation of a cloud-based system which

benefit from the low cost of physical hardware resources for processing

would improve the efficiency of the system. As such, the framework would

support the connection of multiple robots which can be easily integrated

into the system.

• Extension to more activities.

The fuzzy TL framework presented in this research focused on a set of 12

activities as described in the datasets used. Future work should consider

more activities that have not been considered in this research. Such

activities should involve the active participation of the limbs (hands and

legs). Another suggestion would be the fusion of other sensors such as

wearable sensors with RGB-D sensors to detect salient movements during

activities. This could also be used to provide information such as the

orientation of joints for robots.

• Application of TL to more problems.

TL is yet to be used extensively in day-to-day applications. This concept

with its many benefits is yet to be explored in-depth. If well explored

through the more incorporation in daily applications to promote

independent assisted living, it would be the driver for the next revolution

in technology.
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