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Abstract We demonstrate that prostate cancer can be identified by flow cytometric profiling of

blood immune cell subsets. Herein, we profiled natural killer (NK) cell subsets in the blood of 72

asymptomatic men with Prostate-Specific Antigen (PSA) levels < 20 ng ml-1, of whom 31 had

benign disease (no cancer) and 41 had prostate cancer. Statistical and computational methods

identified a panel of eight phenotypic features (CD56dimCD16high, CD56þDNAM � 1
�,

CD56þLAIR� 1
þ, CD56þLAIR� 1

�, CD56brightCD8þ, CD56þNKp30þ, CD56þNKp30�, CD56þNKp46þ)

that, when incorporated into an Ensemble machine learning prediction model, distinguished

between the presence of benign prostate disease and prostate cancer. The machine learning model

was then adapted to predict the D’Amico Risk Classification using data from 54 patients with

prostate cancer and was shown to accurately differentiate between the presence of low-/

intermediate-risk disease and high-risk disease without the need for additional clinical data. This

simple blood test has the potential to transform prostate cancer diagnostics.

Introduction
Early diagnosis and treatment increase curative rates for many cancers. The WHO considers that the

burden of cancer on health services can be reduced by early detection and that this is achievable via

three integrated steps: 1) awareness and accessing care, 2) clinical evaluation, diagnosis, and stag-

ing, 3) access to treatment (http://www.who.int/mediacentre/factsheets/fs297/en/). Although the

clinical introduction of the Prostate-Specific Antigen (PSA) test in 1986 increased the early diagnosis

of localized prostate cancer (Catalona et al., 1991; Hankey et al., 1999), elevated PSA levels are

not necessarily indicative of prostate cancer because PSA levels can be raised by prostatitis, other

localised infections, benign hyperplasia and/or factors such as physical stress. Contrastingly, 15% of

men with ‘normal’ PSA levels typically have prostate cancer, with a further 15% of these cancers

being high-grade (https://prostatecanceruk.org/prostate-information/prostate-tests/psa-test). The

Hood et al. eLife 2020;9:e50936. DOI: https://doi.org/10.7554/eLife.50936 1 of 30

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.who.int/mediacentre/factsheets/fs297/en/
https://prostatecanceruk.org/prostate-information/prostate-tests/psa-test
https://doi.org/10.7554/eLife.50936
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


reliable diagnosis of prostate cancer based on PSA levels alone is therefore not possible and confir-

mation using invasive biopsies is currently required. In 2011/12 approximately 32,000 diagnostic

biopsies (28,000 TRUS and 4,000 TPTPB) were performed by the NHS in England (NICE, 2014).

Although the transrectal ultrasound guided prostate (TRUS) biopsy is the most commonly used tech-

nique, it is limited to taking 10 to 12 biopsies primarily from the peripheral zone of the prostate and

has a positive detection rate between 26% and 33% (Aganovic et al., 2011; Nafie et al., 2014a;

Naughton et al., 2000; Yuasa et al., 2008). The Transperineal Template Prostate biopsy (TPTPB) is

a 36 core technique that samples all regions of the prostate and delivers a better positive detection

rate between 55% and 68% (Dimmen et al., 2012; Nafie et al., 2014b; Pal et al., 2012). However,

invasive biopsies are painful and associated with a significant risk of potentially serious side-effects

such as urosepsis and erectile dysfunction (Chang et al., 2013). Given the potential challenges of

invasive tests and the risk of significant side-effects, considerable interest in the potential of non-

invasive blood or urine-based tests/approaches (‘liquid biopsies’) for diagnosing disease has devel-

oped (Quandt et al., 2017). Liquid biopsies can provide information about both the tumour (e.g. cir-

culating cells, cell-free and exosomal DNA and RNA) and the immune response (e.g. immune cell

composition and their gene, protein, and exosome expression profiles). Liquid biopsies are minimally

invasive and enable serial assessments and ‘live’ monitoring speedily and cost-effectively

(Quandt et al., 2017).

Based on the reciprocal interaction between cancer and the immune system, we have proposed

that immunological signatures within the peripheral blood (the peripheral blood ‘immunome’) can

discriminate between men with benign prostate disease and those with prostate cancer and thereby

reduce the dependency of diagnosis on invasive biopsies. To this end, we have previously shown

that the incorporation of a peripheral blood immune phenotyping-based feature set comprising five

phenotypic features CD8þCD45RA�CD27�CD28� (CD8þ Effector Memory cells),

eLife digest With an estimated 1.8 million new cases in 2018 alone, prostate cancer is the

fourth most common cancer in the world. Catching the disease early increases the chances of

survival, but this cancer remains difficult to detect.

The best diagnostic test currently available measures the blood level of a protein called the

prostate-specific antigen (PSA for short). Heightened amounts of PSA may mean that the patient has

cancer, but 15% of individuals with prostate cancer have normal levels of the protein, and many

healthy people can have high amounts of PSA. This blood test is therefore not widely accepted as a

reliable diagnostic tool.

Other methods exist to detect prostate cancer, yet their results are limited. A small piece of the

prostate can be taken for analysis, but results from this invasive procedure are often incorrect. Scans

can help to spot a tumor, but they are not accurate enough to be conclusive on their own. New

tests are therefore urgently needed.

Prostate cancer is often associated with changes in the immune system that can be detected

through a blood test. In particular, the appearance of a type of white blood (immune) cells called

natural killer cells may be altered. Yet, it was unclear whether measurements based on these cells

could help to detect prostate cancer and assess the severity of the disease.

Here, Hood, Cosma et al. collected and examined the natural killer cells of 72 participants with

slightly elevated PSA levels and no other symptoms. Amongst these, 31 individuals had prostate

cancer and 41 were healthy. These biological data were then used to produce computer models that

could detect the presence of the disease, as well as assess its severity. The algorithms were

developed using machine learning, where previous patient information is used to make prediction

on new data. This work resulted in a new detection tool which was 12.5% more accurate than the

PSA test in detecting prostate cancer; and in a detection tool that was 99% accurate in predicting

the risk of the disease (in terms of clinical significance) in individuals with prostate cancer.

Although these new approaches first need to be validated in the clinic before being deployed,

they could ultimately improve the detection and diagnosis of prostate cancer, saving lives and

reducing the need for further tests.
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CD4þCD45RA�CD27�CD28� (CD4þ Effector Memory cells), CD4þCD45RAþCD27�CD28� (CD4þ Ter-

minally Differentiated Effector Memory Cells re-expressing CD45RA), CD3�CD19þ (B cells),

CD3þCD56þCD8þCD4þ (NKT cells) into a computation-based prediction tool enables the better

detection of prostate cancer and strengthens the accuracy of the PSA test in asymptomatic men hav-

ing PSA levels < 20 ng/ml (Cosma et al., 2017). Herein, we have extended this new approach to

determine if phenotypic profiling of peripheral blood natural killer (NK) cell subsets can also discrimi-

nate between the presence of benign prostate disease and prostate cancer in the same cohort of

asymptomatic men. We also investigate the potential of the peripheral blood dataset to

discriminate between low- or intermediate-risk prostate cancer and high-risk prostate cancer in those

men having prostate cancer.

Results

Distinguishing between benign prostate disease and prostate cancer:
statistical analysis of NK cell phenotypic features and PSA levels
Herein, we consider a ‘feature’ to be a single phenotypic variable (as determined using flow cytome-

try) or a pre-grouped set of phenotypic variables, as shown in Table 1. It was not possible to discrim-

inate between men with benign prostate disease and men with prostate cancer based on differences

between phenotypic features/profiles due to their similarity (Table 1, Figure 1, Figure 2).

These findings highlight the difficulty in identifying combinations of features that can best identify

the presence of cancer. These difficulties are compounded by the challenge of identifying the best

combination of predictors which comprise n number of features, and that features within a combina-

tion, ideally, should not correlate. It is important to evaluate correlations between features, because

if two features are highly correlated, then only one of these could serve as a candidate predictor.

However, there may be occasions where both features are needed and besides the impact of this on

the dimensionality of the dataset, there is no other negative impact. Furthermore, when two features

are highly correlated and are important, it may be difficult to decide which feature to remove. Fig-

ure 3 shows the correlations between features, where +1.0 indicates a strong positive correlation

between two features, and �1.0 indicates a strong negative correlation between two features.

The Kolmogorov-Smirnov and Shapiro-Wilk tests of normality were carried out to determine

whether the dataset is normally distributed, as this would determine the choice of statistical tests,

that is whether to use parametric (for normally distributed datasets), or non-parametric (for not nor-

mally distributed datasets) tests. The results of the normality tests are shown in Table 2. The results

revealed that only 7–8 features (depending on the normality test) were normally distributed (with

p> 0:05), and for the remaining features the p value was less than 0.05 (p< 0:05) which indicates that

there is a statistically significant difference between the distribution of the data of those features

and the normal distribution. Based on the results of the test, we can conclude that the dataset is not

normally distributed.

Given that most features in the dataset are not normally distributed, the Kruskal-Wallis (also

called the ‘one-way ANOVA on ranks’, a rank-based non-parametric test) tests were used to check

for statistically significant differences between the mean ranks of the NK cell phenotypic features in

men with benign prostate disease and patients with prostate cancer rather than its parametric equiv-

alent (one-way analysis of variance, ANOVA). Although the Kruskal-Wallis test did not return any sig-

nificant differences in the mean PSA values between individuals with benign disease and those with

prostate cancer (�2 ¼ 0; p=0.949, Figure 4), statistically significant differences at the alpha level of

a ¼ 0:05 in the mean ranks of the CD56brightCD8þ (ID14, p=0.007), CD56þNKp30þ (ID15, p=0.008),

CD56þNKp30� (ID16, p=0.031), CD56þNKp46þ (ID17, p=0.023) populations in men with benign pros-

tate disease and those with prostate cancer (Table 3) were observed.

This initial analysis provided insight into which phenotypic features might be good candidates for

distinguishing between the presence of benign disease and prostate cancer. The next step was to

examine whether using these as inputs into a machine learning algorithm can achieve this. An

Ensemble Subspace kNN classifier was developed for the task at hand. The section which follows

explains the approaches that were used to compare the diagnostic accuracy of the classifier when

using the subset of features derived from the statistical analysis, and those features which were

selected as a combination using the Genetic Algorithm (GA) for feature selection.
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Table 1. Descriptive statistics of the dataset.

Min. Max. Mean Std. IQR Range Diff.

Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc.

PSA 4.70 4.70 19.00 19.00 8.26 8.34 3.31 3.28 3.30 4.08 14.30 14.30 �0.08

CD56dim %

1 CD16þ 83.85 73.04 96.61 96.98 90.98 90.64 3.35 5.46 4.13 5.02 12.76 23.94 0.34

2 CD16high 24.38 49.66 87.46 89.33 72.88 73.32 11.74 10.22 15.00 10.45 63.08 39.67 �0.44

3 CD16low 5.17 6.57 64.22 44.00 17.74 16.84 10.40 7.45 8.76 7.66 59.05 37.43 0.90

4 CD16� 1.41 1.25 11.11 18.06 4.83 4.89 2.45 3.48 2.58 2.68 9.70 16.81 �0.06

5 CD56dimtotal 91.29 87.24 98.70 98.70 95.81 95.53 2.02 2.58 2.96 3.02 7.41 11.46 0.28

CD56bright %

6 CD16þ 0.46 0.65 5.10 5.88 1.91 1.83 1.06 1.04 1.64 0.92 4.64 5.23 0.08

7 CD16high 0.09 0.12 1.97 1.15 0.60 0.47 0.44 0.25 0.50 0.40 1.88 1.03 0.13

8 CD16low 0.34 0.40 3.11 4.95 1.27 1.35 0.72 0.86 0.97 0.63 2.77 4.55 �0.07

9 CD16� 0.61 0.58 5.78 9.09 2.28 2.64 1.14 1.82 1.42 1.75 5.17 8.51 �0.36

10 CD56brighttotal 1.30 1.30 8.71 12.76 4.19 4.47 2.02 2.58 2.95 3.01 7.41 11.46 �0.28

CD8%

11 CD56þCD8þ 21.88 9.20 86.70 80.47 46.43 40.71 15.64 14.66 24.03 20.05 64.82 71.27 5.72

12 CD56þCD8� 13.30 19.53 78.12 90.80 53.57 59.29 15.64 14.66 24.03 20.05 64.82 71.27 �5.72

13 CD56dimCD8þ 19.63 8.60 82.38 77.47 45.18 39.11 15.31 14.10 24.72 19.36 62.75 68.87 6.07

14 CD56brightCD8þ 0.37 0.25 4.75 6.64 1.41 1.70 1.07 1.41 0.70 1.60 4.38 6.39 �0.29

NKp30 %

15 CD56þNKp30þ 40.69 56.80 96.74 98.43 79.78 88.56 16.42 10.41 21.80 10.44 56.05 41.63 �8.78

16 CD56þNKp30� 3.26 1.57 58.34 44.59 20.05 11.43 16.22 10.46 20.54 10.49 55.08 43.02 8.61

NKp46 %

17 CD56þNKp46þ 38.11 45.37 86.52 95.82 62.65 69.82 13.49 11.58 23.90 12.71 48.41 50.45 �7.18

18 CD56þNKp46� 14.02 4.32 62.97 55.68 38.40 30.87 13.58 11.64 24.89 13.44 48.95 51.36 7.53

DNAM-1 %

19 CD56þDNAM � 1
þ 63.69 88.56 99.18 99.60 95.35 96.46 6.81 2.59 3.37 3.49 35.49 11.04 �1.11

20 CD56þDNAM � 1
� 0.86 0.42 37.29 11.66 4.74 3.59 6.96 2.61 3.45 3.54 36.43 11.24 1.14

NKG2D %

21 CD56þNKG2Dþ 85.17 80.79 98.77 98.96 93.49 94.07 4.45 4.87 6.81 3.83 13.60 18.17 �0.58

22 CD56þNKG2D� 1.22 1.03 14.76 19.12 6.44 5.84 4.36 4.76 6.80 3.96 13.54 18.09 0.60

PSA 4.70 4.70 19.00 19.00 8.26 8.34 3.31 3.28 3.30 4.08 14.30 14.30 �0.08

NKp44 %

23 CD56þNKp44þ 0.43 0.28 3.71 6.77 1.16 1.34 0.82 1.20 0.78 1.25 3.28 6.49 �0.18

24 CD56þNKp44� 96.10 93.70 99.53 99.70 98.82 98.64 0.83 1.13 0.80 1.25 3.43 6.00 0.18

CD85j %

25 CD56þCD85jþ 19.53 14.21 84.73 91.59 53.37 55.10 19.04 18.34 30.49 20.23 65.20 77.38 �1.74

26 CD56þCD85j� 14.93 8.50 81.54 86.08 46.94 45.24 19.21 18.43 30.28 21.48 66.61 77.58 1.69

LAIR-1 %

27 CD56þLAIR� 1
þ 94.97 21.43 99.90 99.89 99.07 97.47 1.07 12.19 0.49 0.47 4.93 78.46 1.60

28 CD56þLAIR� 1
� 0.02 0.05 5.24 78.20 0.76 2.40 1.02 12.15 0.42 0.43 5.22 78.15 �1.65

NKG2A %

29 CD56þNKG2Aþ 20.43 19.01 77.57 73.01 46.14 44.24 17.41 13.73 30.82 17.47 57.14 54.00 1.90

30 CD56þNKG2A� 22.62 27.11 79.40 80.85 54.01 55.99 17.39 13.67 30.48 17.90 56.78 53.74 �1.98

Table 1 continued on next page
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Distinguishing between benign prostate disease and prostate cancer:
GA
The GA was used to identify a subset of features that, as a combination, provide an NK cell-based

immunophenotypic ‘fingerprint’ which can determine if an asymptomatic individual with PSA levels

below 20 ng ml-1 has benign prostate disease or prostate cancer. This fingerprint, or feature set,

would then be used to construct a diagnostic/prediction model. Given that GAs stochastically select

multiple individuals (i.e. features) from the current population (based on their ‘fitness’), each run can

return different results. A common approach to identifying the best solution(s) is, therefore, to run

the algorithm several times to obtain the frequency of the solution(s). Since the aim herein is to iden-

tify the most commonly occurring subset of NK cell phenotypic predictors, the GA was applied to

the dataset and the most frequent subset of features returned was considered as being the best and

most promising.

Let fc denote the number of times (frequency) a combination was returned during the n number

of runs, then the relative frequency of a combination (Rfc) can be calculated using formula

(Equation 1),

Rfc ¼
fc

n
(1)

Table 4 shows the most frequent feature combinations returned at the end of each of the 30 runs

when setting l to different values. In Table 4, l is the number of features in a combination. No. dif-

ferent comb is the number of unique combinations returned during the n number of runs (i.e. n = 30)

for a given l; Comb. with highest freq is the combination which was returned most frequently during

the n number of runs; Freq of Comb. is the frequency of the most common combination found in the

previous column; Relative Freq. (%) is computed using formula (Equation 1) converted to a

percentage.

As the optimum number of features is not known, the GA was run by setting l ¼ 2; 3; . . . ; n where

n is the total number of features in the dataset. Table 4 shows the results for the first 10 combina-

tions. The results indicate that the combination comprising four features is the most promising in

terms of its ability to discriminate between benign prostate disease and prostate cancer on NK cell

phenotypic data alone. Features 2, 20, 27, 28, were returned in all 30 runs when searching for the

best combination comprising of four features. Furthermore, features 20, 27, 28 were returned

together in all combinations comprising more than three features (see feature ID’s in combinations

l ¼ 4 to l ¼ 10 in Table 4). These results strongly suggest that these are good predictors when

grouped. The fact that the same combination was returned in 30 iterations is a strong indicator that

these four features are the most reliable for distinguishing between the presence of benign prostate

disease and prostate cancer. Although the statistical analysis presented in Table 3 determined that

features: ID14: CD56brightCD8þ, ID15: CD56þNKp30þ, ID16: CD56þNKp30�, and ID17: CD56þNKp46þ

were the only ones with values which were significantly different in the two groups at a ¼ 0:05, and

for which p values were therefore less than 0.05, none of the features selected by the statistical anal-

ysis were returned by the GA when searching for the best combination of features for discriminating

between the presence of benign prostate disease and prostate cancer. The features selected by the

GA were: ID2: CD56dimCD16high, ID20: CD56þDNAM � 1
�, ID27: CD56þLAIR� 1

þ, and

Table 1 continued

Min. Max. Mean Std. IQR Range Diff.

Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc.

2B4 %

31 CD56þ2B4þ 98.41 97.06 99.99 99.96 99.53 99.50 0.39 0.59 0.32 0.33 1.58 2.90 0.02

32 CD56þ2B4� 0.01 0.05 1.59 2.95 0.48 0.50 0.39 0.59 0.31 0.34 1.58 2.90 �0.02

Min. is the minimum value, Max. is maximum value, Mean is the mean or average value, and Std. is Standard Deviation. Range is the difference between

the minimum and maximum values. The Interquartile range (IQR) is a measure of data variability and was derived by computing the distance between the

Upper Quartile (i.e. top) and Lower Quartile (i.e. bottom) of the boxes illustrated in Figure 1. Difference is computed as diff = mean(Benign)-mean

(Cancer).
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Figure 1. NK cell phenotypic features in men with benign prostate disease and patients with prostate cancer. Boxplots represent the flow cytometry

values of each feature for patients with benign disease and with prostate cancer.
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ID28: CD56þLAIR� 1
�. Referring back to Figure 3 and the correlation values between the selected

features 2, 20, 27, 28, 14, 15, 16, 17, it is shown that these features do not have a strong positive

correlation. There is a strong negative correlation between features 27 and 28, but we decided to

keep both features since these were selected by the feature selection method.

The next step in the analysis involves evaluating the predictive performance of the feature subsets

returned by the statistical test and by the GA. The features identified from the statistical and GA

approaches were input into the proposed Ensemble Subspace kNN classifier to determine whether

it can learn these features and discriminate between the presence of benign prostate disease and

prostate cancer. For transparency of the machine learning model, it was important to keep the pre-

dictor selection and machine learning processes separate. The feature selection algorithm identified

a set of novel NK cell phenotypic features for diagnosing the presence of prostate cancer which will

be used to construct a transparent prediction tool.

Distinguishing between benign prostate disease and prostate cancer:
machine learning
This section describes the outcome of experiments that were performed to determine the predictive

performance of various feature subsets using the Ensemble Subspace kNN model, which was

designed for the task. Machine learning classifiers that are constructed using small training sets have

a large variance which means that the estimate of the target function will change if different training

data are used (Skurichina and Duin, 2002). It is therefore expected, and normal, that classifiers will

exhibit some variance. This means that small changes in input variable values can result in very differ-

ent classification rules. To ensure that the proposed approach does not suffer from low variance, we

evaluated the performance of the classifier using the 10-fold cross-validation approach which was

repeated 30 times, for which the average and standard deviation of each run were recorded. Multi-

ple runs of 10-fold cross-validation are performed using different partitions (i.e. folds), and the vali-

dation results are averaged over the runs to estimate a final predictive model. Each run of the cross-
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Figure 2. Mean and standard deviation values of flow cytometry features.
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validation involves randomly partitioning a sample of data into complementary subsets, for which

one subset is used as the training set, and the other is used as the validation subset. Cross validation

randomly partitions the dataset into training and validation sets to limit overfitting problems, and to

provide an insight into how the model will generalise to an independent dataset which was not pre-

viously seen by the model. A random seed generator was used to generate a different sequence of

values each time the k-fold was run, and this was reseeded using a seed that was created using the

current time. It is normal that a classifier returns a different validation accuracy in each fold and run,

since it is training and validating on different samples. The aim is to create a low variance classifier,

meaning that the results of each validation test are close together. The closer the results of each vali-

dation test, the more robust the classifier. To evaluate the predictive performance of various feature

subsets derived from the computational and statistical feature selection approaches, each of these

feature subsets was input into an Ensemble Subspace kNN classifier. Applying 10-fold validation

resulted in 10 different partitions of the dataset of approximately 64 randomly selected samples for

training and 7 randomly selected samples for validation in each partition (1 dataset comprising 63

training cases and 8 validation cases; and 9 datasets comprising 64 validation cases and 7 validation

cases). All samples went through validation at some point during the evaluations. We consider 10-

fold cross validation to be suitable given the small size of the dataset and the fact that sufficient

samples are needed during the training process.

Table 5 shows the results of the comparison when running the 10-fold validation 30 times using

six sets of features: 1) the four features selected by the GA; 2) the four features which were returned

by the Kruskal-Wallis statistical test (STAT); 3) combined features selected by the GA and the statisti-

cal test (GA+STAT); 4) PSA values combined with features selected by the GA and the statistical test

Figure 3. Correlations between features.
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(PSA+GA+STAT); 5) PSA values alone as a predictor (PSA); and 6) using all 32 features (All features).

The averages of the Area Under the Curve (AUC), Optimal ROC Point (ORP) False Positive Rate

(FPR) of the AUC, ORP True Positive Rate (TPR) of the AUC, and Accuracy (ACC) of each fold are

provided. The last column of Table 5 shows the Rank of each model, where 1 is the best model and

Table 2. Tests of normality results.

Tests of normality

NK cell values Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

1 CD56dim CD16þ 0.15 71.00 0.00 0.85 71.00 0.00

2 CD56dim CD16high 0.11 71.00 0.03 0.89 71.00 0.00

3 CD56dim CD16low 0.17 71.00 0.00 0.79 71.00 0.00

4 CD56dim CD16� 0.19 71.00 0.00 0.82 71.00 0.00

5 CD56dim CD56dimtotal% 0.15 71.00 0.00 0.91 71.00 0.00

6 CD56bright CD16þ 0.13 71.00 0.00 0.88 71.00 0.00

7 CD56bright CD16high 0.15 71.00 0.00 0.87 71.00 0.00

8 CD56bright CD16low 0.14 71.00 0.00 0.85 71.00 0.00

9 CD56bright CD16� 0.16 71.00 0.00 0.86 71.00 0.00

10 CD56bright CD56brighttotal 0.15 71.00 0.00 0.91 71.00 0.00

11 CD8 CD56þCD8þ 0.10 71.00 0.06 0.98 71.00 0.17

12 CD8 CD56þCD8� 0.10 71.00 0.06 0.98 71.00 0.17

13 CD8 CD56dimCD8þ 0.09 71.00 0.20* 0.98 71.00 0.24

14 CD8 CD56brightCD8þ 0.19 71.00 0.00 0.82 71.00 0.00

15 NKp30 CD56þNKp30þ 0.21 71.00 0.00 0.81 71.00 0.00

16 NKp30 CD56þNKp30� 0.21 71.00 0.00 0.81 71.00 0.00

17 NKp46 CD56þNKp46þ 0.08 71.00 0.20* 0.98 71.00 0.52

18 NKp46 CD56þNKp46� 0.07 71.00 0.20* 0.99 71.00 0.57

19 DNAM � 1 CD56þDNAM � 1
þ 0.23 71.00 0.00 0.56 71.00 0.00

20 DNAM � 1 CD56þDNAM � 1
� 0.23 71.00 0.00 0.55 71.00 0.00

21 NKG2D CD56þNKG2Dþ 0.19 71.00 0.00 0.84 71.00 0.00

22 NKG2D CD56þNKG2D� 0.18 71.00 0.00 0.85 71.00 0.00

23 NKp44 CD56þNKp44þ 0.18 71.00 0.00 0.76 71.00 0.00

24 NKp44 CD56þNKp44� 0.17 71.00 0.00 0.78 71.00 0.00

25 CD85j CD56þCD85jþ 0.11 71.00 0.05 0.96 71.00 0.02

26 CD85j CD56þCD85j� 0.10 71.00 0.07 0.96 71.00 0.02

27 LAIR� 1 CD56þLAIR� 1
þ 0.43 71.00 0.00 0.14 71.00 0.00

28 LAIR� 1 CD56þLAIR� 1
� 0.43 71.00 0.00 0.14 71.00 0.00

29 NKG2A CD56þNKG2Aþ 0.09 71.00 0.20* 0.97 71.00 0.11

30 NKG2A CD56þNKG2A� 0.08 71.00 0.20* 0.97 71.00 0.10

31 2B4 CD56þ2B4þ 0.23 71.00 0.00 0.75 71.00 0.00

32 2B4 CD56þ2B4� 0.23 71.00 0.00 0.75 71.00 0.00

*. This is a lower bound of the true significance.

Those values in bold are of those features whose data is normally distributed.

If the p> 0:05, we can accept the null hypothesis, that there is no statistically significant difference between the data and the normal distribution, hence we

can presume that the data of those features are normally distributed.

If the p< 0:05, we can reject the null hypothesis because there is a statistically significant difference between the data and the normal distribution, hence

we can presume that the data of those features are not normally distributed.
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6 is the worst. The results of each k-fold were averaged, and these average values are plotted in the

box plot shown in Figure 5. As shown in Table 5, combining the features selected by the GA ID2:

CD56dimCD16high, ID20: CD56þDNAM � 1
�, ID27: CD56þLAIR� 1

þ, ID28: CD56þLAIR� 1
�; with the

four features which were returned by the Kruskal-Wallis statistical test as features with values which

were statistically significant between individuals with benign prostate disease and patients with pros-

tate cancer, ID14: CD56brightCD8þ, ID15: CD56þNKp30þ, ID16: CD56þNKp30�, ID17: CD56þNKp46þ

yielded the highest classification accuracy, with AUC = 0.818, ORP FPR = 0.201, ORP TPR = 0.836

and Accuracy = 0.821. PSA values input into the classifier resulted in weak classification perfor-

mance, AUC = 0.698, ORP FPR = 0.217, ORP TPR = 0.609, and Accuracy = 0.692. Although PSA is

used as a screening test in clinical practice for identifying prostate cancer in men, it is the weakest of

all the predictors. Importantly, predictive accuracy improved when PSA is combined with GA+STAT

flow cytometry features (PSA+GA+STAT): AUC = 0.812, ORP FPR = 0.208, ORP TPR = 0.832, and

ACC = 0.815. Combining PSA with the NK cell phenotypic fingerprint increased accuracy by +0.123

points when compared to using PSA alone.

The closer the standard deviation value is to 0 the less spread out are the results across the 30

runs, and hence the classifier variability is low (see Table 5). This results in a low variance classifier. A
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Figure 4. PSA values by group.
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low standard deviation indicates that the data points tend to be close to the mean (also called the

expected value) of the set, whereas a high standard deviation indicates that the data points are

spread out over a wider range of values. Observing the data shown in Table 5 and Figure 5 for each

evaluation measure (i.e. AUC, ORP TPR, ORP FPR, Accuracy (ACC)), the aim is to have a high AUC

and low Std.; low ORP FPR and low Std.; high ORP TPR and low Std.; and high Accuracy and low

Std. The results show that the classifier achieved the best performance when using the GA+STAT

input and the results using k-fold across the 30 runs returned the lowest mean standard deviation

and hence the least variability in the results. The results reveal that using the GA+STAT predictors

delivers a more reliable classification model with regards to training and validation on new data

which will be generated in the future using the prediction model.

Table 3. Results of the Kruskal-Wallis test.

Chi-Sq.(�2) Asy. sig. p value

PSA 0 0.949

NK cells

1 CD56dim CD16þ 0.001 0.981

2 CD56dim CD16high 0.069 0.793

3 CD56dim CD16low 0.555 0.456

4 CD56dim CD16� 0.033 0.857

5 CD56dim CD56dimtotal% 0.063 0.802

6 CD56bright CD16þ 0.836 0.361

7 CD56bright CD16high 0.201 0.654

8 CD56bright CD16low 0.106 0.744

9 CD56bright CD16� 0.030 0.861

10 CD56bright CD56brighttotal 2.415 0.120

11 CD8 CD56þCD8þ 2.415 0.120

12 CD8 CD56þCD8� 2.849 0.091

13 CD8 CD56dimCD8þ 0.417 0.518

14 CD8 CD56brightCD8þ 7.230 0.007

15 NKp30 CD56þNKp30þ 7.106 0.008

16 NKp30 CD56þNKp30� 4.638 0.031

17 NKp46 CD56þNKp46þ 5.179 0.023

18 NKp46 CD56þNKp46� 0.001 0.981

19 DNAM � 1 CD56þDNAM � 1
þ 0.001 0.972

20 DNAM � 1 CD56þDNAM � 1
� 0.293 0.588

21 NKG2D CD56þNKG2Dþ 0.325 0.568

22 NKG2D CD56þNKG2D� 0.033 0.857

23 NKp44 CD56þNKp44þ 0.072 0.789

24 NKp44 CD56þNKp44� 0.049 0.825

25 CD85j CD56þCD85jþ 0.072 0.789

26 CD85j CD56þCD85j� 2.135 0.144

27 LAIR� 1 CD56þLAIR� 1
þ 1.343 0.247

28 LAIR� 1 CD56þLAIR� 1
� 0.060 0.807

29 NKG2A CD56þNKG2Aþ 0.072 0.789

30 NKG2A CD56þNKG2A� 0.879 0.348

31 2B4 CD56þ2B4þ 0.890 0.346

32 2B4 CD56þ2B4� 0.890 0.346
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Importance of findings
The GA+STAT prediction model achieved the best performance, in that the ORP FPR was the low-

est, and the AUC, ORP TPR, and Accuracy (ACC) were the highest compared to the other prediction

models. The experimental results are promising and the proposed prediction model is expected to

achieve even higher classification accuracy in identifying the presence of prostate cancer in asymp-

tomatic individuals with PSA levels < 20 ng ml-1 based on peripheral blood NK cell phenotypic pro-

files as more data become available in the future. Table 5 shows the performance of the classifier

when using various feature subsets. When using the GA+STAT features, the AUC is higher, and FPR

is lower (this is an important distinction) than when using all features or the other alternative feature

subsets. The most important aspect is that better performance was achieved using a much smaller

set of biomarkers (features), which indicates that we have identified a fingerprint for detecting the

presence of prostate cancer in asymptomatic men with PSA levels < 20 ng ml-1 which is indeed sig-

nificant from a clinical perspective. Feature selection is important, as the fundamental aim of this

project is to develop a subset of phenotypic biomarkers that is smaller than the original set of bio-

markers (i.e. 32 biomarkers in total) which can confidently identify the presence of prostate cancer.

Ultimately, the approach will be embedded into a software application to be used by clinicians, and

the aim is to create an interface that requires the clinician to input a few values (features), that is 8

instead of 32. Importantly, identifying a small subset of 8 features which is needed for detecting the

Table 4. Results of the Genetic Algorithm when searching for the best subset of features.

l No. different comb Comb. with highest freq. Freq. of comb. Relative freq. (%)

2 3 17,28 16 53.3

3 2 17,27,29 23 76.7

4 1 2,20,27,28 30 100.0

5 2 3,20,27,28,32 29 96.7

6 2 3,7,20,27,28,32 26 86.7

7 3 3,7,20,23,27,28,32 24 80.0

8 4 3,7,20,22,23,27,28,32 19 63.3

9 3 3,7,19,20,22,23,27,28,32 24 80.0

10 3 2,3,7,19,20,22,23,27,28,32 21 70.0

Table 5. Naming of the models includes the feature selection method (GA) combined with the proposed Ensemble Subspace kNN

classifier.

Validation results are presented at k = 10 fold cross validation.

Results of 10-fold cross validation over 30 runs

AUC Orp fpr Orp tpr ACC Mean std. Rank

GA Mean 0.776 0.296 0.833 0.781 4

Std. 0.024 0.065 0.026 0.023 0.035

STAT Mean 0.769 0.303 0.828 0.774 5

Std. 0.022 0.057 0.023 0.021 0.031

GA+STAT Mean 0.818 0.201 0.836 0.821 1

Std. 0.021 0.027 0.021 0.020 0.022

PSA+GA+STAT Mean 0.812 0.208 0.832 0.815 2

Std. 0.020 0.031 0.018 0.019 0.022

PSA Mean 0.698 0.217 0.609 0.692 6

Std. 0.022 0.025 0.043 0.020 0.028

All features Mean 0.812 0.213 0.836 0.815 3

Std. 0.022 0.035 0.021 0.021 0.025
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presence of prostate cancer, results in the construction of an explainable disease detection and cate-

gorization model. Working with a small set of the most promising biomarkers provides a better

understanding of the disease and allows cancer immunobiologists and clinicians to focus on perform-

ing further laboratory evaluations using the specific subset of biomarkers, in a more cost effective

and less time-consuming manner.

Comparing the performance of the proposed ensemble subspace kNN
classifier with alternative classifiers
The experiments discussed thus far utilised a machine learning model comprised of an Ensemble of

kNN learners (see Section ‘Proposed Ensemble Learning Classifier for the task of Predicting Prostate

Cancer’). We then undertook experiments to determine the impact of using the proposed Ensemble

method over conventional machine learning classifiers: simple kNN; Support Vector Machine; and

Naive Bayes models. The last column of Table 6 shows the difference in the performance of the

methods. The proposed method, denoted as EkNN, returned better performance than all other
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Figure 5. Boxplots illustrating the performance of the proposed model using various feature sets. (a) Average AUC values, (b) Average Optimal ROC

points (TPRs), (c) Average Optimal ROC points (FPRs), (d) Average Accuracy values. Each box plot contains 30 points, where each point is the average

performance evaluation value (i.e. AUC, ORP TPR, ORP FPR, Accuracy) from one 10-fold run using the various feature sets.
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alternative classifiers. EkNN also returned the lowest Standard Deviation values and these are an

indicator of a more stable and reliable model since the average values are clustered closely around

the mean. SVM-linear returned the highest ORP TPR; however, the higher ORP FPR, higher Std. val-

ues, the low AUC, and low Accuracy values suggest that this model is worse than the proposed

EkNN. Naive Bayes was the least efficient classifier, and although it returned the lowest ORP FPR, it

also returned the lowest ORP TPR, lowest AUC and Accuracy values; and its Std. values were also

higher than those of the EkNN model.

Statistically significant differences in predictive performance when
using various feature subsets
The next step in the analysis is to determine whether statistically significant differences exist

between the average AUC performance values of the classifier when using the various feature sub-

sets, for which Friedman’s two-way Analysis of Variance (ANOVA) test was used. It was also impor-

tant to observe whether including the PSA test values significantly strengthens the diagnostic

accuracy and capacity. The average k-fold values across the 30 runs for each feature set were com-

puted. A matrix C was derived which holds the results of the classifier when using one of five feature

subsets. Friedman’s chi-square statistic compares the mean values of the columns of matrix C. The

test returned a statistically significant difference in the AUC predictive performance depending on

which type of feature subset was input into the classifier, �
2ð4Þ ¼ 106:55, p ¼ 3:968E � 22. This

Table 6. Comparing the performance of the proposed Ensemble Subspace kNN model against conventional machine learning

models when using the GA+STAT feature set.

Results of 10-fold cross validation over 30 runs.

Proposed ensemble subspace kNN (EkNN) model

(No. of learners (NL): 30; Subspace Dimension (SD): 16)

Parameters AUC ORP FPR ORP TPR ACC

NL: 30, SD:16 Mean 0.818 0.201 0.836 0.821

Std. 0.021 0.027 0.021 0.020

Simple kNN model (Distance: Euclidean)

AUC ORP FPR ORP TPR ACC Acc. Diff.

k (EkNN vs. kNN)

2 Mean 0.768 0.241 0.730 0.751 +0.070

Std. 0.119 0.160 0.393 0.128 �0.108

5 Mean 0.778 0.300 0.833 0.783 +0.038

Std. 0.107 0.265 0.103 0.103 �0.083

10 Mean 0.753 0.371 0.845 0.758 +0.063

Std. 0.137 0.350 0.120 0.131 �0.111

Support Vector Machine models

AUC ORP FPR ORP TPR ACC Acc. Diff.

Kernel (EkNN vs. SVM)

Linear Mean 0.782 0.342 0.860 0.784 +0.037

Std. 0.126 0.352 0.110 0.120 �0.100

Gaussian Mean. 0.808 0.353 0.876 0.799 +0.022

Std. 0.112 0.416 0.107 0.111 �0.091

Naive Bayes model

AUC ORP FPR ORP TPR ACC Acc. Diff.

Predictor distributions (EkNN vs. Naı̈ve Bayes)

Normal Mean. 0.695 0.132 0.455 0.662 +0.159

Std. 0.169 0.163 0.493 0.181 �0.161
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suggests that the mean AUC ranks of at least one feature subset are significantly different than the

others. The mean ranks were as follows: GA = 12.050, STAT = 10.733, GA+STAT = 20.283,

PSA = 3.067, PSA+GA+STAT = 18.867. A post hoc test was run alongside the Friedman test to pin-

point which feature subsets differ from each other. Post hoc analysis using a Bonferroni correction

was used to reduce the likelihood of erroneously declaring a statistically significant due to multiple

comparisons (a Type I error). Table 7 shows the results of multiple comparisons and adjusted p val-

ues. There were statistically significant differences between group 8 (GA+STAT vs. GA) and 10 (PSA

vs. PSA+GA+STAT) (p=0.001). We can conclude that GA+STAT returned a significantly higher AUC

than PSA, and the difference between their mean ranks is diff = 17.217. PSA returned a significantly

lower AUC than PSA+GA+STAT (p=0.002), and the difference between their mean ranks is diff=-

15.800.

Comparing the best prediction models over 30 runs
With regard to constructing a model which has the potential to be used in clinical practice, it is nec-

essary to finalise an initial prediction model, since the last experiment returned 30 different varia-

tions of each prediction model when using different training and validation data partitions. Those

experiments were crucial in determining whether the prediction models (five models, a different one

for each feature subset) suffer from low variance. We then observed the classification performance

of each model for each run, to identify the highest performance achieved using a single 10-fold cross

validation in any of the runs. This provides a way of comparing the performance of each prediction

model as it would be used in the clinical setting. Table 8 provides the results of the highest perform-

ing model, and the performance of the models is ranked (with 1 being the best model and 5 the

worst model).

Predicting low-/intermediate risk cancer vs. high-risk cancer
The continuing, significant clinical challenge resides in distinguishing men with low- or intermediate-

risk prostate cancer which is unlikely to progress (for both of which ‘active surveillance’ is the most

appropriate approach), from men with intermediate disease which is likely to progress and men with

high-risk prostate cancer (both of which require treatment). The diagnosis of men with low-risk or

small volume intermediate-risk prostate cancer as having prostate cancer is unhelpful as these men

will very rarely require treatment. The inappropriate assignment of men to potentially life-threaten-

ing invasive procedures and life-long surveillance for prostate cancer has significant psychological,

quality of life, financial, and societal consequences. Furthermore, the definitive diagnosis of prostate

cancer currently requires painful invasive biopsies with which is associated a risk of potentially life-

threatening urosepsis in 5% of individuals. We, therefore, undertook experiments to train the

Table 7. Ad hoc test results.

Ad hoc test

Group 1 Group 2 Ll 95% Diff. betw.means Ul 95% P

1 GA STAT �12.658 1.317 15.292 1.000

2 GA GA+STAT �22.208 �8.233 5.742 0.525

3 GA PSA �4.992 8.983 22.958 0.344

4 GA PSA+GA+STAT �20.792 �6.817 7.158 1.000

5 STAT GA+STAT �23.525 �9.550 4.425 0.245

6 STAT PSA �6.308 7.667 21.642 0.710

7 STAT PSA+GA+STAT �22.108 �8.133 5.842 0.555

8 GA+STAT PSA 3.242 17.217 31.192 0.001

9 GA+STAT PSA+GA+STAT �12.558 1.417 15.392 1.000

10 PSA PSA+GA+STAT �29.775 �15.800 �1.825 0.002

The first two columns show the groups that are compared. The third and fifth columns show the lower and upper limits for 95% confidence intervals for

the true mean difference. The fourth column shows the difference between the estimated group means. The sixth column contains the p-value for testing

a hypothesis that the corresponding mean difference is equal to zero.
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proposed Ensemble Subspace kNN model to predict the D’Amico Risk Classification for those

patients with prostate cancer (see subsection ‘The cancer patients dataset used for building the risk

prediction modelin Methods), in terms of Low/Intermediate (L/I) risk and High (H) risk disease using

NK cell phenotypic data alone.

The Ensemble model was modified to take as input all 32 features (described in Table 1), and

was trained to classify the disease in patients with prostate cancer as being L/I or H risk disease (see

Figure 9 in Materials and methods). Hence, given a new patient record, which comprises of 32

inputs, the model predicts whether the patient is D’Amico L/I risk (not clinically significant) or H (clin-

ically significant) risk. The flow charts in Figure 6 illustrate the process to detect the presence and

risk of prostate cancer and patient outcomes. Of those 54 patient records, a total of 10 randomly

selected records (5 from the L/I group and 5 from the H group) were extracted from the dataset

Table 8. Results of the best prediction models created during the 30 runs.

Validation results are presented at k = 10 fold cross validation.

Best prediction model results

AUC Orp fpr Orp tpr Accuracy Rank

GA 0.818 0.192 0.829 0.820 3

GA+STAT 0.853 0.157 0.862 0.855 1

PSA 0.734 0.218 0.685 0.730 5

PSA+GA+STAT 0.844 0.175 0.864 0.848 2

STAT 0.811 0.227 0.85 0.817 4

Figure 6. Flow charts illustrating the process to detect the presence and risk of prostate cancer and patient

outcomes. Model 1: Distinguishes between men with benign prostate disease and prostate cancer; Model 2:

predicts risk (in terms of clinical significance) in men identified as having prostate cancer in Stage 1. Note that

Model 1 can detect prostate cancer in men with PSA < 20 ng ml-1.
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such that they can be used at the testing (mini clinical trial) stage. To ensure thorough experiments,

a rigorous methodology was adopted. More specifically, a 10-fold cross validation method was

adopted, and the experiments were run in 30 iterations, for which each iteration provided an aver-

age validation result across 10 folds. Each iteration consists of 10 different ‘train and validation’ data

arrangements (hence 300 tests were carried out using a different mix of train and validation records).

The 10 test records were input into each trained model (i.e. iteration) to predict their accuracy, and

to evaluate the model when it is trained and validated using different variations of patient data. The

model can highly accurately differentiate between L/I risk group and H risk group patients. The

k-fold validation results across 30 iterations were AUC: 0.98(±0.03); FPR: 0.03(±0.05), TPR: 0.99

(±0.01), Accuracy: 0.99(±0.02); and results using the test set were AUC: 0.98(±0.03); FPR: 0.03

(±0.05), TPR: 0.99(±0.01), Accuracy: 0.97(±0.02). Accuracy has been near perfect in all iterations (i.e.

using different train and validation data cases in each iteration). Figure 7 illustrates the performance

of the model obtained across the 30 runs during the k-fold cross validation and independent testing

using the 10 patient samples. The results demonstrate that the proposed model predicts with near-

perfect accuracy, the result of the D’Amico Risk Classification (L/I vs High) using NK cell phenotypic

data alone, and without requiring the PSA, Gleason, and tumor stage data.

The dataset that was utilized to identify the biomarker (that comprised eight features) for detect-

ing the presence of prostate cancer (i.e. benign prostate disease vs prostate cancer) in 71 men, and

thus it was large enough to perform the combinatorial feature selection task for finding the best sub-

set of features. The GA that was used for the combinatorial feature selection task is described in

Section Computational Methods. Given that detecting the presence of prostate cancer and its risk if

present are two different tasks, it is expected that the biomarkers for those tasks will be different

since a different target is given to the GA (i.e. the target for the prostate cancer detection model

comprises 0 (benign prostate disease) and 1 (prostate cancer) values; the target for the prostate can-

cer risk prediction model comprises 0 (L/I risk) and 1 (High risk) values. For the L/I vs H risk task, the

dataset was small (n = 54 men (L/I = 36, H = 16)), and we could not perform the combinatorial fea-

ture selection task with confidence. Hence, it was decided to use the entire feature set for the risk

prediction task. The results obtained from the risk prediction model were very promising as shown

experimentally, and this provided the confidence to report these preliminary results. The combinato-

rial feature selection task to identify the best subset of features for the risk prediction task will be

performed once a larger dataset is available.

Herein, we demonstrate that all 32 phenotypic features are required to distinguish between low/

intermediate risk cancer (L/I) and high risk (H) cancer. However, we expect to be able to identify

smaller subset(s) of these features as the datasets increase and the prediction model is retrained on

the larger dataset. As indicated above, the generation and delivery of additional datasets is beyond

the scope of this paper.

(a) (b)

Figure 7. Each box plot contains 30 points, where each point is the average performance evaluation value (i.e. AUC, FPR, TPR, Accuracy (ACC)) from

one 10-fold run during (a) k-fold validation results, and (b) independent testing results (i.e. using 10 patient records).
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Discussion
The clinical challenge in prostate cancer diagnosis resides in distinguishing men with low- or small

volume intermediate-risk prostate cancer which is unlikely to progress (both require ’active surveil-

lance’) from men with intermediate disease which is likely to progress or high-risk disease (both of

which require treatment). It is essential that men with low-risk prostate abnormalities are not diag-

nosed as having prostate cancer, as those with low-risk/grade disease do not require active treat-

ment. Furthermore, unnecessarily labeling men as having prostate cancer can assign these men to

life-long surveillance and have significant psychological, quality of life, financial and societal conse-

quences. Recent findings from a decade-long study involving 415,000 British men (The Cluster Ran-

domized Trial of PSA Testing for Prostate Cancer (CAP) Randomized Clinical Trial) have not

supported single PSA testing for population-based screening and suggest that asymptomatic men

should not be routinely tested to avoid unnecessary anxiety and treatment. It is therefore essential

that new approaches for enabling more definitive, early detection of prostate cancer are developed.

The reliable diagnosis of prostate cancer based on PSA levels alone is not possible and confirmation

using invasive biopsies or other approaches such as MRI and biopsy are currently required. Although

interest in the potential diagnostic capabilities of MRI scanning is developing, MRI cannot currently

be used as a sole diagnostic as a positive MRI can be incorrect in approximately 25% of cases and a

negative MRI can be incorrect in approximately 20% of cases Ahmed et al., 2017. Although the

findings from the CAP study do not support using the PSA test as an approach for population-based

screening, combining PSA measurements with other approaches that either identify individuals for

additional testing or strengthen the capacity to diagnose prostate cancer have significant merit, and

it is based on this concept that the current study has been performed. The studies presented herein

have focused on asymptomatic men with a PSA < 20 ng/ml, as men with a PSA level > 20 ng/ml are

more likely to harbour prostate cancer and are thereby less likely to pose a clinical diagnostic quan-

dary. In contrast, men with a PSA < 20 ng/ml pose a major problem because although only 30–40%

of these men will have prostate cancer, all currently undergo potentially unnecessary invasive pros-

tate biopsies to determine who has the disease. It is, therefore, this group of men for which the

development of new and more accurate approaches for the early detection of cancer is a clear

unmet clinical need, and for whom the benefits of such an approach will be most relevant and

significant.

Comparing results to the previous study
We have previously shown that incorporating peripheral blood immune phenotyping-based features

into a computation-based prediction tool enables the better detection of prostate cancer and, fur-

thermore, strengthens the accuracy of the PSA test in asymptomatic individuals having PSA levels

< 20 ng/ml (Cosma et al., 2017). The phenotypic feature set which was shown to be discriminatory

between benign disease and prostate cancer comprised CD8þCD45RA�CD27�CD28� (CD8þ Effector

Memory cells), CD4þCD45RA�CD27�CD28� (CD4þ Effector Memory Cells),

CD4þCD45RAþCD27�CD28�(CD4þ Terminally Differentiated Effector Memory Cells re-expressing

CD45RA), CD3�CD19þ (B cells), CD3þCD56þCD8þCD4þ (NKT cells).

Using samples from the same cohort of asymptomatic individuals, herein we have further investi-

gated the phenotype and function of NK cell subsets. Using a combination of statistical and compu-

tational feature selection approaches, we have identified a subset of eight phenotypic features

CD56dimCD16high, CD56þDNAM � 1
�, CD56þLAIR� 1

þ, CD56þLAIR� 1
�, CD56brightCD8þ,

CD56þNKp30þ, CD56þNKp30�, CD56þNKp46þ which distinguish between the presence of benign

prostate disease and prostate cancer. These features were used to implement a prediction model.

The kNN machine learning approach developed in our previous study (Cosma et al., 2017) has been

extended to an Ensemble of kNN learners to improve performance in identifying patterns in even

more complex data. As was observed in our previous study, flow cytometry predictors significantly

outperform the PSA test. The findings presented herein significantly reinforce our previous finding

(Cosma et al., 2017) that complementing the PSA prediction model with a subset of flow cytome-

try-based phenotypic predictors can significantly increase the accuracy of the initial prostate cancer

test and reduce misclassification. The performance of the prediction model which was built using the

phenotypic ‘signature’ presented in our previous study �CD8þCD45RA�CD27�CD28�,

CD4þCD45RA�CD27�CD28�, CD4þCD45RAþCD27�CD28�, CD3�CD19þ,
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CD3þCD56þCD8þCD4þ (Cosma et al., 2017), is similar to the model which was built using the NK

cell-based phenotypic signature presented herein, CD56dimCD16high, CD56þDNAM � 1
�,

CD56þLAIR� 1
þ, CD56þLAIR� 1

�, CD56brightCD8þ, CD56þNKp30þ, CD56þNKp30�, CD56þNKp46þ.

Specifically, the prediction model using the five flow cytometry features identified in Cosma et al.,

2017 achieved Accuracy: 83.33% , AUC: 83.40%, ORP TPR: 82.93%, FPR: 16.13%, whereas the pre-

diction model presented herein achieved AUC: 85.3%, ORP FPR: 15.7%, ORP TPR: 86.2%, Accuracy:

85.5%. Across the 30 runs the average performance of the prediction model presented herein is

AUC: 81.8%, ORP TPR: 83.6%, FPR: 20.1%, Accuracy: 82.1%.

The difference in the performance of the model presented in the first study (Cosma et al., 2017)

and the study described herein is a consequence of different data and prediction models being used

in each study. Given that the phenotypic features that were used to create the prediction models

were different, the studies resulted in different prediction models. In particular, the model presented

previously (Cosma et al., 2017) was based on a kNN classifier, and herein the kNN classifier was

extended to construct an Ensemble Subspace kNN method which comprised several kNN classifiers

(see Figure 9). The dataset used herein was more complex, and it was therefore necessary to create

a more complex classifier. At this point in the studies, it is not possible to determine which set of

phenotypic features is better at identifying prostate cancer. However, it is evident that both

approaches have significant promise. Since the publication of our previous study (Cosma et al.,

2017), the model developed for that study was used to predict the outcomes of a further 20 new

patients which were previously unseen by the prediction model. The model correctly identified the

presence of prostate cancer in 19 of the 20 patients (data not shown).

Encouragingly, the prediction models generated in the study reported upon herein selected phe-

notypic features that are associated with the expression of activating receptors NKp30, NKp46, and

DNAM-1 by NK cells. Pasero et al., 2015 demonstrated that these activating receptors, in addition

to NKG2D, are involved in the recognition of prostate cancer cell lines. Furthermore, they identified

that the intensity of NKp30 and NKp46 expression on the surface of NK cells isolated from the

peripheral blood of patients with metastatic prostate cancer was predictive of time to hormone (cas-

tration) resistance and overall survival. This suggests that our computational analysis is selecting phe-

notypic features that are of biological/clinical relevance. Thus far, our identification of disease

predictive phenotypic immune features has been limited to effector immune populations (T, B, and

NK cells). The responsiveness of these cells is known to be influenced by the presence of innate

immune cell populations that can be polarized by the tumor toward an immunosuppressive state

(Vitale et al., 2014; Anderson et al., 2017). Therefore, future studies will investigate the identifica-

tion and inclusion of phenotypic features from innate immune subpopulations such as monocytes

and neutrophils into prediction models to assess whether their inclusion enhances predictive capabil-

ity and enables a better assessment of patient prognosis in line with the D’Amico Risk Classification.

The proposed machine learning model was adapted to predict the D’Amico Risk Classification of

patients with prostate cancer using NK cell phenotypic data alone. Experiments with data from 54

patients revealed the significant potential of using the proposed machine learning model for deter-

mining if men with prostate cancer are in the low-/intermediate- or high-risk groups, without the

need for additional clinical data (i.e. PSA, Gleason, clinical stage data). One limitation of the current

study is that the small patient numbers required for low- and intermediate-risk patients to be

grouped. Future work, for which additional sample collections are required, will train the model to

separately predict low-, intermediate- and high-risk cancer. Future work involves collecting more

patient samples to conduct further testing of the proposed machine learning models. In terms of

future work from a computational perspective, once we have a larger patient dataset we plan to

design deep learning models and compare their performance to the conventional machine learning

model which was proposed in this paper.

Potential impact
Currently available screening methods and tests for prostate cancer lack accuracy and reliability, the

consequence of which is that many men unnecessarily undergo invasive tests such as biopsy and/or

are misdiagnosed as having the disease. Furthermore, a biopsy involves removing samples of tissue

from the prostate and it is an extremely uncomfortable procedure which also puts men at risk of

developing life-threatening infections. As biopsy results are not definitive, there is a significant
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potential for misdiagnosis and over- and under- treatment. It is therefore essential that new non-

invasive approaches such as blood tests that are more accurate than the Prostate Specific Antigen

(PSA) test are developed to reduce misdiagnosis and unnecessary procedures. Misdiagnosis unnec-

essarily subjects many men to lifelong monitoring for prostate cancer which can have undesirable

psychological and quality of life side-effects, as well as place a significant financial burden on the

NHS and other healthcare systems. This paper proposes a computerised model, which detects the

presence of prostate cancer in men by analyzing immune system cells in the blood. The model uses

the data from the blood tests and artificial intelligence-based computing (machine learning) to more

accurately detect the presence of prostate cancer. A preliminary model has also been presented to

detect the clinical risk that any prostate cancer which is present poses. The tool has two elements,

the first detects whether a man has prostate cancer. If prostate cancer is detected, the second ele-

ment will detect the clinical risk of the disease (low, intermediate, high) and thereby enable the clini-

cian to decide whether the patient requires no further investigation/treatment (‘watch and wait’) or

whether further investigation and treatment are required.

To our knowledge, these are the first studies to employ computational modeling of peripheral

blood NK cell phenotyping data for the early detection of cancer and its clinical significance. They

also illustrate the potential for this approach to decipher clinically relevant immune features that can

distinguish between benign prostate disease and prostate cancer in asymptomatic individuals for

whom the management and treatment strategy is unclear. Of translational importance is that our

prediction models are interpretable, can be explained to patients and clinicians and can be continu-

ally refined and improved as data are collected.

The novelty of this approach is that it interrogates the immunological response to the tumour,

not the tumour itself and that it requires a simple blood test (liquid biopsy). Based on current prac-

tice, we expect that this approach could avoid up to 70% of prostate biopsies, thereby sparing men

with benign prostate disease or low-risk prostate cancer from unnecessary invasive procedures with

which are associated significant side-effects. Furthermore, more accurate diagnosis would reduce

the demands of healthcare provision and resources associated with treatment and continual surveil-

lance, thereby reducing costs and improving healthcare. We envisage that, in the future, men with a

mildly elevated PSA will also undergo an immune status test and those with a suspicion for signifi-

cant prostate cancer will then undergo an MRI. Although the current study focuses on prostate can-

cer, its fundamental principles and approaches are highly likely to be applicable across many, if not

all, cancer entities.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference

Identifiers Additional
information

Biological
Sample

Hyclone fetal
bovine serum (FBS)

GE Healthcare
Life Sciences

SV30180.03

Antibody Monoclonal mouse
IgG1 kappa anti human
DNAM-1 (CD226) (clone
11A8); FITC

BioLegend 338304 5 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human
NKG2D (CD314) (clone
1D11); PE

eBioscience 12-5878-42 5 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human CD56
(clone N901); ECD (PE-
Texas Red)

Beckman
Coulter

A82943 2.5 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human CD16
(clone 3G8); PerCP-Cy5.5

BioLegend 302028 5 ml per tube / 106cells

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference

Identifiers Additional
information

Antibody Monoclonal mouse IgG1
kappa anti human NKp46
(CD335) (clone 9E2);
PE-Cy7

BioLegend 331916 5 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human NKp30
(CD337) (clone P30-15);
Alexa Fluor 647

BioLegend 325212 5 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human CD3
(clone UCHT1); Alexa
Fluor 700

BioLegend 300424 2 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human CD19
(clone HIB19); Alexa
Fluor 700

BioLegend 302226 1 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human CD8
(clone SK1); APC-Cy7

BioLegend 344714 2.5 ml per tube / 106cells

Antibody Monoclonal mouse IgG2b
anti human CD85j (ILT2)
(clone GHI/75); FITC

Miltenyi Biotec 130-098-437 10 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human LAIR-1
(CD305) (clone DX26); PE

BD Biosciences 550811 20 ml per tube / 106cells

Antibody Monoclonal mouse IgG2b
anti human NKG2A
(CD159a) (clone Z199);
PE-Cy7(PC7)

Beckman Coulter B10246 20 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human NKp44
(CD336) (clone P44-8);
Alexa Fluor 647

BioLegend 325112 5 ml per tube / 106cells

Antibody Monoclonal mouse IgG1
kappa anti human 2B4
(CD244.2) (clone C1.7);
FITC

BioLegend 329506 5 ml per tube / 106cells

Chemical
Compound

LIVE/DEAD Fixable
Violet Dead Stain

Thermo Fisher
Scientific

L34955 1 ml in 1 ml

Chemical
Compound

Novagen Benzonase
Nuclease

Merck Millipore 70664

Chemical
Compound

CTL Wash Solution Cellular
Technology
Limited

CTLW-010

Chemical
Compound

Trypan Blue
viability stain

Santa Cruz sc-216028

Chemical
Compound

Dimethyl sulfoxide
(DMSO)

Santa Cruz sc-202581

Chemical
Compound

Calbiochem bovine
serum albumin (BSA)

Merck Millipore 2905-OP

Chemical
Compound

Sigma-Aldrich
sodium azide

Merck Millipore S8032

Chemical
Compound

Sigma-Aldrich
lithium heparin

Merck Millipore H0878

Chemical
Compound

Ficoll-Paque GE Healthcare
Life Sciences

17-1440-03

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference

Identifiers Additional
information

Chemical
Compound

Isoton II isotonic
buffered saline
solution

Beckman
Coulter

844 80 11

Chemical
Compound

RPMI medium Lonza 12-167Q

Chemical
Compound

Phosphate
Buffered Saline
(PBS)

Lonza 17-517Q

Other Leucosep tubes Greiner Bio-One
International

227290

Software Kaluza v1.3 Beckman Coulter

Data collection
Peripheral blood samples were obtained from individuals suspected of having prostate cancer that

attended the Urology Clinic at Leicester General Hospital (Leicester, UK) between 24th October

2012 and 15th August 2014. Only patients who had provided informed consent and met the criteria

of being biopsy naive, a benign feeling Digital Rectal Examination (DRE) with a PSA level of < 20 ng

ml-1 and agreeing to undergo a simultaneous 12 core TRUS biopsy and a 36 core transperineal tem-

plate prostate biopsy (TPTPB) were included in the study. Further details regarding the TPTPB tech-

nique are provided in Nafie et al., 2014b. A total of 71 males (30 patients diagnosed with benign

disease and 41 patients diagnosed with cancer, as confirmed by pathological examination of TPTPB

biopsies) met the criteria. Of the 30 patients diagnosed with benign disease; 9 patients were diag-

nosed with High Grade Prostatic Intraepithelial Neoplasia (PIN), 10 patients were diagnosed with

Atypia and 2 patients were diagnosed with Atypical Small Acinar Proliferation. The remainder were

diagnosed with benign disease. Of the men diagnosed with prostate cancer, 16 had Gleason 6 dis-

ease, 23 had Gleason 7 disease and 2 had Gleason 9 disease on biopsy-based evidence. The clinical

features of individuals with benign disease and patients with prostate cancer are provided in

Table 9.

The cancer patients dataset used for building the risk prediction model
Data derived from the 41 individuals with prostate cancer were extracted from the dataset shown in

Table 9. All 41 patients had PSA < 20 ng ml-1. However, three of the 41 patients who had a High

D’Amico risk were removed because their clinical profiles were very different from those of other

high risk patients. They were patients with either a Gleason score 3+3 or had a benign biopsy. In the

future, we aim to collect more data from such infrequent patient groups to train the algorithms on

patients with such clinical profiles. The remaining 38 patients had PSA levels < 20 ng ml-1 and

belonged to the D’Amico L/I risk group.

Data were collected from an additional 16 patients with prostate cancer who were diagnosed as

having a D’Amico High risk profile (see Table 10). Thus, the new cancer patient dataset comprised

Table 9. Patient clinical features.

Patient group Gleason score Number of patients Age range (years) PSA range (ng/ml)

Benign Benign 9 64-71 5.3–15

Benign HGPIN 9 54–70 5.1–12

Benign Atypia 10 50–76 4.7–19

Benign ASAP 2 59–60 5.3–7.8

Cancer Gleason 6 16 55–80 4.7–11

Cancer Gleason 7 23 53–77 4.7–19

Cancer Gleason 9 2 65–75 6.3–18
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54 patients with prostate cancer, of which 38 patients belonged to the D’Amico L/I risk group and

all had PSA<20 ng ml-1, and 16 patients belong to the D’Amico H risk group and have PSA 4.3 ng

ml-1� PSA � 2617 ng ml-1. The 16 patients were diagnosed with Gleason scores of: 4+4 = 8 (n = 2),

5+4 = 9 (n = 2), and 4+5 = 9 (n = 11), and 1 patient was diagnosed with small cell cancer. The com-

bined dataset (i.e. 38+16 = 54) comprised 15 patients with Gleason 6 (3+3), 18 patients with Glea-

son 7 (3+4), 5 patients with Gleason 7 (4+3), 2 patients with Gleason 8 (4+4), 11 patients with

Gleason 9 (4+5), 2 patients with Gleason 9 (5+4), and 1 patient with small cell cancer.

Since 11 of those 16 patients had a PSA > 20 ng ml-1, their data could only be utilised for building

the prostate cancer risk prediction model, as the detection model focuses on detecting prostate

cancer in asymptomatic men with PSA< 20 ng ml-1.

Flow cytometric analysis
Peripheral blood (60 ml) was collected from all patients using standard clinical procedures. Aliquots

(30 ml) were transferred into two sterile 50 ml polypropylene (Falcon) tubes containing 300 ml of ster-

ilized Sigma Aldrich Lithium Heparin (1000 U/ml, Merck Millipore). Anti-coagulated samples were

transferred to the John van Geest Cancer Research Centre at Nottingham Trent University (Notting-

ham, UK) and processed immediately upon receipt (always within 3 hr of collection). Peripheral

blood (60 ml) was mixed with Phosphate Buffered Saline (PBS, 30 ml, Lonza) and layered over Ficoll-

Paque (GE Healthcare Life Sciences) in Leucosep tubes (20 ml blood per tube) and then centrifuged

at 800 g for 20 min. The peripheral blood mononuclear cell (PBMC) fraction was harvested and

washed twice with PBS before being re-suspended in Hyclone fetal bovine serum (FBS, GE Health-

care Life Sciences). Viable cells were counted using trypan blue (0.1 % v/v trypan blue, Santa Cruz)

and a haemocytometer. Cells were frozen in 90% v/v FBS, 10% v/v DMSO (Santa Cruz) in aliquots of

10 � 106 PBMC/vial and stored in liquid nitrogen until phenotypic analysis. At the time of analysis,

one vial from each patient was thawed by mixing with 10 ml ‘thaw’ solution (90% v/v RPMI (Lonza),

10% v/v CTL wash solution (Cellular Technology Limited) and 10 ml of Novagen Benzonase (Merck

Millipore) at room temperature.

PBMCs were centrifuged at 400 g for 5 min followed by resuspension in 1 ml of RPMI (supple-

mented with 10% v/v FBS, 1% v/v L-glutamine (Lonza)). Cells were rested for 1 hr at 37, after which

viable cells were counted using trypan blue dye (Santa Cruz) exclusion. For each monoclonal anti-

body (mAb) panel shown in Table 11, 1 � 106 cells were washed and incubated in 100 ml of Wash

Buffer (PBS +2% w/v Calbiochem bovine serum albumin (BSA, Merck Millipore) +0.02% w/v sodium

azide (Sigma)) containing the relevant mAb cocktail for 15 min, after which cells were washed with 1

ml PBS and then incubated in 1 ml LIVE/DEAD Fixable Violet dead stain (Thermo Fisher Scientific)

for 30 min. All incubations were performed at 4 protected from light. The cells were washed with

PBS and then re-suspended in Beckman Coulter Isoton isotonic buffered saline solution.

Data (on viable cells) were acquired within 1 hr using a 10-color/3-laser Beckman Coulter Gallios

flow cytometer and analyzed using Beckman Coulter Kaluza v1.3 data acquisition and analysis soft-

ware. Controls used a Fluorescence Minus One (FMO) approach. A typical gating strategy for the

analyses is presented in Figure 8.

Computational methods
Initially, the GA by Ludwig and Nunes, 2010 was adopted to identify the best subset of features

(i.e. predictors), and thereafter a prediction model was constructed using the Ensemble classifier.

This section also explains the metrics adopted for evaluating the performance of the prediction

model.

Table 10. Dataset used for differentiating between patients with L/I and H cancer.

Patient group Count %

L/I 38 70.37

H 16 29.63
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GA for selecting the best subset of features
The GA is a metaheuristic, commonly used to generate solutions to optimization and search prob-

lems. Given the large number of combinations, the process of selecting the best subset of flow

cytometry features for creating the prediction algorithm is performed using a GA. The GA adopted

in the experiments was developed by Ludwig and Nunes, 2010. The particular GA performs combi-

natorial optimization to identify a subset of features that comprises the optimum feature set, in

which the order of features has no relation with their importance. The algorithm works by maximis-

ing the mutual information between the target y (where y can have a value 1 for cancer or 0 for

benign) and the input features (i.e. these are the 32 features listed in Table 1). Mutual information is

the measure of the mutual dependence between the two variables, i.e. an input feature and the tar-

get. Adopting a GA eliminates the computational effort which is necessary to evaluate all the possi-

ble combinations of features. The fitness function of the GA (Ludwig and Nunes, 2010) is based on

the principle of max-relevance and min-redundancy (mRMR), for which the objective is that the out-

puts of the selected features present discriminant power, thereby avoiding redundancy. The

Table 11. Antibody panels for measuring the phenotype of Natural Killer cells.

Antibody Fluorochrome Clone no. Supplier

Panel 1

DNAM-1 (CD226) FITC 11A8 BioLegend

NKG2D (CD314) PE 1D11 eBioscience

CD56 ECD (PE-Texas Red) N901 Beckman Coulter

CD16 PerCP-Cy5.5 3G8 BioLegend

NKp46 (CD335) PE-Cy7 9E2 BioLegend

NKp30 (CD337) Alexa Fluor 647 P30-15 BioLegend

CD3 Alexa Fluor 700 UCHT1 BioLegend

CD19 Alexa Fluor 700 HIB19 BioLegend

CD8 APC-Cy7 SK1 BioLegend

Live/Dead Dye (violet) Thermo Fisher Scientific

Panel 2

CD85j (ILT2) FITC GHI/75 Miltenyi Biotec

LAIR-1 (CD305) PE DX26 BD Biosciences

CD56 ECD (PE-Texas Red) N901 Beckman Coulter

CD16 PerCP-Cy5.5 3G8 BioLegend

NKG2A (CD159a) PC7 (PE-Cy7) Z199 Beckman Coulter

NKp44 (CD336) Alexa Fluor 647 P44-8 BioLegend

CD3 Alexa Fluor 700 UCHT1 BioLegend

CD19 Alexa Fluor 700 HIB19 BioLegend

CD8 APC-Cy7 SK1 BioLegend

LIVE/DEAD Dye (violet) Thermo Fisher Scientific

Panel 3

2B4 (CD244.2) FITC C1.7 BioLegend

CD56 ECD (PE-Texas Red) N901 Beckman Coulter

CD16 PerCp-Cy5.5 3G8 BioLegend

CD3 Alexa Fluor 700 UCHT1 BioLegend

CD19 Alexa Fluor 700 HIB19 BioLegend

CD8 APC-Cy7 SK1 BioLegend

LIVE/DEAD Dye (violet) Thermo Fisher
Scientific
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principle of max-relevance and min-redundancy corresponds to searching the set of feature indexes

that are mutually exclusive and correlated to the target output. Let m � n be a feature-by-patient

matrix, X ¼ ½xij� with m features and n patients. Thus, the matrix element xij is the flow cytometry

value i of patient j. Let y be a vector of size 1 � n which holds the diagnosis of each patient (1 for

cancer and 0 for benign). Hence, each patient x is mapped to a diagnosis y. The GA takes three

inputs: 1) the feature-by-patient matrix X; 2) the vector y which holds the corresponding labels for

each patient record; and 3) the desired number of features, l. The GA returns the IDs of the best

subset of features, where the subset has size l. GAs stochastically select multiple features from the

current population and thus each run of the GA can return different results. Consequently, we pro-

posed an approach to identify the best subset of features by running the algorithm several times

and then obtaining the frequency of the subsets.

Proposed ensemble learning classifier for identifying the presence of
prostate cancer
This section discusses the machine learning classifier which was developed for the task of identifying

the presence of benign prostate disease or prostate cancer using the identified subset of phenotypic

features. The challenging task is that a suitable and reliable classifier must be developed using only

72 patient records. A limitation is that classifiers that have been trained on small sample size data

are likely to be unstable because small changes in the training set cause large changes in the

Figure 8. Representative gating strategy for analyzing the expression of activating and inhibitory receptors on peripheral blood natural killer (NK) cells.

Using density plots, the NK cell phenotypic profiles were determined by first gating on ‘live cells’ in the forward scatter (FSc) linear vs side scatter (SSc)

linear density plot and then gating on single cells (determined by FSc Linear vs FS time of flight). The expression of activating and inhibitory receptors

was determined by gating on CD3�CD19�CD56þ cells using fluorescence minus one (FMO) controls. The expression of each NK cell receptor was

measured using the ‘Logical’ setting.
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classifier. It was for this reason that the Ensemble machine learning classifier was preferred as an

approach for developing a more stable and reliable classifier. Ensemble classifiers achieve stability

and reliability by constructing many ‘weak’ classifiers instead of a single classifier and then combine

the weak classifiers (i.e. weak learners) to create a more powerful decision rule than that constructed

when using a single classifier. In clinical applications, it is important to construct prediction models

which have a low bias, meaning that the classifier suggests fewer assumptions about the form of the

target function. Because Ensemble learning makes fewer assumptions about the form of the target

function, it was considered to be a suitable classifier for the task. Several techniques for combining

the classifiers of an Ensemble model exist and these include Boosting, Bagging, and Random Sub-

space Dimension.

In the proposed method, the Random Subspace Dimension approach was utilised as a strategy

for combining the kNN classifiers, to create the Ensemble of kNN classifiers. In machine learning,

the Random Subspace Method (Ho, 1998), also called attribute bagging (Bryll et al., 2003) or fea-

ture bagging, is an Ensemble learning method which attempts to reduce the correlation between

estimators in an Ensemble by training them on random samples of features instead of the entire fea-

ture set. In the Random Subspace method, classifiers are constructed in random subspaces of the

data feature space. These classifiers were combined by simple majority voting in the final decision

rule, and we used the k Nearest Neighbor method (see Figure 9). In particular, we used the Random

Subspace ensemble-aggregation method coupled with k Nearest Neighbours weak learners to pro-

duce an Ensemble of classifiers, and this resulted to a better classification rule. Thus, the Random

Space modifies the training data set, builds classifiers on these modified training sets, and then com-

bines them into a final decision rule by simple or weighted majority voting.

Figure 9 provides an overview of the architecture of the proposed kNN Ensemble learning, and

the description that follows explains the architecture in more detail. Let m be the number of

Figure 9. Proposed Ensemble Subspace kNN model. Ensembles combine predictions from different models to

generate a final prediction. Because Ensemble approaches combine baseline predictions, they perform at least as

well as the best baseline model.
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dimensions (variables) to sample in each learner minus 1. Let d be the number of dimensions in the

data, which is the number of predictors in the data matrix X. Let n be the number of learners in the

ensemble. The basic random subspace algorithm performs the following steps using the above-men-

tioned parameters:

1. Choose without replacement a random set of m predictors from the d possible values.
2. Train a weak learner using just the m chosen predictors.
3. Repeat steps 1 and 2 until there are n weak learners.
4. Predict by taking an average of the score prediction of the weak learners and classify the cate-

gory with the highest average score.

Performance evaluation measures
A variety of relevant evaluation metrics were adopted for the task of evaluating the performance of

the machine learning prostate cancer presence and risk prediction models.

Prostate cancer presence prediction models: Let jTPj be the total number of patients with cancer

who were correctly classified as having cancer; jTNj be total the number of individuals with benign

disease who were correctly classified as having benign disease; jFPj be the total number of individu-

als with benign disease who were incorrectly classified as having cancer; jFNj be the total number of

patients with cancer who were incorrectly classified as having benign disease; jPj be the total num-

ber of patients with cancer that exist in the dataset, where jPj ¼ jTPj þ jFNj; and jNj be the total

number of individuals with benign disease that exist in the dataset, where jNj ¼ jFPj þ jTNj. The fol-

lowing commonly used evaluation measures can be defined.

Accuracy¼
jTPjþ jTNj

jTPjþ jFPjþ jFNj þ jTNj
;2 ½0;1�: (2)

TPR¼
jTPj

jTPjþ jFNj
;2 ½0;1�: (3)

TNR¼
jTNj

jTNjþ jFPj
;2 ½0;1�: (4)

FNR¼
jFNj

jTPj þ jFNj
¼ 1� Sensitivity;2 ½0;1�: (5)

FPR¼
jFPj

jFPj þ jTNj
¼ 1� Specificity;2 ½0;1�: (6)

The closer the values of Accuracy, True Positive Rate (i.e. TPR, Sensitivity) and True Negative Rate

(i.e. TNR, Specificity) are to 1.0, then the better the classification performance of a system.

The Receiver Operating Characteristic (ROC) is an effective measure for evaluating the quality of

a prediction model’s performance. The ROC curve has an optimal ROC point which comprises two

values: the False Positive Rate (FPR) and the True Positive Rate (TPR) values. The optimal ROC point

is computed by function (Equation 7) for finding the slope, S.

S¼
CostðPjNÞ�CostðNjNÞ

CostðNjPÞ�CostðPjPÞ
�
N

P
; (7)

where CostðNjPÞ is the cost of misclassifying a positive class (i.e. cancer) as a negative class (i.e.

benign); CostðPjNÞ is the cost of misclassifying a negative class, as a positive class; P, and N, are the

total instance counts in the cancer and benign class, respectively. The optimal ROC point is identi-

fied by moving the straight line with slope S from the upper left corner of the ROC plot (FPR¼ 0,

TPR¼ 1) down and to the right, until it intersects the ROC curve.

The Area Under the ROC Curve (AUC) is another important performance evaluation metric which

reflects the capacity of a model capacity to discriminate between the data obtained from individuals
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with benign disease and patients with cancer. The larger the AUC, the better the overall capacity of

the classification system to correctly identify benign disease and cancer.

Prostate cancer risk prediction models: When applying the above-mentioned measures to evalu-

ate the performance of the risk prediction models, the Positive class, P, was changed to be the

High-risk group and the Negative class, N, was changed to be the L/I group.
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