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Abstract

The principal aim of this thesis is to produce a comprehensive assessment of the spatial 

variation of reservoir sedimentation for the population of surface water storage reservoirs, 

exhibiting a degree of catchment-coupling, across England and Wales. This is the first time 

that such a study has been undertaken. To achieve this, a valid model had to be developed 

to predict reservoir sedimentation for those sites where no direct measurements were 

available. Using readily available secondary data describing catchment and reservoir basin 

factors identified to influence reservoir sedimentation, two lumped-empirical models were 

developed. The first model used the traditional modelling technique of multiple regression; 

the second used fuzzy set multi-criteria evaluation (MCE), a technique not previously 

applied to reservoir sedimentation modelling. Both techniques were applied to a population 

data set (established herein). The models were validated using primary data from 

bathymetric surveys.

Through multiple regression, models predicting reservoir annual percentage capacity loss 

(APL) could not be verified and validated due to violations of the assumptions of the 

technique. A major reason for these failures was the inability of the approach to account for 

uncertainty and error associated with the quantification of the dependent and independent 

variables, and the specification of the respective relationships.

Through fuzzy set MCE, a model predicting the degree of reservoir sedimentation for the 

population data set was verified and validated to a reasonably good level; as was an 

associated defuzzification model converting the predicted fuzzy number to a predicted APL 

rate. The fuzzy set MCE modelling technique was identified as the most suitable for 

accomplishing the principal aim because, unlike multiple regression, it was able to account 

for uncertainty and error associated with the quantification and specification of the 

catchment and reservoir basin factors that influence reservoir sedimentation.

Upon operationalization, the fuzzy set MCE model and associated defuzzification model 

identified the upland areas of Cumbria, Wales, the southern Pennines and the southwest as
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experiencing the largest levels of reservoir sedimentation. This is primarilly attributed to 

these areas having high mean annual rainfall and large areas of highly erosive soil types. 

The outputs of the fuzzy set MCE model and associated defuzzification model allow 

attention to be focused by reservoir undertakers on areas where sustainability of water 

supply may be most sensitive to loss of reservoir capacity from sedimentation.
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1. Introduction -  Principal Aim & Objectives

The principal aim of this research is the comprehensive assessment of the spatial variation 

of reservoir sedimentation for the population of surface water storage reservoirs exhibiting 

a degree of catchment-coupling across mainland England and Wales. The term catchment- 

coupled refers to reservoirs that collect and store water directly from their catchment areas. 

Reservoirs which exhibit a degree of catchment-coupling are not directly connected to their 

catchment areas, principally due to the presence of management structures (e.g. bywash 

channels, additional pumped storage inputs etc.).

There are two major types of catchment-coupled surface storage reservoirs; those based on 

pre-existing lakes (expanded lakes), and those created as fresh impoundments on the floors 

of river valleys (flooded valleys). Expanded lakes inherit the hydrological conditions of the 

original lake, modified only by the raising of the water level submerging previously higher 

areas. This acts to increase the sediment trap efficiency of the water body, increasing rates 

of basin infilling (Section 2.11.2.1). However, more dramatic hydraulic changes are 

induced through the construction of flooded valley reservoirs (McManus, 1985).

In natural, unmodified river reaches, when viewed over a relatively short segment of time 

(e.g. 100 years), a graded condition, or dynamic equilibrium exists (Schumm and Lichty, 

1965; Thornes and Brunsden, 1977). Such a condition can be defined as exhibiting 

balanced fluctuations about a mean value, or average system behaviour that itself has a 

trending, non-repetitive mean value (Thorn, 1988). In fluvial systems under dynamic 

equilibrium, an approximate balance exists with respect to sediment inflow and outflow, 

and stability in elevation, gradient and channel form is implied (Wolman, 1967). However, 

dam construction for the formation of flooded valley reservoirs punctuates the dynamic 

equilibrium, creating an impounded river reach with lower flow velocities and efficient 

sediment trapping. The impounded reach will accumulate sediment and lose reservoir 

storage capacity until new conditions of dynamic equilibrium are established. This 

normally occurs after the reservoir becomes filled with sediment and can no longer provide
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water storage (Morris and Fan, 1997). Therefore, both expanded lake and flooded valley 

reservoirs have the potential to experience sedimentation.

The ensuing process of sedimentation clearly has the potential to undermine the security of 

water supply from surface storage reservoirs (Figure 1.1). However, across England and 

Wales the process reservoir sedimentation as a threat to water resources has received little 

attention from researchers. Two factors explain this:

1. The process of sedimentation is a relatively slow process and due to the typical nature of 

its accumulation underwater, it is removed from popular, political and engineering 

consciousness (Morris and Fan, 1998).

2. The mean sediment yield transported by British rivers is low in global terms. Walling 

(1987) identified a mean suspended sediment yield of around 50 t km-2 year-1 for Great 

Britain whereas Walling and Webb (1996) stated that the global maximum reported mean 

annual specific suspended sediment yields typically exceed 10000 t km-2 year-1. 

Therefore, since the greatest proportion of sediment that accumulates in British reservoirs is 

typically produced externally to the accumulation basin and delivered through the 

respective catchment sediment yield (Labadz et al, 1999, 2002), sedimentation at face 

value does not appear to be a major problem in the context of water resource management 

across England and Wales.

However, Labadz et al (2002) identified problems of reservoir sedimentation with regards 

to water supply across England and Wales as upstream sites were favoured because they 

generate sufficient head to supply to distant towns. These areas are typically conducive to 

higher erosion rates and sediment yields due to steeper relief, reduced sediment storage 

opportunities and greater rainfall. In addition, highly erodible soils, poor vegetation cover 

and intense agricultural activity may exacerbate this. A database compiled by Labadz and 

Butcher for the Halcrow report (2001) collated all the limited available information to date 

on rates of reservoir sedimentation across Great Britain. The report showed the mean value 

of annual percentage capacity loss (APL) from 121 reservoirs was 0.13% of original
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capacity per year, with the maximum being 1.01%. For the many reservoirs across England 

and Wales built in the 1800s to supplement the growth of manufacturing and large urban 

populations, such an annual percentage loss will by now have a serious effect on storage 

capacity.

As a result of this concern, a comprehensive assessment of reservoir sedimentation across 

England and Wales is required to help maintain the security of water resources. This thesis 

attempts to deliver this through the achievement of the principal aim and supporting 

objectives (classified below) based around the modelling of reservoir annual percentage 

capacity loss rates across England and Wales for water resource planning. It is not an 

objective of this research to develop a detailed process-based model of sedimentation 

within individual reservoir basins.

Figure 1.1 Sedimentation at Howden Reservoir - stage nine metres below top water level (Lees, 2003 pers. 

comm.)
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1.1 Principal Aim

• The production of a comprehensive assessment of the spatial variation of reservoir 

sedimentation for the population of surface water storage reservoirs exhibiting a degree 

of catchment-coupling across mainland England and Wales.

The term reservoir in this investigation is used to define all impounded water bodies that 

are present in the BRE dams data set (Tedd et a l, 1992) and fall under the Reservoir Act, 

1975. It is from the BRE dams data set that the population of reservoirs for this research 

was extracted (Section 4.2). It was initially intended to include Scottish reservoirs in the 

population, but the prohibitive cost of secondary data necessitated their exclusion from the 

current research.

The population of surface water storage reservoirs exhibiting a degree of catchment- 

coupling across mainland England and Wales was defined as those reservoirs present in the 

Flood Estimation Handbook software (FEH) (1999) that appear directly connected to the 

fluvial network (Section 4.2.1). (Indeed, the information extracted from the FEH (1999) for 

the parameterization of the models developed herein can only be obtained for those 

reservoirs that are directly connected to the fluvial network.) This implies that the reservoir 

is catchment-coupled as opposed to being completely pump storage for example. However, 

whilst reservoirs may appear directly connected to the fluvial network in the FEH (1999), 

they may not necessarily be completely catchment-coupled. The term catchment-coupled in 

this study describes a reservoir basin that is connected completely and exclusively to the 

corresponding catchment and its associated processes of sediment production and delivery. 

Some reservoirs, however, whilst being directly connected to the corresponding catchment 

are not completely linked due to residuum lodge entrapment upstream for example; 

whereas some are not connected exclusively due to catchwater inputs from other 

watersheds for example (see Section 2.11.2.2). However, such information is not present in 

the FEH (1999) (or obtainable from any other readily available secondary data source), 

therefore reservoirs identified as being directly connected to the fluvial network in FEH 

(1999) can only ever be assured of exhibiting a degree of catchment-coupling.
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1.2 Objectives

1. The collation of secondary data from standard, widely-available sources for the 

defined reservoir population. These standard, widely-available data sources 

incorporate the BRE dams data set, the Flood Estimation Handbook (1999), the 

national soils map of England and Wales and the land cover map of Great Britain 

that together depict catchment and reservoir basin factors that influence reservoir 

sedimentation.

2. The collection of primary data concerning reservoir annual percentage capacity loss 

rates to supplement the parameterization data set collated from the literature, 

ensuring it is representative of the defined reservoir population, and form a 

validation data set.

3. The production of two parameterized, verified, validated and operationalized 

empirical models predicting reservoir sedimentation for the defined reservoir 

population from catchment and reservoir basin factors using two different modelling 

techniques: multiple regression analysis and fuzzy set multi-criteria evaluation. The 

former represents a more traditional empirical modelling approach; the latter has not 

been applied in such studies before.

4. The evaluation and comparison of the multiple regression and fuzzy set multi­

criteria approaches and the subsequent selection of the most robust and reliable 

model in the prediction of sedimentation for the defined reservoir population.

1.3 Contribution to knowledge

The through completion of the aforementioned principal aim and supporting objectives the 

contribution to knowledge of this investigation will be primarily twofold. Firstly, the 

premier comprehensive assessment of reservoir sedimentation across England and Wales
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will be made providing increased understanding of the nature and spatial variation of the 

process across the two countries. This is due to the fact that standard, widely-available 

secondary data sources incorporating England and Wales (the BRE dams data set, the Flood 

Estimation Handbook (1999), the national soils map of England and Wales and the land 

cover map of Great Britain) have not been applied before to investigate broad-scale 

reservoir sedimentation. In addition, the data set compiled by Labadz and Butcher for the 

Halcrow report (2001) collating all the published measured rates of reservoir sedimentation 

across England and Wales has not been accessed and applied before to provide the most 

comprehensive parameterization data set possible for model development. Each of these 

secondary data sources are utilized herein.

Secondly, the study assesses the application of fuzzy set theory in predicting reservoir 

sedimentation in comparison to the traditional multiple regression approach, identifying the 

most suitable modelling technique for such broad-scale investigations. Such an application 

of fuzzy set theory has not been undertaken before; indeed, the technique is relatively new 

to all aspects of water resources management as a whole (Mujumdar, 2002). This represents 

an important contribution to knowledge as previous applications of multiple regression 

analysis concerning reservoir sedimentation in the UK have proved relatively unsuccessful 

(e.g. Duck and McManus, 1990; Butcher et al., 1992a; White, 1993; Labadz et al., 1995) 

prompting the requirement for alternative methods.



2. Review of reservoir sedimentation

2.1 Introduction

This chapter identifies why reservoir sedimentation should be of concern to water resource 

and associated catchment managers, and describes the nature of the reservoir sedimentation 

process and the factors that influence sedimentation rates. This leads to the formulation of a 

conceptual model of sedimentation in surface water storage reservoirs exhibiting a degree 

of direct catchment-coupling.

2.2 Sedimentation rates for UK reservoirs

The data set compiled by Labadz and Butcher for the Halcrow report (2001) collated all of 

the evidence available at the time on reservoir sedimentation rates across the UK. From the 

BRE dams data set (Tedd et al, 1992) that contains over 2500 reservoirs that fall under the 

Reservoirs Act, 1975, information regarding sedimentation (reservoir annual percentage 

capacity loss - APL) was only available for 121 reservoirs (Table 2.1). From Table 2.1 it 

can be seen that the reservoir sedimentation data available are sparse. Regional reservoir 

sedimentation assessments of varying comprehensiveness are essentially only available 

across the UK for the Pennine reservoirs surveyed by White, Labadz and Butcher (1996 

etc.), northwest England surveyed by Foster and Lees (1999 etc.) as part of the NERC 

LOIS project, and the Midland Valley of Scotland reservoirs surveyed by Duck and 

McManus (1987, 1994 etc.). The remaining information is mostly for single reservoirs 

which have been the subject of an individual research project, or where sedimentation was 

of particular concern to the undertaker. In the context of this study, this does not provide a 

comprehensive assessment of reservoir sedimentation across England and Wales.

The mean APL value across the 121 reservoirs is 0.13% of original capacity per year, with 

the maximum being 1.01%. The regional mean APL values for the Pennine, east midlands 

and Midland Valley of Scotland reservoirs are 0.115%, 0.091% and 0.174% respectively. 

The mean date of reservoir construction from the Halcrow (2001) data set is 1897 (with a
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standard deviation of 55.76 years). Therefore an average APL of 0.13% extrapolated over 

107 years (from 1897 to 2004) renders an average total percentage of reservoir capacity 

loss (TPL) of 13.91%. Mahmood (1987) states that the global average for the useful life of 

a reservoir, often defined as the time taken for 90% of the live reservoir storage to be 

depleted (Labadz et al., 2002), is less than 25 years. Clearly, with an average TPL of 

13.91%, the average useful life of British reservoirs is considerably longer. However, 

whilst these average values of sedimentation in British reservoirs appear low in global 

terms, they may be of increasing significance as water resources become more pressurized 

associated with climate change and increased demand (Section 2.3). In addition, the results 

do identify high APL values in certain reservoirs, thus having a serious effect on respective 

storage capacities. Indeed, for Abbeystead and Blakeley reservoirs, the two cases with the 

largest APL rates across England and Wales, the loss of total reservoir capacity over a 

century is essentially 100% and 76% respectively. Abbeystead reservoir was originally 

constructed to provide compensation water in conjunction with a water abstraction scheme 

supplying Lancaster. It was latterly maintained as a flood attenuation structure but almost 

complete sedimentation has rendered it obsolete for both functions (Rowan et al., 1995).

Table 2.1 Reservoirs extracted from the Halcrow (2001) data set with a measure o f annual percentage 

capacity loss (APL) (nb. includes Scotland)

Dam name Undertaker Annual % capacity loss
Abbeystead North West Water 0.686
Alton Water Anglian Water 0.016
Angram Yorkshire Water 0.028
Ardleigh Tendring Hundreds Water Co 0.238
Baitings Yorkshire Water 0.205
Barden Lower Yorkshire Water 0.035
Barden Upper Yorkshire Water 0.075
Beaverdyke Yorkshire Water 0.073
Bilberry Yorkshire Water 0.602
Blackmoorfoot Yorkshire Water 0.066
Blackmoss Lower North West Water 0.090
Blackmoss Upper North West Water 0.160
Blagdon Bristol Waterworks Company 0.040
Blakeley Yorkshire Water 0.751
Boltby Yorkshire Water 0.041
Booth Wood Yorkshire Water 0.001
Boshaw Whams Yorkshire Water 0.109
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Broadstones Yorkshire Water 0.015
Broom head Yorkshire Water 0.088
Butterley Yorkshire Water 0.402
Cameron (East) Fife Regional Council 0.073
Carron Valley Central Regional Council 0.817
Castle Howard Great Lake Castle Howard Estate 0.220
Chelker Yorkshire Water 0.042
Chew Valley Lake (Chew Stoke) Bristol Waterworks Company 0.089
Chorley Environment Agency 0.217
Covenham Anglian Water 0.000
Dale Dyke Yorkshire Water 0.064
Damflask Yorkshire Water 0.032
Dean Head Lower Yorkshire Water 0.030
Dean Head Upper Yorkshire Water 0.093
Deanhead Yorkshire Water 0.024
Deerhill Yorkshire Water 0.028
Diddington (Grafham Water) Anglian Water 0.148
Doe Park Yorkshire Water 0.124
Drumain Fife Regional Council 0.012
Earlsburn N o.l Central Regional Council 0.089
Eldwick Yorkshire Water 0.124
Elslack Yorkshire Water 0.067
Embsay Yorkshire Water 0.117
Empingham (Rutland Water) Anglian Water 0.153
Fewston Yorkshire Water 0.009
Foxcote Anglian Water 0.063
Glenfarg (East) Fife Regional Council 0.044
Gorple Lower Yorkshire Water 0.066
Gorple Upper Yorkshire Water 0.055
Gorpley Yorkshire Water 0.095
Gouthwaite Yorkshire Water 0.204
Graincllffe Yorkshire Water 0.109
Green Withens Yorkshire Water 0.017
Harden Yorkshire Water 0.094
Harperleas Fife Regional Council 0.014
Hewenden Yorkshire Water 0.150
Ho 11 Fife Regional Council 0.053
Hollowell Anglian Water 0.110
Holmestyes Yorkshire Water 0.005
Hopes Lothian Regional Council 0.082
Howden Severn-Trent Water 0.000
Ingbirchworth Yorkshire Water 0.086
John OGaunts Yorkshire Water 0.028
Kelly Strathclyde Regional Council 0.135
Kinder North West Water 0.180
Langsett Yorkshire Water 0.169



Leeshaw Yorkshire Water 0.130
Lindley Wood Yorkshire Water 0.036
Lintrathen Tayside Regional Council 0.027
Loch Benachally Tayside Regional Council 0.339
Loch Lee Tayside Regional Council 1.009
Lower Laithe Yorkshire Water 0.096
Mixenden Yorkshire Water 0.003
North Esk M R Jones 0.086
North Third Central Regional Council 0.186
Ogden Yorkshire Water 0.026
Ogden Lower North West Water 0.085
Ogden Upper North West Water 0.210
Pickup Bank North West Water 0.180
Pinmacher Strathclyde Regional Council 0.037
Pitsford Anglian Water 0.156
Ponden Yorkshire Water 0.067
Ramsden Yorkshire Water 0.163
Ravensthorpe Anglian Water 0.079
Redmires Lower Yorkshire Water 0.009
Redmires Middle Yorkshire Water 0.065
Redmires Upper Yorkshire Water 0.085
Reva Yorkshire Water 0.145
Riding Wood Yorkshire Water 0.167
Ringstone Yorkshire Water 0.000
Rivelin Lower Yorkshire Water 0.159
Rivelin Upper Yorkshire Water 0.075
Roundhill Yorkshire Water 0.039
Royd Moor Yorkshire Water 0.051
Ryburn Yorkshire Water 0.008
Scammonden Yorkshire Water 0.288
Scar House Yorkshire Water 0.120
Scout Dike Yorkshire Water 0.090
Silsden Yorkshire Water 0.471
Snailsden Yorkshire Water 0.175
Strines Yorkshire Water 0.150
Strinesdale Lower North West Water 0.070
Strinesdale Upper North West Water 0.070
Stubden Yorkshire Water 0.082
Sunnydale Yorkshire Water 0.102
Ten Acres Yorkshire Water 0.019
Thoresby Lake (Upper) Thoresby Estates 0.330
Thornton Moor Yorkshire Water 0.102
Torside North West Water 0.100
Tunnel End British Waterways Board 0.487
Underbank Yorkshire Water 0.035
Walshaw Dean Lower Yorkshire Water 0.115



Walshaw Dean Middle Yorkshire Water 0.052
Walshaw Dean Upper Yorkshire Water 0.093
Walverden North West Water 0.225
Water Sheddles Yorkshire Water 0.037
Wessenden Head Yorkshire Water 0.038
Wessenden Old Yorkshire Water 0.229
Whinny Gill Yorkshire Water 0.172
Widdop Yorkshire Water 0.044
Windleden Lower Yorkshire Water 0.074
Windleden Upper Yorkshire Water 0.066
Wyresdale Lake JA & J Whewell 0.228
Yateholme Yorkshire Water 0.002

2.3 Threat to water resources

The UK water industry is currently in a dynamic and challenging period of water resource 

management and planning (McIntyre et al., 2003). For the water companies of England and 

Wales, this was first prompted by a run of extremely dry years from 1990 to 1996 that 

forced many water companies to implement demand restrictions and call on emergency 

resources (Marsh, 1996). This highlighted the inadequacies of water resources in numerous 

resource zones. In terms of surface storage reservoirs, the major systems in the Pennines 

and Lake District supplying large areas of northern and midland Britain declined to below 

20% of capacity in 1995, posing a real threat to resources (Marsh, 1996). During this 

drought, supply was maintained for large areas of Yorkshire only by standpipes and a huge 

tankering operation (Fleming, 2003). Similar stresses on water supply were exerted in 2003 

with England and Wales experiencing one of the driest 12 months in 74 years (Fleming,

2003). Table 2.2 identifies the state of surface storage reservoir totals for the principal 

water companies across England and Wales in late autumn 2003.
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Table 2.2. State o f  reservoir capacities for the principal water companies o f  England and Wales, autumn 2003 

after Fleming (2003).

Water Company State of reservoirs autumn 2003
Bristol Water Reservoirs 46% full, 38% lower than autumn 2002.
Welsh Water Southeast Wales reservoirs 33% full.
Anglian Water 70% full, just below average.
South West Water Reservoirs 49% full, usually 70% for late autumn.
Severn Trent Concern over capacity o f  Elan Valley (43%), Derwent Valley (38%) 

And Tittesworth (50%) reservoirs.
Thames Water Farmoor reservoir 40% full. Pumping 140 ML/day from north 

London aquifer for the first time since 1997.
Southern Water Darwell reservoir 30 % full, usually 65% for late autumn. Bewl 

Water and Powdermill reservoirs - 55% and 46% full respectively, 
both usually 80% for late autumn.

United Utilities Reservoirs 50% full, usually 70% for late autumn.
Yorkshire Water Reservoirs 50% full, usually 70% for late autumn.

Clearly climatic stresses that threaten water supply can be exerted on surface storage 

reservoirs across England and Wales. Such stresses are deemed likely to increase with the 

UK climate becoming warmer. The Environment Agency’s annual review of water 

resources (2002) states that from present climate change scenarios, by the 2080s:

• Annual average temperature across the UK may rise between 2°C and 3.5°C, with 

greater warming in the south and east.

• Winters will become wetter and summers drier everywhere, but by the 2020s, 

changes will be within the range of natural variations experienced now.

• Hot dry summers will happen much more frequently than they do now.

Increasing demand, which is deemed likely to continue (Scott and Molyneux, 2001), 

compounds the effect of increasing climate stresses on water resources. The Environment 

Agency’s water resource strategy report (2001) states that across much of England and 

Wales, water is already a scarce resource and improvements to capacity and supply over the 

next 25 years are necessary. For example, in some catchments, particularly in southeast 

England, there is no additional water available to meet future demand (Environment 

Agency, 2001).
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The report recommends the enhancement of public water supply by up to 1100 Ml/d above 

present levels after environmental improvements have been taken into account. These 

environmental improvements include proposed enhancement of existing resource systems 

and the development of some new large schemes. Examples of proposed existing system 

enhancement include the transfer of water from more secure supply areas due to hydro­

meteorological factors and/or reduced demands, to areas where additional supplies are 

required (e.g. the proposed transfer of water from the Thames basin to Southern and/or 

Anglian regions), and increasing the capacity of existing reservoirs. New reservoir schemes 

are currently being considered in the lowlands of the Thames region, East Anglia and 

southeast England (Environment Agency, 2001; Scott and Molyneux, 2001).

Clearly the effect of sedimentation reducing the storage capacity and useful life of a 

reservoir can further compound the stresses on water resources induced by climate and 

increased demands. For one water company in the north of England, the costs of lost water 

yield due to reservoir sedimentation were estimated at £74 million (White et al, 1996a).

2.4 Threat to reservoir operation

Sedimentation in the impounded basin can affect the operation of the reservoir through 

numerous ways.

The process of reservoir sedimentation can threaten dam stability if excessive build up 

occurs on the upstream side. This is because sediment deposits have a greater mass than 

water (Cedergren, 1975). All dams holding 25,000m3 must be inspected annually under the 

terms of the Reservoir Act, 1975; close to 2,500 dams fall under the Act (listed in the BRE 

dams data set). There are typically three to four major leakage incidents each year requiring 

remedial action on dams that fall under the Reservoirs Act, 1975 (Mylius, 2003). Dam 

failure is of increasing engineering and political concern. Originally, most dams were 

situated many miles away from urban development but relentless urbanization since the 

peak of dam construction has pushed development into the path of water which would be 

released by dam failures (Mylius, 2003). It is this concern that prompted the investigation
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of water and sediment release by dam failures in the Halcrow report (2001). In addition, 

dam scour and drawoff works can become blocked with sediment threatening the safety of 

dam operation (Mylius, 2003). This can result in periodic reservoir drawdown to excavate 

sediment or abandonment of bottom outlet facilities.

If the dam has been constructed for hydroelectric power generation, an increased sediment 

load coarser than 0.1mm causes significant abrasion of the turbine runners, undermining 

plant efficiency (Morris and Fan, 1998).

2.5 Increased flood risk on influent streams

Upstream of a reservoir the local base level of the influent streams is raised to that 

determined by the height of the dam spillway. This in itself can threaten adjacent land, 

although is compounded by induced sediment aggradation.

The comparatively slow velocity of flow in the reservoir basin inhibits the forward motion 

of influent streams causing the backing up of flow. The level to which backing up occurs is 

principally dependent upon the water level in the reservoir, as this defines the local energy 

base, and the stream discharge (McManus, 1985). The reduced velocity and turbulence of 

influent streams causes a decrease in stream competency and initiates aggradation and 

consequent delta formation first in the influent stream channels. The rate of delta 

progression into reservoirs is dependent on the stream discharge, the reservoir basin 

geometry and catchment characteristics (McManus, 1985). Aggradation induces a positive 

feedback response through raising the channel floor bed and decreasing the local channel 

gradient. This can be manifested many kilometres upstream and can increase the extent of 

flooding across adjacent land. Consequent overbank flow can cause “warping” through 

fresh deposition of coarser sediment on the flood plain. In addition, this risk can cause 

waterlogging and soil salinization, affecting communities and agricultural activity on the 

floodplains (Morris and Fan, 1998). If the deltas become colonized by vegetation, the 

positive feedback response can be intensified through the increase in hydraulic roughness
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inducing further aggradation, thus spreading the detrimental effects over a wider area 

(Dingman, 1994).

Amot et al (1969, page 254) observed these processes caused by the damming of the Shire 

River in Malawi, “...the flow is stated to have stopped when the lake was low owing to the 

presence of sand and silt bars in the tributary streams...their growth assisted by the growth 

of reeds, creeping grass and papyrus.” Such processes can impair navigation through the 

catchment network especially in the vicinity of locks, approach channels, boat ramps and 

marinas (Morris and Fan, 1998).

2.6 Threat to ecology

Aggradation of sediment within the reservoir and influent streams can also severely affect 

ecology. Sedimentation leads to aquatic habitat degradation through the progressive 

transition of open water to wetlands, and eventually raised elevated areas (Brookes et al, 
1996). This reduces physical habitat diversity, a key characteristic of productive water 

bodies, through the destruction of appropriate ranges of water depths and velocities 

required for spawning habitats (Brookes et al, 1996). Continued aggradation also reduces 

the velocity and turbulence of flow lowering the dissolved oxygen content and reducing the 

delivery of nutrients and pollution dispersal (Brookes et al, 1996). Furthermore, fresh-water 

pollution from point sources (e.g. discrete pipes or canals) and/or nonpoint sources (e.g. 

groundwater and diffuse flows from the land surface) can increase through contaminant 

adsorption from free cation exchange surfaces on the deposited sediment (Dingman, 1994).

The reduction of dissolved oxygen content in reservoirs due to the reduction of the velocity 

and turbulence of flow can be intensified by biological activity when coupled with extreme 

water detention times. Priha (1969) states that the danger inherent in too long a detention is 

that biological activity uses up all the oxygen after which the water begins to deteriorate. 

However, Priha (1969) also states that too short a detention time does not allow biological 

activity to purify the water. The loss of dissolved oxygen, however, is immediately 

remedied by cascading water at the reservoir outlets (Morris and Fan, 1998).
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2.7 Threat to water quality

If the reservoir is used for water supply, sedimentation can affect the water quality, 

especially if organic rich sediments are present and become dessicated during dry summers 

whereupon they release colour on rewetting (Butcher et al, 1992b). In addition, as 

mentioned in the previous section, an increase in the fine sediment fraction of the sediment 

yield may lead to increases in the number of exchange sites available for the transport of 

sediment-associated contaminants thus affecting water quality (Foster and Lees, 1999a).

Through the analysis of the sediment geochemistry of Silsden reservoir, Foster and Lees 

(1999a) identified anoxic conditions associated with increased levels of organic matter. 

This was partly induced by the phosphorous (P) content of the inflowing suspended 

sediment into the reservoir basin associated with use as an agricultural fertilizer. The small 

ironimanganese (Fe:Mn) ratio of the sediment helped identify the anoxic conditions in the 

reservoir. The Fe:Mn ratio is frequently used to identify redox changes. Mn is generally 

more mobile under anoxic conditions and thus yields a smaller ratio under such conditions 

(Foster and Walling, 1994). The small Fe:Mn ratio value in the Silsden basin sediment was 

partly attributed to the P content of the reservoir sediment increasing levels of organic 

matter production to such an extent as to induce anoxia. Indeed, a significant negative 

relationship was found between P and the Fe:Mn ratio, with the latter being inversely 

correlated with organic matter content (determined by loss on ignition). This is to be 

expected as greater P levels incorporated into reservoir sediment induces greater organic 

matter production which subsequently leads to a depletion of the water’s oxygen supply 

and the onset of anoxia (as reflected by a low Fe:Mn ratio) (Foster and Walling, 1994).

2.8 Direct use of research

In addition to providing increased scientific knowledge of reservoir sedimentation, the 

nature of the research is of direct use in many related hydrological applications:
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2.8.1 Water resource management

Water companies in England and Wales are responsible for water resource plans submitted 

to the Environment Agency setting out how water resources will be managed over the 

proceeding 25 years in light of climate change and changes in demand scenarios. The 

Environment Agency keeps these plans under annual review (Environment Agency, 2002). 

The prediction of reservoir sedimentation will provide information directly useful to these 

water resource plans, allowing both the water companies and Environment Agency to 

assess the impact of basin infilling on the capacity of reservoirs as part of a water resources 

security risk assessment. In addition the model could be applied to identify reservoirs of 

more secure supply and capacity in terms of reduced sedimentation rates, and assess the 

potential rate of infilling in new hydrological developments. Through the nature of the 

model predicting reservoir sedimentation from catchment and reservoir basin factors, 

insights into the effect of catchment management strategies on reservoir operation could 

also be obtained.

2.8.2 Environmental Act, 1995 enforcement

The prediction of reservoir sedimentation is also of use to the Environment Agency. The 

Environment Act, 1995 gives the Agency a duty to promote the conservation and 

enhancement of flora and fauna of inland and coastal waters and associated land 

(Environment Agency, 2001). Reservoir sedimentation can degrade habitats and adversely 

affect adjacent land (Section 2.6). The identification of reservoir catchments experiencing 

nationally high levels of sedimentation could form part of an initial assessment regarding 

risk to associated habitats, directing further ecological research.

2.8.3 Engineering perspectives

As discussed in Section 2.4, the issue of dam failure is of increasing political and 

engineering concern. As a result, Mylius (2003) calls for a risk-based approach to identify 

potential dam failures considering the reservoir volume, catchment factors such as 

topography, land use and the dam dimensions. Comprehensive information on lake and
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reservoir sedimentation provided through this investigation could provide important 

supplementary information for such an approach.

In assessing potential dam failure (e.g. Halcrow, 2001), especially with regards to 

sedimentation, further concern is expressed regarding large ornamental lakes that fall under 

the Reservoir Act, 1975 (Mylius, 2003). Dams and reservoir basins constructed for water 

supply, hydroelectric power generation and other industrial uses typically have information 

available concerning original capacities, bathymetry etc. However, no such information is 

often available for large ornamental lakes; therefore the establishment of the quantity of 

deposited sediment or rate of deposition based upon the original basin capacity is very 

difficult. The application of the model produced through this research will provide a very 

useful evaluation tool in such circumstances.

In addition, the model predictions will allow the potential degree of reservoir sedimentation 

to be incorporated into the design of new reservoirs; i.e. the designs of new schemes in the 

Thames basin, East Anglia and the southeast (Environment Agency, 2001). Verstraeten et 

al. (2002) state that an accurate estimate of reservoir sedimentation rates should be made 

during the planning of new reservoirs.

2.9 Sediment deposition in reservoirs

The mechanics of sediment deposition in reservoirs is extensively covered in the technical 

literature (e.g. McManus, 1985; Mahmood, 1987; Julien, 1995) and is only briefly 

described here.

As the inflow (transporting sediment) enters the reservoir basin, its velocity is quickly 

reduced as a result of backwater from the dam and an increase in the channel cross- 

sectional area. In addition the dampening of water turbulence occurs. These effects 

decrease the stream competency to maintain sediment motion and therefore induce 

deposition (Heinemann, 1984). The pattern of sediment deposition is dependent upon many 

factors including the size and texture of sediment particles, the physical characteristics of
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the reservoir basin, the water level of the reservoir and reservoir operation (Boreland and 

Miller, 1960). Typically the coarser particles greater than 0.06mm in diameter are 

deposited first in the reservoir headwaters, whilst progressively finer particles are carried 

further into the reservoir basin. The resultant lobate deposit of sediment builds out into the 

reservoir around the mouth of the influent channel forming a delta. The delta deposits are 

comprised of topset beds and foreset beds, both becoming finer in sediment grain size 

downstream (Figure 2.1). The downstream limit of the topset beds corresponds to the 

downstream limit of bed material transport in the reservoir. The foreset beds represent the 

face of the delta that slopes down into the reservoir and typically lie at a steeper gradient 

than the topset beds. Fine sediment particles are transported further into the reservoir and 

are eventually deposited on the floor of the basin forming bottomset beds.

Figure 2.1 Generalized depositional zones in a reservoir (after Morris and Fan, 1998)

Fores©! bed

Bottomset bedTopset bed

Max. poo! el.

Normal pool el.

In addition to delta deposits, Morris and Fan (1998) identify three other generalized 

patterns of sediment deposits, depending on inflowing sediment characteristics and 
reservoir operation (Figure 2.2):
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1. Wedge-shaped deposits (Figure 2.2b) become thicker downstream towards the dam 

typically caused by the transport of large quantities of fine sediment in density 

currents. Such deposits commonly occur in large reservoirs operated at low water 

levels where the velocity of the influent streams increases upon entry into the 

reservoir basin resulting in increased scour. The eroded material can then be 

transported further into the basin, towards the dam before deposition (McManus,

2. Tapering deposits (Figure 2.2c) become thinner downstream towards the dam 

reflecting increased deposition upstream on entry into the reservoir. This is a 

common pattern in long reservoirs normally held at a high pool level (Morris and 

Fan, 1998).

3. Uniform deposits (Figure 2.2d) consist of the same approximate thickness of 

sediment deposited in the reservoir and are comparatively rare. Typically uniform 

deposits occur in narrow reservoirs with frequent water level fluctuation and a small 

sediment yield (Morris and Fan, 1998).

Figure 2.2 Longitudinal patterns o f sediment deposition in reservoirs (after Morris and Fan, 1998)

1985).
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Upon initial deposition sediment may be resuspended and moved from shallow to the 

deepest parts of the basin by water currents. This process, which results in greater net 

accumulation in the deepest parts of the basin, is termed sediment focusing (Davis and 

Ford, 1982). However, it is a common misconception that reservoir sedimentation acts to 

deplete all of the dead storage (the storage below the lowest drawoff level) first before 

encroaching on the live storage (Labadz et al,, 2002). Borland and Miller (1960) identify 

that the deposition of coarse particles and silt and fine sand can deplete the live storage 

from the onset of the sedimentation process (Figure 2.3). Numerical modelling techniques 

have been used to predict/explain the distribution of sediment within reservoir basins (e.g. 

Thomas and Prasuhu, 1977; Chang, 1988) based on equations of motion and continuity for 

water and sediments over a mobile bed (Bruk, 1985).

Figure 2.3 Reservoirs under various sedimentation conditions (Borland and Miller, 1960)
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2.10 Sediment production

Deposited sediment within reservoir basins may be produced within the basin itself 

(autochthonous sediment production), or produced externally and transported into the basin 

(allochthonous sediment production).

2.10.1 Autochthonous sediment production

Inorganic autochthonous sediment may be generated within the reservoir basin by wave- 

induced mass movement (e.g. landslips), beach scour or bank erosion. From a study of the 

Southern Indian Lake Reservoir in northern Manitoba, Canada, Newbury and McCullough

(1984) identified significant contributions of basin sediment derived from shoreline 

erosion. This was attributed to the erosion of permafrost fine grained materials (typically 

peat) which proceeded in a repeated annual sequence of melting, slumping and removal. 

However, such reservoir basin conditions do not typify those across England and Wales.

Lloyd et al. (1998) identified significant contributions of basin sediment derived from 

shoreline erosion induced by livestock grazing and trampling in small farm hillcrest and 

hillslope dams in southeast Australia. With regards to the larger British reservoirs being 

modelled in this study, such direct livestock access to waterlines is not usually available, 

thus reducing this form of potential autochthonous sediment production. In addition to this, 

in the study by Lloyd et al. (1998) the small farm dams typically had no catchment areas. 

However, where catchment areas did exist (typically for hillslope dams), the study 

identified predominant sediment sources other than shoreline erosion. In such reservoirs 

shoreline erosion typically accounted for 40% of the respective sediment, thus implying 

more significant allochthonous sediment sources. The reservoirs across England and Wales 

being modelled in this study all exhibit a degree of catchment-coupling and thus by 

definition have catchment areas. As a result, in general, more significant allochthonous 

sediment contributions may be likely (Section 2.10.2).
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The processes of flocculation and aggregation can also contribute to reservoir basin 

infilling. Flocculation involves the mixing of water causing colloidal particle collision. 

Typically colloidal particles are negatively charged and thus remain stable in suspension 

through their mutual repulsion. However, flocculation ensues when the colliding colloidal 

particles are subjected to net attractive forces from a coagulant (typically salts) resulting in 

destabilization and the subsequent formation of “clumps”, termed floes (Curran et al., 

2004; Fox et al., 2004). Fine particles in a floe sink more quickly than they would as single 

grains, effectively increasing removal rates from the transporting flow (Fox et al., 2004). 

Aggregation proceeds with the continued collision of floes with smaller suspended particles 

as they are transported and settle through the water column (Curran et al., 2004).

Organic material synthesized by autotrophs (primary production) such as algae within the 

reservoir itself can contribute to basin infilling (Duck and McManus, 1987; van der Post et 

al, 1997). New reservoirs are particularly vulnerable to inputs from primary production as 

newly subsumed material is decomposed, as are reservoirs where nutrient input from 

fertilizers is high, typically in more lowland areas favourable for cultivation (Duck and 

McManus, 1990). Although much organic matter is decomposed in the water column, a 

proportion can become incorporated into the reservoir bed sediments.

In addition, the presence of diatoms that deposit frustules among introduced sediment 

particles can contribute to reservoir basin infilling. McManus and Duck (1985) identified 

that diatom frustules provide a significant contribution to the sediment budget in the 

Glenfarg and Glenquey reservoirs of the Midland Valley, Scotland. From scanning electron 

microscopy of surface and core sediments from the respective reservoirs, visual estimates 

of the diatom content varied from 10% to 40%, with an average of 20% (McManus and 

Duck, 1985). Therefore, with regards to organic autochthonous material, Duck and 

McManus (1990) state that such material produced by phytoplanktonic micro-organisms 

and microbiological decay processes can be significant, particularly in eutrophic lakes and 

reservoirs. However, Battarbee et al. (1985) identified that such an autochthonous sediment 

component is negligible in acid waters, thus being of little significance in the uplands of 

Yorkshire (Labadz et al., 2002) where many surface water storage reservoirs exhibiting a 

degree of catchment-coupling are located in England.
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However, whilst autochthonous sediment production potentially contributes to reservoir 

basin infilling in certain cases, Labadz et al. (1999, 2002) state that typically the majority of 

sediment that accumulates in British reservoirs is allochthonous. The aforementioned 

results of Newbury and McCullough (1984), Lloyd et al. (1998), and Battarbee et al.
(1985) concerning the respective production of inorganic and organic autochthonous 

sediment under conditions that do not typify those of the British reservoirs being modelled 

in this study indirectly support this assertion. Duck and McManus (1987) directly support 

this assertion made with regards to inorganic sediment. They stated that the assumption 

that all sediment deposited in the nine surveyed reservoirs across the Midland Valley of 

Scotland is derived from catchment erosion is true for the inorganic fractions. Regarding 

the organic fraction of reservoir basin sediment, Duck and McManus (1987) stated that 

only some was allochthonous. However, for each surveyed reservoir, the inorganic 

sediment yield calculated from sediment cores comprised the majority of the respective 

total sediment yield (Table 2.3). Therefore, the fact that the inorganic sediment fraction is 

sourced from catchment erosion and comprises the majority of the respective catchment 

sediment yields supports the assertion by Labadz et al. (1999, 2002). Foster and Lees 

(1999b) obtained similar results to Duck and McManus (1987) for nine reservoir 

catchments across northeast England. Sediment yields derived from respective reservoir 

basin sediment cores were principally composed of inorganic material. Changes in the 

sediment yields for the nine lake catchments over time were related to changes in respective 

catchment land use, again implying the significance/dominance of allochthonous sediment.

Table 2.3 Sediment yields in reservoir catchment areas surveyed by Duck and McManus (1987) (n.r. = not 

reported).

Catchment —2 —1Total sediment yield ( t km yr ) —2 —1Inorganic sediment yield ( t km yr )
Lambieletham 2.1 1.8
Harperleas 13.8 11.5
Drumain 3.9 3.3
Cullaloe 30.8 26.2
Glenfarg 52.0 39.0
Glenquey 15.1 10.0
Kelly 41.0 n.r.
N Esk 26.0 n.r.
Hopes 25.0 n.r.
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With regards to organic sediment Foster and Lees (1999a) state that in general lake 

autochthonous organic matter content is inversely related to sedimentation rate and 

sediment yield. This is induced particularly by light extinction in turbid, suspended 

sediment-laden water and the reduction of available forms of necessary nutrients through 

adsorption with inorganic sediment particles limiting primary production (Morris and Fan, 

1998). Therefore, in the studies of reservoir sedimentation across the UK identifying high 

rates of capacity loss detrimental to reservoir operation (e.g. Rowan et al., 1995; White et 

al., 1996a), the influence of autochthonous organic matter is likely to be low. Indeed, those 

studies that have attributed high UK reservoir sedimentation rates to organic sediment have 

sourced the respective sediment from the erosion of blanket peat within the associated 

catchments, thus representing an allochthonous sediment input (e.g. Rowan et a l , 1995; 

White, 1996a; Foster and Lees, 1999a; Labadz et al, 1999).

From the preceding discussion it can be seen that whilst autochthonous sediment 

production contributes significantly to reservoir basin infilling in certain cases, it is likely 

that the majority of sediment that accumulates in British reservoirs is allochthonous, thus 

supporting the assertion made by Labadz et a l (1999, 2002). Indeed Lloyd et al. (1998) 

state that it is generally assumed that sediment stored in dam impoundments has been 

derived exclusively from catchment erosion (i.e. allochthonous sources) as opposed to 

autochthonous sources (e.g. Cistemas et al., 2001). This supports the modelling 

methodology employed herein: the prediction of reservoir sedimentation from catchment 

and reservoir basin factors (objective three), which principally involves the consideration of 

factors that influence allochthonous sediment production/delivery (Sections 2.11). In 

addition to the general consensus of scientific theory supporting the modelling 

methodology, from a practical perspective concerning the prediction of reservoir 

sedimentation for the large population of surface water storage reservoirs across England 

and Wales exhibiting a degree of catchment-coupling, secondary data are only readily 

available describing/depicting the influence of such allochthonous sources.
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2.10.2 Allochthonous sediment production

There are two primary sources of allochthonous sediment production: the catchment 

hillslopes and the catchment stream channel network (Knighton, 1996). Sediment is 

produced from both sources through weathering, erosion and mass movement and is 

subsequently transported by the fluvial system to the reservoir basin as catchment sediment 

yield (as documented by Foster and Walling (1994)). Sediment yield is defined as the 

portion of gross erosion within a catchment area that is not deposited before being 

transported from the catchment area by a stream (Walling, 1988). The time it takes for 

sediment to move through the catchment system and be represented in the sediment yield 

can be large. For a small mountainous catchment in Oregon, Dietrich and Dunne (1978) 

identified that whilst one half of the soil discharged to channels was carried away as 

suspended load, the remainder was stored temporarily in tributaries, debris fans, and the 

floodplain. The residence times of sediment in these storage elements increased downvalley 

from decades to approximately 10,000 years.

Regarding hillslope soil erosion across Great Britain, Morgan (1996) states that due to the 

the absence of intense rainfall and the presence of hedgerows and trees in the landscape 

across Britain, it is invariably assumed that soil erosion is unimportant and rarely occurs. 

However, there is evidence showing that soil erosion in Great Britain is not insignificant 

and can represent a source of sediment yield (Boardman, 1990a).

In a study of the extent of soil erosion across upland England and Wales, McHugh et al. 
(2002) estimated extensive degraded land at almost 25,000ha. In addition, over 80% of the 

eroded field sites investigated failed to retain a proportion of eroded material and less than 

1% of eroded material remained within 50m of erosion features (McHugh et al., 2002). As 

a result, soil erosion in such catchments represents a potential contribution to sediment 

yield and consequently reservoir sedimentation.

Material from polluted precipitation and dry atmospheric deposition provide additional 

allochthonous inputs, frequently overlooked by studies (Foster et al, 1985). Barrett et al 

(1987) state that for the southern Pennines, total inputs of wet and dry deposition during the

43



period 1981-1985 were in the region of 10 t km~2yr_1. However, this atmospheric input 

represented a relatively small proportion of the estimated stream solute loads. It is probable 

that high solute loads from polluted precipitation and dry atmospheric deposition were 

largely a result of anthropogenic inputs which peaked across Great Britain during the 

industrial revolution, and thus do not represent such a significant source in modern times. 

As a result, the contribution of atmospheric wet and dry deposition to reservoir 

sedimentation across Great Britain is likely to be small in comparison to that sourced from 

the catchment hillslopes and stream channel network and delivered through influent 

streams. In addition, with regards to dry atmospheric deposition (aeolian dust), Lloyd et al. 

(1998) stated that in a region of southeast Australia, such allochthonous inputs into small 

farm reservoirs were negligible given the “high” mean annual rainfall of the area (976mm 

yr-1) and the almost complete, year round pasture coverage of the catchment. This can be 

considered the case for the population of directly catchment-coupled surface storage 

reservoirs modelled herein. From the population data set for this research (described in 

Chapter 4), the mean annual rainfall (1961-1990) is higher at 1066.15mm yr-1, and the 

average percentage catchment cover of inland bare ground and tilled land (which 

experiences no coverage for part of the year) is only 0.79% and 15.32% respectively 

(Appendix 1, Table 1), thus inducing comparatively greater limiting conditions for dry 

atmospheric dust deposition. These observations support the assertion made by Labadz et 

al. (1999, 2002) that in most cases, the greatest proportion of allochthonous sediment is a 

product of catchment erosion delivered to the reservoir via the fluvial system.

2.10.3 Allochthonous sediment delivery to reservoirs through the fluvial system

For sediment produced from the catchment hillslopes to be transported to the stream 

channel network, and potentially represented in the sediment yield, requires strong 

hillslope-channel coupling. Michaelides and Wainwright (2002, page 1441) define 

hillslope-channel coupling as:

“...the degree of connectivity between the hillslope and channel in terms of the runoff and 

sediment delivery rates from the hillslope to the channel, and in terms of the fluvial activity
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imposed by the channel on the hillslope base...It is the effectiveness, direction and speed 

with which localized changes are transmitted away from the source (hillslope) and 

propagated throughout the hillslope system to the channel and ultimately the catchment 

outlet.”

With strong hillslope-channel coupling, the hillslope-derived sediment is relatively 

unimpeded in crossing the boundary between the hillslope and fluvial regimes provided by 

the channel banks and channel head. Subsequent transport of hillslope-derived material, 

and that sourced from the stream channel itself, depends upon whether the fluvial system is 

supply-limited or capacity-limited. Supply-limited conditions occur when the stream 

capacity is greater that that required to entrain and transport the available sediment. 

Capacity-limited conditions occur when more material is available than can be entrained 

and transported (Julien, 1995). Across Great Britain, supply-limited conditions typically 

prevail (Foster and Lees, 1999b; Labadz et al., 2002). Much material supplied to streams 

from catchment hillslopes has a grain size that will enable it to be transported by 

suspension at almost any given discharge (Richards, 1985). As a result of this, the transport 

of this fraction is largely controlled by the supply of the material. By contrast, coarse 

material greater than 0.06mm in diameter is capacity-limited where flows capable of its 

entrainment and transport only occur intermittently during higher runoff events (Richards,

1985). Therefore much of the coarser material goes into storage on hillslopes, floodplains 

or within the river channel itself.

2.11 Factors influencing allochthonous sediment production

In principle, two sets of factors affect the magnitude of sediment production and delivery 

from both hillslope and catchment stream channel sources: catchment factors and reservoir 

basin factors (Labadz et al., 2002). The factors influencing sedimentation in each set are 

not mutually exclusive. Those catchment factors that influence erosion have the potential to 

influence the process from both sources of sediment within the catchment; the hillslopes 

and stream channel network. The catchment factors influence erosion principally through 

the production of overland flow. This can induce hillslope erosion through rilling and
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gullying etc., and stream channel erosion though increased discharges and flow velocities 

increasing shear stresses on channel beds and banks.

The identification and measurement of catchment and reservoir basin factors that influence 

catchment sediment production and delivery will be used to predict the sedimentation rate 

for the population of online surface water storage reservoirs across mainland England and 

Wales (objective three).

2.11.1 Catchment Characteristics

2.11.1.1 Catchment rainfall

Catchment meteorology influences soil erosion directly through rainfall and wind, and 

indirectly through influencing soil character (e.g. moisture content) and farming practice 

(e.g. drilling dates) (Boardman et al., 1990b), all of which can influence the magnitude of 

soil erosion. Typically the most important erosion agent across England and Wales in terms 

of reservoir sedimentation is water; therefore catchment rainfall is a crucial factor to 

quantify in sedimentation rate prediction.

Rainfall provides one of the most widespread and important processes of particle 

detachment caused by raindrop impact (Farres, 1987). The strength of the force of raindrop 

impact is related to the terminal velocity of the raindrop and it’s mass. In addition to 

providing a force for particle detachment, rainfall provides an erosion agent for particle 

entrainment and transportation through the production of both Hortonian (infiltration- 

excess) and saturated overland flow, which can lead to rill and gully erosion (Summerfield, 

1996).

Across England and Wales both forms of overland flow production can be induced. On 

bare soil, Morgan (1996) documented that short-lived intense storms frequently of 

convectional origin can produce Hortonian overland flow. He also identified that storms of 

long duration and low intensity can produce saturated overland flow. Both forms of 

overland flow generation induced rill erosion (although those rills produced through
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Hortonian overland flow were of a greater magnitude) and thus represented a potential 

source of sediment yield.

Boardman et al. (1990c) and Wilby et al. (1997) identified significant positive correlations 

between rainfall, and soil erosion and lake sedimentation across Great Britain respectively. 

Boardman et al. (1990c) demonstrated a strong positive correlation between median soil 

loss (m3 ha-1) through erosion and a rainfall index on the South Downs. Using this 

relationship and the Erosion Productivity Impact Calculator model (EPIC), Boardman et al. 

(1990c) predicted that an increase in rainfall of up to 15% in winter would increase erosion 

up to 27% by 2050 (assuming no land use change) and stated that if channel networks exist 

this could theoretically increase sediment yield.

Using radionuclide concentrations to date sediment cores from four British lakes, Wilby et 

al. (1997) identified the frequency of winter cyclonic weather patterns as the most 

significant variable correlating with historic sediment yields. This was attributed to winter 

cyclonic activity capturing a greater number of extreme events, shorter storm interval times, 

rainfall of greater intensity and higher antecedent soil moisture conditions.

From Boardman et al. (1990c) and Morgan (1996) it is clear that rainfall has the potential 

to induce reservoir sedimentation sourced from the catchment hillslopes, subject to the 

degree of hillslope-channel coupling and transport capacity of the channel flow. However, 

rainfall may also induce reservoir sedimentation sourced from the catchment stream 

network itself. Rainfall increases stream discharge through entry into channels by direct 

input, overland flow, and bank seepage. The corresponding increase in flow velocity and 

shear stress can cross critical thresholds inducing channel bed and bank erosion (Hjulstrom, 

1935; Shields, 1996). This is supported by Chorley and Morgan (1962) who, through a 

study concerning morphometric landscape features, associated higher drainage densities 

(indicative of stream channel erosion) with higher rainfall intensities and greater mean 

basin slopes. This highlights the importance of rainfall and topography (due to high relief) 

in inducing sediment production from stream channels and demonstrates how the initiating 

factors are not necessarily mutually exclusive.
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2.11.1.2 Topography
Erosion increases with slope steepness and slope length as a result of increases in the 

velocity and volume of overland flow (Morgan, 1996). Furthermore, the action of 

rainsplash acts to move increasing proportions of sediment downslope as the gradient 

increases (Briggs and Smithson, 1994). These processes can act to increase the sediment 

yield.

In a study of five experimental stations in the USA, Zingg (1940) expressed the relationship 

between erosion and slope as:

E a tan14 0 L 0 6 Eq. 2.1

Where E is the soil loss per unit area, a  denotes proportionality, 0 is the slope angle and L 

is the slope length. Morgan (1996) documented evidence to suggest that this equation has 

general validity.

In a study concerning the Jialing and Jinsha catchment areas in China (two tributaries of the 

Upper Yangtze river), Zhang and Wen (2004) associated greater sediment yields in the 

latter basin due to the presence of steep topography inducing deeply dissected Iandforms 

through gully erosion and mass movement. Sediment yields were lower in the Jialing 

catchment due to the presence of more gentle rolling Iandforms, inducing sediment yield 

through sheet and rill erosion.

However, in studies across England and Wales, Evans (1990) found that undulating terrain 

is most vulnerable to water erosion whereas long planar slopes are least at risk. In addition 

he stated, “...convexities and valley floors are trigger points for erosion; the steepness of a 

slope is not of overriding importance for determining where and how much erosion occurs, 

but the presence of a complexity is,” (Evans, 1990, page 126). Furthermore, across the 

uplands of England and Wales, McHugh et al, (2002) identified a significant negative 

relationship between erosion and slope above seven degrees. This trend was attributed to 

the development and subsequent degradation of blanket peat on low-angled slopes, the soil
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class identified to have the greatest erodibility across the uplands of England and Wales, 

and highlights the fact that Equation 2.1 only has general validity.

Topography also influences catchment storage of sediment. Not all of the sediment eroded 

within a catchment area is represented in the sediment yield and transported into the 

reservoir basin. Typically only a small fraction will comprise the sediment yield as 

deposition and temporary or permanent storage may occur where gradients decline 

downslope, at the base of slopes, in swales, on the floodplain, or in the stream channel 

network itself (Walling, 1983) (Figure 2.4). Walling and Webb (1996) state that there is 

increased opportunity for deposition and storage of eroded material from hillslopes 

associated with reduced slope gradients. Trimble (1983) states that, in terms of catchment 

sediment budgets, storage is typically the greatest component and sediment yield is the 

smallest. The storage opportunities within catchment areas create a “bottleneck” that limits 

the amount of sediment that can be flushed from the catchment area in a given time period 

(Trimble, 1983) (see Figure 2.4).

As a result of catchment storage, the volume of sediment deposited in reservoir basins may 

not be directly sourced from catchment hillslope or stream channel erosion. The sediment 

may be derived from remobilisation of alluvium accumulated in valley systems or 

colluvium accumulated at the base of hillslopes prior to reservoir construction (Clayton, 

1968; Trimble, 1976; Walling, 1983). Alluvial and colluvial deposits accumulate in 

catchments where sediment transport is capacity limited (Section 2.10.3).

Figure 2.4 The magnitude o f sediment production from different sources in the disturbed Cook Creek 

catchment, USA. Based on data presented by Trimble (1983), diagram after Gregory (1985).
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Topography can influence the magnitude of hillslope-channel coupling (as discussed in 

Section 2.11.1.1). From observations in a steep upland catchment in southern Alberta, 

Canada, Campbell (1992, page 461) states, “...that because of the steep nature of the 

topography, and the generally extremely restricted possibilities for sediment storage, almost 

all of the eroded hillslope material is delivered into the streams.”

However, finding a numeric parameter representing the influence of slope steepness on 

sediment yield is difficult. Verstraeten and Poesen (2001) identified that mean catchment 

slope is not highly correlated to sediment yield; of more importance is the spatial 

distribution of slopes within the catchment. Where steeper slopes are located in the most 

remote regions of a catchment, near the drainage divide, eroded soil particles need to travel 

longer distances to the catchment outlet and are therefore more prone to deposition. In 

contrast, where steeper slopes are distributed throughout the catchment, the mean travel 

distance of eroded soil particles will be lower, reducing the potential for deposition. 

However, Verstraeten and Poesen (2001) state that it is very difficult to express the spatial 

distribution of slopes in one single catchment parameter, which illustrates the drawback of 

any lumped modelling technique that attempts to relate sediment yield/reservoir 

sedimentation to simple catchment properties (Section 3.2.1).

2.11.1.3 Altitude

Typically, greater catchment erosion occurs at higher altitudes. Increased altitude may 

represent a change in non-mutually exclusive factors such as climate, vegetation or soil that 
influence erosion processes.

Changes associated with higher altitudes include lower temperatures, more frequent ground 

frosts and higher rainfall which act to degrade vegetation cover and density and increase 

overland flow production (McHugh et aL, 2002). The corresponding exposed soil may also 

be more mobile at higher altitudes because of the higher wind speed and greater 

precipitation (McHugh et al., 2002). In addition, McHugh el al. (2002) state that as altitude 

affects soil development, a greater area and depth of peat soil (one of the most highly 

erosive soil classes across England and Wales -  Evans, 1990) and consequently increased 

erosion is expected with height above sea level. In addition, higher altitudes increase
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physical weathering in terms of freeze-thaw, providing greater quantities of particles 

available for entrainment and transport (Summerfield, 1996).

2.11.1.4 Lithology/soil type

Soil type determines the erodibility of soil. Erodibility defines the resistance of the soil to 

erosion. Morgan (1996) recognizes the importance of soil type in determining the 

erodibility of soil, identifying that although the resistance of soil to erosion depends in part 

on topographic position, slope steepness, and the amount of disturbance, the properties of 

the soil are the most important determinants. Erodibility varies with soil texture, aggregate 

stability, shear strength, infiltration capacity and organic and chemical content (Morgan, 

1996).

2.11.1.4.1 Soil texture

The term soil texture is used to express the percentage of the three main fractions (sand, silt 

and clay) present in a soil mass (Jumikis, 1965). Coarse grained sand particles (ranging 

from 0.2mm to 2mm — Briggs and Smithson, 1994) and clay particles (<0.002mm -  Briggs 

and Smithson, 1994) are most resistant to erosion. This is due to the greater frictional 

resistance to movement of sand and the high degree of cohesion associated with clays 

(Terzaghi et al., 1996). Evans (1990, page 126), in his study of soil erosion in England and 

Wales, uses clay content as an indicator of erodibility stating “...as clay content increases 

water erosion decreases and eroded volumes are less.” Evans (1990) states that the least 

resistant particles are fine sands (0.06mm to 0.2mm -  Briggs and Smithson, 1994) and silts 

(0.002mm to 0.06 mm -  Briggs and Smithson, 1994).

2.11.1.4.2 Aggregate stability

Clay content combines with organic matter to form aggregates. The stability of these 

contributes in determining the resistance of soil to erosion. Soils with a high content of base 

minerals are more stable as they make up soil cations contributing to the chemical bonding 

of aggregates. In a study of soil erosion in southern England, Boardman (1983) identified 

that soil with low clay and organic matter contents are susceptible to slaking (where the 

wetting of dry clays causes swelling and the subsequent collapse of aggregates). Farres
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(1987) identifies the importance of aggregate stability in determining the resistance of soil 

to rainsplash erosion.

2.11.1.4.3 Shear strength

Shear strength is defined as the maximum resistance of a material to applied stress 

(Jumikis, 1965). The two major sources of resistance in soil are cohension and friction; 

when the shearing stress (e.g. that exerted by gravity, moving fluids and mechanical loads) 

exceeds the shear strength of a material failure occurs (Terzaghi et al., 1996).

2.11.1.4.4 Infiltration capacity

The infiltration capacity is the maximum sustained rate at which soil can absorb water 

(Dingman, 1994). It is influenced by pore size, pore stability and the form of the soil profile 

(Morgan, 1996). Overland flow can be produced leading to potential erosion when rainfall 

intensity exceeds the infiltration rate (Hortonian overland flow) or when all the soil pores 

are saturated inhibiting infiltration. Studies by Boardman (1983) and Heathwaite et al 

(1990) have identified both mechanisms of overland flow generation across Great Britain. 

These observations contradict the commonly held precept that in the UK rainfall intensities 

are too low for the infiltration capacity of most soils to be exceeded initiating Hortonian 

overland flow (Kirkby, 1978).

2.11.1.4.5 Organic & chemical content

The organic and chemical constituents of the soil influence soil erodibility through their 

effects upon aggregate stability (Morgan, 1996). Evans (1980) identified soils with an 

organic matter content of less than 3.5% organic content to be erodible due to reduced 

aggregate strength. Morgan (1996) states that most soils contain less than 15% organic 

content, and many of the sands and sandy loams have less than 2%. This illustrates the 

potential for soil erosion. Morgan (1996) further identifies the origin of organic material to 

be important in lowering the erosivity of soil, identifying that organic material from grass 

leys and farmyard manure contributes to the stability of the soil aggregates; whilst peat and 

undecomposed haulm merely protect the soil and do little to increase aggregate strength. 

Indeed, where blanket peat increases sediment yields across the British Isles, the sediment
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is often produced by mass movement as opposed to soil erosion (Dykes and Warburton,

2004).

The most important chemical control over erodability is the proportion of easily dispersible 

clays in the soil (Morgan, 1996). In temperate environments such as Great Britain, the 

replacement of base minerals with sodium increases water uptake and the likelihood of 

swelling and aggregate collapse (Morgan, 1996). Again this can cause slaking and the 

subsequent formation of a surface crust which reduces the infiltration rate and produces 

overland flow (Boardman, 1983).

2.11.1.4.6 Erosion risk of soil associations

Evans (1990) evaluated the actual erosion risk of each of the 296 soil associations of the 

National Soil Map of England and Wales. This classification was based on land use, 

landform and soil properties, and took into account the extent and rates of erosion in the 

uplands and lowlands from various studies. He defined accelerated erosion risk as erosion 

caused by human actions, such as exposing soil to grow arable crops, burning or draining 

moorland for raising sheep or grouse, overgrazing by livestock, and recreation. Those 

catchment soil associations represented at least once in the population of reservoirs 

available for this research with a high, or very high risk of accelerated erosion are presented 

in Table 4.2 (Section 4.2.2.3).

2.11.1.5 Geology

Fox (1949) states that exposed porous rock outcrops can act to reduce catchment erosion 

and sediment yield due to the direct percolation of rainfall into the ground. However, the 

exposure of impervious rock outcrops can increase overland flow and stream channel 

discharges, increasing catchment sediment yield and potential reservoir sedimentation. The 

magnitudes of these geological effects on sediment production are dependent upon the 

extent of the area of rock outcrop and rainfall coverage.

However, where rock outcrops are minimal, lithology appears the more significant control 

on sediment production. Duck and McManus (1987, page 376) concluded that the variation 

between sediment yields in nine Scottish catchments could not be attributed to bedrock
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controls; “...drift deposits serve as the principal supplier of detritus and the nature of the 

underlying bedrock is largely immaterial to the rates of sediment yield.”

Sekhar and Rao (2002) investigated sediment yield in India and postulated that reduced 

sediment yields would be apparent in the regions composed of older, harder igneous and 

metamorphic rocks, in comparison to those regions of younger, softer sedimentary rocks. 

However, high sediment yields and soil erosion problems were identified in all regions due 

to problem lithologies, thus supporting the conclusion of Duck and McManus (1987).

2.11.1.6 Land use

Catchment land use is a major factor in determining rates of erosion and sediment yield 

(Boardman, 1990a). From studies in humid tropical forests in Malaysia and Northern 

Australia, Clayton (1968) suggests that human activity can increase sediment yield a 

hundredfold. Edwards and Whittington (2001) investigated lake sediments deposited during 

the Holocene across Great Britain and Ireland. They concluded that landscape impacts upon 

sedimentation are readily evident in many areas and most have signs of anthropogenic 

disturbance especially within the Neolithic period: “At many sites there is a near instant 

sedimentary response to landscape activity. At others, increased sedimentation often 

follows...with periods of woodland clearance and agricultural activity,” (Edwards and 

Whittington, 2001, page 168).

The influence of land use in increasing soil erosion and sediment yield is principally 

manifested through the effect of vegetation cover, structure and density (Mitchell, 1990; 

Viles, 1990). Dunne (1979) and Francis and Thornes (1990) both identify increased soil 

erosion associated with decreasing vegetation cover density. Across Great Britain, 

Boardman (1990a) states that only vegetation cover in excess of about 30% inhibits 
erosion.

Across Great Britain, the removal of natural vegetation and replacement with the land use 

practices of afforestation, cultivation, grazing and urbanization has significantly increased 

catchment erosion and sediment yield principally through increased overland flow
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production and transmission of storm rainfall (Boardman, 1990b; Evans, 1993; Hall, 1981; 

Heathwaite et ah, 1990).

2.11.1.6.1 Afforestation

Afforestation began in the early 1900s when the Forestry Commission was founded to 

produce export substitution softwoods and intensified in the post-war years when incentives 

were given to plant conifers. Evans (1993) states that since World War 2, 6% of Britain has 

been planted with conifers.

Studies of lakes and reservoirs across Great Britain by Stretton (1984, 1998), Duck and 

McManus (1987), Stott (1987) and Foster and Lees (1999b) have all identified increased 

sedimentation associated with afforestation. This is caused typically by ground preparation 

involving major programmes of drainage and fertilization. The land is cleared of vegetation 

and deep furrows ploughed at 90° to the slope contours in many cases (Stretton, 1984; 

1998) inducing extensive rill and gully formation from incident rainfall. This effect has 

been shown to have five to ten-fold increases in stream wash load and bed load (Newson,

1986).

Foster and Lees (1999b) identified high sediment yields (over 40 t km-2 yr-1) produced as 

a result of afforestation for up to a decade after planting. Yields subsequently declined to 

pre-planting levels (c. 12 t km '2 yr-1). However, in mature afforested upland catchments in 

the southern Pennines, afforestation has lead to a continued increase in sediment yield. Stott 

(1987) identified severe stream incision and gully development in the catchment of the 

Trentabank reservoir beginning 15-20 years after the completion of the afforestation 

programme. Analysis of sediment cores from Trentabank reservoir revealed an increase in 

subsoil (as opposed to topsoil) from 30% to 70% between 1929 and 1981, after canopy 

development over most of the catchment area. This was related to root damage to the 

underlying tile drains and the development of a thick needle layer -  both inducing overland 

flow. A positive feedback response was then generated with bank collapse of the steep 

sided slopes and vegetation removal. Stott (1987) stated that these observations have 

important implications for resource management in upland Britain because the extensive
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plantations of the 1960s and early 1970s are at the stage of development when gullying 

commenced in the catchments of Trentabank reservoir; the stage which previous studies 

suggest minimal impacts of forestry on sediment production and transport due to vegetation 

maturity (e.g. Foster and Lees, 1999b).

However, in natural forested areas erosion and overland flow production is extremely 

limited. Cheng et al. (2002) evaluated the hydrologic influences of natural forests in the 

headwaters of catchments across Taiwan and observed that despite the rainfall intensity 

typically exceeding 100 mm hr-1, overland flow is rarely generated on the forest soils. This 

limits soil erosion and mass movement, which the environment is otherwise very prone to. 

The effect of canopy interception and high annual evapotranspiration rates totaling 800- 

1200 mm yr-1 reduce overland production and streamflows. In addition, forest stands 

enhance slope stability with their root systems (Greenwood and Norris, 1999). The value of 

forests limiting soil loss, through erosion and mass movement, and sediment yield has long 

been recognized in these Asian environments as indicated by the Chinese proverbs, “green 

mountains yield clean and steady water” and “whoever controls the mountains governs the 

streams,” (Cheng et al. (2002).

2.11.1.6.2 Cultivation

Agricultural land use is one of the major controls on the source and magnitude of sediment 

transfer to the stream channel network (Heathwaite et al, 1990); consequently, the plough 

and spade have been termed the most significant geomorphological agents today (Clayton, 

1968). The conversion of grassland to arable increases soil erosion through reducing 

organic matter levels in the soil, which is critical in soil particle cohesion and in the 

maintenance of soil structural stability (Morgan, 1996). The addition of sodium-containing 

fertilizers can also result in structural deterioration of the soil on wetting increasing the 

erodibility (Morgan, 1996). As discussed previously in Section 2.11.1.4.5, reduced organic 

matter content also reduces the infiltration capacity of the soil, as does compaction by 

machinery in cultivation practices (Higgitt, 1993). Therefore, highly erosive overland flow 

can be induced under arable conditions. Evans (1990, page 126) states that “...erosion is 

likely to occur when land is down to arable especially where a wide range of crops is grown
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as then some fields are bare of crop and at risk of erosion by water or wind at most times of 

the year.”

Boardman (1990b) and McIntyre (1993) identify how row crops such as sugar beet and 

potatoes, often ploughed at 90° to the slope contours, dramatically increase the potential for 

rill and gully erosion and the transmission of overland flow. However, of greater 

significance across England and Wales, because of the large areas involved, has been the 

sharp rise in erosion associated with the increase in the growing of winter cereals. Evans 

(1993) observed that land drilled in autumn for winter cereals is sensitive to water erosion 

as most soils can be saturated for much of the winter period, thus maximizing the chances 

of overland flow. The drilling of land under saturated conditions can produce compacted 

vehicle wheel tracks which can act as sites for overland flow generation and subsequent rill 

and gully erosion (Foster et al, 1990a). Furthermore, the ability to cultivate slope of up to 

25° with cereal crops intensifies this problem (Boardman, 1990b). Evans (1993) stated that 

during some years across England and Wales, as much as 25% of the arable land most 

sensitive to rilling has experienced such erosion.

Duck and McManus (1990) identified that reservoir catchments dominated by arable 

farming in the Midland Valley of Scotland show higher sediment yields (31-52 t km~2 

yr-1) than those of open moorland (4-41 t km-2 yr-1). Foster and Lees (1999b) identified 

similar results in catchments of northeast England, identifying that those dominated by 

forestry and grazing produced the lowest sediment yields, whilst arable catchments had 

sediment yields higher by a factor of around three. Reid et al. (1990) make similar 

observations, but also identify significant soil erosion losses caused by flooding in arterial 

waterways constructed to “improve” field drainage.

2.11.1.6.3 Grazing

The grazing of animals acts to reduce the infiltration capacity of the soil and increase the 

bulk density. This coupled with the removal of the protective vegetation cover facilitates 

overland flow production and subsequent erosion and weathering, and in the case of the
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study by Christiansson (1979), can result in significant increases in reservoir sedimentation 

rates.

Across England and Wales studies by Heathwaite et al (1990), Foster and Walling (1994) 

and van der Post et al. (1997) identify the significance of erosion from pasture areas in 

contributing to catchment sediment yield. Winder et al. (1985) attribute sedimentation 

associated with the Empingham dam (of Rutland Water) to overgrazing by sheep.

The effect of managing pasture areas may also induce erosion. Through the burning of 

moorland to improve grazing conditions for livestock vegetation cover is reduced and the 

soil hydrological characteristics are altered typically through the production of a non- 

wettable layer. Together, these effects act to decrease the infiltration capacity of the soil 

and induce overland flow production (Brown, 1990; Evans, 1993). In addition, the 

installation of drainage to drain wet moorland for pasture can also increase sediment yield 

through channel erosion and increased efficiency of sediment delivery from the land 

surface to the stream channel network (Evans, 1993; Russell et al., 2001; Foster et al, 

2002).

2.11.1.6.4 Urbanization

Urban development acts to cover the catchment area by roofs, roads and paved areas. As a 

result of this impervious cover infiltration of incident rainfall into the upper soil horizons is 

reduced, which may ultimately result in decreased local surface erosion rates (Nelson and 

Booth, 2001). However, a greater proportion of rainfall is directed into the surface water 

drainage system, increasing the total volume of runoff (Hall, 1981). The low vegetation 

density in urban areas in comparison to rural sites limits evapotranspiration and may also 

contribute to the increased volume of runoff (Goudie, 1981).

The surface water drainage network in urban areas is invariably modified by the 

realignment of natural watercourses or their complete replacement by sewerage. The 

designs of both systems provide increased flow velocities over the natural channels that 

they replaced providing a flashier hydrograph where the peak and falling limb are reached 

much more quickly (Hall, 1981). The delivery of a larger volume of runoff within a shorter

58



time interval causes the peak discharge to increase and acts to increase the discharge for a 

particular storm recurrence interval (Goudie, 1981; Hall, 1981; Nelson and Booth, 2001). 

Upon flow transmission into the natural watercourses downstream, these throttling effects 

can induce bed and bank erosion, increasing the sediment yield.

However, Goudie (1981) states that the effect of urbanization on increased runoff is greater 

for small floods and diminishes as the size of the flood and its respective recurrence 

interval increase. This is attributed to non-urbanized catchments becoming saturated during 

severe, prolonged storms so that they begin to behave hydrologically as if they were 

impervious catchments.

Nelson and Booth (2001) investigated sediment sources in a mixed land use catchment in 

Washington, USA identifying increased sediment yield associated with urbanization 

principally through the effect of increased stream discharges. The estimated current rate of 

catchment sediment production is 44 t km“2 y r '1, compared to a pre-urban development 

sediment production of 24 t km ~2 yr_1. Erskine et al. (2003) produced similar results for 

catchments in western Sydney, Australia.

2.11.1.6.5 Comparative losses under land use types

Using land use as a predictor of sediment production requires information of comparative 

soil losses under each type of cover. Collins (1981) incorporates a land use/catchment 

vegetation factor into multiple regression models after those summarized by Kirkby (1969) 

for the southeast USA:

% Pastureland x 0.03 mm yr-1 

% Scrub-oak/woodland x 0.10 mm yr-1 

% Cultivated land x 20 mm yr-1.

These factors agree with the observations made by Christiansson (1979), McIntyre (1993), 

Verstraeten and Poesen (2001), and Erskine et al. (2003) that out of these three land use
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types, cultivated land (arable) typically produces the greatest quantities of sediment, and 

pasture the least.

Heathwaite et al. (1990) conducted hillslope plot experiments in the Merrifield catchment 

of Slapton, UK and produced similar results. From Table 2.4 it can been seen that 

cultivated cereals have a high sediment delivery rate in comparison to lightly grazed 

pasture. However, pasture becomes a much greater source of sediment when the stocking 

density is increased, inducing overgrazing, and where grazing occurs in close proximity to 

the catchment fluvial network where poaching can occur.

Table 2.4 Rainfall simulation o f  the effect o f  land use on surface runoff from hillslope plots. Rainfall 

intensity =12.5 mm hr 1 (after Heathwaite et al., 1990).

Land use Runoff (mm) % runoff as rainfall Sediment delivery rate (mg mm 1)
Temporary grass 2.3 5 65
Cereal 3.7 7 84
Bare ground 10.6 21 480
Lightly grazed pasture 11.6 23 32
Heavily grazed pasture 26.5 53 840

2.11.1.6.6 Summary of land use influence

Each of the preceding land use types can increase the sensitivity of the landscape through 

the lowering of geomorphologieal thresholds that have to be crossed for erosion to occur, 

promoting erosion to take place more frequently. However, for sediment deposited in 

reservoir basins to be directly sourced from land use areas requires strong hillslope-channel 

coupling (Section 2.10.3). Studies by McIntyre (1993) and Ferro et al. (1998) identify the 

need for erosive areas to be in close proximity to the fluvial channel network for the eroded 

material to contribute to sediment yield. In addition to such local effects, Verstraeten and 

Poesen (2001), Price and Lovett (2002a, 2002b) and Prosser and Karssies (2001) identify 

that small anthropogenic landscape elements such as banks, hedges, furrows, parcel 

borders, tillage direction, filter strips and riparian buffer zones can have a major influence 

on sediment delivery, and thus sediment yield.
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2.11.1.7 Catchment area

It is commonly well understood that suspended sediment yields, and consequently reservoir 

sedimentation rates, are influenced by catchment area (Walling and Webb, 1996). 

However, conjecture arises in the literature as to whether this relationship is broadly 

positive or negative. Dedkov and Moszherin (1992) identify that both positive and negative 

relationships can exist between catchment area and specific sediment yield (t km ~2 yr_1) 

depending upon the principal sediment source; whether the catchment hillslopes or fluvial 

channel network.

2.11.1.7.1 Positive relationships

From investigations over a range of morphoclimatic zones, Dedkov and Moszherin (1992) 

suggest that positive relationships between sediment yield and catchment area are found in 

catchments where stream channel erosion is most dominant. Across Great Britain positive 

relationships may occur in undisturbed, densely vegetated catchments and upland areas 

characterized by resistant rocks reducing soil erosion and the associated hillslope input 

(Imeson, 1974; Dearing, 1992; Hutchinson, 1995; Walling and Webb, 1996). Under these 

conditions erosion rates will increase downstream in response to greater entrainment and 

transport of sediment resulting in a positive relationship between sediment yield and 

catchment area (Dedkov and Moszherin, 1992). Ashmore (1992) agrees with this, adding 

that such relationships can also be attributed to the secondary remobilization of sediments 

stored in larger catchments and/or lowland systems by channel erosion. Dedkov and 

Moszherin state that the positive relationship can be amplified where lowland areas have 

been intensively developed, increasing stream channel erosion.

However, these explanations do not account for the observed positive relationship between 

catchment area and annual area-specific reservoir volume loss (m3km“2yr_1) identified by 

Butcher et al. (1993) in the southern Pennines. Here blanket peat dominates the upland 

catchments and is highly susceptible to erosion (Labadz et al, 1991). As a result, hillslope 

erosion provides the major proportion of sediment yield. This positive relationship was 

attributed to the reservoir catchments surveyed being small, not having the flatter gradients 

and developed floodplains perceived to induce negative relationships (see Section
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2.11.1.7.2), and because the catchments all occupy similar environments, it is to be 

expected that increasing catchment size will provide increasing values of sediment infill 

through greater inflows (Butcher et al, 1993). This supports the conclusions of Duck and 

McManus (1987) regarding the observed positive relationship between sediment 

yield/reservoir sedimentation and catchment area across the Midland Valley of Scotland.

2.11.1.7.2 Negative relationships

Dedkov and Moszherin (1992) suggest that negative relationships between sediment yield 

and catchment area are found in situations where land cover is disturbed by human activity 

(e.g. agriculture), or with a poor vegetation cover, where hillslope erosion becomes the 

most dominant sediment source. Under these conditions most erosion will be concentrated 

in the headwater areas, contributing to sediment yield due to two factors: the reduced 

proportion of mobilized sediment from the hillslopes being deposited through the 

catchment system, and the associated higher degree of hillslope-channel coupling in 

comparison to downstream areas. This results in an inverse relationship between sediment 

yield and catchment area (Langbein and Schumm, 1958; Dendy and Bolton, 1976; Walling, 

1983; Higgitt, 1993). This effect is paralleled by a decrease in sediment yield in 

downstream areas due to reduced relief and catchment coverage by rainfall events, reducing 

overland flow production (Walling and Webb, 1996).

However, it appears that these explanations for inverse relationships between sediment 

yield and catchment area overlook the continued action of stream channel erosion 

downstream, which may act to eliminate such negative relationships. However, Figure 2.4 

(Section 2.11.1.2) identifies that if a catchment is disturbed by human activity and/or has a 

poor vegetation cover, the upland contribution to the sediment yield from hillslope sheet 

and rill erosion can be of such a great magnitude in comparison to fluvial channel erosion 

in the tributaries, that the effects of continued channel erosion downstream are subsumed. 

In addition, Russell et al. (2001) discuss several studies across the UK that identify stream 

channel erosion decreasing in importance as a sediment source as catchment area increases. 

Furthermore, Walling (1983) and Higgitt (1993) state that as catchment areas increase, 

there is increased opportunity for sediment deposition associated with flatter gradients and 

developed floodplains. Thus, a greater proportion of sediment deposited over downstream
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floodplains by moderate, frequent floods most effective at transporting sediment in fluvial 

geomorphology (Wolman and Miller, 1960) may act to uphold such negative relationships. 

However, Wolman and Miller (1960) state that overbank flows contribute only a small part 

of the floodplain sediment; most deposition of stream channel sediment occurs in point bars 

associated with lateral movement of stream channels forming the downstream floodplains.

Verstraeten and Poesen (2001), however, identify that positive or negative relationships 

between sediment yield and catchment area can exist depending on the units used to define 

sediment yield. Expressing sediment yield as tonnes per year (t yr-1) yielded a positive 

relationship with catchment area. This was attributed to the continued supply of sediment in 

a downstream direction. However, when expressing sediment yield as t ha-1 yr-1, a 

negative relationship with catchment area became apparent. Verstraeten and Poesen (2001) 

state that this is because when dividing the sediment yield over the catchment area, as the 

area increases, so does the fraction of less steep slopes and developed floodplains where 

deposition occurs. Therefore, less sediment is produced on these gentler slopes, so the 

relative proportion of sediment sources will decrease with increasing catchment area.

Butcher et al. (1992a) make a similar observation. A positive relationship was found 

between catchment area and both absolute reservoir capacity losses, and annual capacity 

loss rates. However, annual area-specific capacity loss and sedimentation rates showed 

much poorer relationships.

2.11.1.7.3 Discussion

The influence of catchment area on reservoir sedimentation is likely to be associated with a 

positive relationship as demonstrated by Butcher et al (1993) and Duck and McManus 

(1987). This is because catchment-coupled reservoirs are typically built towards the 

headwaters of stream channel networks to generate sufficient head to supply to distant 

towns and where urban development tends to be less, thus smaller dams can be built in 

comparison to those required for downstream areas. As a result of the reservoir population 

occupying similar upstream/headwater environments, it is to be expected that as catchment 

area increases, so does sediment yield and reservoir sedimentation. The observations by
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Butcher et al. (1993) and Dedkov and Moszherin (1992) identify that this positive 

relationship can be induced by erosion from hillslope and/or stream channel sources. The 

relative magnitude of sediment loss from either source is likely to be catchment specific. 

Because observations of catchment area and reservoir sedimentation are only being made 

over upstream/headwater environments, the perceived positive relationship between 

catchment area and sediment yield cannot be extrapolated for the entire longitudinal profile 

of the respective catchments.

2.11.1.8 Hvpsometry

Verstraeten and Poesen (2001) identify the importance of the hypsometric integral in 

explaining sediment dynamics and thus sediment yield/reservoir sedimentation. The 

hypsometric integral is dimensionless parameter ranging between zero and one that relates 

horizontal cross sectional area of a drainage basin to the relative elevation above the basin 

mouth. Strahler (1952) used the hypsometric integral as a measure of the erosional state or 

geomorphic age of the catchment. Catchments with low values, where the average slope 

decreases and the fraction of wide valley bottoms with developed floodplains increases, 

represent old eroded landscapes. For such catchments, this results in lower values of 

sediment yield. High hypsometric integrals represent catchments that are recently incised 

and are in the early phases of the erosional cycle, characterized by high erosion rates and 

sediment yield (Verstraeten and Poesen, 2001).

Verstraeten and Poesen (2001) state that catchments with a high hypsometric integral have 

high sediment losses in upstream areas due to the dominance of erosional processes, but 

since fluvial transport processes are less dominant, i.e. the system is typically capacity 

limited, only a minor portion is delivered to the outlet as sediment yield. Conversely, 

catchments with a low hypsometric integral only produce relatively small amounts of 

sediment, but the dominance of fluvial processes ensures that the major part of the sediment 

is delivered to the outlet (Verstraeten and Poesen, 2001); thus such systems are typically 

supply limited.

In the context of reservoirs typically situated in the upstream/headwater areas of catchment 

systems, catchments with high hypsometric integrals produce much sediment in the
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upstream/headwater areas. Therefore, if strong hillslope-channel coupling exists in these 

areas, potentially large quantities of sediment will be delivered to the reservoir basins over 

time.

Through the hypsometric integral it can be seen that the stage a catchment area is within the 

geomorphic cycle, progressing from early youth through to maturity (Strahler, 1952; 

Schumm and Lichty, 1965; Thorn 1988), can influence sediment yield and therefore 

reservoir sedimentation.

2.11.2 Reservoir basin factors

In addition to the catchment characteristics of the reservoir, sedimentation is also a function 

of the morphological characteristics and operation of the reservoir itself (Labadz et al, 

2002).

2.11.2.1 Trap efficiency
Some of the incoming sediment yield into the reservoir will be trapped. How much 

sediment will be trapped in the reservoir can be estimated based on the concept of trap 

efficiency. Trap efficiency is defined as the ratio of the deposited sediment to the total 

sediment inflow into the reservoir (Frenette and Julien, 1996). Heinemann (1981) considers 

trap efficiency as the most important descriptor of a reservoir.

Trap efficiency does not exhibit stationarity; it typically declines from a maximum at the 

time of reservoir construction to the present day as sedimentation ensues (Butcher et al, 

1993). Factors influencing reservoir trap efficiency are (1) the relation of capacity to 

inflow, (2) the inflowing sediment content, and (3), the discharge location and capabilities 

(Heinemann, 1984).

2.11.2.1.1 Capacity to inflow relationship

The capacity-inflow relationship corresponds to the retention time and the size and 

geometry of a reservoir (Frenette and Julien, 1996). The greater the retention time, the

65



lower the average transit velocity and associated turbulence and the greater the rate of 

deposition.

Deposition is highly influenced by the morphology of the reservoir basin. Narrow, shallow 

reservoirs will experience maximum sedimentation rates well into the basin, whereas wide, 

deep reservoirs will experience maximum sedimentation close to the stream inlets 

(Heinemann, 1984). In addition, in very small reservoirs the sediment inflow will be in 

close proximity to the dam; thus there will be little opportunity for even the larger 

suspended particles to be deposited far from the dam. The situation will be very different in 

large reservoirs (Heinemann, 1984).

Other factors affecting the long-term capacity are the patterns of deposition through time, 

consolidation effects, density currents, sediment management (e.g. flushing and dredging), 

dam operation and the age of the reservoir as capacity decreases with time (Frenette and 

Julien, 1996).

2.11.2.1.2 Inflowing sediment content

Storm intensity and the discharge of the influent streams control the size and quantity of 

sediment particles eroded in the catchment and transported to the reservoir basin 

(Heinemann, 1984). Additionally, chemicals present in the soil or water may cause 

flocculation and aggregation affecting the particle or aggregate size, density and fall 

velocity (Heinemann, 1984). This affects the deposition and distribution of sediment in a 

reservoir basin.

2.11.2.1.3 Discharge location and capabilities

The dam spillway characteristics of elevation, capacity, design and roughness will control 

the sediment carrying capacity of the spillway outflow (Heinemann, 1984). This with 

sediment fall velocity, depth of fall, amount to be discharged, temperature and current 

velocity will determine the detention time and the sediment yield of the outflow, i.e. the 

quantity of sediment held in the reservoir basin and the quantity released (Heinemann,

1984). The sediment passing through reservoirs is usually clays and highly dispersed 

particles (Morris and Fan, 1997).
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The lowering of the reservoir elevation level through the operation of the dam can also 

decrease the retention time and consequently the trap efficiency. In terms of reducing 

potential sedimentation, this can be very effective if done during periods of higher 

magnitude flows with high sediment concentrations. However, such operations are limited 

by storage and environmental requirements.

2.11.2.1.4 Trap efficiency estimation

There are many empirical methods of trap efficiency estimation (see Heinemann, 1984). 

Two of the most renowned methods are Brown’s (1944) and Brune’s (1953). Brown (1944) 

developed a curve relating trap efficiency to the ratio of original reservoir capacity and 

catchment area based on 15 reservoirs (Figure 2.5). He attributed greater percentage trap 

efficiencies to smaller and more variable catchment overland flow, coarse or highly 

coagulated sediments and reservoirs with greater storage capacities.

Figure 2.5 Brown’s (1944) curve for reservoir trap efficiency estimation
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Brune (1953) developed a curve relating trap efficiency to the ratio of original reservoir 

capacity and reservoir inflow (Figure 2.6). Brune (1953) concluded that that the capacity to 

inflow method is more representative of trap efficiency than the capacity to catchment area. 

Brune’s curves have been used more widely than other methods, especially for the
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estimation of trap efficiencies in smaller reservoirs (Heinemann, 1984). However, Butcher 

et al (1993) identified that Brown’s method does provide an accurate prediction for British 

upland reservoirs, and is more suitable than Brune’s method where no inflow data are 

available.

Figure 2.6 Brune’s (1953) curve for reservoir trap efficiency estimation
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2.11.2.2 Sediment control structures & management

Studies by Labadz et al. (1995) and White et al. (1996a) highlight the impact of sediment 

control structures, built typically by Victorian engineers, on sedimentation rates in the 

southern Pennines. Sediment control structures consist of three primary modifications: 

residuum lodges, bywash channels, and catchwaters that serve both to increase the natural 

catchment area and allow trapping or bypassing of flows with a high sediment yield (White 

et al., 1996a). Residuum lodges are impoundments built upstream from reservoirs that trap 

sediment by reducing the velocity of the channel flow. Bywash channels divert flows with 

high sediment yields around the reservoir perimeter by means of weirs and automatic gates. 

Catchwaters act to enlarge the effective catchment area of a reservoir by directing flow 

from nearby stream channels. As a result, they increase potential sediment inflows.
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Figure 2.7 identifies the mean percentage loss of capacity per century for southern Pennine 

reservoirs with each type of sediment control structure calculated by White et al. (1996a) 

(although the inter-group difference is not statistically significant). For the sample of 

reservoirs, residuum lodges and bywash channels were associated with mean decreases of 

53m3 km-2 yr-1 and 25m3 km"2yr_1 respectively in terms of area-specific sedimentation. A 

slight decrease in sedimentation was also observed where reservoirs were located upstream 

trapping sediment from an otherwise direct catchment. The influence of reservoirs acting as 

effective sediment traps, reducing the gross sediment yield of rivers, is supported by Higgitt 

and Lu (2001), and Zhang and Wen (2004) regarding sediment yield attenuation in the 

Upper Yangtze basin, China.

However, regarding sediment control structures, Butcher et al. (1993) and White et al. 

(1996a) state that their influence is extremely difficult to quantify and their selective 

operation makes the sediment delivery process complex both spatially and temporally.

Figure 2.7 Loss o f reservoir capacity under sediment control structures (after White et a l., 1996a)
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Differing management practices to combat sedimentation can also influence rates of basin 

infilling as mentioned in Section 2.11.2.1.1. Three principal practices exist: sediment 

flushing, sediment sluicing, and sediment dredging (Mahmood, 1987). Sediment flushing is
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the method of hydraulically eroding existing sediment accumulation behind a dam via 

reservoir drawdown through a low level outlet. This effect can also be produced through 

reservoir scour value tests where the lowest outlet pipe in the reservoir, the scour pipe, is 

opened to test the ability of the water company to rapidly lower the level of the reservoir in 

the event of structural failure of the dam. Sediment sluicing is an operational design where 

the bulk of sediment load entering a reservoir is “tapped” and released along with the flow 

before settling can occur. Sediment dredging involves the mechanical excavation of 

reservoir sediment.

2.12 Conceptual model of reservoir sedimentation

Through Section 2.11 the sources, processes, fluxes and stores influencing sedimentation in 

surface water storage reservoirs exhibiting a degree of catchment-coupling were identified. 

This knowledge of the system can be represented in a conceptual model illustrating the 

theoretical understanding of the system (Figure 2.8). The empirical models predicting 

reservoir sedimentation produced through this investigation (objective 3) represent an 

abstraction from the conceptual model. Through the quantification of catchment 

characteristics (i.e. hydro-geomorphological, land use and soil association) and reservoir 

basin factors (e.g. trap efficiency), which together provide direct and surrogate data 

regarding the sources, processes, fluxes and stores identified in Figure 2.8, reservoir 

sedimentation will be predicted. The empirical models produced will therefore inherently 

assume that the deposited reservoir basin sediment represents an allochthonous input. 

Through the discussion of sediment production in Section 2.10, this does not represent an 

unrealistic assumption as the majority of sediment that accumulates in British reservoirs is 

allochthonous. However, the models will not be able to account for catchment specific 

management influences which cannot be readily identified from secondary data sources. 

The modelling approach selected for this investigation and the data aquired to provide the 

predictor variables are discussed in Chapters 3 and 4 respectively.

70



Figure 2.8 Conceptual model for sedimentation in surface water storage reservoirs exhibiting a degree o f  

catchment coupling. The red text denotes catchment specific management influences.
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3. Modelling of sedimentation rates

3.1 Introduction

This chapter discusses the broad modelling approaches used in previous studies of reservoir 

sedimentation/sediment yield and identifies the approach employed in this research to 

investigate the principal aim: the production of a comprehensive assessment of the spatial 

variation of reservoir sedimentation for the population of surface water storage reservoirs 

exhibiting a degree of catchment-coupling across mainland England and Wales.

The focus of the modelling approach within this research was capacity loss of reservoir 

basins due to sedimentation from the consideration of factors that influence sediment 

production/delivery; as opposed to the modelling of the spatial distribution of 

sedimentation within a reservoir basin. This represents a fundamental classification of 

models applied to the issue of reservoir sedimentation. In terms of modelling the latter, 

numerical sediment transport models simulate flows into reservoir basins and are based on 

equations of motion and continuity for water and sediments over a mobile bed (Bruk,

1985). Such models typically use the finite difference method which solves distributed 

equations over a region of space or time through grids of cells, and the respective 

calculation of quantities/fluxes between centralized nodes in each cell (Hardisty et al., 

1996; Morris and Fan, 1998; Mulligan, 1998, pers.comm). Examples of such numerical 

models include HEC-6 (Thomas and Prasuhn, 1977) and FLUVIAL (Chang, 1988). 

However, such models (as typified by HEC-6 and FLUVIAL) are strongly data-dependent 

and require adequate data for calibration and verification (Morris and Fan, 1998). Bruk 

(1985) identifies the following primary data collection required to parameterize such 

numerical models:

• Reservoir topography survey,

• Continuous water level observations and measurements -  at several points along the 

rivers feeding the reservoir, the reservoir itself and downstream from it,

• Continuous water discharge measurements -  related to the water level observations,
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• Sediment investigations -  suspended load discharge, estimation of bed load, the 

determination of grain size distribution of suspended sediment load, density of bed 

materials and sediment deposits, and measurement of bed forms (e.g. dunes etc.) is 

important.

In the context of UK reservoirs, much of these required data are not readily available as 

secondary data and would therefore have to be collected as primary data if modelling the 

distribution of sediment accumulation within reservoir basins was the approach adopted in 

this research. Due to this requirement for extensive primary data collection, such a 

modelling approach was impractical in terms predicting reservoir sedimentation over a 

large number of sites in order to investigate the principal aim of the research. As a result, 

attention was focused on modelling approaches conducive to the prediction of gross 

reservoir capacity loss from standard, widely-available secondary data sources. This is 

discussed in the proceding sections of this chapter.

3.2 Modelling approaches

A further classification can be made concerning the modelling of reservoir 

sedimentation/sediment yield in general: lumped and distributed. Lumped models involve a 

single value being applied to each parameter representing the whole catchment (Kirkby et 

aL, 1987; Refsgaard, 1997). As a result, lumped models do not take into account spatial 

variability within the catchment. Distributed models, by contrast, break up the catchment, 

typically into grid cells, where values for each parameter are represented in each grid cell. 

This acts to account for spatial variability within the catchment and allows the 

routing/calculation of fluxes through the catchment (Kirkby et al., 1987; Refsgaard, 1997). 

Examples of both approaches are discussed below in relation to the principal aim of this 

investigation.
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3.2.1 Lumped models

Many studies that have developed reservoir sedimentation/sediment yield models over large 

spatial scales have used a lumped empirical approach, attempting to obtain meaningful 

relationships between sediment records stored in impounded water bodies or sediment yield 

measurements, and catchment characteristics perceived to initiate sediment production. 

Studies by Anderson (1957), Jansen and Painter (1974), Collins (1981), Bazzoffi et al. 

(1996), Verstraeten and Poesen (2001), DeBonis et al. (2002) and Sekhar and Rao (2002) 

all used multiple regression analysis successfully to predict and reservoir sedimentation or 

sediment yield from catchment and reservoir morphology factors identified to influence 

sediment production over regional/nationwide areas. As a result of this, multiple regression 

analysis may be potentially successful in the large-scale application of this research.

However, in such large-scale studies there are limited alternative modelling approaches. 

This is because modelling the linkage of on-site soil erosion rates within a catchment to the 

sediment yield at the outlet/reservoir basin requires detailed input data (Van Rompaey et 
al., 2001). Whilst this is often obtainable for small-scale investigations practically and 

logistically, it is not for large-scale investigations.

Price et al. (2000b) developed a lumped parameter time model of suspended sediment load 

transmission through the Wyresdale Park Reservoir in Lancashire. The model relates 

rainfall to suspended sediment load at the reservoir outlet on an event-based temporal scale. 

The Price et ah (2000b) model comprises two components: a rainfall to suspended sediment 

load model, and a suspended sediment load at the reservoir inflow to reservoir outflow 

model. Using a daily measured rainfall series, the model uses transfer functions to 

reconstruct daily sediment deposition rates. However, this approach is not suitable for the 

investigation herein as it involves the prediction of sediment movement through the 

reservoir basin which is not within the remit of this study. In addition, such an approach 

cannot be applied as it requires high temporal resolution data which is not readily available 

for many reservoirs across England and Wales.
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Ferro et al. (1998) developed a sophisticated lumped model to predict the mean annual 

sediment yield of nine investigated Italian catchments by dividing each one into several 

homogenous morphological units. This lumped approach takes into account some of the 

spatial variation due to topography and therefore sediment delivery, thus rendering the 

model more distributed in nature. For each morphological unit, soil erosion is calculated 

using the Universal Soil Loss Equation (USLE) and the mean travel time of eroded 

sediment using an empirical model. The output of the model is the sediment delivery ratio 

for each morphological unit and the total catchment sediment delivery ratio.

However, the approach of Ferro et al., (1998) is not suitable for this investigation as the 

predicted sediment delivery ratio from each morphological unit can only be validated 

through extensive fieldwork, determining the soil loss from each unit. Again, within the 

timeframe of this study, this is not achievable for a large-scale investigation, practically and 

logistically. Ferro et al. (1998) validated the predicted sediment delivery ratios of the 

respective catchment morphological units using caesium-137 analysis. This involved the 

comparison of the predicted sediment yield of each morphological unit with the 

corresponding sampled caesium-137 loss. Such validation is essential if the advantages of 

this modelling approach are to be utilized fully.

3.2.2 Distributed models

Van Rompaey et al., (2001) developed a spatially distributed model predicting mean annual 

sediment yield for 24 instrumented catchments in central Belgium. The model consists of 

three components:

1) The mean annual erosion rate is calculated for each grid cell using an adapted 

version of the empirical Revised Universal Soil Loss Equation (RUSLE),

2) An assessment of the mean annual transport capacity is made for each cell,

3) A sediment routing algorithm redistributes the produced sediment over the 

catchment accounting for the topology of the catchment and spatial pattern of the 

transport capacity.
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When compared to measured mean annual sediment yields comprising the validation data 

set, the predictions from the distributed model were significantly more accurate than those 

made using a lumped multiple regression model (Van Rompaey et al., 2001). In addition it 

was possible to identify the critical areas delivering most of the sediment to the river 

system; this would not have been possible using a lumped approach. Van Rompaey et al. 

(2001) state that multiple regression analysis performed poorly in comparison to the 

distributed model because of the different dominant catchment land use types inducing 

diverse sediment yield observations.

Kim and Steenhuis (2001) developed the GRIEROM (grid-based soil-water erosion and 

deposition model) distributed model with the principal aim to predict temporal variations 

and spatial distributions of sediment transport for storm events in a New York State 

catchment, USA. This model used process-based submodels to simulate surface and 

subsurface flow, and soil-water erosion and deposition. The use of process-based 

submodels is in contrast to Ferro et al. (1998) and Van Rompaey et al. (2001) who employ 

the empirical models of USLE and RUSLE respectively to predict soil erosion.

GRIEROM generates overland flow depth, discharge, sediment concentration, and flux at 

each grid outlet for a given time interval using the input data of eight georegistered 10m x 

10m gridded maps. The gridded maps represent the catchment elevation, stream and surface 

drainage channels, land use, soil, porosity, field capacity, and initial soil moisture condition 

respectively. Reasonable comparisons were made between the observed and predicted 

sediment concentration at the catchment outlet for four monitored storm events. The 

success of this model was limited as it was not validated for the distributed observations of 

sediment concentration throughout the catchment.

It is not possible to consider a distributed modelling approach for the research herein as 

these models are highly parameterized and require extensive field calibration (Price et al., 
2000b), and therefore can only applied to individual catchments or small regions (e.g. 

Kothyari et al., 1994; Van Rompaey et al., 2001). In addition, the required input data needs 

to be available at very high spatial resolutions as such models are scale dependent (Van 

Rompaey et al., 2001). For example, Van Rompaey et al. (2001) identified that predicted
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sediment yield decreased in relation to observed values with decreased data spatial 

resolution (increased/coarser grid sizes of data); therefore the model transport capacity 

coefficients had to be recalibrated when running at a coarser grid size. Digital data (e.g. 

land use and soil type) available at such high spatial resolutions are highly expensive and 

therefore not obtainable for this large-scale investigation.

3.2.3 Empirical and process-based models

The comparison between the empirical factor approach of Ferro et al. (1998) and Van 

Rompaey et al. (2001) and the process modelling approach of Kim and Steenhuis (2001) to 

predict soil erosion identifies an important sub-division in modelling approaches between 

the two methodologies.

Empirical models are based upon observation rather than theory and involve the definition 

of a mathematical/statistical relationship (e.g. through regression analysis) between the 

dependent variable being modelled and factors perceived to influence the dependent 

variable. An example of an empirical model is the Universal Soil Loss Equation which 

predicts soil loss from a rainfall erosivity factor, a soil erodibility factor, a slope gradient 

factor, a crop management factor and an erosion control practice factor (Wischmeier and 

Smith, 1978). Empirical models tend to be good predictors but offer comparatively poor 

explanations of processes (Mulligan, 1998, pers.comm.). Price et ah (2000a, page 65) state 

that such models “...are ideally applied to systems where the overall input-output 

behaviour is of primary importance and the internal mechanisms, while important, are 

uncertain.”

Process-based models encompass the modelling of the actual processes involved (and not 

the definition of an arbitrary relationship between an output) and factors perceived to 

influence the output. Therefore the model parameters have a direct physical interpretation 

with regards to the process being modelled. For example, the GRIEROM model (Kim and 

Steenhuis, 2001) incorporates equations concerning stream power, sediment entrainment 

and sediment flux, and thus models the actual process of soil erosion through the catchment 

system. The WEPP (Water Erosion Prediction Project) model (Flanagan and Nearing,
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1995) is a process-based (distributed) model that is able to predict spatial and temporal 

distributions of net soil loss and deposition for a wide range of temporal and spatial scales 

(i.e. at the catchment area scale and the hillslope scale). The model takes into account 

climate, soils, topography, management and supporting conservation practices. Infiltration 

is estimated through the modified Green-Ampt equation, and runoff is routed over the land 

surface on the basis of kinematic equations. A steady state continuity equation is used to 

calculate the erosion rate as the sum of rill and interrill erosion amounts (Flanagan and 

Nearing, 1995).

In contrast to empirical models, process-based models offer superior explanations of 

processes but commonly have weaker predictive power (Mulligan, 1998 pers.comm.). The 

prime purpose of the model(s) employed in the research herein, in relation to the principal 

aim, is in prediction as opposed to explanation. This is because of the requirement to focus 

water company/reservoir undertaker attention on potential problem reservoirs without 

extensive primary data collection.

In relation to process-based models, Ferro et al. (2001) state that whilst they may be 

theoretically preferable to empirical factor approaches, they typically contain numerous 

parameters that are difficult to measure, and the uncertainties in the equations simulating 

the erosion and deposition processes at the catchment scale renders the outputs 

questionable. Ferro et al. (2001) add that at present, sediment yield estimates from process- 

based models are comparable with those obtained by an empirical factor approach like 

RUSLE (Revised Universal Soil Loss Equation). This view is also shared by Morgan 

(1995) who identifies that the present state of model development relating to sediment 

transport, erosion and deposition models is such that a simple empirical model is often 

more successful in prediction than a complex process-based one.

3.2.4 Modelling approach selection

From the preceding discussion of modelling approaches used in the prediction of reservoir 

sedimentation/sediment yield, a lumped empirical modelling approach was chosen to fulfil 

the principal aim of this research, the production of a comprehensive assessment of the
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spatial variation of reservoir sedimentation for the population of surface water storage 

reservoirs exhibiting a degree of catchment-coupling across mainland England and Wales. 

Gordon (1978) states that is the purpose of a particular study that determines the nature of 

the model. The successful results of Anderson (1957), Jansen and Painter (1974), Collins 

(1981), Bazzoffi et al. (1996), Verstraeten and Poesen (2001), DeBonis et al. (2002) and 

Sekhar and Rao (2002) each demonstrate the utility of the lumped-empirical approach.

The lumped approach in particular was most suitable for application practically and 

logistically in terms of the large number of sites in the population data set for which 

variables influencing reservoir sedimentation had to be ascertained, the availability of the 

secondary data, the associated time and cost implications of the huge secondary data 

collation, and the desire to make best value use of existing data. Ultimately, the lumped 

approach allowed the potential achievement of the principal research aim within the 

timeframe of the study.

The empirical methodology was most suitable due to the nature of the data readily available 

and collated for this research (Table 4.5) describing catchment characteristics and reservoir 

basin factors identified to influence reservoir sedimentation/sediment yield in Section 2.11. 

These data provide direct and surrogate information regarding the sources, processes, 

fluxes and stores identified in the conceptual model (Figure 2.8) for sedimentation in 

surface water storage reservoirs exhibiting a degree of direct catchment-coupling, as 

opposed to that directly required for process-based equations of particle detachment, 

entrainment, transport and deposition (e.g. HEC-6, FLUVIAL, GRIEROM and WEPP). In 

the context of this research, the data required for such process-based modelling are not 

readily available from secondary sources, being obtainable only from primary data 

collection. In addition, the application of such process-based models places a large demand 

on validation data. As these models focus on explanation, it is necessary to know whether 

the prediction has been arrived at in the correct way. Therefore, it is essential that the 

validation of process-based models is extended to cover all of their constituent variables 

(Morgan, 1995).
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For this study, the application of process-based models in general was again not suitable 

practically and logistically due to the large number of sites, and the associated time and cost 

implications of such a huge primary data collection to meet the requirement of detailed 

catchment-scale data. Therefore, as with the adoption of the lumped modelling approach, 

the use of the empirical methodology allowed the potential achievement of the principal 

aim within the timeframe of the study.

The use of “off the shelf’, already developed empirical models such as the Universal Soils 

Loss Equation/Revised Universal Soil Loss Equation and the Morgan, Morgan and Finney 

method (Morgan et a l , 1984) could not be considered in this research to predict catchment 

hillslope erosion (a component of allochthonous reservoir sediment) due to their specific 

data requirements. Such data are again not readily available from secondary sources, thus 

requiring a large primary data collection programme which was not possible practically 

within the timeframe of the investigation. In addition, such models are typically 

parameterized for field-scale soil erosion prediction and therefore cannot be directly used to 

predict catchment sediment yield as they do not account for deposition. Amore et al. (2004) 

incorporated the Universal Soil Loss Equation into three distributed models of sediment 

yield prediction for three respective Sicilian catchments. In each case the sediment delivery 

ratio was estimated. However, this approach required detailed intra-catchment primary data 

for the distributed models (Section 3.2.2) and provided a poorer estimate of sediment yield 

than predictions made using the WEPP model. Hrissanthou (2002) also identifies that “off 

the shelf’ soil erosion models are typically developed from small experimental fields and 

are therefore not particularly adaptable/transportable in accounting for different local 

conditions.

Using the lumped-empirical modelling approach, two different modelling techniques were 

employed in this investigation to produce a model predicting reservoir sedimentation: 

multiple regression and fuzzy set multi-criteria evaluation (objective three). The former 

represents an approach often applied in such investigations; the latter represents a relatively 

new approach applied in hydro-geomorphological research (Mujumdar, 2002). These two 

techniques are discussed and applied in the proceeding chapters. The application of either 

of these two validated lumped-empirical models can act as a first assessment of the nature

80



of reservoir sedimentation across England and Wales. Upon identification of a reservoir 

sedimentation problem, further research can be directed employing other modelling 

techniques such as the HEC-6 model, the WEPP model, or the distributed models 

developed by Van Rompaey et al. (2001) and Kim and Steenhuis (2001) that will give a 

greater insight into the erosion and sediment delivery processes occurring within the 

respective catchment.
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4. Data sources and primary data collection results

4.1 Introduction

This chapter undertakes objectives one and two:

1. The collation of secondary data from standard, widely-available sources for the 

defined reservoir population.

2. The collection of primary data concerning reservoir annual percentage capacity loss 

rates to supplement the parameterization data set collated from the literature, 

ensuring it is representative of the defined reservoir population, and form a 

validation data set.

The chapter describes:

• The formulation of the data set representing the population of surface water storage 

reservoirs across mainland England and Wales exhibiting a degree of catchment- 

coupling (termed hereafter the population data set),

• The secondary data collated to represent the catchment and reservoir basin factors 

identified to influence reservoir sedimentation in Chapter 4 for the population data 
set,

• The secondary data collated concerning reservoir sedimentation rates, forming a 

sub-set of the population data set (termed hereafter the parameterization data set) for 
model formulation,

• The primary data collected to comprise a model validation data set (termed hereafter 
the validation data set),

• The quality of the secondary and primary data.



4.2 Establishment of the population data set

This section discusses the acquisition and use of secondary data sets for the formulation of 

the population data set, and for characterization of the individual reservoirs and catchments 

within the population data set. Objective two of this study was that, where possible, 

secondary data should be obtained from standard, widely-available sources. The use of 

secondary data was essential in investigating the principal research aim as it was clearly not 

possible to collect primary data to characterize the spatial variation of catchment and 

reservoir basin factors that influence reservoir sedimentation rates across England and 

Wales. The data characterizing the individual reservoirs and catchments of the population 

data set represents that which describes direct and surrogate information concerning the 

sources, processes, fluxes and stores identified to induce sedimentation in surface water 

storage reservoirs exhibiting a degree of catchment-coupling. This is depicted in the 

conceptual model of the process (Figure 2.8).

4.2.1 Establishment o f initial reservoir population -  BRE dams data base & FEH (1999)

The initial step in identifying the population of surface water storage reservoirs exhibiting a 

degree of catchment-coupling was the acquisition of the Building Research Establishment’s 

(BRE) data set of over 2500 British dams, which includes all reservoirs that fall under the 

Reservoirs Act, 1975 (Tedd et al., 1992). This data set formed the basis of the reservoir 

population for this study. For each of these reservoirs the Flood Estimation Handbook 

software (FEH) (1999) was then used to obtain catchment information.

The FEH (1999) software provides catchment information for any identified position on the 

registered stream channel networks across mainland Great Britain. The process of data 

extraction from the FEH (1999) for reservoirs across Great Britain reduced the population 

in a major way. Catchment information could only be extracted for those reservoirs 

resolvable in the FEH (1999) coupled to a respective catchment area (i.e. those reservoirs 

that collect and store water directly from a respective catchment area as opposed to pump 

storage reservoirs for example) through the identification of an outflow channel from the
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dam, providing compensation water to the downstream fluvial network. This is due to the 

nature of the FEH (1999) software, providing catchment information for any identified 

position on the registered stream channel networks across mainland Great Britain. This, in 

theory, enabled surface storage reservoirs fed exclusively by catchwaters or pumped 

storage inputs (i.e. not being catchment-coupled) to be omitted from the population. This 

omission is important as sedimentation in such reservoirs cannot be predicted using 

catchment characteristics derived from the FEH (1999) as the catchments from where their 

influent water originates cannot be ascertained.

The issue of attempting to identify a population of directly catchment-coupled reservoirs 

across Great Britain is also important with regards to the soundness of the general 

modelling approach; the prediction of reservoir sedimentation using catchment 

characteristics identified to influence the process as stated in the research objectives 

(Section 1.2). Uncertainty is introduced regarding sediment delivery when a reservoir is 

only intermittently catchment-coupled through selective management operation, and 

therefore is not continually under the influence of factors conducive to sediment production 

within the catchment area. This will contribute to the error produced concerning 

sedimentation prediction from the aforementioned approach. As a result of this, an effort 

was made to remove, from the population, those dams readily identifiable in the BRE dams 

database as washlands; an embanked floodplain area into which a river is diverted in times 

of flood to alleviate further flooding downstream. Management structures such as 

catchwater interceptions and bywash channels have a similar effect of inducing intermittent 

catchment-coupling through their selective activation (Labadz et al., 1995). However, these 

are much more difficult to readily identify for each reservoir as they are not listed in the 

BRE dams data set and not discernable in the FEH (1999). As a result, those reservoirs 

identified as catchment-coupled in the FEH (1999) with these structures present in their 

catchments will potentially have larger levels of error associated with their sedimentation 

predictions.

In addition, uncertainty is introduced regarding reservoir basin sediment delivery associated 

with inputs external to coupled catchments through catchwater inputs/conduits and 

additional pump storage. Again, these influences are difficult to readily identify for each

84



reservoir, not being listed in the BRE dams data set and not discernable in the FEH (1999), 

and therefore also increase potential levels of error associated with respective 

sedimentation predictions. Thus, through the population data set construction, effort is 

focused upon potential error recognition and elimination associated with the modelling 

approach where practically possible.

The initial criteria for entry into the reservoir population data set of mainland Great Britain 

(the presence of an apparently directly catchment-coupled surface storage reservoir 

resolvable in the FEH (1999) with a channel outflow, not denoted in the BRE dams data set 

as a washland), produced a population of 1941 reservoirs from the initial listing of 2500 in 

the BRE dams data set.

4.2.2 Secondary data for catchment characterization

4.2.2.1 FEH (1999) catchment characteristics

The catchment characteristics extracted from the FEH (1999) for each reservoir in the 

aforementioned population are presented in Table 4.1. These were obtained from the FEH 

software through locating the pixel of outflow from the reservoir dam, with the program 

determining the upstream catchment boundary and associated characteristics in the process. 

The information was subsequently exported into an Excel spreadsheet (Table A 1.1, 

Appendix 1).
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Table 4.1 FEH (1999) catchment characteristics

Catchment Characteristics____________________
Catchment Area(km2)___________________________
Flood attenuation due to lakes & reservoirs index
Proportion o f  time soils wet index________________
Mean altitude (m) ______ _____________
Base flow index_______________ ________________
Catchment size & drainage path configuration index
Index o f catchment steepness (m/km)_____________
Longest drainage path (km)______________________
Median annual max 1-hr rainfall (mm)____________
Median annual max 1-day rainfall (mm)___________
Median annual max 2-day rainfall (mm)___________
1961-1990 average annual rainfall (mm)__________
1941-1970 average annual rainfall (mm)__________
Standard percentage runoff______________________
Concentration o f urban & suburban cover index
Fractional urban extent for 1990 index____________
Index o f  location o f urban & suburban land cover

From the catchment characteristics, the median annual flood was calculated for each 

reservoir catchment (QMED). If the index of fractional urban extent for 1990 index 

(URBEXT) was less than 0.025, the reservoir catchment was deemed rural and Equation

4.1 was applied. If the index of fractional urban extent (1990) was greater than 0.025, the 

reservoir catchment was deemed urban and Equation 4.4 was applied (after Robson and 

Reed, 1999).

QMED rural = 1.172 AREA AE (SAAR/1000) L560FARL 2 642 (SPRHOST/10 0)12110.0198 RESHOST (Eq. 4.1) 

where:
A E  denotes the area exponent given by: AE =  1-0.015 In (AREA/0.5) (Eq. 4.2)

RESHOST denotes a residual soils term from HOST data (Section 4.4.1.3) given by:

RESHOST = BFIHOST  + 1.30 (SPRHOST/100) -  0.987 (Eq. 4.3)

QMED -  UAF QMED rural (Eq. 4.4)

where:

UAF = (1+URBEXT) 0 83 PRUAF (Eq. 4.5)

where:
PRUAF = 1+0.615 URBEXT ((70/SPRHOST)-!) (Eq. 4.6)
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Through the nature of information extraction from FEH (1999) for each reservoir 

catchment (the selection of the pixel representing the outflow from the reservoir dam to 

define the associated reservoir catchment area), the computed flood attenuation index due 

to reservoirs and lakes (FARL) does not effectively disclose information regarding flood 

attenuation (and thus potential storage through the stream network) upstream of the 

reservoir. This is because the reservoir basin itself is considered in the FARL calculation. 

As a result of this, the mean flood attenuation index (MEANFARL) was calculated from 

the associated FARL values of each stream flowing into a particular reservoir. This 

provides a greater insight into the degree of stream network storage in a respective reservoir 

catchment.

4.2.2.2 Digital catchment areas

Digital catchment areas for the population of 1941 reservoirs were obtained from the 

Centre of Ecology and Hydrology (CEH) in the form of an ARCVIEW line file. The digital 

catchment areas were originally derived from the Institute of Hydrology Digital Terrain 

Model (IHDTM) which contains elevations held digitally over a 50m x 50m grid. For use 

in the Idrisi 32 (version 2) GIS (Clark Labs, 2001), the ARCVIEW line file had to be 

converted to a shape file before being exported; of the 1941 catchment areas, 1912 were 

resolvable in the shape file, (This difference was due to 29 reservoirs having catchment 

areas of insufficient size to be represented as identifiable areas due to the spatial resolution 

of the file in ARCVIEW.) Idrisi 32 is a raster based GIS; therefore the shape file was 

subsequently converted into a raster file of the same scale and co-ordinates as both of the 

available digital soils and land cover maps, with a spatial resolution of 1km x 1km.

However, at this point of the population data set construction, the scope of the research had 

to be downscaled from mainland Great Britain, to mainland England and Wales. This was 

due to financial considerations concerning the purchasing of the digital soils and land cover 

information; only that for England and Wales was practicable. This reduced the initial 

population of 1941 to 1039. As a result, the reservoir number in the population data set of 

1039 reservoirs (derived from the position in the data set when ordered alphabetically by 

reservoir name) had to be matched with the respective rasterized catchment number in 

Idrisi 32.
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After conversion of the shape file to raster format, only 901 reservoirs from the revised 

population of 1039 could be matched to a respective catchment area in Idrisi 32. This is 

due to an inherent disadvantage with the raster method. Raster data consists of cell units 

comprising a region of interest with each cell assigned a value of the category being 

displayed (e.g. a particular reservoir catchment or soil/land cover type). A cell in this 

instance is assigned to a category that represents most of the cell, the predominant category 

rule (Eastman, 2001). The area represented by each cell (in this instance 1km x 1km) 

determines the spatial resolution of the cell. This provides a comparatively coarse spatial 

resolution in terms of representing the catchment boundaries as they were initially 

represented by vector data (the ARCVIEW shape file), which encoded the areas through the 

connection of their vertices (nodes) by arcs. As a result, the vector format is able to define 

precisely the catchment boundaries. When in raster format at a spatial resolution of 1km x 

lkm, the catchment boundaries and associated area cannot be discerned in each instance. 

This is due to the predominant category rule where some of the smaller catchment areas 

become subsumed by others, especially where many reservoir catchments lie in close 

proximity to others (e.g. the Pennines).

The conversion of the ARCVIEW shape file of catchment areas into raster format for use in 

Idrisi 32 reduced the population data set to 901 reservoirs across mainland England and 

Wales. This was the number of catchment areas resolvable in raster format.

The matching of the reservoir number and respective catchment area number was achieved 

manually by displaying the rasterized catchment area image, overlaying it with a vector 

point image of reservoir dam locations and linking the two. The Idrisi 32 ALLOCATE 

module which assigns a vector point to the nearest designated feature could not be used as, 

for example, if a small reservoir catchment was not resolved in the raster image, the 

respective “floating” vector point location of the dam would still be assigned to the closest 

catchment area, thus inducing error. Upon achieving the matching of the reservoir number 

and respective catchment area number, the respective soils and land cover information were 

extracted for each of the 901 reservoir catchments using a “cookie cutting” procedure in 

Idrisi 32 and added to that derived from the FEH (1999) in the population data set.



4.2.2.3 The National Soils Map of England & Wales fNATMAP 1000)

The NATMAP1000 was obtained from the National Soil Resources Institute and used in 

this investigation to extract the area of the dominant soil type in each lkm x lkm catchment 

cell across the respective reservoir catchments. This data source is derived from the 

National Soil Map, the product of sixty years of soil survey work across England and 

Wales.

The raw data comprising the national soils map of England and Wales consist of four 

principal columns in spreadsheet form (Table 4.2). The first two columns define the x and y  

coordinates of each lkm x lkm cell in geographical space. The third column represents the 

percentage cover of a particular soil type that is disclosed in column 4. As a result, there are 

as many cell x and y  iterations as there are percentage covers of soil types present in each 

respective cell. To transfer this information into Idrisi 32 requires the construction of an 

ASCII file in which there can only be one x, y  and z representation for each cell. As a result 

of this, the raw data spreadsheet was broken down depicting only one iteration for each 

cell; the soil association with the largest percentage cover. This was achieved through a 

simple “if, then, else” statement in Excel. From this revised raw data spreadsheet, a map of 

the dominant soil type in each cell (in terms of largest percentage cover) was produced 

(Figure 4.1). The ASCII file constructed to produce Figure 4.1 in Idrisi 32 consisted of the 

coordinates of each cell comprising the respective x and y  values, and the soil association 

number comprising the z value. The soil association numbers had to be revised as in the 

raw data they contain letters; ASCII files for importation into Idrisi 32 must be wholly 
numeric.

Table 4.2 Excerpt o f the raw data comprising the NATMAP 1000

Easting ( X ) Northing (F) Unit % cover (Z) Map unit
135000 25000 76.29 0611b
135000 25000 23.57 0871a
135000 25000 0.1 0612b
135000 25000 0.04 lake
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Figure 4.1 The dominant soil association, in terms o f  percentage cover, across England and Wales. The 

legend refers to the revised soil association number.
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From the 296 soil associations represented in the national soils map, Evans (1990) 

identifies 15 at a high risk of accelerated erosion and 4 at a very high risk of accelerated 

erosion (Table 4.3). As a result, the ASCII file used to produce Figure 4.1 was sorted in 

Excel with regards to the respective soil association numbers. From the sorted spreadsheet 

separate ASCII files were extracted for each of the 19 soil types and each imported into 

Idrisi 32. Respective soil association images were formed depicting the distribution of each 

soil association across England and Wales. Those cells that did contain one of the 19 soil 

associations as the largest percentage cover assumed a cellular value of that soil 

association; those that did not had a cellular value of 0. Rasterized catchment boundaries 

were subsequently superimposed onto each soil association image “cookie cutting” out the 

respective cells representing each soil association.
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Table 4.3 Those catchment soil associations represented at least once in the population o f reservoirs available 

for this research with a high, and very high risk o f accelerated erosion after Evans (1990) and NATMAP 1000 

(1999).

High Risk Soil Associations Description
Revidge Shallow peat over sandstone
Bangor Shallow peat over hard rock
Bromsgrove Deep loam
South Petherton Silty over sandstone
Wick 2 Deep loam
Frilford Deep sandy
Bromyard Loam over sandstone
Fyfield 2 Loam over sandstone
Everingham Seasonally wet, deep sandy
Adventurers 1 Peat
Winter Hill Blanket peat, thick acid raw peat soil 

perennially wet
Very High Risk Soil Associations Description
Bearsted 1 Loam over sandstone
Bridgeworth Sandy over red sandstone
Cuckney 1 Sandy over red sandstone
Newport 1 Deep sandy

The “cookie cutting” procedure works through the production of a Boolean overlay in Idrisi 

32. A Boolean image of the rasterized catchment areas was created (Figure 4.2). In the 

Boolean image, each of the 901 numbered catchment areas in the image are represented by 

a respective cell value of 1; the areas of England and Wales not part of the 901 catchment 

areas are represented by a cell value of 0. Each of the 19 images representing the 

distribution of the respective soil associations across England and Wales was overlain and 

multiplied by the Boolean catchment area image. This procedure acted to screen out the 

areas of each soil association not falling within one of the 901 catchment areas.
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Figure 4.2 Boolean image of area covered by reservoir catchment areas across England and Wales
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The area of the 19 soil associations in each of the 901 reservoir catchments was calculated 

using the Idrisi 32 EXTRACT module. Through the EXTRACT module, the total number 

of lkm x lkm “cookie cut” pixels was determined for each catchment area using both the 

Boolean catchment area image (Figure 4.2) and the rasterized catchment area image (Figure 

4.3), thus determining the area of each of the 19 soil associations in each catchment area. 

This information was subsequently entered into the data set describing catchment and 

reservoir basin characteristics for the population of reservoirs. Those soil associations 

represented at least once in the population of reservoirs are presented in Table 4.3.
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Figure 4.3 Rasterized reservoir catchment area across England and Wales. The legend refers to the catchment 

area number assigned in the original ARCVIEW data set from CEH.
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4.2.2.4 Land cover map of Great Britain (LCMGB)

The LCMGB was obtained from the Centre for Ecology and Hydrology. It was used in this 

study to extract the average percentage cover of the 26 land cover types presented in Table

4.4 for each reservoir catchment in the population data set. The raw data comprising the 

LCMGB consists of a separate ARCINFO binary format file for each of the 26 cover types. 

Each file was imported into Idrisi 32 to produce a respective raster image identifying the 

percentage cover of the respective cover type in each lkm x lkm cell. Using the “cookie 

cutting” procedure described in Section 4.2.2.3, the mean percentage cover of each land 

cover type, in each catchment area was calculated using the Idrisi 32 EXTRACT module 

and entered into the population data set of 901 reservoirs.
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There was no occurrence of the sea/estuary, beach and coastal bare, and saltmarsh cover 

classes within the catchment areas of the reservoir population. In addition, the unclassified 

class was omitted, as the influence of this classification upon the degree of reservoir 

sedimentation is unknown. As a result of this, the remaining 22 cover classes were 

represented in the population data set.

Table 4.4 Land cover classes represented in the land cover map of Great Britain (LCMGB)

Land Cover Class Description
Beach & Coastal Bare Intertidal mud, silt, sand, shingle and rocks.
Bracken Dominated by Pteridium aquilinum. Upland or 

lowland, mixed with grass etc.
Coniferous Woodland Coniferous species and holly, Rhododendron etc. In 

leaf all year round.
Deciduous Woodland Woodland bare in winter
Dense Shrub Moor Includes heather, ling and bilberry moorlands. Some 

moor-burning
Dense Shrub Heath Mostly evergreen, heather, gorse etc. Typically on 

sandy soils.
Felled Forest Large quantities o f brush-wood etc. As they 

revegetate first colonized by ruderal weeds, then 
rough grassland.

Grass Heath Inland grasslands typically on sandy soils. Large 
quantities o f dead plant litter in winter.

Inland Bare Ground Natural surfaces (e.g. rock, sand, gravel) and those 
bared by human activity surfaced with natural 
materials.

Inland Water Water covered areas all year round; fresh waters and 
estuarine.

Lowland Bog M yrica ga le  and Eriophorum  spp. Highly 
characteristic.

Meado w/V erge/Semi-natural Includes managed grasslands to lesser extent than 
mown/grazed class. Swards used for hay/low 
intensity grazing

Moorland Grass Upland swards o f  mostly deciduous grasslands. 
Lightly grazed by sheep. Sparse cover o f upland 
dwarf shrubs.

Mown/Grazed Turf Managed as agriculturally productive swards or 
mown as amenity grasslands. Cut and maintained 
throughout growing period.

Open Shrub Heath Complements grass heath class. Because grazing o f  
lowland heaths no longer practiced, incidence is 
rare.

Open Shrub Moor Commonplace on marginal hill grazing
land where grazing prevents dominance o f dwarf
shrubs. Extensive in Calluna.

Rough/Marsh Grass Lowland herbaceous vegetation o f fens, marshes, 
upper saltmarshes and rough or derelict ground. 
Swards not cropped/grazed.

Ruderal Weed Generally bare ground (e.g. abandoned arable, 
setaside or derelict industrial works) colonized by
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annuals/short lived plants.
Saltmarsh Intertidal sand, silt or mud-based habitats.
Scrub/Orchard Deciduous areas, often substantial herbaceous 

vegetation.
Sea/Estuary Included all open sea, coastal waters and estuaries.
Suburban/Rural Development Includes villages, small retail sites, railway stations 

etc.
Tilled Land Includes all land under annual tillage, especially for 

weeds, horticulture etc.
Unclassified Within the 25m classification data about 2% o f  

Great Britain is unclassified e.g. due to cloud 
obstruction o f Landsat TM imagery.

Upland Bog Many species o f  grass and dwarf shrub heaths and 
moors. Characterized by water-logging and surface 
water.

Continuous Urban Includes cities, large towns, major industrial and 
commercial sites and permanent associated bare 
ground (e.g. car parks).

Therefore, through the land cover data, the percentage cover of each cover type in each cell 

can be resolved and subsequently averaged for each catchment area. However, due to the 

nature of the ASCII file required to represent the soils data in Idrisi 32, each cell could only 

be labeled with the numbered soil association that accounted for the principal coverage in 

that particular cell. As a result of this, only the area of each principal soil type could be 

calculated for each catchment, as opposed to the average percentage cover of each land 

cover type for each catchment (percentage cover being the original units for both data 
sources).

4.2.2.5 BRE dams data set - trap efficiency

From Section 2.11.2, it was shown that morphological factors describing the reservoir basin 

have important influences on trap efficiency, and thus sedimentation. The BRE dams data 

set contains information concerning dam height and length, reservoir surface area, and 

basin capacity; however, much of this is information is incomplete. The omission of 

reservoirs with incomplete information regarding these potential sedimentation predictor 

variables would dramatically reduce the population for this study, thereby impacting upon 

the principal aim; the production of a comprehensive assessment of the spatial variation of 

reservoir sedimentation for the population of surface water storage reservoirs exhibiting a 

degree of catchment-coupling across mainland England and Wales. Thus, a trade-off
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existed between the requirement for factors representing reservoir basin morphology and 

the ultimate achievement of the principal aim. A compromise was therefore made. 

Information regarding reservoir basin capacity is most comprehensively represented in the 

BRE dams data set, therefore this was the only such variable represented in the population 

data set; the variables of dam height and length, and reservoir surface area were omitted. 

Using the equation of Brown (1944), trap efficiency was calculated using the basin capacity 

information from the BRE dams data set and the respective catchment area information 

obtained from the FEH (1999) (Section 2.11.2.1.4). Heinemann (1981) considers trap 

efficiency as the most important descriptor of a reservoir. However, the effect of omitting 

reservoirs from the population data set of 901 on the basis of not having a BRE basin 

capacity for trap efficiency calculation reduced the population to 797 reservoirs. This was 

the number that comprised the final population data set (Table A 1.1, Appendix 1).

However, it should be noted that the BRE dams data set does not distinguish between an 

original capacity figure and, where available, a revised capacity figure. Therefore, 

calculated trap efficiencies may not be directly comparable to each other.

4.2,3 Summary of population data set

The catchment and reservoir basin data collated in the population data set of 797 reservoirs 

from the FEH (1999), the BRE dams data set, the national soil map of England and Wales, 

and the land cover map of Great Britain (Table A 1.1, Appendix 1), acts to quantify the 

factors identified in Chapter 2 that influence reservoir sedimentation. The 57 variables 

summarized in Table 4.5 represent the most comprehensive data set available for this 

investigation in terms of that obtainable within the time frame of the investigation and 
within the research budget.
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Table 4.5 Catchment and reservoir basin factors collated for each reservoir in the population data set

Variable Abbreviation Units
Catchment area CAREA km 2
Median annual maximum flood QMED 3 -1 m s
Flood attenuation due to 
reservoirs & lakes

FARL Index

Mean flood attenuation due to 
reservoirs & lakes index

MEANFARL Index

Proportion o f time soils wet index PROPWET Index
Mean catchment altitude ALTBAR (m above sea level)
Base flow index BFIHOST Index
Catchment size & drainage path 
configuration index

DPLBAR km

Catchment steepness index DPSBAR m km -1
Longest drainage path LDP km
Median annual maximum 1-day 
rainfall

RMED1D mm

Median annual maximum 2-day 
rainfall

RMED2D mm

Median annual maximum 1-hour 
rainfall

RMED1H mm

1960-1990 standard-period 
average annual rainfall

SAAR mm

1941-1970 standard-period 
average annual rainfall

SAAR4170 mm

Standard percentage runoff SPRHOST %
Concentration o f urban and 
suburban cover index

URBCONC Index

Fractional urban extent index 
(1990)

URBEXT Index

Location o f urban and suburban 
land cover index

URBLOC Index

Trap efficiency TE %
Revidge soil association S401 km 2
Bangor soil association S405 km 2
Bearsted 1 soil association S454 3 N>

Bromsgrove soil association S454 km 2
South Petherton soil association S469 km 2
Wick 2 soil association S475 km 2
Bridgenorth soil association S486 km 2
Cuckney 1 soil association S487 km 2
Newport 1 soil association S489 km 2
Frilford soil association S495 km 2
Bromyard soil association S506 km 2
Fyfield 2 soil association S507 km 2
Everingham soil association S660 km 2
Winter Hill soil association S686 km 2
Adventurers 1 soil association S692 km 2
Bracken BRACKEN %
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Coniferous woodland CONIF %
Deciduous woodland DECID %
Dense shrub moor DSHRUB %
Dense shrub heath DSHRUBH %
Felled forest FELLED %
Grass heath GRASS %
Inland bare ground IBARE %
Inland water IWATER %
Lowland bog LOWBOG %
Meadow/Verge/Semi-natural MEADOW %
Moorland grass MOORLAND %
Mown/grazed turf MOWN %
Open shrub heath OPENSHRUBH %
Open shrub moor OPBNSHRUB %
Rough/marsh grass ROUGH %
Ruderal weed RUDERAL %
Scrub/orchard SCRUB %
Suburban/rural development SUBURB %
Tilled land TILLED %
Upland bog UPBOG %
Continuous urban URBAN %

4.3 Establishment of parameterization and validation data sets

4.3.1 Parameterization data set -  secondary data

From a data set compiled by Labadz and Butcher for the Halcrow report (2001) collating all 

published measured rates of reservoir annual percentage capacity loss, 59 reservoirs with 

such a measurement were present in the population data set of 797. Therefore at the time of 

initial parameterization data set construction, 59 reservoirs represented the most 

comprehensive data set achievable. These 59 reservoirs formed the basis of the 

parameterization data set from secondary data for subsequent model construction. This was 

subsequently supplemented by the collection of primary data regarding annual percentage 

capacity loss for an additional reservoir (Ystradfellte) selected to improve the 

representativeness of the parameterization data set (see Section 4.3.2) (Table A 1.2, 

Appendix 1).

To ascertain whether the secondary parameterization data set of 59 reservoirs represented 

any natural groupings of reservoirs of similar characteristics within the population, cluster
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analysis was performed on the population data set (Table A6.1, Appendix 6). The results 

were analyzed in relation to how well the parameterization data set spanned the ranges of 

each cluster. It was important to ensure that any natural groups within the population were 

represented in the parameterization data set to produce the most robust multiple regression 

model with the greatest coefficient of explanation possible, and to allow its subsequent 

extrapolation over the population of reservoirs.

4.3.1.1 Cluster analysis -  a description

Cluster analysis seeks to identify relatively homogenous groups of cases based on selected 

characteristics (variables) which minimize within-group variation and maximize between 

group variation (Doomkamp and King, 1971). Therefore, in this application the technique 

identifies those reservoir catchments which show a better correlation between certain 

sediment-inducing parameters (or groups of sediment-inducing parameters) and APL than 

others. DeBonis et al. (2002) state that this allows one to determine (and apply) different 

families of regression models on the result of the clustering.

The first stage in cluster analysis is the establishment of a distance or similarity matrix, 

where the rows and columns are the units of analysis and the cell entries are a measure of 

distance for any pair of cases. The standard distance measure is Euclidean distance which is 

defined as the square root of the sum of the squared differences between two cases (e.g. two 

reservoirs and the values of their respective catchment and reservoir basin characteristics) 

(Daly et al., 1997).

The second stage is the selection of a linkage method. The linkage method determines how 

the distance between two clusters is defined. Initially, each observation constitutes a 

cluster, where the distance between each cluster is the inter-observation distance. However, 

for each subsequent amalgamation stage, a linkage rule is necessary for calculating inter­

cluster distances when there are multiple observations in a cluster (MINITAB, 2000). The 

average linkage method was used which defines the distance between two clusters as the 

mean distance between an observation in one cluster and an observation in the other cluster. 

MINITAB (2000) states that the average linkage method is effective when clusters are not 

clearly separated. This is because the method uses a more central measure of cluster
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location. Single (nearest neighbour) linkage for example defines the distance between two 

clusters as the minimum distance between an observation in one cluster and an observation 

in the other cluster. MINITAB (2000) recommends that when the average linkage method 

is used, it is best to use a squared distance measure. As a result of this, the squared 

Euclidean distance measure was used, increasing the distances between clusters.

Cluster analysis uses an algorithm that starts with each variable in a separate cluster and 

amalgamates clusters until only one is left (Daly et al., 1997). Each amalgamation stage of 

observations into one cluster is graphically depicted in a dendogram. A decision has to be 

made where to “cut the dendogram” to determine the final grouping of clusters that will 

identify groups whose observations share common characteristics. This is best made 

analyzing the similarity levels at each amalgamation step. The similarity level is the percent 

of the minimum distance at that step relative to the maximum inter-observation distance in 

the data. The amalgamation step where the values change abruptly typically identifies a 

good point for cutting the dendogram to determine the final groupings of clusters 

(MINITAB, 2000).

4.3.1.2 Cluster analysis -  results

The results of the cluster analysis are presented in Table A6.1, Appendix 6. The dendogram 

was cut forming 3 principal clusters within the population. Cluster 1 comprises 288 

reservoirs that are typically more lowland in nature, as defined by their larger catchment 

areas and associated dimensions, and have lower rainfall totals. Cluster 3 comprises 35 

reservoirs that have more upland, high altitude catchments associated with smaller areas 

and high rainfall totals. Cluster 2 comprises 473 reservoirs of an intermediate nature 

between clusters 1 and 3 in terms of their dimensions and rainfall totals.

To ensure that the parameterization data set (Table A1.2, Appendix 1) was representative of 

the population it was important to incorporate reservoirs that spanned the range of each 

cluster, in terms of distances from the centroid; i.e. that fell close to the minimum and 

maximum distance from the centroid, encompassing the mean and standard deviation of the 

distances. The distances for each reservoir in each cluster of the parameterization data set 

are presented below in tabular and graphical form (Tables 4.6 to 4.10 and Figures 4.4 and
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4.5). There was no representation of reservoirs from cluster 3 in the parameterization data 

set due to the fact that no information regarding sedimentation rates in these reservoirs was 

available from secondary data. The lines in Figures 4.4 and 4.5 assume that the data series 

are continuous; this is not so, however, this style of graph best illustrates and compares the 

centroid distances in the parameterization data sets with those for the entire cluster.

Table 4.6 Cluster 1 centroid distances o f  reservoirs represented in the parameterization data set

Cluster 1 Reservoir Distance from centroid
Eccup 89
Hewenden 534
Langsett 264
Leeming 123
Leeshaw 678
Leighton 69
Scout Dike 363

Table 4.7 Descriptive statistics for cluster 1 o f the population data set 

Minimum centroid distance: 39 

Maximum centroid distance: 1070 

Mean centroid distance: 253.2

Standard deviation range o f  mean centroid distance: +439.5, -66.9

Figure 4.4 Centroid distances o f  reservoirs represented in the parameterization data set o f cluster Icompared 

to descriptive statistics for the population o f cluster 1
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Table 4.8 Cluster 2 centroid distances o f reservoirs represented in the parameterization data set

Cluster 2 Reservoir Distance from centroid
Abbeystead 749
Angram 752
Barden Lower 217
Barden Upper 297
Blackmoorfoot 100
Blakeley 534
Broadstones 116
Broomhead 149
Chelker 274
Dale Dyke 152
Dam flask 99
Dean Head Lower 263
Dean Head Upper 267
Deanhead 427
Deerhill 351
Eldwick 303
Embsay 113
Fewston 84
Gorple Lower 410
Gorple Upper 415
Gorpley 538
Green Withens 401
Harden 522
Holmestyes 400
Lindley Wood 370
Ponden 336
Ramsden 711
Redmires Lower 163
Redmires Middle 155
Redmires Upper 161
Riding Wood 719
Rivelin Lower 135
Rivelin Upper 132
Roundhill 99
Royd Moor 173
Ryburn 314
Scammonden 337
Scar House 660
Silsden 284
Snailsden 638
Strines 192
Stubden 195
Tunnel End 480



Underbank 166
Walshaw Dean Lower 396
Walshaw Dean Middle 399
Walshaw Dean Upper 404
Wessenden Head 568
Wessenden Old 562
Widdop 402
Windleden Upper 521

Table 4.9 Descriptive statistics for cluster 2 o f the population data set 

Minimum centroid distance: 62 

Maximum centroid distance: 1333 

Mean centroid distance: 482.7

Standard deviation range o f mean centroid distance: +740.4, -226.4

Figure 4.5 Centroid distances o f  reservoirs represented in the parameterization data set o f cluster 2 compared 

to descriptive statistics for the population o f cluster 2
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Table 4.10 Descriptive statistics for cluster 3 o f the population data set

Minimum centroid distance: 91 

Maximum centroid distance: 1080 

Mean centroid distance: 362.14

Standard deviation range o f mean centroid distance: +560.84, -163.44
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The perfect parameterization data set would include individuals from each of the three 

clusters being represented to the same ratio with respective observations representing the 

centroid, the maximum and minimum centroid distance, and the standard deviation about 

the centroid for each cluster. This would allow extrapolations from the multiple regression 

model predicting reservoir annual percentage capacity loss (APL) to be made from the 

parameterization data set across the entire population of 797 reservoirs, thus producing a 

robust model. However, this is not the case. In reality, given the secondary data available, 

clusters 1 and 2 have a ratio of parameterization data set representation of 1/41 and 1/9 

reservoirs respectively, whereas cluster 3 is not represented at all (due to the fact that no 

information regarding sedimentation rates in these reservoirs was available from secondary 

data). In addition, the reservoirs represented span the standard deviation of the centroids for 

clusters 1 and 2 relatively well (Figures 4.4 and 4.5), but not the maximum centroid 

distances (the outermost limit of each cluster). This will limit the ability of the final 

multiple regression equation in making a comprehensive assessment of APL across the 

population of reservoirs as predictions cannot be extrapolated beyond the observed range 

defined in the parameterization data set.

The perfect solution to the shortcomings of the initial parameterization data set of 59 

observations of reservoir annual volume capacity loss (APL) would have been to collect 

primary data for additional reservoirs using a stratified random sampling scheme, ensuring 

that each cluster was represented to the same degree (ratio) and that the respective mean 

centroid value, maximum and minimum centroid distances and standard deviation range 

about the centroid were represented. This would have favoured the production of a robust 

multiple regression model allowing extrapolation from the parameterization data set across 

the population. However, primary data collection concerning APL was also required for a 

validation data set; therefore this was not practically possible within the time frame of this 

investigation.

4.3.2 Primary data collection -  parameterization and validation data sets

The scheduled fieldwork season for this research of primary data collection had to be 

reduced due to the outbreak of foot and mouth disease across Great Britain in 2001; the
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measures employed to combat the outbreak included severely restricted access to many 

parts of the countryside, including reservoir sites. As a result of this, nine reservoirs was the 

maximum number that could be surveyed. Of these nine, it was planned to survey three 

reservoirs from each cluster to obtain an APL value originally intended to comprise the 

validation data set. However, a value of APL for Howden reservoir in cluster 2 was 

obtained from Hutchinson (1995). This value was not included in the data set compiled by 

Labadz and Butcher for the Halcrow report (2001) which formed the basis of the 

parameterization dataset; therefore it was included in the validation data set. This reduced 

the number of reservoirs to be surveyed to eight. A stratified random sampling technique 

was devised to select the reservoirs to survey. This was done in an effort to try and ensure 

the representation of each cluster in the validation data sets, and to satisfy the requirement 

of the employed statistical techniques that samples should be randomly selected. It was 

deemed important to represent the clusters (i.e. the spread of cases about the respective 

cluster centroids) in the validation data sets to provide an insight into the robustness of the 

respective models, i.e. whether consistently good results were produced across the range of 

observations in each cluster. As a result of these requirements, the reservoirs in each cluster 

were numbered in alphabetical order and the upper and lower standard deviation limits (the 

cluster mean plus the standard deviation and the cluster mean minus the standard deviation 

respectively) about each cluster mean (centroid) were calculated. The reservoirs falling into 

the corresponding sections (above the upper standard deviation limit, below the lower 

standard deviation limit, and between the limits) were identified. Using a random number 

table, a corresponding numbered reservoir was identified from each cluster section to 

survey (except for that which contained the pre-selected Howden reservoir). Where a 

particular selected reservoir could not be surveyed due to practical factors (e.g. the granting 

of permission - as in the case of Hedgecourt Lake) or logistical factors (e.g. ease of access 

to the waterline with the surveying equipment - as in the case of Bleawater reservoir), the 

selection process was repeated.

4.3.2.1 Primary data collection -  methods

Through the primary data collection, the annual percentage reservoir capacity loss for each 

reservoir was calculated by subtracting the present-day capacity from an original capacity,
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and dividing the subsequent capacity loss by the age of the reservoir. The original capacity 

and age of each reservoir was obtained from the BRE dam data set.

The revised capacity for each surveyed reservoir was computed using an OHMEX Sonarlite 

echo sounder to produce a bathymetric plot. The echo sounder has a transducer frequency 

of 200 kHz which offers a high degree of accuracy in determining the water/reservoir 

bottom interface if properly calibrated (to within +/- 0.025 m) (OHMEX, 2000). Echo 

sounders with a lower transducer frequency (around 60 kHz) can have difficulty in 

determining the water/reservoir bottom interface where the bottom is soft and muddy, and 

can indicate the interface to be 10-15cm deeper than the true value (Jobson, 1985). Echo 

sounders operating in higher frequencies (around 200 kHz) produce a stronger backscatter, 

detecting a sharper change in the propagation of the wave due to the change in the intrinsic 

properties between the water and reservoir bottom, thus improving accuracy (Dunbar et al., 

1988). For each survey, the echo sounder was checked for calibration through the 

comparion of the sensor depth measurements with direct measurements.

The geolocation of the echo sounder at the time a depth measurement was taken was 

determined using a Leica 500 differential GPS (Figures 4.6 and 4.7). This GPS model has 

an accuracy of +/- 1 cm (Leica Geosystems, 2004). Accurate geolocation defining the 

absolute x, y, z coordinates of the reservoir bottom is important; Butcher et al. (1993) 

identified geolocation as the principal source of error in the computation of reservoir 

volumes without using a GPS.
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Figure 4.6 Bathymetric survey -  geolocation of echo sounder depth measurements using differential GPS

Figure 4.7 Bathymetric survey - differential GPS
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The data from the echo sounder and GPS were post-processed to generate a bathymetric 

plot for each surveyed reservoir using the LISCAD software package. From the 

bathymetric plot, LISCAD was used to calculate the volume of each surveyed reservoir 

basin. For the preparation of the plot, where logistically and practically possible, the 

network of reservoir traverses were spaced significantly less than the shore-to-shore 

traverse length to minimize interpolation problems during post-processing, as contouring 

algorithms perform better as data density increases (Morris and Fan, 1997).

4.3.2.2 Primary data collection results

Table 4.11 presents the result of the primary data collection. The respective basin plots are 

presented in Appendix 7. As cluster 3 was not represented in the parameterization data set 

(due to the fact that no information regarding sedimentation rates in these reservoirs was 

available from secondary data), it was decided that Ystradfellte reservoir be removed from 

the validation data set and entered into the parameterization data set, thus increasing the 

number of observations in the parameterization data set to 60. Ystradfellte was selected 

over the other two reservoirs surveyed from cluster 3 (Wet Sleddale and Beacons) as the 

revised capacity concerning Wet Sleddale was found to have increased since dam 

commission. This could have been due to errors in the original capacity surveys, or 

undisclosed dam modifications for example (Section 4.4.4). In relation to Beacons 

reservoir, the revised capacity identified no real capacity loss since the data of dam 

commission 106 years ago (Table 4.11). Given the nature of the catchment (e.g. its altitude, 

median annual rainfall values etc. -  Table A 1.1, Appendix 1) and its physical similarity and 

proximity to the Ystradfellte catchment, this result was deemed unlikely. This again could 

have been due to errors in the original capacity surveys, or undisclosed dam modifications 

for example (Section 4.4.4). As a result of this, Wet Sleddale and Beacons reservoirs were 

omitted from the final validation data set, reducing the constituent number to 6 reservoirs 

(including Howden reservoir from secondary data).
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Table 4.11 Reservoirs surveyed comprising the primary data collection

Cluster Reservoir Date of 
Commission

Original Capacity 
(ML) (from BRE 
dams database)

Revised Capacity 
(ML)

Annual Percentage 
Capacity Loss 
(APL)

1 Appleton 1848 235 203.43 0.087
1 The Great Lake 1862 770 753.59 0.015
1 Weirwood 1954 5623 5580.32 0.015
2 Bough Beech 1969 10440 10391.03 0.014
2 Eyebrook 1940 8096.59 7894.97 0.052
3 Beacons 1897 1579 1577.22 0.001
3 Wet Sleddale 1967 2282 2688.54 N/A
3 Ystradfellte 1914 3200 2947.08 0.089

4.3.3 Fuzzy sets multi-criteria evaluation population data set

The preceding sections documented the construction of the population data set 

(encompassing 797 reservoirs) and parameterization data set (encompassing 60 reservoirs) 

which were applied to the multiple regression modelling approach (Tables A 1.1 and A 1.2, 

Appendix 1). However, both data sets had to be modified for the fuzzy set multi-criteria 

evaluation (MCE) modelling approach.

To conduct fuzzy sets MCE modelling in Idrisi 32 requires a raster image to be constructed 

for each variable to be considered in the analysis. Therefore, from the population data set, a 

raster point image documenting the location of each reservoir had to be constructed 

determining the respective value for each of the associated 57 catchment and reservoir 

basin factors that influence reservoir sedimentation (Table 4.5). However, whilst the 

population of 797 reservoirs can each be represented in vector format, upon conversion to a 

raster format of a spatial resolution of 1km x 1km, those reservoir dam locations falling 

within 1km of each other cannot each be resolved. This is especially the case for those 

reservoirs forming a cascade (e.g. Blackmoss Upper and Lower). As a result of this, the 

population associated with the fuzzy sets MCE modelling approach was reduced to 771 

reservoirs (Table A 1.3, Appendix 1) and the original parameterization data set of 60 

reservoirs (used in this modelling methodology as a verification data set -  see Section 

6.5.1) was reduced to 54 reservoirs (Table Al .28, Appendix 1).
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4.4 Data Quality

This section highlights potential sources of error and uncertainty associated with the 

original form of each of the 57 catchment and reservoir basin variables (see Table 4.5), and 

calculated reservoir annual percentage capacity loss (APL). As these variables will be used 

to parameterize models of reservoir sedimentation prediction, any error and uncertainty will 

act to reduce the accuracy of the model outputs.

4.4.1 FEH (1999) catchment descriptors

4.4.1.1 Landform descriptors

The Institute of Hydrology Digital Terrain Model (IHDTM) contains elevations held 

digitally over a 50m x 50m grid and uses digitized river information taken from 1:50000 

OS maps to position river valleys. The IHDTM includes a 50m x 50m grid of drainage path 

directions from which a catchment area can be derived, based on the steepest route to 

neighbouring grid nodes (Bayliss, 1999). The digital catchment areas used to “cookie cut” 

soil and land use information from the respective national maps (Section 42.2.2) were 

obtained from the IHDTM, and its incorporation in the FEH (1999) CD-ROM is used to 

directly extract the catchment land form descriptors of catchment area, longest drainage 

path, mean drainage path length, mean altitude and mean drainage path slope. There is error 

and uncertainty associated with the IHDTM in terms of the digitization of information from 

OS 1:50000 maps, the data quality of the OS 1:50000 maps and that used to construct the 

grid elevations, and the spatial resolution of the data inducing cartographic generalization. 

This acts to reduce the accuracy of the aforementioned FEH variables.

Bayliss (1999) validated the computation of catchment area from the FEH (1999) CD-ROM 

(derived from the IHDTM) through the comparison of 1000 catchment areas obtained 

manually from undisclosed maps. From the results, the IHDTM-derived catchment area 

was within 2% of the manually-derived area for more than 70% of catchments, while 87% 

of catchments were less than 5% different. Bayliss (1999) concluded that this shows the 

IHDTM can be used to produce catchment boundaries quickly and accurately for the
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majority of catchments. A few catchments (5%) differed in area by 10% or more. This was 

attributed to some catchments having boundaries which, through drainage diversion, do not 

follow the topography defined in the IHDTM. In other cases, the generation of drainage 

paths through the IHDTM has been flawed by difficulties encountered through using 

digitized rivers to fix the location of valleys. For example, Bayliss (1999) observed that 

problems may arise when rivers appear (from the supplied river and contour information) to 

flow uphill, or where two digitized rivers are located within 50m of each other, the capture 

of one river by the other can occur. This identifies the effect of factual errors and 

cartographic generalization (Robinson et al., 1995) in inducing error and uncertainty into 

the FEH (1999) CD-ROM. This error and uncertainty will act to reduce the accuracy of the 

reservoir APL predictions.

4.4.1.2 Flood attenuation due to reservoirs & lakes index (FARL)

The flood attenuation index due to reservoirs and lakes directly connected to the catchment 

stream channel network is calculated from Equation 4.6:

FARL= a, (Eq. 4.6)

i e reservoirs and lakes

where the effect for individual reservoirs and lakes is indexed by:

a  = (l - Vr)1' (Eq. 4.7)

where r is the relative size of the reservoir or lake to its subcatchment, i.e. 

r -  surface area / subcatchment area

and w is a weight which reflects the importance of the reservoir or lake in terms of the flood 

behaviour at the catchment scale defined by: 

w = subcatchment area / catchment area 

(after Bayliss, 1999)
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The surface areas of the reservoirs and lakes represented in the FEH CD-ROM are in raster 

format, obtained from shoreline vector data from OS 1:50000 maps. This induces error into 

the FARL calculation associated with the cartographic generalization of the reservoir and 

lake shorelines (analogous to the rasterization of the catchment boundaries discussed in 

Section 4.2.2.2), and inherent inaccuracies in the OS 1:50000 maps. In addition, factual 

error is introduced as the shoreline data relates to the 1980s; therefore reservoirs built 

subsequently will not be represented.

The FARL index remains very much an approximation of the attenuation effect of 

reservoirs and lakes as whilst it depends on the storage characteristics of the water body, 

typically well represented by the included surface area variable (Bayliss, 1999), it is also 

highly dependant upon the discharge characteristics of the outlet, which are not represented 

(Bayliss, 1999). In addition, the FARL index fails to account for the flood attenuation effect 

from isolated reservoirs and lakes, i.e. those not directly connected to the catchment stream 

channel network.

4.4.1.3 Climate and soils

The average annual rainfall (1941-70 and 1961-90) and median annual maximum rainfall 

(hourly, daily and bi-daily) is calculated in the FEH (1999) CD-ROM for each catchment 

from a respective Met Office 1km x 1km gridded data set. The interpolation between the 

rainfall measures in each data set calculates a respective value for each cell in a defined 

catchment, enabling average annual rainfall and median annual maximum rainfall 

measures. Clearly, there is error and uncertainty associated with such interpolation.

The standard percentage runoff and base flow index for a defined catchment area is 

calculated using the 29-class Hydrology of Soil Types (HOST) classification (Boorman et 

al., 1995). The HOST classification delineates UK soils according to their hydrological 

properties from standard Soil Survey information and is available as a 1km x 1km grid 

which records, for each grid square, the percentage of the 1km x 1km area given to each 

HOST class present (Bayliss, 1999). Boorman et al (1995) give standard percentage runoff 

and base flow index values for each HOST class. Therefore, the areal fraction of each 

HOST class present in a defined catchment area is obtained and multiplied by its respective
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standard percentage runoff and base flow index. These products are subsequently summed 

producing total catchment standard percentage runoff and base flow index. Error and 

uncertainty is introduced associated with the assignment of HOST classes to each 1km x 

lkm grid square. Specifically, this is due to measurement error associated with the original 

field survey, and the upscaling of the data to classify a lkm x lkm grid square. In addition, 

error and uncertainty is introduced through the classification of the UK soil types into 29 

HOST classes with respective standard percentage runoff and base flow index values. The 

fact that such classification modifies feature attributes in an attempt to express the salient 

character of a distribution (Robinson et al., 1995), acts to reduce the accuracy of 

quantities/fluxes predicted using these variables.

Generalized soil moisture deficit data produced by the Meteorological Office Rainfall and 

Evaporation Calculation System (MORECS) for the UK is used to calculate the proportion 

of time catchment soils are wet in the FEH (1999) CD-ROM. Month-end soil moisture 

deficit values are derived from meteorological variables measured at over 120 synoptic 

sites around the country. Daily average soil moisture deficit values are interpolated from 

these sites to obtain values for 40km x 40km grid squares. Soil moisture deficits derived 

from daily rainfall, minus actual evaporation, are added to the previous day’s soil moisture 

deficit to produce a month-end value for that square. The data used in the FEH (1999) CD- 

ROM was calculated for grassland with soil of medium water availability. As a result of 

this generalization, the sparse synoptic site network, and the coarse spatial resolution of the 

MORECS grid squares, the soil moisture deficit can only be considered a generalized 

indication of average soil moisture conditions (Bayliss, 1999).

Through the formulation of the proportion of time catchment soils are wet index 

(PROPWET), the fraction of the catchment that relates to each MORECS square is 

calculated and used as a weight to derive catchment soil moisture deficit values. Month-end 

soil moisture deficit values can then be calculated from 1961-1990 for each defined 

catchment and converted to daily values by linear interpolation between month end values. 

A soil moisture deficit threshold of 6mm, above which the catchment is defined as dry, was 

determined and each day of the daily record from 1961-1990 was defined as either wet or 

dry. From this the proportion of time a defined catchment can be classified as wet over the
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1961-1990 period was calculated. In terms of reservoir sedimentation, typically the greater 

the period of time a catchment can be defined as wet (i.e. below the 6mm threshold), the 

greater the potential of flooft flows and sediment delivery to a reservoir basin. However, the 

generalization associated through the computation of the index may reduce the accuracy of 

a model output if included as a predictor variable.

4.4.1.4 Urban and suburban cover

The indexes of the fractional extent of urban cover (URBEXT), the location of urban and 

suburban land cover (URBLOC) and the concentration of urban and suburban land cover 

(URBCONC) were calculated from the urban and suburban classes of the Land Cover Map 

of Great Britain (LCMGB) (discussed in Section 4.2.2.4), produced by the Institute of 

Terrestrial Ecology (now the Centre of Ecology and Hydrology -  CEH). The LCMGB was 

produced using supervised maximum likelihood classifications of Landsat Thematic 

Mapper data and is based on a 25m grid (Fuller, 1995). However, there appears to be 

frequent misclassification of tilled land especially, as urban or suburban (Bayliss, 1999). As 

a result of this, the validity of each grid square (at a resolution of 50m) classified as urban 

or suburban in the LCMGB was assessed through the overlay of digital OS 1:250000 data 

(Bayliss, 1999). Due to the scale of the OS data, the settlement polygons are often 

generalized and sometimes displaced to improve clarity; as a consequence the polygons 

were extended with a 250m buffer to overcome these spatial inaccuracies (Bayliss, 1999). 

Therefore, if a LCMGB cell designated urban or suburban fell on a settlement polygon or 

respective buffer zone it was accepted; if not, it was rejected. This procedure was validated 

against 34 plots providing ground truth information. Bayliss (1999) concludes that overall, 

this correction of LCMGB urban and suburban classes advanced the data set. However, 

error in classification is still induced with the 250m buffer zone being too large in some 

instances resulting in apparently spurious LCMGB being accepted, and in a few instances 

the buffer appearing too small resulting in authentic data being rejected (Bayliss, 1999). 

The latter is especially the case where settlements correctly classified by the LCMGB have 

expanded (beyond the 250m buffer zone) since the OS data was compiled. This identifies 

how factual error, and error induced by generalization and classification can degrade the 

accuracy of the URBEXT, URBLOC and URBCONC FEH variables from the outset.
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The IHDTM-derived catchment boundaries are used to compute URBEXT for a defined 

catchment in the FEH (1999) CD-ROM. This variable is composite index of the urban and 

suburban fractions derived from the refined LCMGB data. As a result of urban areas 

potentially exerting a greater influence on flood generation through a greater density of 

impermeable surfaces etc. (Section 2.11.1.6.4), through the computation of the URBEXT 

index the suburban fraction is multiplied by 0.5. Bayliss (1999) states that this is because 

urban development might, on average, be expected to occupy one half of each pixel in the 

suburban land cover class. Therefore, this generalization and the error associated with the 

IHDTM (Section 4.4.1.1) compound the degradation of accuracy associated with 

URBEXT.

The IHDTM is also used to calculate URBLOC and URBCONC in the FEH (1999) CD- 

ROM. The former is an index depicting the location of urban and suburban areas, i.e. 

whether they are near the defined catchment outlet or in the headwaters. The IHDTM 

calculates the mean distance along the defined drainage paths from the urban and suburban 

grid nodes to the catchment outlet. The latter is an index depicting the concentration of 

urban and suburban land cover. The IHDTM calculates the ratio of the number of urban and 

suburban grid nodes that flow to a point under examination in the FEH CD-ROM along the 

defined drainage paths to the number of nodes in total flowing to that point. Therefore, as 

with the derivation of the URBEXT variable, the generalization and error associated with 

the IHDTM (Section 4.4.1.1) compounds the degradation of accuracy associated with 

URBLOC and URBCONC regarding the representation of urban and suburban land use 

classes in the FEH (1999) CD-ROM.

4.4.1.5 Median annual maximum flood

Equations 4.1 -  4.6 (Section 4.2.2.1) are used to calculate the median annual maximum 

flood (QMED) for each reservoir in the population data set. Through these equations, 

QMED is related to the respective catchment area, catchment wetness (SAAR), soils 

(SPRHOST and RESHOST), and the attenuation effects of upstream reservoirs and lakes 

(FARL). However, Robson and Reed (1999) state that the direct use of this equation 

typically gives poor estimates of QMED in comparison to even very short (e.g. two-year) 

flood records; the respective confidence intervals concerning the prediction are very wide.

115



This is because the equation incorporates the aforementioned error from the associated 

catchment descriptors, and through itself represents a simplification of reality. The 

catchment descriptor equation, however, represents the most readily obtainable/practical 

measure of QMED for the population data set. As a result of the equation providing only an 

approximation of QMED, it is more conducive for use in fuzzy set multi-criteria evaluation 

modelling as opposed to multiple regression as the former quantifies the value of QMED in 

relation to an arbitary degree of influence upon reservoir sedimentation; thus the actual 

measure of QMED in cumecs is not considered.

4.4.2 The National Soils Map of England & Wales (NATMAP1000)

As previously discussed in Section 4.2.2.3, the NATMAP1000 used in this investigation to 

extract the area of the dominant soil type in each lkm x lkm catchment cell across the 

respective reservoir catchments is derived from the National Soil Map, which is the product 

of sixty years of soil survey work across England and Wales. An average of two to three 

observations per square kilometre (outside areas of earlier, more detailed survey) details the 

distribution of 300 soil associations across the two countries. Error and uncertainty is 

induced regarding how well these observations represent the respective square kilometre 

cells and how interpolation is made between them. Typically, soil surveying is based on the 

concept of the soil-landscape relationship where soil scientists first build a model of the 

soil-landscape relationship through analyzing the landscape and through extensive 

fieldwork (Xing Zhu, 2002). Subsequently, the spatial distribution of soil landscape units 

are delineated to form soil polygons wherein soil samples are taken. However, as 

previously mentioned, error and uncertainty is induced regarding the “representativeness” 

of the soil polygons (with small soil bodies typically being omitted) and the unrealistic 

assumption that soils within the polygons are homogenous bodies and that changes only 

occur at the boundaries of the polygons (Xing Zhu, 2002). In addition, Xing Zhu (2002) 

states that most soil mappers base their soil unit delineation solely upon the visual 

interpretation of stereophotos. This can be problematical as subtle and gradual changes in 

environmental conditions are often difficult to discern via stereoscoping and it is easy to 

misplace the boundaries of soil polygons in the manual delineation process.
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4.4.3 The Land Cover Map of Great Britain (LCMGB)

The LCMGB used to extract the average percentage cover of the land cover types presented 

in Table 4.5 for each reservoir catchment in the population data set was produced using 

supervised classification of Landsat Thematic Mapper data which has a spatial resolution of 

30m. Fuller (1995) states that the largest source of error in the LCMGB stems from the 

classification of the land cover classes. There are three essential steps involved in a typical 

supervised classification procedure. The first is the training stage where the analyst 

identifies training areas representative of the land cover types and develops a numerical 

description of the spectral attributes of each respective land cover type. The second stage is 

the classification stage where each pixel in the image data is categorized into the land cover 

class it most resembles. For the production of the LCMGB a maximum likelihood classifier 

was used which assumes a normal distribution of the cloud of points forming the training 

data (Lillesand and Kiefer, 1994). The statistical probability of a given pixel value being a 

member of a particular land cover class is then calculated. The probability of a given pixel 

occurring in each land use class is calculated and is subsequently assigned to the most 

likely class, or labeled unknown if the probability values are all below a threshold set by 

the analyst (Lillesand and Kiefer, 1994). The third stage is the output stage whereupon the 

entire data set has been classified and the results are presented. Mather (1996) states that 

the accuracy of a supervised classification depends upon the representativeness of the 

estimates of the number and statistical nature of the spectral classes present in the image 

data, and the degree of departure from the assumptions upon which the classification 

technique is based. As previously mentioned, the maximum likelihood classifier employed 

in the production of the LCMGB holds only if the assumption that the frequency 

distribution of each land cover class membership can be approximated by a normal 

distribution. However, Mather (1996) states that in practice, this assumption holds 

reasonably well and that the maximum likelihood procedure is not too sensitive to small 

departures from the assumption provided that the actual frequency distribution of each class 

is unimodal.

Whilst error and uncertainty can be associated with the maximum likelihood classifier, the 

resulting classification is deemed more accurate than that produced by other classifiers (i.e.
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the minimum distance to means classifier and parallelepiped classifier) as the training 

sample data is used to provide estimates of the shapes of the distribution of membership of 

each land cover class as well as the location of the centre point of each class (Mather, 

1996).

The use of a combination of summer and winter data improved classification accuracies 

especially in distinguishing arable fields bare in winter and vegetated in summer, and 

permanently bare surfaces such as urban (Fuller, 1995). In total, 88% of Britain was 

classified from combined summer-winter images, and 12% from single-date, mostly 

summer data (Fuller, 1995). Fuller (1995) states that 0.4% of Britain was obscured by 

clouds on summer and winter images.

To assess the accuracy of the supervised classification comparisons were made with 

independent ground truth data. The overall correspondence between field and LCMGB 

samples was 67% (Fuller, 1995). Fuller (1995) states that the biggest component of map 

error is probably the misclassification of mixed boundary pixels. From the independent 

ground truth data set, some 40% of all pixels adjoined or crossed a vector boundary and 

were thus made up of mixed cover types and additional boundary features: correspondence 

was raised to 71% when boundary pixels were excluded (Fuller, 1995).

In addition there are minor discrepancies associated with the geometry of the Landsat 

Thematic Mapper data (Fuller, 1995). The sources of geometric distortions range from 

variations in the altitude, attitude, and velocity of the sensor platform, to factors such as the 

earth’s curvature, atmospheric refraction, nonlinearities in the sweep of a sensor’s 

instantaneous field of view, panoramic distortion and relief displacement (Lillesand and 

Kiefer, 1994). However, Landsat images are relatively free from the latter two factors 

(Barrett and Curtis, 1995). Geometric correction must therefore be undertaken to 

compensate for distortions induced by these factors so that the corrected image has the 

geometric integrity of a map. Some distortions are systematic and can be corrected 

relatively easily, such as correcting for the skewed-parallelogram effect of the Earth 

rotation beneath the satellite during imaging, whereby each scan is offset by an appropriate 

amount (Barrett and Curtis, 1995). However, corrections for unsystematic distortions are
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accomplished through reference to ground control points. The ground control points are 

located image coordinates on the distorted image and in terms of their geometrically correct 

ground (map) coordinates. These values are then submitted to a least squares regression 

analysis to determine coefficients for two transformation equations that interrelate the 

satellite image and ground sets coordinates. The satellite image can then be resampled onto 

the geometrically correct image matrix. However, too few ground control points 

categorizing the scope of the satellite image can undermine the accuracy of the resampling 

process, as can the failure of the data in complying with the strict assumptions of regression 

to ensure a robust result (Section 5.2).

Other differences between field and LCMGB samples were attributed to changes in cover 

between surveys, sometimes two years apart, as the target data for imagery was 1990 plus 

or minus two years. Fuller (1995, page 2) states, “...if we allow for likely time-based 

changes, overall correspondence is measured at 76% including boundary pixels, or 82% 

excluding boundary pixels.” However, these observations represent average errors, 

therefore local discrepancies may be observed which suggest higher or lower accuracy 

levels. In summary, Fuller (1995) identifies 80-85% as a realistic assessment of the 

LCMGB accuracy.

4.4.4 Calculated reservoir annual percentage capacity loss (APL) rates

Reservoir annual percentage capacity loss (APL) was calculated for the validation and 

majority of the parameterization data sets using a GPS/total station and echo-sounder 

survey to derive current capacities for subsequent subtraction from original capacity data 

presented in the BRE dams data set.

Associated with the GPS/total station and echo-sounder survey, potential measurement 

error is introduced through the measurement of the reservoir depth and the location of the 

echo-sounder at the time the depth is measured. The majority of the APL measurements in 

the parameterization data set were calculated by Labadz and Butcher using an echo-sounder 

operating at 146 KHz and total station for associated geo-location.
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Bruk (1985) states that in reservoirs with soft muddy bottoms echo-sounders operating 

around 60 KHz may give misleading information indicating that the interface is 10-15 cm 

deeper than the true value. However, echo-sounders operating around the 120 KHz 

frequency can solve this problem and disclose information about the underlying strata 

although interpretation of the depth trace can be subjective (Bruk, 1985). This potential 

measurement error is reduced with regards to the validation data. The echo-sounder used to 

derive these primary data operates at 200 KHz which provides a distinct image of water 

bottoms (Dunbar et a l , 1998). In addition, the use of GPS in the primary data collection to 

geo-locate the echo-sounder at the time of depth measurement is comparatively more 

accurate than the use of a total station, providing measurements to within 1 cm accuracy 

(Leica Geosystems, 2004), free from potential human error. The advantage of GPS as a 

faster, more efficient method of geo-location also enabled more thorough, comprehensive 

surveys to be undertaken, potentially increasing the accuracy of subsequent reservoir basin 

construction through between measurement interpolation in the LISCAD surveying 

programme. For the primary data collection, the echo sounder was calibrated through the 

comparison of depth measurements against those made directly in an attempt to 

limit/reduce associated measurement error. Therefore, the primary data forming the 

validation data set concerning revised reservoir capacities may be associated with reduced 

measurement error in comparison to that collected by Butcher et al. (1992a, 1992b and

1993) and Labadz et al. (1991, 1995 and 1999) which forms the majority of the 

parameterization data set. However, as a result of this, the overlying degree of measurement 

error induced by both respective surveying methods is not constant across all of the revised 

reservoir capacities from the parameterization and validation data sets collectively.

Error is also introduced into the calculation of APL through the original capacity estimate. 

White et al. (1996b) identify three essential difficulties in relation to original capacity data:

• The age of a reservoir and its associated structures may be beyond that of the 

majority of its users, managers, and regulatory authority, and hence records may 

have been misplaced or overlooked.
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• The variability in accuracy of the original capacity estimates and the practices 

adopted to achieve a stated level of capacity.

• Historic management practices may alter capacity over time, often without record.

From revised capacity information of nine reservoirs in Yorkshire, White et al (1996b) 

identified increases in capacity accompanied by an increase in depth. This was attributed to 

the accepted original capacity being that above the bottom drawoff valve rather than the 

total volume of water stored. Therefore, these reservoirs may have experienced a loss of 

capacity, but not sufficient to encroach upon the live storage (White et al., 1996b). 

However, over-estimation of capacities were also related to inaccurate mapping at the time 

of reservoir construction where the original basin map does not represent a true depiction of 

the ground surface at the time but an interpretation of the ground surface as defined by the 

limitations of the equipment used (White et a l , 1996b).

Foster and Lees (1999b) identify the same problem through calculating the average long­

term sediment yield rate of Silsden reservoir (reconstructed using a paleolimnological 

approach based on sediment core analysis) at almost an order of magnitude lower than that 

given for the same site by Butcher et al. (1993) on the basis of a reservoir re-survey. As a 

result, Foster and Lees (1999b) conclude that reservoir re-survey data should be treated 

with considerable caution in providing estimates of sediment yields/sedimentation rates 

where calculations rely on estimates of the original reservoir capacity at the time of 

construction and where surveys of sediment thickness have not been undertaken. Flowever, 

in terms of the research herein, primary data collection for a validation data set using such a 

method was not practical within the timeframe of the investigation.

Such error is present in the BRE dams data set reservoir capacities and is therefore 

manifested in the calculations of APL. In addition, the reservoir capacities in the BRE dams 

data set may not represent the original capacities. Where a revised capacity has been 

calculated, this may have been reported by the reservoir undertakers instead. This is 

apparent through many of the revised capacities of Yorkshire reservoirs calculated by
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Butcher et al. (1992a, 1992b and 1993) and Labadz et al. (1991, 1995 and 1999) being 

entered in the BRE data set as “reservoir capacities.” Therefore, the ambiguity of the BRE 

dams data set information may act to induce error in the calculation of APL in the 

parameterization and validation data sets.

4.4.5 Trap efficiency

The potential error in the “original capacities” from the BRE dams data set reduces the 

accuracy of reservoir trap efficiency calculated through Brown’s equation (1944) (Section 

2.11.2.1.4). This equation in itself is a model approximating the relationship between trap 

capacity:catchment area and trap efficiency and is thus associated with error.

4.4.6 Summary

This chapter has examined some of the sources of potential error associated with the 

measure of reservoir sedimentation (APL) and each associated predictor variable. The error 

of each respective variable selected will be manifested in the parameterization of the 

multiple regression models predicting APL. This will act to degrade the accuracy of the 

precise, quantified multiple regression outputs. However, fuzzy set multi-criteria evaluation 

(MCE) accounts for such inherent error through specifying the arbitrary degree of influence 

the value a particular variable has on the degree of reservoir sedimentation (scaled between 

0 and 1). This is different to regression which defines the precise rate of change induced by 

a variable value on a quantified output. Therefore fuzzy set MCE considers and expresses 

the degrees of influence particular variables have on the degree of sedimentation over and 

above the associated error, conceptualized through expert scientific opinion/intuition.
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5. Modelling -  Multiple Regression Analysis

5.1 Introduction

This chapter describes the multiple regression technique, discusses previous applications in 

the prediction of reservoir sedimentation/sediment yield, and documents the construction of 

two final models. One model concerns the prediction of reservoir annual percentage 

capacity loss (APL) for the population; the other concerns APL prediction for a cluster 

from the population. The latter assesses the clustering approach used by Jansen and Painter 

(1974) and DeBonis et al. (2002) to improve the coefficient of determination of multiple 

regression models (Section 5.3.1). All of the respective statistical analysis and results are 

included in Appendices 3 and 4; only the key results pertinent to the discussion of the 

regression equations are included in this chapter.

The production of a multiple regression model predicting APL for the population data set 

contributes in achieving objective three of this research; the production of two 

parameterized, verified, validated and operationalized empirical models using multiple 

regression analysis and fuzzy set multi-criteria evaluation respectively.

5.2 Multiple regression analysis -  a description

The multiple regression equation takes the form of:

Y — a + b^Xt + b2X 2 + •••bl,X( dbe 

where,

a -  intercept value on the y axis

b{ to b2 ~ partial regression coefficients

e = error term

(Shaw and Wheeler, 1994)
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The slope coefficients (b) are known as partial regression coefficients since they measure 

values that are obtained by controlling for each of the independent variables (Shaw and 

Wheeler, 1994). Each coefficient represents the amount of change in the dependent variable 

that can be associated with a variation in one of the respective independent variables and 

are estimates of the unknown population coefficients. The method of least squares is used 

to estimate the values of the coefficients. Thus, the coefficients selected result in the 

smallest sum of squared differences between the observed and predicted values of the 

dependent variable as predicted by the multiple regression model.

The differences between the observed and expected values of Y are error terms. Error is 

common in geographical applications where partial relationships and not precise 

mathematical ones are typically investigated (Shaw and Wheeler, 1994).

Stepwise multiple regression was performed throughout this study. This computes an 

equation through the re-examination of independent variables each time a new one is 

entered into the equation to identify any that have become superfluous, or to permit the use 

of previously rejected variables (Shaw and Wheeler, 1994).

To operationalize a multiple regression model, the following assumptions of the technique 

must be met (Barber, 1988; Norusis, 1994; Ebdon, 1995):

• The relationship between the dependent variable and independent variable(s) is 

linear.

• Correlation between the independent variables does not exist (multicollinearity).

• The values of the residuals are independent of each other, i.e. they are randomly 

arranged along the regression line.

• The variance of the dependent variable is constant for all values of the 

independent variable and normally distributed.
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• The values of the residuals have a normal distribution.

5.3 Previous applications of multiple regression

As identified in Section 3.2.1, many studies that have developed lumped empirical reservoir 

sedimentation/sediment yield models; attempting to obtain meaningful relationships 

between sediment records stored in impounded water bodies or sediment yield 

measurements and factors perceived to initiate sediment production, have successfully used 

multiple regression analysis (Anderson, 1957; Jansen and Painter, 1974; Collins, 1981; 

Bazzoffi et al., 1996; Verstraeten and Poesen, 2001; DeBonis et al., 2002; Sekhar and Rao, 

2002). DeBonis et al. (2002) identify that multiple regression is ideally suited to applied 

geomorphological investigations, in terms of catchment land planning and management, as 

it is reliable and simple to employ.

Table 5.1 identifies those independent variables employed in the examples of multiple 

regression analysis cited above. From these previous applications, there are six principal 

groups of independent variables identified to influence reservoir sedimentation: hydro­

meteorological, land use, soil type, catchment network characteristics, catchment 

morphology and reservoir basin morphology. In order to be as robust as possible, it is 

important that the prospective multiple regression model has the potential to be 

parameterized with variables from each of these groups. This represents a criticism of the 

DeBonis et al. (2002) model in particular, where no information regarding land use and 

hydro-meteorological variables is entered into the multiple regression analysis.

Table 5.1 Independent variables used in previous multiple regression analysis applications.

Author Year Dependent Variable Independent Variables
Anderson 1952 Sediment yield Rainfall intensity

Rainfall amount
Streamflow
Land use
Catchment area
Geology
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Physiography
Jansen and Painter 1974 Sediment yield Annual average rainfall

Mean annual temperature
Rock softness to erosion parameter
Altitude
Relief:length ratio
Catchment area
Denudation rate
Vegetation protection factor

Collins 1981 Annual sediment load Catchment area
Annual average mean daily discharge
Land use/catchment vegetation factor
Area o f  respective soil erodibility index
Soil erodibility index unit yield
Capacityxatchment area ratio

Rooseboom and 
Lotriet 1992 Sediment yield Depth ratio

Mean annual rainfall
White 1993 Reservoir sedimentation Catchment area

Erodible surface
Mean slope

Bazzoffi et ah 1996 Reservoir sedimentation Mean annual rainfall
Drainage density
Reservoir surface area
Dam Height
Dam length

Halcrow 2001 Reservoir sedimentation Catchment area
Capacityxatchment area ratio
Mean annual rainfall
Sedimentation susceptibility category
Catchment area
Hypsometric integral
Drainage length

Van Rompaey et al. 2001 Sediment yield Drainage length
Horizontal distance
Hypsometric integral

Verstraeten and 
Poesen 2001 Sediment yield Weighted average o f  direct bifurcation ratio

Catchment area
Catchment area

DeBonis e t al. 2002 Sediment yield Annual precipitation
Annual runoff

Sekhar and Rao 2002 Sediment yield Average catchment slope
Drainage density
Vegetative cover factor
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5.3.1 Limitations of previously published multiple regression analyses

Authors such as Butcher et al. (1992a), Rooseboom and Lotriet (1992), White (1993), 

Labadz et al. (1995), and the Halcrow report (2001) were relatively unsuccessful in 

providing large, significant coefficients of explanation in multiple regression analyses 

regarding the prediction of reservoir sedimentation/sediment yield from catchment and 

reservoir basin morphology factors over large spatial scales. This has been attributed to:

1) Inadequate sample size, failing to provide sufficient observations of the natural 

grouping of catchments with similar attributes that occur in the data (White, 1993; 

Verstraeten and Poesen, 2001). These natural groupings occur where particular 

catchments show a higher correlation between some attributes (or groups of 

attributes) and sedimentation rate. If such natural groupings are not represented in 

the parameterization data set of the multiple regression model, the resulting 

equation often cannot be transferred to predict for them. Singh et al. (1988) state 

that this is the main disadvantage of the multiple regression technique.

2) A limited number of variables entered describing catchment and reservoir basin 

factors (e.g. Rooseboom and Lotriet, 1992), in particular soil and land use (e.g. 

Jansen and Painter, 1974) and hydro-meteorological variables (e.g. DeBonis et al., 
2002).

3) Catchment and channel storage. As a result of catchment and channel storage, 

greater correlation may exist between catchment variables and gross catchment 

erosion as opposed to sediment yield (Duck and McManus, 1990). This is because 

only a fraction of the sediment eroded within a catchment area will usually be 

represented in the sediment yield (Walling, 1983).

4) A coarse spatial resolution of variables, failing to characterize the spatial diversity 

of sediment production factors that produce considerable local variations in 

sediment delivery (Rooseboom and Lotriet, 1992; Verstraeten et al., 2002),

5) The failure to account for the influence of management practices and their selective 

operation on reservoir capacity loss (Butcher et al, 1993) and the influence of small
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anthropogenic landscape elements (e.g. banks, hedges, tillage directions etc.) 

(Verstraeten and Poesen, 2001; Price and Lovett, 2002a and 2002b; Prosser and 

Karssies, 2001).

6) The failure to account for autochthonous sediment production that can comprise a 

significant proportion of reservoir bottom sediments (Duck and McManus, 1987).

In relation to point 1, Jansen and Painter (1974) and DeBonis et al. (2002) cluster 

catchments together with similar attributes and produce a multiple regression model for 

each respective group. Jansen and Painter (1974) grouped their investigated catchments 

together on the basis of four climate types. The four models accounted for 93.5%, 86%, 

62.8% and 64.5% of the variance in mean annual suspended sediment yield respectively.

DeBonis et al. (2002) used cluster analysis to determine two natural groupings in their data 

set. The two respective multiple regression models produced average errors of 9.5% and 

12% respectively. In comparison, the model produced encompassing all of the investigated 

catchments had an average error of 14%. The use of cluster analysis sharpened the 

estimate/prediction of sediment yield obtained using the multiple regression analysis 

method. This is because the catchments within each cluster are very similar in their erosion 

and sediment-delivery potential; therefore, the unexplained variation in the respective 

regression equations is less.

Verstraeten and Poesen (2001) support the use of such clustering approaches; they state that 

when undertaking a large spatial scale investigation of sediment yield, producing one single 

predictive model is unrealistic; several predictive models should be established for groups 

of similar catchments.

The multiple regression modelling approach offers potential for large-scale reservoir 

sedimentation prediction providing the reasons identified for previous failure are taken into 

account. The application of multiple regression upon cluster analysis results may also act to 

improve the reliability of the method. As a result of this two forms of multiple regression 

model were produced: the first predicting APL for the complete population of reservoirs, 
the second assessing the clustering approach.
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5.4 Minimization of identified limitations in multiple regression

This section details the effort made to minimize each of the reasons for previous failure of 

multiple regression analysis (Section 5.3.1) for the application of the technique in this 

research.

5.4.1 Limitation 1 -  inadequate sample size

Through the construction of the parameterization data set, every effort was made to ensure 

it represented the population data set in terms of characterizing the three natural clusters of 

reservoirs that share similar characteristics within the population (Section 4.3.1.2). This is 

important in developing a robust regression model that can be extrapolated across an entire 

population. However, due to practical constraints imposed by the time frame of this 

investigation, only cluster 2 was comparatively well represented (Section 4.3.1.2). As a 

result of this, the clustering approach (detailed in Section 5.3.1) as employed by Jansen and 

Painter (1974) and DeBonis et al. (2002), was only applied to reservoirs in cluster 2 in an 

effort to improve predictions for this cluster in comparison to those provided by the model 

parameterized for the complete population data set. As previously discussed in Section 

5.3.1, the clustering approach can yield improved regression model coefficients of 

determination in comparison to a universal model predicting for an entire population, as the 

unexplained variation within each cluster is less due to the intra-cluster observations having 

similar characteristics defined by the independent variables.

Therefore, in summary, the most comprehensive parameterization data set obtainable was 

collated to produce a multiple regression equation with the intention of predicting reservoir 

annual volume capacity loss (APL) across the population of reservoirs in accordance with 

the principal aim of the research (Table 1.2, Appendix 1). The clustering approach was 

applied to cluster 2, the most represented cluster within the parameterization data set (Table 

A 1.23, Appendix 1), to produce a second multiple regression equation assessing the 

potential of the approach in achieving the principal aim of the research.
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5.4.2 Limitation 2 -  limited number of factors

The most comprehensive data set obtainable from readily available data sources of hydro­

meteorological, land use, soil type, catchment network characteristics, catchment 

morphology and reservoir basin morphology factors perceived to influence reservoir 

sedimentation/sediment yield was collated (Chapter 4). In light of the specific criticisms of 

Jansen and Painter (1974) and DeBonis et al. (2002) for not including variables describing 

soil and land use types, and hydro-meteorological variables respectively (Section 5.3.1), the 

dataset contains areas of the 15 soil classes at high and very risk of erosion across England 

and Wales (after Evans, 1990), average percentage covers of 22 land cover types, the 

proportion of time the catchment soils are classified as wet, the standard percentage runoff 

of precipitation, median annual flood, a base flow index, median annual maximum hourly, 

daily and bi-daily rainfall, and mean annual rainfall from 1941-1970 and 1961-1990 for 

each reservoir catchment (Table 4.5, Chapter 4).

5.4.3 Limitation 3 -  catchment & channel storage

The inclusion of variables depicting catchment and channel storage is inherently difficult 

and can only be attempted through the incorporation of surrogates describing the catchment 

morphology. Such surrogates in this investigation include catchment area, mean drainage 

path slope, mean drainage path length, longest drainage path and a flood attenuation index 

due to reservoirs and lakes.

5.4.4 Limitation 4 -  coarse spatial resolution of data

The spatial resolution of the soil and land cover type data was the optimum available within 

the budget for this research. The spatial resolution of both data sets is 1km x 1km.

However, all such maps are beset by cartographic generalization. Robinson et al. (1995) 

identify five terms associated with cartographic generalization which affect the production 

of maps, albeit to varying degrees depending upon the nature of the material represented: 

classification, simplification, exaggeration, symbolization, and induction. Classification
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acts to express the salient character of a distribution and is the ordering, scaling, and 

grouping of features by their attribute values (e.g. the allocation of similar qualitative 

attributes such as land use or vegetation into categories such as cropland and forest). 

Simplification determines the important characteristics of feature attributes and eliminates 

unwanted detail. Exaggeration deliberately enlarges or alters a feature to capture its real- 

world essence (e.g. the exaggeration of the distinctive shapes of countries at smaller spatial 

scales). Symbolization is the process of graphically coding information and placing it into a 

map. Induction occurs when inferences are made among map features (e.g. the delineation 

of soil type areas from surveyed sites). The issue of map scale and data quality and quantity 

greatly affect the generalization process. Typically at large scales most of the generalization 

is classification, whereas at smaller scales exaggeration becomes most important (Robinson 

et al., 1995). However, Robinson et al. (1995) identify map scale as an important factor in 

influencing the degree of generalization; the smaller the map scale, the more generalization 

will usually be required. Therefore, the error and uncertainty that was propagated into the 

modelling process of this research as a result of the cartographic generalization of the 1km 

x 1km soil and land use digital data sets could have been reduced had the procurement of 

the larger scale respective data sets been possible within the research budget.

5.4.5 Limitations 5 & 6 -  management practices and autochthonous sediment production

The effect of management practices, small anthropogenic landscape elements and 

autochthonous sediment production remain extremely difficult to quantify and consider in 

such large-scale multiple regression analyses (Butcher et al., 1993), and thus may still 

prevent significant relationships from being obtained. Indeed, the effect of some 

management practices on sediment delivery and retention in reservoir basins remains 

inherently qualitative in the context of this investigation (e.g. reservoir drawdown) and it 

was not possible to include quantitative representation of these practices within the model.

5.5 Multiple regression application

The validity of an output from multiple regression analysis is dependent upon a number of 

assumptions being met (Section 5.2). Table 5.2 lists the respective diagnostics applied in
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this investigation to check for violations of the multiple regression assumptions. These are 

included in Appendix 3; only the key results pertinent to the discussion of the regression 

equations are presented in this chapter.

Table 5.2 Multiple regression diagnostics

Assumption Diagnostic
Linearity Pearson's correlation

Scattergraphs - independent variables versus dependent variable
Analysis o f variance
t statistic
Leverage
Cook's distance

Non-multicollinearity Tolerance statistic
Residual independence Durbin-Watson test
Residual constant variance Scattergraphs - residuals versus predicted values
Residual normality Kolmogorov-Smirnov test

Frequency histogram o f residuals
Boxplot o f  residuals

5.5.1 Tests for linearity

To comply with assumption 1, the existence of linear relationships between the dependent 

and independent variables, Pearson’s correlation analysis was performed throughout this 

study. Those relationships deemed linear through the production of a significant correlation 

coefficient, and from the analysis of the respective scattergraphs (Harper, 1971), were 

entered into the stepwise multiple regression analysis.

Pearson’s correlation analysis is a parametric technique as thus assumes the respective 

dependent and independent variables are normally distributed. This is potentially a 

restricting assumption concerning geographical data (Ebdon, 1995). However, the non- 

parametric alternative, Spearman’s rank, could not be applied concerning any application of 

multiple regression in this study as it does not allow the comparison between 

untransformed data correlations, and respective transformed data correlations to be made. 

This is due to Spearman’s rank measuring the relationship between two sets of ordinal 

values, thus the correlation coefficient, irrespective of the data transformation, will remain 

the same. This is problematical in assessing whether data transformations improve the
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degree of linearity between the dependent and independent variable and should be entered 

into the regression analysis at the expense of the respective untransformed correlation. The 

use of Pearson’s as a precursor to multiple regression analysis is also fundamentally sound 

as regression assumes data normality (which has to be subsequently tested). Supporting the 

application of Pearson’s correlation in this instance, Norusis (1994) states that the test is 

robust and can handle reasonable violations of the assumptions.

Following the computation of a regression model, further evidence for linearity between the 

independent variable(s) and dependent variable can be obtained through the multiple 

regression diagnostics of analysis of variance ascertaining the F  ratio of the regression 

mean square to the residual mean square, testing the equivalent null hypotheses that there is 

no linear relationship in the population between the dependent variable and the independent 

variables, that all of the population partial regression coefficients are zero, and that the 

population R2 is 0 (Norusis, 1994); and the t statistic examining the null hypothesis that the 

population regression coefficients for each independent variable are zero (Harper, 1971).

The leverage statistic identifies observations with unusual combinations of values of the 

independent variables. The statistic measures how far the values for a case are from the 

means of all of the independent variables. Cases with high leverage values may have a large 

impact on the estimates of the regression coefficients and thus exert an undue influence on 

the determination of a linear relationship. Norusis (1994) states that a rule of thumb is to 

look at observations with leverage values greater than 2p/N  (0.1 in this case), where p  is the 

number of independent variables in the model and N  is the number of observations.

The Cook’s distance statistic is also useful in identifying observations with a heavy 

influence on the regression coefficients. This statistic measures the change in all of the 

regression coefficients when a case is eliminated from the analysis (Norusis, 1994). The 

Cook’s distance for a case depends on both the residuals and leverage values. Norusis 

(1994) states that Cook’s distances greater than 1 usually deserve scrutiny as they affect the 

integrity of the regression model.
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5.5.2 Test for multicollinearity

The term multicollinearity refers to the situation where high correlation exists between the 

independent variables. This can be a problem in multiple regression with independent 

variables explaining much the same variability in the dependent variable causing the 

precision of estimation to fall (Shaw and Wheeler, 1994). In addition, it is not known which 

of the independent variables is the most important due to the common variability explained 

(Hinton, 1995). As a result of these effects, multicollinearity must be eliminated or kept to 

minimal proportions if present (Norusis, 1994).

To identify multicollinearity, the tolerance statistic can be calculated measuring the strength 

of the linear relationships among the independent variables (Norusis, 1994). For each 

independent variable, the tolerance is the proportion of variability that is not explained by 

its linear relationships with the other independent variables in the model (Norusis, 1994). 

The values of the tolerance statistic range from 0 to 1. A value close to 1 indicates that an 

independent variable has little of its variability explained by the other independent 

variables. A value close to 0, typically below 0.1, indicates that a variable is almost a linear 

combination of the other independent variables; such data are multicollinear (Norusis,

1994).

5.5.3 Test for residual independence

Residuals are termed independent if there is no systematic variation in their pattern, i.e. 

there is no correlation between the absolute values of successive residuals (Ebdon, 1995). If 

such correlation occurs, the residuals are termed autocorrelated.

The Durbin-Watson test was applied to identify the relative extent of autocorrelation; 

values less than 2 indicate positive autocorrelation; values greater than 2 indicate negative 

autocorrelation; values approaching 2 indicate negligible autocorrelation.
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5.5,4 Test for residual constant variance

Norusis (1994) states that a scattergraph of the residuals versus the predicted values should 

be drawn to assess whether the regression assumption of constant variance for all values of 

the independent variable(s) is met (i.e. the shapes of all of the frequency distributions 

associated with each value of the independent variable(s) are identical -  Ebdon, 1995). If 

the variance is constant, no pattern is present in the data points and the residuals appear to 

be randomly scattered around a horizontal line through zero (Norusis, 1994).

When assessing model compliance with the regression assumptions of residual constant 

variance and residual normality, Norusis (1994) recommends the use of studentized deleted 

residuals as any departures from the aforementioned assumptions can be easily identified. 

The studentized residual is obtained by dividing each observed residual by an estimate of 

the standard deviation of the residual at that point; thus standardizing the residuals so that 

they have a mean of 0 and a standard deviation of 1. Dividing each observed residual by an 

estimate of its respective standard deviation means that it accounts for the difference in 

variability across the regression model parameterization data set; cases with independent 

variable values close to the respective sample means have smaller variability concerning 

predicted values than cases with values far removed from the sample means. The 

studentized deleted residual is the studentized residual for a case when the case is removed 

from the computation of the regression statistics (Norusis, 1994). Therefore, through the 

calculation the studentized deleted residual, a greater insight is gained into the nature of the 

residual independent of the influence the respective observed value has on the model 

prediction. Studentized deleted residuals are used to assess regression model compliance 

with the assumptions of residual constant variance and residual normality throughout this 

study.

5.5.5 Test for residual normality

Norusis (1994) states that if the preceding regression assumptions are met (Section 5.2), the 

distribution of the residuals should be approximately normal. To ascertain normality the 

Kolmogorov-Smimov test was performed on the residuals. The respective null hypothesis
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for the Kolmogorov-Smirov test is that the residuals are normally distributed. In addition, a 

frequency histogram and a boxplot of the residuals were produced. The former gives 

credence to the Kolmogorov-Smirnov result and the latter identifies the actual outliers and 

extreme values that act to undermine the assumption of residual normality. However, Shaw 

and Wheeler (1994) state that most multivariate statistical methods are fairly reliable under 

conditions of departure from normality. As a result of this, Norusis (1994) recommends the 

investigation and correction of the other assumptions of regression before the issue of 

normality is addressed.

5.6 Population multiple regression application -  untransformed data

From the preceding sections establishing the modelling approach suitable for this 

investigation and the associated precursors required to achieve the most successful result 

possible, this section details the progression to the formulation of a multiple regression 

analysis model predicting reservoir annual percentage capacity loss (APL) for the whole 

population.

5.6.1 Test for linearity -  Pearson fs correlation

Pearson’s correlation coefficients were calculated between each of the 57 independent 

variables and APL in the parameterization data set. Those significant below the 0.05 level 

are presented in Table 5.3. The correlation coefficients predominantly suggest only a 

reasonable degree of linearity between the independent variables and APL. This affirms the 

use of multiple regression analysis as no one variable is highly correlated with APL 

(Verstraeten et al., 2003). This suggests that the process of reservoir sedimentation, in 

terms of APL, is of a complex nature and must involve the consideration of these 

interacting variables, which together may improve the regression coefficient of 

determination.

When testing the significance of a number of correlations, the potential problem of multiple 

significance levels has to be considered. For example, testing individual correlations to a
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standard significance value of 0.05 means that for every 100 correlations performed, at 

least 5 may occur by chance. In the context of this particular application with the 

consideration of 8 correlation coefficients significant at the 0.05 level (Table 5.3), at least 

0.4 may occur by chance. This value represents the most extreme minimum number of 

correlations that may occur by chance as the majority of the correlation coefficients are 

significant at levels stronger than 0.01.

Table 5.3 Pearson’s correlation coefficients significant below the 0.05 between the respective independent 

variables and reservoir annual percentage capacity loss (APL) -  see Table 4.5 for definition o f abbreviations.

Independent Variable r P n
QMED 0.416 0.001 60
RMED1H 0.278 0.031 60
RMED1D 0.280 0.030 60
SAAR 0.259 0.046 60
TE -0.560 0.000 60
S686 0.639 0.000 60
DSHRUB 0.501 0.000 60
UPBOG 0.476 0.000 60

5.6.2 Result and diagnostics

Multiple regression analysis identified Equation 5.1, incorporating the independent 

variables of the Winter Hill soil association (termed hereafter as S686), trap efficiency 

(termed hereafter as TE), and median annual maximum 1 -hour rainfall (termed hereafter as 

RMED1H), as having the greatest coefficient of determination (R2) at 0.57. Therefore, this 

model accounts for a reasonable 57% of the variance in the dependent variable.

APL = 0.409 + (0.011 x S686) -  (0.009 x TE) + (0.05 x RMED1H) (Eq. 5.1)

The essential multiple regression diagnostics assessing the compliance of the result with the 

assumptions of the technique are presented in Table 5.4.
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Table 5.4 Multiple regression diagnostics results; V denotes compliance with the respective assumption, X 

denotes non-compliance. For the Leverage and Cook’s distance results, the number o f cases inducing the 

non-compliance with the assumption o f linearity are presented.

Assumption Diagnostic Result
Linearity Analysis o f  variance V

t statistic V
Leverage X - 5 cases
Cook's distance X -1  case

Non-multicollinearity Tolerance statistic V
Residual independence Durbin-Watson test V
Residual constant variance Scattergraphs - residuals versus predicted values X
Residual normality Kolmogorov-Smirnov test V

5.6.3 Summary o f Equation 5.1

Equation 5.1 accounts for a reasonable 57% of the variance observed in APL. However, 

from Table 5.4, it does not meet all of the assumptions required for a valid, robust 

regression model.

The identification of a small number of highly influential observations through the leverage 

and Cook’s distance statistics undermines the regression assumption of linearity between 

the dependent and independent variables. Norusis (1994) states that the assumptions of 

regression are not mutually exclusive and the failure to meet one may have repercussions 

on meeting others; in particular, violations of the linearity assumption may lead to the 

undermining of the assumptions of residual constant variance and normality through the 

production of outliers/extreme values. As a result of this, three standard transformations 

were applied to each of the 57 independent variables in an attempt to improve the degree of 

linearity; logs to the base 10, squares, and square roots (Norusis, 1994; Ebdon, 1995). The 

dependent variable, APL, was subsequently correlated with each respective transformed 

independent variable.
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5.7 Population multiple regression analysis -  transformed independent 

variables

This section documents the incorporation of transformed independent variables (logs to the 

base 10, squares, and square roots) into a multiple regression analysis predicting APL in an 

attempt to improve model compliance with the regression assumptions of linearity, residual 

constant variance, and residual distribution normality.

5.7.1 Test fo r linearity -  Pearson’s correlation

The Pearson’s correlation results between each respective transformation of the 

independent variables, significant below the 0.05 level, are presented in Table 5.5. Those 

variables with a logarithmic transformation to the base 10 are suffixed with LOG 10, those 

with a square transformation are suffixed with SQ, and those with a square root 

transformation are suffixed with SQRT. This is the labeling convention that has been 

followed throughout this investigation.

Table 5.5 Pearson’s correlation coefficients significant below 0.05 between APL and the respective 

transformed independent variables

Independent Variable r P n

QMEDLOG10 0.279 0.031 60

RMED1HLOG10 0.276 0.033 60

RMED1DLOG10 0.272 0.035 60

TELOG10 -0.577 0.000 60

S686LOG10 0.358 0.005 60

FELLEDLOG10 0.318 0.013 60

MEADOWLOG10 -0.289 0.025 60

UPBOGLOGIO 0.383 0.003 60

QMEDSQ 0.494 0.000 60

RMED1HSQ 0.281 0.030 60

RMED1DSQ 0.280 0.030 60

SAARSQ 0.258 0.046 60

TESQ -0.542 0.000 60

S686SQ 0.641 0.000 60

DSHRUBSQ 0.535 0.000 60

UPBOGSQ 0.331 0.010 60

QMEDSQRT 0.350 0.006 60
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RMED1HSQRT 0.277 0.032 60

RMED1DSQRT 0.277 0.032 60

TESQRT -0.568 0.000 60

S686SQRT 0.550 0.000 60

DSHRUBSQRT 0.384 0.002 60

UPBOGSQRT 0.494 0.000 60

From the analysis of the significant Pearson’s correlation coefficients (Table 5.5) between 

APL and each of the untransformed and transformed independent variables, there is not one 

particular relationship that has an outstandingly high correlation coefficient. This again 

supports the application of multiple regression analysis (Verstraeten et al., 2003).

Where a particular variable had a significant correlation coefficient with APL for more than 

one transformation, that with the greatest correlation coefficient upon being rounded to one 

decimal place was entered into the multiple regression analysis. This was done to favour 

where possible the selection of the untransformed variant of the independent variable into 

the multiple regression as untransformed variables do not pose such interpretational 

difficulties (Shaw and Wheeler, 1994). In addition to this, Ebdon (1995) states that the 

selection of untransformed variables aids the researcher in not overlooking the 

shortcomings of the data set and the measurement errors involved in data collection. The 

independent variables entered into the second iteration of multiple regression analysis were: 

QMEDSQ, RMED1H, RMED1D, SAAR, TE, S686, DSHRUB, FELLEDLOGIO, 

MEADOWLOGIO, and UPBOG (see Table 4.5 for the definitions of these abbreviations).

Concerning the potential problem of multiple significance levels (identified in Section

5.6.1), in the context of this particular application, 31 correlation coefficients significant at 

the 0.05 level were obtained between APL and each of the independent variable variants 

(Table 5.5). Therefore, at least 1.55 correlations may occur by chance when testing to a 

significance level of 0.05. However, this value represents the most extreme minimum 

number of correlations that may occur by chance as the majority of the correlation 

coefficients are significant at levels stronger than 0.01.
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5. 7.2 Result and diagnostics

Through the incorporation of transformed independent variables into multiple regression 

analysis, the same result is produced as that associated with the untransformed independent 

variables in the preceding application (Equation 5.1). As a result of this, the same 

shortcomings of Equation 5,1 remain; the reliance of linear relationships between APL and 

each independent variable on a small number of observations, the lack of residual constant 

variance, and the residuals not being normally distributed.

Norusis (1994) states that if such transformations of the independent variables fail to 

increase the validity of the regression result then transformations can be made of the 

dependent variable. This can be particularly effective if the variance of the dependent 

variable is not constant (Norusis, 1994), as is the case for Equation 5.1. As a result of this, 

the same three standard transformations were applied to APL; logs to the base 10, squares, 

and square roots. Such transformations of variables to predict sediment yield were 

undertaken by Jansen and Painter (1974), and Collins (1981).

5.8 Population multiple regression analyses - transformed independent & 

dependent variables

This section documents the incorporation of transformed independent and dependent 

variables (logs to the base 10, squares, and square roots) into a multiple regression analysis 

predicting reservoir sedimentation in an attempt to improve model compliance with the 

regression assumptions of linearity, residual constant variance, and residual distribution 

normality.

5.8.1 Test fo r linearity -  Pearson’s correlation

Pearson’s correlation coefficients were calculated between each APL (dependent variable) 

transformation and each independent variable variant. As in Section 5.6.1, the correlation 

coefficients significant at the 0.05 level were rounded to one decimal place and those with
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the greatest r value were entered into the multiple regression analysis for each respective 

APL transformation. Table 5.6 identifies each independent variable variant selected and 

entered into the multiple regression analysis for each APL transformation.

Concerning the potential problem of multiple significance levels (identified in Section

5.6.1); the number of correlations significant at the 0.05 level between APLLOGIO, 

APLSQ and APLSQRT, and the respective independent variable variants are 8, 35 and 15 

respectively (Tables A 1.5, A 1.6 and A 1.7, Appendix 1). Therefore, the minimum number 

of correlations significant at the 0.05 level that may have occurred by chance for the 

aforementioned APL transformations are 0.4, 1.75 and 0.75 respectively. However, these 

respective values represent the most extreme minimum number of correlations that may 

occur by chance as the majority of the correlation coefficients associated with each APL 

transformation are significant at levels stronger than 0.01.

Table 5.6 Pearson’s correlation coefficients significant below 0.05 between APL variant and independent 

variables entered into each respective multiple regression analysis

Dependent Variable Independent Variable r P n
APLLOGIO TE -0.307 0.017 60

S686 0.290 0.025 60
CONSQ -0.469 0.000 60

APLSQ CAREA 0.280 0.030 60
QMEDSQ 0.559 0.000 60
RMED1H 0.258 0.046 60
RMED1D 0.273 0.034 60
SAAR 0.255 0.050 60
TE -0.586 0.000 60
S686 0.717 0.000 60
DSHRUBSQ 0.655 0.000 60
FELLEDLOG10 0.411 0.001 60
MEADOWLOGIO -0.372 0.003 60
MOWNLOGIO -0.287 0.026 60
UPBOG 0.579 0.000 60

APLSQRT QMEDSQ 0.372 0.003 60
TE -0.495 0.000 60
S686 0.518 0.000 60
D SHRUB 0.362 0.005 60
UPBOGSQRT 0.370 0.004 60
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5.8.2 Results and diagnostics

The models produced by multiple regression analysis for each APL variant are shown 

below. Equation 5.2 accounts for 40% of the variation observed in APLLOGIO, Equation

5.3 accounts for 73% of the variation observed in APLSQ, and Equation 5.4 accounts for 

36% of the variation observed in APLSQRT.

APLLOGIO = 1.088 -  0.001 x CONSQ + 0.028 x S686 -  0.024 x TE (Eq. 5.2)

APLSQ = 0.21013 + 0.0083 x S686 + 0.0002 x DSHSQ + 0.0029 x RM ED1H - 0.0035 x TE (Eq. 5.3)

APLSQRT = 1.144 + 0.011 x S686 -  0.0092 x TE (Eq. 5.4)

The essential multiple regression diagnostics assessing the compliance of the result with the 

assumptions of the technique are presented in Table 5.7.

Table 5.7 Comparison o f multiple regression diagnostics results; V denotes compliance with the respective 

assumption, X denotes non-compliance. For the Leverage and Cook’s distance results, the number o f cases 

inducing the non-compliance with the assumption o f  linearity are presented.

Assumption Diagnostic Eq 5.2 
Result

Eq 5.3 
Result

Eq 5.4 
Result

Linearity Analysis of variance V V <
t statistic V V V
Leverage X - 7 cases X - 9 cases X - 6 cases

Cook's distance X - 1 case X - 2 cases <
Non-multicollinearity Tolerance statistic V V V
Residual independence Durbin-Watson test V V V
Residual constant variance Scattergraphs - residuals versus predicted values X X X
Residual normality Kolmogorov-Smirnov test V X V
Total number of refutations 3 4 2

5.8.3 Summary of Equations 5.2, 5.3, & 5.4

As a result of Equation 5.1 (incorporating untransformed variables) failing to satisfy 

conclusively the regression assumptions of linearity and constant variance in particular, 

despite having a respectable R 2 of 0.57, multiple regression analyses were performed on 

transformations of APL (APLLOGIO, APLSQ, APLSQRT). However, from Table 5.7 each
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transformation still failed to satisfy the regression assumptions of linearity and residual 

constant variance unequivocally.

From the analysis of the multiple regression equations incorporating transformed dependent 

and independent variables, Equation 5.4 associated with the prediction of APLSQRT, on 

balance, produces the most robust model predicting reservoir sedimentation in terms of 

compliance with the assumptions of regression. However, it must be stressed again that the 

assumptions in this instance are not satisfied unequivocally.

The selection of Equation 5.4 as the most robust model incorporating transformed variables 

demonstrates that the determination of a good/bad regression model predicting reservoir 

sedimentation cannot be made on the basis of the coefficient of explanation (R2) alone. This 

is because in each instance (indeed, throughout this entire investigation), each model 

refutes the assumptions of multiple regression. Clearly, if the assumptions of multiple 

regression were satisfied in each case, the evaluation of such regression models and the 

selection of the optimum one to operationalize could be made on the basis of the coefficient 

of explanation alone; that which produces the highest respective value would provide the 

best result. A measure of how good the selected model actually is could then be made from 

the actual R2 value; 0% demonstrates no explanation, 50% moderate explanation and 100 % 

perfect explanation. However, from the analysis of the multiple regression diagnostics 

associated with Equations 5.2, 5.3 and 5.4, it can be seen that in terms of the application of 

the technique in this investigation, an assessment of how good a particular model is can 

only be made through weighing up the number of multiple regression assumptions it 

refutes. The subsequent comparison of this number with other potential models allows the 

optimum one to be selected. In relation to the selection of Equation 5.4 over Equations 5.2 

and 5.3, this has the lowest R2 value (36% in comparison to 40% and 73% respectively) but 

has the least number of assumption violations; therefore this equation depicts the actual 

relationship between the independent variables and dependent variable most accurately.
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5.8.4 Model selection

Through the preceding section an attempt was made to formulate a multiple regression 

model predicting reservoir sedimentation incorporating transformed variables to provide a 

more robust, reliable model over Equation 5.1 (incorporating untransformed variables) in 

terms of compliance with the assumptions of regression (Section 5.2). Equation 5.4, 

predicting APLSQRT, was identified as optimum model incorporating variable 

transformations. Through this section a comparison between Equations 5.1 and 5.4 will be 

made. From this, the most robust model will be operationalized across the population data 

set.

Table 5.8 compares the total number of multiple regression assumption refutations 

associated with Equation 5.1 and Equation 5.4. Whilst Equation 5.1 yields a single Cook’s 

distance value that has a heavy influence on the respective regression coefficients, this is 

offset by the model yielding fewer problematical leverage values and a larger, significant 

F-ratio; the latter identifying that Equation 5.1 accounts for a greater proportion of the 

variance in the parameterization data set. In addition, this model has a larger coefficient of 

determination at a reasonable 57% in comparison to the low coefficient of explanation of 

36% associated with Equation 5.4. As a result of this, on balance, Equation 5.4 (predicting 

APLSQRT) does not yield a more robust, reliable model in terms of greater compliance 

with the assumptions of regression. Therefore, Equation 5.1 (incorporating untransformed 

variables), is selected as the most robust, reliable multiple regression model obtainable 

from the parameterization data set to predict reservoir sedimentation (APL) across England 

and Wales. However, the lack of unequivocal compliance of Equation 5.1 with the 

assumptions of regression is reflected in the production of only a reasonable coefficient of 

determination.
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Table 5.8 Comparison o f  multiple regression diagnostics results; V denotes compliance with the respective 

assumption, X denotes non-compliance. For the Leverage and Cook’s distance results, the number o f cases 

inducing the non-compliance with the assumption o f linearity are presented.

Assumption Diagnostic Eq 5.1 
Result

Eq 5.4 
Result

Linearity Analysis of variance V V

t statistic V V

Leverage X - 5 cases X - 6 cases

Cook's distance X - 1 case V

Non-multicollinearity Tolerance statistic V V

Residual independence Durbin-Watson test V <

Residual constant variance Scattergraphs - residuals versus predicted values X X

Residual normality Kolmogorov-Smimov test V V

Total number of refutations 3 2

5.8.5 Discussion of Equation 5.1

In this section the model selected as the optimum to predict reservoir sedimentation for the 

population of reservoirs (Equation 5.1) is discussed in relation to the regression 

assumptions it refutes.

5.8.5.1 Nature of the linear relationships

From the partial regression coefficients of Equation 5.1, S686 and RMED1H are both 

positively related to APL. These relationships are explained through larger areas (in this 

case of S686) providing more sites of erosion and therefore greater quantities of sediment 

yield, and more intense rainfall providing greater quantities of an erosion agent. The 

selection of RMED1H through the stepwise procedure, as opposed to another measure of 

rainfall (e.g. RMED2D) suggests that intense storms inducing Hortonian overland flow and 

consequent soil erosion are important across the parameterization set.

The negative relationship shown by the partial regression coefficient between APL and TE 

may appear surprising at face value. The literature suggests that TE is positively related to 

APL (Brown, 1944; Brune, 1954; Heinemann, 1984); thus as TE increases, a greater 

quantity of the catchment sediment yield is trapped in the reservoir basin. However, this 

negative relationship between APL and TE can be explained through the nature of the
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reservoir capacity data extracted from the BRE dams data set (Tedd et al., 1992) that is 

used to calculate TE across the population data set using the Brown equation (1944). The 

reservoir capacities listed in the BRE dams data set depict either the original basin capacity 

or a revised capacity, where a basin survey has been conducted subsequent to dam 

commission. Unfortunately the BRE dams data set does not identify which the listed 

capacity relates to and in many cases this cannot be ascertained as the revised capacities 

have not all necessarily been published in the literature. However, for the majority of the 

reservoirs in the parameterization data set used to formulate Equation 5.1, the respective 

basin capacity value in the BRE dams data set represents a revised capacity calculated 

through published studies (e.g. Stretton, 1984; Butcher et al., 1992a). As a result of this, a 

broadly negative relationship between APL and TE may be expected as larger APL rates 

typically induce progressively smaller trap efficiencies from the time of dam commission 

(Heinemann, 1984). However, the inference from this relationship for reservoirs (in the 

parameterization data set) may be misleading as particular cases may have comparatively 

smaller APL rates as a direct result of them having small trap efficiencies at the time of 

dam commission. In addition, such a relationship is clouded by the fact that trap efficiency 

typically decreases over time as sedimentation ensues. Therefore, the differing periods of 

time that have elapsed between dam commission and the revised capacity surveys of the 

reservoirs renders the calculated trap efficiencies, in relation to an observed APL rate, not 

directly comparable. From examination of the leverage and Cook’s distance statistics 

associated with the parameterization data set it can be seen that Abbeystead and Blakeley 

reservoirs are having a large influence on this negative relationship between APL and TE. 

This is supported through Figure 5.1.
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Figure 5.1 Annual percentage loss (APL) versus trap efficiency (TE) - parameterisation data set
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This demonstrates how the ambiguity of the BRE dams data set can induce error and 

uncertainty into the multiple regression analyses. Even if the published original reservoir 

capacities (listed in the Halcrow data set (2001)) were substituted with the respective 

revised capacities in the BRE dams data set in an effort to standardize the capacities across 

the population data set so that they represented the reservoir trap efficiencies at the time of 

dam commission (thereby potentially inducing a positive relationship between APL and 

TE), error and uncertainty would still be propagated into the extrapolation of the multiple 

regression model(s) across the population data set. This would be due to the incorporation 

of revised capacities from the BRE dams data set which have not been published; as 

previously mentioned, there is no direct way of determining these capacities.

The undue influence Abbeystead and Blakeley reservoirs have on the partial regression 

coefficients of Equation 5.1 (S686, TE, and RMED1H), identified through the leverage and 

Cook’s distance statistics associated with the parameterization data set, can also be 

attributed to unique catchment factors not represented in the model. Abbeystead reservoir 

has experienced high erosion rates and sediment yields periodically over its lifetime
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(Rowan et a l, 1995). Shortly after dam completion, the construction of catchwater conduits 

in the headwaters destabilized the erosion-sensitive headwater streams resulting in extreme 

stream channel erosion and increased sediment delivery through the diversion of sediment 

sourced from outside of the direct catchment area. High hillslope erosion and consequent 

sediment yield was also associated with extensive drain laying operations, improving field 

drainage for cultivation and pastureland. Subsequently, yields have declined since sluice 

valves were opened in 1981 to encourage sediment flushing (Rowan et a l , 1995). The 

model does not take into account these management and land use effects/changes.

Blakeley reservoir has a high APL because its catchment is predominantly covered by deep 

blanket peat. This soil type is highly erodible (Evans, 1990; Labadz et al, 1991), and due to 

the high drainage density of the direct catchment area (excluding the catchments of 

Wessenden Old and Wessenden Head reservoirs upstream), much eroded material is able to 

enter the fluvial channel network and be efficiently transported to the reservoir basin 

(Figure 5.2). The high drainage density of the deep blanket peat catchment is not 

represented in the model (Equation 5.1). Such an omission may be problematical for this 

catchment as White (1993) identifies significant positive correlations between catchment 

characteristics, including drainage density, and percentage loss of capacity per century, for 

reservoirs such as Blakeley in the southern Pennines. The effect of the high drainage 

density in the Blakeley catchment and consequent sediment delivery to the reservoir basin 

appears to override the attenuation effects of Wessenden Old and Wessenden Head 

reservoirs upstream (however, these reservoirs do not have such high drainage densities - 

Figure 5.2). In addition, the Blakeley catchment has a catchwater interception upstream 

which may be associated with reduced reservoir sedimentation rates (White et a l , 1996a). 

However, the selective operation of these control structures does not reduce the APL of 

Blakeley (0.75%) to a value comparable to the mean of the population (0.11%) (Table 

A 1.1, Appendix 1).
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Figure 5.2 Blakeley reservoir catchment area (after Labadz et al., 1999)
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In general, the weak nature of the linear relationships between APL and the independent 

variables identified through the correlation analysis can also be partly attributed to the 

spatial variation in the parameterization data set. For example, some reservoir catchments 

may show stronger links with certain sediment inducing variables (such reservoir 

catchments may be spatially autocorrelated), whilst others may not conform to these 

relationships, being related to different variables. These “non-conforming catchments” act 

to degrade the respective correlation coefficients. The clustering approach (Section 5.3.1) 

seeks to reduce this intra-variable variation through the computation of multiple regression 

analysis models on catchment areas of alikeness, defined through cluster analysis.
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5.8.5.2 Residual variance
Constant variance of residuals is not shown in Figure A3.1, Appendix 3; instead variance 

appears to increase with the predicted value, tending to become increasingly negative. This 

may be explained by the effect of catchment area on sediment yield/reservoir 

sedimentation.

Catchment area, as partly reflected in Equation 5.1 through S686 (incidentally the variable 

with the highest partial correlation coefficient), is perceived to have an important influence 

on the magnitude of sediment yield/reservoir sedimentation (Walling and Webb, 1996). 

From Section 2.11.1.7, increasing reservoir sedimentation across Great Britain has typically 

been associated with increasing catchment area for basin volumetric (as opposed to area- 

specific) sedimentation rates (e.g. Duck and McManus, 1987; Butcher et al., 1993). Such 

positive relationships have been related to undisturbed, densely vegetated catchments and 

upland areas characterized by resistant rocks, reducing soil erosion and the associated 

hillslope input (Dedkov and Moszherin, 1992). Under these conditions it is stream 

channel erosion that is inducing the positive relationship between sediment yield and 

catchment area (Imeson, 1974, Walling and Webb, 1996). Stream channel erosion rates will 

increase downstream in response to greater discharges and associated entrainment and 

transport of sediment.

However, across the southern Pennines where highly erosive blanket peat dominates the 

catchments, hillslope erosion is typically the dominant source of sediment yield (Labadz et 

al., 1991) and allochthonous material deposited in reservoir basins. This is particularly the 

case for Blakeley reservoir which has one of the highest observed annual percentage 

capacity loss (APL) rates in the parameterization data set (Labadz et al., 1999). From 

reservoir sedimentation studies in the southern Pennines, Butcher et al. (1993) attribute a 

positive relationship between reservoir sedimentation and catchment area to the catchments 

surveyed all occupying very similar environments, thus it is to be expected that increasing 

catchment size will provide increasing values of sediment infill. However, in the context of 

the population of reservoirs represented by the parameterization data set occupying many 

different environments, if the dominant source of sediment in reservoirs experiencing 

exceptionally high sedimentation rates (which have a large influence on the nature of the
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relationship between observed APL and S686 in Equation 5.1) is from the hillslopes; 

greater variation in APL observations (increasingly negative residuals) will be observed 

with increasing catchment areas (reflected in Equation 5.1 by S686). This is due to the 

development of flatter gradients and floodplains associated with increasing catchment area 

in certain instances (Walling, 1983; Higgitt, 1993), which decreases hillslope-channel 

coupling and the potential contribution of hillslope derived material in the sediment yield 

(Section 2.11.1.7). This supports the observation by Verstraeten and Poesen (2001) that as 

catchment area increases, so does variability in erosion and sediment delivery processes. 

Therefore, the part-depiction of catchment area by the S686 variable contributes to the 

production of non-constant residual variance associated with increasing APL predictions 

from Equation 5.1, thus undermining the respective regression assumption.

5.9 Equation 5.1 evaluation

5.9.1 Verification

Verification is applied to ensure that the model behaves the way an experimenter intends 

(Shannon, 1975); i.e. it ascertains whether the model replicates the same relative pattern as 

the parameterization data set. Verification can be objectively ascertained through 

correlation analysis testing whether predicted APL moves in the same direction relative to 

observed APL, and testing whether the difference in means of two related variables 

(observed APL and predicted APL) is zero. The respective parametric tests of Pearson’s 

correlation and the paired T-test were applied as verification procedures throughout this 

investigation as both tests are robust and can handle reasonable violations of the 

assumption of data series normality (Norusis, 1996). Such reasonable violations of the 

assumption of data series normality were exhibited in each instance concerning both the 

verification and validation data (Appendix A3.4).

The Pearson’s correlation analysis result at face value implies a good relationship between 

observed and predicted APL, producing a strongly significant correlation coefficient of 

0.75 (Table 5.9). However, from Figure 5.3 the strength of the correlation appears heavily
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influenced by Abbeystead and Blakeley reservoirs, with the main data point cluster 

showing only a general progression in a positive direction. This suggests that the model 

may not be predicting APL accurately.

Table 5.9 Verification result -  Pearson’s correlation and Paired T-test

Verification Equation 5.1
Correlation coefficient 0.753

Significance level 0.01
Number 60
Paired T-test statistic -2.412

Significance level 0.019

Degrees o f  freedom 59

Figure 5.3 Predicted APL versus observed APL
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From Figure 5.4 it can be seen that whilst the model broadly follows the same relative 

pattern as that observed, it is not predicting an APL quantity close to that observed (as 

inferred through the analysis of the respective correlation result); it has a tendency to over­

predict. This inference is further supported through the analysis of the associated residuals 

(the difference between the observed and predicted value of the dependent variable -
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Ebdon, 1995). The mean residual value associated with the prediction of APL across the 

parameterization data set is -0.029 (Table 5.10), thus identifying predominant over­

predictions. This observation is supported by the paired T-test result which identifies that 

the difference in means between the observed and predicted APL values across the 

parameterisation data set is significantly different from zero (Table 5.9). If the model was 

predicting APL values close to those observed, or with a random normal distribution about 

a mean difference of zero, one would expect there to be no significant difference between 

the mean predicted and observed APL across the parameterization data set. However, 

Figure 5.4 illustrates that where observed APL values are of only a moderately high value, 

on average, the associated residuals are comparatively less. This inference is complimented 

through Figure 5.5.

Figure 5.4 The relative pattern o f  observed APL & predicted APL for each reservoir
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Figure 5.5 Parameterization data set residuals (observed APL -  predicted APL)
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Table 5.10 Key to Figures 5.3 & 5.4 & corresponding observed APL, predicted APL & residual values

Reservoir Number Reservoir Name OBSAPL PREDAPL Residual
1 Abbeystead 0.686 0.676 0.010
2 An gram 0.027 0.122 -0.096
3 Barden Lower 0.035 0.070 -0.036
4 Barden Upper 0.075 0.264 -0.189
5 Blackmoorfoot 0.066 0.103 -0.036
6 Blakeley 0.751 0.528 0.223
7 Booth Wood 0.001 0.160 -0.159
8 Broadstones 0.015 0.095 -0.080
9 Broomhead 0.096 0.058 0.039
10 Chelker 0.040 0.036 0.004
11 Dale Dyke 0.064 0.052 0.012
12 Dam flask 0.032 0.070 -0.038
13 Dean Head Lower 0.030 0.208 -0.177
14 Dean Head Upper 0.093 0.153 -0.060
15 Deanhead 0.024 0.124 -0.100
16 Deerhill 0.028 0.106 -0.078
17 Eldwick 0.118 0.166 -0.047
18 Embsay 0.114 0.213 -0.100
19 Fewston 0.009 0.124 -0.115
20 Gorple Lower 0.066 0.104 -0.037
21 Gorple Upper 0.055 0.090 -0.034
22 Gorpley 0.095 0.119 -0.024
23 Green Withens 0.017 0.126 -0.109
24 Harden 0.094 0.115 -0.020
25 Hewenden 0.150 0.227 -0.077
26 Holmestyes 0.005 0.125 -0.120
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27 Langsett 0.169 0.095 0.074
28 Leeshaw 0.130 0.085 0.045
29 Lindley Wood 0.036 0.131 -0.095
30 Lower Laithe 0.096 0.086 0.010
31 Morehall 0.000 0.088 -0.088
32 Ogden 0.026 0.085 -0.058
33 Ponden 0.069 0.116 -0.047
34 Ramsden 0.167 0.246 -0.080
35 Redmires Lower 0.009 0.050 -0.041
36 Redmires Middle 0.065 0.040 0.025
37 Redmires Upper 0.085 0.028 0.057
38 Riding Wood 0.173 0.173 0.000
39 Rivelin Lower 0.159 0.136 0.023
40 Rivelin Upper 0.075 0.225 -0.150
41 Roundhill 0.030 0.100 -0.071
42 Royd Moor 0.052 0.048 0.004
43 Ryburn 0.008 0.154 -0.146
44 Scammonden 0.288 0.102 0.186
45 Scar House 0.120 0.114 0.007
46 Scout Dike 0.091 0.107 -0.015
47 Silsden 0.114 0.074 0.040
48 Snailsden 0.175 0.128 0.047
49 Strines 0.054 0.044 0.009
50 Stubden 0.082 0.080 0.003
51 Tunnel End 0.487 0.112 0.375
52 Underbank 0.035 0.099 -0.064
53 Walshaw Dean Lower 0.115 0.142 -0.027
54 Walshaw Dean Middle 0.052 0.114 -0.062
55 Walshaw Dean Upper 0.091 0.107 -0.015
56 Wessenden Head 0.042 0.131 -0.089
57 Wessenden Old 0.236 0.189 0.047
58 Widdop 0.044 0.084 -0.040
59 Windleden Upper 0.066 0.114 -0.048
60 Ystradfellte 0.080 0.161 -0.081

Mean 0.105 0.134 -0.029

The larger residuals identified in Figure 5.5 and Table 5.10 are induced by: (1) being 

observations having an undue influence on the computation of the partial regression 

coefficients of Equation 5.1, thus exerting an influence on the regression model in multi­

dimensional space, yet being situated a distance away from it (as disclosed through the 

respective leverage and Cook’s distance statistics -  Table 5.4); and (2) having factors
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influencing the respective sedimentation rates not accounted for by the model. These two 

reasons for residual production are not necessarily mutually exclusive. The reservoirs with 

the largest positive residuals are Blakeley, Scammonden and Tunnel End (0.223, 0.186 and 

0.375 respectively) and represent an under-prediction by Equation 5.1. These positive 

residuals are induced by factors not included in the model that act to increase APL. 

Blakeley reservoir has a catchment predominantly covered by highly erodible blanket peat 

with a corresponding high drainage density permitting efficient transport of sediment to the 

reservoir basin (Section 5.8.5). Scammonden as a positive outlier may be partly explained 

by it having a catchwater input not considered in Equation 5.1 (as reported in White et al 
(1996a)). Catchwaters act to enlarge the effective catchment area of a reservoir by directing 

flow from nearby stream channels. This can increase potential sediment inflows and thus 

APL. This influence appears to override the potential attenuation effects of a reservoir and 

intermittent catchwater interception upstream on sediment delivery into the Scammonden 

basin (Labadz et a l, 1995).

Tunnel End may appear as a positive extreme value due to the dam spillway being lowered 

in 1973. It is estimated that 40000 m 3of the original reservoir capacity were lost as a result 

of this modification. The failure to accurately account for this modification could induce 

error into the revised capacity calculated in 1988 with the capacity loss being attributed to 

sedimentation (Halcrow, 2001).

The reservoirs with the largest negative residuals are Barden Upper, Dean Head Lower, 

Rivelin Upper and Ryburn (-0.189, -0.177, -0.150 and -0.146 respectively). These negative 

residuals, representing model over-predictions, are each associated with catchment 

management structures that act to reduce sedimentation rates. These are not included in the 

model. Barden Upper is has a residuum lodge and by wash channel, Dean Head Lower has a 

catchwater/conduit interception upstream, Rivelin Upper has a catchwater/conduit 

interception and bywash channel, and Ryburn has a catchwater/conduit interception (White 

et ah, 1996a). In addition Dean Head Lower, Rivelin Upper and Ryburn each have a 

reservoir situated upstream. This attenuation effect on sediment delivery should be 

accounted for by the flood attenuation index due to reservoirs and lakes (FARL), which is
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listed in the population data set, but was not incorporated into Equation 5.1 via the stepwise 

variable selection procedure.

5.9.2 Validation

Shannon (1975) defines validation as testing the agreement between the behaviour of the 

model and that of the real system. This can vary from a simple ratiometric comparison 

through to correlation analysis determining the goodness of fit between real world 

observations not included in the parameterization data set and the model predictions 

(ITardisty et a l , 1996). To avoid circularity in the validation process, it is important that the 

model is assessed through its ability to extrapolate from the parameterization data set. 

Through the process of validation the user’s confidence is brought to an acceptable level 

that any inference derived from the model is correct (Shannon, 1975). Throughout this 

investigation the respective parametric tests of Pearson’s correlation and the paired T-test 

were applied as validation procedures as both tests are robust and can handle reasonable 

violations of the assumption of data series normality (Norusis, 1996). Again, reasonable 

violations of the assumption of data series normality were exhibited in each instance 

concerning the validation data (Appendix A3.4).

The validation data set for Equation 5.1 comprises five reservoirs not included in the 

parameterization data set: Appleton, Bough Beech, Eyebrook, Howden, and Weirwood 

(Table 5.11). The original validation data set comprised six reservoirs; the aforementioned 

five reservoirs plus The Great Lake (Section 4.3.2.2). However, The Great Lake has values 

of the independent variables represented as partial regression coefficients in Equation 5.1 

beyond the limits defined in the associated parameterization data set. As a result of this, 

Equation 5.1 cannot be extrapolated to produce an APL prediction for The Great Lake. This 

represents a limitation of the regression technique (as identified in Section 4.3.1.2).
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Table 5.11 Validation data set -  respective observed APL, predicted APL and residual values
Reservoir OBSAPL PREDAPL Residual
Appleton 0.087 0.108 -0.018
Bough Beech 0.014 0.124 -0.110
Eyebrook 0.052 0.160 -0.108
Howden 0.119 0.070 0.049
Weirwood 0.015 0.123 -0.103
Mean 0.058 0.116 -0.058

The Pearson’s correlation result and associated scattergraph imply a poor relationship 

between the observed and predicted APL of the reservoirs in the validation data set (Table 

5.12 and Figure 5.6). This result supports the inference from Figure 5.4 that the model is 

not replicating the same relative pattern as that observed in the real world APL values.

Table 5.12 Validation results -  Pearson’s correlation and Paired T-test

Validation Equation 5.1
Correlation coefficient -0.673
Significance level 0.213
Number 5
Paired T-test statistic -1.822
Significance level 0.143
Degrees o f freedom 4

Figure 5.6 Predicted versus observed APL -  validation data set
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Key: Appleton -  royal blue diamond, Bough Beech -  pink square, Eyebrook -  yellow triangle, Howden -blue 
cross, Weirwood -  purple asterisk.
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Figure 5.7 The relative pattern of observed APL & predicted APL -  validation data set
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The paired T-test result (Table 5.12), however, identifies that the difference between the 

mean observed and predicted APL rates is not significantly different from zero, implying 

that the model is predicting reasonable APL values. However, this broad, overlying result 

must be treated with caution as Figure 5.7 identifies reasonably good predictions for 

Appleton and Howden reservoirs through the production of small residuals (i.e. 

comparatively smaller absolute differences between the respective observed and predicted 

APL values), but not for Bough Beech, Eyebrook, and Weirwood reservoirs.

From Figure 5.8 and Table 5.11 it can be seen that the residuals (defined as observed minus 

the predicted value of the dependent variable -  Ebdon, 1995) are negative for Appleton, 

Bough Beech, Eyebrook and Weirwood reservoirs; indicating predominant over-prediction 

by the model (Equation 5.1). However, the residual associated with Howden is positive, 

indicating respective under-prediction. The inference from Figures 5.7 and 5.8 support the 

observation from Section 5.9.1 concerning model verification; Equation 5.1 under-predicts 

where the observed APL is exceptionally high (i.e. Howden reservoir) and produces 

generally smaller residuals, associated with over-predictions, where moderately high APL 

values are observed. The mean residual value associated with the prediction of APL across 

the validation data set is -0.058 (Table 5.11), identifying the tendency of Equation 5.1 to 

over-predict. The high positive residual associated with Howden may be explained by the 

fact that the observed APL for this reservoir was obtained from secondary data
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(Hutchinson, 1995). Hutchinson (1995) calculated the respective sedimentation rate from 

core analysis across the reservoir basin, not from a bathymetric survey using an echo- 

sounder to determine depth readings (the approach used to collect such primary data herein, 

see Section 4.3.2.1). This may have induced an over-estimate of observed APL. The high 

positive residual associated with Howden may also be explained by an additional input 

from a catchwater/conduit, diverting flow (and potential sediment load) into the reservoir 

basin from outside of the directly coupled catchment area. Such a management structure is 

also present at Appleton reservoir, albeit operated only very occasionally (United Utilities, 

2003, pers.comm.) and thus may account for the comparatively small over-prediction by 

Equation 5.1 (Figure 5.7).

Figure 5.8 Validation data set residuals (observed APL - predicted APL)
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In conclusion, Equation 5.1 as a model predicting APL for the population of reservoirs 

cannot be verified and validated. Whilst the model, to a degree, replicates the same relative 

pattern as the parameterization data set, it does not predict an accurate APL for the 

parameterization data set. The model has a tendency to over-predict for the majority of 

observed APL rates across the parameterization data set. However, the model under- 

predicts for those reservoirs experiencing exceptionally high observed APL rates. As a 

result, when Equation 5.1 is extrapolated to predict for reservoirs not present in the 

parameterization data set, poor quality results are produced in terms of the model not
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replicating the same relative pattern as the observed (validation) data, and failing to provide 

consistently good APL predictions in terms of small residuals of a consistent sign. The poor 

results of the verification and validation procedures are induced by the low degree of 

robustness of Equation 5.1. This is associated with a small number of observations having 

an undue influence on the computation of the respective partial regression coefficients (as 

identified by the associated leverage and Cook’s distance statistics).

The tendency for Equation 5.1 to under-predict APL for reservoirs with exceptionally high 

observed APL values seriously undermines the ability of the model to identify potentially 

problematical sedimentation rates, thus devaluing its potential application. Consistent over­

predictions by the model would be much more acceptable as the results would represent a 

“bleak outlook scenario”.

5.9.3 Confidence intervals

For each reservoir represented in the parameterization data set associated with Equation 

5.1, SPSS produces a confidence interval relating to the prediction of the APL conditional 

mean for all reservoirs with the same independent variable values as each of those in the 

parameterization data set. From the results presented in Table A 1.2, Appendix I, only 3 

reservoirs from the 60 in the parameterization data set have an observed APL value that fall 

within the 95% confidence interval of the prediction. Therefore, for only 5% of the 

parameterization data set is there 95% confidence in the prediction afforded by Equation

5.1 being obtained had the entire reservoir population been available for analysis. This 

result assists in explaining why the model cannot be validated; it is not representing the 

population with a high degree of confidence. As a result of this there is little user- 

confidence that inferences drawn from Equation 5.1 are correct.

5.10 Equation 5.1 Operationalization

Figure 5.9 displays the operationalization of Equation 5.1 for the population. However, the 

model is confounded by the limits set in the parameterization data set. Therefore regarding
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the population, extrapolation beyond the limits of the independent variables in the 

parameterization data set cannot be undertaken (Norusis, 1994). This is a limitation of the 

regression technique as the model can only be applied to 530 reservoirs from the 797 in the 

original population. This undermines the achievement of the principal aim of this 

investigation, the production of a comprehensive assessment of the spatial variation of 

reservoir sedimentation for the population of surface water storage reservoirs exhibiting a 

degree of catchment-coupling across England and Wales.

Figure 5.9 Equation 5.1 operationalization -  APL prediction 
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From Figure 5.9 the region of most severe reservoir sedimentation appears to be southeast 

England, especially the west Weald area. This is surprising. Inferring from the factors 

identified to induce sediment production and delivery (Section 2.11), smaller upland 

reservoir catchments typified by higher annual rainfall totals and highly coupled hillslopes 

should experience greater sedimentation (compare Figures 5.10 and 5.11 with 5.12).
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Indeed, Walling (1983) and Higgitt (1993) state that, typically, lowland areas such as the 

Wealden vales should experience comparatively lower sediment yield (and thus reservoir 

sedimentation) due to the presence of reduced gradients and wider floodplains which 

decrease the degree of hillslope-channel coupling and increase potential catchment 

sediment storage. However, variables reflecting this reasoning were not incorporated into 

Equation 5.1 through the stepwise independent variable selection process. This may be 

viewed as a limitation of the stepwise multiple regression technique. The 

independent/predictor variables extracted from the parameterization data set (S686, TE, 

RMED1H) represent those that exclusively account for the variance in APL across the 

aforementioned data set. This is because variable multicollinearity cannot be 

accommodated in multiple regression. Therefore, the need to satisfy this requirement may 

have yielded an equation that does not reflect expert scientific opinion and intuition in 

terms of the broad causes for the spatial variation in reservoir sedimentation.

Figure 5.10 The “upland” catchment o f Ystradfellte Reservoir, Brecon Beacons
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Figure 5.11 The “upland” catchment o f Howden Reservoir, The Derbyshire Peak District

Figure 5.12 The “lowland” Wealden catchment o f Weirwood Reservoir, Sussex

In terms of the independent variables of Equation 5.1, reservoir sedimentation is most 

severe in the Wealden area of southeast England due to comparatively large areas of the 

Winter Hill soil type, smaller trap efficiencies and reasonably high median annual 

maximum 1-hour rainfall totals (Figures 5.13, 5.14 and 5.15 respectively). With regards to 

the Winter Hill soil association this may appear surprising considering the geographic
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location, although maybe induced by the fact that the soil variable reflects the area of the 

dominant soil association as opposed to actual percentage cover (Section 4.2.2.3) and that 

catchment areas are typically larger in lowland, southeast England. However, as identified 

in Section 5.8.5.1, there are potential problems undermining the integrity of the negative 

relationship between APL and TE (the respective partial regression coefficient accounts 

second largest contribution to the overall coefficient of determination given by Equation

5.1). This negative relationship is induced by a few observations which each have revised 

capacities represented in the BRE dams data set that are used to calculate the respective 

trap efficiencies (in particular Abbeystead and Blakeley reservoirs). As a result of these 

cases having high APL rates, the respective TE values are much smaller than would have 

been depicted had an original capacity been considered -  this induces the negative 

relationship between APL and TE. As a result of reservoir sedimentation not having been 

perceived to be a problem in southeast England due to the absence of steep relief, high 

rainfall totals etc. (factors intuitively related to high sediment yields), there have not been 

any published studies of reservoir sedimentation in this region, as represented by an 

absence in the Halcrow data set (2001). Thus, there is a strong possibility that the capacities 

of the southeastern reservoirs in the BRE data set relate to original capacities. As a result of 

this, the inference from the negative partial regression coefficient concerning TE that these 

southeastern reservoirs have low TE due to their high APL rates may be misleading: 

because their low TE values are calculated from original capacity data, they may in fact be 

experiencing low APL rates partly as a result of having low trap efficiencies at the time of 

dam commission. Indeed, the association of lower trap efficiencies (such as those across the 

Weald) with lower sedimentation rates (Brown, 1944) complies with the broad theory that 

sediment yield decreases as catchment area increases (Walling, 1983; Higgitt, 1993). This 

is because such lowland-type reservoirs typically have larger catchment areas, and thus 

greater areas for storage and reduced hillslope-channel coupling, and smaller trap 

efficiencies in terms of reservoir capacityxatchment area ratios (Brown, 1944).

166



Figure 5.13 Area o f Winter Hill soil class (km 2) for the population o f reservoirs
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Figure 5.14 Trap efficiency (%) for the population o f reservoirs
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Figure 5.15 Mean annual hourly rainfall (mm hr 1) for the population o f reservoirs
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5.11 Cluster 2 multiple regression -  untransformed data

5.11.1 Introduction

This section details the progression to the formulation of a multiple regression model 

predicting APL for the population of cluster 2 (Table A 1.24, Appendix 1). The evaluation 

of this model assesses the potential of the clustering approach in achieving the principal 

aim of the research. This technique proved successful for Jansen and Painter (1974) and 

DeBonis et al, (2002) in improving multiple regression model coefficients of 

determination. As with the formulation of the population multiple regression model in the 

preceding sections, all of the respective statistical analysis and results are included in 

Appendix 4; only the key results relevant to the discussion of the regression equations are 

included herein.
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5.11.2 Test for Linearity -  Pearson*s correlation

Pearson’s correlation coefficients were calculated between APL and each of the 57 

independent variables. Those significant below the 0.05 level are presented in Table 5.13. 

The correlation coefficients suggest only a reasonable degree of linearity between the 

independent variables and APL for cluster 2. This was also the case regarding the 

respective analysis associated with the complete parameterization data base (concerning the 

development of Equation 5.1).

The fact that the individual correlation coefficients each have p-values of stronger 

significance than the 0.05 significance level is important due to the aforementioned 

problem of multiple significance levels (Section 5.6.1). From the consideration of 11 

correlations significant at the 0.05 level between APL and each respective independent 

variable, at least 0.55 may occur by chance. However, this value represents the largest 

minimum number of correlations that may occur by chance as the majority of the 

correlation coefficients are significant at levels stronger than 0.01.

Table 5.13 Pearson’s correlation coefficients significant below 0.05 between APL and the respective 

independent variables

Independent Variable r P n
QMED 0.442 0.001 51
RMED1H 0.315 0.024 51
RMED1D 0.380 0.006 51
RMED2D 0.331 0.018 51
SAAR 0.383 0.006 51
SAAR4170 0.354 0.011 51
TE -0.591 0.000 51
S686 0.653 0.000 51
CONIF 0.323 0.021 51
DSHRUB 0.518 0.000 51
UPBOG 0.476 0.000 51

5.11.3 Result and diagnostics

The model produced by multiple regression analysis for the prediction of APL across the 

cluster 2 population is presented below (Equation 5.5). This model has an R 2 of 0.616.
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APL -  0.578 + 0.011 x S686 -  0.009 x TE + 0.007 x RMED1D (Eq. 5.5)

The essential multiple regression diagnostics assessing the compliance of the result with the 

assumptions of the technique are presented in Table 5.14.

Table 5.14 Multiple regression diagnostics results; ^ denotes compliance with the respective assumption, X 

denotes non-compliance. For the Leverage and Cook’s distance results, the number o f  cases inducing the 

non-compliance with the assumption o f linearity are presented.

Assumption Diagnostic Result
Linearity Analysis o f  variance V

t statistic V
Leverage X - 7 cases
Cook's distance X - 1 case

Non-multicoliinearity Tolerance statistic V
Residual independence Durbin-Watson test V
Residual constant variance Scattergraphs - residuals versus predicted values X
Residual normality Kolmogorov-Smirnov test X

5.11.4 Summary o f Equation 5.5

Equation 5.5 accounts for a reasonable 62% of the variance observed in APL. However, 

from Table 5.14 it does not meet all of the assumptions required for a robust, reliable 

regression model. As associated with Equation 5.1 (Section 5.6.2), the lack of robust linear 

relationships (identified through the leverage and Cook’s distance values) appear to be 

inducing violations of the assumptions of residual constant variance and normality 

(Norusis, 1994). As a result of this, three standard transformations were again applied to 

each of the 57 independent variables in an attempt to improve the robustness and reliability 

of the multiple regression model in the prediction of reservoir sedimentation for the cluster 

2 population: logs to the base 10, squares, and square roots.
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5.12 Cluster 2 multiple regression analysis -  transformed independent 

variables

This section documents the incorporation of transformed independent variables (logs to the 

base 10, squares, and square roots) into a multiple regression analysis predicting APL for 

the cluster 2 population in an attempt to improve model compliance with the regression 

assumptions of linearity, residual constant variance, and residual distribution normality.

5.12.1 Test fo r linearity - Pearson1 s correlation

The Pearson’s correlation results between each respective transformation of the 

independent variables significant below the 0.05 level, are presented in Table 5.15.

Table 5.15 Pearson’s correlation coefficients significant below 0.05 between APL and the respective 

transformed independent variables

Transformation Independent Variable r P n
Log 10 transform QMEDLOG10 0.316 0.024 51

RMED1HLOG10 0.310 0.027 51
RMED1DLOG10 0.367 0.008 51
RMED2DLOG10 0.319 0.022 51
SAARLOG10 0.359 0.010 51
S AAR417 OLOG10 0.332 0.017 51
TELOG10 -0.609 0.000 51
S686LOG10 0.408 0.003 51
FELLEDLOG10 0.343 0.014 51
ME ADO WLOG10 -0.280 0.046 51
UPBOGLOGIO 0.408 0.003 51

Square transform QMEDSQ 0.502 0.000 51
RMED1HSQ 0.320 0.022 51
RMED1DSQ 0.389 0.005 51
RMED2DSQ 0.339 0.015 51
SAARSQ 0.406 0.003 51
SAAR4170SQ 0.373 0.007 51
TESQ -0.573 0.000 51
S686SQ 0.649 0.000 51
CONIFSQ 0.457 0.001 51
DSHRUBSQ 0.540 0.000 51
UPBOGSQ 0.331 0.018 51

Square root transform QMEDSQRT 0.386 0.005 51
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RMED1HSQRT 0.312 0.026 51
RMED1DSQRT 0.374 0.007 51
RMED2DSQRT 0.326 0.020 51
SAARSQRT 0.371 0.007 51
SAAR4170SQRT 0.344 0.014 51
TESQRT -0.600 0.000 51
S686SQRT 0.580 0.000 51
DSHRUB SQRT 0.408 0.003 51
UPBOGSQRT 0.499 0.000 51

From the analysis of the significant Pearson correlation coefficients (Table 5.15) linear 

relationships are still only suggested to a reasonable degree.

From the four groups of potential independent variables (untransformed, log 10, squared, 

square root), those with the greatest correlation coefficient rounded to one place of decimal 

were entered into the multiple regression analysis (as discussed in Section 5.7). The 

independent variables entered into the multiple regression analysis were: QMEDSQ, 

RMED1H, RMED1D, REMED2D, SAAR, SAAR4170, TE, S686, CONSQ, DSHRUB, 

and UPBOG.

In relation to the potential problem of multiple significance levels, 43 correlation 

coefficients significant at the 0.05 level were obtained between APL and each of the 

independent variable variants (Tables A 1.9, A 1.10 and Al .11, Appendix 1). Therefore, at 

least 2.15 correlations may occur by chance when testing to a significance level of 0.05. 

However, this value represents the largest minimum number of correlations that may occur 

by chance as the majority of the correlation coefficients are significant at levels stronger 
than 0.01.

5.12.2 Result and diagnostics

Through the stepwise multiple regression procedure incorporating potential transformed 

independent variables, the same result is produced as that for the previous application 

concerning the untransformed data (Equation 5.5). As a result of this the same 

shortcomings remain; the reliance of linear relationships between APL and each
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independent variable on a small number of observations, the lack of residual constant 

variance, and the residuals not being normally distributed.

In an attempt to improve the validity and robustness of the multiple regression model 

predicting APL for cluster 2, the same three standard transformations were applied to the 

dependent variable (APL); logs to the base 10, squares, and square roots.

5.13 Cluster 2 multiple regression analyses - transformed dependent & 

independent variables

This section details the incorporation of transformed independent and dependent variables 

(logs to the base 10, squares, and square roots) into a multiple regression analysis 

predicting APL across the cluster 2 population in an attempt to improve model compliance 

with the assumptions of linearity, residual constant variance, and residual distribution 

normality.

5.13.1 Tests fo r linearity -  Pearson’s correlation

Pearson’s correlation coefficients were calculated between each dependent variable 

transformation and each independent variable variant (untransformed, logarithmically 

transformed to the base 10, square transformed and square root transformed). Again, the 

correlation coefficients significant at the 0.05 level for each independent variable variant 

were rounded to one place of decimal and those with the greatest value were entered into 

the multiple regression analysis for each respective APL variant (Table 5.16).

Regarding the potential problem of multiple significance levels, the number of correlations 

significant at the 0.05 level between APLLOG10, APLSQ and APLSQRT, and the 

associated independent variable variants are 19, 48 and 40 respectively (Tables A 1.12 -  

A 1.22, Appendix 1). Therefore, the minimum number of correlations significant at the 0.05 

level that may have occurred by chance for the aforementioned APL transformations are
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only 0.95, 2.4 and 2 respectively (the majority of the correlation coefficients associated 

with each APL transformation are significant at levels stronger than 0.01).

Table 5.16 Pearson’s correlation coefficients significant below 0.05 between APL variant and independent

variables entered into each respective multiple regression analysis

Transformation Independent Variable R P n
APLLOG10 SAAR 0.303 0.031 51

SAAR4170 0.312 0.026 51
TE -0.401 0.004 51
S686 0.407 0.003 51
DECIDLOG10 0.333 0.017 51
CONIFSQ 0.280 0.047 51
RUDERALLOG10 0.301 0.032 51
ROUGHLOGIO 0.289 0.039 51

APLSQ CAREALOG10 0.281 0.045 51
QMEDSQ 0.560 0.000 51
RMED1H 0.285 0.043 51
RMED1D 0.338 0.015 51
RMED2D 0.291 0.039 51
SAAR 0.345 0.013 51
SAAR4170 0.300 0.032 51
TELOG10 -0.650 0.000 51
S686 0.718 0.000 51
CONIFSQ 0.498 0.000 51
DSHRUBSQ 0.654 0.000 51
UPBOG 0.577 0.000 51
FELLEDLOG10 0.420 0.002 51
MEADOWLOG10 -0.374 0.007 51
MOWNLOGIO -0.286 0.042 51

APLSQRT QMEDSQ 0.398 0.004 51
RMED1H 0.285 0.043 51
RMED1D 0.355 0.011 51
RMED2D 0.311 0.026 51
SAAR 0.375 0.007 51
SAAR4170 0.363 0.009 51
TE -0.530 0.000 51
S686 0.561 0.000 51
CONIFSQ 0.389 0.005 51
DSHRUB 0.396 0.004 51
UPBOG 0.330 0.018 51
DPSBAR 0.277 0.049 51
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5.13.2 Results and diagnostics

The models produced by multiple regression analysis for each APL variant are shown 

below. Equation 5.6 accounts for 48% of the variation observed in APLLOGIO, Equation

5.7 accounts for 75% of the variation observed in APLSQ, and Equation 5.8 accounts for 

49% of the variation observed in APLSQRT.

APLLOGIO = 1.350 + 0.026 x S686 + 0.14 x DECLOGIO + 0.156 x RUDLOG10 -  0.024 x TE 

APLSQ -  1.524 + 0.008 x S686 + 0.0002 x DSHRUBSQ + 0.004 x RMED1D -  0.86 x TE 

APLSQRT -  0.988 + 0.009 x S686 -0 .0 1 1  x TE + 0.0002 x SAAR4170

The essential multiple regression diagnostics assessing the compliance of the 

the assumptions of the technique are presented in Table 5.17.

Table 5.17 Comparison o f multiple regression diagnostics results; V denotes compliance with the respective 

assumption, X denotes non-compliance. For the Leverage and Cook’s distance results, the number o f cases 

inducing the non-compliance with the assumption o f  linearity are presented.

Assumption Diagnostic Eq 5.6 Eq 5.7 Eq 5.8

Result Result Result
Linearity Analysis of variance V V V

t statistic V V V

Leverage X -  8 cases X - 7 cases X - 8 cases

Cook's distance V X - 2 cases V

Non-multico!linearity Tolerance statistic < V V

Residual independence Durbin-Watson test < V V

Residual constant variance Scattergraphs - residuals versus predicted values V X <
Residual normality Kolmogorov-Smirnov test X X <
Total number of refutations 2 4 1

5.13.3 Summary o f Equations 5.6, 5.7 & 5.8

Multiple regression analyses were performed on transformed variants of APL (APLLOGIO, 

APLSQ, APLSQRT) due to Equation 5.5 (incorporating untransformed variables) failing to 

satisfy conclusively the regression assumptions of residual constant variance and normality, 

and linearity, despite having a respectable R2 of 0.616.

(Eq. 5.6) 

(Eq. 5.7) 

(Eq. 5.8)

result with
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From the analysis of Table 5.17 it is clear that Equation 5.8 associated with the prediction 

of APLSQRT on balance produces the most reliable, robust model in terms of compliance 

with the assumptions of multiple regression. This is primarily due to it exhibiting 

comparatively stronger linear relationships between the independent variables and 

dependent variable. Therefore it is this model that needs to be compared to Equation 5.5 

(incorporating untransformed variables) to determine the most robust, reliable variant in the 

prediction of reservoir sedimentation across the cluster 2 population. However, it must be 

stressed again that the assumptions associated with Equation 5.8 are not satisfied 

unequivocally.

5.13.4 Model selection

The choice for the most robust, reliable model predicting reservoir sedimentation for cluster 

2 lies between Equation 5.5, incorporating untransformed independent and dependent 

variables with an R2 of 61%, and Equation 5.8 incorporating the transformed APLSQRT 

dependent variable with an R2 of 49%.

Table 5.18 compares the total number of multiple regression assumption refutations 

associated with Equation 5.5 and Equation 5.8. Clearly Equation 5.8 provides the most 

sound, robust model due to it satisfying a greater number of the assumptions of multiple 

regression. This is due to Equation 5.8 having comparatively stronger linear relationships, 

less reliant on a number of influential points (as identified through the absence of respective 

Cook’s distance values above 1), inducing compliance with the assumptions of residual 

constant variance and distribution normality. As a result of this Equation 5.8 is selected as 

the optimum model to predict reservoir sedimentation (APLSQRT) for cluster 2. However, 

whilst the compliance of Equation 5.8 with the assumptions of regression remains 

comparatively sounder, the lack of strong linear relationships between reservoir 

sedimentation and those variables perceived to influence the process is reflected through 
the relatively low R2 of 49%.
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Table 5.18 Comparison o f  multiple regression diagnostics results; V denotes compliance with the respective 

assumption, X denotes non-compliance. For the Leverage and Cook’s distance results, the number o f cases 

inducing the non-compliance with the assumption o f  linearity are presented.

Assumption Diagnostic Eq 5.5 Eq 5.8

Result Result

Linearity Analysis of variance V V
t statistic V V
Leverage X -  7 cases X - 8 cases

Cook’s distance X - 1  case V
Non-multicollinearity Tolerance statistic V V
Residual independence Durbin-Watson test V V
Residual constant variance Scattergraphs - residuals versus predicted values X V
Residual normality Kolmogorov-Smimov test X V
Total number of refutations 4 1

5.13.5 Discussion o f Equation 5.8

In this section Equation 5.8, predicting reservoir sedimentation for the cluster 2 population, 

is discussed in relation to the regression assumption it fails to unequivocally comply with 

(linearity).

5.13.5.1 Nature of linear relationships

From the partial regression coefficients of Equation 5.8, S686 and SAAR4170 are both 

positively related to APLSQRT. These relationships are again explained through larger 

areas (in this case of S686) providing more sites of erosion and therefore greater quantities 

of sediment yield, and higher mean annual rainfall totals providing greater quantities of an 

erosion agent.

The negative relationship shown by the partial regression coefficient between APLSQRT 

and TE was also apparent in Equation 5.1, the model selected as the most valid and robust 

to predict reservoir sedimentation (APL) for the complete population. From the associated 

discussion in Section 5.8.5.1, this can again be attributed to Abbeystead and Blakeley 

reservoirs in particular having revised capacities listed in the BRE dams data set (Tedd et 
al., 1992) as opposed to original capacities. Therefore, the calculation of trap efficiency 

from these revised capacities produces smaller TE values associated with high APLSQRT
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observations in comparison to those that would have been calculated from original capacity 

measurements. This is because the rate of sedimentation (between the time of dam 

commission and the revised capacity survey) is being accounted for.

The extreme rates of APLSQRT associated with Abbeystead and Blakeley reservoirs have a 

large influence on each of the partial regression coefficients associated with Equation 5.8 

as identified through their respective leverage values (Appendix 4). However, as discussed 

in Section 5.8.5.1, these respective sedimentation rates can also be attributed to unique 

catchment factors not represented in Equation 5.8.

5.14 Equation 5.8 evaluation

5.14.1 Verification

In order to verify objectively Equation 5.8, the Pearson’s correlation test and paired T-test 

were applied to assess the degree to which the model simulates the relative pattern of the 

observed data, and the accuracy in actual APLSQRT prediction.

The significant Pearson’s correlation analysis result (0.699) at face value implies a good 

relationship between observed and predicted APL (Table 5.19). However, from Figure 5.16 

the strength of the correlation does again appear heavily influenced by Abbeystead and 

Blakeley reservoirs. In contrast, however, to the respective correlation result associated 

with Equation 5.1 (Figure 5.3), there is a stronger suggestion of a general progression of the 

main data point cluster in a positive direction. This implies reasonable predictions of 

reservoir APLSQRT.

Table 5.19 Verification results -  Pearson’s correlation and Paired T-test

Verification Equation 5.8
Correlation coefficient 0.699
Significance level 0.000
Number 51
Paired T-test statistic 0.042
Significance level 0.967
Degrees o f  freedom 50
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Figure 5.16 Predicted APLSQRT (PAPLSQRT) versus observed APLSQRT (OAPLSQRT)

1.0

.4

OQ

0.0 1.0

OAPLSQRT

From Figure 5.17 it can be seen that the model broadly follows the same relative pattern as 

that observed, producing an output of predictions that appear balanced through under- 

predicting where observed APLSQRT values are exceptionally high, and over-predicting 

where observed APLSQRT observations are very low. This is supported through Figure 

5.18 displaying respective positive and negative residuals (observed APLSQRT minus 

predicted APLSQRT). Indeed, the mean residual value associated with the prediction of 

APLSQRT across the cluster 2 parameterization data set is 0.0007, identifying neither a 

predominance of over nor under-predictions (Table 5.20). This observation supports the 

paired T-test result which identifies that the difference in means between the observed and 

predicted APL rates is not significantly different from zero (Table 5.20). The model 

therefore under-predicts for exceptionally high APLSQRT observations and over-predicts 

for very low APLSQRT observations, thus yielding predictions of reasonable accuracy for 

the average observed APLSQRT rates typifying the cluster 2 parameterization data set 

(Figure 5.17).
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Figure 5.17 The relative pattern of observed APLSQRT & predicted APLSQRT for each reservoir
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Figure 5.18 Parameterization data set residuals (observed APL -  predicted APL)
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Table 5.20 Key to Figures 5.17 «& 5.18 & corresponding observed APL, predicted APL & residual values

Reservoir Reservoir Obs APLSQRT Pred APLSQRT Residual
1 Abbeystead 0.830 0.845 -0.015
2 Angram 0.160 0.321 -0.161
3 Barden Lower 0.190 0.231 -0.041
4 Barden Upper 0.270 0.380 -0.110
5 Blackmoorfoot 0.260 0.213 0.047
6 Blakeley 0.870 0.680 0.190
7 Broadstones 0.120 0.201 -0.081
8 Broomhead 0.310 0.221 0.089
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9 Chelker 0.200 0.135 0.065
10 Dale Dyke 0.250 0.234 0.016
11 Dam flask 0.180 0.233 -0.053
12 Dean Head Lower 0.170 0.350 -0.180
13 Dean Head Upper 0.310 0.307 0.003
14 Deanhead 0.150 0.273 -0.123
15 Deerhill 0.170 0.245 -0.075
16 Eldwick 0.340 0.279 0.061
17 Embsay 0.340 0.312 0.028
18 Fewston 0.090 0.238 -0.148
19 Gorple Lower 0.260 0.274 -0.014
20 Gorple Upper 0.240 0.250 -0.010
21 Gorpley 0.310 0.294 0.016
22 Green Withens 0.130 0.246 -0.116
23 Harden 0.310 0.295 0.015
24 Holmestyes 0.070 0.281 -0.211
25 Lindley Wood 0.190 0.249 -0.059
26 Ponden 0.260 0.289 -0.029
27 Ramsden 0.410 0.440 -0.030
28 Redmires Lower 0.100 0.202 -0.102
29 Redmires Middle 0.260 0.191 0.069
30 Redmires Upper 0.290 0.178 0.112
31 Riding Wood 0.420 0.364 0.056
32 Rivelin Lower 0.400 0.303 0.097
33 Rivelin Upper 0.270 0.412 -0.142
34 Roundhill 0.170 0.199 -0.029
35 Royd Moor 0.230 0.162 0.068
36 Ryburn 0.090 0.284 -0.194
37 Scammonden 0.540 0.240 0.300
38 Scar House 0.350 0.301 0.049
39 Silsden 0.340 0.193 0.147
40 Snailsden 0.420 0.313 0.107
41 Strines 0.230 0.230 0.000
42 Stubden 0.290 0.230 0.060
43 Tunnel End 0.700 0.274 0.426
44 Underbank 0.190 0.265 -0.075
45 Walshaw Dean Lower 0.340 0.313 0.027
46 Walshaw Dean Middle 0.230 0.279 -0.049
47 Walshaw Dean Upper 0.300 0.271 0.029
48 Wessenden Head 0.200 0.273 -0.073
49 Wessenden Old 0.490 0.347 0.143
50 Widdop 0.210 0.249 -0.039
51 Windleden Upper 0.260 0.290 -0.030

Mean 0.288 0.288 0.001



The largest residuals identified in Figure 5.18 and Table 5.20 are again induced by: (1) 

being observations having an undue influence on the computation of the partial regression 

coefficients of Equation 5.8; thus exerting an influence on the regression model in multi­

dimensional space, yet being situated a distance away from it (see Figure A4.20 and Table 

A4.26, Appendix 4 concerning the respective Cook’s distance and leverage statistics); and 

(2) having factors influencing the respective sedimentation rates not accounted for by the 

model. These two reasons for residual production are not necessarily mutually exclusive. 

The reservoirs with the largest positive residuals are Blakeley, Scammonden and Tunnel 

End (0.190, 0.300 and 0.426 respectively) and represent an under-prediction by Equation

5.8. These reservoirs also represented the largest positive residuals associated with 

Equation 5.1 and are induced by the same causal explanations concerning factors acting to 

increase APL that are not represented in the model (Sections 5.13.5 and 5.8.5). The 

reservoirs with the largest negative residuals are again predominantly associated with 

catchment management structures that act to reduce sedimentation rates. Angram, Dean 

Head Lower, Fewston, Rivelin Upper and Rybum reservoirs (with respective residuals of - 

0.161, -0.180, -0.148, -0.142 and -0.194) each have a combination of residuum lodges, 

bywash channels, additional catchwater/conduit interceptions and reservoirs upstream 

(White et al., 1996a) that act to reduce observed APL values.

5.14.2 Validation

The validation data set for reservoirs in cluster 2 comprises three reservoirs not included in 

the parameterization data set: Bough Beech, Eyebrook, and Howden (Table 5.21). 

Pearson’s correlation and the paired T-test were used to compare the model predictions' 
with the observed validation data.

Table 5.21 Validation data set -  respective observed APL, predicted APL and residual values

Reservoir ObsAPLSQRT PredAPLSQRT Residual
Bough Beech 0.228 0.126 0.102
Eyebrook 0.118 0.108 0.010
Howden 0.345 0.289 0.056
Mean 0.230 0.174 0.056
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The Pearson’s correlation result and associated scattergraph imply a reasonable relationship 

between the observed and predicted APL of the reservoirs in the validation data set (Table 

5.22 and Figure 5.19); however, a significant correlation is not produced primarily due to 

the small sample size. This result supports the inference from Figure 5.20 that the model is 

replicating, to a degree, the same relative pattern as that observed in the real world APL 

values.

Table 5.22 Validation result -  Pearson’s correlation and Paired T-test

Validation Equation 5.8
Correlation coefficient 0.915
Significance level 0.264
Number 3
Paired T-test statistic 2.119
Significance level 0.168
Degrees o f freedom 2

Figure 5.19 Cluster 2 predicted APLSQRT (PAPLSQRT) versus observed APLSQRT (OAPLSQRT) -  

validation data set
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Figure 5.20 The relative pattern of observed APLSQRT & predicted APLSQRT — validation data set
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In addition, to the Pearson’s correlation result, the paired T-test result (Table 5.22) 

identifies that the difference in means between the observed and predicted APL rates are 

not significantly different from zero, implying that the model is predicting results of a 

reasonably good accuracy.

From Figure 5.21 it can be seen that the residuals are positive for each of the reservoirs in 

the cluster 2 validation data set indicating consistent under-prediction by Equation 5.8 

when extrapolated across the reservoir population of cluster 2. The corresponding mean 

residual value of 0.056 highlights this consistency in under-prediction.

Figure 5.21 Validation data set residuals (observed APLSQRT minus predicted APLSQRT)
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In conclusion, Equation 5,8 as a model predicting APLSQRT for the population of 

reservoirs in cluster 2 can be verified and validated to a reasonable degree. The model does 

replicate the same relative pattern as the parameterization data set, as identified through the 

significant Pearson’s correlation coefficient, and does predict APL to a reasonably good 

accuracy across the reservoirs typifying the cluster 2 parameterization data set, as identified 

through the paired T-test, As a result, when the model is extrapolated to predict for 

reservoirs not present in the parameterization data set, results of a reasonable quality are 

produced in terms of the model prediction and replicating the same relative pattern as the 

observed (validation) data.

5.14.3 Confidence intervals

From the 95% confidence intervals for each reservoir in the parameterization data set 

relating to the prediction of the conditional mean APL from Equation 5.8 for all reservoirs 

with the same respective independent variable values; only 2 reservoirs from the 51 in the 

cluster 2 parameterization data set have an observed APLSQRT value that fall within the 

respective 95% confidence interval of the prediction (Table A1.24, Appendix 1). Therefore, 

for only 4% of the cluster 2 parameterization data set is there 95% confidence in the 

prediction afforded by Equation 5.8 being obtained had the entire reservoir population been 

available for analysis. This result does not provide high user-confidence that inferences 

made from Equation 5.8 are correct.

5.15 Equation 5.8 operationalization

Figure 5.22 displays the operationalization of Equation 5.8 for the cluster 2 population with 

the APLSQRT predictions back-transformed to APL values. This regression model is also 

confounded by the limits set in the cluster 2 parameterization data set. Therefore, 

extrapolation beyond the limits of the independent variables in the parameterization data set 

cannot be undertaken (Norusis, 1994). As a result Equation 5.8 can only be applied to 249 

reservoirs from the 473 that comprise the cluster 2 population.
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Figure 5.22 Equation 5.8 operationalization -  cluster 2 population APL prediction
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From Figure 5.22 the most severe regions of reservoir sedimentation appear to be the 

upland areas of the southern Pennines, north Wales, and Exmoor in particular. In the 

context of the model this is explained by these areas have comparatively larger areas of the 

highly erosive Winter Hill soil class (Figure 5.23) and mean annual rainfall totals (Figure 

5.25) - conditions that favour sediment production. However, the high APL value in the 

northwest comer of the Weald in southeast England may be particularly attributed to the 

problematical negative relationship between APL and trap efficiency defined by the model 

(Figure 5.24). This negative relationship (and negative respective partial regression 

coefficient) is again induced by Abbeystead and Blakeley reservoirs having a revised 

capacity in the BRE dams data set (which is used to calculate TE across the population 

data set). Therefore, from the time of dam commission, it is to be expected that TE 

decreases with APL. However, such inference is misleading concerning reservoirs with an 

original capacity listed in the BRE dams data set. For these reservoirs, low APL rates may
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be experienced as a direct result of them having low trap efficiencies. As discussed in 

Sections 5.8.5.1 and 5.10, it is likely that reservoirs across southeast England have not been 

resurveyed to obtain a revised capacity (which for certain cases is represented in the BRE 

dams data set), as sedimentation is not perceived to be a problem in this area. Therefore it is 

likely that the respective BRE capacities relate to original capacities used to calculate TE. 

From Section 5.10, reservoirs across southeast England typically have smaller trap 

efficiencies in terms of reservoir capacity:catchment area ratios (Brown, 1944) as they are 

more lowland in nature and thus often have larger catchment areas (associated with greater 

areas for storage and reduced hillslope-channel coupling). As a result, these reservoirs are 
potentially experiencing smaller APL rates because of their smaller trap efficiencies -  

inference that is not obtained through Equation 5.8. Therefore, the output from Equation

5.8 concerning reservoirs that have an original capacity used to calculate TE might be 

misleading.

Figure 5.23 Area o f Winter Hill soil class (km2) for the cluster 2 population o f reservoirs
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Figure 5.24 Trap efficiency (%) for the cluster 2 population o f reservoirs
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Figure 5.25 Mean annual rainfall (mm yr ‘ ) from 1941-70 for the cluster 2 population o f reservoirs
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5.16 Comparison of multiple regression analysis approaches

The purpose of performing multiple regression on a cluster from the population data set 

(cluster 2) was to assess the potential of the clustering approach employed successfully by 

Jansen and Painter (1974) and DeBonis et al. (2002) (wherein a data set of geomorphic 

parameters was broken down into groups of alikeness and multiple regression analysis 

performed on each cluster, predicting sediment yield) in achieving the principal aim of the 

research. For DeBonis et ql. (2002), this approach produced improved coefficients of 

explanation for each cluster over the model formulated for the complete data set due to a 

reduction in residual variation. The residual variation was reduced as stronger correlations 

existed within the clusters between sediment yield and erosion/sediment transport inducing 

variables; thus this approach acted to reduce intra-variable variation.

The application of the clustering approach herein, producing a multiple regression model 

for a subset of the complete population of reservoirs defined using cluster analysis 

(Equation 5.8), yielded a more robust and valid model in comparison to that parameterized 

for the prediction of APL for the complete population (Equation 5.1). Despite Equation 5.1 

having a greater coefficient of explanation (a reasonable 57%) in comparison to Equation

5.8 (49%), the latter, on balance, produced a more robust result in terms of the regression 

assumptions being more closely met (Table 5.23). The integrity of Equation 5.8 appears 

stronger through the greater compliance with the assumptions of linearity, constant 

variance, and normality.

The comparison of the Cook’s distance statistics (Table 5.23) shows that there are no cases 

having an undue influence on the computation of the regression coefficients associated with 

Equation 5.8 above the threshold that warrants investigation. Thus, the linear relationships 

in Equation 5.8, although weaker (as reflected in the coefficient of explanation) are more 

realistic and representative of the true nature of the data. This acts to improve the degree of 

residual constant variance associated with Equation 5.8 over Equation 5.1 (Table 5,23).
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Table 5.23 Comparison o f multiple regression diagnostics results; V denotes compliance with the respective 

assumption, X denotes non-compliance. For the Leverage and Cook’s distance results, the number o f cases 

inducing the non-compliance with the assumption o f  linearity are presented.

Assumption Diagnostic Eq 5.1 Eq 5.8

Result Result

Linearity Analysis of variance V V
t statistic V V
Leverage X -  5 cases X - 8 cases

Cook's distance X -  1 case V
Non-multicollinearity Tolerance statistic V <

Residual independence Durbin-Watson test V <

Residual constant variance Scattergraphs - residuals versus predicted values X V
Residual normality Kolmogorov-Smimov test V V
Total number of refutations 3 1

In terms of verification, the respective predictions of Equation 5.8 replicate the pattern of 

observed APL in the parameterization data set to a closer degree than those of Equation 5.1. 

From Figures 5.4 and 5.5, Equation 5.1 has a tendency to over-predict for the majority of 

reservoirs in the respective parameterization data set, except for those experiencing 

exceptionally high APL rates. This is reflected by the mean residual value of -0.029. In 

contrast, from Figures 5.17 and 5.18, Equation 5.8 has the tendency to predict APLSQRT 

reasonably accurately for the majority of reservoirs in the respective cluster 2 

parameterization data set experiencing average/typical rates. This is reflected in the mean 

residual of 0.001 (Table 5.20). Only for those reservoirs experiencing exceptionally high or 

low observed APLSQRT rates does the model under-predict and over-predict respectively 

due to the influence of factors inducing positive and negative residuals, not represented in 

the model (Section 5.14.1). The comparatively more accurate prediction of the 

average/typical observed sedimentation rates by Equation 5.8 is supported by the stronger 

Pearson’s correlation coefficient and degree of linearity between observed and predicted 

APLSQRT for Equation 5.8, and the paired T-test result identifying that the difference in 

means between the observed and predicted APLSQRT rates is not significantly different 

from zero (Table 5.24). In terms of the respective paired T-test applied to Equation 5.1, a 

difference significant from zero was produced between the observed and predicted APL 

means suggesting comparatively poorer predictions (Table 5.24).
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In terms of validation, the predictions of Equation 5.8 also replicate the pattern of observed 

APLSQRT in the respective validation data set to a closer degree than those of Equation

5.1. From residual analysis (Tables 5.10 and 5.20), Equation 5.8 also produces a slightly 

smaller absolute mean residual value than Equation 5.1 (0.056 in comparison to -0.058), 

implying a more accurate prediction. This is reflected through Equation 5.8 producing a 

stronger, more significant Pearson’s correlation coefficient between the respective observed 

and predicted sedimentation rates (Table 5.24). In addition to this, each of the residuals 

associated with Equation 5.8, unlike those associated with Equation 5.1, are of the same 

sign (identifying a consistent under-prediction of APLSQRT), thus inferring a more 

accurate replication of the relative pattern of the observed APLSQRT rates of the respective 

validation data set (Figure 5.21). This is supported by the stronger degree of similarity 

between the mean observed and predicted APLSQRT values demonstrated by the paired T- 

test result associated with Equation 5.8 (Table 5.24). Therefore, whilst a “bleak outlook 

scenario” is not suggested through the application of Equation 5.8 due to its consistent 

under-prediction, the fact that the same relative pattern of observed reservoir sedimentation 

rates is produced when the model is applied helps compensate for this in terms of the 

usefulness of the model.

Table 5.24 Summary results o f  Equations 6.1 & 6.8 verification &  validation between respective observed 

and predicted measures o f reservoir annual percentage capacity loss

Equation 5.1 Equation 5.8
Verification Correlation coefficient 0.753 0.699

Significance level 0.01 0.000
Number 60 51
Paired T-test statistic -2.412 0.042
Significance level 0.019 0.967
Degrees o f freedom 59 50

Validation Correlation coefficient -0.673 0.915
Significance level 0.213 0.264
Number 5 3
Paired T-test statistic -1.822 2.119
Significance level 0.143 0.168
Degrees o f  freedom 4 2
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The comparative improvement in reservoir sedimentation prediction using the clustering 

technique may have been more apparent had more observations from clusters 1 and 3 been 

represented in the complete parameterization data set; 51 reservoirs comprise the cluster 2 

parameterization set, in addition to these, a further 9 comprise the complete 

parameterization data set. Such data could not be collected due to practical and logistical 

constraints imposed over the duration of this investigation.

However, whilst Equation 5.8 is verified and validated to a greater degree than Equation

5.1, both models are associated with a low degree of confidence concerning the predicted 

APL conditional means representing the population conditional means. For Equation 5.1 

there is 95% confidence in its predictions for only 5% of its respective parameterization 

data set (Section 5.9.3). For Equation 5.8 there is 95% confidence in its predictions for only 

4% of its respective parameterization data set (Section 5.14.3). The apparent differences 

between the predicted APL conditional means and the respective population conditional 

means can be attributed to sampling fluctuations, measurement error, and deviations from 

the assumptions of regression (Ebdon, 1995). Therefore, whilst Equation 5.8 satisfied the 

assumptions of regression to a larger degree than Equation 5.1 (through having a more 

representative parameterization data set producing a more robust, reliable model through 

verification and validation); the lack of improved confidence regarding associated 

population APL conditional mean prediction suggests that the multiple regression approach 

is fundamentally not suited to predicting reservoir sedimentation (annual percentage 

capacity loss) from catchment and reservoir basin factors.

5.17 Evaluation of the multiple regression modelling technique

From the analysis of Equation 5.1, predicting APL for the whole population and Equation

5.8, predicting APLSQRT for cluster 2, it is clear that whilst the most valid, robust models 

possible have been produced, their integrity and predictive power can only be described as 

reasonable. This is despite the effort made to account for the reasons attributed to previous 

failure of multiple regression applications in reservoir sedimentation/sediment yield studies, 

as discussed in Section 5.4. However, each of these identified reasons for multiple
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regression failure can still, to a degree, account for the relative failure of the application in 

this investigation.

5.17.1 Data omission & coarse spatial resolution

Whilst every effort was made to produce the most comprehensive data set across England 

and Wales regarding factors that influence reservoir sedimentation, information could not 

be directly obtained/easily calculated from the readily available data regarding important 

factors such as drainage density and hypsometry. Knighton (1996) highlights the 

importance of drainage density with regards to sediment yield stating that it has a causative 

significance in determining the efficiency with which surface runoff is discharged from an 

area during individual storms. Although this variable can be calculated relatively easily for 

studies involving fewer cases (e.g. White, 1993), calculation was not deemed practical 

within the timeframe of this larger scale study. In addition, Duck and McManus (1990) 

identify the difficulties in measuring drainage density in a reservoir sedimentation study of 

comparatively smaller scope, in the Midland Valley of Scotland. However, Verstraeten et 
al. (2003) included the hypsometeric intergral in the parameterization data set of a 

developed multiple regression model predicting reservoir sedimentation in Spain. A 

statistically stable model, however, was still not produced. As in the case of the multiple 

regression models developed herein, the good R2 (0.80) of the Verstraeten et al. (2003) 

model was caused by the undue influence of three observations from a parameterization 

data set of twenty two observed reservoir sedimentation rates.

Variables also had to be omitted from the data set due to their incompleteness, e.g. dam 

dimensions and reservoir sediment control structures (e.g. residuum lodges and by wash 

channels). Initially reservoirs were omitted from the population for not appearing 

resolvable in the FEH handbook (1999) and their catchments not appearing resolvable in 

the land cover and soil maps (the latter due to coarse spatial resolution). This was necessary 

as these data sources contributed a major part of the catchment data in the population data 

set. However, to remove actual reservoirs from the population for having other incomplete 

data would have reduced the population dramatically, undermining the principal aim of the
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production of a comprehensive assessment of reservoir sedimentation rates across England 

and Wales; thus a careful balance had to be struck (Section 4.2).

In addition, some important variables influencing sedimentation rates could not be readily 

quantified/easily calculated for the population (parameterization) data set due to their 

inherent qualitative nature, and/or lack of data from secondary sources; e.g. reservoir 

sediment control structures, management strategies, allochthonous wet and dry deposition, 

autochthonous sediment production, and the influence of small anthropogenic landscape 

elements (e.g. banks, hedges, tillage directions etc.). The unaccountability of the latter 

group of variables in particular is due to the broad scale nature (and thus coarse spatial 

resolution) of the study. Such parameter omission potentially introduces uncertainty and 

structural error into the regression model (Burrough, 1989; Mujumdar, 2002).

Many of the residuals produced through the multiple regression analyses, undermining the 

inherent assumptions of the technique, have been attributed to reservoir sediment control 

structures and their influence on sediment delivery to reservoir basins as identified by 

White et al., (1996a) (Section 2.11.2.2). Such reservoirs have a low degree of catchment- 

coupling and ideally warrant separate consideration for sedimentation prediction. However, 

theoretically, this cannot be achieved herein as the presence of such structures, as 

mentioned above, cannot be obtained from secondary data sources other than that compiled 

by White et al., (1996a) for the Pennine reservoirs. Therefore, the exclusion of these 

reservoirs from the population data set for this study may not necessarily solve the problem 

of residual production. Different residuals may be produced which cannot be related to such 

management practices. In addition, from a practical perspective, reservoirs identified by 

White et al., (1996a) as having sediment control structures form the majority of the model 

parameterization data sets; therefore their exclusion would severely impact upon the 

representation of the respective populations, threatening the production of robust models.

5.17.2 Inadequate sampling size

As discussed in Section 4.3.2, the parameterization data set fails to account 

comprehensively for the range and natural groupings of collated variables in the population.
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As a result of this, the multiple regression models cannot be over-extrapolated to predict 

APL for those reservoirs beyond the parameterized range covered by the respective 

independent variables. Singh et al. (1988) and Kim and Steenhuis (2001) state that this is 

the main disadvantage of the multiple regression technique.

The parameterization data set, being predominantly composed from the Halcrow data set 

(2001) as a sample of convenience, induced the limited range of prediction for both 

multiple regression models as it was not “custom-built” for the representation of both 

respective populations in this study. However, within the timeframe of this study, the 

parameterization data sets were the most comprehensive obtainable, both practically and 

logistically.

5.17.3 Parameter error

The multiple regression equations do not take into account inherent error that exists in the 

respective parameterization data, which acts to undermine the validity of results (Section 

4.4). For example, the calculation of APL is dependent upon an original reservoir basin 

capacity measure. White et al. (1996c) identify how extreme inaccuracies can result in 

original capacity estimates induced by dated surveying techniques. Error is still induced 

through the surveying methodology employed in this study to calculate a revised reservoir 

basin capacity. In addition error is present in each of the secondary data sources, the 

catchment characteristics derived from the FEH handbook, and land cover and soil maps.

As first identified in Section 5.8.5.1, the problematical relationship between APL and TE in 

Equations 5.1 (predicting APL across the population data set) and 5.8 (predicting 

APLSQRT across the cluster 2 population data set) may induce misleading results. This is 

caused by reservoirs with revised capacities listed in the BRE dams data set (used to 

calculate TE) inducing a broadly negative relative relationship between APL and TE, 

whereas those with original capacities listed inducing a positive relationship. This problem 

was identified through revised reservoir capacities published by Rowan et al. (1995), Duck 

and McManus (1990), and Butcher et al. (1992a) for example, being represented in the 

BRE dams data set as opposed to respective original capacities. Unfortunately, through the
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BRE dams data set in the absence of other sources of evidence, there is no way of affirming 

which each listed capacity relates to (Section 5.8.5.1). An overall negative relationship is 

specified due to the undue influence of Abbeystead and Blakeley reservoirs which have 

extremely high APL rates, partly induced by factors not considered in both Equations 5.1 

and 5.8 (Section 5.8.5.1).

In addition, error may be introduced in the multiple regression models through the 

inclusion of an independent variable that is significantly correlated with reservoir annual 

percentage capacity loss (APL), but may have occurred by chance. This is particularly 

associated with the potential problem of multiple significance levels. Whilst each individual 

correlation between the APL and independent variable variants are significant at the 0.05 

level, when considered cumulatively the minimum number that may occur by chance 

increases with the number of significant correlations obtained for a particular APL variant. 

For example, when considering 100 correlations at a significance level of 0.05, at least 5 

may occur by chance. However, the minimum number that may occur by chance for 

Equations 5.1 and 5.8 are 0.4 and 2 respectively. These values represent the largest 

minimum number of correlations that may occur by chance for each model as the majority 

of the correlation coefficients are significant at levels stronger than 0.01. Therefore, the 

potential of error introduction through the effect of multiple significance levels remains 

small for both models.

5.17.3.1 Parameter non-stationaritv

The variables incorporated into Equations 5.1 and 5.8 do not exhibit stationarity; they 

change over time. For example, the respective measures of reservoir sedimentation, APL 

and APLSQRT are average values aggregated over the period of reservoir impoundment 

and fail to account for the temporal variability of sediment production, delivery and 

location of sediment sources (Stott et a l 1988). The assumption that the variables do 

exhibit stationarity is a criticism of this application of multiple regression, rather than the 

technique itself.
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5.17.4 Specification error

Price et al., (2000b) and Thiemann et al., (2001), state that hydrological systems are 

complex and inherently non-linear, therefore modelling such systems using multiple 

regression analysis, assuming linear relationships between the dependent and independent 

variables, appears flawed. This may account for the low degree of user-confidence of both 

Equations 5.1 and 5.8 in respective population APL conditional mean prediction (Sections

5.9.3 and 5.14.3).

In spite of these contributory reasons for the relative failure of the multiple regression 

approach in general, Lunneborg (1994) states that when responses in multiple regression 

are complexly determined (e.g. reservoir sedimentation/sediment yield), any model and its 

corresponding observational study (where the explanatory variables are observed rather 

than manipulated as in an experimental study) can only look at part of a complex 

theoretical structure. Often this means that the postulated explanation maybe relatively 

weak.

5.17.5 Conclusion

It is clear from the preceding discussion that the error and uncertainty in the 

parameterization data sets, and the inherent complexity of sediment production and delivery 

processes prevent robust, reliable multiple regression models being constructed predicting 

reservoir sedimentation rates. However, fuzzy set multi-criteria evaluation (MCE), the 

second modelling approach being applied in this investigation, is able to account for such 

error and uncertainty associated with the quantification and specification of the sediment 

production and delivery processes. The application of fuzzy set MCE in modelling 

reservoir sedimentation for the population data set is undertaken in the proceeding chapter, 

Chapter 6.
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6. Modelling - Fuzzy set multi-criteria evaluation (MCE)

6.1 Introduction

This chapter discusses the relatively recent application of fuzzy set multi-criteria evaluation 

(MCE), in water resources/hydro-geomorphological research (Mujumdar, 2002). It 

describes the technique and documents the construction of two further models; one 

concerning the prediction of the degree of reservoir sedimentation, the other concerning the 

defuzzification of this value into an actual APL prediction for the population. Fuzzy set 

MCE is a particular application of fuzzy set theory. The production of a fuzzy set MCE 

model predicting APL for the population data set contributes in achieving objective three of 

this research; the production of two parameterized, verified, validated and operationalized 

empirical models using multiple regression analysis and fuzzy set multi-criteria evaluation 

respectively. All of the respective statistical analysis and results are included in Appendix 

5; only the key results pertinent to the discussion of the models are included in this chapter.

6.2 Previous fuzzy set MCE applications

Fuzzy set MCE has not been previously applied in reservoir sedimentation prediction. 

Indeed, Mujumdar (2002) states that the application of fuzzy set theory in water resources 

management is relatively recent and provides an opportunity for useful research 

contributions in the future. Applications in soil survey and land evaluation (Burrough, 

1989; Burrough et a l, 1992), real time reservoir operation (Panigrahi and Mujumdar, 2000; 

Dubrovin et a l , 2002), the prediction of river water quality (Chang et a l , 2001), estimating 

the risk of desertification (Sasikala and Petrou, 2001), and landslide susceptibility 

(Ercanoglu and Gokceoglu, 2002) have all proved successful in modelling such complex 
systems.
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6.3 Fuzzy set theory -  a description

Multiple regression analysis (Chapter 5) produced a relatively poor result in the prediction 

of the actual sedimentation quantity APL partly due to its inability to cope with uncertainty 

and vagueness endemic within geographical phenomena. Such uncertainty and vagueness 

can be associated with:

• Uncertainty in the measurement of variables collated in the data sets from each data 

source associated with data quality issues, random errors, systematic error etc.

• Subjective uncertainty: expert opinion and intuition associate values of sediment- 

inducing variables with respective degrees of reservoir sedimentation. Such 

associations can reflect the non-statistical characteristics in the real world (Cheng et

al., 2001).

• Experts often express their knowledge in terms of vague linguistic variables such as 

“poorly drained”, “moderate nutrient availability”, “very high risk to erosion”, etc. 

(e.g. Evans, 1990). Even though these terms may be defined with precision, in 

practice they retain a strong air of qualitative ambiguity (e.g. Halcrow, 2001).

• A variable is often characterized by a measurement that takes continuous values. 

Forcing this variable into classes according to the value of its measurement (e.g. 

Rooseboom and Lotriet, 1992), ignores the fact the transition from one class to the 

other may be gradual and the boundaries between classes fuzzy (Sasikala and 

Petrou, 2001).

The use of fuzzy set applications can handle such uncertainty and vagueness in a definable 

way, making it suitable in the application of reservoir sedimentation prediction. Regarding 

fuzzy sets, Burrough (1989, page 491) states:

“The strength of the fuzzy set approach is that it starts from the premise that nature may be 

inherently vague or imprecise, and does not try to pretend that the real world, which has
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been modelled by data entities created by human or machine observation, is more exact, or 

more perfect than it really is.”

Fuzzy sets are sets (or classes) without sharp boundaries; that is, the transition between 

membership and non-membership of a location in the set is gradual (Zadeh, 1965). A fuzzy 

set is characterized by a fuzzy membership grade (also called a possibility) that ranges from 

0.0-1.0, indicating a continuous increase from non-membership to complete membership. A 

fuzzy set can be drawn as a membership curve defining how the grade of membership of an 

individual with an attribute value x is determined (Burrough et al, 1992).

6.4 Application of fuzzy set MCE

6.4.1 Principal components analysis

Fuzzy set MCE was performed in the GIS Idrisi 32 (release 2) (Clark Labs, 2001). Idrisi 32 

can only handle a maximum of 32 variables in its FUZZY module, whereas 57 are 

represented in the data set for this study. In order to reduce the number of variables, 

principal components analysis was performed on the population data set (Table A 1.25, 

Appendix 1) using the SPSS 10 (1999) statistics package to extract those variables that 

account for the most variance. The main applications of principal components analysis are: 

(1) to reduce a large number of variables in a data set to a smaller number of factors or 

components, and (2) to detect structure in the relationships between variables (Shaw and 

Wheeler, 1994). Principal components analysis extracts the same number of components 

from a data set as variables entered; therefore 57 components were extracted. For each of 

the 57 variables, the component that contained the maximum respective eigenvector was 

determined (Table 6.1). Where more than one variable had a greatest respective eigenvector 

in a particular component, only the variable with the largest eigenvector was entered into 

the fuzzy set analysis. This process reduced the number of variables that had to be entered 

into the fuzzy set MCE from 57 to 24; these are presented in Tables 6.1 and 6.2.
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Table 6.1 The maximum absolute principal component eigenvector loading for each variable. The asterisk 

denotes the variable that accounts for the most variance in a particular component.

Variable Principal component Eigenvector
CAREA 3 0.653
QMED 3 0.472
MEANFARL* 13 0.384
FARE* 18 0.405
PROPWET 1 0.834
ALTBAR 1 0.885
BFIHOST* 9 0.674
DPLBAR* 3 0.696
DPSBAR 1 0.689
LDP 3 0.689
RMED1H 1 0.487
RMED1D 1 0.923
RMED2D 1 0.930
SAAR* 1 0.952
SAAR4170 1 0.949
SPRHOST 1 0.634
URBCONC 1 0.580
URBEXT 7 0.419
URBLOC 1 0.578
TE 3 0.389
S401* 19 0.423
S405* 11 0.639
S454* 20 0.716
S455 2 0.700
S469* 17 0.449
S475 17 0.403
S486* 2 0.716
S487* 14 0.502
S489 2 0.660
S495* 22 0.527
S506 6 0.683
S507* 6 0.693
S660* 21 0.496
S686* 23 0.604
S692 2 0.714
BRACK 11 0.594
CONIF 5 0.487
DECID 5 0.548
D SHRUB 4 0.490
DSHRUBH* 5 0.537
FELLED* 16 0.375
GRASS 10 0.391
IB ARE* 25 0.454
IWATER 14 0.502
LOWBOG 5 0.362
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MEADOW 4 0.430
MOORLAND 4 0.664
MOWN 4 0.445
OPENS* 4 0.690
OPENSH 5 0.533
ROUGH* 15 0.357
RUDERAL* 10 0.357
SCRUB* 12 0.581
SUBURB 7 0.444
TILLED 4 0.403
UPBOG* 30 0.474
URBAN* 7 0.537

6.4.2 Variable membership curves

Using the range of values for each variable in the population data set, together with expert 

scientific opinion (as discussed in Chapter 2), a fuzzy membership curve was constructed 

for each variable. Each variable membership curve specifies the relationship between the 

values of each variable, and their membership of the fuzzy set depicting the degree to 

which the respective variable induces reservoir sedimentation. Each variable is assumed to 

have a mutually exclusive effect on the degree of sedimentation when the membership 

functions are first constructed. The nature of each membership function is discussed in 

Sections 6.4.2.1 -  6.4.2.4. For each variable, a linear membership function was used. The 

inflection points in each membership function were determined by the maximum and 

minimum values of the respective variable in the population. Thus, the lowest value of a 

variable in the population has a membership value of 0, and the highest a membership value 

of 1 (represented as 255 in Idrisi 32, as 0-255 spans the byte level range). The direction of 

each linear membership function (positive or negative) was determined from the literature 

and expert scientific opinion.

Burrough (1989) states that the subjectivity involved in assigning fuzzy membership 

functions and factor weights is the weakest part of fuzzy set theory. However, Panigrahi 

and Mujumdar (2000) state that, with regards to model operators, the incorporation of 

expert opinion makes the model more acceptable.
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6.4.2.1 Soil Variables

Each of the soil variables, identifying the area of the respective soil class with a very high, 

or high risk of erosion (after Evans, 1990), has a positive membership curve. The premise is 

that the larger the area of coverage, the greater the quantity of eroded material and reservoir 

sedimentation.

6.4.2.2 Land cover variables

The land cover variables identifying the average percentage cover of each represented class 

in each catchment have a mixture of positive and negative membership curves. Open shrub 

moor (OPENS) was allocated a positive membership curve as this cover type is very 

sensitive to erosion induced by grazing (Section 2.11.1.6.3) which prevents the dominance 

of dwarf shrub species. In addition, under this land cover type fire is used as a management 

tool for grouse management and to improve conditions for grazing (Evans, 1993; Fuller, 

1995). Both of these effects expose the soil surface (typically soils of high erodibility) and 

induce widespread erosion (Evans, 1993), increasing the potential of reservoir 

sedimentation (subject to sediment delivery). Therefore the premise is, the larger the 

average percentage catchment cover of OPENS, the greater the degree of sedimentation.

Dense shrub heath (DSHRUBH) was allocated a negative membership curve as increasing 

average percentage catchment cover is likely to decrease the degree of runoff, erosion and 

consequently reservoir sedimentation. This land cover class incorporates high densities of 

heather, ling, mixed broom, and gorse; being predominantly evergreen, a dense cover is 

maintained throughout the year (Fuller, 1995). Therefore the premise is, the larger the 

average percentage catchment cover of DSHRUBH, the smaller the degree of 

sedimentation.

Urban development (URBAN) was allocated a positive membership curve as increasing 

average percentage catchment cover of cities, large town centres, major industrial and 

commercial sites, major areas of concrete and tarmac, and permanent areas of bare ground 

associated with these developments such as car-parks and tips (Fuller, 1995) increases 

runoff and produces more flashy hydrographs in the local fluvial system. This is conducive 

to stream channel erosion and reservoir sedimentation (Section 2.11.1.6.4).
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Ruderal weed (RUDERAL), defined as ground colonized by small annual and short-lived 

perennial plants usually with a considerable remnant of bare ground, especially in winter 

(Fuller, 1995), was allocated a positive membership curve. Therefore, this land cover type 

is conducive to erosion.

Scrub/orchard (SCRUB) was allocated a negative membership curve as it is associated with 

deciduous vegetation, typically with substantial herbaceous vegetation, providing a dense 

covering (Fuller, 1995). This acts to reduce runoff and erosion.

Rough grassland (ROUGH) includes lowland herbaceous vegetation of rough or derelict 

ground and was allocated an associated negative membership curve. The characteristic 

feature of this category is that the swards are not cropped by mowing or grazed by stock 

forming a high standing crop of vegetation, most of which dies back in winter leaving a 

dense litter layer (Fuller, 1995). This also acts to reduce runoff and erosion.

Felled forest (FELLED) is associated with bare ground, thereby favouring runoff 

production and erosion. As a result of this, a positive membership curve was assigned. 

However, as felled forest areas revegetate (firstly with ruderal weeds and then become 

rough grassland) runoff production is reduced (Fuller, 1995). This also reduces the potential 

for felled forest areas contributing to reservoir sedimentation. The inability of the model to 

account for this temporal change is a major weakness of the methodology.

Inland bare ground (BARE) includes bare natural surfaces such as soil, rock, sand and 

gravel. However, their origin is not always natural; ground which has been cleared by 

human activities or by livestock is included (Fuller, 1995). Whilst these bare surfaces are 

not all erosive they each induce runoff production which has the potential to induce erosion 

in other parts of the catchment (e.g. stream channels), thus this cover type was assigned a 

positive membership curve.

Upland bog (UPBOG) was allocated a positive membership curve due to it being an 

extremely erosive land cover type (Labadz et al., 1991). Whilst upland bogs have many 

grass and dwarf shrub species, as well as mosses, they are characterized by waterlogging
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and surface water especially in winter (Fuller, 1995). As a result, much runoff is produced 

which can induce gullying, piping, bog-bursts and mass movement (e.g. peat slides) 

(Evans, 1993) forming significant contributions of deposited reservoir sediment 

(Hutchinson, 1995; Labadz et a l , 1999). Erosion of peat bogs is also associated with 

disturbance of vegetation by pollution or trampling, leading to exposure of bare peat which 

is very erodible.

6.4.2.3 Hvdro-Meteorological Variables

The hydro-meteorological variables of average annual rainfall 1961-1990 (SAAR) and base 

flow index (BFIHOST) were allocated positive and negative membership curves 

respectively. The positive membership curve associated with SAAR is explained by the fact 

that the larger the average annual rainfall, the greater the quantity of water moving the 

through the catchment system and the greater the quantity of an erosion and sediment 

transport agent.

BFIHOST has a negative membership curve because a larger value implies a greater degree 

of rainfall infiltration, thus reducing potentially erosive runoff production. Whilst base flow 

maintains open stream channel flow, it is the moderate, frequent flows induced by heavy 

rainfall and runoff (associated with the mean annual flood or with a recurrence interval of 

every five years) that are most effective in sediment transportation (Wolman and Miller, 

1960).

6.4.2.4 Geomorphological variables

The geomorphological variables of the catchment size and drainage path configuration 

index (DPLBAR), flood attenuation index due to reservoirs and lakes (FARL), and mean 

flood attenuation index due to reservoirs and lakes (MEANFARL) were each assigned a 

positive membership curve.

Greater values of DPLBAR induce increased reservoir sedimentation as it implies greater 

quantities of water moving through the catchment system, increasing potential stream 

channel erosion and sediment transport. This is the explanation Dedkov and Moszherin
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(1992) gave for positive relationships between sediment yield and catchment area in upland 

areas (Section 2.11.1.7.1).

Values of FARL and MEANFARL approaching 1 indicate reduced flood attenuation 

upstream of the reservoir. Such attenuation acts to reduce increased sediment transport into 

reservoir basins associated with larger magnitude events.

6.4.3 Fuzzy set aggregation -  weighted linear combination

The prediction of the degree of reservoir sedimentation from the variable membership 

curves is a form of fuzzy multi-factorial evaluation (MCE). Lu (1998) defines fuzzy MCE 

as the process where one judges an overall property that is affected by a number of 

variables of which the influencing degrees are fuzzy. As a result, an aggregation operation 

is required to combine the variable fuzzy sets to produce the desired single fuzzy set 

(Sasikala and Petrou, 2001) depicting the ultimate degree of reservoir sedimentation.

Weighted linear combination (WLC) was used in Idrisi 32 as the aggregation operation. 

Through WLC the products of each standardized variable multiplied by a corresponding 

weighting factor are summed and divided by the total number of variables, creating a 

calculated weighted average spanning the Idrisi 32 byte level range from 0-255 for each 

reservoir. This calculated weighted average is termed the ultimate fuzzy number. Thus, 

reservoirs with fuzzy numbers approaching 255 represent those with the highest degree of 

sedimentation, and those approaching 0 represent the lowest.

The use of weighting factors for each of the 24 variable membership curves indicating the 

relative importance of the respective variable in influencing the degree of sedimentation 

allows variables to trade off, i.e. the low sediment-inducing potential of one variable can be 

compensated for by the high sediment-inducing potential of another. The weighting factors 

were also identified through the principal components analysis (Section 6.4.1); Ercanoglu 

and Gokceoglu (2002) used this approach to weight factors in an assessment of landslide 

susceptibility. The eigenvalue (the amount of variance extracted by a given component -  

Shaw and Wheeler, 1994) of each principal component represented by the 24 variables was
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divided by the sum of the eigenvalues of the represented principal components. The 

resultant was applied as a weighting factor to the variable that accounts for most the 

variance in each principal component. The weighting factors summed to 1, a requirement of 

WLC (Table 6.2).

Clearly, the model is constructed in a very different way from the previous multiple 

regression models. As opposed to constructing the model from a parameterization data set 

and extrapolating it to predict for a population, the fuzzy set MCE approach is directly 

applied to the population.

Table 6.2 Variables entered into fuzzy set multi-criteria analysis

Variable Abbreviation Factor Weight

Average annual rainfall 1961-1990 SAAR 0.179893

Bridgenorth soil association S486 0.087540

Catchment size & drainage path configuration index DPLBAR 0.086087

Open shrub moor OPENS 0.069796

Dense shrub heath DSHRUBH 0.053212

Fyfield 2 soil association S507 0.046082

Continuous urban URBAN 0.042723

Base flow index BFIHOST 0.035253

Ruderal weed RUDERAL 0.033742

Bangor soil association S405 0.031674

Scrub/orchard SCRUB 0.029548

Mean flood attenuation due to reservoirs & lakes index MEANFARL 0.027652

Cuckney 1 soil association S487 0.025891

Rough/marsh grass ROUGH 0.025412

Felled forest FELLED 0.025180

South Petherton soil association S469 0.024296

Flood attenuation due to reservoirs and lakes index FARL 0.023975

Revidge soil association S401 0.023783

Bearsted 1 soil association S454 0.023297

Everingham soil association S660 0.022999

Frilford soil association S495 0.022246

Winter Hill soil association S686 0.021717

Inland bare ground IB ARE 0.020627

Upland bog UPBOG 0.017375
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6.5 Fuzzy set MCE model 1 evaluation

6.5.1 Verification & validation

The fuzzy set MCE model 1 was constructed within the Idrisi 32 environment; the output 

regarding the prediction of a fuzzy number depicting the degree of reservoir sedimentation 

between 0 and 255 for the population data set is presented in Figure 6.1. As a result of the 

model being constructed in a different way to the previous regression models, it is verified 

and validated against the reservoirs with an observed APL that formed the parameterization 

data set in the previous analysis. However, due to Idrisi 32 being a raster based GIS, only 

54 reservoirs are resolvable due to the relatively coarse spatial resolution of the soils and 

land cover data (others were in the same 1km2 pixel as another individual).

Pearson’s correlation was applied to assess the degree to which the fuzzy number predicted 

by the model simulates the relative pattern of the observed APL data. From Table 6.3, a 

significant positive correlation coefficient of 0.491 is produced between the fuzzy number 

and observed APL. However, from Figure 6.1 it is apparent that this significant relationship 

is influenced by a small number of points; there is, however, a general progression of the 

main data point cluster in a positive direction.

Table 6.3 Verification and validation results -  Pearson’s correlation and Paired T-test

Verification & validation Fuzzy MCE Model 1
Correlation coefficient 0.491
Significance level 0.000
Number 54
Paired T-test statistic -0.001
Significance level 0.999
Degrees o f freedom 53
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Figure 6.1 Fuzzy Number versus observed APL
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The significant correlation coefficient implies that the model is replicating the relative 

pattern of the observed APL values. This replication is displayed in Figure 6.2, directly 

comparing the z-scores of both data series. From Figure 6.2 it appears that the model is 

more extreme in depicting relative differences in the degree of reservoir sedimentation in 

comparison to the real world observation. The model tends to over-predict when the 

observed APL rate is high, under-predict when the observed APL rate is low, and produce a 

fuzzy number very close to the relative magnitude of the respective observed APL values 

for the reservoirs experiencing average/typical sedimentation rates. This is supported 

through Figure 6.3 and the mean residual (observed APL z-score minus predicted fuzzy 

number z-score) of 0.0001 (Table 6.4). This implies that the model is highly sensitive to the 

degree of influence exerted by the sediment-inducing variables. In addition, the paired T- 

test result between the two z-score data series identifies no significant difference from zero 

for the mean of the respective pairwise differences (Table 6.3). This implies good 

agreement between the two data series and that the model is replicating the real world 
pattern of observed APL values reasonably well.
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Figure 6.2 The relative pattern o f the fuzzy number z-score and APL z-score
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Figure 6.3 Observed APL z-score subtracted from the predicted fuzzy number z-score
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Table 6.4 Key to Figures 6.2 & 6.3 & corresponding observed APL z-score, predicted fuzzy number z-score 

& residual values

Reservoir Number Reservoir Name Fuzzy z-score APL z-score Residual
1 Abbeystead 2.836 3.983 -1.147
2 Angram 0.873 -0.562 1.435
3 Barden Lower -0.109 -0.507 0.398
4 Barden Upper 1.691 -0.230 1.920
5 Blackmoorfoot -0.600 -0.288 -0.312
6 Blakeley 2.181 4.436 -2.254
7 Booth Wood 0.545 -0.737 1.282
8 Broadstones -1.254 -0.642 -0.612
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9 Broomhead -0.109 -0.084 -0.025
10 Chelker -0.436 -0.474 0.037
11 Dale Dyke -0.273 -0.308 0.035
12 Dean Head Upper -0.273 -0.104 -0.169
13 Deanhead -0.109 -0.582 0.473
14 Deerhill 0.054 -0.554 0.608
15 Eldwick -0.927 0.070 -0.997
16 Embsay 1.036 0.038 0.998
17 Fewston 0.054 -0.685 0.739
18 Gorple Lower -0.600 -0.288 -0.312
19 Gorple Upper -0.273 -0.364 0.092
20 Gorpley 0.054 -0.089 0.144
21 Green Withens -0.927 -0.629 -0.298
22 Harden -0.600 -0.097 -0.503
23 Hewenden -0.273 0.290 -0.562
24 Holmestyes 1.200 -0.711 1.910
25 Leeshaw -0.436 0.150 -0.586
26 Lindley Wood -1.745 -0.501 -1.245
27 Lower Laithe -0.436 -0.084 -0.352
28 Morehall -0.436 -0.745 0.308
29 Ogden -0.764 -0.566 -0.198
30 Ponden 0.054 -0.274 0.328
31 Ramsden 2.345 0.402 1.943
32 Redmires Upper 1.200 -0.160 1.360
33 Riding Wood 1.691 0.449 1.242
34 Rivelin Upper 0.054 -0.229 0.283
35 Roundhill -0.764 -0.541 -0.223
36 Royd Moor -1.745 -0.385 -1.360
37 Rybum -0.109 -0.691 0.582
38 Scammonden -0.600 1.238 -1.838
39 Scar House 1.036 0.085 0.952
40 Scout Dike -1.254 -0.116 -1.138
41 Silsden -1.254 0.041 -1.296
42 Snailsden -0.764 0.457 -1.221
43 Strines -0.436 -0.377 -0.059
44 Stubden -0.764 -0.178 -0.586
45 Tunnel End 0.382 2.612 -2.231
46 Underbank 0.545 -0.503 1.049
47 Walshaw Dean Lower -0.273 0.048 -0.320
48 Walshaw Dettn Middle -0.273 -0.388 0.116
49 Walshaw Dean Upper -0.109 -0.115 0.006
50 Wessenden Head -0.927 -0.459 -0.469
51 Wessenden Old 0.382 0.880 -0.498
52 Widdop -0.436 -0.442 0.005
53 Windleden Upper 0.218 -0.292 0.510
54 Ystradfellte 1.854 -0.194 2.049

Mean 0.000 0.000 0.000



The larger residuals identified in Figure 6.3 and Table 6.4 are predominantly induced by 

factors influencing the respective sedimentation rates not accounted for by the model. The 

reservoirs with the largest positive residuals are Blakeley, Royd Moor, Scammonden and 

Tunnel End (2.254, 1.360, 1.838 and 2.231 respectively) and represent an under-prediction 

by the fuzzy set MCE model 1. The production of Blakeley, Scammonden and Tunnel End 

as positive residuals was discussed in Section 5.5.5 in relation to the multiple regression 

model (Equation 5.1); the same potential explanations apply here. The production of Royd 

Moor as a positive residual can be attributed to its catchment being 100% pasture (White et 
al., 1996a). Studies by Christiansson (1979), Heathwaite et al. (1990), Foster and Walling 

(1994) and van der Post et al. (1997) each identify increased sediment yield rates associated 

with the grazing of pastureland (Section 2.11.1.6.3). This effect is not directly incorporated 

into the model; it is only inferred through the respective land cover type fuzzy sets.

The reservoirs with the largest negative residuals are Angram, Barden Upper, 

Blackmoorfoot, Ramsden, Holmestyes and Ystradfellte (-1.435, -1.920, -1.282, -1.943, - 

1.910 and -2.049 respectively). The over-prediction for the first four reservoirs can be 

associated with the presence of catchment management structures in the respective 

catchments, acting to reduce sediment transport into the reservoir basins. These catchment 

management structures include residuum lodges, catchwater/conduit interceptions, bywash 

channels and reservoirs upstream (White et al., 1996a). For the latter two reservoirs, the 

over-prediction of the relative degree of reservoir sedimentation can be attributed to the 

respective catchments having relatively large areas of land use types that are comparatively 

less conducive to sediment production, but not included in the fuzzy set MCE analysis. The 

catchment of Holmestyes reservoir has high average percentage catchment covers of 30% 

moorland and 6% bracken in comparison to the population data set (Table A 1.3, Appendix 

1). In addition, it has experienced afforestation that has contributed in reducing sediment 

yields to limited values after an initial increase in sediment yield associated with open 

ditching (Burt et al., 1984). Each of these land covers provide good protection against soil 

erosion (Fuller, 1995), but are not represented in the fuzzy set MCE model 1. Instead, the 

protective effects of the land covers are offset in the model by the presence of upland bog 

areas, which are very erosive (Labadz et al., 1991). The catchment of Ystradfellte has high 

average percentage catchment covers of 32% meadow and 16% deciduous forest in
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comparison to the population data set (Table A1.3, Appendix 1). Again, both land cover 

types provide good ground coverage (the former being only lightly grazed in a few 

circumstances), thus reducing the soil erosion risk (Cheng et al, 2002; Fuller, 1995), but 

are not represented in the fuzzy set MCE model 1.

In conclusion, from Figures 6.1 and 6.2, and the results of the Pearson’s correlation and 

paired T-test (Table 6.3), it is apparent that the model is behaving in the way scientific 

opinion/intuition would suggest through the construction of the initial fuzzy membership 

curves and their respective weightings. In addition, the comparison between the fuzzy 

number and observed APL z-scores suggests agreement between the behaviour of the 

model and that of the real world system. Therefore the model is verified and validated to a 

reasonably good degree.

6.6 Fuzzy set MCE model 1 operationalization

From Figure 6.4 displaying the fuzzy set MCE model 1 output for the population of 

reservoirs, sedimentation appears most severe in the upland areas of Cumbria, the Brecon 

Beacons and Cambrian Mountains of Wales, the southern Pennines, and Exmoor and 

Dartmoor in Devon. From the analysis of the fuzzy numbers calculated for each of the 

contributory variables (Table A1.3, Appendix 1), this can be principally attributed to 

increased rainfall (SAAR) and the range of erosive soil types in these areas (e.g. S401, 

S405 and S454). In addition, the greater average stream lengths (represented through 

DPLBAR) of these reservoir catchments act to increase sedimentation through conveying 

greater quantities of potentially erosive streamflow through the catchment system. Indeed, 

DPLBAR is a surrogate for catchment area which generally has a positive relationship with 

sediment yield in reservoir catchments across England and Wales (Butcher et al, 1993) 

(Section 2.11.1.7). These results support the commonly held view regarding the nature of 

the process across the country (Halcrow, 2001). However, whilst the aforementioned areas 

of reservoirs experience comparatively high degrees of sedimentation, reservoirs in the 

Weald and the Vales of Kent and Sussex, are experiencing reasonable degrees of 

sedimentation (Figure 6.4). This is an interesting insight, as sedimentation has not been 

perceived to be a problem across southeast England, with no major studies being published.
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From Table A 1.3 (Appendix 1) this can be broadly attributed to the relatively high degree 

of open shrub land cover and erosive soil types, particularly shallow silty soils overlying 

the sandstone Hastings Beds (e.g. S405 and S469), that comprise the catchments.

Whilst there is reasonably good user-confidence in the model across the population 

(Section 6.5), predictions for the reservoirs in southeast England are theoretically even 

sounder. Temporal variation in the variables collated is not accounted for in the model. 

Therefore the older reservoirs in the population (e.g. those built in the Victorian age to 

supplement the growth of manufacturing and large urban populations especially in northern 

England) have potentially experienced a greater degree of change in their sediment- 

inducing variables. This is particularly reflected in trap efficiency and land cover changes. 

Examples of large-scale land cover changes include the increase in afforestation and felling 

increased after 1900 when the Forestry Commission was founded to produce export 

substitution softwoods. Afforestation further increased in the post-Second World War years 

when incentives were given to plant trees. Such change acts to reduce/increase the degree 

of reservoir sedimentation over time, yet the model assumes stationarity. Therefore, greater 

temporal variation in the sedimentation influencing variables induces greater uncertainty in 

the model prediction. However, many of the reservoirs across southeast England were built 

around the 1960s to supplement the growth of suburban areas and commuter towns (e.g. 

Ardingly, Bewl Bridge and Bough Beech). As a result, the potential for temporal variation 

in sediment-inducing variables over these shorter timespans is reduced, thereby reducing 

the degree of uncertainty associated with the sedimentation predictions.

The identification of reasonable degrees of reservoir sedimentation across southeast 

England reiterates the pattern of results produced through Equations 5.1 and 5.8 using 

multiple regression analysis. However, this could not be previously ascertained due to 

problematic negative relationships between reservoir sedimentation and trap efficiency -  

evidence of the comparatively low user-confidence inspired by both models. There is much 
more confidence in this observation associated with the fuzzy set MCE output as TE is not 

incorporated into the analysis due to it not having a large eigenvector (Table 6.1).
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Figure 6.4 The fuzzy MCE model 1 output. The legend refers to the predicted fuzzy number/degree o f  

reservoir sedimentation.
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6.7 Defuzzification

Defuzzification is often employed to convert a fuzzy number into a crisp value of the 

process and respective units being modelled. This can be achieved through simple linear 

regression (Kosko, 1994). As a result, simple linear regression analysis was performed on 

54 reservoirs from the original parameterization data set with observed APL values and the 

respective ultimate fuzzy numbers computed through the WLC. Only 54 reservoirs from 

the original 60 in the parameterization data set were used to parameterize the 

defuzzification model as these were the only reservoirs resolvable in Idrisi 32. Due to the 

1km x 1km spatial resolution of data incorporated into Idrisi 32, those reservoir dam
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locations within 1km2 of each other could not be resolved in raster format due to the coarse 

resolution. This is discussed in detail in Section 4.3.3.

6.8 Simple linear regression defuzzification -  untransformed data

The assumptions of multiple regression analysis identified in Section 5.2 are also applicable 

to simple linear regression apart from non-multicollinearity, which is not relevant as only 

one independent variable is incorporated.

6.8.1 Test o f linearity -  Pearson’s correlation

The significant Pearson’s correlation coefficient identified in Section 6.5.1 and associated 

scattergraph (Figure 6.1) affirmed a degree of linearity between observed APL and fuzzy 

number.

6.8.2 Result and diagnostics

The defuzzification model produced by simple linear regression analysis is shown in 

Equation 6.1 and accounts for a low 24% of the variation observed in APL.

APL = -0.702 + (0.012 x FUZZYNO) (Eq. 6.1)

The essential regression diagnostics assessing the compliance of the result with the 

assumptions of the technique are presented in Table 6.5.
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Table 6.5 Simple linear regression diagnostics results; ^ denotes compliance with the respective assumption, 

X denotes non-compliance. For the Leverage and Cook’s distance results, the number o f cases inducing the 

non-compliance with the assumption o f linearity are presented.

Assumption Diagnostic Result
Linearity Analysis o f  variance V

t statistic V
Leverage X - 8 cases
Cook's distance X - 1 case

Residual independence Durbin-Watson test V
Residual constant variance Scattergraphs - residuals versus predicted values X
Residual normality Kolmogorov-Smirnov test X

6.8.3 Summary o f Equation 6.1

Equation 6.1 accounts for a relatively poor 24% of the variance observed in APL. In 

addition, from Table 6.5, the model does not meet all of the assumptions required for a 

robust, reliable regression model. It appears that the poor degree of linearity between the 

independent and dependent variable (identified through the leverage and Cook’s distance 

values) is inducing violations of the assumptions of residual constant variance and 

distribution normality (Norusis, 1994). As a result of this, three standard transformations 

were applied to each of the 57 independent variables in an attempt to improve the 

robustness of the simple regression model in the prediction of defuzzified APL; logs to the 

base 10, squares, and square roots (Ebdon, 1995).

6.9 Simple linear regression defuzzification -  independent variable 

transformations

This section documents the incorporation of transformed independent variables (logs to the 

base 10 - FUZZYLOG, squares - FUZZYSQ, and square roots - FUZZYSQRT) into a 

simple regression analysis predicting APL in an attempt to improve the compliance of the 

defuzzification model with the regression assumptions of linearity, residual constant 

variance, and residual distribution normality.
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6.9.1 Test of linearity -  Pearson's correlation

The Pearson’s correlation results between the dependent variable (APL) and each of the 

transformed fuzzy number data series (FUZZYLOG, FUZZYSQ, FUZZYSQRT) are 

presented in Table 6.6. The respective scattergraphs are presented in Figures 6.5, 6.6 and 

6.7.

Clearly none of the fuzzy number transformations yield a significant correlation coefficient 

greater than that obtained using the untransformed fuzzy number data series of 0.54 

(Section 6.8). In addition, the respective comparisons between Figure 6.1 and Figures 6.5, 

6.6 and 6.7 suggest no apparent improvement over the reduction in the divergence between 

the few unduly influential points enforcing the significant correlations and main data 

clusters. As a result of this, regression was only performed on the transform that yielded the 

greatest correlation coefficient, that of the square transform (FUZZYSQ).

Table 6.6 Pearson’s correlation results between APL and FUZZYLOG, FUZZYSQ & FUZZYSQRT

Fuzzy number variant r P n
FUZZYLOG 0.470 0.000 54
FUZZYSQ 0.510 0.000 54
FUZZYSQRT 0.481 0.000 54

Figure 6.5 Fuzzy number log 10 transform (FUZZYLOGIO) versus observed APL
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Figure 6.6 Fuzzy number square transform versus observed APL
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Figure 6.7 Fuzzy number square root transform (FUZZYSQRT) versus observed APL
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6.9.2 Result and diagnostics

The potential defuzzification model incorporating the square transformed fuzzy number 

data series (FUZZYSQ) is shown in Equation 6.2 and accounts for a low 26% of the 

variation observed in APL.
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APL = -0.3 + ([8.348 x 10 ~5 ] x FUZZYSQ) (Eq. 6.2)

The relevant simple linear regression diagnostics assessing the compliance of the result 

with the assumptions of the technique are presented in Table 6.7.

Table 6.7 Comparison o f simple linear regression diagnostics results; V denotes compliance with the 

respective assumption, X denotes non-compliance. For the Leverage and Cook’s distance results, the number 

o f cases inducing the non-compliance with the assumption o f linearity are presented.

Assumption Diagnostic Eq. 6.1 Eq. 6.2
Result Result

Linearity Analysis o f  variance V V
t statistic V V
Leverage X - 8 cases X - 8 cases
Cook's distance X - 1 case X - 2 cases

Residual independence Durbin-Watson test V V
Residual constant variance Scattergraphs - residuals versus predicted values X X
Residual normality Kolmogorov-Smimov test X V
Total number of refutations 3 3

6.9.3 Summary o f Equation 6.2

The independent variable (fuzzy number) was transformed in an attempt to improve the 

degree of linearity between the aforementioned variable and the dependent variable APL. 

This was undertaken with the purpose of improving the robustness of the ultimate 

defuzzification regression model.

Equation 6.2 provides a slightly improved coefficient of explanation over the 

untransformed model, Equation 6.1 (26% in comparison to 24%). However, on balance, 

concerning the number of assumption violations, there is no real improvement regarding 

the degree to which the regression assumptions are met (Table 6.7). As a result of this, the 

same standard transformations were made of the dependent variable APL and correlated 

with the fuzzy number variants as a precursor to regression analysis, again in an attempt to 

improve the validity of the ultimate defuzzification model.
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6.10 Simple linear regression defuzzification -  transformed independent 

& dependent variables

This section documents the incorporation of transformed independent and dependent 

variables (logs to the base 10, squares, and square roots) into a multiple regression analysis 

predicting reservoir sedimentation in an attempt to improve model compliance with the 

regression assumptions of linearity, residual constant variance, and residual distribution 

normality.

6.10.1 Tests for linearity -  Pearson''s correlation

The Pearson’s correlation coefficients calculated between each independent and dependent 

variable variant are presented in Table 6.8.

Table 6.8 Summary o f  Pearson’s correlation coefficients

Dependent Variable Independent Variable r P n
APLLOGIO FUZZYNO 0.258 0.060 54

FUZZYLOG 0.245 0.075 54
FUZZYSQ 0.271 0.048 54
FUZZYSQRT 0.251 0.067 54

APLSQ FUZZYNO 0.496 0.000 54
FUZZYLOG 0.473 0.000 54
FUZZYSQ 0.517 0.000 54
FUZZYSQRT 0.484 0.000 54

APLSQRT FUZZYNO 0.436 0.001 54
FUZZYLOG 0.418 0.002 54
FUZZYSQ 0.453 0.001 54
FUZZYSQRT 0.427 0.001 54

APL FUZZYNO 0.491 0.000 54

From the analysis of the Pearson’s correlation coefficients (Table 6.8) and respective 

scattergraphs (Appendix 5), it is clear that the log 10 transformation of APL has not 

improved the degree of linearity between the independent variable variants of FUZZYNO 

(the untransformed data series), FUZZYLOG, FUZZYSQ and FUZZYSQRT, over that 

associated with the untransformed independent and dependent variables of FUZZYNO and 

APL respectively (Section 6.8). Very weak correlation coefficients of low significance are 

produced with the APLLOGIO dependent variable transformation in comparison to that
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between APL and FUZZYNO at 0.49 (Table 6.8). In addition, the scattergraphs between 

APLLOGIO and each independent variable variant (Appendix 5) identify how the 

calculated correlation coefficients are unduly influenced by a small number of cases, 

representing no apparent improvement in the robustness of the respective linear 

relationships over that associated with APL and FUZZYNO. The comparison of Figure 6.8 

with Figure 6.1 provides a typical example of this.

Figure 6.8 Untransformed fuzzy number (FUZZYNO) versus APL log 10 transformation (APLLOGIO)
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The reasonable, highly significant correlation coefficients between the square dependent 

variable transform (APLSQ) and the independent variable variants at face value suggest 

stronger correlations over that associated with the untransformed variables of APL and 

FUZZYNO (Section 6.8). However from Appendix 5 (with Figure 6.9 as a directly 

observable example) the respective APLSQ correlations appear more highly dependent on a 

few points than the original untransformed data. This is shown through the comparison of 

Figures 6.9 and 6.1.
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Figure 6.9 Untransformed fuzzy number (FUZZYNO) versus square APL square transformation (APLSQ)
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However, the significant correlations and associated scattergraphs between the square root 

transformation of APL (APLSQRT) and each of the independent variable variants suggest 

stronger linear relationships than that obtained through the untransformed data (Table 6.8 

and Appendix 5). Whilst the correlation coefficient of 0.49 associated with the 

untransformed independent and dependent variables (Table 6.3) is greater than the highest 

incorporating APLSQRT as the dependent variable and FUZZYSQ as the independent 

variable at 0.45 (Table 6.8); the respective scattergraph graph suggests a stronger degree of 

linearity with the general progression of cases in a positive direction. This is shown through 

the comparison of Figures 6.10 and 6.1.
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Figure 6.10 Square transformed fuzzy number (FUZZYSQ) versus square root transformed APL 

(APLSQRT)
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From the preceding analysis of the nature of the linear relationships between the dependent 

variable APL transformations and associated independent variable fuzzy number variants; 

regression analysis was performed between APLSQRT and FUZZYSQ in an attempt to 

yield a more robust, valid defuzzification model in comparison to Equation 6.1

(incorporating untransformed independent and dependent variables) and Equation 6.2

(incorporating the transformed independent variable FUZZYSQ).

6.10.2 Result and diagnostics

The defuzzification model incorporating APLSQRT and FUZZYSQ is shown in Equation

6.3 and accounts for a low 21% of the variation observed.

APLSQRT = -0.121 + ([8.352 x 10 “5 ] x FUZZYSQ) (Eq. 6.3)

The essential simple linear regression diagnostics assessing the compliance of the result 

with the assumptions of the technique are presented in Table 6.9.
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Table 6.9 Comparison o f simple linear regression diagnostics results; V denotes compliance with the 

respective assumption, X denotes non-compliance. For the Leverage and Cook’s distance results, the number 

o f  cases inducing the non-compliance with the assumption o f linearity are presented.

Assumption Diagnostic Eq. 6.1 Eq. 6.2 Eq. 6.3
Result Result Result

Linearity Analysis o f  variance V V V
t  statistic V V V

Leverage
X - 8
cases

X - 8
cases

X - 8
cases

Cook's distance
X - 1
case

X - 2 
cases V

Residual independence Durbin-Watson test V V <
Residual constant variance Scattergraphs - residuals versus predicted values X X V
Residual normality Kolmogorov-Smirnov test X V V
Total number of 
refutations 3 3 1

6.11 Summary of Equation 6.3 & model selection

The dependent variable (APL) was transformed and correlated with each variant of the 

independent variable in an attempt to improve the degree of linearity between the two 

variables. This was carried out to produce a defuzzification model that satisfied the 

assumptions of regression to the greatest degree, thus yielding the most robust, reliable 

model possible. The APLSQRT dependent variable transformation was selected as it 

produced the strongest linear relationships for each of the fuzzy number variants over the 

other dependent variable variants (Section 6.10.1). The corresponding independent variable 

variant FUZZYSQ was selected as this produced the strongest linear relationship with 
APLSQRT.

In comparison to Equations 6.1 and 6.2 predicting APL from untransformed and square 

transformed fuzzy numbers respectively, Equation 6.3 produces a reduced coefficient of 

explanation at 21% (Equation 6.1 — 24%, Equation 6.2 — 26%). However, for Equation 6.3, 

the assumptions of regression are met to a greater degree (Table 6.9), induced by a stronger, 

more robust linear relationship between the independent and dependent variable (as 

reflected through the Cook’s distance statistics) and acts to induce residual constant
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variance and distribution normality (Norusis, 1996). As a result, Equation 6.3 is selected as 

the most robust defuzzification model computable from the available data.

6.12 Equation 6.3 evaluation

6.12.1 Verification

To verify Equation 6.3 objectively, the Pearson’s correlation test and paired T-test were 

applied to assess the degree to which the model simulates the relative pattern of the 

observed APLSQRT data, and the accuracy in actual APLSQRT prediction.

The Pearson’s correlation coefficient of 0.453 (significant at the 0.01 level) implies a 

reasonable linear relationship between observed APLSQRT and DEFUZZAPLSQRT 

(Table 6.10). In contrast to the respective tests for the multiple regression models 

(Equations 5.1 and 5.8), this relationship appears less heavily influenced by a small number 

of observations, thus providing a more robust result (Figure 6.11). This implies that the 

defuzzification model is predicting reasonable APLSQRT values and producing a relative 

pattern of sedimentation close to that observed.

Table 6.10 Verification result -  Pearson’s correlation and Paired T-test

Verification Equation 6.3
Correlation coefficient 0.453
Significance level 0.001
Number 54
Paired T-test statistic -0.002
Significance level 0.998
Degrees o f  freedom 53

226



Figure 6.11 DEFUZZAPLSQRT versus observed APLSQRT
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Figure 6.12 supports the assertion from the Pearson’s correlation analysis that the 

defuzzification model (Equation 6.3) is predicting reasonable APLSQRT values and 

replicating the relative pattern of sedimentation close to that observed. Upon closer 

inspection of Figure 6.12 it can be seen that the model only tends to under-predict for the 

few exceptionally high observed APLSQRT values. For all other observed APLSQRT rates 

there is a tendency for the defuzzification model to provide a reasonably close prediction, 

or over-predict. This is supported through Figure 6.13 displaying respective positive and 

negative residuals (observed APLSQRT minus DEFUZZAPLSQRT). In addition, the mean 

residual value associated with the prediction of APLSQRT is -0.001, identifying an, albeit 

slight, predominance of over-predictions (Table 6.11).

The paired T-test result identifies that the difference in means between the observed and 

predicted APL rates is not significantly different from zero (Table 6.10), thus implying 

reasonably good predictions/fuzzy number defuzzifications of APLSQRT from Equation

6.3.
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Figure 6.12 The relative pattern o f observed APLSQRT (OBSAPLSQRT) & defuzzified APLSQRT 

(DEFUZZAPLSQRT) for each reservoir
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Figure 6.13 Residuals associated with Equation 6.3 (observed APLSQRT minus DEFUZZAPLSQRT)
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Table 6.11 Key to Figures 6.12 & 6.13 & corresponding observed APLSQRT, predicted DEFUZZAPLSQRT 

& residual values

Reservoir Number Reservoir Name OBSAPLSQRT DEFUZZAPLSQRT Residual
1 Abbeystead 0.831 0.511 0.319
2 Angram 0.173 0.349 -0.176
3 Barden Lower 0.173 0.277 -0.103
4 Barden Upper 0.265 0.414 -0.149
5 Blackmoorfoot 0.265 0.243 0.022
6 Blakeley 0.866 0.454 0.412
7 Booth Wood 0.000 0.324 -0.324
8 Broadstones 0.141 0.200 -0.059
9 Broomhead 0.316 0.277 0.040
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10 Chelker 0.200 0.254 -0.054
11 Dale Dyke 0.245 0.265 -0.020
12 Dean Head Upper 0.300 0.265 0.035
13 Deanhead 0.141 0.277 -0.135
14 Deerhill 0.173 0.288 -0.115
15 Eldwick 0.346 0.221 0.125
16 Embsay 0.332 0.361 -0.030
17 Fewston 0.100 0.288 -0.188
18 Gorple Lower 0.265 0.243 0.022
19 Gorple Upper 0.245 0.265 -0.020
20 Gorpley 0.316 0.288 0.028
21 Green Withens 0.141 0.221 -0.080
22 Harden 0.300 0.243 0.057
23 Hewenden 0.387 0.265 0.122
24 Holmestyes 0.100 0.374 -0.274
25 Leeshaw 0.361 0.254 0.107
26 Lindley Wood 0.200 0.170 0.030
27 Lower Laithe 0.316 0.254 0.062
28 Morehall 0.000 0.254 -0.254
29 Ogden 0.173 0.232 -0.059
30 Ponden 0.265 0.288 -0.024
31 Ramsden 0.412 0.468 -0.056
32 Redmires Upper 0.283 0.374 -0.091
33 Riding Wood 0.412 0.414 -0.001
34 Rivelin Upper 0.283 0.288 -0.005
35 Roundhill 0.173 0.232 -0.059
36 Royd Moor 0.224 0.170 0.054
37 Ryburn 0.100 0.277 -0.177
38 Scammonden 0.539 0.243 0.296
39 Scar House 0.346 0.361 -0.015
40 Scout Dike 0.300 0.200 0.100
41 Silsden 0.332 0.200 0.132
42 Snailsden 0.412 0.232 0.180
43 Strines 0.224 0.254 -0.030
44 Stubden 0.283 0.232 0.051
45 Tunnel End 0.700 0.312 0.388
46 Underbank 0.200 0.324 -0.124
47 Walshaw Dean Lower 0.346 0.265 0.081
48 Walshaw Dean Middle 0.224 0.265 -0.042
49 Walshaw Dean Upper 0.300 0.277 0.023
50 Wessenden Head 0.200 0.221 -0.021
51 Wessenden Old 0.490 0.312 0.178
52 Widdop 0.200 0.254 -0.054
53 Windleden Upper 0.265 0.300 -0.035
54 Ystradfellte 0.283 0.427 -0.144

Mean 0.286 0.287 -0.001



The larger absolute residuals identified in Figure 6.13 and Table 6.11 are again partly 

induced by factors influencing the respective sedimentation rates that are not accounted for 

by the fuzzy set MCE model 1. As a result of this, the respective observations exert an 

influence on the computation of the partial regression coefficient associated with the 

defuzzification model (Equation 6.3), yet are situated a distance away from the regression 

line (Figure 6.11). The reservoirs with the largest positive residuals are Abbeystead, 

Blakeley, Scammonden, Tunnel End and Snailsden (0.319, 0.412, 0.296, 0.388 and 0.180 

respectively) and represent an under-prediction of defuzzified APLSQRT by Equation 6.3. 

The production of the first four reservoirs as positive residuals was discussed in Section 

5.8.5; the same potential causative explanations apply with regards to Equation 6.3. The 

production of Snailsden as a positive residual can be attributed to its catchment having an 

average percentage catchment cover of 95% meadow grass (Table A1.3, Appendix 1), 

associated with grazing (White et al., 1996a). As discussed in Section 2.11.1.6.3, increased 

sediment yield rates can be associated with grazing (Heathwaite et al., 1990). This effect is 

not incorporated into the fuzzy set MCE model 1.

The reservoirs with the largest negative residuals are Holmestyes, Booth Wood, Fewston 

and Morehall (-0.274, -0.324, -0.188 and -0.253 respectively). The production of 

Holmestyes as a negative residual was discussed in Section 6.5.1; the same potential 

causative explanation applies with regards to Equation 6.3. The over-prediction of Booth 

Wood reservoir may be associated with an inaccurate bathymetric survey that provided the 

observed APLSQRT rate; it was undertaken in poor weather conditions where fewer 

transects than ideal were made of the basin (Labadz, 2003, pers.comm.). The over­

prediction of a defuzzified APLSQRT value associated with Fewston reservoir may be 

associated with the presence of catchment management structures in the catchment 

reducing sediment delivery (White et al., 1996a), which cannot be represented as respective 

fuzzy sets for potential incorporation into a fuzzy set MCE model. This is primarily due to 

information concerning their presence across the population data set not being readily 

available from secondary data sources. For Morehall reservoir, the over-prediction may be 

associated with the omission of forest land cover variables/fuzzy sets from the fuzzy set 

MCE model 1, which may act to reduce sediment yield (Cheng et al., 2002). From Table 

A 1.3, Appendix 1, it can be seen that the catchment area of Morehall reservoir is well
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forested with average percentage catchment covers of 47.667% for coniferous woodland, 

and 12% for deciduous woodland. Through the variable selection procedure using principal 

components analysis (Section 6.4.1), neither of these respective fuzzy sets were 

incorporated into the weighted linear combination aggregation process to yield fuzzy set 

MCE model 1. The fact that Holmestyes, Booth Wood, Fewston and Morehall reservoirs 

each have low observed APLSQRT rates (Table A1.3, Appendix 1) influences the 

computation of the partial regression coefficient of Equation 6.3, acting to balance the 

effect of the few reservoirs with exceptionally high observed APLSQRT rates, identified in 

the preceding section. Consequently, the aforementioned reservoirs fall below the 

defuzzification model regression line, producing negative residuals (Figure 6.11).

6.12.2 Validation

The validation data set of the defuzzification model comprises six reservoirs not included in 

the parameterization data set used to construct Equation 6.3: Appleton, Bough Beech, 

Eyebrook, Great Lake, Howden and Weirwood (Table 6.12).

Table 6.12 Validation data set -  respective observed APL, predicted APL and residual values

Reservoir Number Reservoir Name Observed APLSQRT DefuzzAPLSQRT Residual
1 Appleton 0.300 0.210 0.090
2 Bough Beech 0.120 0.270 -0.150
3 Eyebrook 0.230 0.310 -0.080
4 Great Lake 0.120 0.230 -0.110
5 Howden 0.340 0.350 -0.010
6 Weirwood 0.140 0.200 -0.060

Mean 0.208 0.262 -0.052

The Pearson’s correlation and the paired T-test results comparing the model 

DEFUZZAPLSQRT predictions with the observed APLSQRT of validation data are 

presented in Table 6.13.
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Table 6.13 Validation result -  Pearson’s correlation and Paired T-test

Validation Equation 6.3
Correlation coefficient 0.507
Significance level 0.305
Number 6
Paired T-test statistic -1.513
Significance level 0.191
Degrees o f freedom 5

The Pearson’s correlation coefficient (0.507) and associated scattergraph suggest a 

reasonable degree of linearity between APLSQRT and DEFUZZAPLSQRT for the 

reservoirs in the validation data set (Table 6.13 and Figure 6.14). The result, however, is 

not significant at the 0.05 level; induced probably by the small sample size.

Figure 6.14 DEFUZZAPLSQRT versus observed APLSQRT -  validation data set

O bserved APLSQRT

Key: Bough Beech -  pink square, The Great Lake -  light blue cross, Weirwood -  maroon circle, Appleton -  

yellow triangle, Eyebrook -  royal blue diamond, Howden -  purple asterisk

However, the inference from Figure 6.15 suggests that the model is broadly replicating the 

same relative pattern as that observed in the real world data and producing 

DEFUZZAPLSQRT values of similar magnitudes. This is supported through the 

production of relatively small residuals (Figure 6.16) with a mean of -0.052 (Table 6.12), 

and the paired T-test result which identifies that the difference in means between the 

observed (APLSQRT) and predicted (DEFUZZAPLSQRT) sedimentation rates of the 

validation data set is not significantly different from zero (Table 6.13).
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From Figures 6.15 and 6.16, and Table 6.12, there is a strong tendency for Equation 6.3 to 

over-predict APLSQRT. This implies that the model assumes a “bleak outlook scenario” 

which is theoretically preferable; it is better to be risk averse and over-estimate a 

detrimental process than to under-estimate. The one case of model under-prediction in the 

validation data set, at Appleton reservoir, can be partly attributed to this reservoir having a 

catchwater input, bringing in potentially sediment-laden flows from outside of the direct 

catchment area (United Utilities Ltd., pers.comm.). Howden reservoir also has an additional 

catchwater input which may explain the production of a very small negative residual from a 

model that appears to generally over-predict. However, for Howden reservoir, this result 

may also be induced by the fact that the observed APLSQRT rate was determined from 

secondary data that employed a different surveying technique to the one adopted herein for 

respective primary data collection (Section 4.3.2). Together, the Pearson’s correlation and 

paired T-test result, and the interpretation of Figures 6.15 and 6.16, identify that Equation

6.3 is validated to a reasonable degree.

Figure 6.15 The relative pattern o f observed APLSQRT & DEFUZZAPLSQRT -  validation data set
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Figure 6.16 Validation data set residuals (observed APLSQRT -  predicted APLSQRT)
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In conclusion, Equation 6.3 can be verified and validated to a reasonable degree. With 

regards to the parameterization data set, the model replicates the same relative pattern of 

the observed data and produces good predictions especially for the average/typical 

observed APLSQRT rates. With regards to the validation data set, the model replicates the 

same relative pattern of the observed data and yields relatively small residuals, implying 

reasonable APLSQRT predictions. Through the verification and validation processes, 

Equation 6.3 yields a predominance of over-predictions which is theoretically preferable.

6.12.3 Confidence Intervals

From the 95% confidence intervals calculated for each of the 54 reservoirs in the 

defuzzification model parameterization data set, 20 reservoirs can be shown to have an 

observed APLSQRT value that falls within the respective 95% confidence interval of the 

prediction (Table A 1.27, Appendix 1). Therefore, for 37% of the respective 

parameterization data set, there is 95% confidence in the prediction afforded by Equation

6.3 being obtained had the entire reservoir population been available for analysis. This 

result provides reasonable user-confidence that inferences made from Equation 6.3 are 
correct.

□

Reservoir
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6.12.4 Summary of Equation 6.3

The defuzzification model (Equation 6.3) converts the fuzzy number from the fuzzy set 

MCE model 1 into an APLSQRT value. This can be subsequently back-transformed into an 

actual APL value (Table A1.3, Appendix 1). From the analysis in Section 6.12, Equation

6.3 does replicate the relative pattern of the respective parameterization data set as 

identified through the significant Pearson’s correlation coefficient, and does defuzzify to 

produce reasonably accurate predictions for the average/typical APLSQRT rates across the 

parameterization data set, as identified through the paired T-test result. However, Equation

6.3 does have a rather low coefficient of explanation at 21%.

When the model is extrapolated to defuzzify fuzzy numbers for reservoirs in the validation 

data set, reasonable results are produced with the model broadly replicating the same 

relative pattern as the observed (validation) data and providing reasonable 

DEFUZZAPLSQRT values. This is shown through Figure 6.15 and the paired T-test result 

(Table 6.13) which identifies no significant difference between the observed and 

defuzzified APLSQRT values. However, despite a reasonable respective correlation 

coefficient being produced at 0.507, it is not significant at the 0.05 level (Table 6.13). As a 

result, the defuzzification model (Equation 6.3) inspires reasonable user-confidence but a 

larger validation data set is perhaps required to ascertain model validation to a higher 

degree of user-confidence.

Whilst defuzzification is a useful tool in obtaining an actual APL quantity, the production 

of only a reasonable defuzzification model does not undermine this application of the fuzzy 

set MCE approach. Burrough (1989) recognises that such fuzzy multi-criteria evaluation 

approaches producing outputs ranging between 0 and 1 (0 and 255 in Idrisi 32) provide 

results that are more comprehensible and interpretable in terms of environmental impact for 

associated catchment area managers (in this instance) to use in policy-making decisions. 

Burrough (1989) states that such data classification is an essential part of the data reduction 

process, whereby complex sets of observations and predictions are made understandable. 

Therefore, defuzzification is not the “be all and end all” of the fuzzy set approach. The 

application of fuzzy set MCE in predicting the degree of reservoir sedimentation has
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yielded a robust, valid result providing the first comprehensive assessment of reservoir 

sedimentation across England and Wales.

6.13 Equation 6.3 operationalization

Figure 6.17 displays the APL for the population of reservoirs predicted through fuzzy set 

WLC, defuzzified through Equation 6.3. The same pattern of reservoir APL is observed 

across England and Wales as that produced regarding the prediction of the degree of 

sedimentation (this was discussed in detail in Section 6.6 and will not be repeated here). 

However, the relative difference between APL rates appears clearer through the transition 

between reservoirs experiencing low sedimentation and those experiencing high levels 

being steeper and more abrupt. Reservoir APL values are highest in the upland areas of 

Cumbria, the Brecon Beacons and Cambrian Mountains in Wales, and to a slightly smaller 

degree, the Pennines and Dartmoor. The prediction of moderate levels of reservoir 

sedimentation in southeast England is still apparent. However, due to the lower degree of 

validation associated with the defuzzification model (Equation 6.3) in comparison to the 

original fuzzy set MCE model 1 output, user-confidence in terms of the inferences obtained 

from Figure 6.17 is not as high as that associated with Figure 6.4.

236



Figure 6.17 The defuzzification model output (Equation 5.3). The legend refers to reservoir annual 

percentage capacity loss (APL).
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6.14 Application of the clustering approach on fuzzy set MCE

6.14.1 Introduction

Analogous to the multiple regression application (Chapter 7), the clustering approach was 

applied to fuzzy set multi-criteria evaluation (MCE), being performed on cluster 2 from the 

population data set in an effort to improve the respective degree of reservoir sedimentation 

predictions over those from the fuzzy set MCE model E The evaluation of the respective 

model (fuzzy set MCE model 2) assessed the potential of the technique in achieving the 

principal aim of the research.
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6.14.2 Application of the clustering approach

Modelling a sub-set of the population defined through cluster analysis improved the 

validity of model predictions using multiple regression as the respective reservoirs together 

had stronger correlations with certain variables than others. This acted to reduce the degree 

of unexplained variation about the respective multiple regression model (Section 5.16). A 

similar effect was postulated using fuzzy set MCE. Performing principal components 

analysis on a cluster of reservoirs (that by definition share similar characteristics) will 

identify those variables accounting for the most variation within a cluster. These variables 

will therefore be potentially more representative of the factors/processes influencing 

sedimentation in the cluster of reservoirs than those variables extracted from principal 

components analysis performed on the complete population (Section 6.4.1). Applying the 

same methodology as in Section 6.4 (with regards to performing fuzzy set MCE on the 

population data set) may yield fuzzy number results more strongly correlated with 

respective annual percentage capacity loss observations.

As with the application of the clustering approach on multiple regression (Chapter 5), fuzzy 

set MCE was only applied to cluster 2 as this was the most represented cluster with regards 

to observed annual percentage capacity loss observations (Section 4.3.1.2), enabling model 

verification and validation. Therefore, the application of the clustering approach on fuzzy 

set MCE assessed the potential of the methodology in achieving the principal aim of the 

research, as it did for multiple regression.

6.14.3 Principal components analysis

Principal components analysis was performed on cluster 2, derived from the cluster 

analysis of the original population data set of 797 reservoirs (Section 4.3.1.2). The result is 

presented in Table A 1.26, Appendix 1. Due to the coarse spatial resolution of the associated 

data in raster form (as discussed in Section 4.3.3), only 460 reservoirs from the original 

cluster 2 population of 473 were resolvable for application in Idrisi 32. Again, for each of 

the 57 sedimentation-inducing variables, the principal component that contained the 

maximum respective eigenvector was ascertained. Where more than one variable had the
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greatest eigenvector in a particular component, only the variable with the largest 

eigenvector was entered into the fuzzy set analysis. This process reduced the number of 

variables that had to be entered into the fuzzy set analysis from 57 to 23; these are 

presented in Tables 6.14 and 6.15.

Table 6.14 The maximum absolute principal component eigenvector loading for each variable. The asterisk 

denotes the variable that accounts for the most variance in a particular component; 0 denotes no 

representation o f that variable as the largest eigenvector o f a particular principal component.

Variable Principal component Eigenvector
CAREA 3 0.732
QMED 1 0.613
MEANFARL* 11 0.420
FARL* 29 0.366
PROPWET 1 0.801
ALTBAR 1 0.837
BFIHOST 1 0.603
DPLBAR* 3 0.800
DPSBAR 1 0.583
LDP 3 0.792
RMED1H 7 0.387
RMED1D 1 0.890
RMED2D 1 0.899
SAAR* 1 0.932
SAAR4170 1 0.929
SPRHOST 1 0.647
URBCONC 0 0.000
URBEXT 3 0.341
URBLOC 0 0.000
TE* 33 0.296
S401* 14 0.568
S405* 9 0.556
S454* 20 0.729
S455 2 0.979
S469* 12 0.501
S475* 25 0.441
S486* 2 0.987
S487 0 0.000
S489 2 0.985
S495* 16 0.391
S506 0 0.000
S507* 21 0.572
S660* 18 0.762
S686 23 0.438
S692 2 0.984
BRACK 9 0.553
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CONEF* 8 0.468
DECID 5 0.491
DSHRUB 4 0.516
DSHRUBH* 5 0.663
FELLED* 22 0.414
GRASS* 7 0.400
IBARE 6 0.421
IWATER* 13 0.472
LOWBOG 5 0.570
MEADOW 6 0.529
MOORLAND 4 0.673
MOWN 4 0.444
OPENS* 4 0.692
OPENSH 5 0.661
ROUGH 9 0.387
RUDERAL 11 0.383
SCRUB* 17 0.364
SUBURB 6 0.493
TILLED 5 0.401
UPBOG* 10 0.409
URBAN* 6 0.585

6.14.4 Variable membership curves

Linear fuzzy membership curves were constructed for each of the variables that account for 

the most variance in a particular component (identified in Table 6.15). This was achieved 

using the range of respective values in the cluster 2 data set to determine the inflection 

points in each membership curve, and expert scientific opinion to determine the direction of 

each linear membership curve.

6.14.4.1 Soil variables

As in Section 6.4.2.1, each of the soil variables identifying the area of the respective soil 

class with a very high, or high risk of erosion (after Evans, 1990) were allocated a positive 

membership curve; the premise being that the larger the area of coverage, the greater the 

quantity of eroded material and reservoir sedimentation.
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6.14.4.2 Land cover variables

The positive membership curves of open shrub moor, urban, upland bog, and felled forest 

land covers and the negative membership curves of dense shrub heath, and scrub/orchard 

covers are discussed in Section 6.4.2.2 with reference to the application of fuzzy set MCE 

for the population data set and will not be repeated here. However, in addition to these 

variables, the application of fuzzy set MCE on the cluster 2 data set incorporates the land 

cover variables of grass heath, coniferous/evergreen woodland and inland water.

Grass heath (GRASS) includes inland grasslands usually growing on sandy soils (that are 

typically erosive) and not associated with grazing. In winter, especially in lowland areas, 

grass heaths have substantial quantities of dead plant litter (Fuller, 1995). These factors act 

to reduce erosion, thus grass heath was assigned a negative membership curve; as the 

average percentage catchment cover increases, the degree of overland flow, erosion and 

reservoir sedimentation decreases.

Coniferous/evergreen woodland (CONIF) was assigned a negative membership curve due 

to the well-documented effect of natural forest stands reducing potentially erosive overland 

flow and streamflow production, and increasing soil stability through the binding effect of 

their root systems (Section 2.11.1.6.1).

Inland water (IWATER) includes all fresh water areas mappable by the Landsat Thematic 

Mapper (the original data source of the land cover map) at its 30 x 30m spatial resolution 

(Lillesand and Kiefer, 1994). In the context of reservoirs that are situated predominantly in 

more upstream areas, such fresh water areas resolvable at this resolution will typically only 

include upstream reservoirs, lakes and ponds situated within the catchment. Each of these 

will act as stores, reducing sediment delivery to reservoir basins. As a result of this, inland 
water was allocated a negative membership curve.

6.14.4.3 Hydro-meteorological variables

The only hydro-meteorological variable represented in this application of fuzzy set multi­

criteria evaluation is average annual rainfall (1961-1990) (SAAR). This was allocated a 

positive membership curve as discussed in Section 6.4.2.3.
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6.14.4.4 Geomorphological variables
The geomorphological variables of catchment size and drainage path configuration index 

(DPLBAR), flood attenuation due to reservoirs and lakes index, and the mean flood 

attenuation due to reservoirs and lakes index were each assigned positive membership 

curves as discussed in Section 6.4.2.4. The additional geomorphological variable for the 

cluster 2 application, trap efficiency (TE), was also allocated a positive membership curve; 

as this value increases, so does the quantity of sediment retained within the reservoir basin 

(Section 2.11.2.1). However, as identified in Section 5.8.5.1, in reality a positive or 

negative relationship between reservoir sedimentation and TE may be induced depending 

upon whether the reservoir capacities extracted from the BRE dams data set, used to 

calculate TE across the population data set, relate to original or revised capacities. The 

broad assumption is that the majority of the values relate to original capacities, thus 

typically inducing a positive relationship between reservoir sedimentation and TE. This 

broad assumption is made from the reasoning that reservoir sedimentation is not generally 

perceived to be a problem across England and Wales (Chapter 2), thus not prompting many 

revised basin capacity surveys. Whilst this assumption of a positive relationship between 

reservoir sedimentation and TE is flawed for reservoirs in the population data set with trap 

efficiencies calculated from revised capacities (Section 5.8.5.1), the fact that TE has the 

lowest weighting in the weighted linear combination aggregation procedure (Table 6.15) 

means that it will have a very small, practically negligible influence on the model output.

6.14.5 Weighted linear combination — variable weights

The weights applied to each variable for use in the weighted linear combination 

aggregation procedure to calculate the ultimate fuzzy number for each reservoir (depicting 

the degree of reservoir sedimentation) were determined by standardizing the respective 

component eigenvalues so that they sum to 1 (Table 6.15). This was the same procedure 

described and undertaken in Section 6.4.3. The fuzzy set multi-criteria evaluation was 

subsequently performed for the cluster 2 data set.
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Table 6.15 Variables entered into fuzzy set multi-criteria evaluation 2
Variable Abbreviation Factor Weight

Average annual rainfall 1961-1990 SAAR 0.1788

Bridgenorth soil association S486 0.0972

Catchment size & drainage path configuration index DPLBAR 0.0836

Open shrub moor OPENS 0.0753

Dense shrub heath DSHRUBH 0.0577

Continuous urban URBAN 0.0472

Grass heath GRASS 0.0408

Coniferous forest CONIF 0.0384

Bangor soil association S405 0.0353

Upland bog UPBOG 0.0323

Mean flood attenuation due to reservoirs & lakes index MEANFARL 0.0311

South Petherton soil association S469 0.0297

Inland water I WATER 0.0280

Revidge soil association S401 0.0277

Frilford soil association S495 0.0255

Scrub/orchard SCRUB 0.0254

Everingham soil association S660 0.0248

Bearsted 1 soil association S454 0.0241

Fyfield 2 soil association S507 0.0237

Felled Forest FELLED 0.0225

Wick 2 soil association S475 0.0218

Flood attenuation due to reservoirs and lakes index FARL 0.0168

Trap efficiency TE 0.0123

6.15 Fuzzy set MCE model 2 evaluation

6.15.1 Verification & validation

The fuzzy set MCE model 2 was again constructed within the Idrisi 32 environment. The 

model was verified and validated against 48 reservoirs present in cluster 2 with an observed 

annual percentage capacity loss (APL) from the original parameterization data set, 

resolvable in the Idrisi 32 raster format.
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From Table 6.16 a significant, albeit relatively weak, positive correlation is produced 

between fuzzy number and observed APL. From Figure 6.18 it is apparent that this 

relationship is heavily influenced by a small number of observations. This significant 

correlation coefficient implies that the model is replicating the relative pattern of the 

observed APL values to a degree. This replication is displayed in Figure 6.19 directly 

comparing the z-scores of both data series. From Figure 6.19 it appears that the model is 

more extreme in depicting relative differences in the degree of reservoir sedimentation in 

comparison to the real world observation, implying it is highly sensitive to the degree of 

influence the sediment-inducing variables have. This is supported through Figure 6.20 

displaying the z-score residuals (observed APL z-score minus predicted fuzzy number z- 

score) illustrating a balanced production of positive residuals, associated with the under­

prediction of the relative extremely high observed APL rates, and negative residuals 

associated with the over-prediction of the relative low observed APL rates. For all other 

relative observed APL rates there is a tendency for the fuzzy set MCE model 2 to provide a 

reasonably close prediction, or over-predict. Such high sensitivity was observed in Section

6.5.1 concerning the prediction of the degree of reservoir sedimentation for the complete 

population of reservoirs. The paired T-test result between the fuzzy number and observed 

APL z-score data series identifies no significant difference from zero for the mean of the 

respective pairwise differences (Table 6.16). This implies good agreement between the two 

data series, thus the model is replicating the real world pattern of observed APL values 

reasonably well.

Table 6.16 Verification and validation result -  Pearson’s correlation and Paired T-test

Verification & validation Fuzzy MCE Model 2
Correlation coefficient 0.312
Significance level 0.031
Number 48
Paired T-test statistic 0.000
Significance level 0.000
Degrees o f  freedom 47
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Figure 6.18 Predicted fuzzy number (FUZZYNO) versus observed APL (OBSAPL) 
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Figure 6.19 Comparison o f observed APL z-score & predicted fuzzy number z-score
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Figure 6.20 Observed APL z-score subtracted from the predicted fuzzy number z-score
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Table 6.17 Key to Figures 6.19 & 6.20 & corresponding observed APL z-score, predicted Fuzzy Number z- 

score & residual values

Reservoir Number Reservoir Name Observed APL z-score Fuzzy z-score Residual
1 Abbeystead 3.777 2.055 1.722
2 Angram -0.523 1.298 -1.821
3 Barden Lower -0.523 -0.649 0.127
4 Barden Upper -0.262 1.839 -2.101
5 Blackmoorfoot -0.262 0.649 -0.911
6 Blakeley 4.168 1.406 2.762
7 Booth Wood -0.718 -0.108 -0.610
8 Broadstones -0.588 0.108 -0.696
9 Broomhead -0.067 0.000 -0.067
10 Chelker -0.457 0.216 -0.674
11 Dale Dyke -0.327 -1.082 0.755
12 Dean Head Upper -0.132 -0.649 0.517
13 Deanhead -0.588 0.325 -0.912
14 Deerhill -0.523 0.757 -1.280
15 Eldwick 0.064 -1.298 1.362
16 Embsay -0.001 0.974 -0.975
17 Fewston -0.653 -0.974 0.321
18 Gorple Lower -0.262 -1.515 1.253
19 Gorple Upper -0.327 -0.108 -0.219
20 Gorpley -0.067 0.216 -0.283
21 Green Withens -0.588 -0.433 -0.155
22 Harden -0.132 -0.757 0.626
23 Holmestyes -0.653 2.380 -3.033
24 Lindley Wood -0.457 -0.649 0.192
25 Morehall -0.718 -1.731 1.013
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26 Ponden -0.262 -0.541 0.279
27 Ramsden 0.390 1.623 -1.233
28 Redmires Upper -0.197 1.082 -1.279
29 Riding Wood 0.390 2.272 -1.882
30 Rivelin Upper -0.197 -0.757 0.560
31 Roundhill -0.523 -1.298 0.776
32 Royd Moor -0.392 -0.865 0.473
33 Ryburn -0.653 -0.649 -0.004
34 Scammonden 1.171 -1.082 2.253
35 Scar House 0.064 0.216 -0.153
36 Silsden -0.001 -0.433 0.431
37 Snailsden 0.390 0.216 0.173
38 Strines -0.392 -0.325 -0.068
39 Stubden -0.197 -0.649 0.452
40 Tunnel End 2.474 -0.325 2.799
41 Underbank -0.457 0.000 -0.457
42 Walshaw Dean Lower 0.064 -0.974 1.037
43 Walshaw Dean Middle -0.392 -0.649 0.257
44 Walshaw Dean Upper -0.132 0.433 -0.564
45 Wessenden Head -0.457 0.216 -0.674
46 Wessenden Old 0.846 -0.325 1.170
47 Widdop -0.457 0.000 -0.457
48 Windleden Upper -0.262 0.541 -0.803

Mean 0.000 0.000 0.000

The large residuals identified in Figure 6.20 and Table 6.17 are predominantly induced by 

factors influencing the respective sedimentation rates not accounted for by the model. This 

was also the case for such residuals associated with fuzzy set MCE model 1. The reservoirs 

with the largest positive residuals, representing under-predictions by fuzzy set MCE model 

2, are Abbeystead, Blakeley, Scammonden and Tunnel End (1.722, 2.762, 2.253 and 2.798 

respectively). The production of these residuals (as discussed in detail through Section

5.8.5 concerning the multiple regression model Equation 5.1) is caused principally by the 

influence of factors not represented as fuzzy sets acting to induce exceptionally high 

observed APL rates (e.g. additional catchwater/conduit inputs from outside of the 
respective direct catchment areas).

The reservoirs with the largest negative residuals, representing over-predictions by the 

fuzzy set MCE model 2, are Angram, Barden Upper, Deerhill, Holmestyes, Ramsden, 

Redmires Upper and Ridingwood (-1.821, -2.101, -1.280, -3.033, -1.233, -1.278 and -1.882
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respectively). The over-prediction for Angram, Barden Upper, Deerhill, Ramsden and 

Redmires Upper can be associated with the presence of catchment management structures 

in the respective catchments, acting to reduce sediment transport into the reservoir basins. 

These catchment management structures include residuum lodges, catch water/conduit 

interceptions, bywash channels and reservoirs upstream (White et al., 1996a). For 

Holmestyes and Ridingwood reservoirs, over-predictions can be associated with the 

respective catchments having relatively large areas of land use types that are comparatively 

less conducive to sediment production, but not included in the fuzzy set MCE analysis 

through the principal components analysis selection procedure. Regarding Holmestyes 

reservoir, this was discussed in Section 6.5. However, for Ridingwood reservoir, the 

occurrence of comparatively large average percentage catchment covers of 10.667% 

deciduous woodland and 21.333% meadow (Table A1.28, Appendix 1), which both provide 

good protection against soil erosion (Fuller, 1995), are not represented in the fuzzy set 

MCE model 2. Instead, the influence of these land covers on potential sediment production 

is offset by the comparatively large average percentage catchment cover of open shrub 

moor (31.333% - Table A 1.28, Appendix 1), which is extremely conducive to soil erosion 

and sediment production (Evans, 1993).

From the preceding results, the fuzzy sets multi-criteria model predicting the degree of 

reservoir sedimentation for cluster 2 can be verified and validated to only a reasonable 

degree in terms of the model replicating the relative pattern of observed APL. This is due to 

the relatively weak correlation between the fuzzy number depicting the degree of reservoir 

sedimentation and observed APL.

6.16 Comparison of fuzzy set multi-criteria evaluation approaches

Fuzzy set multi-criteria evaluation (MCE) was performed on the cluster 2 data set in an 

attempt to optimise the modelling technique to provide a more valid, robust model over that 

produced for the population data set. The rationale behind this was that those reservoirs that 

comprise the cluster 2 data set (determined through cluster analysis - Section 4.3.1.2) have 

stronger correlations with certain variables that influence reservoir sedimentation than other 

reservoirs in the population data set. Therefore, identification of those stronger correlated
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variables through principal components analysis, and the allocation of a weighting factor 

derived from the respective component eigenvalue, was deemed to provide a more 

representative/accurate ultimate fuzzy number than would otherwise be obtained through 

consideration of the entire population data set. This is because the application of principal 

components analysis on the population data set extracts principal components accounting 

for the most variance over three principal clusters of reservoirs (identified through cluster 

analysis). Each of these three clusters is strongly correlated with different sedimentation- 

influencing variables. As a result, the extraction of the said principal components for the 

population data set represents a broad overview/generalization of the variables that actually 

account for the most variation within the three clusters of the population. Thus, for 

example, under the fuzzy set MCE model applied to the population data set, the distinct 

variables that are most strongly correlated with sedimentation in more lowland-type 

reservoirs (typified across southeast England) are considered along with those most 

strongly correlated with sedimentation in more upland-type reservoirs (typified across the 

Lake District and Brecon Beacons), to produce an ultimate fuzzy number depicting the 

degree of sedimentation for each reservoir in the population. It was postulated that this 

might produce a model output of inherent lower accuracy in comparison to one produced 

from modelling a particular cluster within the population.

However, from Section 6.15 and Table 6.18 it can be seen that the fuzzy set MCE 

performed exclusively on the cluster 2 data set (fuzzy set MCE model 2) does not improve 

the correlation between the model output, the degree of reservoir sedimentation (scaled 

between 0 and 255), and the observed annual percentage capacity loss (APL). Indeed, the 

correlation appears heavily influenced by a smaller number of points with the observations 

not showing such a positive progression (compare Figure 6.1 with Figure 6.18).
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Table 6.18 Summary results o f fuzzy set MCE model 1 and model 2 verification & validation between 

observed APL and predicted fuzzy number (degree o f  reservoir sedimentation)

Fuzzy set MCE model 1 Fuzzy set MCE model 2
Correlation coefficient 0.491 0.312
Significance level 0.000 0.031
Number 54 48
Paired T-test statistic -0.001 0.000
Significance level 0.999 1.000
Degrees o f  freedom 53 47

In contrast, both respective paired T-test results between the associated observed and 

predicted z-score data series identify no significant difference from zero for the mean of the 

respective pairwise differences. This implies a broad representation by both models of the 

relative pattern of sedimentation in the real world data. However, from Figure 6.21 it would 

appear that the predictions of the degree of reservoir sedimentation from the model 

associated with the population data set (fuzzy set MCE model 1), on balance, most closely 

approximate the real world data. Therefore, the fuzzy multi-criteria evaluation model 

associated with the cluster 2 data set certainly does not provide improved predictions, in 

terms of replicating the relative pattern of real world sedimentation data, over that 

associated with the population data set as was the intention. As a result of this, the model 

was not operationalized and a respective defuzzification model was not developed. The 

fuzzy set multi-criteria model associated with the population data set is therefore the most 

valid and robust in predicting the degree of reservoir sedimentation for this investigation.
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Figure 6.21 Comparison o f fuzzy set MCE model 1 output, fuzzy set MCE model 2 output & observed APL 
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Therefore, in this instance, the postulated optimization of the fuzzy set modelling 

methodology has not yielded improved predictions of the degree of reservoir sedimentation 

as it did for multiple regression analysis in predicting reservoir annual percentage capacity 

loss. This can be partly attributed to the inclusion of the trap efficiency and coniferous 

woodland variables in the analysis. As identified in Sections 4.2.2.5 and 5.8.5.1, the 

relationship between reservoir sedimentation and TE may be positive or negative 

depending upon whether the reservoir capacities extracted from the BRE dams data set 

(used to calculate TE across the population data set) relate to original or revised capacities 

respectively. The broad assumption is that the majority of the values relate to original 

capacities, thus typically inducing a positive relationship between reservoir sedimentation 

and TE, therefore a positive fuzzy membership curve was specified. This assumption, 

however, is flawed for reservoirs in the population data set with trap efficiencies calculated 

from revised capacities due to progressive sedimentation reducing trap efficiency from the 

time of dam commission, thus inducing a broadly negative relationship (Section 5.8.5.1). 

However, as previously mentioned, the fact that TE has the lowest weighting in the 

weighted linear combination aggregation procedure (Table 6.15) means that the factor has a 

very small, practically negligible influence on the model output.
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Perhaps of greater significance regarding why fuzzy set MCE model 2 has not produced 

results showing a stronger correlation with observed APL concerns the incorporation of 

coniferous woodland in the analysis. Whilst the literature supports the influence natural 

woodland has on reducing erosion and potential sediment delivery (e.g. Cheng et a l 2002), 

studies by Stretton (1984, 1998), Burt et al., (1984), Duck and McManus (1987), Stott 

(1987) and Foster and Lees (1999b) have all identified increased sediment yields associated 

with afforestation initially, which typically decline over time as the vegetation matures 

(Section 2.11.1.6.1). As a result of this, the broad assumption reflected in the fuzzy 

membership curve of coniferous woodland is that as the average percentage catchment 

cover increases, the degree of reservoir sedimentation decreases. This is supported through 

the positive direction of the (albeit non-significant) Pearson correlation coefficient between 

average percentage catchment cover of coniferous woodland and observed APL (0.107 - 

Table A1.4, Appendix 1). However, the influence of afforestation on sediment 

yield/reservoir sedimentation clearly changes over time and such temporal changes are not 

represented in the modelling approach. Therefore, the differing amount of time that has 

elapsed since afforestation for each catchment clouds the derivation of a broad, overarching 

direction of influence of afforestation on reservoir sedimentation: for some reservoir 

catchments the influence of afforestation may be increasing sediment yield, whilst for 

others it may be having the inverse effect.

This again highlights the major problem associated with the general modelling approach 

employed in this investigation; it does not consider temporal changes in the variables 

identified to influence reservoir sedimentation. Both the multiple regression and fuzzy set 

multi-criteria evaluation modelling approaches are lumped spatially and temporally. 

However, such temporal data are not readily/widely available for every reservoir in the 

population data set. Therefore, as discussed through Chapter 3, this general approach at 

present represents the most practical in terms of achieving the principal aim; the production 

of a comprehensive assessment of the spatial variation of reservoir sedimentation for the 

population of surface water storage reservoirs exhibiting a degree of catchment-coupling 

across mainland England and Wales.
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The correlation between the output from both fuzzy set MCE models and the observed APL 

values, whilst both significant, may have been degraded by the omission of variables also 

important in influencing reservoir sedimentation from the respective population and cluster 

2 data sets, thus inducing structural error into the models. As discussed in Section 5.17 in 

relation to the multiple regression analyses, important variables influencing reservoir 

sedimentation defining/describing factors such as the hypsometric integral, drainage 

density, dam dimensions, reservoir sediment control structures, management strategies, 

allochthonous wet and dry deposition, autochthonous sediment production and the 

influence of small anthropogenic landscape elements (e.g. banks, hedges, tillage directions 

etc.) were not included as they were not represented, readily quantifiable, easily calculable 

or complete in the widely available secondary data sources. However, whilst membership 

functions could not be derived for each of these variables even if they were quantifiable in 

the population data set due to the restriction of a maximum 24 variables being entered into 

the Idrisi 32 FUZZY module; they could all have been included in the principal 

components analysis to provide a more comprehensive identification of those variables 

with the largest eigenvectors, influencing the principal components to the largest degree. 

The restriction, however, of the number of variables that can be entered into the Idrisi 32 

FUZZY module represents a limitation of the software as opposed to the modelling 
technique itself.
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7. Discussion of modelling approaches

7.1 Introduction

This chapter represents the fulfilment of objective four: the evaluation and comparison of 

the multiple regression and fuzzy set multi-criteria approaches, and the subsequent 

selection of the most robust and reliable model in the prediction of sedimentation for the 

defined reservoir population.

Multiple regression and fuzzy set MCE represent two different techniques that can be used 

to construct empirical models predicting reservoir sedimentation from catchment and 

reservoir basin factors.

7.2 Multiple regression analysis summary

Through multiple regression analysis, two models were produced; the first predicting the 

reservoir annual percentage capacity loss (APL) for the population; the second predicting 

APL for a cluster of the population (identified through cluster analysis) that was most 

represented in the parameterization data set (cluster 2). The first model was produced in an 

attempt to satisfy the principal aim of the research: the production of a comprehensive 

assessment of the spatial variation of reservoir sedimentation for the population of surface 

water storage reservoirs exhibiting a degree of catchment-coupling across mainland 

England and Wales. The second model was produced to assess the potential of the 

clustering technique in achieving the principal aim through improving the multiple 
regression output.

The most robust, valid multiple regression model predicting APL for the population data 

set was Equation 5.1:

APL = 0.409 + (0.011 x S686) -  (0.009 x TE) + (0.05 x RMED1H) (Eq. 5.1)
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However, this model could not be verified because the correlation between the observed 

and predicted APL data series for the parameterization data set was heavily influenced by 

two cases enforcing the perceived linear relationship. In addition, through the paired T-test 

analysis, the difference in means between the two respective data series was significantly 

different from zero. As a result of the poor integrity of the model, Equation 5.1 could not be 

validated either. A poor, non-significant correlation was determined between the observed 

APL and predicted APL of the validation data set {r = -0.673, significant at 0.213), and a 

corresponding paired T-test identified a significant difference between the two data series.

The most robust, valid multiple regression model predicting APL for cluster 2 was 

Equation 5.8:

APLSQRT = 0.988 + (0.009 x S686) -  (0.011 x TE) + (0.0002 x SAAR4170) (Eq. 5.8)

In contrast to Equation 5.1, Equation 5.8 was verified to a reasonable degree with the 

correlation between the observed and predicted data series for the respective 

parameterization data set being significant and marginally less heavily influenced by a 

small number of observations (r = 0.702, significant at the 0.01 level). In addition, the 

paired T-test between the respective data series yielded no pairwise difference significant 

from zero. As a result of the improved integrity of Equation 5.8 over Equation 5.1, it could 

be validated to a reasonable degree. A strong correlation coefficient of 0.915 (albeit not 

significant below the 0.05 level at 0.264) was obtained between the observed and predicted 

APL of the cluster 2 validation data set, with the paired T-test between the respective data 

series identifying no pairwise difference significant from zero.

From these results, the production of a model for a particular cluster of alikeness in the 

population data set (Equation 5.8 for cluster 2) yields a more robust, valid result in 

comparison to one produced for the entire population (Equation 5.1). The approach of 

performing multiple regression analysis on groups of reservoirs with similar characteristics 

(identified through cluster analysis) reduces residual variation, identifying reservoirs with 

stronger correlations between sedimentation-influencing variables than others. Therefore, 

within clusters, stronger linear relationships are apparent. This induces greater compliance

255



with the regression assumptions of residual constant variance and normality (Norusis, 

1994). However, whilst the regression assumptions are more closely met by Equation 5.8 in 

comparison to Equation 5.1, the former is still reliant on a small number of highly 

influential observations inducing the constituent linear relationships, thus undermining the 

integrity of the model that is associated with a robust multiple regression equation. This is 

observed through both models having small numbers of predictions in each respective 

parameterization data set that fall within 95% confidence intervals of population APL 

conditional mean prediction (Equation 5.1 has three such predictions from a 

parameterization data set of 60 reservoirs, Equation 5.8 has 2 from a parameterization data 

set of 51). This is the major problem that besets the application of multiple regression in 

this study; the satisfaction of the rigorous assumptions of the technique by parameterization 

data to ensure a robust, valid, reliable result.

As discussed in Section 5.17.3, both Equations 5.1 and 5.8 incorporate a problematic partial 

regression coefficient specifying a negative relationship between APL and TE. This is 

caused by reservoirs with revised capacities listed in the BRE dams data set (used to 

calculate TE) inducing a broadly negative relative relationship between APL and TE, 

whereas those with original capacities listed inducing a positive relationship. 

Unfortunately, through the BRE dams data set alone, there is no way of affirming what 

each listed capacity relates to (Section 5.8.5.1). Whilst the reservoirs in the 

parameterization data set each have a revised capacity listed in the BRE dams data set 

(obtained from studies collated in the Halcrow (2001) data set), it is highly likely that for 

the majority of the population data set the respective capacities in the BRE dams data set 

relate to original capacities as reservoir sedimentation is not generally perceived to be a 

problem across England and Wales (Chapter 2), thus not prompting many revised basin 

capacity surveys. As a result of this, the inference/predictions from both equations 

regarding reservoirs with original capacities used to calculate TE may be misleading.

Labadz et al. (2002) identify the importance of reservoir basin factors in influencing the 

rate of basin infilling (Section 2.11.2). Through the compilation of the population data set 

(Section 4.2) the only variable representing reservoir basin factors is trap efficiency. 

Heinemann (1981) states that trap efficiency is the most important descriptor of a reservoir.
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As a result of this, despite the degree of aforementioned error and uncertainty associated 

with the calculation of TE, it was deemed important to include the variable in the 

population data set, leaving it available for multiple regression model incorporation through 

the stepwise variable selection procedure. In retrospect, the incorporation of trap efficiency 

in the multiple regression analyses calculated from the reservoir capacities in the BRE 

dams data set may appear fundamentally wrong. This is due to the potential difference in 

the direction of the relationship between APL and TE depending upon whether an original 

or revised capacity is considered. However, the multiple regression approach is unsuitable 

for this particular application due to the fact that a small number of cases induce significant 

correlations between the observed APL variants (APL, APLLOGIO, APLSQ, APLSQRT) 

and each of the potential the independent variables available for model incorporation 

concerning sedimentation prediction across the population data set and the cluster 2 

population data set. Therefore, each of the potential linear relationships available for 

incorporation into the respective models through the stepwise variable selection procedure 

appear unsound and not robust (Figures A2.l-A2.228 and Figures A2.229-A2.456, 

Appendix 2). In relation to those variables other than TE actually incorporated into 

Equation 5.1 predicting APL across the population data set (S686 and RMED1H), and 

Equation 5.8 predicting APLSQRT across the cluster 2 population data set (S686 and 

SAAR4170), each respective partial regression coefficient is unduly reliant upon a small 

number of highly influential observations (as identified through the respective leverage 

statistics in particular). Therefore, regardless of whether the TE variable is omitted from the 

analyses or not, multiple regression models would still be produced that do not satisfy the 

fundamental assumption of linearity. This would have repercussions in the satisfaction of 

the assumptions of residual constant variance and residual distribution normality (Norusis,

1994).

7.3 Fuzzy set multi-criteria evaluation summary

Through fuzzy set multi-criteria evaluation, two fuzzy set models were produced; the first 

predicting the degree of sedimentation for the population data set; the second predicting the 

degree of reservoir sedimentation for cluster 2 from the population data set. The former was 

verified and validated to a reasonably good degree. A reasonably good, significant
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correlation was obtained between the predicted fuzzy number and observed APL of the 

parameterization data set (r ~ 0.491, significant at the 0.01 level -  Table 6.3) which 

demonstrated a general progression towards a linear relationship (Figure 6.1). In addition, 

no pairwise difference between the respective means, significant from zero, was identified 

through the corresponding paired T-test (Table 6.3). In comparison to the multiple 

regression analysis, this result was deemed more robust and reliable as no assumptions 

associated with the modelling technique were refuted.

The second fuzzy set MCE model was developed to investigate the potential of the 

clustering approach applied to fuzzy set multi-criteria evaluation in producing a more 

robust, valid model through the consideration of corresponding variables most strongly 

influencing reservoir sedimentation in a cluster (cluster 2). However, the clustering 

technique did not yield an improved output. Whilst the paired T-test between between the 

respective z-score data series identified no significant difference from zero for the mean of 

the pairwise differences acorss the cluster 2 parameterization data set, the respective 

correlation coefficient between the two data series was lower in comparison to that of the 

population data set at r = 0.312 (Table 6.18). The consideration of coniferous woodland 

within the respective model (which has been a significant land use change affecting 

catchments across England and Wales during the lifetime of the reservoir population) and 

trap efficiency could account for this (Section 6.16).

7.4 Comparison of modelling approaches

The fuzzy set MCE approach produces more robust, valid, reliable models of greater 

integrity than the multiple regression models (Equations 5.1 and 5.8). This is due to the 

technique accounting for uncertainty and vagueness regarding the quantification and 

specification of catchment and reservoir basin factors associated with sediment production 

and delivery processes. It was this uncertainty and vagueness that undermined the multiple 

regression results (Section 5.16). In addition, the fiizzy set MCE approach predicting the 

degree of reservoir sedimentation across England and Wales does not include the trap 

efficiency variable which can exhibit conflicting relationships with reservoir sedimentation

258



depending upon whether an original or revised reservoir capacity has been used in its 

calculation.

Fuzzy set multi-criteria evaluation incorporating weighted linear combination (WLC), 

unlike multiple regression, does not attempt to statistically fit a multidimensional surface to 

a series of independent variables by defining the precise nature of a perceived linear 

relationship between a dependent variable. Instead, the value of each respective 

independent variable observation is fuzzified - scaled between 0 and 1 through a fuzzy set 

membership curve (scaled between 0 and 255 in Idrisi 32), depicting its degree of influence 

on the process being modelled. Unlike regression, because the arbitrary degree of influence 

a respective independent variable value has on a dependent variable (e.g. reservoir 

sedimentation) is being determined and not a specific related output quantity (e.g. APL), 

error (measurement and specification) and uncertainty associated with the quantification of 

both variable values and the specification of a respective relationship is being accounted 

for.

An important characteristic of the membership curve depicting the degree of influence a 

variable has (on reservoir sedimentation in this instance) is that it is defined subjectively on 

the basis of real world observation and expert scientific knowledge and intuition. In 

addition it can take many forms (e.g. sigmoidal, J-shaped, user-defined) and does not have 

to specify linear relationships. In regression, the definition of a linear equation through least 

squares analysis is analogous to the fitting of a fuzzy set membership curve. However, the 

important difference is that least squares analysis defines the influence a variable has on an 

output statistically, and does not consider expert scientific knowledge and opinion which 

can intuitively assess the degree of reservoir sedimentation over and above the issue of 

error and uncertainty. In addition, through least squares analysis, the depiction of the 

influence variables have on reservoir sedimentation is constrained through being forced to 

comply with a linear relationship. This again demonstrates how, in the context of 

regression, fuzzy set multi-criteria evaluation accounts for specification error regarding the 

nature of the relationship between independent and dependent variables.

259



The application of the fuzzy set multi-criteria approach is also more suited to the 

achievement of the principal aim of the investigation: the production of a comprehensive 

assessment of the spatial variation of reservoir sedimentation for the population of surface 

water storage reservoirs exhibiting a degree of catchment-coupling across mainland 

England and Wales. This is because the technique encompasses the whole population from 

the outset, eliminating the requirement for a model parameterization data set (as required in 

multiple regression). This eliminates problems regarding parameterization data set 

representativeness and potential restrictions regarding extrapolation, as occurred with the 

application of the multiple regression models (Equations 5.1 and 5.8).

In some model applications predicting reservoir sedimentation, an actual rate as predicted 

through multiple regression may be more preferable than a predicted arbitrary degree of 

sedimentation through fuzzy set MCE. Section 6.7 identifies how the fuzzy set MCE model 

1 output can be defuzzified into an actual APL quantity. The most robust, reliable 

defuzzification model obtainable (Equation 6.3) was verified to a reasonable degree; a 

correlation coefficient of 0.453 (significant at 0.01) (Table 6.10) was obtained between the 

defuzzified APL and observed APL of the parameterization data set which demonstrated a 

general progression towards a linear relationship (Figure 6.11). In addition, the paired T- 

test identified that the difference in means between the respective data series was not 

significantly different from zero (Table 6.10). With regards to validation, the predicted 

output from Equation 6.3 produced a good correlation coefficient of 0.507 between the 

defuzzified APL and observed APL of the validation data set (although only significant at

0.305) (Table 6.13), and through paired T-test analysis, no significant difference from zero 

for the mean of the pairwise differences between the respective data series was identified 

(Table 6.13). Whilst this defuzzification model (Equation 6.3) is not verified and validated 

to the same reasonably good degree as the fuzzy set MCE model 1 output, it is associated 

with greater user-confidence than the multiple regression models of Equations 5.1 and 5.8: 

35% of the observed APLSQRT values fall within 95% confidence intervals of the 

respective parameterization data set predictions. This is in comparison to 5% and 4% for 

Equations 5.1 and 5.8 respectively falling within a 95% confidence interval. Indeed, the use 

of simple linear regression as a defuzzification model is theoretically sounder than in the 

prediction of reservoir APL from catchment and reservoir basin factors. A linear
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relationship can be justified between reservoir APL and the degree of sedimentation 

predicted through the fuzzy set MCE model. Price et al., (2000b) and Thiemann et al, 

(2001) state that hydrological systems are inherently non-linear, undermining the 

theoretical application of linear regression in directly modelling reservoir sedimentation.

Whilst the output from the regression defuzzification model is theoretically sounder and 

more robust than that of Equation 5.1 predicting reservoir APL from catchment and 

reservoir basin factors, it does not account for the same degree of error and uncertainty as 

the original fuzzy set MCE model 1 output. As discussed above, through the fuzzy set MCE 

model measurement error and specification error is accounted for in the prediction of the 

degree of reservoir sedimentation (fuzzy number). However, when the range of predicted 

fuzzy numbers are assigned to a new ordinal scale (reservoir APL) through simple linear 

regression, measurement error concerning the observed APL rates and specification error 

concerning the low model coefficient of explanation at only 0.21 is introduced. Therefore, 

the defuzzification model acts to degrade the integrity of the original fuzzy set MCE model 

1 output. However, the fact that error and uncertainty have been accounted for in the fuzzy 

number prediction (the independent variable of the regression defuzzification model) means 

that the associated APL predictions are comparatively sounder than those associated with 

Equation 5.1.

Whilst both multiple regression and fuzzy set MCE are techniques that can be used to 

produce empirical models predicting reservoir sedimentation, fuzzy set MCE has greater 

explanatory power. In regression, the independent/explanatory variables do not assume 

deep, metaphysical implications; they merely identify the direction of explanation 

(Lunneborg, 1994). Through the nature of stepwise multiple regression, the variables 

selected from the parameterization data set are those which exclusively account for the 

most variance about a least squares line of best fit (i.e. those which satisfy the strict 

assumptions of linearity and non-multicollinearity). As a result, the corresponding 

explanatory variables in the computed model can only look at part of a complex theoretical 

structure (which is not even fully represented in the parameterization data set). Often this 

means that the postulated explanation through a multiple regression model maybe relatively 

weak (Lunneborg, 1994). Therefore, regarding this application of multiple regression, it is
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not only the nature of the parameterization data that contributes to the formulation of 

models with relatively weak predictive and explanatory power, but also the nature of the 

technique itself. In comparison, fuzzy set MCE considers (in theory) all variables in the 

parameterization data set, which in this application represents the most comprehensive 

collation of variables obtainable depicting the complex theoretical structure of reservoir 

sedimentation. Therefore, through the analysis of the fuzzy numbers produced for each 

variable, one can ascertain which variables are most significant in inducing sedimentation 

in each reservoir.

However, both modelling approaches are subject to potential structural error in the 

prediction of reservoir sedimentation through the absence of variables defining/describing 

catchment hypsometric integrals, drainage density, dam dimensions, reservoir sediment 

control structures, management strategies, allochthonous wet and dry deposition, 

autochthonous sediment production, and the influence of small anthropogenic landscape 

elements (e.g. banks, hedges, tillage directions etc.) etc., all of which exert an influence on 

reservoir sedimentation. Variables defining/describing these factors are not all readily 

quantifiable/complete/easily calcuable in the secondary data sources used to collate the 

independent variables to predict reservoir sedimentation with respect to the large 

population of reservoirs. As a result, within the timeframe of this research, it was not 

deemed practical to attempt to determine such variables through primary data collection.

In smaller scale studies, such primary data collection is achieveable practically and 

logistically. For example, in a small scale study predicting reservoir sedimentation in Spain, 

Verstraeten et al. (2003) undertook primary data collection to assign a score to each 

reservoir catchment in the model parameterization data set representing the steepness of the 

slopes near the reservoir and main rivers, and the elevation within five km. This was based 

on Verstraeten and Poesen’s (2001) observations concerning the spatial distribution of 

slopes within a catchment influencing the magnitude of sediment yield. Where steeper 

slopes are located in the most remote regions of a catchment, near the drainage divide, 

eroded soil particles need to travel longer distances to the catchment outlet and are 

therefore more prone to deposition. In contrast, where steeper slopes are distributed 

throughout the catchment, the mean travel distance of eroded soil particles will be lower,
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reducing the potential for deposition. However, concerning the study herein, such primary 

data collection was not possible practically and logistically within the timescale of the 

research due to the large scope of the investigation.

The influence, however, of structural error on the predictions from the respective models is 

somewhat of an illusion as, in the context of the population of reservoirs across England 

and Wales, these variables defining/describing the aforementioned factors may not be 

amongst those accounting for the principal variation (which are extracted in both modelling 

approaches and used as predictor variables).

Through the formulation of the multiple regression and fuzzy set MCE models a small 

number of residuals (predicted measures of reservoir sedimentation subtracted from 

observed measures) are produced in each instance, identifying respective under-predictions 

(positive residuals) and over-predictions (negative residuals). Typically these residuals are 

produced due to specific catchment area conditions that may well be accounted for through 

the aforementioned variables which were absent from the population data set, but which are 

always likely to occur when compiling a model parameterization data set that generalizes a 

particular process (e.g. reservoir sedimentation) over such a large population. Different 

reservoirs appeared as residuals for each model due to the different number of reservoirs 

and/or transformation of variable values being represented in the respective 

parameterization data sets. However, the consistent representation of Abbeystead, Blakeley, 

Scammonden and Tunnel End reservoirs as positive residuals for each model was due to 

their extremely high observed APL rates induced by, as previously mentioned, specific 

catchment conditions.

7.5 Temporal variation

A fundamental problem associated with the general modelling approach adopted in this 

investigation (concerning the prediction of reservoir sedimentation from the catchment and 

reservoir basin factors collated in Chapter 4) is that temporal variation in the 

independent/predictor variables is not considered. Therefore, through multiple regression 

model parameterization, “present day” values of catchment and reservoir basin factors are
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being related to an observed annual sedimentation rate, yet these may not have been 

responsible for inducing the total quantity of capacity loss. The observed annual 

sedimentation rate is an “aggregated average sedimentation rate” for the majority of the 

parameterization data set (determined through the subtraction of a revised reservoir 

capacity from the original capacity, and the division of corresponding loss by the age of the 

reservoir), so such temporal changes in reservoir sedimentation rates cannot be discerned. 
The effect of parameter non-stationarity induces error into the multiple regression models, 

as discussed in Section 5.16,3.

The assumption of stationarity of catchment and reservoir factor values also induces error 

into fuzzy set MCE model verification and validation. Here the degree of reservoir 

sedimentation, as predicted by “present day” fuzzy set membership values of catchment 

and reservoir basin factors, is compared with an observed aggregated sedimentation rate 

that may have been influenced by different respective fuzzy set membership values over 

time. This is also manifested in the defuzzification model (Equation 6.3). The influence of 

changing coniferous land cover over the lifetime of the reservoir population contributed to 

the fuzzy set MCE model 2, predicting the degree of reservoir sedimentation over the 

cluster 2 population of reservoirs, not producing a result of greater validity over fuzzy set 

MCE model 1, predicting the degree of reservoir sedimentation for the complete population 

(Section 6.16). Whilst mature forest stands are associated with reduced sediment yield 

(Cheng et a l , 2002), in the context of afforestation sediment yields have been shown to 

dramatically increase during ground preparation for planting and then typically decline as 

the vegetation matures (e.g. Stretton, 1984, 1998). As a result of this, the broad assumption 

reflected in the fuzzy membership curve of coniferous woodland that as the average 

percentage catchment cover increases, the degree of reservoir sedimentation decreases, may 

be inaccurate depending upon the period of time that has elapsed since respective 
catchment planting.

However, Cistemas et al. (2001) attempted to correlate lake sedimentation rates with 

temporal changes in land use (total detectable change rate - % yr _1) identified from aerial 

photographs taken in 1943, 1955, 1961, 1978, 1981 and 1994. From the six land uses
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investigated (native forest, heterogeneous bush, deforested areas, exotic forest, urban and 

grassland), the strongest results were the reasonable positive and negative correlations 

produced between sediment yield, and exotic forest and grassland respectively. However, 

even these trends were statistically insignificant. This identifies the difficulty in accounting 

for land use changes in lake/reservoir sedimentation studies. Such an approach could not 

have been adopted for the research herein as such detailed catchment information is not 

readily/practically available for the population of catchment-coupled surface storage 

reservoirs across England and Wales.

7.6 Conclusion

Despite the issue of temporal variation, fuzzy set MCE model 1 is verified and validated to 

a reasonably good degree and through the preceding discussion, represents the more 

suitable, effective technique in investigating the principal aim of this research. A greater 

degree of user-confidence is associated with this modelling approach because it 

accommodates uncertainty and vagueness associated with the complex processes of 

sediment production and delivery to a reservoir basin, and produces a theoretically sounder 

output. Thom (1988) states that in evaluating any model, it must be remembered that 

because they are a simplification of reality, they will always be partial and consequently 

incorrect to some degree. This reaffirms the effectiveness of the fuzzy set MCE model 1 in 

predicting the degree of reservoir sedimentation for the population of directly catchment- 

coupled surface storage reservoirs across mainland England and Wales.

Shannon (1975) states that the purpose of a model is to assist in explaining, understanding, 

or improving the system under investigation, with one of the most important functions of 

models being prediction. The fuzzy set MCE model 1 and associated defuzzification model 

(Equation 6.3) comply with this, and the criteria that define a good model:

• Simple to understand by the user,

• Goal directed, i.e. the objectives of the model must be remembered so that the 

appropriate model will result,
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• Robust, in that it does not give absurd answers,

• Easy for the user to control and manipulate, i.e., it should be easy to communicate 

with,

• Adaptive, with an easy procedure for model modification or updating (Shannon, 

1975).
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8. Conclusions

The principal aim of this research was the production of a comprehensive assessment of the 

spatial variation of reservoir sedimentation for the population of surface water storage 

reservoirs exhibiting a degree of catchment-coupling across England and Wales. This was 

achieved through the accomplishment of the four research objectives:

1. The collation of secondary data from standard, widely-available sources for the 

defined reservoir population. These standard, widely-available data sources 

incorporate the BRE dams data set, the Flood Estimation Handbook (1999), the 

national soils map of England and Wales, and the land cover map of Great Britain 

that together depict catchment and reservoir basin factors that influence reservoir 

sedimentation.

2. The collection of primary data concerning reservoir annual percentage capacity loss 

rates to supplement the parameterization data set collated from the literature 

ensuring it is representative of the defined reservoir population, and form a 

validation data set.

3. The production of two parameterized, verified, validated and operationalized 

empirical models predicting reservoir sedimentation for the defined reservoir 

population from catchment and reservoir basin factors using two different modelling 

techniques: multiple regression analysis and fuzzy set multi-criteria evaluation. The 

former represents a more traditional empirical modelling approach; the latter has not 

been applied in such studies before.

4. The evaluation and comparison of the multiple regression and fuzzy set multi­

criteria approaches, and the subsequent selection of the most robust and reliable 

model in the prediction of sedimentation for the defined reservoir population.
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Through objectives 1 and 2, the most comprehensive parameterization data set to date of 

independent variables influencing reservoir sedimentation across England and Wales was 

compiled. The 57 independent variables (Table 4.5) were obtained from the FEH (1999) 

CD-ROM, the BRE dams data set (Tedd et al., 1992), and the land cover and soils maps of 

England and Wales. In addition to this, the most comprehensive validation data set 

obtainable within the timeframe of the research was collated.

Through objective three the most robust, reliable and valid multiple regression model 

obtainable from the parameterization data set (Equation 5.1) was developed to predict 

reservoir annual percentage capacity loss due to sedimentation (APL) across the population. 

However, Equation 5.1 could not be verified and validated to any reasonable degree due to 

violations of the regression assumptions of linearity, residual constant variance and residual 

distribution normality, thus inspiring little user-confidence in the robustness and reliability 

of the model output. As a result, when operationalized, the output from Equation 5.1 

(Figure 5.9) produced surprising results; predicted APL appeared most severe in the south 

central/southeast region of England where variables identified to influence catchment 

sediment production and reservoir sedimentation (e.g. high mean annual rainfalls, large trap 

efficiencies, steep relief and strong hillslope-channel coupling) are of a lower magnitude in 

comparison to other areas of England and Wales (e.g. the Pennines, Cumbria and Brecon 

Beacons). However, through the stepwise multiple regression process formulating Equation 

5.1, the incorporation of an apparently problematic negative relationship between trap 

efficiency (TE) and APL acted to induce this result (Section 5.8.5.1). This was caused by 

the reservoir capacities listed in the BRE dams data set being an unidentified mixture of 

original and revised capacities. A broadly negative relationship may be expected when 

revised capacities are used to calculate TE for every reservoir in the population data set; 

conversely, a positive relationship is expected when original capacities are used to calculate 

TE for every reservoir in the population data set. However, neither can be properly 

ascertained due to the aforementioned mixture of original and revised in the BRE dams data 

set. There have been no published studies concerning reservoir sedimentation across 

southeast England; therefore it is highly likely that original capacities have been used to 

calculate these respective trap efficiencies. As a result of this, they should conform to a 

positive relationship between APL. However the respective partial regression coefficient
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specifies a negative relationship due to the undue influence of Abbeystead and Blakeley 

reservoirs which have extremely high APL rates in relation to their trap efficiencies (being 

calculated from revised capacities). Therefore, the application of multiple regression 

analysis (through the operationalization of Equation 5.1) to predict reservoir sedimentation 

across the population data set, in compliance with the principal aim, proved unsuccessful.

To improve the coefficient of explanation and robustness of multiple regression models 

through the establishment of stronger linear relationships between dependent and 

independent variables, Jansen and Painter (1974) and DeBonis et al. (2002) employed a 

clustering technique to predict sediment yields whereupon complete data sets were broken 

up into separate clusters of alikeness (using cluster analysis), and multiple regression 

models subsequently parameterized for each cluster. This improved coefficients of 

determination over models parameterized for the respective complete data due to a 

reduction in residual variance. The residual variance was reduced as stronger correlations 

existed within the clusters between sediment yield and erosion/sediment transport inducing 

variables. As a result of this, the clustering technique was employed, albeit only on cluster 

2 from the population data set - the only cluster that was adequately represented in the 

parameterization data set (Section 4.3.1.2). Consequently, this assessed the potential of the 

clustering technique used with multiple regression analysis in achieving the principal aim. 

However, the respective model (Equation 5.8), whilst verified and validated to a reasonable 

degree, still refuted the assumption of linearity in particular, being unduly reliant upon a 

small number of cases, thus undermining the integrity of the model. In addition, the 

aforementioned problematic relationship between APL and TE was represented as a partial 

regression coefficient.

A principal reason for the relative failure of multiple regression in reservoir sedimentation 

prediction was the inability of the approach to account for inherent error and uncertainty 

associated with the quantification of the dependent and independent variables of the 

parameterization data sets, and the specification of the respective relationships.

The fuzzy set multi-criteria evaluation (MCE) modelling approach did yield a model 

predicting the degree of reservoir sedimentation across the population data set that was
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verified and validated to a reasonably good level (fuzzy set MCE model 1). The 

operationalization of the model identified the upland areas of Cumbria, the Brecon Beacons 

and Cambrian Mountains of Wales, the southern Pennines, and Exmoor and Dartmoor in 

Devon, as experiencing the largest degree of reservoir sedimentation (Figure 6.4). This is 

principally attributed to these areas having high mean annual rainfall and large areas of 

highly erosive soil types. In addition, the model output identified reservoirs in the Weald 

and the Vales of Kent and Sussex as experiencing reasonable degrees of sedimentation. 

This is an interesting insight, as sedimentation has not been perceived to be a problem 

across southeast England, with no major studies being published. This is principally 

attributed to the relatively high degree of open shrub land cover and erosive soil types, 

particularly shallow peaty/silty soils overlying the sandstone Hastings Beds that comprise 

the catchments.

The most robust, reliable defuzzification model (Equation 6.3) associated with fuzzy set 

MCE model 1 was verified and validated to a reasonable degree. Upon operationalization, 

Equation 6.3 produced the same relative pattern of reservoir sedimentation across England 

and Wales as that of fuzzy set MCE model 1. Therefore, this model is a useful tool in 

providing actual reservoir sedimentation rate (APL) predictions. However, whilst the 

defuzzification provides a theoretically sounder prediction of APL over Equation 5.1, it 

does act to degrade the integrity of the original fuzzy set MCE model 1 output through the 

introduction of measurement error concerning the observed APL rates and specification 

error concerning the low model coefficient of explanation at only 0.21.

Analogous to the multiple regression modelling approach, fuzzy set multi-criteria 

evaluation was employed on cluster 2 in an effort to improve the degree of reservoir 

sedimentation prediction through establishing the principal sedimentation-influencing 

variables and associated weightings that account for the most variation within a cluster 

from principal components analysis. It was postulated that these principal variables would 

be potentially more representative of the factors/processes influencing sedimentation in the 

cluster of reservoirs than those variables and associated weightings extracted from principal 

components analysis performed on the complete population; producing fuzzy number 

results through WLC more strongly correlated with respective annual percentage capacity
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loss observations. However, a model of greater validity in comparison to fuzzy set MCE 

model 1 was not produced. This was primarily attributed to the model not accounting for 

the temporal variation of sediment delivery associated with coniferous afforestation, which 

has been a significant land use change affecting catchments across England and Wales 

during the lifetime of the reservoir population. The broad assumption concerning 

coniferous woodland in the respective fuzzy set membership curve is that as the average 

percentage catchment cover increases, the degree of reservoir sedimentation decreases. 

However, in the context of catchment afforestation, sediment yields dramatically increase 

during ground preparation for planting, which typically decline as the vegetation matures.

Through the investigation of objective four, from the comparison of the modelling 

approaches, fuzzy set multi-criteria evaluation (MCE) was identified as the most suitable 

for accomplishing the principal aim. This was because, unlike multiple regression, it is able 

to account for error (measurement and specification) and uncertainty. In the context of this 

research, error and uncertainty is associated with the quantification and specification of the 

standard secondary data representing catchment and reservoir basin factors associated with 

sediment production/delivery processes. Regarding the application of multiple regression, it 

was because of this inherent error and uncertainty that the strict assumptions of linearity, 

residual constant variance and residual distribution normality were not met. In addition to 

this, the fuzzy set MCE approach is theoretically preferable as there is an incomplete 

understanding of the processes of sediment production and delivery to reservoir basins 

reflected through the secondary data collated in the population data set. For example, the 

quantified influence of sediment control structures (e.g. residuum lodges and by wash 

channels), reservoir management operations (e.g. reservoir drawdown and sediment 

flushing) and autochthonous sediment production cannot be readily determined for such a 

large population of reservoirs. As a result of this, the prediction of an arbitrary degree of 

sedimentation through fuzzy set MCE, as opposed to a precise, quantified value through 

multiple regression which is incorrect from the outset due to the inability to fully 

characterize the system, is theoretically more sound. Consequently, the fuzzy set MCE 

model 1 produced the most robust, valid, reliable output.
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Through this research the most robust, valid and reliable large-scale lumped-empirical 

model to date has been constructed predicting reservoir sedimentation for the population of 

directly catchment-coupled surface storage reservoirs across. As a result, this has allowed 

the first comprehensive assessment of the spatial variation of reservoir sedimentation for 

the aforementioned population to be made across mainland England and Wales. The fact 

that a model of reasonably good validity was produced using fuzzy set multi-criteria 

evaluation demonstrates the utility of the approach for use in such large-scale reservoir 

sedimentation/sediment yield studies over the application of more traditional modelling 

techniques such as multiple regression. The model output (Figure 6.4) does identify where 

reservoir sedimentation may be a potential problem. This is extremely useful for reservoir 

undertakers, who on the basis of the predictions can direct further investigation into the 

nature of the process at a more detailed level if required. This could be in the form of a 

bathymetric survey to establish an accurate revised reservoir capacity, or if interested in the 

process of sediment production and delivery, in the form of a spatially distributed 

catchment area model (e.g. Van Rompaey et al., 2001) which can be more easily and 

effectively applied at such smaller spatial scales.
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9. Potential areas for future work

The research herein has provided the first comprehensive assessment of the spatial variation 

of reservoir sedimentation for the population of surface water storage reservoirs exhibiting 

a degree of catchment-coupling across England and Wales. This was achieved through the 

successful application of fuzzy set multi-criteria evaluation producing a lumped-empirical 

model. As a result of this, potential areas for future work and application of the fuzzy set 

MCE approach could focus upon:

1. The primary data collection of more observed reservoir sedimentation rates, 

spanning the range of reservoirs contained within each of the three clusters of 

reservoirs that share the same sedimentation-influencing factors within the 

population data set. This would provide more data for model verification and 

validation, thus producing a more comprehensive, possibly robust result. In 

addition, this would allow a definitive assessment to be made concerning which 

approach provides the most robust, valid, reliable results: fuzzy set multi-criteria 

models produced for the complete population data set, or those produced for the 

principal clusters within the population data set.

2. The application of the fuzzy set multi-criteria approach to provide the first 

comprehensive assessments of the spatial variation of reservoir sedimentation for 

the population of surface water storage reservoirs exhibiting a degree of catchment- 

coupling across mainland Scotland and Northern Ireland; thus providing a complete 

assessment across the mainland United Kingdom. This was not possible during the 

current study because of time and resource constraints.

3. The refinement of the fuzzy set multi-criteria evaluation approach through 

application at smaller, regional scales through the incorporation of variables 

defining/describing catchment hypsometric integrals, drainage density, dam 

dimensions, reservoir sediment control structures, management strategies, 

allochthonous wet and dry deposition, autochthonous sediment production, and the
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influence of small anthropogenic landscape elements (e.g. banks, hedges, tillage 

directions etc.). It was not practical to investigate/attempt the derivation of variables 

defining/describing these factors for the larger spatial scale models produced herein, 

due to the required excess primary data collection. This, however, could be 

considered over smaller reservoir populations associated with smaller spatial scales.

4. The fuzzy set MCE approach developed herein could help assess the suitability of 

proposed new reservoirs sites as an integral part of a cost-benefit analysis.

5. The water companies of England and Wales, having identified the degree of 

reservoir sedimentation occurring over their respective regions through the fuzzy set 

MCE approach developed herein could target resources for more detailed 

monitoring/modelling/remediation where necessary. With regards to monitoring, the 

respective inflowing steams into the reservoir could be instrumented, collecting 

suspended load samples, or regular bathymetric surveys undertaken to calculate 

accurate revised capacities and sedimentation rates. In terms of modelling, spatially 

distributed catchment area models could be developed for particular catchments to 

obtain more information regarding the process of sediment production and delivery 

(e.g. Van Rompaey et al., 2001; Kim and Steenhius, 2001). Regarding remediation, 

sediment flushing, sluicing and/or dredging could be employed (Mahmood, 1987), 

and/or strategies involving the reduction of sediment yield entering the 

impoundment. Such strategies involve either the prevention of erosion within the 

catchment, or the trapping of sediment before it reaches the reservoir basin. Morris 

and Fan (1998) identify three principal categories of techniques to reduce sediment 

yield entering reservoir basins:

• Structural or mechanical measures. These include flow conveyance 

structures such as bywash channels and washlands (Labadz et al., 1995; 

Harman et al., 2002); channel/reservoir bank protection and stabilization 

methods such as revetments (e.g. gabions, riprap, geomats and sheet piling) 

and riparian tree species (Escarameia, 1998; Simon and Collison, 2002); 

sediment traps such as residuum lodges and check dams (Labadz et al.,
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1995; Morris and Fan, 1997); and structural terraces and contour bunds 

(Morgan, 1995). Typically these measures act to control the movement of 

surface water to reduce the flow velocity, increase soil/slope stability, 

increase the surface storage of water, and safely dispose of runoff (Morgan,

1995).

• Vegetative or agronomic measures which rely on the natural, regenerative 

properties of vegetation, or the management of crop and crop residue to 

protect the soil (Morris and Fan, 1997). This can include the use of crop 

contouring, strip cropping, filter strips, conservation tillage, contour-grassed 

hedges, and riparian buffers (Morgan, 1995; Prosser and Karssies, 2001; 

Hartwig and Ammon, 2002; Jin et aL, 2002; Price and Lovett, 2002a, 2002b, 

2002c). These hillslope erosion control measures are particularly used for 

agricultural land use.

• Operational measures which involve management and scheduling measures 

employed to minimize erosion potential. These include scheduling harvest 

and seed drilling activities to avoid periods of excessive soil moisture, and 

the scheduling of grazing to allow periods of vegetation recovery (Morris 

and Fan, 1997; Price and Lovett, 2002c).
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Appendix 6. Cluster Analysis Results



764 33 100.00 67877.429 123 162 123 9
765 32 100.00 69858.435 250 445 250 4
766 31 100.00 71885.004 5 33 5 51
767 30 100.00 80075.090 29 426 29 12
768 29 100.00 82117.363 5 34 5 77
769 28 100.00 82428.250 1 17 1 236
770 27 100.00 84448.275 2 111 2 32
771 26 100.00 89107.466 50 88 50 17
772 25 100.00 92746.479 110 172 110 16
773 24 100.00 95199.395 73 228 73 3
774 23 100.00 95917.122 5 241 5 85
775 22 100.00 96235.446 7 16 7 137
776 21 100.00 96473.016 123 425 123 10
1 1 1 20 100.00 99012.000 4 50 4 46
778 19 100.00 102021.031 110 164 110 17
7^9 18 100.00 104029.665 250 380 250 7
780 17 100.00 107212.954 13 49 13 201
781 16 100.00 122961.131 338 437 338 2
782 15 100.00 1-26952 . 681 29 123 29 22
783 14 100.00 133676.277 7 311 7 138
784 13 100.00 149669.573 2 110 2 49
785 12 100.00 198372.625 250 338 250 9
786 11 100.00 224401.232 73 250 73 12
787 10 100.00 231925.244 4 187 4 52
788 9 100.00 251690.003 5 7 5 223
789 8 100.00 486390.135 29 73 29 34
790 7 100.00 547187.061 1 4 1 288
791 6 100.00 658025.927 2 5 2 272
792 5 100.00 998013.627 2 13 2 473
793 4 100.00 1.37 55E+0 6 29 422 29 35
794 3 100.00 4.0528E+0 6 2 29 2 508
795 2 50.00 1.OOOOE+12 2 453 2 509
796 1 0. 10 1.9980E+12 1 2 1 797

Final Partition
Number of clusters: 4

Number of Within cluster Average distance Maximum distance
observations sum of squares from centroid from centroid

Clusterl 288 28418458.752 253.183 1069.916
Cluster2 473 141691305.142 483.374 1332.814
Cluster3 35 5933681.408 362.211 1080.108
Cluster4 1 0.000 0. 000 0 . 000
Cluster Centroids
Variable Clusterl Cluster2 Cluster3 Cluster4 Grand centrd
Catchmen 12.0381 11.3240 9.7954 1.1000 11. 5021
QMED ■ 2.3319 4.5817 11.0223 0.9490 4.0470
Mean FAR 0.8441 0.8618 0.7541 1.0000 0.8509
Flood At 0.9342 0.9209 0.9270 1.0000 0.9260
Proporti 0.3640 0.4680 0.6371 0.5700 0. 4380
Mean cat 123.4271 255.9006 508.1143 294.0000 219.1543
Base flo 0.5271 0.4465 0.3235 0.3290 0.4701
Mean dra 3.1514 2.7664 2.6357 1.1000 2.8977
Mean dra 53.8490 94.7288 270.1314 166.5000 87.7494
Longest 6.1666 5.3839 5.0443 2.2100 5.6478
Median a 11.0993 11.1837 13.0714 11.7000 11.2368
Median a 34.1792 40.2975 70.2571 40.8000 39.4029
Median a 44.2594 53.2228 94.9457 58.0000 51.8221
1961-90 809.0729 1122.3340 2435.6857 1348.0000 1067.0941
1941-70 817.1285 1130.7315 2457.9143 1315.0000 1075 . 9235
Standard 32.7611 40.6543 52.7514 48.6000 38.3433
Concentr 0.5817 -999999.0000 -999999.0000 -999999.0000 --638644.0696
Fraction 0. 0841 0.0006 0.0001 0.0000 0.0308



Index of 0.9990 -999999.0000 -999999.0000 0.0000 -637389.2149
Trap Eff 79.5082 87.8315 96.1415 91.8448 85.1938
401 0.0208 0.0381 0.0000 0.0000 0.0301
405 0.0903 0.1607 0.0000 0.0000 0.1280
454 0.0000 0.0106 0.0000 0.0000 0.0063
455 0.0590 0.2431 0.2000 0.0000 0.1744
469 0.0000 0.0613 0.0000 0.0000 0.0364
475 0.0000 0.0021 0.0000 0.0000 0.0013
486 0.0764 0.2220 0.1429 0.0000 0.1656
487 0.0000 0.0000 0.0286 0.0000 0.0013
489 0.2882 0.1776 0.1714 0.0000 0.2171
495 0.0347 0.0275 0.0000 0.0000 0. 0289
506 0.0208 0.0000 0.0000 0.0000 0 . 0075
507 0.0347 0.0106 0.0000 0.0000 0.0188
660 0.0000 0.0085 0.0000 0.0000 0.0050
686 1.1632 1.0486 0.2571 0.0000 1.0540
692 0.0208 0.0846 0.0000 0.0000 0.0577
Ave%brac 1.9732 1.9760 0.8710 0.0000 1 . 9240
Avelconi 2.8922 2.4329 1.3893 0.2500 2.5503
Ave%deci 9.5246 8.7840 8.5617 30 . 5000 9.0691
Ave%dshr 3.2001 3.7700 2.7923 6.0000 3.5239
Ave%dshr 0.6917 0.5566 0.4676 0.5000 0.6014
Ave% fell 0.1109 0.0833 0.0020 0.0000 0.0896
Ave%gras 4.7168 3.4860 2.8803 2.0000 3.9023
Ave% inla 0.7542 0.8077 0.9503 0.0000 0.7936
Ave%inla 1.8858 1.3941 1.5544 0.5000 1.5777
Ave%lowl 0.0597 0.0516 0.0143 0.0000 0.0528
Ave%mead 17.0563 16.9697 15.2238 2.5000 16.9062
Ave%moor 13.1730 11.5378 10.0129 9.0000 12 . 0585
Avelmown 11.4506 11.8880 10.9925 14.5000 11.6939
Ave%open 5.3497 5.1247 2.7344 7 . 7500 5.1043
Ave%open 0.9521 1.0725 0.6378 6.2500 1.0164
Ave% roug 1.5358 1.2215 0.8359 0.0000 1.3166
Ave% rude 0.2007 0.2975 0.0771 0.0000 0.2525
Ave% scru 0.6274 0.5128 1.1332 0.0000 0.5808
Ave% subu 6.7942 7.4993 11.3471 17.0000 7.4254
Ave%till 12.6384 16.3359 23.9741 2.5000 15.3178
Ave%upla 0.4619 0.4928 0.0748 0.0000 0.4627
Avelurba 1.8221 1.5928 1.9533 0.7500 1.6904

Distances Between Cluster Centroids
Clusterl Cluster2 Cluster3 Cluster4

Clusterl 0.0000 1414213.3422 1414215.2237 999999.8726
Cluster2 1414213.3422 0.0000 1893.0601 999999.0464
Cluster3 1414215.2237 1893.0601 0.0000 1000000.2748
Cluster4 999999.8726 999999.0464 1000000.2748 0.0000
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Appendix 7. Bathymetric Plots
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THE GREAT LAKE- WELBECK ESTATE 

Metres above sea level 
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