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ABSTRACT

A generalised finite element scheme to analyse two-dimensional
fluid flow with heat transfer under the steady state condition has
been developed. The Analysis of Dboth laminar and turbulent flow
regimes in complicated geometries is facilitated. Imposition of
various types of flow boundary conditions is achieved with minimal

effort.

Throughout its development, the emphasis has been on making the
scheme efficient in terms of computer storage and run-time. In order
to achieve this goal, a number of innovations have been introduced
both at the finite element discretisation and the solution stages.
Advantages have been taken from the recent developments in the Finite
Element Method (FEM), as well as adopting some of the established
techniques used by the Finite Volume Method (FVM). As a result the
scheme is shown to have a computational efficiency comparable with

those employing the FVM.

A simple streamline upwind technique is devised in representing
the advection terms in the governing transport equations. Verification
tests are carried out which demonstrate the accuracy of the streamline
technique in treating advection. The upwinding is shown to produce
significantly smaller numerical diffusion errors than those arising
from previous upwind approximations. The results also show that the
technique is unconditionally stable and produces no spurious spatial
oscillations. The technique is straightforward and can be added to

conventional Galerkin type finite element codes quite readily.

For the solution of the coupled transport equations, an equal
order interpolation is wused for all wvariables including pressure.
Pressure and velocities are segregated and are obtained separately. A
SIMPLER-1like algorithm is wused to sequentially solve and update
velocity components and pressure. The solution is carried out in an
iterative fashion. At each iteration, systems of equations are solved
by a technique similar to that wused in the FVM. A line-by-line
Tri-diagonal matrix solution algorithm is developed for the completely

unstructured grids that are generated by the FEM. The technique is



particularly efficient in  terms of storage requirements and
computational speed. It also takes advantage of the nature of the

system of equations to be solved.

Several laminar benchmark exercises with and without heat
transfer are performed. These include developing and fully developed
isothermal duct flow, backward facing step flow, natural convection in
square cavity and Jjet impingement with heat transfer. Results show
that the adopted equal order velocity-pressure method can predict the
benchmark solutions efficiently and accurately. Spurious pressure

modes are also shown to be completely absent.

In modelling turbulent flows, the k-e two equation eddy viscosity
model 1is employed. The advection part of the k and e equations are
discretised by the upwind technique developed in this research.
Special treatment of the source terms eliminate the possibility of
producing negative values of k or e during the iterative solution
sequence, which can cause convergence difficulties. By combining the
Law of the Wall and the Log Law of the Wall to determine shear
stresses near solid regions, the need for an excessively fine mesh in

these regions is avoided.
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CHAPTER 1

INTRODUCTION

1.1 Overview and scope of current work

This work is concerned with the Finite Element discretisation of
the governing transport equations for fluid flow. The ultimate aim of
this research is to provide an efficient and accurate program for the
prediction of turbulent flow in general two-dimensional geometries.
This has been possible through a number of successive development
stages. At each stage, a number of alternative techniques were
considered and the most appropriate was selected. The chosen
techniques were then altered, modified or refined in order to produce
the best possible results. Throughout this research, emphasis has been
placed on physical considerations and mathematical manipulations have
been deliberately kept to a minimum. It was decided that in this
manner the critical evaluation of the results would point directly to

the deficiencies of the proposed models.

In this chapter a literature review of the research work in the
field of numerical analysis of fluid flow and heat transfer is
presented. In section 1.2.1 the recent developments by the Finite
Element Method (FEM) are reviewed. In section 1.2.2 the numerical
treatment of the advection terms in the transport equations by various
methods is presented. A discussion is also given on the effectiveness
of such methods in reducing the errors associated with the modelling
of advection. Section 1.2.3 ©provides a broad review of the current

methods for turbulence modelling by both the Finite Volume Method
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(FVM) and the FEM. It 1is through these reviews that the most
appropriate course of action for this research 1is selected. The
objectives of the current research are presented in the penultimate
section. In the final section an outline of the remaining chapters in

this dissertation is presented.

1.2 Review of previous work

In this section a review of the relevant research work in the
field of Computational Fluid Dynamics (CFD) is presented. The focus of
attention is mainly on the FEM. The most recent advances by the FEM
are first reviewed. The various FEM models for advection transport are
next reviewed. Lastly, the subject of turbulence modelling by the FEM
is presented. Also throughout this review, and especially in the area
of turbulence modelling, reference is made to the appropriate research

carried out with the FVM.

1.2.1 Recent developments in FEM

The FEM was first conceived in the late 1950’s as a method of
analysing stress distributions within complex structures in the
aircraft industry. Since then, the FEM has found 1its way 1into
countless other applications. Its range of applicability and success
rate in many areas of science and technology has, quite simply, been
astonishing. Over the past two decades the FEM has emerged as a
powerful tool for predicting and analysing complex flow situations.
Engineers and researchers alike have benefitted considerably from the
freedom, accuracy and ease offered by the FEM 1in describing
complicated geometries and imposing various boundary conditions. The
purpose of this review is to list and briefly discuss the implications

of the most recent developments in the FEM that are relevant to the
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present work. The review is therefore concerned with three specific
topics of mesh generation, novel Finite Element formulations and

solution techniques.

Mesh generation is one of the key areas where the FEM has been
particularly successful. The task of defining complex two-and
three-dimensional shapes and their subsequent subdivision into
elements 1is becoming progressively easier, faster and more accurate.
Mesh generation is an area where the complete unstructured nature of
the FEM has been explored to the full. In most Finite Element codes,
mesh generation forms an essential and an integral part of the whole
analysis. There are numerous mesh generation techniques currently in
use. These techniques are becoming more advanced almost by the day.
The following review concentrates on recent papers which deal with the
more fundamental aspects of mesh generation. In particular those
papers where mesh generation is influenced by the criteria of
simplicity, generality, efficiency, accuracy and utilisation in fluid
flow analysis are reviewed. Comprehensive surveys of mesh generation
routines are carried out by Buell and Bush (1973), Ewing (1986),

Hawken (1987) and Shephard (1988),

Akyuz (1970) wuses the concept of natural coordinate systems to
produce a flexible automatic mesh generation scheme. By dividing the
domain of interest into subdomains, Akyuz was able to generate the
desired mesh for one-, two- or three-dimensional geometries with
curved boundaries. He employed biquadratic quadrilateral subdomains
and bilinear rectangular elements. Zienkiewicz and Phillips (1971)
used isoparametric curvilinear mapping of quadrilaterals to generate

planes and curved surfaces. They used triangular shapes as their basic
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elements, which enabled them to discretise any arbitrary shape in
space. Their method may be extended to three-dimensions with minor
additions. Jones (1974) introduced a mesh smoothing and mesh
restructuring technique for two-dimensions. He employed quadrilateral
elements and was able to re-number the elements in such a way to
minimise the bandwidth of the global matrix and hence improve on
machine storage and execution time. Herrmann (1976) developed a
combined Laplacian-Isoparametric two-dimensional grid generator. His
scheme could be extended to three dimensions, but due to its iterative
nature it was rather wasteful of computer time. Bryant (1985) proposed
a flexible two-dimensional mesh generator that used triangular
elements. Penman and Grieve (1987) based their self-adaptive mesh
generator on principles that ensured global error bounds. They
sequentially solved the discretised equations, calculated error
estimates and refined the mesh until an optimum solution was obtained.
Oden et al (1987) developed an adaptive mesh generator that was used
throughout the computations with the mesh being continuously refined
and re-defined as the solution progressed. Cook (1988) introduced a
body-fitted Finite Element mesh generator and demonstrated its
accuracy by solving examples 1in both Cartesian and Cylindrical
coordinate systems. Tezuka and Okuda (1988) introduced an adaptive
mesh refinement procedure that considered the Finite Element
discretisation error. They managed to refine the mesh based on this
error analysis without having to introduce more nodes/elements into
the domain. The mesh generation routine developed for this research is
based on the scheme of Zienkiewicz and Phillips (1971). Jambunathan
and Shemirani (1990) used the mesh generator in an interactive Finite
Element package for heat transfer analysis in solids. Jambunathan et

al (1990) employed the routine in the analysis of isothermal laminar
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fluid flow. The routine has been further modified in order to increase
its flexibility and accuracy by Shemirani and Jambunathan (1991a). 1In
their method, the mesh generation routine becomes an integral part of
the solution algorithm and greatly improves the computer storage and
execution time of the solution algorithm as is mentioned later in this

section and described in detail in Chapter 5.

The discretisation of the nonlinear governing transport equations
by the FEM results in a set of simultaneous linear algebraic
equations. The solution to such an equation set can be obtained by
either direct or iterative methods. Direct methods such as the
Gaussian elimination or the Lower-Upper ( LU ) decomposition require
excessive amounts of computer storage and solution time. For flow
situations where a large number of elements must be used, the direct
methods become very inefficient and indeed impractical. The relatively
slow emergence of semi-direct or iterative solutions for the FEM is
due to the unstructured nature of the method. In the FVM on the other
hand, a structured grid allows the development of very efficient

solution algorithms which possess optimal convergence rates to the

exact solution. The most well known of these methods are the
Alternating-Direction Implicit ( ADI ) scheme of Peaceman and Rachford
(1955), strongly dimplicit scheme of Stone (1968), preconditioned

conjugate gradient methods such as that of Kershaw (1978), the
multigrid method of Brandt (1977) and many more. Some of these
solution techniques have been adopted for regularly structured Finite
Element meshes. Solution strategies based on the above iterative
techniques vyet applicable to completely unstructured Finite Element

meshes are highly desirable.

page 5
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Irons (1970) introduced a Frontal solution technique where the
Gaussian elimination was combined with a front advancing strategy to
solve symmetric positive-definite equations. Hood (1976) later
extended this technique to the solution of unsymmetric matrices. The
Frontal solution is quite satisfactory for small two-dimensional
problems, but becomes very inefficient and time consuming for larger
problems. Douglas and Dupont (1971) introduced an Alternating
Direction Galerkin method for structured rectangular domains. The
implementation of their method to rectangular polygons was performed
by Dendy and Fairweather (1975). Deconinck and Hirsch (1979a) used the
successive line overrelaxation (SLOR) and the approximate
factorisation (AF) in conjunction with FEM for transonic flow
calculations. Deconinck and Hirsch (1979) extended their techniques
to the computation of subsonic and transonic cascade flows. Deconinck
and Hirsch (1980) then experimented with higher order elements. They
showed improved computer efficiency and fast convergence rate, however
their method is only suitable for regular Finite Element grids. Some
researchers adopted a transient solution strategy, where the steady
state solution 1is obtained in the 1limit. This allowed nonlinear
schemes such as Newton-Raphson or Runge-Kutta to be wused very
efficiently and without restrictions on the regularity of the Finite
Element mesh, see for example Donea (1984), Zienkiewicz et al (1985)
and Peraire et al (1986). Preconditioned conjugate gradient methods
have also been devised for the FEM. These methods generally require
parameter settings which depend on the type of problem at hand, see

Carey and Jiang (1987).

For the present research, a novel iterative solution algorithm

was devised which 1is described in detail in Chapter 5. The algorithm
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is an implementation of the Alternating-Direction Implicit scheme of
Peaceman and Rachford (1955) to the FEM. The algorithm is termed the
Regional Alternating-Direction Implicit Solver (RADIS). RADIS 1is
applicable to structured and completely unstructured grids generated
by the FEM. RADIS is also applicable to all types of two- and
three-dimensional elements. Shemirani and Jambunathan (1991b) show the
superiority of the algorithm in terms of computer storage, execution
time and convergence rate over the conventional direct or iterative
solvers. They also recommend RADIS as a smoother to the Multigrid

method, hence improving on its convergence rate.

During the past decade a number of novel Finite Element
formulations have appeared in the literature. These formulations
generally tend to combine the geometrical flexibility of the FEM with
the sequential solution strategy of the FVM. Baliga and Patankar
(1980) devised a control volume based formulation with triangular
elements for two-dimensional calculations. The formulation was of
mixed-order interpolations for wvelocity and pressure fields. The
method was later extended to heat transfer problems by Baliga and
Patankar (1983) and Baliga et al (1983). Parakash (1986) introduced
the equal-order version of the Baliga and Patankar (1980) method. In
this way, he managed to reduce the discretisation errors associated
with mixed-order interpolations. Schneider et al (1978b) devised a
velocity correction, equal-order finite element formulation, and
achieved fast convergence rates. Other equal-order velocity-pressure
formulations have also been proposed, see for example Rice and
Schnipke (1986) and Schnipke and Rice (1987). Ramaswamy (1988) also
used an equal-order velocity-pressure formulation for two-dimensional

natural convection analysis.



Introduction Chapter 1

Other Finite Element workers have concentrated on developing
efficient and accurate algorithms for their particular flow
arrangements. Obee and Witt (1980) wused velocity potential and
multi-region arrangement to analyse the impingement of a free Jjet on a
disk. Their method took advantage of the flow conditions in the three
different regions of the flow. Allaire et al (1985) employed simplex
elements with  penalty formulation for accurate analysis of
recirculating flows. Betts and Haroutunian (1983) devised a stream
function formulation for two-dimensional natural convection, and
accurately predicted the variation of the Nusselt number. Dhatt et al
(1986) developed a new triangular element for steady and unsteady free
surface flows. They employed a Newton-Raphson method to solve the
governing nonlinear system of equations. Mochimaru (1986) used the
pressure gradient terms in the momentum equations as the dependent
variable for the analysis of circular cavity flow. Kawahara and Umetsu
(1986) used a two-step explicit FEM in river flow calculations, which
contains moving boundaries. Kim (1988) used bilinear rectangles for
velocity components and linear triangles for the pressure for the
calculation of high Reynolds number flows. Kaluarachchi and Parker
(1989) applied the FEM to multiphase flow situations with the help of
nonlinear iterative solvers. Kim and Decker (1989) used both
velocity-pressure integrated and penalty schemes for high Reynolds
Number flows. Finally, Hansen and Hassager (1989) developed a moving
FEM which 1is specially suited for differential equations whose

solution contains steep gradients.

The review of the above papers enabled the selection of the most
relevant technique for the present work. The criteria of selection

were  robustness, generality, applicability and possible future
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extension to three-dimensions. The selected method was that of Rice
and Schnipke (1986). As well as satisfying the above criteria, it also
offered a sequential, equal-order velocity-pressure approach in the
spirit of the SIMPLER algorithm. This meant that additional transport
equations Dboth for the laminar and the turbulent regimes could be
included in the formulation without excessive computer requirements.
The method of Rice and Schnipke (1986) was Dbased on Dbilinear
quadrilaterals. 1In order to increase the efficiency and robustness of
the formulation for this work, a triangular version of their method
was developed. Some novel alterations had to be introduced to increase
the accuracy of the formulation. A detailed description of this

formulation is given in Chapter 4.

1.2.2 Advection treatment by FEM

The variation of a scalar variable, < in time and space may be
described by a general differential equation that contains rate of
change, advection, diffusion and source terms. The temporal variations
in <& are described by the rate of change term. The source term
provides the rate at which ¥ is generated or destroyed. The spatial
transport of <& is represented by both the advection and the diffusion
terms. The diffusive and the advective transport mechanisms are two
quite different phenomena- a local disturbance in 4> is transmitted, in
all directions by the diffusion mechanism, and only along
characteristic 1lines by the advection mechanism. The physics of the
diffusive transport are adequately captured by the Galerkin weighted
residual approach in FEM. In this approach the wvalue of the scalar
quantity ¥ at a point 1is related to < at all the point’s neighbours.
This in turn ensures that local perturbations in < are made to spread

in all directions throughout the diffusive medium - a consistent
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reflection of the diffusion transport.

The advection transport, on the other hand, exhibits a
directional Dbias in that the effects of disturbances in 0 may only
travel along characteristic 1lines. Also the direction of travel is
from wupstream to downstream locations and not vice versa. This
important physical observation may not be immediately deducible from
the first order, and generally nonlinear, form of the advection terms
in the governing transport equation. Many of the past and present
formulations violate the physics of the advection transport resulting
in numerical instability and physical inaccuracy that are only too
familiar. A major drawback in treatingthe advection terms 1is the
contamination of the computed variable field by spurious oscillations.
For example, in the absence of any source term for O, these
oscillations may cause the solution set to waver outside the limiting
values of the wvariable imposed by the Dboundary conditions which
clearly 1is unacceptable on physical grounds. These oscillations have
in the past been referred to as overshoot/undershoot, numerical
oscillations, spatial oscillations, wiggles or numerical instability.
These oscillations will be referred to as spatial oscillations
hereafter. A second drawback, and perhaps not as detectable as the
first, 1is the smearing of the solution set by artificial diffusion.
This phenomenon, which is a direct consequence of numerical modelling,

acts 1in a manner analogous to the physical diffusion transport. This

artificial diffusion has been referred toas numerical diffusion,
crosswind diffusion, false diffusion or numerical smearing. The
artificial diffusion will be referred toas numerical diffusion

hereafter. 1In some instances the numerical diffusion can be orders of

magnitude greater than the physical diffusion resulting in highly
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erroneous solutions.

The deceptively simple form of the advection terms has rendered
the numerical treatment of advection an art of compromise between
numerical stability and physical accuracy. There is no ideal model of
advection which can produce results that are unconditionally free of
all spatial oscillations and numerical diffusion. Both the Finite

Element and the Finite Volume workers are constantly looking for more

accurate and stable, yetmore efficient formulations to represent the
advection transport. Thecurrent review is mainly concerned with the
recent advances to this end by the FEM. However, asmany ofthe

interesting and innovative ideas have originated from the FVM camp, a

brief summary of their research effort is in order.

Initial attempts to approximate the advection terms by the
central-difference operators in FVM resulted in unacceptable levels of
numerical diffusion and spatial oscillations in cases where the cell
Peclet number, Pem11’ exceeded 2. The central-difference scheme can
yield reliable results when used in conjunction with very fine grids
for which the largest Pecell is below 2. However, this approach is
highly undesirable, andin fact in most engineeringapplications
impractical, as it requires vast amounts of computer resources. To
cure this deficiency, countless schemes have been proposed. Patankar
(1980) provides a detailed analysis of the earlier models, some of
which are still in use today. The simplest advection model 1is the
Upwind scheme first proposed by Courant et al (1952), which
approximates the advection terms by the first-order differences taking

into account the direction of the velocity vector. The model 1is

accurate for large Pe , but breaks down at lower values. The
c

ell
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Exponential scheme of Spalding (1972) relies on the exact
one-dimensional solution of the advection-diffusion problem. This
scheme is computationally expensive and is not accurate for
multi-dimensional situations. The Hybrid scheme of Spalding (1972) is
a mixture of the central-difference and the upwind schemes. This
scheme can be implemented efficiently, but it gives a poor performance
especially around Pe of 2. The Power-Law scheme of Patankar (1980)
produces the exact solution for one-dimensional situations, but in

multi-dimensional situations it too suffers from inaccuracies.

Higher order Finite Volume schemes have also been developed.
Amongst these are the second-order upwind differencing (HOU) scheme of
Price et al (1966), the quadrature upwind (QUICK) scheme of Leonard
(1979) and the streamline wupwind (SUD) scheme of Raithby (1976).
Hassan et al (1983) produced a mass-flow-weighted skew upwind scheme
which is stable and results in little numerical diffusion. In a number
of comparison exercises the QUICK scheme has shown to be more accurate
than the other schemes, see for example Han et al (1981), Huang et al
(1985), Shyy (1985), and Patel and Markatos (1986). QUICK is also
being wused increasingly in complex two- and three-dimensional
turbulent flow calculations, see Leschziner (1989). The QUICK scheme
is however computationally expensive and suffers from convergence
problems, see Han et al (1986) and Patel et al (1987). Pollard and Sui
(1982) improved the convergence properties of the QUICK scheme, but
their method 1is complicated and hence uneconomical. The two major
disadvantages of the higher-order schemes are large spatial
oscillations at high Pecell and relatively expensive computer costs in
terms of storage and evaluation-time. A variety of composite schemes

have Dbeen proposed which try to improve the performance of the
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higher-order schemes. Leschziner (1989) provides a comprehensive
overview of these and many other schemes 1in connection with the

treatment of the advection terms by the FVM.

The evolution of Finite Element schemes in treating the advection
transport follows a similar path to that of the FVM. The conventional
Galerkin weighted residual approach, akin to the central-difference
operator, produces unacceptable levels of spatial oscillation and
numerical diffusion. This approach fails to allow for the directional
feature of the advection transport. The advection terms are treated in
the same manner as the diffusion terms. Hence in a purely advective
medium, perturbations in < at a point are incorrectly felt by all of
the neighbouring points. The presence of spatial oscillations are more
clearly visible in flow situations where downwind Dirichlet boundary
conditions are imposed. This difficulty was overcome by
one-dimensional upwind schemes, see Christie et al (1976) and Christie
and Michell (1978). The generalisation of the one-dimensional schemes
to two- and three-dimensions proved to be unsatisfactory, as they
resulted in excessive numerical diffusion and spatial oscillation.
Hughes and Brooks (1979) introduced a multi-dimensional
streamline-upwind/Petrov-Galerkin (SUPG) scheme, which was Dbased on
the upwind scheme of Hughes (1978). SUPG had good stability properties
and would dampen the numerical diffusion. It also had faster
convergence rate than the classical upwind schemes. Brooks and Hughes
(1982) demonstrated the use of SUPG in incompressible transient flow
calculations. SUPG was later extended to multi-dimensions by Hughes
and Mallet (1986a), who also produced precise error estimates of their
method for the complete flow Peclet number range. Heinrich and

Chung-Chyi (1987) extended the SUPG scheme to time dependent analysis.
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They constructed a scheme which is second-order accurate in time and
third-order accurate in space for the case of the constant coefficient
convection-diffusion equation on a uniform grid with bilinear
elements. However, levels of spatial oscillation produced by SUPG
generally means its exclusion from applications where sharp boundary

and internal layers are present.

More stable solutions may be obtained by Monotone methods. 1In
these methods, monotonicity ensures that new maxima/minima are not
introduced in the solution set. In other words, the solution set does
not contain values that are outside the physical range imposed by the
boundary conditions. Ideka (1983) explainsthe basic principles of
monotone methods. The methods of Hughes et al (1985) and Rice and
Schnipke (1985) are good examples of the monotonic property mentioned
above. In the latter example, upwinding is performed along the
streamline segments passing through the elements. Rice and Schnipke
(1985) produced oscillation-free results withminimal numerical
diffusion. Unfortunately monotone methods are generally based on
arbitrary constraints and do frequently violate the physical laws. For
example a major shortcoming of such methods 1s that they can be
non-conservative. In flowcases where the fluid properties are
changing, non-conservatism can lead to the global imbalance of the
transported quantities. Mizukami and Hughes (1985) introduced a
monotone method that uses simplex triangular elements. Their method is
conservative and satisfies the requirements of the Petrov/Galerkin
method. However the method is complex and its extension to

three-dimensions has not yet been reported.

SUPG can be modified so as to capture sharp discontinuities in
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the solution domain. Hughes et al (19806a) add a discontinuity
capturing term to the element weighting function of the SUPG and
produce a nonlinear method. The additional term acts in the direction
of the solution gradient rather than in the direction of the
streamline. The method shows improved performance over the SUPG on
cases with sharp boundary/internal layers. The spatial oscillations
are dampened considerably in comparison to SUPG, but are still present
at corner points in the domain. The method was generalised to
multi-dimensions by Hughes and Mallet (1986b) and obtained accurate
solutions to the compressible Euler equations. The method was later
used for the Stokes problem by Hughes et al (1986), who employed
equal-order interpolation for velocity and pressure. The success of
the formulation depends on the correct specification of the stability
constants that change from one type of element to another. Also,
Hughes et al (1986b) express reservations on their formulation to
solve the most general cases of fluid flow which are governed by the

Navier-Stokes equations.

Other Finite Element formulations have also appeared in the
literature that do not adopt the above concepts. Baliga and Patankar
(1980) introduced a control-volume based finite element formulation.
They employ three-noded triangular elements for which the element
shape function is based on the direction of the local velocity vector.
Their method is later extended to three-dimensions by Muir and Baliga
(1986) who use tetrahedral elements as their control-volumes. A
similar approach is employed by Ramadhyani and Patankar (1985) in
conjunction with quadrilateral elements. Idelsohn (1989) achieves
upwinding by requiring the satisfaction of a variational principle. He

claims that his technique can give clear indication of regions in the
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domain where either upwinding is not required, upwinding is necessary
and sufficient or upwinding is insufficient and should be replaced by
artificial wviscosity. Finally, Steffler (1989) introduces a new
upwind-weighted element function in the spirit of the QUICK scheme.
His element function is influenced by the presence of upwind nodes
external to the element. Steffler produces good results for a number
of convection-diffusion problems and concludes that the reliability

and efficiency of the method should be further investigated.

It can be said that in general the FEM produces less numerical
diffusion than the FVM, as is evident from the comparison exercise of
Smith and Hutton (1982). This is due to the ability of the method to
work with the resultant-velocity direction as opposed to the locally
one-dimensional approach of the FVM. Neta and Williams (1986) examined
a variety of advection Finite Element formulations and found that the
schemes with linear isosceles triangles or bilinear quadrilaterals
gave the best results. For the current research, after considering the
advantages and disadvantages of the techniques reviewed above, it was
decided to employ a monotone upwind technique for the treatment of the
advection terms. Monotone techniques are simple to implement and their

extension to multi-dimensions is relatively straightforward. They are

also computationally economical in terms of storage and
evaluation-time. But perhaps the most important feature of these
methods 1is that they do not introduce spatial oscillations. These

unphysical oscillations apart from being cosmetically displeasing, can
often lead to divergence problems during the course of an iterative

process.

The criteria for selecting the appropriate monotone method were
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the degree of numerical diffusion, the economy of operations, the
generality and the possible extension to three-dimensions. The
Monotone Streamline Upwind (MSU) technique of Rice and Schnipke (1985)
seemed to satisfy these «criteria. However, the MSU technique was
non-conservative and was developed in conjunction with the bilinear
quadrilateral elements. As 1is discussed in Chapter 2, these elements
can lead to matrices that are not diagonally dominant. This would in
turn prohibit the use of fast iterative matrix solvers. Therefore a
conservative formulation based on the MSU technique was developed for
this research. 1In this formulation three-noded triangular elements
were used to ensure diagonal dominance and to minimise the
computational costs. Shemirani and Jambunathan (1990) have applied
this formulation to stringent test cases and validated its capability
in predicting results with minimal numerical diffusion without spatial

oscillations for the entire flow Peclet number range.

1.2.3 Turbulence modelling

Turbulent flows occur at high Reynolds numbers. They are
characterised by random and unsteady eddying motions with pressure and
velocity fluctuating irregularly in all directions. Rapid diffusion of
properties such as mass, heat and kinetic energy are present in a
turbulent flow field. A high rate of energy dissipation, i.e. the
transfer of the kinetic energy to the internal energy, is also
present. Visual observations of turbulent flows show them to consist
of eddies of many different sizes or scales. The relative scales of
the eddies depend on the geometry and the past history of the flow. In
internal flows, the largest eddies have scales of the same order as
the width of the flow, whereas the smallest eddies are orders of

magnitude smaller than the overall flow dimensions. So to capture the
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essential details of such flows directly, very fine computational
grids must be employed. Then the solution of the unsteady
three-dimensional transport equations for laminar flow would provide
the instantaneous distribution of turbulent flow gquantities. However
as Launder (1972) points out such a direct approach demands computer
storage and run-time which exceed today’s hardware capabilities. To
overcome this problem, numerous turbulence models have been proposed
and are 1in use today. It must be said that none of these models are

capable of predicting the turbulent flow characteristics exactly.

Present turbulence models vary greatly in the degree of
complexity. Each model has associated with it a set of underlying
assumptions. These assumptions ultimately determine the accuracy,
generality and applicability of each model. A good turbulence model,
is one that relies onas few assumptions as possible, whilst
possessing a wide range of applicability. The simpler models are based
on the equations that govern laminar flowswith no additional
transport equations. In the more sophisticated models, additional
differential equations are used to describe the transport of turbulent
quantities such as the turbulence energy and its dissipation rate.
Turbulent models can be classified in several ways. The most popular
classification 1is one where turbulent models are grouped in terms of
the number of additional transport equations that are solved along
side the equations for mass, momentum and energy, see for example
Reynolds (1976) and Rodi (1980) . According to this classification
there are zero-equation, one-equation, two-equation and turbulent
stress/flux-equation models of turbulence. These are the main classes
of turbulent models. Rodi (1980) mentions that apart from the above

models, there is a newly emerging class of models, called the subgrid
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scale models, which show promising results. There are also turbulent
models that are based on the integral methods. Before considering the
main classes of turbulent models, a brief description of the latter

two models will be given.

In the subgrid scale model, it 1is recognised that the main
turbulent transport 1is governed by the motion of the energetic large
scale eddies. A computational grid is then set up to capture such
unsteady, three-dimensional motion. The small scale motion, which
cannot be captured by this grid, 1s approximated by an appropriate
subgrid model. Examples of the subgrid scale modelling can be found in
Deardorff (1971, 1973 and 1975), Schumann (1975), Kwak et al (1975),
Love (1978 and 1980) and McMillan and Ferziger (1979). The main
drawback of this type of model is its excessive computer requirements,
since the computational grid must be fine enough to resolve all but
the smallest eddy motions. Additional assumptions may be employed to
decrease the grid density. However this diminishes the accuracy and
the generality of the method. A typical subgrid model is composed of
two components- a main grid scale model and a subgrid scale model. The
main grid scale model is used to represent the motion of the large
eddies, while the subgrid scale model attempts to model the behaviour
of the smallest eddies. These two components are derived from
mathematical manipulations involving filtering operations. The
filtering may be achieved by a variety of filtering functions such as
the Gaussian function, see Love (1980). The two components are
substituted into the governing transport equations. The transport
equations are then themselves filtered. The nonlinearity of the
transport equations results in additional terms which contain the

subgrid scales. The subgrid scales can then be described effectively
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by simple conventional eddy-viscosity models. The subgrid models are
not at present suitable for general turbulence predictions as they
place heavy demands on computer memory and run-time. Nevertheless,
these models are useful tools in developing and evaluating the more

conventional forms of turbulence models.

The models based on the integral methods are used mainly in
day-to-day engineering applications. These methods rely on the
boundary layer equations which are the simplified versions of the
Navier-Stokes equations. The simplifying assumption is that the
changes in the flow properties along the stream-wise coordinate are
much smaller than those in the cross-stream coordinate. This
eliminates the stream-wise dependency and allows for a parabolic
rather than an elliptic consideration. The former offers considerable
savings in computer storage and execution time as it renders itself to
a marching solution procedure as opposed to a sweeping one. Reynolds
(1968) reviews a number of these models which were presented at the
first Stanford Conference on Computation of Turbulent Boundary Layers
in 1968. The most commonly used integral method is the Head's
Entrainment Method, Head (1958). 1In this method the momentum and the
continuity equations are integrated with respect to the cross-stream
coordinate. With a power-law velocity profile assumption and a
skin-friction law, a system of ordinary differential equations is
obtained for the boundary layer displacement thickness and the
momentum thickness. Other related variables may also be obtained by
taking moments of the momentum equation, see Murphy and Rose (1968).
The solution of such a system of equations is then obtained by any
standard integration algorithm such as Runge-Kutta or Adams Moulton.

Green (1968) extended the basic integral method to account for
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compressibility. Green et al (1977) introduced an additional
differential equation to describe the entrainment rate, hence
incorporating the flow history into the method. The integral method
models are frequently used 1in everyday engineering practices where
flow parameters such as the pressure distribution and the
skin-friction need to be evaluated reasonably accurately and cheaply.
They are simple and the turbulence equations can be modified to
include new empirical correlations. However, they can only be used for
flows where a predominant flow direction exists in the absence of
recirculation. The models also lack generality in that they depend
strongly on the empirical correlations which change from one flow case

to another.

The main classes of turbulent models rely on the time averaged
versions of the governing transport equations. The concept of a
time-averaged flow field was first introduced by Reynolds (1884).
According to Reynolds, an instantaneous turbulent quantity is made up
of a mean value and a turbulent fluctuation. By substituting the
instantaneous quantities into the transport equations and
time-averaging them, a set of coupled differential equations are
obtained in terms of the mean values. The time over which the
equations are averaged must be larger than the largest turbulent time
scale for a particular flow. The time-averaging process produces terms
involving the products of the turbulent fluctuations. These terms are
the Reynolds stress/flux terms. It 1is the treatment of these terms
that has lead to the development of many turbulent models. The
Reynolds stress/flux terms can themselves be described exactly by
additional differential equations. These equations are obtained by

taking velocity-weighted moments of the momentum equations and
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time-averaging  them. Unfortunately, this results in equations
containing quadratic products of the turbulent terms. This process can
be continued to create as many equations as desired. However, at some
point the set of equations must be closed by making assumptions about
the relationships between the highest order terms and the mean flow

quantities. This 1is known as the turbulent closure problem.

In the zero-, one- and two-equation models the action of the
Reynolds stress/flux terms are considered to be similar and additional
to those of laminar viscosity/diffusion. In the Reynolds stress/flux
models, these terms are themselves governed by algebraic or partial
differential equations. There are, in the literature, numerous books
and papers on the subject of turbulence modelling, which review and
discuss the benefits and the drawbacks of all past and present models.
The more recent reviews include: Rodi (1980) who provides a brief and
accurate comparative account of the most popular turbulent models and
their wuse in hydraulics, Rodi (1982) lists wvarious models for
incompressible turbulent flows, Nallasamy (1987) gives a comprehensive
review of turbulence models and their application to internal flows,
Launder (1988) concentrates on the problem of heat transfer in
turbulent flow calculations, Hutton (1985) highlights the recent
advances 1in the field of turbulent flow predictions by the FEM and
Hutton et al (1987) review the role of FEM in the computation of
turbulent flows in complex geometries. In the remaining part of this
section the main <classes of the turbulence models are briefly
described. The advantages and disadvantages of each model are also
discussed. It 1is through this discussion that the most appropriate

turbulence model for this work is selected.
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In the zero-equation models, sometimes referred to as the
zero-closure models, the principal governing transport equations are
the time-averaged mass, momentum and energy equations. There are no
additional equations employed to describe the distribution of the
Reynolds stress/flux terms. These terms are modeled via the eddy
viscosity/diffusivity concept, where their actions are considered to
be similar and additional to their laminar counterparts. The turbulent
viscosity and diffusivity may be specified directly from experimental
data. They may also be related to the mean-velocity distribution or
even take the form of empirical correlations. In the simpler models,
the turbulent wviscosity and diffusivity are assumed constant
everywhere, except at the wall boundaries where they fall to zero. The
constant eddy viscosity model offers a simple and crude way of
representing turbulence. It over-simplifies the action of the
turbulent transport terms and is therefore not widely used. A more
advanced model is the Prandtl’s mixing length model. In this model the
turbulent transport terms are expressed as the product of the
turbulent viscosity and the local gradient of the mean flow. Hence for

a two-dimensional situation
(1.1)

where V£ is the turbulent viscositxf vt is itself related to the mean

velocity gradient

where lm is the unknown mixing length, whose variation over the flow
field is prescribed empirically. The mixing length model is frequently
used for free shear layers and wall Dboundary layers, see Spalding

(1982) . Turner Jr and Gunzburger (1988) propose a robust FEM version
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of the zero-equation whichhas a fast convergence rate. In the
zero-equation models, the prescription of lm depends strongly on the
type of flow wunder consideration and Dbecomes 1increasingly more
difficult for recirculating and three-dimensional flows. The important
flow features such as curvature, buoyancy and rotation must also be
specified empirically. The convective/diffusive transport and the
history of turbulenceare not accounted for in the mixing length
model. Hence, the model has a narrow range of applications and is not

suitable as a general purpose turbulence model.

The one-equation modelsobtain the turbulent velocity scale from
an additional transport equation. The most appropriate velocity scale
is the turbulent kinetic energy. The turbulent viscosity is expressed

in terms of the turbulent kinetic enegry, %k, and a length scale, 1,

> = C /k 1 (1.3)
t P
where is an empirical constant. The length scale is flow dependent

and must be specified empirically. The differential equation for k is
of the same form as foranyother transportable quantity, with
transient, convective, diffusive and source terms. The one-equation
models are generally superior to the zero-equation models as they
account for the convective and the diffusive transport of the
fluctuating velocity scales. In the case of unsteady flow, the
flow-history of the velocity scales 1is also accounted for by the
one-equation models. These models are adequate for shear layer type
flows, where the zero-equationmodels also perform well. The
specification of 1 becomes difficult for the more complex flow
situations where separation, streamline curvatureor rotation may be

present. Algebraic formulae have been used to calculate the length
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scale by Gawain and Prichett (1970) . However these formulae are
complicated and demanding on computer time. Bringen and Abdol-Hamid
(1987) apply the one-equation model to free shear flows and produce
accurate results for axisymmetric and plane Jjets, but their agreements

with experimental data for the axisymmetric wake is only moderate.

The two-equation models attempt to eliminate the need to
empirically describe the length scale in terms of positions in the
flow field. This 1is achieved by introducing a second differential
equation. This equation is in effect used to prescribe the length
scale. An equation describing the length scale itself can be derived
from the Navier-Stokes equations. However this approach is undesirable
as it leads to a semi-empirical treatment. Instead, the kinetic
energy equation will Dbe supplemented with an equation for another
appropriate turbulent quantity. This quantity will be a function of
both k and 1. Examples of the two-equation models include k-kl, k-w
and k-c models, where o is the time-average square of the vorticity
fluctuation and e 1is the dissipation rate of k, see Launder and
Spalding (1974) and Spalding (1977). All of these models, although
dissimilar in appearance, are essentially length scale equations. The
second quantity, 1like the turbulent kinetic energy, 1is governed by a
differential equation consisting of transient, convective, diffusive
and source terms. The treatment of the near wall regions is different
for each model. It 1is this treatment that often determines the
popularity of one model over others. The most popular model in this
class is the k-e model, see Launder and Spalding (1974) and Spalding
(1974) . The k-e has been applied to a wide variety of flow situations

and is currently the most frequently used turbulence model.
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The k-e model has been successfully incorporated in both the FVM
and the FEM. The FVMs with the orthodox coordinate systems, i.e.
Cartesian and cylindrical coordinates, have benefitted considerably,
e.g. Gosman et al (1977), Leschziner and Rodi (1981), Nallasamy and
Chen (1985) and many more. Examples of k-e with FVMs using the
curvilinear coordinate systems include the works of Wachpress (1979),
Raithby et al (1986), Demirdzic et al (1980), Demirdzic et al (1986),
Demirdzic et al (1987), Burns et al (1988) and Kual and Kwak (1986).
Turbulent flow predictions using the k-e model in conjunction with the
FEM are being continuously reported. Larock and Schamber (1981) put
forward suggestions for incorporating the k-e model in the FEM. Taylor
et al (1981) consider the turbulent flows with separation. Tong (1982)
performs a comprehensive study on the application of the model to
recirculating flows. Hutton and Smith (1981) consider the computation
of the two-dimensional incompressible turbulent flow using the k-e
model. Smith (1984) reports on the performance of the model with FEM
for recirculating flows. Benim and Zinser (1985) apply the model in
conjunction with FEM to several confined turbulent flows and obtain
good agreements between FEM and FVM. Sharma and Carey (1986) use an
efficient FEM discretisation with the k-e model for boundary layer
analysis and produce accurate result on coarse grids. Devantier and
Larock (1986) employ the Galerkin FEM with the k-e model for density
driven turbulent flow and express the need for better understanding of
the Dbuoyancy production terms in the turbulence closure model.
Polansky et al (1987) also experiment with the FEM version of the k-e
model and report convergence difficulties with their high Reynolds
number formulation. Their low Reynolds number model behaves well and
yields results which are in good agreement with experimental data for

two-dimensional channel and backstep geometries. Torbjorn (1988) uses
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a mixed Galerkin/Penalty function formulation with the k-e model for
one- and two-dimensional steady-state flows and is able to reasonably

predict the major features of the flows.

The original k-e model of Launder and Spalding (1974) is suitable
for the fully turbulent flow regions. In the vicinity of solid
boundaries, viscous forces Dbecome significant and the flow is no
longer turbulent. To account for this, a number of modifications have
been introduced. These include the use of various wall functions and
near-wall treatments. Jones and Launder (1973) modified the k-e model
to account for laminar, transition and fully turbulent regions. Their
low Reynolds number model was further refined by Launder and Sharma
(1976) and was reported to perform well in cases studied by Patel et
al (1985). Other low Reynolds number models have also been reported
which show promising results, e.g. Lam and Bremhorst (1981) and
Launder (1986). Nagano and Hishida (1987) improve the performance of
the k-e model of Jones and Launder (1973) for near-wall turbulence by
relating the influence of the wall to the local Reynolds number and
obtain accurate predictions for isothermal shear flows. Nagano and Kim
(1988) also use this model in heat transfer calculations for shear
layer flows and show very good agreements with experimental data.
Another approach is to divide the near-wall region into two or three
layers. Chieng and Launder (1980) adopted a two-layer approach for
flow predictions in a pipe expansion. Their two-layer model consisted
of a wviscous layer beyond which the flow is fully turbulent. Amano
(1984) wuses a three-layer model consisting of a viscous sublayer, a
buffer layer and an overlap layer. Tacovides and Launder  (1984)
propose a thin Parabolic Sublayer (PSL) model which eliminates the

need for wall functions. Nallasamy (1986) expresses that the two- and
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three-layer models both improve the heat transfer calculations, but
have 1little advantage over other models in predicting the flow field.
However, Chen and Patel (1988) examine the performance of various
near-wall treatments and express satisfaction with a two-layer
approach, which combines a one-equation near-wall model and the k-e
model, e.g. Richmond and Patel (1987). Djilali et al (1989) compare
the performance of several near-wall turbulence models for heat
transfer calculations in recirculating turbulent flow and recommend

the use of the k-e model with the three-layer model of Amano (1984).

The k-e model does not perform well in flow situations where body
forces are important. Such body forces may arise as a result of strong
streamline curvature, rotation or buoyancy. The reason for the poor
performance of the k-e model has been attributed to its key assumption
that the turbulent energy is destroyed where it is created. 1In other
words the k-e model assumes a local state of isotropy whereby all the
stress terms are approximated by one eddy viscosity. This assumption
breaks down 1in cases where a dominant body force 1is present. The
action of such a force is to destroy the local state of isotropy by
interacting selectively with different normal and shear stresses. The
k-e model can be modified or refined to capture this anisotropy to
some extent. For example, Rodi (1972) replaces the conventional
constants in the k-e model by functional relationships for the case of
an axisymmetric Jjet and observes a significant improvement in his
predictions. Nallasamy (1985) in his evaluation of wvarious turbulent
models for the flow over a backward-facing step, states that the
standard k-e model always under predicts the reattachment point. Yet,
the k-e model retains its popularity since it allows the wuser to

easily adjust, modify or replace parts of the model in order to



Introduction Chapter 1

accommodate for a wide range of flow situations. Nallasamy (1986), in
his comprehensive review of present-day turbulence models, concludes
that the k-e model is still the most widely used model for internal

flow calculations.

The Reynolds stress/flux models no longer adhere to the eddy
viscosity concept. Instead, they consider the stress/flux terms
individually and are therefore better equipped to analyse a wider
range of turbulent flow situations than the k-e model. Generally, in a
turbulent flow field components of the stress/flux tensor can develop
differently from one another. Consequently, additional differential
equations can be used to describe the transport of each of the
turbulent stress/flux terms. These equations are again derived from
the mean momentum and energy equations, see for example Hinze (1959).
By deriving individual transport equations for the stress/flux terms,
flow features such as swirl, streamline curvature and buoyancy are
automatically accounted for. However, as mentioned previously, these
equations contain higher order terms and to close them, these terms
must be related to the mean flow characteristics. In particular the
proper modelling of the pressure-strain, the diffusion and the
dissipation terms are required. Model proposals include those of Daly
and Harlow (1970), Launder et al (1975), Llewellen et al (1976), Lin
and Wolfshtein (1977) and Rodi (1981). The solution of the full
Reynolds stress/flux equations together with the mass, momentum,
energy and dissipation equations requires a vast amount of computer
time. Therefore the use of such a model must be justified by its
claimed accuracy over the k-e model. The Reynolds stress/flux models,
unlike the k-e model, have not vyet Dbeen thoroughly tested and are

still in the development stages. Hogg and Leschziner (1988 and 1989)
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apply the model to highly swirling confined flow andobtain good
agreement with measurement for the velocity and turbulence fields.
Leschziner (1989) 1lists the most recent advances in the Reynolds
stress/flux closure models and conclude that flows with large
recirculation zones and/or with strong swirl clearly benefit from this

type of model.

The algebraic stress/flux models attempt to reduce the
computational overheads of the Reynolds stress/flux models by reducing
the stress/flux equations to algebraic relations, while maintaining
their pertinent features. For example, Rodi (1980) relates the
transport of the stress terms to the transport of the kinetic energy,
k, and also employs a k-equation to close the system. Rodi et al
(1981) obtained a poor performance from an algebraic equation model
when applied to several cases with curved and rotating boundaries. 1In
their comparison of three algebraic stress models with the k-e model,
Nikjooy et al (1985) showed only marginal improvements over the k-e
model. Wilkes and Clarke (1987) compare the performance of the
algebraic stress model with that of the k-e model and experimental
data for flows in pipes, sudden expansions and cavities. They obtain
better predictions of turbulence levels in flows with curved
streamlines and recirculation lengths. The algebraic stress models
are much more economical than the Reynolds stress/flux models, and yet
produce results which are not very different to those obtained by
them, see Rodi (1980) . Martinuzzi and Pollard (1989) compare the
performances of the algebraic stress and the k-e models for pipe flow
and find the k-e model to be in better agreement with experimental
data. The algebraic models do not treat the convective and diffusive

transport of the turbulent quantities accurately. In order to cure
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this deficiency, Amano and Chai (1988) have recently gone one step
further and introduced transport equations for the triple products of
the turbulent fluctuations. They claim that in this manner the effects
of convection and diffusion in strong shear flows, such as reattaching

separated flows, are properly accounted for.

1.3 Objectives of current research
The present research is limited to the numerical prediction of

the steady-state incompressible fluid flow in both laminar and
turbulent regimes. The flow is two-dimensional and may include complex
geometries. The accurate imposition of boundary conditions should be
facilitated in an easy manner. The discretisation algorithm should be
developed in modular form so that future alterations or additions may
be carried out with minimum effort. The discretisation and solution
strategies should be efficient 1in terms of hardware resources. 1In
order to meet these stringent requirements the current research will
concentrate on the following subject areas:

1) The discretisation of the governing equations will be performed
by the wuse of the FEM, which allows accurate and efficient
representation of complex geometries. Curved or irregular
boundaries will be handled with relative ease. The subdivision of
the domain into elements in an unstructured manner will provide
great flexibility, not offered by any other technique. It also
allows the user to refine or re-define parts or whole of the
domain with minimum effort. The imposition of various types of
boundary conditions follow naturally from the FEM discretisation.
Both essential and natural boundary conditions will be imposed
simply and accurately.

2) A two-dimensional mesh generation routine will be developed to
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divide the domain of interest into triangular elements. The use
of triangular elements enables the complete triangularisation of
any arbitrary domain. The integral terms for the triangular
element will be evaluated exactly and efficiently with minimum
amount of repetition. The mesh generation will Dbe flexible
enough, so that any element size or orientation may be selected.
The mesh generation will become an integral part of the solution
strategy, so that iterative solution procedures may be used in
place of the direct or the semi-direct solvers. This will greatly
reduce the computer storage and run-time requirements.

The advection term will be treated so as to follow the physics of
the advection transport closely. The treatment of the advection
will be conservative and monotonic giving oscillation free
results with minimal numerical diffusion. This treatment will be
accurate, unconditionally stable and efficient in terms of
computer storage and evaluation time. It is only in this manner
that the method may be applied confidently to a wide range of
flow situations.

Unlike the conventional FEM  procedures, an equal-order
velocity-pressure formulation will be devised. The discretisation
procedure will then become significantly simple, as all variables
will use the same element shape functions. The variables will
also Dbe stored at similar locations in the domain. The
equal-order formulation will not produce spurious pressure modes,
which contaminate the flow field. A separate pressure equation
will Dbe derived. The velocity and pressure fields will be
segregated and solved sequentially.

A fast iterative solution procedure will be developed for the

solution of the 1linear system of simultaneous algebraic
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equations. The procedure will Dbe designed for the completely
unstructured grids that are generated by the FEM. The solution
procedure will ©possess a fast rate of convergence, and be
efficient 1in terms of computer storage and execution time. It
will be used for all the variables and will not require parameter
settings that need changing from one flow case to another.

6) A general turbulence model will Dbe developed. The model will be
accurate 1in capturing the essential features of turbulence in
arbitrary domains under various flow conditions. The model must
also be flexible enough to allow future modifications to be

carried out with minimum effort.

1.4 Outline of remaining chapters

In Chapter 2, the governing set of partial differential equations
are presented. These equations describe the fluid motion under both
laminar and turbulent flow regimes. For this research, only the
two-dimensional form of the equations in Cartesian frame work are
considered. In the latter part of this chapter the FEM is introduced.
The Galerkin form of this method is then described in detail for the
case of the two-dimensional Poisson type differential equation. Based
on some computational considerations, the most appropriate element for

this work is then selected.

Chapter 3 presents a novel streamline upwind technique that was
devised for this research. The case of pure advection 1is first
analysed from a physical stand-point. Its treatment by a variety of
methods 1is briefly mentioned. Reasons for the deficiency of such
methods in capturing the physical process of advection are given. The

current streamline approach is then described in detail. It is shown
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that the technique 1is able to model the advection phenomenon in a
simple and consistent manner. The accuracy and the efficiency of the
present technique 1is demonstrated by way of three stringent test
cases. General remarks are made on the performance and the validity of

the current streamline technique.

Chapter 4 ©presents the discretisation of the laminar flow
equations by the FEM. The problem of velocity-pressure segregation is
first considered. The current equal-order discretisation strategy is
then described in detail. A separate pressure Poisson type equation is
proposed. A segregate solution procedure where velocity and pressure
are obtained sequentially is presented. Lastly, the discretisation of
the energy equation and the imposition of the wvarious types of

boundary conditions are given.

Chapter 5 begins by outlining the overall computational sequence
of the computer code for laminar flow analysis. A novel fast and
efficient iterative solver is then described. Computational aspects of
the analysis such as relaxation parameters and convergence criteria
are then discussed. The current method is applied to several test
cases. The case of the laminar jet impingement with heat transfer is
also analysed. In the final part of the chapter general remarks on the

performance, accuracy and efficiency of the current method are given.

.Chapter 6 1is dedicated to the analysis of isothermal turbulent
flow. The problem of turbulence closure is first addressed. The finite
element discretisation of the additional transport equations 1is then
presented. The imposition of boundary conditions for turbulent flows

is given. The program flow chart for turbulent flow analysis 1is next
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presented. Two turbulent benchmark exercises as well as the case of

confined plane jet impingement are provided in Appendix B.

Chapter 7 provides a discussion on the work contained in this
research. Finally, Dbased on the experience gathered here, several

recommendations are given for future work.



CHAPTER 2

GOVERNING EQUATIONS AND FINITE ELEMENT METHOD

The governing equations of fluid flow and heat transfer are first
presented. These equations describe the flow of fluids in both laminar
and turbulent regimes. The assumptions leading to the derivation of
these equations are also included. The last section of this chapter
presents the adopted finite element discretisation of a typical
partial differential equation, the Poisson’s equation. Also in the
last section it is suggested, based on computational considerations,
that the most suitable element is the simplex three-noded triangular

element.

2.1 Laminar flow equations

The set of equations governing the flow of fluid in a laminar
regime can be found 1in most fluid mechanics text Dbooks, e.g.
Schlichting (1960), Hughes and Brighton (1967) and Kay and Nedderman
(1974) . They are the continuity, momenta, energy and state equations.
In their most general form for Newtonian fluids in a three-dimensional

Cartesian frame-work, they are (Schlichting (I960))

Continuity | p + |-pu + |5Fpv + |5 pH =0 2.1)

X-momentum

@.2)
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Y-momentum | pv + | _ puv + | _ pv3 + pwy =Y

tax (« (£ £))

(2.3)
el Tt St rStE) )
+ 55
3 A 8, _
Z-momentum _ pw + _ puw * pvw + pw = Z -
£ rawxauy ]
+ 55 I*» (55+55) J (2.4)
(
R IR 5
f / 3w 2 /au x av x aw y \ 1
I" ( 357”3 (ax ay 35) ) g
where X, Y and Z are components of the body force,
Energy It pcT + Ix pucT + ly pVcT + Iz pW°T 2.5)
a /,8Ty , Ah,aTyYy .3 /,ali\x * .Aa
3x 3x ) 3y ( 3y ) 3z ( 3z )P

where Q 1s the rate of heat generation and $is the dissipation
function. The energy equation, equation (2.5), can accommodate for
heat transfer in both solid and fluid media as 1s shown later. The
properties p, c andk are all known functions of pressure and

temperature, and

State p = f(p,T) (2.0)

For the purpose of this research the above set of equations are
simplified according to the following assumptions:
a) Flow is in a two-dimensional Cartesian coordinate system, i.e. w=0,
30/3z=0 and Z=0.

b) Flow has reached steady state conditions, i.e. 30/3t=0.
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c) Viscosity is constant and the influence of variable density appears
only in the body force terms, i.e. Su/3x + dv/dy + dw/dz=0,
=(p-pi)g" and Y=(p-pi)gy
d) The dissipation function, which is dimportant in lubrication
situations, can be neglected since the flow applications considered
here are in the low Mach number region (M < 0.3 ), i.e. $=0.
With the above assumptions the set of equations, used in this

research, are

continuity % pu+ 7 pv = o (2.7)
X-momentum (2.8)
Y-momentum puv + SL pv2 (2.9)
(p-p,V % (e*£7) ;
BTN
State p = p(l-p(T-To) 2.11)

where equation 2 .11) relates the local density, pJj, to the reference
density, p, the temperature difference, (T-To), and the thermal
expansion coefficient, £. Although p and p are constant here, they are
retained within the partial derivative terms to accommodate for
possible future modifications to the above assumptions. Equations
(2.7) to (2.10) are written in their conservative form. This would
ensure the conservation of the transported properties, i.e. mass,
momentum and energy, 1in flow cases where fluid properties are not
constant. In the case of heat transfer by conduction in solids, the
left hand side of equation (2.10) Dbecomes redundant and the

appropriate diffusion coefficient, k is inserted.

solid’
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With equations (2.7) to (2.11), a wide range of problems may be
analysed:
a) Isothermal flow, employing equations (2.7), (2.8) and (2.9).
b) Forced convection, decoupling equation (2.10) from the rest.
c) Natural and mixed convection, using all equations (2.7) to (2.11).
d) Heat conduction in solids with heat generation, using refined form
of equation 2.10).

e) Conjugate heat transfer/fluid flow, using all equations (2.7) to

2 .11).

2.2 Turbulent flow equations
The above set of equations adequately describe fluid motion under
laminar regime. However most flows encountered in practice are of
turbulent nature and laminar flows are the exceptions. Some examples
of turbulent flow are:
- pipe flows,
- flow through pumps, turbines and compressors,
- flow around or in the wake of cars, aircrafts, ships etc.,
- jet flows,
- atmospheric boundary layers,
- upper atmospheric jet streams,
- Ocean currents and many more.
It is therefore necessary to construct a set of equations that can

describe the turbulent fluid motion.

In the first chapter, the two alternative numerical methodologies
used for treating turbulent flows were put forward. These were to
either solve the unsteady differential equations of laminar flow or to

consider the time-averaged form of these equations. It was also argued
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that, with present-day computational resources, it is only the latter
that can efficiently provide solutions to turbulent flow analysis.
This is not a crippling factor, since it is the time-mean behaviour of
these flows that is usually of practical interest. The method adopted

in this research for isothermal flows is now presented.

The time-averaging process begins by assuming that at any instant
in time the fluid motion is governed by the laminar flow equations
(2.1) to (2.4) and that the velocity vector and the pressure are

composed of mean and fluctuating components, such that

u' =0U t+ u
L +
v \% v R .12)
w/ W t+ w
p' ~F *p
where
u' dt and u dt = 0 etc ... (2.13)
t t

Substituting equation (2.12) into equations (2.1) to (2.4) and

averaging with respect to time, taking p constant, (White (1974))

Continuity o) + | pU + ~ pV + pWw = 0 (2.14)
v 4 ~ ?,2 d . d M. ~ 9P
X-momentum at pU +sxp+ pVU + Si pWU = x ~ af

veo (-(28 -K £ *S8 * | n)

i}iy (» €& * &x)>) |

(S (e e syt
§ A

m puu - puv - puw
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Y-momentum JL pV + pUV + & pV2 + t. pWV =Y -
av au ,
ax (m (ax ay J |
a_ 9 dv 2 ( @u av + aw
dy ( . dy 3 Vax ay az
a av aw ; T
az (M ( az ay J:I_J
& pvu - — a VW
ax P ay pvv ' az P

a
Z-momentum at pW + 5x pUW + fy pvW + Iz gl : z -
a_ aw A au
ax ( ( ax az »)
a_ aw av
ay ( - < ay az >)
a_ 9 sw au av + aw
az (" A az ! ( dx dy az >>)
R opwu - R e puw

where the bar indicates a time-averaged quantity.

are similar to those presented in the previous

Chapter 2

g

(2.16)
ap
az

(2.17)

The above equations

section for laminar

flow. The extra terms appearing on the right hand sides of the
momentum equations are the Reynolds stress terms. Written in the
matrix form, these additional stresses are
X X 1

r d}( Xy xz -puu -puv -puw

T X

yx cry vz = -pvu -pvv  -pvw (2.18)
X X <T

zZx zy z -pwu -pwv -pww

where < , @ and o are the
X y z

stresses, all arising from the onset of turbulence.
is symmetric, hence t =r ,x =+t and x = X
Xy yx Xz zZX vz zy

As before,

considered here:

normal stresses and the rest are the shear

The above matrix

the following assumptions are made for flow situations
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a) Flow is in a two-dimensional Cartesian coordinate system, i.e. W=0,
&f)/k=0, and Z=0.

b) Flow has reached steady state conditions, i.e. KE/ad=0.

c) Fluid has constantdensity and viscosity.

e) The body force 1is due tothegravitational pull, i.e. X-pg” and
Y=pgy.

With these assumptions the time-averaged differential equations used

in this research are

Continuity ~ pU 4+~ pVvV =0 (2.19)

X-momentumpU2 + pvVU = (2.20)

PV ipc a:a: ((p :i~ pu_ll A:y rM :;“ pEVJ

Y-momentum A~ pUV + & pV2 = (2.21)
apta f av - Aa £ au - J
:E&] ay ax (~ ax“ puv ay [p ay"“ pvv

and the turbulence stress matrix is reduced to

X xy —puu —puv

T - @ .22)
[ xy v -puv  -pvv

p and p are kept inside the partial derivative terms to
facilitate future modifications to the above assumptions. The primary
concern 1is to solve the above equations to obtain the mean velocity
distributions. However this cannot be done until the Reynolds stress
terms are more clearly expressed. As can be seen from equations (2.20)
and (2 .21), these terms are additional to the wviscous stress terms.
Therefore it would be plausible to regard them as additional wviscosity
due to the onset of turbulence. By describing a turbulent viscosity,

the above set of equations are closed and could therefore be solved.
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Although the flow is considered to be two-dimensional, i.e. W = 0, no
assumption about the magnitude of the fluctuating component, w, which

may still be nonzero, is made.

2.3 Finite Element Method

The first part of this section presents the finite element
discretisation strategy adopted here by considering the diffusion type
problems. Reference 1is also made to the imposition of Dboundary
conditions. It is through this discretisation and simple computational
considerations that the choice of the element type is then made in the
last part of the section. It is shown that the success of this work

depended on this type of element.

2.3.1 Discretisation of Poisson’s equation

In general the Finite Element approximation of a set of
differential equations may be carried out, Dbased on, (Zienkiewicz
(1977)) :
a) Variational principles,
b) Weak formulations, or
c) Global physical statements.
Here, a form of the weak formulation method, namely the Galerkin
weighted residual approach is adopted. This choice is not an arbitrary
one and is based on the ability of this method in treating the sort of

boundary conditions that are encountered in fluid flow situations.

For the purpose of presenting the adopted methodology, only the
discretisation of the diffusion part of the differential equations is
addressed here. The construction of the full finite element set will

be completed in the next chapter, where the treatment of the
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convection term will be discussed. The discretisation, therefore
begins by considering the two-dimensional form of the Poisson’s

equation in Cartesian coordinate system

Bz ¢ 04E b+ L) ¢ sEF Y+ SE O (2.23)

where 0 1is a scalar variable with Fo and SO being the diffusion
coefficient and the source of 0 respectively. Both To and SO are 1in
general dependent functions of x, y and 0. Equation (2.23) is subject
to the following boundary conditions:

a) essential boundary conditions,

0 =0 on s, (2.24)

prescribed 0
b) natural boundary conditions,

qa=q on s (2.25)

prescribed q
where g is the outward flux of 0, and

+ s (2.26)

with s representing the complete domain boundaries both internal and
external. Amongst the physical processes that are governed by equation
(2.23) together with equations (2.24) and(2.25) are heat conduction,
potential flow,mass diffusion, flowthrough porousmedia, lubrication

flow and some fully developed duct flows.

Application of the Galerkin weighted residual method to equation
(2.23) 1s now demonstrated. The weak form of this equation is obtained
by first multiplying through by the weight function, W, and then
integrating the product with respect to x and y, (Taylor and Hughes

(1977))
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- [fc <ro§1x)) dy(FOdy)JrSO]dA:O (2.27)

A is the area of the domain where equation (2.23) is applicable and
dA=dxdy. Since first order continuous elements will be wused in
sub-dividing the domain, the order of the diffusion terms in the above
equation is reduced by employing Gauss's theorem. Hence equation

(2.27) with elemental sub-divisions becomes

n
8N e 3N I ...
r aw ; 4 N N T<Ad "on = 2.28
I Toxt Wsfgs Tk O+ déy}'leﬂtﬁl ay & 98 (2-28)
A * A *
Wy S dh 4 Wy NI, |k 0 ds* + W, NT,p. ik Q ds
where is equal to Nt, and is replaced by I hereafter, n 1is the

unit outward normal vector at the element boundary such that

dN. , A .
aﬁk dk = }I;l d}?f—d%ir% + ny %/dll\l Ok (2.29)

with n and n being the direction cosines in the x and y directions
X ¥
respectively. The physical significance of equation (2.29) is that it
represents the outward flux of 0, i.e.

5 .ie (2.30)
Nl Ni’lnaj %Nk Ok ds = Niq ds

e e
s

The second integral on the right hand side of equation (2.28) need
only be evaluated on the outside boundaries since internal fluxes
cancel each other. On the outside boundaries the value of g is given

by equation (2.25). In heat conduction situations where a convective
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boundary may exist, g is replaced by

g =nh (Of— Ob> (2. 31)

where h 1is the convective heat transfer coefficient, <M is the fluid
temperature at a distance away from the boundary surface and 0 1is the
unknown boundary temperature. It is seen that already as a consequence
of the Galerkin formulation the natural boundary conditions are easily
catered for. The last integral on the right hand side of equation
(2.28) applies to that part of the boundary where 0 is prescribed and

is therefore redundant.

The treatment of the source term, the first term on the right
hand side of equation (2.28), is now presented. A proper treatment of

the source term is required if the discretisation procedure 1is to

yield a converged solution set (Patankar (1980)). If the source of 0,
SU has a constant value, its treatment becomes trivial and is done in
a similar fashion to that of the prescribed flux. However, when is

a dependent function of 0, a more elaborate treatment is required.
may either be a linear or a non-linear function of <> For linear

dependency the source term may be expressed as

S =S +80 (2.32)

where Sc and Sp are constants. The source integral of equation (2.28)
is then split into two parts
N S . dA* N, S da* + N, S NO_ dax (2.33)
C i p JJd

* * el
A’ A A®

The last term on the right hand side is carried over to the left hand
side of equation (2.28). ©Note that with this treatment, unknown

variable 0 only appears on the left hand side of equation (2,28). When
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the dependence of S,@ on <% 1s non-linear, the source term 1is

linearised. First, is expanded using the Taylor series formula
s .- s; + (2.34)
+ P It (dr,

*

- Jj)2 (d2s )* {$ - 0%)3 £d3s )

2! 3! id~Jg
*
where denotes the evaluation of quantities at the previous stage of
the calculation. Inherent in this linearisation technique 1is the

assumption that an iterative solution method 1is to be wused. This
presents no further complication, as it was argued in Chapter 1 that
ar. iterative algorithm for the solution of the discretised equations
would be wused. Then * would refer to quantities evaluated at the
previous iteration. Assuming first order approximation for the source

term, equation (2.34) is truncated to give

s* Vv 1~J (2-35)

This linearisation presents the tangent to the versus < curve at

*

< . Equation (2.35) can be rearranged as

s - @1 -+ (f¥)') ¢+ (Ift) (2-36)

The term in parentheses, is weighted by the Galerkin method and is
integrated, which forms the explicit part of the source integral term
in equation (2.28). The implicit part of the source integral is
obtained by using the lumped mass approach with Galerkin weighting,
which has been shown to improve the solution accuracy (Zienkiewicz

(1977)). Hence,
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(2.37)
A
where
m
N =) N (2.38)
T J
J=i

with m being the number of nodes per element. Returning to equation

(2.28), 1t can be written concisely as
e
n
(2.39)
1
where [Ale is the element coefficient matrix, <6 1is the vector

containing unknown nodal values of < and fe 1is the element force
vector. The finite element discretisation as presented above is
applicable to all types of elements, regardless of the shape or

property of the element.

The discretisation procedure produces a system of simultaneous
algebraic linear equations. The solution to such a system may be
obtained either by direct or indirect ( iterative ) methods. However,
as discussed in Chapter 1, computer requirements for direct methods
make their use restrictive and highly undesirable, especially in two
and three dimensional analyses. Therefore it is preferred to employ
iterative solution algorithms, whereby requirements on computer
storage and time are minimised. Iterative solvers have been widely
used 1in conjunction with finite difference schemes where a structured
grid ispresent (Patankar (1980)) . Inthis research a similar
iterative solver, as will be described in Chapter 5, 1s devised for

use with the unstructured mesh which arises from the application of
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the FEM.

2.3.2 Choice of element type

In this final part of the section, the appropriate type of
element for the adapted discretisation is selected. This selection is
based on the following computational considerations:
a) use of an iterative solution algorithm,
b) efficient integration procedure, and
c) adaptation of a simple upwinding scheme.
Although upwinding is not required for purely diffusive type problems,
i.e. equation (2.23), it plays an important role in the analysis of
fluid flow phenomena. Therefore it is taken into consideration when

choosing the element type at this stage.

As is shown below, two types of elements are considered:

(a) (o)

Figure 2.1 Two-dimensional elements, (a) three-noded linear
triangle, (b) four-noded bilinear quadrilateral.

Ve
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linear three-noded triangular element, with $ expressed as

ii

—NO + N + N O 2,40
% - ys' % (2,40)
where 0., & and 0, are nodal wvalues of Q, with L., L , and L, as

i k i % k
local area coordinates, and

- ,N_=L.,N =1L L+L+L-=1 )
N, - L, N 5 . p and Lot Lt L (2.41)

bi-linear four-noded rectangular element, with 0 expressed as

Q=Np +NO_+NQ +NO (2.42)

where again0% 07, O0f£ and0i are nodal values of 0, and

N1=4i (1-5) (1-n) ’ N=4i (1+5) (1-i3) . (2.43)

J
N=§ (145) (14D) , N =i (1-5) (1+d)

with £ and y as local coordinates.

For simplicity the elements shown in Figure 2.2 are considered

where they are deliberately oriented with sides ij and Jk

perpendicular to each other. Also sides 1ij of both elements are

parallel with the x-axis. Let the aspect ratio, A, for both elements

be defined as the ratio of the side lengths L_J and LJk'
i

L.
ij (2.44)

Jk

Assuming constant unit diffusivity in both x and y directions, 1i.e.

r

= 1, the element coefficient matrix of equation (2.39) then becomes

9

( see Appendix A ),

[ & ]e.
L tiriangle

2 .45)
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for the triangular element, and

2+2A2 -2+A2 -1-aA2 1-2A2

e 1 -2+A2 2+2A2 1-2A2 -1-A2

[A] . (2.46)
rectangle 6A -1-A2 1-2A2 2+2A2 -2+A2

1-2A2 -1-A2 -2+A2 2+2A2

for the rectangular element.

(a) (o)

Figure 2.2 Elements oriented with respect to the coordinate
system, (a) triangle, (b) quadrilateral.

Close inspection of the coefficient matrix for the triangular

element, equation (2.45), reveals that:

a) the diagonal members will always be equal to the absolute sum of
the off-diagonal members on each row,

b) the diagonal members have opposite signs to the other members on
their corresponding rows, and

c) the absolute value of the diagonal member can never be smaller than
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the sum of the absolute wvalues of the off-diagonal members, 1i.e.

the matrix is always diagonally dominant.
Conditions (a) and (b) show the ©physical consistency of the
formulation. Condition (c) satisfies the Scarborough criterion, a
sufficient condition for the convergence of the Gauss-Siedel iterative
solution method, Patankar (1980). However, for the coefficient matrix
of the rectangular element, equation (2.46), although condition (a)
above 1s always satisfied, condition (b) is always violated and
condition (c) can be violated depending on the value of the aspect
ratio. It can easily be shown from equation (2.44) that condition (c)

is violated if A falls outside the range

(2.47)

The global coefficient matrix is the assembly of all element

coefficient matrices, i.e.

[A] [A] ™ (2.48)

It follows that [A), when fully assembled, will always satisfy the
above three conditions if triangular elements are used and may violate
them if rectangular elements are employed, Fried (1971). As mentioned
earlier, the system of linear equations, whose coefficients are given
by [A], will be solved in an iterative manner. In order to ensure a
converged solution set by at least one such iterative scheme, e.g.
Gauss-Siedel method, it 1s therefore desirable to use triangular
elements which will always lead to an unconditionally stable system of
equations. It may be noted that similar analysis carried out on a
domain subdivided into linear triangular elements of general shape and
arbitrary orientation, would produce a global coefficient matrix with
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similar properties as above. This is regardless of the wvalue of the

diffusion coefficient in any direction.

The simplex triangular element offers three more advantages in
comparison with the bi-linear rectangular element, as well as with
most of the other types of elements commonly in use. These advantages
arise from the shape and the 1linear properties of the triangular
element (equation (2.40)) . This element allows the complete
triangularisation of any arbitrary shape in space to be carried out.
Exact integration procedures can be easily employed. Exact
integrations are much more efficient than their numerical counterparts
in terms of computational speed. For the triangular element shown in
Figure 2.1, the area integral can be evaluated from

L? Lg L; dAe = ﬁa+b+c+2)! 2A% (2.49)

e

A

Also boundary integrals can be evaluated from

Lﬁ'L? df = (a+b+1)! £ij (2.50)

where £ is the element boundary length. Lastly, upwinding of the
advection terms, i.e. the left hand side of equations (2.8) to (2.10),
becomes very simple. The adopted upwinding technique 1is described

in detail in the next chapter.
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CHAPTER 3

STREAMLINE UPWIND TECHNIQUE

The treatment of the advection terms in the governing transport
equations 1is presented. The first section is dedicated to outlining
the problems associated with advection treatment. In the second
section the appropriate streamline upwind technique 1is derived from
simple physical considerations. The accuracy of the technique is then
demonstrated by way of its application to benchmark cases. Finally, in
the last section, general comments regarding the present technique and

the test results are given.

3.1 Advection consideration
The differential equation governing the transport of a scalar
variable, <, in a two-dimensional Cartesian frame-work, can be written

in its conservative form as

S§~u*> o Syfpv#) = fs(r# 1) - gt) ¢ S, (3. 1)

In fluid flow analysis, < may be replaced by the components of the
momentum velocity vector, u, Vv, or temperature T. would then
represent the dynamic viscosity or the diffusion coefficient
respectively. The source term, S”, represents the pressure gradient
and the body forces due to variations in density in the momentum
equations (2.8) and (2.9). It can also stand for the generation term
in the energy equation (2.10). The treatment of the right hand side of

equation (3.1) by the Galerkin method, was described in detail in the
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last chapter. It Is the treatment of the two terms on the left hand

side that is addressed in this section.

The left hand side of equation (3.1) represents the transport of
4> by advection. The two terms are first order derivatives in contrast
to the second order diffusion terms of the right hand side. The
advection terms can be non-linear as u, Vv or p may be dependent
functions of < itself. Hence, solution to such a non-linear

differential equation can only be obtained in an iterative manner.

The discretisation of the advection terms by the Galerkin method
limits the applicability of the finite element code to very low
Reynolds number flow situations, where advection and diffusion forces
are of the same order. For advection dominated flows, i.e. those with
high Reynolds numbers, the Galerkin weighted residual approach leads
to physically unrealistic results, where numerical diffusion and
spatial oscillations contaminate the flow field. The shortcomings of
the Galerkin technique lie in its inability to distinguish between the
two completely different transport mechanisms which exist for
diffusion and advection. The diffusion of $§ may occur in all
directions, which is adequately reflected in the finite element
formulation of the diffusion terms by the Galerkin method. However,
the advective transport of < can only take place along characteristic
lines, i.e. streamlines. Furthermore, small perturbations in < at any
point can only be transmitted along such a streamline from an upstream
location to downstream locations and not vice versa. The advection
mechanism is therefore highly directional and must be treated as such.
Its approximation by the Galerkin method would relate 0 at a point to

those at all its neighbouring points. This would in turn result in
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numerical diffusion and unphysical spatial oscillations. By using a
very fine mesh, i.e. sub-dividing the domain into very small elements,
equation (3.1) may be made unconditionally diffusion dominated. This
strategy would require excessively fine meshes and 1is therefore

discarded on economical grounds.

As reviewed in the first chapter, a variety of finite element
formulations exist which can, to some extent, alleviate the numerical
diffusion and spatial oscillations associated with the discretisation
of the advection terms. A performance study, carried out on a number
of then existing methods by Smith and Hutton (1982), concluded that
nearly all the methods considered exhibited numerical diffusion and
spatial oscillations to some degree. These so called upwind techniques
also required considerable computational effort. 1In relative terms,
effective upwinding may be achieved by the streamline diffusion
approach of Hughes and Brooks (1979) and Brooks and Hughes (1982). 1In
this approach, the weighting function 1in the Galerkin method is
modified so as to produce a streamline upwind approximation. This
approach also suffers from small magnitude spatial oscillations. Hence
its adoption here would diminish the generality of the current finite

element code.

One of the most promising upwinding techniques, devised for the
finite element method, 1is the direct streamline upwind approximation
of the advection terms themselves of Rice and Schnipke (1985). This
monotone upwind streamline approximation, does not suffer from spatial
oscillations and is able to predict benchmark cases with a significant
increase in accuracy compared to other existing techniques. The upwind

approximation method does not require excessive computational effort,
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yet its inclusion in the finite element code is straightforward. Also,
its application to quite a number of flow cases as well as test cases
by Rice and Schnipke (1985 and 1986)) has demonstrated its generality

of use.

The above streamline upwind technique is however non-
conservative. Its implementation in cases where fluid properties are
varying, especially for turbulent flows, may therefore lead to the
global imbalance of the transported property. More importantly, the
above technique was developed for bilinear rectangular elements. As
discussed in Chapter 2, these elements may result in coefficient
matrices which are not diagonally dominant. As far as iterative
solution algorithms are concerned, these matrices are therefore
ill-conditioned. 1In other words, a converged solution set may not be
obtained if iterative schemes are employed to solve such an
ill-conditioned matrix. Direct solution methods may be wused, but
these, as mentioned in Chapter 1, are inefficient in terms of computer
storage and execution time. Since it was one of the primary objectives
of this research to develop an efficient finite element code, bilinear
elements were discarded. For the current research, a conservative
streamline upwind approximation, based on the method of Rice and

Schnipke (1985), is devised for linear triangular elements.

3.2 Conservative streamline upwind approximation

The treatment of the right hand side of equation (3.1) by the
Galerkin method was fully described in the 1last chapter and is not
repeated here. It may be noted that the discretisation of the
diffusion terms and the source term is applicable to all types of

elements. In approximating the advection terms the linear triangular
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element 1s employed. Hence the following discretisation will De
specific only to this type of element and cannot be used directly for

any other types of elements.

In the absence of diffusion and source terms, equation (3.1)

reduces to

[~ (pu0) + §"(pv0) = 0 (3.2)

i.e. the transport of 0 can take place purely via the advection
mechanism. Supposing that a velocity field 1is already established,
i.e. both u and v are known, and that u varies independent of O,
equation (3.1) becomes a first order linear differential equation in
0. Equation (3.1) may be expressed in terms of the streamline

coordinates shown in Figure (3.1), thus

(3.3)

=

Figure 3.1 Streamline coordinates.
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where s 1isalong the tangent to the streamline, and u denotes the
streamline velocity. Therefore, the two-dimensionality of the
advection mechanism in the x-y coordinate system has now been reduced
to that of a one-dimensional case in the s direction. Equation (3.3)

states that in the absence of diffusion and source terms, pu5§> is
constant along a streamline. This is a characteristic of all pure
advection situations, and was the basis for the derivation of the

monotone streamline upwind technique of Rice and Schnipke (1985).

Equation (3.3) 1s weighted and then integrated over the domain

area
N [§"(pusO)| dA = 0 (3.4)
YA

As the domain is made up of small elements, Equation (3.4) can be

written as

H6 r

r eN. {§i(pus*)} da°= ° (3-s)
1 Ja°

At this point, 1in order toprogress with theapproximation, it is

assumed that on the elemental level

gg(pusdy - constant (3.0)

Using (3.6) 1in equation (3.5), theweighted form of equation (3.3)

becomes

e

n
YZ {ffoqd)y +
From equation (3.7) the advection contribution to the global

coefficient matrix can be evaluated. The evaluation of the above
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expression begins by determining the wvalue of the element constant,

i.e. equation (3.0).

Figure 3.2 lllustration of a downwind node.

Consider the triangular element depicted in Figure 3.2. The
streamlines passing through the element are also shown. As illustrated
in the figure, node 1 is a "downwind" node. A node is defined to be a
"downwind" node 1if the negative of the velocity vector at that node
points back into the element. It may be noted from Figure 3.2, that
the streamlines show some degree of curvature. This curvature 1is
important and plays a significant role where, due to computational
constraints, a coarse mesh must be used. For an isolated element
within the computational domain, a number of streamline-element
configurations are possible. These configurations are illustrated in
Figure 3.3. For elements situated in the core of the flow, Figures

3.3(a) and (b), there may exist one, and only one, downwind node. For
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elements with one or two sides lying next to a solid boundary, Figures

3.3(c) and (d), no such downwind node exists.

@ &)

(© ie)

Figure 3.3 Possible streamline-element configurations, (a) one
downwind node, (b), (c) and (d) no downwind nodes.

A downwind node on a given element is identified according to the
following condition. A node is a downwindnode, if the velocity vector
at that node haspositive outwardnormal componentson both the

element sidesadjacent to it, i.e. withreference toFigure 3.4,
uIAyik— VlAXj.kSO and

uAK - v Ax sO (3.8)
iMJg 1 ij

Alternatively, equation (3.8) implies that

tan 0,,s tan 0~ tan O . 3.9)
1 ik

Once a node has Dbeen identified asa downwind node, the
interception of the streamline, passing through that node, with the

opposite side is located. As depicted in Figure 3.5, this interception
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si

Figure 3.4 Identification of a downwind node.

Figure 3.5

si

streamline

upstream location (x'.y'l with
6 *p' and u's

Determination of the upstream location.
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takes place on side Jjk at the point with coordinates (x',y'). This
point is the "upstream location". With reference to Figure 3.5, x' and
y' are determined by employing the interpolation factor, expressed
as

pr 3 (Fb+ F%) (3.10)

where F' and F" are obtained by considering the normal mass flow rates
P P

across the element sides

F' = Max Min , 1j , 0 and

(3.11)

F" = 1 - Max | Minj — , 1), 0]

Jk

The normal mass flow rates are themselves evaluated using the

following surface integrals

- pv dx + pu dy

U
£ -k !
F - dx + d 3.12
X pv dx pu dy ( )
9 %
°J JJd
i - pv dx + pu dy

Equation (3.12) 1is obtained by integrating the continuity equation

over the element area

{Ij (pu) 4 iL (pv)| dAc = O (3.13)

Applying the Green’s theorem to equation (3.13), it is rewritten as
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- pv dx + pu dy = 0 (3.14)
It 1is seen from equations (3.10) and (3.11) that F wvaries

P
between 0 and 1. With reference to Figure 3.5, thecoordinates of the

upstream location, x' and y', are evaluated as

o) J P k (3.15)

From equations (3.15) and (3.16) and Figure 3.5, the upstream location
coincides with node j when F =0, and coincides with node k when F =
P P

1. For other wvalues of F between 0 and 1, the upstream location would
P

lie somewhere along the side Jjk, between nodes j and k. Other upstream

values are evaluated in a similar manner

= (1-F + F
( p) %G p K

p'= (1-F ) p + F (3.16)
P p P~

us: (1-F ) us.+ F v

with

u , = (u2 + '\71/2 and (3.17)
s] J

R
sk k k

With the above definitions, the advection term in equation (3.7) is

approximated for the upwind node shown in Figure 3.5 as

"

n e . (P¥]S'*+ " prygsk'
N dA —I1-1-1 A (3.18)

5 (pus*>
I § e ' As f

A

where
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and represents the summation of element shape function integrals

for all the elements surrounding an upwind node, 1i.e.

n
N, dA (3.20)

vV - r 1
The streamline curvature, as mentioned earlier, is taken into
account when determining the upstream location at x' and y' . However,

the length of the streamline segment, As, 1is calculated as a straight
line. More accurate evaluation of the streamline arc requires.complex
iterative procedures. For a quadratic arc, the evaluation time
increases by 10 fold and would include a logarithmic calculation as
pointed out by Rice and Schnipke (1985). Since such accuracy in the
evaluation of As, does not greatly improve the approximation of the

advection terms, the linear calculation given by equation (3.19) 1is

adopted.
- column
row pu p'u’ p'u’
1si A (1-F ) A - F s A
As £ P As f o) As f
0 0 0
0 0 0

Table 3.1 Element coefficient matrix for pure advection.

The element coefficient matrix arising from pure advection can be
constructed using equations (3.18) to (3.20), which is shown in Table
3.1. From the table it can be seen that the element matrix is

unconditionally diagonally dominant as a consequence of the current
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streamline approximation. The global <coefficient matrix 1is then
assembled by considering each individual element advection
contribution. The global coefficientmatrix will also be diagonally
dominant irrespective of element sizes or orientations. This in turn
will ensure a converged solution set regardless of the chosen

iterative solution scheme.

The upwind technique presented above adequately captures the
discontinuous nature of the transport mechanism wvia pure advection.
Pure advection involves the transport of gquantities along streamlines,
which 1is typical of characteristic value problems. Most of the
previous methods modelled the pure advection phenomenon by continuous
or semi-continuous approximations. These approximations, as discussed
in Chapter 1, result in numerical diffusion and unphysical spatial
oscillations. The present formulation in contrast is a discontinuous
approximation of the physically discontinuous pure advection
mechanism. Other discontinuous methods have also been previously
employed, e.g. Hughes and Brooks (1979) and Hughes and Brooks (1982).
These methods consider the advection to be discontinuous between
elements, and continuous within each element. However, the current
formulation is discontinuous not only across elements but also within
each individual element. In other words, the upstream value of pxpP>, as
well as the upstream location, are determined as discontinuous
functions of their corresponding values at the two opposite nodes. In
the next section the results obtained for benchmark test cases using

the above upwind technique are presented.

3.3 Validation of results

The applicability and accuracy of the above streamline technique
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is validated in this section. The benchmark test cases which are used
for this validation are the pure advection skew to mesh, the Smith and
Hutton case and the rotating disk. These stringent cases have all been
commonly used by previous workers in order to verify their proposed

techniques devised for approximating the advection terms.

3.3.1 Pure advection skew to mesh
This test case has been employed previously by several

researchers in order to evaluate the accuracy and stability of their
techniques for treating the advection terms, e.g. Hughes and Brooks

(1979), Leschziner (1980), Baliga and Patankar (1980), Hassan, Rice
and Kim (1983) and Rice and Schnipke (1985). The flow domain is shown
in Figure 3.6. As can be seen, the domain is a square with a known
unidirectional velocity field. The flow anglewith respect to the
x-axis is 0. The objective of this test case is to investigate the
transport of the scalar variable, < via pure advection mechanism,

i.e. in the absence of any diffusion. The boundary conditions for <
are also shown in Figure 3.6. Value of 1 is imposed along the bottom
side as well as on the lower part of the left hand side. <£ is set at
zero along the remaining part of the left hand side. The boundary
condition on the left hand side represent a step discontinuity in the
value of <& Since this problem involves only pure advection, there are
no boundary conditions required along the exit plane, i.e. the right
hand side and the top side of the domain. As < can only be transported
via pure advection, any diffusion in the outcome of this analysis will
point to the inaccuracy of the proposed technique. Also in the absence
of any source terms for <* the value of <9 cannot exceed its maximum
prescribed wvalue of 1 or drop below its minimum wvalue of =zero.

Therefore the computed values of ¢ which fall outside the imposed
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Flow direction

Figure 3.6 Pure advection skew to mesh.

Figure 3.7 Computational grid for pure advection skew to mesh.
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range will be unrealistic and will indicate the degree of spatial

oscillation in the proposed technique. <

To model pure advection, the diffusion coefficient, r*, 1is set at
zero (see equation (3.1)) resulting in an infinite flow Peclet number,
Pe = pul/r" = @ Consistent with previous works, the domain was
divided up into 11 equally spaced rows and columns. This resulted in
11x11 nodes on a regular mesh and 200 triangular elements of equal
size. For maximum effectiveness the element diagonals were aligned at
45° to the x-axis as shown in Figure 3.7. This element orientation
does not contravene the regular spacing of nodes which was employed by
past researchers. The exact solution to this problem is determined by
advecting the upwind boundary conditions to the exit planes, taking
account of the linear interpolation of < between the nodes. The
analysis was performed for three flow angles of 22.5°, 45° and 67.5°.

For 0 = 22.5°, Figures 3.8(a) and (b) present the past published
results and the result of the current streamline upwind approximation
against the exact solution respectively. This flow angle is the worst
case for all the methods including the current work. The conventional

Galerkin formulation, G| exhibits considerable spatial oscillations as

large as 19% with the maximum of 32% numerical diffusion. The
streamline upwind approximations of Hughes and Brooks (1979), SUl and

SU2, also show numerical diffusion and spatial oscillations. SUl has
maximum of 23% spatial oscillation and 54% numerical diffusion.
Results predicted by SU2 show a maximum spatial oscillation of 6% and
maximum numerical diffusion of 25% . The standard upwind technique,
U, shows no spatial oscillations, but a considerable numerical

diffusion which is as muchas 43%. The monotone streamline upwind
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Exact solution
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Figure 3.8 Comparison of results for pure advection skew to mesh

at 9 = 22.5*%, (a) previous results, (b) current method.
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Figure 3.9 Numerical diffusion in the domain by the current

method at 9 - 22.5%*
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technique of Rice and Schnipke (1985), MSU, produces the best results
amongst the previously published results. It exhibits no spatial
oscillation and 35% numerical diffusion. The' result of the current
method, as shown in Figure 3.8(b), also displays no spatial
oscillation and maximum of 35% diffusion at the step discontinuity.
HSU and the current work show very similar trends. This 1is to be
expected since the current work is essentially the conservative form
of MSU adapted for triangular elements. The degree of numerical
diffusion in the domain arising from the current method can be seen
clearly in Figure 3.9. The widening of the rainbow as the flow
progresses from left to right is indicative of the presence of
numerical diffusion in the result. For the exact solution, the width

of the rainbow would remain unchanged.

For 0 = 45°, Figures 3.10(a) and (b) present the past published
results and that of the current method against the exact solution,
respectively. The Galerkin formulation once more fails to produce
physically realistic results, showing maximum of 12% spatial
oscillation and 19% numerical diffusion. SUl accurately follows the
exact solution with no spatial oscillation or numerical diff>usion. SU2
produces results with maximum of 6% spatial oscillation and a high
degree of numerical diffusion (35%). U shows no spatial oscillations,
but a considerable numerical diffusion which is as much as 49%. Both
MSU and the current method reproduce the exact solution. As is evident

from Figure 3.11, the rainbow retains its original thickness,

indicating that the exact results are reproduced by the current method
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Comparison of results for pure advection skew to mesh

at 0 - 45°, (a) previous results, (b) current method.
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0.020 - 0.160
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0.320 - 0.480
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0.800 - 0.960

Figure 3.11 Absence of numerical diffusion in the domain by

©
the current method at 0 - 45.
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For 0 ~ 67.5°, Figures 3.12(a) and (b) show the results of past
workers and that of the current work against the exact solution,
respectively. The Galerkin formulation shows no spatial oscillation

but a large degree of numerical diffusion at the step discontinuity

(52%). SUl1 gives rise to oscillatory results with maximum of 33%
spatial oscillation and 30% numerical diffusion. SU2 has spatial

oscillation of 5% and numerical diffusion of 52% around the step
discontinuity. U shows no spatial oscillation and 40% numerical
diffusion. The current method, as shown in Figure 3.12(b), also
displays no spatial oscillation and maximum of 39% diffusion at the
step discontinuity. Figure 3.13 shows the numerical diffusion present

in the current work as the rainbow widens towards the exit plane.

From Figures 3.8, 3.10 and 3.12 it is evident that all methods
show maximum deviation from the exact solutions at the step
discontinuity. The quadrature upwind and the Galerkin methods show
excessive numerical diffusion and produce spatial oscillations at one
or more flow angles. The streamline upwind methods of Hughes and
Brooks (1979) produce better results compared to other two. These also
suffer from spatial oscillations and numerical diffusion/ The best
results are obtained by the monotone streamline upwind approximation
of Rice and Schnipke (1985) and the current method. They do not
exhibit spatial oscillations at any angle and the numerical diffusion
is small in both cases compared to the other methods. This diffusion
exists only around the step discontinuity. The error analysis for this
test case 1is concisely summarised in Table 3,2. One other criterion
for comparison would be the computational efficiency of each method.
However information regarding computational requirements in terms of

storage and run-time for the above methods are not available. Even if
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such information existed, direct comparison could not be easily made
as frequently a variety of different machines are in use,. For the
current method the above analysis was carried out on a Digital
VAX-8550 machine. The advection calculations took on average 0.15

milliseconds per element (0.25 milliseconds per node) of the CPU time.

method maximum percentage maximum percentage

0 spatial oscillation numerical diffusion
su1 23 54
SU2 6 30
) U 0 42
22.5 G Iy It
MSU 0 41
Current 0 40
SU1 0 0
SU2 6 35
° v 0 49
45 G I i
MSU 0 0
Current 0 0
SU1 33 30
SU2 5 50
o v 0 46

7.

o ¢ 0 52
MSU 0 40
Current 0 39

Table 3.2 Maximum errors for pure advection skew to mesh.

3.3.2 Smith and Hutton test case

The second validation test case considered here 1s concerned
with the transport of the scalar quantity, <5 1in a more complex flow
field than the first test case. This problem was first presented as a
comparison exercise by Smith and Hutton (1982), to establish the
validity of the then existing codes in treating the advection
transport in a flow field with a strong streamline curvature. The flow

field together with the boundary conditions for < are shown in Figure

page 18
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X Inlet Outlet x=1

<)inlet = i + tanh (i0(2x+1))
u =2y (I-x2), v=*2x (l-y2)

Figure 3. 24 Smith and Hutton test case.

Figure 3.15 Computational grid for Smith and Hutton test case.
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3.14. The flow field is specified as

u = 2x (l-y2) and (3.21)

v = -2y (1-x2)

As shown in the figure, with the exception of the outlet part of the

boundary, 0 is specified on the boundary as

ﬂbllt:1+tanh (10@2x+1)) at y =0, -1 <x i 0
nle
and
.22
x==-1, 0~ysl (3 )
<£=0 at y= 1,-1 ~"xil
x= 1, 0~y~"1

At the outlet 0 1is unspecified, which is equivalent to the natural

boundary condition 90/Sy = O.

This test case possesses two important features which are common
to most practical problems involving advection and diffusion. The
streamlines have a large degree of curvature, a general feature of all
recirculating flows. The variation of < at the inlet is highly
nonlinear, i.e. 0 varies sharply over a small distance, possibly due
to the presence of a source or mixing of two streams at different
temperatures. Consistent with the comparison exercise of Smith and
Hutton (1982), the flow domain was divided into 11 rows and 21 columns
of equally spaced nodes. This resulted in 231 nodes and 400 triangular
elements as shown in Figure 3.15. For maximum effectiveness the
elements were aligned with their diagonals along the direction of the
streamlines. The current analysis was carried out for two values of
the Peclet number, Pe, of 100 and infinity. The results of the current
analysis are compared with the reference solution and past published

results given in the Smith and Hutton (1982) paper.
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For Pe = 100, the wvariations of < along the outlet plane are
shown in Figures 3.16(a) and (b). At this Peclet number Dboth the
advection and the diffusion mechanisms equally influence the variation
of < 1in the domain. From Figure 3.16(a), the hybrid upwind
differencing technique, HUD, has a maximum of 10% numerical diffusion.
The monotone streamline upwind approach of Rice and Schnipke (1985),
MSU, results in maximum of 7% numerical diffusion. The current method
produces a maximum of 8% numerical diffusion as depicted in Figure
3.16(b). In the comparison study of Smith and Hutton (1982) the best
reported result had 4% numerical diffusion. The relative high
numerical diffusion of the current method is attributed to the nature
of the imposed velocity field being a quadratic function of the space
coordinates (equation (3.21)). The overall diffusion in the domain
(physical + numerical) 1is shown in Figure 3.17 for the current method.
In the presence of the physical diffusion some gradual widening of the

rainbow from the inlet to the outlet is to be expected.

For the infinite Pe, the variations of ¢ along the outlet plane
are shown in Figures 3.18(a) and (b). At this Peclet number only the
advection mechanism is at work, i.e. the inlet profile of ¢ (equation
(3.22)) should be carried round undisturbed to the outlet plane. From
Figure 3.18(a), HUD has a very high numerical diffusion of 38% at x =
0.4. In fact HUD fails to capture the pure advection situation by
producing results similar to those for Pe = 100 (see Figure 3.16(a)).
MSU, results in maximum of 25% numerical diffusion. The current method
produces a maximum of 27% numerical diffusion as depicted in Figure
3.18(b) . In the comparison study of Smith and Hutton (1985) the best
reported result ( Sykes (1981)) had 6%numerical diffusion. The degree

of numerical diffusion in the domain produced by the current method
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LI 1.667 - 2.000

Figure 3.17 Combination of physical and numerical

diffusion in the domain at Pe = 100.
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Figure 3.19 Numerical diffusion in the domain at Pe = ».
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can be seen in Figure 3.19. With no numerical diffusion the rainbow

would retain its original width, at the inlet, throughout the domain.

From Figures 3.16 and 3.18 it is seen that none of the methods
considered here exhibit spatial oscillations. The conventional upwind
technique shows excessive numerical diffusion at the infinite Peclet
number. Both the monotone streamline upwind approach of Rice and
Schnipke (1985) and the current method capture the physical
characteristics of the problem well at the Peclet numbers of 100 and
infinity. The former producing marginally less numerical diffusion.
The results for the current work were obtained using, as for the first
test case, a Digital VAX-8550 machine. Both the advection and
diffusion calculations took 0.075 milliseconds per element ( 0.13

milliseconds per node ) of CPU time.

3.3.3 Rotating disk

The last test case 1s the pure advection transport of the
scalar quantity, < 1in a rotating flow field. The flow field together
with the boundary conditions for < are shown in Figure 3.20. This
problem has been previously analysed by Hughes and Brooks (1979). The

components of the velocity vector are described as

b= -y, v = x (3.23)

< is set at zero on all four sides and assumes a cosine variation
along the OA 1line as depicted in Figure 3.20. The strong circular
curvature of the streamlines as prescribed in equation (3.23) makes
this test case a challenging problem for the current method. The exact
solution to this problem is obtained by advecting the < profile along

the 0A line all the way round the flow domain. In other words contours
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0=0

0 A
r-0 p-0.5

Figure 3.20 Rotating disk with imposed boundary conditions.

+
-

Figure 3.21 Computational grid for the rotating disk.
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of ® should show circular symmetry about the origin, 0. Consistent
with the analysis of Hughes and Brooks (1979), the flow domain 1is
divided into 31 rows and 31 columns of equally spaced nodes. This
resulted in 961 nodes and 1800 triangular elements of equal size as
shown in Figure 3.21. The elements are oriented with their diagonals

following the flow direction.

For comparison purposes, the < profile is examined along the OB
line against the exact solution, namely < profile along the 0A line
(see Figure 3.20). Figure 3.22(a) shows the best past results against
the exact solution. The streamline upwind method of Hughes and Brooks
(1979), SU2, shows no numerical diffusion and reproduces the exact
solution. The monotone streamline upwind method of Rice and Schnipke
(1985), MSU, results in maximum of 11% numerical diffusion. MSU also
shows some degradation in the results at radial distances of 0.033 and
0.467 from the origin. As shown in Figure 3.22(b), the current method
has a maximum of 9% numerical diffusion. It too exhibits some
degradation in the computed ¥ at the radial distance of 0.467 from the
origin. The result of the current analysis 1is seen to be generally
superior to that of Rice and Schnipke (1985) by following the exact
solution more closely. The overall numerical diffusion in the flow
domain, produced in the current work, is shown in Figure 3.23. As seen
in the figure, thenarrowing of the colour bands as they turn anti
clockwise is an indication of the degree of numerical diffusion
present in the result. The exact solution would produce bands which
retain their thickness within the flow domain. As with the previous
two test cases, this analysis was carried out on a Digital VAX-8550
machine. The advection calculations took 0.10 milliseconds per element

(0.19 milliseconds per node) of CPU time.



along the @B line

phi

along te @ line

phi

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Streamline upwind technique Chapter
Exact & SU2
o LR MSU
0.2 0.3 0.4 0.5

radial distance from the origin

Exact solution
Current work

0.1 0.2 0.3 0.4 0.5
radial distance from the origin

(b)

Figure 3.22 Profile of § along the OB line for the rotating
disk, (a) best previous results and (b) current

work.

3

'v4



Streamline upwind technique
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3.4 Remarks on the streamline approximation

In this chapter, a new conservative streamline upwind
approximation using linear three-noded triangular elements was
developed. The upwinding is based on the physical phenomenon of pure
advection transport. The discontinuous nature of the advection
transport is adequately captured by the present formulation. This is
achieved by modelling the advection mechanism to be discontinuous not
only amongst elements but also within each individual element. Most of
the previous methods were based on continuous or semi-continuous
(discontinuous amongst elements) approximations, which limited their
applicability and/or accuracy to certain ranges of the flow Peclet
number. The present approximation is equally applicable for all wvalues
of the Peclet number. It 1is also a simple procedure which can be
readily incorporated into conventional Galerkin type finite element

algorithms.

In section 3.2 it was shown that the present streamline
formulation, like the diffusion formulation of Chapter 2, results in a
global coefficient matrix, which 1is unconditionally diagonally
dominant. The overall system of the partial differential equations
(equation (3.1)), consisting of Dboth diffusion and advection
mechanisms, may therefore be discretised to render a system of
simultaneous linear algebraic equations which could be solved by any
iterative scheme. This is an important outcome of the present
formulation, since, as mentioned previously, iterative schemes
generally require much less computer requirements in terms of run-time

and storage than the direct solution methods.

Three stringent test cases were employed to verify the stability,
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accuracy and applicability of the current upwind formulation. These
were pure advection skew to mesh, Smith and Hutton case and pure
advection on a rotating disk. The results were compared with exact
solutions and past published  works. The formulation showed
unconditional stability in all cases for all Peclet numbers considered
(100 ~ Pe "o0). The results were all free of spatial oscillations,
which had plagued the previous attempts to treat advection mechanism,
except that of Rice and Schnipke (1985). The numerical diffusion
arising from the current formulation was shown to be small and

competitive with the best of the previously published work.

Finally, the use of simplex triangular elements allowed exact
integrations to be performed. Exact integrations were employed for
both advection and the diffusion terms. This resulted in the overall
calculation procedure to become very efficient. Most of the previous
workers, 1in the context of the FEM for fluid flow computations, had
employed numerical integration techniques. These numerical techniques
are inferior to their exact counterparts on at least two accounts.
They may lack accuracy, e.g. use of one-point Gauss quadrature with
bilinear elements inthe SUL method of Hughes and Brooks (1979), or
they may be accurate at the expense of computational cost, e.g.
four-point Gauss quadrature with bilinear elements in the SU2 and MSU
methods. To appreciate the efficiency of the exact integration
technique employed here, it may be said that the exact integration has
the accuracy of the four-point and the efficiency of the one-point
Gauss quadratures. Furthermore, the exact integration procedure
together with an appropriate iterative solution scheme make the
present code competitive with the finite difference (volume) schemes.

As demonstrated in Chapter 5, such an iterative solution scheme 1is
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devised for the current research.
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CHAPTER 4

FINITE ELEMENT DISCRETISATION OF LAMINAR FLOW EQUATIONS

The finite element discretisation of the governing transport equations
for laminar flow is described. To present the current discretisation
strategy, the first section is dedicated to isothermal flows. A
discussion on the problem of the velocity-pressure interaction 1is
followed by the derivation of a novel equal order velocity-pressure
solution procedure. In this procedure, velocity and pressure are
segregated and are solved sequentially by a SIMPLER-like algorithm.
This procedure forms the core of the discretisation/solution strategy
devised for the current research. In the second section the
discretisation of the energy equation is described. Imposition of the

various types of boundary conditions is presented in the last section.

4.1 Velocity-pressure segregation

Conventional Finite Element practices require the simultaneous
solution of the momentum and the continuity equations at each step of
an iterative scheme in order to yield velocity and pressure values,
see for example Ijam (1977), Chung (1978), Taylor and Hughes (1981)
and Olson (1976). The computer storage and execution time for such
schemes prohibit their use for problems where, for various reasons, a
large number of elements must be employed. Furthermore, the pressure
is very often evaluated at fewer points than the velocity components (
mixed order interpolation ) so as to avoid pressure chequer boarding,
see for example Gresho and Lee (1979), Hood and Taylor (1974), Sani et

al (1981) and Lee et al (1979). This adds to the complexity of the
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scheme and 1is not entirely effective in eliminating the chequer
boarding for simplex triangles or bi-linear quadrilaterals where
pressure is assumed constant over the element ( Lee et al (1979)). 1In
this research a major departure from the conventional finite element
methodology 1is followed. Pressure and velocity are segregated. A
Poisson type pressure equation is developed. The discretisation of the
pressure equation is based on element shape functions that are also
used to define the velocity components (equal order interpolation).
The pressure together with the momentum equations are solved in a
sequential manner similar to the SIMPLER algorithm (Patankar (1980).
In this section the problem of the velocity-pressure interaction is
first discussed. This 1is followed Dby the discretisation of the
momentum equations. The derivation of the pressure equations is then
presented. Lastly, the SIMPLER-like solution sequence is outlined and

general remarks are given.

4.1.1 Velocity-pressure interactions

The interaction between the velocity and the pressure fields is
best demonstrated by considering the steady state isothermal laminar
flow in two-dimensional Cartesian coordinate system. From Chapter 2,

the coupled set of differential equations governing such a flow, are

- - 4.1

gx  PwoF (pv) 0 (4.1)
a 2 a _ ap La f au\ a ¢ 5u

u< + vu = _ 4.2

dx P P POX™ 4% dx * dx ) +ay X"ay) ( )

a a do a f dv\ a ¢ gy~
. - 4.3
Ly PUv + . pv POY™ gy + dx A » dx J +ay 1 ay) -3

The wvelocity components, u and v, are governed by the momentum
equations (4.2) and (4.3) respectively. The pressure gradient terms,

dp/dx and dp/dy, form part of the source terms for the momentum
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equations. For a given pressure field, the unknown velocity field may
therefore Dbe obtained by solving the momentum equations with the
appropriate velocity boundary conditions. Yet, there is no direct
equation that describes the variations in pressure. The pressure field
is indirectly described by the continuity equation, in that if a
correct pressure field was used in the momentum equations, the
resulting velocity field would satisfy the continuity equation. This
points to a simultaneous solution of the momentum and continuity
equations as advocated by the majority of the Finite Element workers.
However, such a simultaneoussolution is undesirable as it demands

excessive computer resources.

One way of overcoming the above difficulty in determining the
pressure field is to employ the stream-function/vorticity method (
Gosman et al (1969)), where pressure is eliminated from the governing
equations. However this method has major disadvantages. The vorticity
boundary conditions at a wall are difficult to specify and are often
responsible for lack of convergence. The extraction of pressure from
the vorticity field requires additional computational effort. Also the
method is only applicable to two-dimensional situations, for which the
stream-function description exists. The problems just mentioned
initiated the Finite Volume workers to derive a direct equation for
pressure by suitable conversion of the continuity equation, see for
example Patankar (1980) . Solution of the momentum and pressure
equations would then become part of an iterative scheme. At each
iteration, the velocity and the pressure fields are updated
sequentially. An improved pressure field is used to obtain better
estimates for the wvelocity field. The velocity field is in turn used

to correct the pressure field. Iterations are carried out until
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resulting changes in the velocity and the pressure fields are small
enough to meet some pre-specified convergence criteria. There are a
number of these so called pressure correction methods currently in
use. Amongst the most popular, are the SIMPLE and the SIMPLER
algorithms of Patankar (1980). To avoid pressure and velocity chequer
boarding, the majority of these methods use the staggered grid
arrangement first employed by Harlow and Welch (1965). In this
arrangement the control volumes for the velocity components and the
pressure occupy different spaces surrounding a grid point. This
results in an overhead on computer storage and run-time. Since the
control volumes for X and Y momentum equations are not the same, the
corresponding velocity components, u and v, must be stored at
different locations. Furthermore, the discretisation of the X and Y
momentum equations will be different, which adds to the complexity of
the procedure as well as increasing the required number of

computations.

In conventional FEM, the chequer boarding problems are to some
extent avoided by the use of mixed order interpolation techniques.
These techniques are the finite element counterparts to the staggered
grid arrangements employed by the FVM. In mixed order interpolations
the pressure field 1is specified at fewer points than the wvelocity
components. At the elemental level, this results for example i1in a
parabolic variation in the velocity components accompanied by a linear
variation in pressure. As mentioned earlier in this chapter, the mixed
order interpolation is not totally effective when used in conjunction
with simplex triangular or bi-linear elements. Furthermore, as with
the staggered grid arrangement, the mixed order interpolation adds to

the complexity of the discretisation procedure. With the same element



FE discretisation of laminar flow equations Chapter 4

shape function, the discretisation of the momentum equations becomes
identical (except round the boundaries). However, the continuity
(pressure) equation requires a different discretisation procedure, as

a lower order element shape function must be used.

In order to eliminate the above problems, a number of researchers
have in the past devised equal order finite element formulations, see
for example Parakash and Patankar (1984), Schneider et al (1978a and
1978b) and Rice and Schnipke (1985). The successful implementation of
such formulations has been based on developing a separate Poisson-type
equation for pressure. However formulations of this type generally
suffer from poor convergence rates as the pressure equation offers no
direct constraint on satisfying the continuity, e.g. Schneider et al
(1978a) . Moreover, the specification of the pressure at the boundaries
plays a critical role in obtaining a converged solution set. One of
the few equal order velocity-pressure finite element formulations that
does not suffer from these difficulties is that devised by Rice and
Schnipke (1985). This formulation is based on a Poisson-type pressure
equation that does satisfy the continuity. Also, the pressure boundary
conditions are imposed in the conventional manner for FEM. The method
has been successfully employed for a variety of flow cases in both
laminar and turbulent regimes, see Rice and Schnipke (1985), Schnipke
and Rice (1985) and Jones et al (1989). In all of the reported cases,

the results were shown to be free of spurious pressure modes.

The above method has however several disadvantages. The method
was devised for bi-linear quadrilateral elements. As was shown in
Chapter 2, these elements, depending on their aspect ratios, may

result in non-diagonally dominant coefficient matrices. The diagonal
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dominance of the coefficient matrices is an essential condition which
must never be violated if iterative solution schemes are to be
employed. Also, the method uses numerical integration which is more
costly in computational terms than exact integration schemes. The
method 1s also non-conservative in the momentum and the energy
equations due to its treatment of the advection terms. For flow cases
where the fluid properties wvary, this may result in the global
violation of conservation of momentum and energy. For the current
research, a conservative equal order velocity-pressure equation for
simplex triangular elements is developed. This method is based on the

original method of Rice and Schnipke (1985).

4.1.2 Momentum equations
As illustrated in Figure 4.1 for a typical momentum element,
the variations in u and v within the element, including its sides, are

described by

(4.4)

where

is the element shape function wvector. As u and v are both stored at
the same nodal positions, the discretisation of the advection and the
diffusion terms for X and Y momentum equations will be identical. The

advection terms in equations (4.2) and (4.3) can be written as

fiCpu*) + § - W ) (4.6)

where < stands for either u or wv. The discretisation of the above
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uz, v2

Figure 4.1 Three—-noded momentum element.

equation follows the streamline upwind technique developed in the last

chapter. Equation (4.6) is expressed in terms of the streamline

coordinate system (see Figure 3.1),

W > + (PVO) = “~(pu,*) (4.7)

Equation (4.7) 1is then weighted and integrated over each element and

summed for all the elements in the domain, hence

ne
I N, {§i(pu.*>} da’ (4-8)

1 A*

with the differential term approximated conservatively by (see Figure

3.5),

g fpuj>) = consfant- = -1 Zll______~ - 4.9)
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The diffusion terms are discretised by the conventional Galerkin
weighted residual method described in Chapter 2. The general form of

the diffusion terms is

feU&J+1lyUGQg) (4-10)

where as for the advection terms, 0 may stand for u or v. Equation
(4.10) 1is then weighted and integrated over each element and summed

for all the elements in the domain, hence

cC k {k N/5 B) + h (V§ £R} l(dA (4)
1 Ae

As the elements are first order continuous, the order of the element

integral 1in the above equation 1is reduced by employing the Gauss’s

theorem, which gives

. e SRR
(4.12)

+{ e,V j 1%0 K

The surface integral term is only evaluated for the boundary elements

as those arising from the internal elements cancel out.

The first order pressure gradient terms are treated in a
discontinuous manner. As with the advection terms, these terms are
taken as discontinuous within each element. In the conventional
Galerkin method, the element pressure gradient integrals would be
distributed equally amongst the element’s nodes. Here, each node

receives a weighted share of the integral according to
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dN dN 11
N, |f dae ap £ I s (4.13)
i ax dx 1 laxl dx2 dx3| J
and
N, ® aa JL /N N o) (4.14)
iay D ay 1 dvl dy?2 5y31 J
Ax ¥
where
A~ i
D = al (4.15)
X axb
i=l
3
D = al (4.16)
y dy
i=1
and the pressure field is assumed to be known . This poses no extra

difficulty as a converging iterative scheme would continuously provide
better estimates for pressure, until the actual pressure field, with
which the continuity equation is satisfied, is established. A similar
discontinuous treatment of the pressure gradient terms 1is cited in

Baliga and Patankar (1983).

The discretisation of the body force terms is performed by the
lumped mass approach outlined in Chapter 2. With the components of the

gravity vector, g and g , taken as constants, the Dbody force

X y

integrals become
n

| (4.17)

e

1 *A

1* To be correct on an arbitrary finite element mesh, this pressure
weighting should be normalised on the sum of the areas of elements
surrounding a node, as with the advection upwlnding. However on
regular meshes and those graded in only one direction, as in most of
the tests here, the normalisation scaling is unity and so does not

alter the results presented here.
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e
n r
N dA £ ..
i_, 1 TpJ gy © r. (4.18)
1 JRAe
with
3
N =\ N
T L , J (4.18)
=i
The discretised momentum equations can be written as
a>i = - a“juj + £ (4'20)
J*!
auv, B - H auvj + £; <4 -21)
jri

where au and. av are the members of the fully assembled coefficient
matrices for X and Y momentum equations, a”® and a” denote the
diagonal members with a”j and a” their corresponding row neighbours.
The coefficient matrices only contain contributions from the advection

and the diffusion terms in equations (4.8) and (4.12). Hence they are

identical except at points where boundary conditions for u or v are

specified, and are therefore formed once for both equations, u* and v

>

denote the velocity components at the global node i. u” and v are

the velocity components at the nodes surrounding node i. f“ and £~ are
the global right hand side force vectors, which contain contributions

from the pressure gradient terms, the body force terms and the surface

boundary terms.

4.1.3 Pressure equation

The pressure equation is derived from the continuity equation.
Applying the Galerkin weighted residual method to equation (4.1) and

reducing the order of the integral gives
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N (k V) a- Np (un +vn ) ds (4.22)

( 5N A dH x ,A
(pu a~ + pv a~ ) dA

On the elemental level, the above equation can be written as

aN

— + * = 4.23
(NP Ny gk v Np My 0 JdA (4.23)
N N p (NuNRD D + N v Nn 1l ds*
1 r I V J J k =xk j J k yk'
Figure 4.2 Three—-noded cont inuity element.

Equation (4.23) 1is expressed in terms of the nodal velocity components

Uj and Vj. To obtain a direct equation for pressure both u* and v* are
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replaced by nodal values of pressure. This is achieved by first
describing pressure variations within an element with the same shape
function used for the velocity components. As is shown in Figure 4.2,
the continuity element 1like the momentum element of Figure 4.1 is a

three-noded triangular element for which

§=N&+Ny;Ng3 (4.24)

with the shape function vector, given by equation (4.5) and the
pressure field stored at the same nodal positions as the velocity

components.

The next step 1is to write equations (4.20) and (4.21) in a

revised form as

apyu, = - i "auu + eu - £N ~ dA (4.25)
W 1 7, ax

<iv, = - Avj +exm| ,N* dA t4' 26)

with e and e” representing the body force and the surface boundary
terms. The pressure gradient terms are now separated from the rest of

the right hand side forcevectors. Assuming that thepressuregradient

terms are known,equations (4.25) and (4.26) can bewritten as
u., = u .- Ku (4.27)
i i i 9x
v. =v _ - Kv (4.28)
1 1 1
where
", =4 { - Z | a‘jUj +e“} (4-29)
il J*i *
».--M - E
aii J*i
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3N

K -MI a1 } (4.31)
|l
1\ Ae 3N 11 (4.32)
~av \ I , D ayll |
il
with and Dy given by equations (4.15) and (4.16). Note the

approximate relationships Dbetween the nodal velocities and the
pressure gradient terms as given by equations (4.27) and (4.28). These
relationships need not be exact for the iterative scheme to yield a
converged solution set. The approximation used here is similar to the

secant approximation in a Newton’s method.

To derive the pressure equation, equations (4.27) and (4.28) are
substituted into equation (4.23), with integrations performed over all

elements and summed, hence
ne
£ fon 4. . 3N\ 3N . wv 3N e
\m@V j NKk as1) + a?1 (njpj A0} p, dA

~—

I LJAle

=1e(I1 NpjNak) + 6Rj@)} A

(4.33)
N Np NwuNDN ds
i 3 3 k k 1 x1

N Np Nv Nn ds
i rj k k 1 yl

The above equation is similar to equation (2.28) which was derived
from the discretisation of the Poisson’s equation. The terms on the
left hand side represent a diffusion mechanism for pressure, which

corresponds closely to the physically elliptic behaviour of pressure.
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The coefficient matrix for equation (4.33), arising from the diffusion
terms, is formed by the same procedure used for the diffusion terms in
equation (4.12), with and NkKk replacing the nodal
values of viscosity in X and Y directions respectively. This
coefficient matrix 1is a symmetric positive definite matrix, which
renders itself to a number of efficient iterative solvers without

having to develop special additional algorithms.

In the classical Galerkin approach the diagonal members of the

momentum coefficient matrices, a” and a” 1in equations (4.20) and

(4.21), will be small for convection dominated flows. This will
produce large values of K“ and from equations (4.31) and (4.32).
Such large values in equation (4.33) will have a deteriorating

effect on the pressure solution. This problem is avoided by the use of
the streamline upwind technique for the advection terms. Here, the
diagonal members of the momentum equations are never allowed to
acquire small values, which in turn ensures reasonable values of

pressure diffusion coefficients at all times.

The first term on the right hand side of equation (4.33)
represents the source term for pressure. The contributions to the
source term arise from the hat velocity components given by equations
(4.29) and (4.30). The surface integral terms in equation (4.33)
provide a convenient method of specifying boundary conditions for
pressure. These terms are identically zero except along the inlet and
the outlet Dboundaries. As equation (4.33) was derived from the
continuity equation, it offers a direct constraint on satisfying the

continuity. The discretised pressure equation is written concisely as
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anpi=-Y 2 a* j + £> (4-34)

where a” denotes the diagonal members of the pressure diffusion
coefficient matrix with their corresponding row neighbours a”. p~ 1is
the pressure at the global node i. p” are pressure values at the nodes
surrounding node i. f* is the pressure right hand side force vector

containing the source and the surface boundary integral terms.

4.1.4 SIMPLER-like algorithm

The discretised momentum and pressure equations (4.21), (4.22)
and (4.34) are solved sequentially in an iterative manner as commonly
employed in FVM. The sequence of operations is as follows:

1. With guessed values of u, v and p, the discretised momentum
equations (4.21) and (4.22) are set up and solved to obtain better
estimates to u and v. The initial guesses may be zero if no other
values are available. The coefficient matrix 1is set up only once
for both the momentum equations. The equation systems for u and v
are solved separately by an iterative solver.

2. The hat wvelocity components from equations (4.29) and (4.30) are
evaluated.

3. The discretised pressure equation (4.34) 1is set up and solved. The
pressure diffusion matrix is evaluated using the same procedure
that was used in computing the momentum diffusion matrix. Now only
the diffusion coefficients are different. Using the newly computed
velocity field and hat velocity components the right hand side
force vector is formed. The equation system is then solved by an
iterative solver.

4, The velocity field is updated using the following relationships
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n
au dp
- 4.35
v S dx dx ( )
ii
and
n
vo= 8, W dp (4.36)
i i - dy dy
i -

5. Convergence 1is then checked. Steps 1 to 4 are repeated until the

solution has converged.

The above sequence of operations is akin to the SIMPLER algorithm
of Patankar (1980). To form the force vectors in the momentum
equations, a known pressure field is assumed. A separate Poisson type
equation is used to obtain the pressure field. The pressure equation
was derived from the continuity equation and is required to satisfy
continuity. The velocity and pressure fields are obtained
sequentially. If a correct pressure field were used as the initial
guess, the above sequence would yield the correct velocity field at

once at the first iteration.

4.2 Energy equation
The energy equation for two-dimensional steady state laminar flow

in its conservative form is
3 d
L - o_ 4.37
pucT ¢ d pvcT 2 (k ) ( )

ay

The three-noded triangular element 1is again used to define the

temperature within each element so that
T =N_T +IQ§‘+ NT (4.38)

As before, the left hand side terms of equation (4.37) are converted
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to
os puscT (4.39)
On the elemental level, the above term 1s approximated Dby the

streamline upwind technique developed in the last chapter, so that

with reference to Figure 3.5, equation (4.39) becomes

a pu c¢cT-p'u'c'T
& Pu cT constant - -A-2! 1 *———— 72—~ (4.40)
s
As

with c¢' and T' Dbeing the upstream values of the specific heat and
temperature respectively. Equation (4.40) is then weighted, integrated
over each element and summed for all the elements in the domain, hence

e
n

r TS K uS|CiTi - PE

The diffusion terms on the right hand side are discretised by the
Galerkin weighted residual method as was shown for the viscous terms

in the momentum equations, hence

- f- f . . o NK te 2 N oW
L St i ¥ iy J
(4.42)
+ Ni Njkj dn Tk dse

The surface integral term represents the outward heat flux. It is only
evaluated, where non-zero and for elements with sides 1lying on the

domain boundaries.

Treatment of the generation term follows the approach described
in Chapter 2. When the term is constant or linearly varying with T,
i.e.
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Q(T) = Q +QT (4.43)

the Galerkin method is adopted explicitly, hence
N,Q da + N O NT da (4.44)
c

When the generation term is a non-linear function of temperature, the

implicit formulation is employed, hence from equation (2.37)

I N Q dA dA (4.45)

+ I Nlnttj (ar )* dA'

with NT given by equation (4.19) and denoting quantities evaluated

at the previous iteration.

The system of equations is expressed in terms of the unknown

temperature field, which is concisely written as

rr = - i ’aT Tyt f% (4.46)
where a are the members of the temperature coefficient matrix
containing the advection and the diffusion contributions. The diagonal
members, ax, also contain contributions from the implicit part of
equation (4.45). The coefficient matrix is unconditionally diagonally
dominant, hence allowing for the iterative solution of equation
(4.46) . The right hand side vector, f* , contains contributions from
the surface boundary integrals in equation (4.42) and the explicit

parts of the generation integral terms in equations (4.44) and (4.45).
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4.3 Imposition of boundary conditions

To complete the definition of velocity, pressure and temperature
fields, Dboundary conditions for these fields are specified. The
elliptic nature of the general transport equation requires fixed
conditions to be specified along all of the internal and the external
boundaries of the domain of interest. Boundary conditions are of
either essential (Dirichlet) or natural (Neumann) type. In the former
the actual values of the variable are specified. The latter involves
the specification of the gradient wvalue of the wvariable along the
boundaries. For the current research both the essential and the
natural boundary conditions were employed. Here it 1is assumed that the
complete boundary of a domain consists of five parts: inlet, outlet,
wall, convective and plane of symmetry boundaries. The detailed

treatment of each of these boundaries is now presented.

4.3.1 1Inlet boundaries

The inlet Dboundary conditions on the momentum and the
continuity equations are necessarily interlinked. Such conditions are
prescribed by either specifying the inlet mass flow or the inlet
pressure. The mass flow 1s prescribed by fixing the wvelocity
components, u and v, and providing the side lengths of boundary

elements. The momentum equations (4.20) and (4.21) therefore reduce to

u =u , V. =V (4.47)

where 1 refers to those nodes lying on the boundary. The hat velocity

components given by equations (4.29) and (4.30) are adjusted so that

u = u , V.=V (4.48)

1 inlet 1 inlet
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The pressure diffusion terms given by equations (4.31) and (4.32) are

also adjusted to account for the prescribed inlet velocities, hence

K¥ =Kv=20 (4.49)

With the above velocities, the inlet boundary condition for pressure
are obtained implicitly by evaluating the surface integrals in
equation (4.33). From equations (4.48) and (4.49) it can be seen that
the hat wvelocity components are decoupled from the pressure
distribution along the inlet boundaries when an inlet mass flow is

prescribed.

The prescription of the pressure at the inlet reduces the

pressure equation (4.34) to

P, =B (4.50)

where as before i refers to the nodes lying on the inlet boundary. The
specified inlet pressure i1s accompanied by zero velocity gradients,
i.e. the surface boundary integral in equation (4.12). This type of
boundary condition would Dbe relevant to Poiseuille type flow
situations. For a given inlet mass flow or pressure, the energy

equation (4.46) reduces to

Ti N Tinlet (4.51)
4.3.2 Outlet boundaries

Natural boundary conditions are applied to the momentum and the
energy equations along the outlet boundaries. This results in the
surface integral terms in equations (4.12), and (4.42) to be zero. 1In
cases where the flow is forced to leave at a specified flow angle, the

natural conditions are applied, for example, to the Y-momentum
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equation with the essential conditions imposed on the X-momentum

equation. Hence,

u =u = 0v ;Ku =0 (4.52)

where 0 is the specified outlet flow angle.

The pressure Dboundary conditions along the outlet can be
applied in two ways. Here either an outlet pressure or an outlet mass

flowis prescribed.Theformer reduces the pressure equation (4.34) to

o = (4.53)
M

b
outlet

where 1 refers to those nodes 1lying along the outlet. With a
prescribed outlet mass flow, the surface integral terms in equation
(4.33) are evaluated. The hat velocity components and pressure

diffusion coefficients are also adjusted so that

u =u , v =V (4.54)
i outlet 1 outlet

and

Ky =KV =20 (4.55)
i 1

4.3.3 Wall boundaries
Along the stationary walls, the two velocity components are set
to zero. The hat wvelocity components together with the pressure

diffusion coefficients are adjusted accordingly. Hence,

~r e =0 , vi=01i=0 (4.56)
and
K" = =0 (4.57)

For moving wall boundaries, the velocity components are set such that



FE discretisation of laminar flow equations Chapter 4

u =u = u , V. =V =1V (4.58)
1 1 slip i i slip

with the pressure coefficient given by equation (4.57).

The pressure boundary conditions along the walls become trivial.
With both the slip and the no-slip boundaries, the surface integral
term of equation (4.34) are zero. The pressure 1s therefore only
constrained Dby equations (4.56) or (4.58) . The wall boundary
conditions for the energy equation can either be of the essential or
the natural types. These are imposed by prescribing the temperature or
its conductive flux along the walls. There are also convective fluxes
which are dealt with in the next section. For a known wall temperature

the energy equation reduces to one similar to

A (4.59)
1 wall

For a given conductive heat flux, wusually zero for adiabatic walls,
the surface integral term in equation (4.42) is reduced to
* 4,
1 rcxlwall ds (4.60)

e
s

4.3.4 Convective boundaries
These boundaries are specific to the energy equation and arise
from the solid/fluid interfaces. In such cases, the surface integral
term in equation (4.42) can be written as
N1 h ( Tf - Twall) ds* (4.61)

where h and T are the known convection coefficient and the fluid
£

temperature respectively, and T 11 is the unknown temperature along
wa
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the interface. Equation (4.61) is split into two parts, with the part
containing the unknown temperature, T u * taken over to the left hand

side of equation (4.46), hence

4.3.5 Planes of symmetry
Along a plane of symmetry the velocity component normal to the

plane, say v, 1is specified as zero, hence

- v =Kvy=0 4.63
Vit Vi &Y ( )

The surface integral for the tangential momentum equation, i.e.
X-*momentum, 1is then set to zero. The surface integral for the pressure
equation term will also be zero. The natural boundary condition of
zero temperature gradient is imposed along the planes of symmetry

giving zero surface integrals in the energy equation.
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CHAPTER 5

ITERATIVE SOLUTION PROCEDURE AND LAMINAR FLOW EXAMPLES

The overall computational sequence for the laminar flow calculations
is first presented. A novel fast TDMA solver, developed for this work,
is then described in detail. The relaxation strategy to avoid solution
divergence 1is presented in section 5.3. In section 5.4 the convergence
criteria employed 1in determining the final solution set is given.
Section 5.5 presents the results of a number of laminar flow cases,

including the case of the laminar jet impingement with heat transfer.

5.1 Program flowchart

Figure 5.1 shows the overall computational sequence of the finite
element program used for the laminar flow calculations. The program
starts by reading in a prepared input data file. This file contains
information about mesh discretisation, variables to Dbe solved,
boundary conditions and control data that govern the course of the
overall computation. Some of the more important parameters in the
control data set are: number of global iteration loops here referred
to as cycles, iterative matrix solution parameters, cycle relaxations,
convergence criteria, result print-out rate and evaluation of derived

quantities.

An isoparametric automatic mesh generation (Segerlind (1976)), is
used to subdivide the domain of interest into simplex elements. Since

the elements are of triangular shape, no limitations are imposed on
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Start

Read input data
T

Generate mesh

Fix boundary conditions

Set initial guesses

Set up and solve momentum equations

Calculate hat-velocity components

Set up and solveIpressure equation

Update velocity components

Cycle Set up and solvT energy equation

Update fluid properties

Set up and solve additional transport equations

No Check convergence

II Yes

Evaluate derived quantities

v
Stop

Figure 5.1 Program flowchart for laminar flow calculations.
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the shape of the domain to be considered. Therefore the discretisation
of complex flow domains can be performed accurately without the need
for redundant storage as employed in the FVM, e.g. Patankar (1980). As
described later in the next section, the novel matrix solver works
independently of the global node and element numbering. This offers an
additional flexibility and allows the mesh generation sequence to be
completed efficiently with minimal effort at the input data

preparation stage.

Boundary conditions are read from the input data file and are
stored at the beginning of the program for all variables. Both
essential and natural boundary conditions may be specified. This stage
is performed only once outside the main iteration loop. This is in
contrast to the common practice where fixing of the boundary
conditions appears inside the main loop after the equation for each

variable is set up.

The initial guesses or the start-up values are also set prior to
the main iteration loop. These can be the available analytical or
experimental data. For example a developing duct flow can benefit from
the analytical solution to the fully developed case. Alternatively,
the initial guesses can be a set of results obtained when a
computational sequence 1is terminated before the imposed convergence
criteria are fully satisfied. Initial guesses may also Dbe set
arbitrarily Dbased on some past knowledge about similar flow
situations. The guessed values only help accelerate the convergence to
the final solution. The fully converged solution set 1is independent of
the initial guessed values. The iterative solution sequence can start

with all variables initially set to =zero.
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The course of the main iterative computational sequence, the
cycle, 1s governed by the control data supplied at the beginning of
the program. Figure 5.1 illustrates a general route thorough the
various parts of this cycle. This route may be altered dramatically
depending on the flow situation wunder consideration. The cycle
commences by setting up the momentum equations. This consists of
evaluating the element coefficient matrices and their assembly into
the global coefficient matrix (equations (4.20) and (4.21)) . As

AN

mentioned in Chapter 4, a and a” are identical except at points
where boundary conditions are specified. Hence, the global coefficient
matrix is set up only once for both the X and the Y momentum
equations. The elements force vectors, f% and f£*, containing the
pressure gradient terms, are also evaluated and assembled into the
global right hand side vectors. The solution to the simultaneous

linear algebraic equations is obtained by a variant of the TDMA which

is described in detail in the next section.

The newly computed velocity field is used to evaluate the hat-
velocity components (equations (4.29) and (4.30)). The ©pressure
equation (4.34) 1is set up by first evaluating the pressure diffusion
coefficients (equations (4.31) and (4.32)). The right hand side force
vector, f#, 1is evaluated using the velocity field together with the
hat-velocity components. These are used to form the boundary integrals
and the source terms respectively. The pressure equation, once fully
assembled, 1is also solved using the same iterative solution procedure
as for the momentum equations. The new pressure field is wused to
update the wvelocity field from equations (4.35) and (4.306) . The

updated velocity field is used to set up the advective part of the
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energy equation (4.37). The discretised energy equation (4.46) 1is
fully formed when the diffusion and the source term contributions are
also evaluated. This equation 1is then solved by the same solution
procedure used for the other wvariables. With all the primitive
variables, u, v, p and T computed, the fluid properties e.g. density
and viscosity are then updated using auxiliary equations relating them

to the primitive variables.

Other quantities which are also governed by the general form of
the transport equation (3.1) may also be obtained at the end stages of
each cycle. These additional quantities will have associated with them
the appropriate diffusion coefficients. Also the source term for each
variable must be individually specified. The iterative solution
sequence just described employs only four basic routines to set up the
transport equations for all the variables including the pressure.
These are the advection, diffusion, source and boundary integral
routines. This methodology is commonly used in FVM, e.g. Patankar
(1980). It is the segregation of the continuity and the momentum
equations that has made the present finite element program to be a
strong contender with the FVM codes as is seen later in section 5.5.
It can also be seen that the extension of the program to include

turbulent flow situations follows naturally.

At the end of each cycle, the convergence of the solution set is
examined against ©pre-specified convergence criteria. Cycles are
performed until convergence is obtained. The derived gquantities such
as streamline and heat-flux are then evaluated. A typical cycle as
described above is the general route employed for fully elliptic flow

cases. This route <can be shortened for cases where the flow 1is
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considered to be parabolic, which would result in appreciable savings
in both computer storage and run-time. Under the parabolic flow
condition only one slab or layer of the flow domain in the predominant
flow direction is considered at a time. The pressure gradient term is
assumed to be constant in that direction. The pressure gradient in the
cross flow direction vanishes and the cross flow velocity is evaluated
from the continuity equation. The energy equation and the other
transport equations are also solved one slab at a time. Therefore with
reference to Figure 5.1, for each slab, cycles are repeated until the
convergence criteria are fully met before moving on to the next slab.
Also in each cycle there would be no need to evaluate the hat-velocity

components or to solve the pressure equation.

5.2 Regional Alternating-Direction Implicit Solver (RADIS)

It was shown in Chapters 2, 3 and 4 that the simultaneous sets of
linear algebraic equations arising from the current Finite Element
formulation are always diagonally dominant. The diagonal dominance is
ensured regardless of element sizes or orientations. The equation sets
can therefore be solved iteratively rather than directly provided that
some sort of a nodal structure exists. This nodal structure occurs
naturally in the FVM. As shown in Figure 5.2, in a typical FVM grid
the centre node P(i,j) is surrounded by its neighbours S, E, N and W
whose locational subscripts are obtained by either incrementing or
decrementing i and/or j by one. This simple structure allows a variety
of iterative solution procedures to be employed. A few examples of
such procedures are Gauss-Seidel, line-by-line Tri-Diagonal Matrix
Algorithm (TDMA) (Patankar (1980)), Alternating- Direction Implicit
(ADI) of Peaceman and Rachford (1955) and Strongly Implicit Procedure

(SIP) of Stone (1968).
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Figure 5.2 Typical orthogonal grid used in FVM.

In general the FEM must work with unstructured grids. The freedom
in generating and manipulating such grids is one of the major
attractions of the FEM. This is especially true in the field of stress
analysis where very often complicated shapes in two- and
three-dimensions need to Dbe considered. However, the complete
randomness of the Finite Element grid prohibits the use of iterative
solvers. As discussed in the first chapter, the conventional FEM
resorts to direct solution techniques. These techniques place heavy

demands on computer resources.

One of the primary objectives of this work was to develop a
Finite Element algorithm that would be competitive with those
employing the FVM. To this end a novel line-by-line TDMA, called
RADIS, has been developed. The significance of the name will become
clear later in this section. This iterative solution algorithm is a

variant of the ADI method of Peaceman and Rachford (1955). RADIS is
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specifically designed for the "apparently" unstructured grids
generated by the FEM. Here, it is shown how a simple grid manipulation
during the mesh generation routine has lead to the development of
RADIS. As the mesh generation routine forms an integral part of RADIS,
a brief description of this routine is given below. However the mesh

generation routine in itself carries no claim to novelty.

Figure 5.3(a) shows a single triangular region which 1s to be
subdivided into three-noded triangular elements. The isoparametric
subdivision Dbegins by describing the region as an eight-noded
bi-quadratic quadrilateral as shown in Figures 5.3(b) and (c). The
quadrilateral is divided into the required number of rows and columns
in the £-7} space as shown in Figure 5.3(d). The row and the column
strips are arbitrarily graded. The intersection of the row and the
column lines results in bilinear quadrilateral elements of wvarying
sizes. Each of these elements 1is further divided into two triangular
elements as shown in Figure 5.3(e). This mesh is then transformed back
to the x-y space as shown in Figure 5.3(f), completing the mesh

generation routine for the single triangular region.

A complex domain may be subdivided into triangular elements by
first dividing the domain into eight-noded quadrilateral regions and
then performing the above operation on each of these regions. Figures
5.4 (a)-(d) show the mesh generation sequence used for a heavy duty
air-cooled first-stage gas turbine blade. This shape was chosen
deliberately to demonstrate the RADIS’s applicability to complex
domains as well as to more regular domains. The blade, shown in Figure

5.4(a), 1is first divided into isoparametric regions as shown in Figure



Iterat ive solution procedure and laminar flow examples Chapter 5

Figure 5.3

(a)

(©

Various stages in the mesh generation routine,

(a) triangular region, (b) and (c) region transformation
into a quadrilateral, (d) quadrilateral division into
rows and columns, (e) further division into triangles

and (f) transformation back to the x-y space.
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(a)

Figure 5.4 Mesh generation sequence for a complex domain,
(a) heavy duty air-cooled first-stage turbine blade,
(b) domain division into quadrilateral regions,
(c) regions division into three-noded triangles, and

(d) the complete finite element mesh.
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5.4(b). Each region is then subdivided into triangular elements as
illustrated in Figure 5.4(c). The regions are then connected together
along their external perimeters, resulting in the complete mesh shown

in Figure 5.4 (d) .

The basic methodology behind RADIS is surprisingly simple. That
is to perform the ADI procedure for each of the quadrilateral regions,
shown in Figure 5.4(c), one at a time. An ADI sweep is completed once
all such regions in the domain have been visited. ADI sweeps are
repeated until some pre-specified convergence criterion is met. This
criterion need not be strict since, at the intermediate cycles (see
Figure (5.1)), only a tentative set of coefficients are available.
This procedure 1is named the Regional Alternating-Direction Implicit
Solver or RADIS following the above sequence of operations. The ADI
procedure itself consists of a number of line-by-line TDMA operations
in alternating directions. In a single line-by-line TDMA operation all
the nodes falling on a given line are considered collectively. In the
FVM these lines are the orthogonal lines used to generate the mesh as
is depicted in Figure 5.2. In FEM such lines extending across the
domain do not generally exist. RADIS, however, determines its
solution direction from the &row and the column 1lines of the

quadrilateral regions by considering only one such region at a time.

Figure 5.5 illustrates the selected solution direction and the
active line on which a TDMA operation isto be performed for a given
region. The figure shows the selected solution direction to advance
one column at a time starting with the first column, hence a forward
column-sweep. Three other solution directions are also possible: the

backward column-sweep and the forward and the backward row-sweeps as
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active nodes

neighbour nodes

boundary nodes forward row-sweep
first neighbour active  neighbour last
colunn  coluan coluim  coluen colum
forward backward
colunn-sweep (selected) colum-sweep
Figure 5.5 The ADI procedure for a single region with

the four possible sweep directions.

shown in the figure. For an active point P on the active column there
may be a maximum of eight neighbours. The South and the North
neighbours, S and N, are themselves active and are handled Implicitly
in the line-by-line TDMA. The other six neighbours, SE, E, NE, NW, W
and SW, are treated explicitly. The two end boundary nodes on the
active column are also treated implicitly, wunless they fall on the
external Dboundaries of the domain in which case the prescribed

boundary conditions are imposed.

RADIS offers several advantages over the direct solution methods.
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Only the non-zero elements of the global coefficient matrix need be
stored. The storage requirement 1is hence increased linearly with the
total number of nodes in the domain and is unaffected by the element
or the node numbering convention used. RADIS 1is therefore completely
band-free. The two additional storage requirements of RADIS are a
global node-neighbours matrix and a regional-node matrix. The former
determines the neighbours of each node within the domain and the
latter specifies the nodes that lie on the rows and columns of each
region. Perhaps RADIS's most important feature is its inherent ability
to treat each region of the domain quite differently to any other
region in the same domain. For example considering a partially
elliptic flow case, RADIS can recognize those parts of the domain
where the flow is elliptic hence requiring more attention compared to
the other parts for which a predominant flow direction exists. RADIS
will then perform several row- and column-sweeps in the elliptic
regions and will perform only a few row- or column-sweeps in the
parabolic regions. 1In this manner considerable savings 1in computer
time are achieved. The extension of RADIS to three-dimensions follows
naturally from the above descriptions and no other novelty need be
introduced. With minor modifications, RADIS can be easily adapted to
cater for other element types, e.g. six-noded triangles and bilinear
or Dbigquadratic quadrilaterals. Although it must be noted that for
convergence purposes, the resulting global coefficient matrix should
always be (or be nearly) diagonally dominant. Finally, RADIS may also
be used in conjunction with the FVM. This is possible if the mesh
generation routine described earlier is used to generate orthogonal
mesh lines, be it in the x-y or the body-fitted (i.e. curvilinear)
coordinate systems. Then all the above mentioned advantages would also

apply to the FVM.
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5.3 Relaxation
As described 1in section 5.1, the complete set of results is

obtained by an iterative solution procedure consisting of many cycles

(see Figure 5.1). The set of partial differential equations are
generally coupled and are non-linear (see equations (4.2), (4.3) and
(4.37)) . Non-linearity arises from the fluid properties Dbeing

themselves functions of the primitive variables. The source term in
equation (4.37) can also be a dependent function of temperature
resulting in additional non-linearity. Within each cycle, these
equations are linearised and are solved sequentially as has been shown
in Chapters 2 and 4. Therefore under-relaxation 1is employed to
minimise the risk of divergence. This results in the slowing down of
the rate of change in the computed values at the intermediate cycles.

Here, an implicit under-relaxation is employed.

The general form of the linear algebraic equation set

(5.1)

N

31

is slightly modified to cater for under-relaxation. Equation (5.1) can

be written as

(5.2)

*

from the previous cycle, on is added to and

A

The wvalue of

subtracted from the right hand side of equation (5.2), hence
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The relaxation factor, is introduced to the above equation, hence

6 = < + ar (5.4)

Equation (5.4) is re-written in the following form

i1 *

= - r a** ¢ j t*e (1-a* ) -ii / \ (5.5)
ax* 1 i

Comparing equation (5.1) and (5.5), the diagonal member of the

A

coefficient matrix, aii’ and the right hand side force vector, £f%, are
1

altered in equation (5.1) to account for under-relaxation. Therefore,

A

a is replaced by

41 (5.0)

and f* is replaced by

f£f + (1 - " / (5.7)
i

The relaxation factor, a”, takes values between 0 and 1. The
appropriate value of for each variable depends strongly on the flow
situation under consideration. For a correct pressure field, the true
velocity field is obtained immediately. Therefore the pressure
under-relaxation factor, ap, is the most important parameter. With the
correct value for ap, the success of the current formulation is
ensured. ap also strongly influences the overall convergence rate. For
the cases considered in this research a value of 0.50 was found to
give satisfactory convergence rates. Relaxation factors for u, v and T
can be set to 0.50 for safe practice. However larger values were also

used which resulted in much faster convergence rates. In general the
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largest relaxation factor possible should be used to force the fastest
convergence rate. Of course too large a value will result in the
solution diverging. Also for elliptic or partially elliptic problems a
more selective approach must be adopted in order to maximise the
convergence rate. Cycles can initially start with low wvalues of ofr.
Then at later stages, larger values may be used to accelerate the

convergence rate.

5.4 Convergence criteria

Three convergence criteria are used to terminate the iterative
solution procedure or cycles described in section 5.2. These are the
relative change, the total residual check, and the global Dbalance
check. The absolute relative change in the wvariable < at point i 1is

determined from

% change = x 100% (5 .8)

where refers to the previous cycle. The relative change criterion is
satisfied when the maximum absolute changes in all wvariables within

the domain fall below a specified limit, e.qg.

Q

maximum % change = 0.1% say (5,9)

Each primitive variable has its own specified limit. It is usually the
pressure for which the strictest control 1is exercised. The above
criterion on its own is not adequate to determine aconverged solution
set. For cases where heavy under-relaxationis employed to suppress
divergence, this criterion may be automatically satisfied. This can

give the false impression of convergence.
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The second convergence criterion is that of the total residual

check. Considering the discretised equation for
a.*. - - H au V f? (s-i0)
J* 1

the absolute residual at point i is then

R* =1 - * + f* - a (5.11)
1

U
L, i 1 11

is non-zero 1if equation (5.10) is not fully satisfied. The total

residual is obtained by the addition of all point residuals. Hence

R¥ =) ' Rf (5.12)

where n denotes the total number of nodes in the domain. The total
percentage residual check can then be formed a