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A b s t r a c t

A generalised finite element scheme to analyse two-dimensional 
fluid flow with heat transfer under the steady state condition has 
been developed. The Analysis of both laminar and turbulent flow 
regimes in complicated geometries is facilitated. Imposition of 
various types of flow boundary conditions is achieved with minimal 
effort.

Throughout its development, the emphasis has been on making the 
scheme efficient in terms of computer storage and run-time. In order 
to achieve this goal, a number of innovations have been introduced 
both at the finite element discretisation and the solution stages. 
Advantages have been taken from the recent developments in the Finite 
Element Method (FEM), as well as adopting some of the established 
techniques used by the Finite Volume Method (FVM). As a result the 
scheme is shown to have a computational efficiency comparable with 
those employing the FVM.

A simple streamline upwind technique is devised in representing 
the advection terms in the governing transport equations. Verification 
tests are carried out which demonstrate the accuracy of the streamline 
technique in treating advection. The upwinding is shown to produce 
significantly smaller numerical diffusion errors than those arising 
from previous upwind approximations. The results also show that the 
technique is unconditionally stable and produces no spurious spatial 
oscillations. The technique is straightforward and can be added to 
conventional Galerkin type finite element codes quite readily.

For the solution of the coupled transport equations, an equal 
order interpolation is used for all variables including pressure. 
Pressure and velocities are segregated and are obtained separately. A 
SIMPLER-like algorithm is used to sequentially solve and update 
velocity components and pressure. The solution is carried out in an 
iterative fashion. At each iteration, systems of equations are solved 
by a technique similar to that used in the FVM. A line-by-line 
Tri-diagonal matrix solution algorithm is developed for the completely 
unstructured grids that are generated by the FEM. The technique is



particularly efficient in terms of storage requirements and 
computational speed. It also takes advantage of the nature of the 
system of equations to be solved.

Several laminar benchmark exercises with and without heat 

transfer are performed. These include developing and fully developed 

isothermal duct flow, backward facing step flow, natural convection in 

square cavity and jet impingement with heat transfer. Results show 

that the adopted equal order velocity-pressure method can predict the 

benchmark solutions efficiently and accurately. Spurious pressure 

modes are also shown to be completely absent.

In modelling turbulent flows, the k-e two equation eddy viscosity 

model is employed. The advection part of the k and e equations are 

discretised by the upwind technique developed in this research. 

Special treatment of the source terms eliminate the possibility of 

producing negative values of k or e during the iterative solution 

sequence, which can cause convergence difficulties. By combining the 

Law of the Wall and the Log Law of the Wall to determine shear 

stresses near solid regions, the need for an excessively fine mesh in 

these regions is avoided.
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Ch a p t e r  1

INTRODUCTION

1.1  Overview and scope o f cu rren t work

This work is concerned with the Finite Element discretisation of 

the governing transport equations for fluid flow. The ultimate aim of 

this research is to provide an efficient and accurate program for the 

prediction of turbulent flow in general two-dimensional geometries. 

This has been possible through a number of successive development 

stages. At each stage, a number of alternative techniques were 

considered and the most appropriate was selected. The chosen 

techniques were then altered, modified or refined in order to produce 

the best possible results. Throughout this research, emphasis has been 

placed on physical considerations and mathematical manipulations have 

been deliberately kept to a minimum. It was decided that in this 

manner the critical evaluation of the results would point directly to 

the deficiencies of the proposed models.
>

In this chapter a literature review of the research work in the 

field of numerical analysis of fluid flow and heat transfer is 

presented. In section 1.2.1 the recent developments by the Finite 

Element Method (FEM) are reviewed. In section 1.2.2 the numerical 

treatment of the advection terms in the transport equations by various 

methods is presented. A discussion is also given on the effectiveness 

of such methods in reducing the errors associated with the modelling 

of advection. Section 1.2.3 provides a broad review of the current 

methods for turbulence modelling by both the Finite Volume Method
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(FVM) and the FEM. It is through these reviews that the most 

appropriate course of action for this research is selected. The 

objectives of the current research are presented in the penultimate 

section. In the final section an outline of the remaining chapters in 

this dissertation is presented.

1.2 Review of previous work
In this section a review of the relevant research work in the 

field of Computational Fluid Dynamics (CFD) is presented. The focus of 

attention is mainly on the FEM. The most recent advances by the FEM 

are first reviewed. The various FEM models for advection transport are 

next reviewed. Lastly, the subject of turbulence modelling by the FEM 

is presented. Also throughout this review, and especially in the area 

of turbulence modelling, reference is made to the appropriate research 

carried out with the FVM.

1.2.1 Recent developments in FEM
The FEM was first conceived in the late 1950’s as a method of 

analysing stress distributions within complex structures in the 

aircraft industry. Since then, the FEM has found its way into 

countless other applications. Its range of applicability and success 

rate in many areas of science and technology has, quite simply, been 

astonishing. Over the past two decades the FEM has emerged as a 

powerful tool for predicting and analysing complex flow situations. 

Engineers and researchers alike have benefitted considerably from the 

freedom, accuracy and ease offered by the FEM in describing 

complicated geometries and imposing various boundary conditions. The 

purpose of this review is to list and briefly discuss the implications 

of the most recent developments in the FEM that are relevant to the
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present work. The review is therefore concerned with three specific 

topics of mesh generation, novel Finite Element formulations and 

solution techniques.

Mesh generation is one of the key areas where the FEM has been 

particularly successful. The task of defining complex two-and 

three-dimensional shapes and their subsequent subdivision into 

elements is becoming progressively easier, faster and more accurate. 

Mesh generation is an area where the complete unstructured nature of 

the FEM has been explored to the full. In most Finite Element codes, 

mesh generation forms an essential and an integral part of the whole 

analysis. There are numerous mesh generation techniques currently in 

use. These techniques are becoming more advanced almost by the day. 

The following review concentrates on recent papers which deal with the 

more fundamental aspects of mesh generation. In particular those 

papers where mesh generation is influenced by the criteria of 

simplicity, generality, efficiency, accuracy and utilisation in fluid 

flow analysis are reviewed. Comprehensive surveys of mesh generation 

routines are carried out by Buell and Bush (1973), Ewing (1986), 

Hawken (1987) and Shephard (1988),

Akyuz (1970) uses the concept of natural coordinate systems to 

produce a flexible automatic mesh generation scheme. By dividing the 

domain of interest into subdomains, Akyuz was able to generate the 

desired mesh for one-, two- or three-dimensional geometries with 

curved boundaries. He employed biquadratic quadrilateral subdomains 

and bilinear rectangular elements. Zienkiewicz and Phillips (1971) 

used isoparametric curvilinear mapping of quadrilaterals to generate 

planes and curved surfaces. They used triangular shapes as their basic
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elements, which enabled them to discretise any arbitrary shape in 

space. Their method may be extended to three-dimensions with minor 

additions. Jones (1974) introduced a mesh smoothing and mesh 

restructuring technique for two-dimensions. He employed quadrilateral 

elements and was able to re-number the elements in such a way to 

minimise the bandwidth of the global matrix and hence improve on 

machine storage and execution time. Herrmann (1976) developed a 

combined Laplacian-Isoparametric two-dimensional grid generator. His 

scheme could be extended to three dimensions, but due to its iterative 

nature it was rather wasteful of computer time. Bryant (1985) proposed 

a flexible two-dimensional mesh generator that used triangular

elements. Penman and Grieve (1987) based their self-adaptive mesh 

generator on principles that ensured global error bounds. They 

sequentially solved the discretised equations, calculated error 

estimates and refined the mesh until an optimum solution was obtained. 

Oden et al (1987) developed an adaptive mesh generator that was used 

throughout the computations with the mesh being continuously refined 

and re-defined as the solution progressed. Cook (1988) introduced a 

body-fitted Finite Element mesh generator and demonstrated its

accuracy by solving examples in both Cartesian and Cylindrical 

coordinate systems. Tezuka and Okuda (1988) introduced an adaptive 

mesh refinement procedure that considered the Finite Element

discretisation error. They managed to refine the mesh based on this 

error analysis without having to introduce more nodes/elements into 

the domain. The mesh generation routine developed for this research is 

based on the scheme of Zienkiewicz and Phillips (1971). Jambunathan 

and Shemirani (1990) used the mesh generator in an interactive Finite 

Element package for heat transfer analysis in solids. Jambunathan et 

al (1990) employed the routine in the analysis of isothermal laminar
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fluid flow. The routine has been further modified in order to increase 

its flexibility and accuracy by Shemirani and Jambunathan (1991a). In 

their method, the mesh generation routine becomes an integral part of 

the solution algorithm and greatly improves the computer storage and 

execution time of the solution algorithm as is mentioned later in this 

section and described in detail in Chapter 5.

The discretisation of the nonlinear governing transport equations 

by the FEM results in a set of simultaneous linear algebraic 

equations. The solution to such an equation set can be obtained by 

either direct or iterative methods. Direct methods such as the 

Gaussian elimination or the Lower-Upper ( LU ) decomposition require 

excessive amounts of computer storage and solution time. For flow 

situations where a large number of elements must be used, the direct 

methods become very inefficient and indeed impractical. The relatively 

slow emergence of semi-direct or iterative solutions for the FEM is 

due to the unstructured nature of the method. In the FVM on the other 

hand, a structured grid allows the development of very efficient 

solution algorithms which possess optimal convergence rates to the 

exact solution. The most well known of these methods are the 

Alternating-Direction Implicit ( ADI ) scheme of Peaceman and Rachford 

(1955), strongly implicit scheme of Stone (1968), preconditioned 

conjugate gradient methods such as that of Kershaw (1978), the 

multigrid method of Brandt (1977) and many more. Some of these 

solution techniques have been adopted for regularly structured Finite 

Element meshes. Solution strategies based on the above iterative 

techniques yet applicable to completely unstructured Finite Element 

meshes are highly desirable.

page 5
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Irons (1970) introduced a Frontal solution technique where the 

Gaussian elimination was combined with a front advancing strategy to 

solve symmetric positive-definite equations. Hood (1976) later 

extended this technique to the solution of unsymmetric matrices. The 

Frontal solution is quite satisfactory for small two-dimensional 

problems, but becomes very inefficient and time consuming for larger 

problems. Douglas and Dupont (1971) introduced an Alternating 

Direction Galerkin method for structured rectangular domains. The 

implementation of their method to rectangular polygons was performed 

by Dendy and Fairweather (1975). Deconinck and Hirsch (1979a) used the 

successive line overrelaxation (SLOR) and the approximate 

factorisation (AF) in conjunction with FEM for transonic flow 

calculations. Deconinck and Hirsch (1979b) extended their techniques 

to the computation of subsonic and transonic cascade flows. Deconinck 

and Hirsch (1980) then experimented with higher order elements. They 

showed improved computer efficiency and fast convergence rate, however 

their method is only suitable for regular Finite Element grids. Some 

researchers adopted a transient solution strategy, where the steady 

state solution is obtained in the limit. This allowed nonlinear 

schemes such as Newton-Raphson or Runge-Kutta to be used very 

efficiently and without restrictions on the regularity of the Finite 

Element mesh, see for example Donea (1984), Zienkiewicz et al (1985) 

and Peraire et al (1986). Preconditioned conjugate gradient methods 

have also been devised for the FEM. These methods generally require 

parameter settings which depend on the type of problem at hand, see 

Carey and Jiang (1987).

For the present research, a novel iterative solution algorithm 

was devised which is described in detail in Chapter 5. The algorithm
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is an implementation of the Alternating-Direction Implicit scheme of 

Peaceman and Rachford (1955) to the FEM. The algorithm is termed the 

Regional Alternating-Direction Implicit Solver (RADIS). RADIS is 

applicable to structured and completely unstructured grids generated 

by the FEM. RADIS is also applicable to all types of two- and 

three-dimensional elements. Shemirani and Jambunathan (1991b) show the 

superiority of the algorithm in terms of computer storage, execution 

time and convergence rate over the conventional direct or iterative 

solvers. They also recommend RADIS as a smoother to the Multigrid 

method, hence improving on its convergence rate.

During the past decade a number of novel Finite Element 

formulations have appeared in the literature. These formulations 

generally tend to combine the geometrical flexibility of the FEM with 

the sequential solution strategy of the FVM. Baliga and Patankar 

(1980) devised a control volume based formulation with triangular 

elements for two-dimensional calculations. The formulation was of 

mixed-order interpolations for velocity and pressure fields. The 

method was later extended to heat transfer problems by Baliga and 

Patankar (1983) and Baliga et al (1983). Parakash (1986) introduced 

the equal-order version of the Baliga and Patankar (1980) method. In 

this way, he managed to reduce the discretisation errors associated 

with mixed-order interpolations. Schneider et al (1978b) devised a 

velocity correction, equal-order finite element formulation, and 

achieved fast convergence rates. Other equal-order velocity-pressure 

formulations have also been proposed, see for example Rice and 

Schnipke (1986) and Schnipke and Rice (1987). Ramaswamy (1988) also 

used an equal-order velocity-pressure formulation for two-dimensional 

natural convection analysis.
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Other Finite Element workers have concentrated on developing 

efficient and accurate algorithms for their particular flow 

arrangements. Obee and Witt (1980) used velocity potential and 

multi-region arrangement to analyse the impingement of a free jet on a 

disk. Their method took advantage of the flow conditions in the three 

different regions of the flow. Allaire et al (1985) employed simplex 

elements with penalty formulation for accurate analysis of 

recirculating flows. Betts and Haroutunian (1983) devised a stream 

function formulation for two-dimensional natural convection, and 

accurately predicted the variation of the Nusselt number. Dhatt et al 

(1986) developed a new triangular element for steady and unsteady free 

surface flows. They employed a Newton-Raphson method to solve the 

governing nonlinear system of equations. Mochimaru (1986) used the 

pressure gradient terms in the momentum equations as the dependent 

variable for the analysis of circular cavity flow. Kawahara and Umetsu 

(1986) used a two-step explicit FEM in river flow calculations, which 

contains moving boundaries. Kim (1988) used bilinear rectangles for 

velocity components and linear triangles for the pressure for the 

calculation of high Reynolds number flows. Kaluarachchi and Parker 

(1989) applied the FEM to multiphase flow situations with the help of 

nonlinear iterative solvers. Kim and Decker (1989) used both 

velocity-pressure integrated and penalty schemes for high Reynolds 

Number flows. Finally, Hansen and Hassager (1989) developed a moving 

FEM which is specially suited for differential equations whose 

solution contains steep gradients.

The review of the above papers enabled the selection of the most 

relevant technique for the present work. The criteria of selection 

were robustness, generality, applicability and possible future
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extension to three-dimensions. The selected method was that of Rice 

and Schnipke (1986). As well as satisfying the above criteria, it also 

offered a sequential, equal-order velocity-pressure approach in the 

spirit of the SIMPLER algorithm. This meant that additional transport

equations both for the laminar and the turbulent regimes could be

included in the formulation without excessive computer requirements. 

The method of Rice and Schnipke (1986) was based on bilinear

quadrilaterals. In order to increase the efficiency and robustness of 

the formulation for this work, a triangular version of their method 

was developed. Some novel alterations had to be introduced to increase 

the accuracy of the formulation. A detailed description of this 

formulation is given in Chapter 4.

1.2.2 Advection treatment by FEM
The variation of a scalar variable, <p, in time and space may be 

described by a general differential equation that contains rate of

change, advection, diffusion and source terms. The temporal variations 

in <f> are described by the rate of change term. The source term 

provides the rate at which <p is generated or destroyed. The spatial 

transport of <f> is represented by both the advection and the diffusion 

terms. The diffusive and the advective transport mechanisms are two 

quite different phenomena- a local disturbance in 4> is transmitted, in 

all directions by the diffusion mechanism, and only along 

characteristic lines by the advection mechanism. The physics of the 

diffusive transport are adequately captured by the Galerkin weighted 

residual approach in FEM. In this approach the value of the scalar 

quantity <p at a point is related to <f> at all the point’s neighbours. 

This in turn ensures that local perturbations in <f> are made to spread 

in all directions throughout the diffusive medium - a consistent
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reflection of the diffusion transport.

The advection transport, on the other hand, exhibits a

directional bias in that the effects of disturbances in 0 may only 

travel along characteristic lines. Also the direction of travel is 

from upstream to downstream locations and not vice versa. This 

important physical observation may not be immediately deducible from 

the first order, and generally nonlinear, form of the advection terms 

in the governing transport equation. Many of the past and present 

formulations violate the physics of the advection transport resulting 

in numerical instability and physical inaccuracy that are only too 

familiar. A major drawback in treating the advection terms is the

contamination of the computed variable field by spurious oscillations. 

For example, in the absence of any source term for 0, these 

oscillations may cause the solution set to waver outside the limiting 

values of the variable imposed by the boundary conditions which 

clearly is unacceptable on physical grounds. These oscillations have 

in the past been referred to as overshoot/undershoot, numerical 

oscillations, spatial oscillations, wiggles or numerical instability. 

These oscillations will be referred to as spatial oscillations 

hereafter. A second drawback, and perhaps not as detectable as the 

first, is the smearing of the solution set by artificial diffusion. 

This phenomenon, which is a direct consequence of numerical modelling, 

acts in a manner analogous to the physical diffusion transport. This 

artificial diffusion has been referred to as numerical diffusion,

crosswind diffusion, false diffusion or numerical smearing. The 

artificial diffusion will be referred to as numerical diffusion

hereafter. In some instances the numerical diffusion can be orders of 

magnitude greater than the physical diffusion resulting in highly



" *" • • * *  V * v ' v !i-v * ;.?<•. • -** '' , «f/"- "■■■< \  *.*■ av * ~ f  r. ! ,-°r>r ; % / - ' *

Introduction Chapter 1

erroneous solutions.

The deceptively simple form of the advection terms has rendered 

the numerical treatment of advection an art of compromise between 

numerical stability and physical accuracy. There is no ideal model of 

advection which can produce results that are unconditionally free of 

all spatial oscillations and numerical diffusion. Both the Finite 

Element and the Finite Volume workers are constantly looking for more 

accurate and stable, yet more efficient formulations to represent the

advection transport. The current review is mainly concerned with the

recent advances to this end by the FEM. However, as many of the

interesting and innovative ideas have originated from the FVM camp, a 

brief summary of their research effort is in order.

Initial attempts to approximate the advection terms by the 

central-difference operators in FVM resulted in unacceptable levels of 

numerical diffusion and spatial oscillations in cases where the cell 

Peclet number, Pe , exceeded 2. The central-difference scheme can
cel 1

yield reliable results when used in conjunction with very fine grids 

for which the largest Pe is below 2. However, this approach is
cel 1

highly undesirable, and in fact in most engineering applications

impractical, as it requires vast amounts of computer resources. To 

cure this deficiency, countless schemes have been proposed. Patankar 

(1980) provides a detailed analysis of the earlier models, some of 

which are still in use today. The simplest advection model is the 

Upwind scheme first proposed by Courant et al (1952), which 

approximates the advection terms by the first-order differences taking 

into account the direction of the velocity vector. The model is 

accurate for large Pe , but breaks down at lower values. The
cel 1
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Exponential scheme of Spalding (1972) relies on the exact 

one-dimensional solution of the advection-diffusion problem. This 

scheme is computationally expensive and is not accurate for 

multi-dimensional situations. The Hybrid scheme of Spalding (1972) is 

a mixture of the central-difference and the upwind schemes. This 

scheme can be implemented efficiently, but it gives a poor performance 

especially around Pe of 2. The Power-Law scheme of Patankar (1980) 

produces the exact solution for one-dimensional situations, but in 

multi-dimensional situations it too suffers from inaccuracies.

Higher order Finite Volume schemes have also been developed. 

Amongst these are the second-order upwind differencing (HOU) scheme of 

Price et al (1966), the quadrature upwind (QUICK) scheme of Leonard

(1979) and the streamline upwind (SUD) scheme of Raithby (1976). 

Hassan et al (1983) produced a mass-flow-weighted skew upwind scheme 

which is stable and results in little numerical diffusion. In a number 

of comparison exercises the QUICK scheme has shown to be more accurate 

than the other schemes, see for example Han et al (1981), Huang et al 

(1985), Shyy (1985), and Patel and Markatos (1986). QUICK is also 

being used increasingly in complex two- and three-dimensional 

turbulent flow calculations, see Leschziner (1989). The QUICK scheme 

is however computationally expensive and suffers from convergence 

problems, see Han et al (1986) and Patel et al (1987). Pollard and Sui 

(1982) improved the convergence properties of the QUICK scheme, but 

their method is complicated and hence uneconomical. The two major 

disadvantages of the higher-order schemes are large spatial 

oscillations at high Pecell and relatively expensive computer costs in 

terms of storage and evaluation-time. A variety of composite schemes 

have been proposed which try to improve the performance of the
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higher-order schemes. Leschziner (1989) provides a comprehensive 

overview of these and many other schemes in connection with the 

treatment of the advection terms by the FVM.

The evolution of Finite Element schemes in treating the advection 

transport follows a similar path to that of the FVM. The conventional 

Galerkin weighted residual approach, akin to the central-difference 

operator, produces unacceptable levels of spatial oscillation and 

numerical diffusion. This approach fails to allow for the directional 

feature of the advection transport. The advection terms are treated in 

the same manner as the diffusion terms. Hence in a purely advective 

medium, perturbations in <f> at a point are incorrectly felt by all of 

the neighbouring points. The presence of spatial oscillations are more 

clearly visible in flow situations where downwind Dirichlet boundary 

conditions are imposed. This difficulty was overcome by 

one-dimensional upwind schemes, see Christie et al (1976) and Christie 

and Michell (1978). The generalisation of the one-dimensional schemes 

to two- and three-dimensions proved to be unsatisfactory, as they 

resulted in excessive numerical diffusion and spatial oscillation. 

Hughes and Brooks (1979) introduced a multi-dimensional 

streamline-upwind/Petrov-Galerkin (SUPG) scheme, which was based on 

the upwind scheme of Hughes (1978). SUPG had good stability properties 

and would dampen the numerical diffusion. It also had faster 

convergence rate than the classical upwind schemes. Brooks and Hughes 

(1982) demonstrated the use of SUPG in incompressible transient flow 

calculations. SUPG was later extended to multi-dimensions by Hughes 

and Mallet (1986a), who also produced precise error estimates of their 

method for the complete flow Peclet number range. Heinrich and 

Chung-Chyi (1987) extended the SUPG scheme to time dependent analysis.
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They constructed a scheme which is second-order accurate in time and 

third-order accurate in space for the case of the constant coefficient 

convection-diffusion equation on a uniform grid with bilinear 

elements. However, levels of spatial oscillation produced by SUPG 

generally means its exclusion from applications where sharp boundary 

and internal layers are present.

More stable solutions may be obtained by Monotone methods. In 

these methods, monotonicity ensures that new maxima/minima are not 

introduced in the solution set. In other words, the solution set does

not contain values that are outside the physical range imposed by the

boundary conditions. Ideka (1983) explains the basic principles of

monotone methods. The methods of Hughes et al (1985) and Rice and 

Schnipke (1985) are good examples of the monotonic property mentioned 

above. In the latter example, upwinding is performed along the 

streamline segments passing through the elements. Rice and Schnipke

(1985) produced oscillation-free results with minimal numerical

diffusion. Unfortunately monotone methods are generally based on

arbitrary constraints and do frequently violate the physical laws. For 

example a major shortcoming of such methods is that they can be 

non-conservative. In flow cases where the fluid properties are

changing, non-conservatism can lead to the global imbalance of the 

transported quantities. Mizukami and Hughes (1985) introduced a 

monotone method that uses simplex triangular elements. Their method is 

conservative and satisfies the requirements of the Petrov/Galerkin

method. However the method is complex and its extension to

three-dimensions has not yet been reported.

SUPG can be modified so as to capture sharp discontinuities in
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the solution domain. Hughes et al (1986a) add a discontinuity 

capturing term to the element weighting function of the SUPG and 

produce a nonlinear method. The additional term acts in the direction 

of the solution gradient rather than in the direction of the 

streamline. The method shows improved performance over the SUPG on 

cases with sharp boundary/internal layers. The spatial oscillations 

are dampened considerably in comparison to SUPG, but are still present 

at corner points in the domain. The method was generalised to 

multi-dimensions by Hughes and Mallet (1986b) and obtained accurate 

solutions to the compressible Euler equations. The method was later 

used for the Stokes problem by Hughes et al (1986), who employed 

equal-order interpolation for velocity and pressure. The success of 

the formulation depends on the correct specification of the stability 

constants that change from one type of element to another. Also, 

Hughes et al (1986b) express reservations on their formulation to 

solve the most general cases of fluid flow which are governed by the 

Navier-Stokes equations.

Other Finite Element formulations have also appeared in the 

literature that do not adopt the above concepts. Baliga and Patankar

(1980) introduced a contro1-volume based finite element formulation. 

They employ three-noded triangular elements for which the element 

shape function is based on the direction of the local velocity vector. 

Their method is later extended to three-dimensions by Muir and Baliga

(1986) who use tetrahedral elements as their control-volumes. A 

similar approach is employed by Ramadhyani and Patankar (1985) in 

conjunction with quadrilateral elements. Idelsohn (1989) achieves 

upwinding by requiring the satisfaction of a variational principle. He 

claims that his technique can give clear indication of regions in the
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domain where either upwinding is not required, upwinding is necessary 

and sufficient or upwinding is insufficient and should be replaced by 

artificial viscosity. Finally, Steffler (1989) introduces a new 

upwind-weighted element function in the spirit of the QUICK scheme. 

His element function is influenced by the presence of upwind nodes 

external to the element. Steffler produces good results for a number 

of convection-diffusion problems and concludes that the reliability 

and efficiency of the method should be further investigated.

It can be said that in general the FEM produces less numerical 

diffusion than the FVM, as is evident from the comparison exercise of 

Smith and Hutton (1982). This is due to the ability of the method to 

work with the resultant-velocity direction as opposed to the locally 

one-dimensional approach of the FVM. Neta and Williams (1986) examined 

a variety of advection Finite Element formulations and found that the 

schemes with linear isosceles triangles or bilinear quadrilaterals 

gave the best results. For the current research, after considering the 

advantages and disadvantages of the techniques reviewed above, it was 

decided to employ a monotone upwind technique for the treatment of the 

advection terms. Monotone techniques are simple to implement and their 

extension to multi-dimensions is relatively straightforward. They are 

also computationally economical in terms of storage and 

evaluation-time. But perhaps the most important feature of these 

methods is that they do not introduce spatial oscillations. These 

unphysical oscillations apart from being cosmetically displeasing, can 

often lead to divergence problems during the course of an iterative 

process.

The criteria for selecting the appropriate monotone method were
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the degree of numerical diffusion, the economy of operations, the 

generality and the possible extension to three-dimensions. The 

Monotone Streamline Upwind (MSU) technique of Rice and Schnipke (1985) 

seemed to satisfy these criteria. However, the MSU technique was 

non-conservative and was developed in conjunction with the bilinear 

quadrilateral elements. As is discussed in Chapter 2, these elements 

can lead to matrices that are not diagonally dominant. This would in 

turn prohibit the use of fast iterative matrix solvers. Therefore a 

conservative formulation based on the MSU technique was developed for 

this research. In this formulation three-noded triangular elements 

were used to ensure diagonal dominance and to minimise the 

computational costs. Shemirani and Jambunathan (1990) have applied 

this formulation to stringent test cases and validated its capability 

in predicting results with minimal numerical diffusion without spatial 

oscillations for the entire flow Peclet number range.

1.2.3 Turbulence modelling
Turbulent flows occur at high Reynolds numbers. They are 

characterised by random and unsteady eddying motions with pressure and 

velocity fluctuating irregularly in all directions. Rapid diffusion of 

properties such as mass, heat and kinetic energy are present in a 

turbulent flow field. A high rate of energy dissipation, i.e. the 

transfer of the kinetic energy to the internal energy, is also 

present. Visual observations of turbulent flows show them to consist 

of eddies of many different sizes or scales. The relative scales of 

the eddies depend on the geometry and the past history of the flow. In 

internal flows, the largest eddies have scales of the same order as 

the width of the flow, whereas the smallest eddies are orders of 

magnitude smaller than the overall flow dimensions. So to capture the
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essential details of such flows directly, very fine computational 

grids must be employed. Then the solution of the unsteady 

three-dimensional transport equations for laminar flow would provide 

the instantaneous distribution of turbulent flow quantities. However 

as Launder (1972) points out such a direct approach demands computer 

storage and run-time which exceed today’s hardware capabilities. To 

overcome this problem, numerous turbulence models have been proposed 

and are in use today. It must be said that none of these models are 

capable of predicting the turbulent flow characteristics exactly.

Present turbulence models vary greatly in the degree of

complexity. Each model has associated with it a set of underlying 

assumptions. These assumptions ultimately determine the accuracy, 

generality and applicability of each model. A good turbulence model, 

is one that relies on as few assumptions as possible, whilst

possessing a wide range of applicability. The simpler models are based 

on the equations that govern laminar flows with no additional

transport equations. In the more sophisticated models, additional 

differential equations are used to describe the transport of turbulent 

quantities such as the turbulence energy and its dissipation rate. 

Turbulent models can be classified in several ways. The most popular 

classification is one where turbulent models are grouped in terms of 

the number of additional transport equations that are solved along

side the equations for mass, momentum and energy, see for example 

Reynolds (1976) and Rodi (1980). According to this classification 

there are zero-equation, one-equation, two-equation and turbulent 

stress/flux-equation models of turbulence. These are the main classes 

of turbulent models. Rodi (1980) mentions that apart from the above 

models, there is a newly emerging class of models, called the subgrid
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scale models, which show promising results. There are also turbulent 

models that are based on the integral methods. Before considering the 

main classes of turbulent models, a brief description of the latter 

two models will be given.

In the subgrid scale model, it is recognised that the main 

turbulent transport is governed by the motion of the energetic large 

scale eddies. A computational grid is then set up to capture such 

unsteady, three-dimensional motion. The small scale motion, which 

cannot be captured by this grid, is approximated by an appropriate 

subgrid model. Examples of the subgrid scale modelling can be found in 

Deardorff (1971, 1973 and 1975), Schumann (1975), Kwak et al (1975), 

Love (1978 and 1980) and McMillan and Ferziger (1979). The main 

drawback of this type of model is its excessive computer requirements, 

since the computational grid must be fine enough to resolve all but 

the smallest eddy motions. Additional assumptions may be employed to 

decrease the grid density. However this diminishes the accuracy and 

the generality of the method. A typical subgrid model is composed of 

two components- a main grid scale model and a subgrid scale model. The 

main grid scale model is used to represent the motion of the large 

eddies, while the subgrid scale model attempts to model the behaviour 

of the smallest eddies. These two components are derived from 

mathematical manipulations involving filtering operations. The 

filtering may be achieved by a variety of filtering functions such as 

the Gaussian function, see Love (1980). The two components are 

substituted into the governing transport equations. The transport 

equations are then themselves filtered. The nonlinearity of the 

transport equations results in additional terms which contain the 

subgrid scales. The subgrid scales can then be described effectively
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by simple conventional eddy-viscosity models. The subgrid models are 

not at present suitable for general turbulence predictions as they 

place heavy demands on computer memory and run-time. Nevertheless, 

these models are useful tools in developing and evaluating the more 

conventional forms of turbulence models.

The models based on the integral methods are used mainly in 

day-to-day engineering applications. These methods rely on the 

boundary layer equations which are the simplified versions of the

Navier-Stokes equations. The simplifying assumption is that the

changes in the flow properties along the stream-wise coordinate are 

much smaller than those in the cross-stream coordinate. This 

eliminates the stream-wise dependency and allows for a parabolic 

rather than an elliptic consideration. The former offers considerable 

savings in computer storage and execution time as it renders itself to 

a marching solution procedure as opposed to a sweeping one. Reynolds 

(1968) reviews a number of these models which were presented at the 

first Stanford Conference on Computation of Turbulent Boundary Layers 

in 1968. The most commonly used integral method is the Head's 

Entrainment Method, Head (1958). In this method the momentum and the 

continuity equations are integrated with respect to the cross-stream 

coordinate. With a power-law velocity profile assumption and a 

skin-friction law, a system of ordinary differential equations is 

obtained for the boundary layer displacement thickness and the

momentum thickness. Other related variables may also be obtained by 

taking moments of the momentum equation, see Murphy and Rose (1968). 

The solution of such a system of equations is then obtained by any 

standard integration algorithm such as Runge-Kutta or Adams Moulton. 

Green (1968) extended the basic integral method to account for



Introduction Chapter 1

compressibility. Green et al (1977) introduced an additional 

differential equation to describe the entrainment rate, hence 

incorporating the flow history into the method. The integral method 

models are frequently used in everyday engineering practices where 

flow parameters such as the pressure distribution and the 

skin-friction need to be evaluated reasonably accurately and cheaply. 

They are simple and the turbulence equations can be modified to 

include new empirical correlations. However, they can only be used for 

flows where a predominant flow direction exists in the absence of 

recirculation. The models also lack generality in that they depend 

strongly on the empirical correlations which change from one flow case 

to another.

The main classes of turbulent models rely on the time averaged 

versions of the governing transport equations. The concept of a 

time-averaged flow field was first introduced by Reynolds (1884). 

According to Reynolds, an instantaneous turbulent quantity is made up 

of a mean value and a turbulent fluctuation. By substituting the 

instantaneous quantities into the transport equations and 

time-averaging them, a set of coupled differential equations are 

obtained in terms of the mean values. The time over which the 

equations are averaged must be larger than the largest turbulent time 

scale for a particular flow. The time-averaging process produces terms 

involving the products of the turbulent fluctuations. These terms are 

the Reynolds stress/flux terms. It is the treatment of these terms 

that has lead to the development of many turbulent models. The 

Reynolds stress/flux terms can themselves be described exactly by 

additional differential equations. These equations are obtained by 

taking velocity-weighted moments of the momentum equations and
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time-averaging them. Unfortunately, this results in equations 

containing quadratic products of the turbulent terms. This process can 

be continued to create as many equations as desired. However, at some 

point the set of equations must be closed by making assumptions about 

the relationships between the highest order terms and the mean flow 

quantities. This is known as the turbulent closure problem.

In the zero-, one- and two-equation models the action of the 

Reynolds stress/flux terms are considered to be similar and additional 

to those of laminar viscosity/diffusion. In the Reynolds stress/flux 

models, these terms are themselves governed by algebraic or partial 

differential equations. There are, in the literature, numerous books 

and papers on the subject of turbulence modelling, which review and 

discuss the benefits and the drawbacks of all past and present models. 

The more recent reviews include: Rodi (1980) who provides a brief and 

accurate comparative account of the most popular turbulent models and 

their use in hydraulics, Rodi (1982) lists various models for 

incompressible turbulent flows, Nallasamy (1987) gives a comprehensive 

review of turbulence models and their application to internal flows, 

Launder (1988) concentrates on the problem of heat transfer in 

turbulent flow calculations, Hutton (1985) highlights the recent 

advances in the field of turbulent flow predictions by the FEM and 

Hutton et al (1987) review the role of FEM in the computation of 

turbulent flows in complex geometries. In the remaining part of this 

section the main classes of the turbulence models are briefly 

described. The advantages and disadvantages of each model are also 

discussed. It is through this discussion that the most appropriate 

turbulence model for this work is selected.
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In the zero-equation models, sometimes referred to as the 

zero-closure models, the principal governing transport equations are 

the time-averaged mass, momentum and energy equations. There are no 

additional equations employed to describe the distribution of the 

Reynolds stress/flux terms. These terms are modeled via the eddy 

viscosity/diffusivity concept, where their actions are considered to 

be similar and additional to their laminar counterparts. The turbulent 

viscosity and diffusivity may be specified directly from experimental 

data. They may also be related to the mean-velocity distribution or 

even take the form of empirical correlations. In the simpler models, 

the turbulent viscosity and diffusivity are assumed constant 

everywhere, except at the wall boundaries where they fall to zero. The 

constant eddy viscosity model offers a simple and crude way of 

representing turbulence. It over-simplifies the action of the 

turbulent transport terms and is therefore not widely used. A more 

advanced model is the Prandtl’s mixing length model. In this model the 

turbulent transport terms are expressed as the product of the 

turbulent viscosity and the local gradient of the mean flow. Hence for 

a two-dimensional situation

where v is the turbulent viscosity, v is itself related to the meant J t
velocity gradient

where 1 is the unknown mixing length, whose variation over the flowm
field is prescribed empirically. The mixing length model is frequently 

used for free shear layers and wall boundary layers, see Spalding 

(1982). Turner Jr and Gunzburger (1988) propose a robust FEM version

(1 .1 )
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of the zero-equation which has a fast convergence rate. In the

zero-equation models, the prescription of 1 depends strongly on them
type of flow under consideration and becomes increasingly more 

difficult for recirculating and three-dimensional flows. The important 

flow features such as curvature, buoyancy and rotation must also be 

specified empirically. The convective/diffusive transport and the 

history of turbulence are not accounted for in the mixing length

model. Hence, the model has a narrow range of applications and is not 

suitable as a general purpose turbulence model.

The one-equation models obtain the turbulent velocity scale from

an additional transport equation. The most appropriate velocity scale 

is the turbulent kinetic energy. The turbulent viscosity is expressed 

in terms of the turbulent kinetic enegry, k, and a length scale, 1,

i> = C / k  1 (1.3)t p

where is an empirical constant. The length scale is flow dependent

and must be specified empirically. The differential equation for k is 

of the same form as for any other transportable quantity, with

transient, convective, diffusive and source terms. The one-equation 

models are generally superior to the zero-equation models as they

account for the convective and the diffusive transport of the 

fluctuating velocity scales. In the case of unsteady flow, the

flow-history of the velocity scales is also accounted for by the 

one-equation models. These models are adequate for shear layer type

flows, where the zero-equation models also perform well. The

specification of 1 becomes difficult for the more complex flow

situations where separation, streamline curvature or rotation may be

present. Algebraic formulae have been used to calculate the length
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scale by Gawain and Prichett (1970). However these formulae are 

complicated and demanding on computer time. Bringen and Abdol-Hamid

(1987) apply the one-equation model to free shear flows and produce 

accurate results for axisymmetric and plane jets, but their agreements 

with experimental data for the axisymmetric wake is only moderate.

The two-equation models attempt to eliminate the need to 

empirically describe the length scale in terms of positions in the 

flow field. This is achieved by introducing a second differential 

equation. This equation is in effect used to prescribe the length 

scale. An equation describing the length scale itself can be derived 

from the Navier-Stokes equations. However this approach is undesirable 

as it leads to a semi-empirical treatment. Instead, the kinetic 

energy equation will be supplemented with an equation for another 

appropriate turbulent quantity. This quantity will be a function of 

both k and 1. Examples of the two-equation models include k-kl, k-w 

and k-c models, where o> is the time-average square of the vorticity 

fluctuation and e is the dissipation rate of k, see Launder and 

Spalding (1974) and Spalding (1977). All of these models, although 

dissimilar in appearance, are essentially length scale equations. The 

second quantity, like the turbulent kinetic energy, is governed by a 

differential equation consisting of transient, convective, diffusive 

and source terms. The treatment of the near wall regions is different 

for each model. It is this treatment that often determines the 

popularity of one model over others. The most popular model in this 

class is the k-e model, see Launder and Spalding (1974) and Spalding 

(1974). The k-e has been applied to a wide variety of flow situations 

and is currently the most frequently used turbulence model.
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The k-e model has been successfully incorporated in both the FVM 

and the FEM. The FVMs with the orthodox coordinate systems, i.e. 

Cartesian and cylindrical coordinates, have benefitted considerably, 

e.g. Gosman et al (1977), Leschziner and Rodi (1981), Nallasamy and 

Chen (1985) and many more. Examples of k-e with FVMs using the 

curvilinear coordinate systems include the works of Wachpress (1979), 

Raithby et al (1986), Demirdzic et al (1980), Demirdzic et al (1986), 

Demirdzic et al (1987), Burns et al (1988) and Kual and Kwak (1986). 

Turbulent flow predictions using the k-e model in conjunction with the 

FEM are being continuously reported. Larock and Schamber (1981) put 

forward suggestions for incorporating the k-e model in the FEM. Taylor 

et al (1981) consider the turbulent flows with separation. Tong (1982) 

performs a comprehensive study on the application of the model to 

recirculating flows. Hutton and Smith (1981) consider the computation 

of the two-dimensional incompressible turbulent flow using the k-e 

model. Smith (1984) reports on the performance of the model with FEM 

for recirculating flows. Benim and Zinser (1985) apply the model in 

conjunction with FEM to several confined turbulent flows and obtain 

good agreements between FEM and FVM. Sharma and Carey (1986) use an 

efficient FEM discretisation with the k-e model for boundary layer 

analysis and produce accurate result on coarse grids. Devantier and 

Larock (1986) employ the Galerkin FEM with the k-e model for density 

driven turbulent flow and express the need for better understanding of 

the buoyancy production terms in the turbulence closure model. 

Polansky et al (1987) also experiment with the FEM version of the k-e 

model and report convergence difficulties with their high Reynolds 

number formulation. Their low Reynolds number model behaves well and 

yields results which are in good agreement with experimental data for 

two-dimensional channel and backstep geometries. Torbjorn (1988) uses
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a mixed Galerkin/Penalty function formulation with the k-e model for 

one- and two-dimensional steady-state flows and is able to reasonably 

predict the major features of the flows.

The original k-e model of Launder and Spalding (1974) is suitable 

for the fully turbulent flow regions. In the vicinity of solid 

boundaries, viscous forces become significant and the flow is no 

longer turbulent. To account for this, a number of modifications have 

been introduced. These include the use of various wall functions and 

near-wall treatments. Jones and Launder (1973) modified the k-e model 

to account for laminar, transition and fully turbulent regions. Their 

low Reynolds number model was further refined by Launder and Sharma 

(1976) and was reported to perform well in cases studied by Patel et 

al (1985). Other low Reynolds number models have also been reported 

which show promising results, e.g. Lam and Bremhorst (1981) and 

Launder (1986). Nagano and Hishida (1987) improve the performance of 

the k-e model of Jones and Launder (1973) for near-wall turbulence by 

relating the influence of the wall to the local Reynolds number and 

obtain accurate predictions for isothermal shear flows. Nagano and Kim

(1988) also use this model in heat transfer calculations for shear 

layer flows and show very good agreements with experimental data. 

Another approach is to divide the near-wall region into two or three 

layers. Chieng and Launder (1980) adopted a two-layer approach for 

flow predictions in a pipe expansion. Their two-layer model consisted 

of a viscous layer beyond which the flow is fully turbulent. Amano 

(1984) uses a three-layer model consisting of a viscous sublayer, a 

buffer layer and an overlap layer. Iacovides and Launder (1984) 

propose a thin Parabolic Sublayer (PSL) model which eliminates the 

need for wall functions. Nallasamy (1986) expresses that the two- and
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three-layer models both improve the heat transfer calculations, but 

have little advantage over other models in predicting the flow field. 

However, Chen and Patel (1988) examine the performance of various 

near-wall treatments and express satisfaction with a two-layer 

approach, which combines a one-equation near-wall model and the k-e 

model, e.g. Richmond and Patel (1987). Djilali et al (1989) compare 

the performance of several near-wall turbulence models for heat 

transfer calculations in recirculating turbulent flow and recommend 

the use of the k-e model with the three-layer model of Amano (1984).

The k-e model does not perform well in flow situations where body 

forces are important. Such body forces may arise as a result of strong 

streamline curvature, rotation or buoyancy. The reason for the poor 

performance of the k-e model has been attributed to its key assumption 

that the turbulent energy is destroyed where it is created. In other 

words the k-e model assumes a local state of isotropy whereby all the 

stress terms are approximated by one eddy viscosity. This assumption 

breaks down in cases where a dominant body force is present. The 

action of such a force is to destroy the local state of isotropy by 

interacting selectively with different normal and shear stresses. The 

k-e model can be modified or refined to capture this anisotropy to 

some extent. For example, Rodi (1972) replaces the conventional 

constants in the k-e model by functional relationships for the case of 

an axisymmetric jet and observes a significant improvement in his 

predictions. Nallasamy (1985) in his evaluation of various turbulent 

models for the flow over a backward-facing step, states that the 

standard k-e model always under predicts the reattachment point. Yet, 

the k-e model retains its popularity since it allows the user to 

easily adjust, modify or replace parts of the model in order to
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accommodate for a wide range of flow situations. Nallasamy (1986), in 

his comprehensive review of present-day turbulence models, concludes 

that the k-e model is still the most widely used model for internal 

flow calculations.

The Reynolds stress/flux models no longer adhere to the eddy 

viscosity concept. Instead, they consider the stress/flux terms 

individually and are therefore better equipped to analyse a wider 

range of turbulent flow situations than the k-e model. Generally, in a 

turbulent flow field components of the stress/flux tensor can develop 

differently from one another. Consequently, additional differential 

equations can be used to describe the transport of each of the 

turbulent stress/flux terms. These equations are again derived from 

the mean momentum and energy equations, see for example Hinze (1959). 

By deriving individual transport equations for the stress/flux terms, 

flow features such as swirl, streamline curvature and buoyancy are 

automatically accounted for. However, as mentioned previously, these 

equations contain higher order terms and to close them, these terms 

must be related to the mean flow characteristics. In particular the 

proper modelling of the pressure-strain, the diffusion and the 

dissipation terms are required. Model proposals include those of Daly 

and Harlow (1970), Launder et al (1975), Llewellen et al (1976), Lin 

and Wolfshtein (1977) and Rodi (1981). The solution of the full 

Reynolds stress/flux equations together with the mass, momentum, 

energy and dissipation equations requires a vast amount of computer 

time. Therefore the use of such a model must be justified by its 

claimed accuracy over the k-e model. The Reynolds stress/flux models, 

unlike the k-e model, have not yet been thoroughly tested and are 

still in the development stages. Hogg and Leschziner (1988 and 1989)
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apply the model to highly swirling confined flow and obtain good

agreement with measurement for the velocity and turbulence fields. 

Leschziner (1989) lists the most recent advances in the Reynolds 

stress/flux closure models and conclude that flows with large

recirculation zones and/or with strong swirl clearly benefit from this 

type of model.

The algebraic stress/flux models attempt to reduce the

computational overheads of the Reynolds stress/flux models by reducing 

the stress/flux equations to algebraic relations, while maintaining 

their pertinent features. For example, Rodi (1980) relates the 

transport of the stress terms to the transport of the kinetic energy, 

k, and also employs a k-equation to close the system. Rodi et al

(1981) obtained a poor performance from an algebraic equation model 

when applied to several cases with curved and rotating boundaries. In 

their comparison of three algebraic stress models with the k-e model, 

Nikjooy et al (1985) showed only marginal improvements over the k-e 

model. Wilkes and Clarke (1987) compare the performance of the 

algebraic stress model with that of the k-e model and experimental 

data for flows in pipes, sudden expansions and cavities. They obtain 

better predictions of turbulence levels in flows with curved 

streamlines and recirculation lengths. The algebraic stress models 

are much more economical than the Reynolds stress/flux models, and yet 

produce results which are not very different to those obtained by 

them, see Rodi (1980). Martinuzzi and Pollard (1989) compare the 

performances of the algebraic stress and the k-e models for pipe flow 

and find the k-e model to be in better agreement with experimental 

data. The algebraic models do not treat the convective and diffusive 

transport of the turbulent quantities accurately. In order to cure
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this deficiency, Amano and Chai (1988) have recently gone one step 

further and introduced transport equations for the triple products of 

the turbulent fluctuations. They claim that in this manner the effects 

of convection and diffusion in strong shear flows, such as reattaching 

separated flows, are properly accounted for.

1.3 Objectives of current research
The present research is limited to the numerical prediction of 

the steady-state incompressible fluid flow in both laminar and 

turbulent regimes. The flow is two-dimensional and may include complex 

geometries. The accurate imposition of boundary conditions should be 

facilitated in an easy manner. The discretisation algorithm should be 

developed in modular form so that future alterations or additions may 

be carried out with minimum effort. The discretisation and solution 

strategies should be efficient in terms of hardware resources. In 

order to meet these stringent requirements the current research will 

concentrate on the following subject areas:

1) The discretisation of the governing equations will be performed 

by the use of the FEM, which allows accurate and efficient 

representation of complex geometries. Curved or irregular 

boundaries will be handled with relative ease. The subdivision of 

the domain into elements in an unstructured manner will provide 

great flexibility, not offered by any other technique. It also 

allows the user to refine or re-define parts or whole of the 

domain with minimum effort. The imposition of various types of 

boundary conditions follow naturally from the FEM discretisation. 

Both essential and natural boundary conditions will be imposed 

simply and accurately.

2) A two-dimensional mesh generation routine will be developed to
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divide the domain of interest into triangular elements. The use 

of triangular elements enables the complete triangularisation of 

any arbitrary domain. The integral terms for the triangular 

element will be evaluated exactly and efficiently with minimum 

amount of repetition. The mesh generation will be flexible 

enough, so that any element size or orientation may be selected. 

The mesh generation will become an integral part of the solution 

strategy, so that iterative solution procedures may be used in 

place of the direct or the semi-direct solvers. This will greatly 

reduce the computer storage and run-time requirements.

The advection term will be treated so as to follow the physics of 

the advection transport closely. The treatment of the advection 

will be conservative and monotonic giving oscillation free 

results with minimal numerical diffusion. This treatment will be 

accurate, unconditionally stable and efficient in terms of 

computer storage and evaluation time. It is only in this manner 

that the method may be applied confidently to a wide range of 

flow situations.

Unlike the conventional FEM procedures, an equal-order 

velocity-pressure formulation will be devised. The discretisation 

procedure will then become significantly simple, as all variables 

will use the same element shape functions. The variables will 

also be stored at similar locations in the domain. The 

equal-order formulation will not produce spurious pressure modes, 

which contaminate the flow field. A separate pressure equation 

will be derived. The velocity and pressure fields will be 

segregated and solved sequentially.

A fast iterative solution procedure will be developed for the 

solution of the linear system of simultaneous algebraic



Introduct ion Chapter 1

equations. The procedure will be designed for the completely 

unstructured grids that are generated by the FEM. The solution 

procedure will possess a fast rate of convergence, and be 

efficient in terms of computer storage and execution time. It

will be used for all the variables and will not require parameter 

settings that need changing from one flow case to another.

6) A general turbulence model will be developed. The model will be

accurate in capturing the essential features of turbulence in

arbitrary domains under various flow conditions. The model must 

also be flexible enough to allow future modifications to be 

carried out with minimum effort.

1.4 Outline of remaining chapters
In Chapter 2, the governing set of partial differential equations 

are presented. These equations describe the fluid motion under both 

laminar and turbulent flow regimes. For this research, only the

two-dimensional form of the equations in Cartesian frame work are

considered. In the latter part of this chapter the FEM is introduced. 

The Galerkin form of this method is then described in detail for the 

case of the two-dimensional Poisson type differential equation. Based 

on some computational considerations, the most appropriate element for 

this work is then selected.

Chapter 3 presents a novel streamline upwind technique that was

devised for this research. The case of pure advection is first

analysed from a physical stand-point. Its treatment by a variety of 

methods is briefly mentioned. Reasons for the deficiency of such 

methods in capturing the physical process of advection are given. The 

current streamline approach is then described in detail. It is shown
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that the technique is able to model the advection phenomenon in a 

simple and consistent manner. The accuracy and the efficiency of the 

present technique is demonstrated by way of three stringent test 

cases. General remarks are made on the performance and the validity of 

the current streamline technique.

Chapter 4 presents the discretisation of the laminar flow 

equations by the FEM. The problem of velocity-pressure segregation is 

first considered. The current equal-order discretisation strategy is 

then described in detail. A separate pressure Poisson type equation is 

proposed. A segregate solution procedure where velocity and pressure 

are obtained sequentially is presented. Lastly, the discretisation of 

the energy equation and the imposition of the various types of 

boundary conditions are given.

Chapter 5 begins by outlining the overall computational sequence 

of the computer code for laminar flow analysis. A novel fast and 

efficient iterative solver is then described. Computational aspects of 

the analysis such as relaxation parameters and convergence criteria 

are then discussed. The current method is applied to several test 

cases. The case of the laminar jet impingement with heat transfer is 

also analysed. In the final part of the chapter general remarks on the 

performance, accuracy and efficiency of the current method are given.

. Chapter 6 is dedicated to the analysis of isothermal turbulent 

flow. The problem of turbulence closure is first addressed. The finite 

element discretisation of the additional transport equations is then 

presented. The imposition of boundary conditions for turbulent flows 

is given. The program flow chart for turbulent flow analysis is next
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presented. Two turbulent benchmark exercises as well as the case of 

confined plane jet impingement are provided in Appendix B.

Chapter 7 provides a discussion on the work contained in this 

research. Finally, based on the experience gathered here, several 

recommendations are given for future work.
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GOVERNING EQUATIONS AND FINITE ELEMENT METHOD

The governing equations of fluid flow and heat transfer are first 

presented. These equations describe the flow of fluids in both laminar 

and turbulent regimes. The assumptions leading to the derivation of 

these equations are also included. The last section of this chapter 

presents the adopted finite element discretisation of a typical 

partial differential equation, the Poisson’s equation. Also in the 

last section it is suggested, based on computational considerations, 

that the most suitable element is the simplex three-noded triangular

2.1 Laminar flow equations
The set of equations governing the flow of fluid in a laminar 

regime can be found in most fluid mechanics text books, e.g.

Schlichting (1960), Hughes and Brighton (1967) and Kay and Nedderman 

(1974). They are the continuity, momenta, energy and state equations. 

In their most general form for Newtonian fluids in a three-dimensional 

Cartesian frame-work, they are (Schlichting (I960))

element.

Continuity | _ p + |-pu + |5Fpv + |5 pH = 0 (2.1)

X-momentum

(2.2)
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Y-momentum |_ pv + |_ puv + |_ pv3 + pwy = Y _

+ S-ax

+ h

+ 55

( « ( £ * £ ) )

( " ( * S - i c £ * S * £ ) > )
(2.3)

3 8Z-momentum _  pw + _  puw + ̂  pvw + ^  pw = Z -

+ 55 

+

f r aw x au y ]
I ** ( 55 + 55) J
f ( aw 3v \ }{ • *  ( 3y  +  55) J
f / . 3w 2 / au x av x aw y \ 1 
I " ( 35 ” 3 ( ax ay 35 ) ) J

(2.4)

where X, Y and Z are components of the body force,

Energy It pcT + Ix pucT + ly pVcT + Iz pW°T
a / , 3T y . a  / , aT y . a , , aT (2.5)
0 / , 01 > , 0 /■ . di \ . o / , o i \ x * . A 
3x ( 3x ) 3y ( 3y ) 3z ( 3z ) P

where Q is the rate of heat generation and $ is the dissipation

function. The energy equation, equation (2.5), can accommodate for

heat transfer in both solid and fluid media as is shown later. The

properties p, c and k are all known functions of pressure and

temperature, and

State p = f(p,T) (2.6)

For the purpose of this research the above set of equations are 

simplified according to the following assumptions:

a) Flow is in a two-dimensional Cartesian coordinate system, i.e. w=0, 

30/3z=0 and Z=0.

b) Flow has reached steady state conditions, i.e. 30/3t=O.
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c) Viscosity is constant and the influence of variable density appears 

only in the body force terms, i.e. Su/3x + dv/dy + dw/dz=0, 
X=(p-pi)ĝ  and Y=(p-pi)gy.

d) The dissipation function, which is important in lubrication

situations, can be neglected since the flow applications considered 

here are in the low Mach number region ( M < 0.3 ), i.e. $=0.

With the above assumptions the set of equations, used in this 

research, are

where equation (2.11) relates the local density, pj, to the reference

density, p, the temperature difference, (T-To), and the thermal

expansion coefficient, £. Although p and p are constant here, they are

retained within the partial derivative terms to accommodate for

possible future modifications to the above assumptions. Equations

(2.7) to (2.10) are written in their conservative form. This would

ensure the conservation of the transported properties, i.e. mass,

momentum and energy, in flow cases where fluid properties are not

constant. In the case of heat transfer by conduction in solids, the

left hand side of equation (2.10) becomes redundant and the

appropriate diffusion coefficient, k , is inserted.solid

_ , . . . d d _Continuity ^  pu + ^  pv = 0 (2.7)

X-momentum (2.8)

Y-momentum . d 2puv + __ pv (2.9)

Energy

( p - p , V  %  + !s ( •*£?) + | ; ( p § p )

h  ^ + b pvcT = Is (k £)+ h  (k i )+ *(210)
State p = p(l-p(T-To)) (2 .11)
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With equations (2.7) to (2.11), a wide range of problems may be 

analysed:

a) Isothermal flow, employing equations (2.7), (2.8) and (2.9).

b) Forced convection, decoupling equation (2.10) from the rest.

c) Natural and mixed convection, using all equations (2.7) to (2.11).

d) Heat conduction in solids with heat generation, using refined form 

of equation (2.10).
e) Conjugate heat transfer/fluid flow, using all equations (2.7) to 

(2 .11).

2.2 Turbulent flow equations
The above set of equations adequately describe fluid motion under 

laminar regime. However most flows encountered in practice are of 

turbulent nature and laminar flows are the exceptions. Some examples 

of turbulent flow are:

- pipe flows,

- flow through pumps, turbines and compressors,

- flow around or in the wake of cars, aircrafts, ships etc.,

- jet flows,

- atmospheric boundary layers,

- upper atmospheric jet streams,

- Ocean currents and many more.

It is therefore necessary to construct a set of equations that can 

describe the turbulent fluid motion.

In the first chapter, the two alternative numerical methodologies 

used for treating turbulent flows were put forward. These were to 

either solve the unsteady differential equations of laminar flow or to 

consider the time-averaged form of these equations. It was also argued
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that, with present-day computational resources, it is only the latter 

that can efficiently provide solutions to turbulent flow analysis.

This is not a crippling factor, since it is the time-mean behaviour of

these flows that is usually of practical interest. The method adopted

The time-averaging process begins by assuming that at any instant 

in time the fluid motion is governed by the laminar flow equations 

(2.1) to (2.4) and that the velocity vector and the pressure are 

composed of mean and fluctuating components, such that

(2 .12)
u' = U + u
v' = V + V
w/ -■W + w
p' = P + p

where

u' dt and
t

u dt = 0 etc ... (2.13)
t

Substituting equation (2.12) into equations (2.1) to (2.4) and 

averaging with respect to time, taking p constant, (White (1974))

Continuity p + |^ pU + ~  pV + pW = 0 (2.14)

v 4- ^ ? ,2 d . d ,n. ^ 9PX-momentum at pU + Sx p + pVU + Si pWU = x ~ a£

* f c

9z

( - ( 2 £ - K £ * S * | n )

( » < § • £ ) )

[ » ( £ * £ > )
8

J

in this research for isothermal flows is now presented. .S

3

+ —+ dy [ v dy dx > |

+ t- ( u + 1 I

m  puu - ^  puv - ^  puw
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Y-momentum jL pV + pUV + ^  pV2 + t. pWV = Y - g

ax
a_
dy
a_
az
a__
ax

(m (
(.(
( M ( 
pvu -

av au ,
ax ay J' J
9  d V 2 ( •

d y 3 V «
av aw i Iaz ay J1 J
a —  
ay pvv '

a
az

au av + aw
ax ay az

pvw

D) (2.16)

Z-momentum at pW + 5x pUW + fy pVW + Iz pl,:
a 
a
a_ 
ax
a_ 
ay
a_ 
az
a —  a —  ^  pwu - ^  pwv

z - ap
az

((
( - <  

( "  ^

aw A au 
ax az
aw av 
ay az
9 sw 
az

>)

>) 
! (

au av + aw
dx dy az > > )

az pww

(2.17)

where the bar indicates a time-averaged quantity. The above equations 

are similar to those presented in the previous section for laminar 

flow. The extra terms appearing on the right hand sides of the 

momentum equations are the Reynolds stress terms. Written in the 

matrix form, these additional stresses are

r o*X X
xy

X 1xz -puu -puv -puw
T
yx

cry X
yz = -pvu -pvv -pvw

X zx
X
zy

<Tz -pwu -pwv -pww
(2.18)

where <r , cr and cr are the normal stresses and the rest are the shear x y z
stresses, all arising from the onset of turbulence. The above matrix

is symmetric, hence t = r , x = t and x = x .x y  yx xz zx yz zy

As before, the following assumptions are made for flow situations 

considered here:



Governing equations and FEM Chapter 2

a) Flow is in a two-dimensional Cartesian coordinate system, i.e. W=0, 

d<f)/dz=0, and Z=0.

b) Flow has reached steady state conditions, i.e. d<f>/dt=0.

c) Fluid has constant density and viscosity.

e) The body force is due to the gravitational pull, i.e. X-pg^ and

Y=pgy.

With these assumptions the time-averaged differential equations used 

in this research are

Continuity ~  pU + ~  pV = 0 (2.19)

X-momentum pU2 + pVU = (2.20)

3P a ( au —  1 A a f au —  )
PV  ax ax ( p ax ~ p u u  J ay [ M  ay “ p u v  J

Y-momentum ^  pUV + ^  pV2 = (2.21)

a p ± a f av —  1 A a f au —  )p V ay ax ( ̂  ax “ puv J ay [ p ay “ pvv J
and the turbulence stress matrix is reduced to

(2.22)

p and p are kept inside the partial derivative terms to 

facilitate future modifications to the above assumptions. The primary 

concern is to solve the above equations to obtain the mean velocity 

distributions. However this cannot be done until the Reynolds stress 

terms are more clearly expressed. As can be seen from equations (2.20) 

and (2.21), these terms are additional to the viscous stress terms. 

Therefore it would be plausible to regard them as additional viscosity 

due to the onset of turbulence. By describing a turbulent viscosity, 

the above set of equations are closed and could therefore be solved.

r <r t  -i 
X xy -puu -puv

T cr [ xy y — -puv -pvv
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Although the flow is considered to be two-dimensional, i.e. W = 0, no 

assumption about the magnitude of the fluctuating component, w, which 

may still be nonzero, is made.

2.3 Finite Element Method
The first part of this section presents the finite element 

discretisation strategy adopted here by considering the diffusion type 

problems. Reference is also made to the imposition of boundary 

conditions. It is through this discretisation and simple computational 

considerations that the choice of the element type is then made in the 

last part of the section. It is shown that the success of this work 

depended on this type of element.

2.3.1 Discretisation of Poisson’s equation
In general the Finite Element approximation of a set of 

differential equations may be carried out, based on, (Zienkiewicz 

(1977)):

a) Variational principles,

b) Weak formulations, or

c) Global physical statements.

Here, a form of the weak formulation method, namely the Galerkin 

weighted residual approach is adopted. This choice is not an arbitrary 

one and is based on the ability of this method in treating the sort of 

boundary conditions that are encountered in fluid flow situations.

For the purpose of presenting the adopted methodology, only the 

discretisation of the diffusion part of the differential equations is 

addressed here. The construction of the full finite element set will 

be completed in the next chapter, where the treatment of the
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convection term will be discussed. The discretisation, therefore 

begins by considering the two-dimensional form of the Poisson’s 

equation in Cartesian coordinate system

f- ( 7T ) + 1“ ( IT ) + SaT 0 (2.23)Sx v 0 dx > dy ' <f> dy J <f>

where 0 is a scalar variable with F, and S. being the diffusion0 0
coefficient and the source of 0 respectively. Both T. and S, are in0 0
general dependent functions of x, y and 0. Equation (2.23) is subject 

to the following boundary conditions:

a) essential boundary conditions,

0 = 0 on s, (2.24)
pr e s c r i b e d  0

b) natural boundary conditions,

q = q on s (2.25)p r e s c r i b e d  q

where q is the outward flux of 0, and

s = s , + s (2.26)0 q

with s representing the complete domain boundaries both internal and 

external. Amongst the physical processes that are governed by equation

(2.23) together with equations (2.24) and (2.25) are heat conduction,

potential flow, mass diffusion, flow through porous media, lubrication

flow and some fully developed duct flows.

Application of the Galerkin weighted residual method to equation

(2.23) is now demonstrated. The weak form of this equation is obtained 

by first multiplying through by the weight function, W, and then 

integrating the product with respect to x and y, (Taylor and Hughes 

(1977))
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-  [ f c  < r S )0 dx ) dy ( F0 dy ) + S0 ] dA = 0 (2.27)

A is the area of the domain where equation (2.23) is applicable and 

dA=dxdy. Since first order continuous elements will be used in 

sub-dividing the domain, the order of the diffusion terms in the above 

equation is reduced by employing Gauss's theorem. Hence equation

(2.27) with elemental sub-divisions becomes

n

I r aw m— i N Lax j
„ 8N , M  ... 3N , I ...r , . Tr-k 0,_ + -57; i N iT<Ai 0̂  dA =0j dx vk dy j 0j dy *k (2.28)

W S . dA +i 0 W NT, |^k 0 ds* + 1 j <f>i dn k W NT, |^k 0 ds* i j 0j dn *k

where is equal to Nt, and is replaced by 1̂  hereafter, n is the 

unit outward normal vector at the element boundary such that

dN , dN , A dN .~~k 0 = n -x—k 0 + n -5— k 0dn k x dx rk y dy k (2.29)

with n and n being the direction cosines in the x and y directions
X y

respectively. The physical significance of equation (2.29) is that it 

represents the outward flux of 0, i.e.

.. . 1 m dN j . cN NT. -5—k 0 ds =1 j 0j dn k
e

N q dsi
e

(2.30)

s

The second integral on the right hand side of equation (2.28) need 

only be evaluated on the outside boundaries since internal fluxes 

cancel each other. On the outside boundaries the value of q is given 

by equation (2.25). In heat conduction situations where a convective
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boundary may exist, q is replaced by

q = h (0 - 0 ) (2. 31)
f b

where h is the convective heat transfer coefficient, <p■ is the fluid 

temperature at a distance away from the boundary surface and 0 is the 

unknown boundary temperature. It is seen that already as a consequence 

of the Galerkin formulation the natural boundary conditions are easily 

catered for. The last integral on the right hand side of equation

(2.28) applies to that part of the boundary where 0 is prescribed and 
is therefore redundant.

The treatment of the source term, the first term on the right

hand side of equation (2.28), is now presented. A proper treatment of

the source term is required if the discretisation procedure is to

yield a converged solution set (Patankar (1980)). If the source of 0,

S., has a constant value, its treatment becomes trivial and is done in 0
a similar fashion to that of the prescribed flux. However, when is 

a dependent function of 0, a more elaborate treatment is required. 
may either be a linear or a non-linear function of <j>. For linear 

dependency the source term may be expressed as

S = S + S 0 (2.32)
0  C p

where S and S are constants. The source integral of equation (2.28) c p
is then split into two parts

N S . dA* 
.* *A

N S dA* +l ceA
N S N 0 dA* (2.33)i P J J

A®

The last term on the right hand side is carried over to the left hand 

side of equation (2.28). Note that with this treatment, unknown 

variable 0 only appears on the left hand side of equation (2,28). When
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the dependence of S, on <b is non-linear, the source term is
<P

linearised. First, is expanded using the Taylor series formula

s . - s; +
<f> <p It (dr,

- j ) 2 (d2S )* {$ - 0*)3 fd3S )
2! 3! id^J

(2.34)

*

*where denotes the evaluation of quantities at the previous stage of 

the calculation. Inherent in this linearisation technique is the 

assumption that an iterative solution method is to be used. This 

presents no further complication, as it was argued in Chapter 1 that 

ar. iterative algorithm for the solution of the discretised equations 

would be used. Then * would refer to quantities evaluated at the 

previous iteration. Assuming first order approximation for the source 

term, equation (2.34) is truncated to give

s* “ V  l ^ J  (2-35)

This linearisation presents the tangent to the versus <f> curve at 
*

<t> . Equation (2.35) can be rearranged as

%  -  [8l - * ( f * ) ' )  + *  (If*)' ( 2 -36)
The term in parentheses, is weighted by the Galerkin method and is

integrated, which forms the explicit part of the source integral term 

in equation (2.28). The implicit part of the source integral is

obtained by using the lumped mass approach with Galerkin weighting,

which has been shown to improve the solution accuracy (Zienkiewicz 

(1977)). Hence,
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A
(2.37)

where

m
N = ) N
T J

(2.38)
j=i

with m being the number of nodes per element. Returning to equation

where [A]e is the element coefficient matrix, <j>G is the vector

applicable to all types of elements, regardless of the shape or 

property of the element.

The discretisation procedure produces a system of simultaneous 

algebraic linear equations. The solution to such a system may be

obtained either by direct or indirect ( iterative ) methods. However, 

as discussed in Chapter 1, computer requirements for direct methods 

make their use restrictive and highly undesirable, especially in two 

and three dimensional analyses. Therefore it is preferred to employ 

iterative solution algorithms, whereby requirements on computer 

storage and time are minimised. Iterative solvers have been widely 

used in conjunction with finite difference schemes where a structured

grid is present (Patankar (1980)). In this research a similar

iterative solver, as will be described in Chapter 5, is devised for

use with the unstructured mesh which arises from the application of

(2.28), it can be written concisely as

en
(2.39)

l

containing unknown nodal values of <f> and fe is the element force

vector. The finite element discretisation as presented above is
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the FEM.

2.3.2 Choice of element type

In this final part of the section, the appropriate type of 

element for the adapted discretisation is selected. This selection is 

based on the following computational considerations:

a) use of an iterative solution algorithm,

b) efficient integration procedure, and

c) adaptation of a simple upwinding scheme.

Although upwinding is not required for purely diffusive type problems, 

i.e. equation (2.23), it plays an important role in the analysis of 

fluid flow phenomena. Therefore it is taken into consideration when 

choosing the element type at this stage.

1'.yr

■I

_}->

As is shown below, two types of elements are considered:

i

1

i

(a) (b)

Figure 2.1 Two-dimensional elements, (a) three-noded linear 
triangle, (b) four-noded bilinear quadrilateral.
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a) linear three-noded triangular element, with $ expressed as

(h — N 0 + N 0 + N 0^ i i  y s k k (2,40)

where 0 , d> and 0 are nodal values of 0, with L , L , and L as i k  ̂ i’ y k
local area coordinates, and

N - L , N = L , N = L and L + L + L = 1 i i J j k k l j k (2.41)

b) bi-linear four-noded rectangular element, with 0 expressed as

with £ and y as local coordinates.

For simplicity the elements shown in Figure 2.2 are considered

where they are deliberately oriented with sides ij and jk

perpendicular to each other. Also sides ij of both elements are

parallel with the x-axis. Let the aspect ratio, A, for both elements

be defined as the ratio of the side lengths L and L ,i J Jk

Jk

Assuming constant unit diffusivity in both x and y directions, i.e.

r = 1, the element coefficient matrix of equation (2.39) then becomes 
9
( see Appendix A ),

0 = N 0  + N 0 + N 0 + N 0^ 1 1  J J k k  lrl (2.42)

where again 0 ,̂ 0 ,̂ 0fc and 0i are nodal values of 0, and

N = i (1-5) (1-n) , N = i (1+5) (1-ij) .1 4  J 4
N = i (1+5) (1+D) , N = i (1-5) (1+d)k 4 1 4

(2.43)

Lij (2.44)

[ A ]eL J titriangle (2.45)
0 -A A
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for the triangular element, and

[ A ] e _ 1
rectangle 6A

2+2A2 -2+A2 -1-A2 1-2A2
-2+A2 2+2A2 1-2A2 -1-A2
-1-A2 1-2A2 2+2A2 -2+A2
1-2A2 -1-A2 -2+A2 2+2A2

(2.46)

for the rectangular element.

k

Ik

1)

Ik

(a) (b)

Figure 2.2 Elements oriented with respect to the coordinate 
system, (a) triangle, (b) quadrilateral.

Close inspection of the coefficient matrix for the triangular 

element, equation (2.45), reveals that:

a) the diagonal members will always be equal to the absolute sum of 

the off-diagonal members on each row,

b) the diagonal members have opposite signs to the other members on 

their corresponding rows, and

c) the absolute value of the diagonal member can never be smaller than
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the sum of the absolute values of the off-diagonal members, i.e. 

the matrix is always diagonally dominant.

Conditions (a) and (b) show the physical consistency of the 

formulation. Condition (c) satisfies the Scarborough criterion, a 

sufficient condition for the convergence of the Gauss-Siedel iterative 

solution method, Patankar (1980). However, for the coefficient matrix 

of the rectangular element, equation (2.46), although condition (a) 

above is always satisfied, condition (b) is always violated and 

condition (c) can be violated depending on the value of the aspect 

ratio. It can easily be shown from equation (2.44) that condition (c) 

is violated if A falls outside the range

The global coefficient matrix is the assembly of all element 

coefficient matrices, i.e.

It follows that [A), when fully assembled, will always satisfy the 

above three conditions if triangular elements are used and may violate 

them if rectangular elements are employed, Fried (1971). As mentioned 

earlier, the system of linear equations, whose coefficients are given 

by [A], will be solved in an iterative manner. In order to ensure a 

converged solution set by at least one such iterative scheme, e.g. 

Gauss-Siedel method, it is therefore desirable to use triangular 

elements which will always lead to an unconditionally stable system of 

equations. It may be noted that similar analysis carried out on a 

domain subdivided into linear triangular elements of general shape and 

arbitrary orientation, would produce a global coefficient matrix with

(2.47)

n
[ A ]  [ A ] * (2.48)

l
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similar properties as above. This is regardless of the value of the 

diffusion coefficient in any direction.

The simplex triangular element offers three more advantages in 

comparison with the bi-linear rectangular element, as well as with 

most of the other types of elements commonly in use. These advantages 

arise from the shape and the linear properties of the triangular 

element (equation (2.40)). This element allows the complete 

triangularisation of any arbitrary shape in space to be carried out. 

Exact integration procedures can be easily employed. Exact 

integrations are much more efficient than their numerical counterparts 

in terms of computational speed. For the triangular element shown in 

Figure 2.1, the area integral can be evaluated from

La Lb L° dAe = r 2A* (2.49)i j k (a+b+c+2)!eA

Also boundary integrals can be evaluated from

La Lb d£ = £ (2.50)i j (a+b+1)! ij
9
~i j

where £ is the element boundary length. Lastly, upwinding of the 

advection terms, i.e. the left hand side of equations (2.8) to (2.10), 
becomes very simple. The adopted upwinding technique is described 

in detail in the next chapter.
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Ch a p t e r  3

STREAMLINE UPWIND TECHNIQUE

The treatment of the advection terms in the governing transport 

equations is presented. The first section is dedicated to outlining 

the problems associated with advection treatment. In the second 

section the appropriate streamline upwind technique is derived from 

simple physical considerations. The accuracy of the technique is then 

demonstrated by way of its application to benchmark cases. Finally, in 

the last section, general comments regarding the present technique and 

the test results are given.

3.1 Advection consideration
The differential equation governing the transport of a scalar 

variable, <f>, in a two-dimensional Cartesian frame-work, can be written 

in its conservative form as

§ ^ u * >  ♦ Syfpv#) = fs(r# i)  - g£) ♦ S, (3. i)

In fluid flow analysis, <f> may be replaced by the components of the 

momentum velocity vector, u, v, or temperature T. would then

represent the dynamic viscosity or the diffusion coefficient 

respectively. The source term, S^, represents the pressure gradient 

and the body forces due to variations in density in the momentum 

equations (2.8) and (2.9). It can also stand for the generation term 

in the energy equation (2.10). The treatment of the right hand side of 

equation (3.1) by the Galerkin method, was described in detail in the
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last chapter. It Is the treatment of the two terms on the left hand 

side that is addressed in this section.

The left hand side of equation (3.1) represents the transport of 

4> by advection. The two terms are first order derivatives in contrast 

to the second order diffusion terms of the right hand side. The 

advection terms can be non-linear as u, v or p may be dependent 

functions of <f> itself. Hence, solution to such a non-linear 

differential equation can only be obtained in an iterative manner.

The discretisation of the advection terms by the Galerkin method 

limits the applicability of the finite element code to very low 

Reynolds number flow situations, where advection and diffusion forces 

are of the same order. For advection dominated flows, i.e. those with 

high Reynolds numbers, the Galerkin weighted residual approach leads 

to physically unrealistic results, where numerical diffusion and 

spatial oscillations contaminate the flow field. The shortcomings of 

the Galerkin technique lie in its inability to distinguish between the 

two completely different transport mechanisms which exist for 

diffusion and advection. The diffusion of $ may occur in all 

directions, which is adequately reflected in the finite element 

formulation of the diffusion terms by the Galerkin method. However, 

the advective transport of <f> can only take place along characteristic 

lines, i.e. streamlines. Furthermore, small perturbations in <f> at any 

point can only be transmitted along such a streamline from an upstream 

location to downstream locations and not vice versa. The advection 

mechanism is therefore highly directional and must be treated as such. 

Its approximation by the Galerkin method would relate 0 at a point to 

those at all its neighbouring points. This would in turn result in
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numerical diffusion and unphysical spatial oscillations. By using a 

very fine mesh, i.e. sub-dividing the domain into very small elements, 

equation (3.1) may be made unconditionally diffusion dominated. This 

strategy would require excessively fine meshes and is therefore 

discarded on economical grounds.

As reviewed in the first chapter, a variety of finite element 

formulations exist which can, to some extent, alleviate the numerical 

diffusion and spatial oscillations associated with the discretisation 

of the advection terms. A performance study, carried out on a number 

of then existing methods by Smith and Hutton (1982), concluded that 

nearly all the methods considered exhibited numerical diffusion and 

spatial oscillations to some degree. These so called upwind techniques 

also required considerable computational effort. In relative terms, 

effective upwinding may be achieved by the streamline diffusion 

approach of Hughes and Brooks (1979) and Brooks and Hughes (1982). In 

this approach, the weighting function in the Galerkin method is 

modified so as to produce a streamline upwind approximation. This 

approach also suffers from small magnitude spatial oscillations. Hence 

its adoption here would diminish the generality of the current finite 

element code.

One of the most promising upwinding techniques, devised for the 

finite element method, is the direct streamline upwind approximation 

of the advection terms themselves of Rice and Schnipke (1985). This 

monotone upwind streamline approximation, does not suffer from spatial 

oscillations and is able to predict benchmark cases with a significant 

increase in accuracy compared to other existing techniques. The upwind 

approximation method does not require excessive computational effort,
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yet its inclusion in the finite element code is straightforward. Also, 

its application to quite a number of flow cases as well as test cases 

by Rice and Schnipke (1985 and 1986)) has demonstrated its generality 

of use.

The above streamline upwind technique is however non

conservative. Its implementation in cases where fluid properties are 

varying, especially for turbulent flows, may therefore lead to the 

global imbalance of the transported property. More importantly, the 

above technique was developed for bilinear rectangular elements. As 

discussed in Chapter 2, these elements may result in coefficient 

matrices which are not diagonally dominant. As far as iterative 

solution algorithms are concerned, these matrices are therefore 

ill-conditioned. In other words, a converged solution set may not be 

obtained if iterative schemes are employed to solve such an 

ill-conditioned matrix. Direct solution methods may be used, but 

these, as mentioned in Chapter 1, are inefficient in terms of computer 

storage and execution time. Since it was one of the primary objectives 

of this research to develop an efficient finite element code, bilinear 

elements were discarded. For the current research, a conservative 

streamline upwind approximation, based on the method of Rice and 

Schnipke (1985), is devised for linear triangular elements.

3.2 Conservative streamline upwind approximation
The treatment of the right hand side of equation (3.1) by the 

Galerkin method was fully described in the last chapter and is not 

repeated here. It may be noted that the discretisation of the 

diffusion terms and the source term is applicable to all types of 

elements. In approximating the advection terms the linear triangular
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element is employed. Hence the following discretisation will be 

specific only to this type of element and cannot be used directly for 

any other types of elements.

In the absence of diffusion and source terms, equation (3.1) 

reduces to

i.e. the transport of 0 can take place purely via the advection 

mechanism. Supposing that a velocity field is already established, 

i.e. both u and v are known, and that u varies independent of 0, 
equation (3.1) becomes a first order linear differential equation in

0. Equation (3.1) may be expressed in terms of the streamline 

coordinates shown in Figure (3.1), thus

|^(pu0) + §^(pv0) = 0 (3.2)

(3.3)

n U,

y
4

Q ► x

Figure 3.1 Streamline coordinates.
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where s is along the tangent to the streamline, and u denotes theS

streamline velocity. Therefore, the two-dimensionality of the 

advection mechanism in the x-y coordinate system has now been reduced 

to that of a one-dimensional case in the s direction. Equation (3.3)

states that in the absence of diffusion and source terms, pu <j> isS

constant along a streamline. This is a characteristic of all pure 

advection situations, and was the basis for the derivation of the 

monotone streamline upwind technique of Rice and Schnipke (1985).

Equation (3.3) is weighted and then integrated over the domain

area

N |§^(pus0)| dA = 0 (3.4)
‘'a

As the domain is made up of small elements, Equation (3.4) can be 

written as

H 6 r

r  eN. {§i(pus*)} dA°= ° (3-s)
1 JA°

At this point, in order to progress with the approximation, it is

assumed that on the elemental level

d-5— (pu <b) - constant (3.6)OS s

Using (3.6) in equation (3.5), the weighted form of equation (3.3)

becomes
en

YZ {fccpu30)} N dAe= 0 (3.7)

From equation (3.7) the advection contribution to the global 

coefficient matrix can be evaluated. The evaluation of the above



Streamline upwind technique Chapter 3

expression begins by determining the value of the element constant,

i.e. equation (3.6).

Consider the triangular element depicted in Figure 3.2. The 

streamlines passing through the element are also shown. As illustrated 

in the figure, node 1 is a "downwind" node. A node is defined to be a 

"downwind" node if the negative of the velocity vector at that node 

points back into the element. It may be noted from Figure 3.2, that 

the streamlines show some degree of curvature. This curvature is 

important and plays a significant role where, due to computational 

constraints, a coarse mesh must be used. For an isolated element 

within the computational domain, a number of streamline-element 
configurations are possible. These configurations are illustrated in 

Figure 3.3. For elements situated in the core of the flow, Figures 

3.3(a) and (b), there may exist one, and only one, downwind node. For

\

k

Figure 3.2 11 lustration of a downwind node.
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elements with one or two sides lying next to a solid boundary, Figures 

3.3(c) and (d), no such downwind node exists.

s
I
U

(b)(a)

Id)(c)

Figure 3.3 Possible streamline-element configurations, (a) one 
downwind node, (b), (c) and (d) no downwind nodes.

A downwind node on a given element is identified according to the

following condition. A node is a downwind node, if the velocity vector

at that node has positive outward normal components on both the

element sides adjacent to it, i.e. with reference to Figure 3.4,

u Ay - v Ax S O  andI ik 1 ik
u Ay - v Ax s O  (3.8)i M J  1 ij

Alternatively, equation (3.8) implies that

tan 0, , s tan 0 ̂  tan 0 (3.9)ij l ik '

Once a node has been identified as a downwind node, the

interception of the streamline, passing through that node, with the 

opposite side is located. As depicted in Figure 3.5, this interception
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Q

A  y

si

i j

Figure 3.4 Identification of a downwind node.

si

streamline

A  s

upstream location (x'.y'l with 
6*. p' and u's

Figure 3.5 Determination of the upstream location.
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takes place on side jk at the point with coordinates (x',y'). This 

point is the "upstream location". With reference to Figure 3.5, x' and 

y' are determined by employing the interpolation factor, expressed 

as

F = - (F' + F" )p 2 p p (3.10)

where F' and F" are obtained by considering the normal mass flow rates p p
across the element sides

F'p

F"

= Max Min , 1 j-  , 0 j- and
Jk (3.11)

= 1 - Max | Min j  —  , 1 j  , 0 j

Jk

The normal mass flow rates are themselves evaluated using the 

following surface integrals

U - pv dx + pu dy

f rk -,k '
FJk - pv dx + pu dy (3.12)

% *J JJ

ki - pv dx + pu dy

Equation (3.12) is obtained by integrating the continuity equation 

over the element area

{Ij (pu) ♦ iL (pv)| dAc = 0 (3.13)

Applying the Green’s theorem to equation (3.13), it is rewritten as
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- pv dx + pu dy = 0 (3.14)

It is seen from equations (3.10) and (3.11) that F variesp
between 0 and 1. With reference to Figure 3.5, the coordinates of the

upstream location, x' and y', are evaluated as

x' = (1-F ) x + F x and
p J p k (3.15)

y'= (1-F ) y + F yp j p k

From equations (3.15) and (3.16) and Figure 3.5, the upstream location 

coincides with node j when F =0, and coincides with node k when F =p p
1. For other values of F between 0 and 1, the upstream location wouldp
lie somewhere along the side jk, between nodes j and k. Other upstream 

values are evaluated in a similar manner

<f>' = (1-F )p <p + F rJ p K

p' = (1-F )p p + F
p p- (3.16)

u'= (1-F )s p u + Fsj p V

with

u = (u2 + sj J
2.1/2V and (3.17)

, 2  2.1/2 u = (u + v )sk k k

With the above definitions, the advection term in equation (3.7) is 

approximated for the upwind node shown in Figure 3.5 as

I
" " e (p1US!*i " P 'Us*' ’N dA “ — 1-i-!    A (3.18)

1 A fe AsA
§5(pus*>

where
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and represents the summation of element shape function integrals 

for all the elements surrounding an upwind node, i.e.

n

v - r
N dAi (3.20)

The streamline curvature, as mentioned earlier, is taken into 

account when determining the upstream location at x' and y' . However, 

the length of the streamline segment, As, is calculated as a straight 

line. More accurate evaluation of the streamline arc requires.complex 

iterative procedures. For a quadratic arc, the evaluation time 

increases by 10 fold and would include a logarithmic calculation as 
pointed out by Rice and Schnipke (1985). Since such accuracy in the 

evaluation of As, does not greatly improve the approximation of the 

advection terms, the linear calculation given by equation (3.19) is 

adopted.

-» column

row p u 
1 si A 
As f

p'u'
(1-F ) A 

p As f

p'u'
- F s A 

p As f

0 0 0

0 0 0

Table 3.1 Element coefficient matrix for pure advection.

The element coefficient matrix arising from pure advection can be 

constructed using equations (3.18) to (3.20), which is shown in Table 

3.1. From the table it can be seen that the element matrix is 

unconditionally diagonally dominant as a consequence of the current
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streamline approximation. The global coefficient matrix is then 

assembled by considering each individual element advection

contribution. The global coefficient matrix will also be diagonally

dominant irrespective of element sizes or orientations. This in turn 

will ensure a converged solution set regardless of the chosen

iterative solution scheme.

The upwind technique presented above adequately captures the 

discontinuous nature of the transport mechanism via pure advection. 

Pure advection involves the transport of quantities along streamlines, 

which is typical of characteristic value problems. Most of the 

previous methods modelled the pure advection phenomenon by continuous 

or semi-continuous approximations. These approximations, as discussed 

in Chapter 1, result in numerical diffusion and unphysical spatial 

oscillations. The present formulation in contrast is a discontinuous 

approximation of the physically discontinuous pure advection

mechanism. Other discontinuous methods have also been previously 

employed, e.g. Hughes and Brooks (1979) and Hughes and Brooks (1982). 

These methods consider the advection to be discontinuous between 

elements, and continuous within each element. However, the current 

formulation is discontinuous not only across elements but also within 

each individual element. In other words, the upstream value of pu<j>, as 

well as the upstream location, are determined as discontinuous 

functions of their corresponding values at the two opposite nodes. In 

the next section the results obtained for benchmark test cases using 

the above upwind technique are presented.

3.3 Validation of results
The applicability and accuracy of the above streamline technique
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is validated in this section. The benchmark test cases which are used 

for this validation are the pure advection skew to mesh, the Smith and 

Hutton case and the rotating disk. These stringent cases have all been 

commonly used by previous workers in order to verify their proposed 

techniques devised for approximating the advection terms.

3.3.1 Pure advection skew to mesh
This test case has been employed previously by several 

researchers in order to evaluate the accuracy and stability of their 

techniques for treating the advection terms, e.g. Hughes and Brooks 

(1979), Leschziner (1980), Baliga and Patankar (1980), Hassan, Rice 

and Kim (1983) and Rice and Schnipke (1985). The flow domain is shown 

in Figure 3.6. As can be seen, the domain is a square with a known 

unidirectional velocity field. The flow angle with respect to the

x-axis is 0. The objective of this test case is to investigate the

transport of the scalar variable, <f>, via pure advection mechanism, 

i.e. in the absence of any diffusion. The boundary conditions for <f> 

are also shown in Figure 3.6. Value of 1 is imposed along the bottom 

side as well as on the lower part of the left hand side. <f> is set at 

zero along the remaining part of the left hand side. The boundary 

condition on the left hand side represent a step discontinuity in the 

value of <J>. Since this problem involves only pure advection, there are 

no boundary conditions required along the exit plane, i.e. the right 

hand side and the top side of the domain. As <f> can only be transported 

via pure advection, any diffusion in the outcome of this analysis will 

point to the inaccuracy of the proposed technique. Also in the absence 

of any source terms for <f>* the value of <p cannot exceed its maximum 
prescribed value of 1 or drop below its minimum value of zero. 

Therefore the computed values of <f> which fall outside the imposed
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Figure 3.6 Pure advection skew to mesh.
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Figure 3.7 Computational grid for pure advection skew to mesh.
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range will be unrealistic and will indicate the degree of spatial 

oscillation in the proposed technique. <

To model pure advection, the diffusion coefficient, r̂ , is set at 

zero (see equation (3.1)) resulting in an infinite flow Peclet number, 

Pe = puL/r^ = oo. Consistent with previous works, the domain was 

divided up into 11 equally spaced rows and columns. This resulted in 

11x11 nodes on a regular mesh and 200 triangular elements of equal 

size. For maximum effectiveness the element diagonals were aligned at 

45° to the x-axis as shown in Figure 3.7. This element orientation 

does not contravene the regular spacing of nodes which was employed by 

past researchers. The exact solution to this problem is determined by 

advecting the upwind boundary conditions to the exit planes, taking 

account of the linear interpolation of <p between the nodes. The 

analysis was performed for three flow angles of 22.5°, 45° and 67.5°.

For 0 = 22.5°, Figures 3.8(a) and (b) present the past published 

results and the result of the current streamline upwind approximation 

against the exact solution respectively. This flow angle is the worst 

case for all the methods including the current work. The conventional 

Galerkin formulation, G| exhibits considerable spatial oscillations as 

large as 19% with the maximum of 32% numerical diffusion. The 

streamline upwind approximations of Hughes and Brooks (1979), SU1 and 

SU2, also show numerical diffusion and spatial oscillations. SU1 has 

maximum of 23% spatial oscillation and 54% numerical diffusion. 

Results predicted by SU2 show a maximum spatial oscillation of 6% and 
maximum numerical diffusion of 25% . The standard upwind technique, 

U, shows no spatial oscillations, but a considerable numerical 

diffusion which is as muchas 43%. The monotone streamline upwind
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Figure 3.8 Comparison of results for pure advection skew to mesh

at 9 = 22.5*, (a) previous results, (b) current method.
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Figure 3.9 Numerical diffusion in the domain by the current 
method at 9 - 22.5* .
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technique of Rice and Schnipke (1985), MSU, produces the best results 

amongst the previously published results. It exhibits no spatial 

oscillation and 35% numerical diffusion. The' result of the current 

method, as shown in Figure 3.8(b), also displays no spatial 

oscillation and maximum of 35% diffusion at the step discontinuity. 

HSU and the current work show very similar trends. This is to be 

expected since the current work is essentially the conservative form 

of MSU adapted for triangular elements. The degree of numerical 

diffusion in the domain arising from the current method can be seen 

clearly in Figure 3.9. The widening of the rainbow as the flow 

progresses from left to right is indicative of the presence of 

numerical diffusion in the result. For the exact solution, the width 

of the rainbow would remain unchanged.

For 0 = 45°, Figures 3.10(a) and (b) present the past published

results and that of the current method against the exact solution,

respectively. The Galerkin formulation once more fails to produce

physically realistic results, showing maximum of 12% spatial

oscillation and 19% numerical diffusion. SU1 accurately follows the
►exact solution with no spatial oscillation or numerical diffusion. SU2 

produces results with maximum of 6% spatial oscillation and a high 

degree of numerical diffusion (35%). U shows no spatial oscillations, 

but a considerable numerical diffusion which is as much as 49%. Both 

MSU and the current method reproduce the exact solution. As is evident 

from Figure 3.11, the rainbow retains its original thickness, 

indicating that the exact results are reproduced by the current method
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Figure 3.10 Comparison of results for pure advection skew to mesh

at 0 - 45°, (a) previous results, (b) current method.
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Figure 3.11 Absence of numerical diffusion in the domain by
©

the current method at 0 - 45.
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For 0 ~ 67.5°, Figures 3.12(a) and (b) show the results of past 

workers and that of the current work against the exact solution, 

respectively. The Galerkin formulation shows no spatial oscillation 

but a large degree of numerical diffusion at the step discontinuity 

(52%). SU1 gives rise to oscillatory results with maximum of 33% 

spatial oscillation and 30% numerical diffusion. SU2 has spatial 

oscillation of 5% and numerical diffusion of 52% around the step 

discontinuity. U shows no spatial oscillation and 40% numerical 

diffusion. The current method, as shown in Figure 3.12(b), also 

displays no spatial oscillation and maximum of 39% diffusion at the 

step discontinuity. Figure 3.13 shows the numerical diffusion present 

in the current work as the rainbow widens towards the exit plane.

From Figures 3.8, 3.10 and 3.12 it is evident that all methods 

show maximum deviation from the exact solutions at the step 

discontinuity. The quadrature upwind and the Galerkin methods show 

excessive numerical diffusion and produce spatial oscillations at one 

or more flow angles. The streamline upwind methods of Hughes and 

Brooks (1979) produce better results compared to other two. These also 

suffer from spatial oscillations and numerical diffusion/ The best 

results are obtained by the monotone streamline upwind approximation 

of Rice and Schnipke (1985) and the current method. They do not 

exhibit spatial oscillations at any angle and the numerical diffusion 

is small in both cases compared to the other methods. This diffusion 

exists only around the step discontinuity. The error analysis for this 

test case is concisely summarised in Table 3,2. One other criterion 

for comparison would be the computational efficiency of each method. 

However information regarding computational requirements in terms of 

storage and run-time for the above methods are not available. Even if
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Figure 3.12 Comparison of results for pure advection skew to mesh

at 0 ss 67.5*, (a) previous results, (b) current method.
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Figure 3.13 Numerical diffusion in the domain by the current 
method at 0 = 67.5°
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such information existed, direct comparison could not be easily made 

as frequently a variety of different machines are in use,. For the 

current method the above analysis was carried out on a Digital 

VAX-8550 machine. The advection calculations took on average 0.15 

milliseconds per element (0.25 milliseconds per node) of the CPU time.

0
method maximum percentage 

spatial oscillation
maximum percentage 
numerical diffusion

SU1 23 54
SU2 6 30

22.5° U 0 42
G 19 32
MSU 0 41
Current 0 40

SU1 0 0
SU2 6 35

45° U 0 49
G 12 19
MSU 0 0
Current 0 0

SU1 33 30
SU2 5 52

67.5° U 0 46
G 0 52
MSU 0 40
Current 0 39

Table 3.2 Maximum errors for pure advection skew to mesh.

3.3.2 Smith and Hutton test case

The second validation test case considered here is concerned 

with the transport of the scalar quantity, <f>, in a more complex flow 

field than the first test case. This problem was first presented as a 

comparison exercise by Smith and Hutton (1982), to establish the 

validity of the then existing codes in treating the advection 

transport in a flow field with a strong streamline curvature. The flow 

field together with the boundary conditions for <f> are shown in Figure
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y. V

y-1

0

In le t O utle tx x=l

<j) i n le t  = i  + tanh ( i0 (2 x + l ) )  

u = 2y ( l - x 2' ) , v=*-2x ( l - y 2*)

Figure 3. 24 Smith and Hutton test case.

Figure 3.15 Computational grid for Smith and Hutton test case.
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3.14. The flow field is specified as

u = 2x (1-y2) and (3.21)

v = -2y (l-x2)

As shown in the figure, with the exception of the outlet part of the 

boundary, 0 is specified on the boundary as

<b = 1 + tanh (10(2x+l)) at y = 0, -1 < x i 0Inlet

and
(3.22)

<£=0 at
x = -1 , O ^ y s l  
y = 1 , - 1  ^ x i 1
x = 1 , O ^ y ^ l

At the outlet 0 is unspecified, which is equivalent to the natural 

boundary condition 90/Sy = 0.

This test case possesses two important features which are common 

to most practical problems involving advection and diffusion. The 

streamlines have a large degree of curvature, a general feature of all 

recirculating flows. The variation of <f> at the inlet is highly 

nonlinear, i.e. 0 varies sharply over a small distance, possibly due 

to the presence of a source or mixing of two streams at different 

temperatures. Consistent with the comparison exercise of Smith and 

Hutton (1982), the flow domain was divided into 11 rows and 21 columns 

of equally spaced nodes. This resulted in 231 nodes and 400 triangular 

elements as shown in Figure 3.15. For maximum effectiveness the 

elements were aligned with their diagonals along the direction of the 

streamlines. The current analysis was carried out for two values of 

the Peclet number, Pe, of 100 and infinity. The results of the current 

analysis are compared with the reference solution and past published 

results given in the Smith and Hutton (1982) paper.
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For Pe = 100, the variations of <f> along the outlet plane are 

shown in Figures 3.16(a) and (b). At this Peclet number both the 

advection and the diffusion mechanisms equally influence the variation 

of <f> in the domain. From Figure 3.16(a), the hybrid upwind

differencing technique, HUD, has a maximum of 10% numerical diffusion. 

The monotone streamline upwind approach of Rice and Schnipke (1985), 

MSU, results in maximum of 7% numerical diffusion. The current method 

produces a maximum of 8% numerical diffusion as depicted in Figure 

3.16(b). In the comparison study of Smith and Hutton (1982) the best 

reported result had 4% numerical diffusion. The relative high

numerical diffusion of the current method is attributed to the nature 

of the imposed velocity field being a quadratic function of the space 

coordinates (equation (3.21)). The overall diffusion in the domain 

(physical + numerical) is shown in Figure 3.17 for the current method. 

In the presence of the physical diffusion some gradual widening of the 

rainbow from the inlet to the outlet is to be expected.

For the infinite Pe, the variations of <p along the outlet plane 

are shown in Figures 3.18(a) and (b). At this Peclet number only the 

advection mechanism is at work, i.e. the inlet profile of <p (equation

(3.22)) should be carried round undisturbed to the outlet plane. From 

Figure 3.18(a), HUD has a very high numerical diffusion of 38% at x = 

0.4. In fact HUD fails to capture the pure advection situation by 

producing results similar to those for Pe = 100 (see Figure 3.16(a)). 

MSU, results in maximum of 25% numerical diffusion. The current method 

produces a maximum of 27% numerical diffusion as depicted in Figure 

3.18(b). In the comparison study of Smith and Hutton (1985) the best 

reported result ( Sykes (1981)) had 6% numerical diffusion. The degree

of numerical diffusion in the domain produced by the current method
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Figure 3.16 Outlet profile of <t> at Pe ■ 100 for Smith and 
Hutton test case, (a) previous results and (b) 
current work.
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■ ■  0.000 -  0.333
0.333 -  0.667 
0.667 -  1.000
1.000 -  1.333
1.333 -  1.667

■ ■ 1.667 -  2.000

Figure 3.17 Combination of physical and numerical 
diffusion in the domain at Pe = 100.

page 83



ph
i 

at 
the

 
ou

tle
t 

ph
i 

at
 

the
 

ou
tle

t

Streamline upwind technique Chapter 3

2.00 lirr «-

1.75

1.50

1.25
Reference solution
HUD
MSU1.00

0.75

0.50

0.25

0.2 0.60.4 0.8 1.0
distance, x

(a)

2.00^

1.75

1.50

1.25
• Reference solution 
- Current work1.00

0.75

0.50

0.25

0.8 1.00.60.2 0.4
distance, x

(b)

Figure 3.18 Outlet profile of <f> at Pe » w for Smith and 
Hutton test case, (a) previous results and

(b) current work.
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Figure 3.19 Numerical diffusion in the domain at Pe = ».
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can be seen in Figure 3.19. With no numerical diffusion the rainbow 

would retain its original width, at the inlet, throughout the domain.

From Figures 3.16 and 3.18 it is seen that none of the methods 

considered here exhibit spatial oscillations. The conventional upwind 

technique shows excessive numerical diffusion at the infinite Peclet 

number. Both the monotone streamline upwind approach of Rice and 

Schnipke (1985) and the current method capture the physical 

characteristics of the problem well at the Peclet numbers of 100 and 

infinity. The former producing marginally less numerical diffusion. 

The results for the current work were obtained using, as for the first 

test case, a Digital VAX-8550 machine. Both the advection and 

diffusion calculations took 0.075 milliseconds per element ( 0.13

milliseconds per node ) of CPU time.

3.3.3 Rotating disk
The last test case is the pure advection transport of the 

scalar quantity, <p, in a rotating flow field. The flow field together 

with the boundary conditions for <f> are shown in Figure 3.20. This 

problem has been previously analysed by Hughes and Brooks (1979). The 

components of the velocity vector are described as

u = -y , v = x (3.23)

<f> is set at zero on all four sides and assumes a cosine variation 

along the 0A line as depicted in Figure 3.20. The strong circular 

curvature of the streamlines as prescribed in equation (3.23) makes 

this test case a challenging problem for the current method. The exact 

solution to this problem is obtained by advecting the <f> profile along 

the 0A line all the way round the flow domain. In other words contours

page 86



Streamline upwind technique Chapter 3

0 =0

0

u=-y, v=x

A0
r-0 p-0.5

Figure 3.20 Rotating disk with imposed boundary conditions.

± t

m

Figure 3.21 Computational grid for the rotating disk.
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of <p should show circular symmetry about the origin, 0. Consistent 

with the analysis of Hughes and Brooks (1979), the flow domain is 

divided into 31 rows and 31 columns of equally spaced nodes. This 

resulted in 961 nodes and 1800 triangular elements of equal size as 

shown in Figure 3.21. The elements are oriented with their diagonals 

following the flow direction.

For comparison purposes, the <j> profile is examined along the OB 

line against the exact solution, namely <p profile along the 0A line 

(see Figure 3.20). Figure 3.22(a) shows the best past results against 

the exact solution. The streamline upwind method of Hughes and Brooks 

(1979), SU2, shows no numerical diffusion and reproduces the exact 

solution. The monotone streamline upwind method of Rice and Schnipke 

(1985), MSU, results in maximum of 11% numerical diffusion. MSU also 

shows some degradation in the results at radial distances of 0.033 and 

0.467 from the origin. As shown in Figure 3.22(b), the current method 

has a maximum of 9% numerical diffusion. It too exhibits some

degradation in the computed <p at the radial distance of 0.467 from the 

origin. The result of the current analysis is seen to be generally 

superior to that of Rice and Schnipke (1985) by following the exact 

solution more closely. The overall numerical diffusion in the flow

domain, produced in the current work, is shown in Figure 3.23. As seen

in the figure, the narrowing of the colour bands as they turn anti

clockwise is an indication of the degree of numerical diffusion 

present in the result. The exact solution would produce bands which 

retain their thickness within the flow domain. As with the previous 

two test cases, this analysis was carried out on a Digital VAX-8550 

machine. The advection calculations took 0.10 milliseconds per element 

(0.19 milliseconds per node) of CPU time.
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Figure 3.22 Profile of $ along the OB line for the rotating 
disk, (a) best previous results and (b) current 
work.
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Figure 3.23 Contours of <t> showing the numerical diffusion 
for the rotating disk by the current method.
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3.4 Remarks on the streamline approximation
In this chapter, a new conservative streamline upwind

approximation using linear three-noded triangular elements was

developed. The upwinding is based on the physical phenomenon of pure 

advection transport. The discontinuous nature of the advection 

transport is adequately captured by the present formulation. This is 

achieved by modelling the advection mechanism to be discontinuous not 

only amongst elements but also within each individual element. Most of 

the previous methods were based on continuous or semi-continuous 

(discontinuous amongst elements) approximations, which limited their 

applicability and/or accuracy to certain ranges of the flow Peclet 

number. The present approximation is equally applicable for all values 

of the Peclet number. It is also a simple procedure which can be 

readily incorporated into conventional Galerkin type finite element 

algorithms.

In section 3.2 it was shown that the present streamline 

formulation, like the diffusion formulation of Chapter 2, results in a 

global coefficient matrix, which is unconditionally diagonally

dominant. The overall system of the partial differential equations 

(equation (3.1)), consisting of both diffusion and advection 

mechanisms, may therefore be discretised to render a system of 

simultaneous linear algebraic equations which could be solved by any 

iterative scheme. This is an important outcome of the present 

formulation, since, as mentioned previously, iterative schemes 

generally require much less computer requirements in terms of run-time 

and storage than the direct solution methods.

Three stringent test cases were employed to verify the stability,
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accuracy and applicability of the current upwind formulation. These 

were pure advection skew to mesh, Smith and Hutton case and pure

advection on a rotating disk. The results were compared with exact 

solutions and past published works. The formulation showed 

unconditional stability in all cases for all Peclet numbers considered 

(100 ^ Pe ôo). The results were all free of spatial oscillations,

which had plagued the previous attempts to treat advection mechanism, 

except that of Rice and Schnipke (1985). The numerical diffusion 

arising from the current formulation was shown to be small and 

competitive with the best of the previously published work.

Finally, the use of simplex triangular elements allowed exact 

integrations to be performed. Exact integrations were employed for 

both advection and the diffusion terms. This resulted in the overall 

calculation procedure to become very efficient. Most of the previous 

workers, in the context of the FEM for fluid flow computations, had 

employed numerical integration techniques. These numerical techniques 

are inferior to their exact counterparts on at least two accounts. 

They may lack accuracy, e.g. use of one-point Gauss quadrature with

bilinear elements in the SU1 method of Hughes and Brooks (1979), or

they may be accurate at the expense of computational cost, e.g. 

four-point Gauss quadrature with bilinear elements in the SU2 and MSU 

methods. To appreciate the efficiency of the exact integration 

technique employed here, it may be said that the exact integration has 

the accuracy of the four-point and the efficiency of the one-point 

Gauss quadratures. Furthermore, the exact integration procedure 

together with an appropriate iterative solution scheme make the 

present code competitive with the finite difference (volume) schemes. 

As demonstrated in Chapter 5, such an iterative solution scheme is
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devised for the current research.
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Ch a p t e r  4

FINITE ELEMENT DISCRETISATION OF LAMINAR FLOW EQUATIONS

The finite element discretisation of the governing transport equations 

for laminar flow is described. To present the current discretisation 

strategy, the first section is dedicated to isothermal flows. A 

discussion on the problem of the velocity-pressure interaction is 

followed by the derivation of a novel equal order velocity-pressure 

solution procedure. In this procedure, velocity and pressure are 

segregated and are solved sequentially by a SIMPLER-like algorithm. 

This procedure forms the core of the discretisation/solution strategy 

devised for the current research. In the second section the 

discretisation of the energy equation is described. Imposition of the 

various types of boundary conditions is presented in the last section.

4.1 Velocity-pressure segregation
Conventional Finite Element practices require the simultaneous 

solution of the momentum and the continuity equations at each step of 

an iterative scheme in order to yield velocity and pressure values, 

see for example I jam (1977), Chung (1978), Taylor and Hughes (1981) 

and Olson (1976). The computer storage and execution time for such 

schemes prohibit their use for problems where, for various reasons, a 

large number of elements must be employed. Furthermore, the pressure 

is very often evaluated at fewer points than the velocity components ( 

mixed order interpolation ) so as to avoid pressure chequer boarding, 

see for example Gresho and Lee (1979), Hood and Taylor (1974), Sani et 

al (1981) and Lee et al (1979). This adds to the complexity of the
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scheme and is not entirely effective in eliminating the chequer 

boarding for simplex triangles or bi-linear quadrilaterals where 

pressure is assumed constant over the element ( Lee et al (1979)). In 

this research a major departure from the conventional finite element 

methodology is followed. Pressure and velocity are segregated. A 

Poisson type pressure equation is developed. The discretisation of the 

pressure equation is based on element shape functions that are also 

used to define the velocity components (equal order interpolation). 

The pressure together with the momentum equations are solved in a 

sequential manner similar to the SIMPLER algorithm (Patankar (1980). 

In this section the problem of the velocity-pressure interaction is 

first discussed. This is followed by the discretisation of the 

momentum equations. The derivation of the pressure equations is then 

presented. Lastly, the SIMPLER-like solution sequence is outlined and 

general remarks are given.

4.1.1 Velocity-pressure interactions
The interaction between the velocity and the pressure fields is 

best demonstrated by considering the steady state isothermal laminar 

flow in two-dimensional Cartesian coordinate system. From Chapter 2, 

the coupled set of differential equations governing such a flow, are

a
dx (pu) + ~  (pv) = 0 (4.1)

a 2 a ap L a f au \ a r 5u (4.2)
dx

pu + pv u = pgx- ax dx * dx ) + ay 1( " a y )
a a 2 dp a f dv \ a r Sv ^ (4.3)
ax puv + _  pv = pgy- dy + dx 1( » dx J + ay 1 ay)

The velocity components, u and v, are governed by the momentum 

equations (4.2) and (4.3) respectively. The pressure gradient terms, 

dp/dx and dp/dy, form part of the source terms for the momentum
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equations. For a given pressure field, the unknown velocity field may 

therefore be obtained by solving the momentum equations with the 

appropriate velocity boundary conditions. Yet, there is no direct 

equation that describes the variations in pressure. The pressure field 

is indirectly described by the continuity equation, in that if a 

correct pressure field was used in the momentum equations, the 

resulting velocity field would satisfy the continuity equation. This 

points to a simultaneous solution of the momentum and continuity 

equations as advocated by the majority of the Finite Element workers. 

However, such a simultaneous solution is undesirable as it demands

excessive computer resources.

One way of overcoming the above difficulty in determining the 

pressure field is to employ the stream-function/vorticity method (

Gosman et al (1969)), where pressure is eliminated from the governing 

equations. However this method has major disadvantages. The vorticity 

boundary conditions at a wall are difficult to specify and are often 

responsible for lack of convergence. The extraction of pressure from 

the vorticity field requires additional computational effort. Also the 

method is only applicable to two-dimensional situations, for which the 

stream-function description exists. The problems just mentioned

initiated the Finite Volume workers to derive a direct equation for 

pressure by suitable conversion of the continuity equation, see for 

example Patankar (1980). Solution of the momentum and pressure

equations would then become part of an iterative scheme. At each

iteration, the velocity and the pressure fields are updated

sequentially. An improved pressure field is used to obtain better

estimates for the velocity field. The velocity field is in turn used

to correct the pressure field. Iterations are carried out until
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resulting changes in the velocity and the pressure fields are small 

enough to meet some pre-specified convergence criteria. There are a 

number of these so called pressure correction methods currently in 

use. Amongst the most popular, are the SIMPLE and the SIMPLER 

algorithms of Patankar (1980). To avoid pressure and velocity chequer 

boarding, the majority of these methods use the staggered grid 

arrangement first employed by Harlow and Welch (1965). In this 

arrangement the control volumes for the velocity components and the 

pressure occupy different spaces surrounding a grid point. This 

results in an overhead on computer storage and run-time. Since the 

control volumes for X and Y momentum equations are not the same, the 

corresponding velocity components, u and v, must be stored at 

different locations. Furthermore, the discretisation of the X and Y 

momentum equations will be different, which adds to the complexity of

the procedure as well as increasing the required number of

computations.

In conventional FEM, the chequer boarding problems are to some 

extent avoided by the use of mixed order interpolation techniques. 

These techniques are the finite element counterparts to the staggered 

grid arrangements employed by the FVM. In mixed order interpolations 

the pressure field is specified at fewer points than the velocity

components. At the elemental level, this results for example in a

parabolic variation in the velocity components accompanied by a linear 

variation in pressure. As mentioned earlier in this chapter, the mixed 

order interpolation is not totally effective when used in conjunction 

with simplex triangular or bi-1inear elements. Furthermore, as with 

the staggered grid arrangement, the mixed order interpolation adds to 

the complexity of the discretisation procedure. With the same element
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shape function, the discretisation of the momentum equations becomes 

identical (except round the boundaries). However, the continuity 

(pressure) equation requires a different discretisation procedure, as 

a lower order element shape function must be used.

In order to eliminate the above problems, a number of researchers 

have in the past devised equal order finite element formulations, see 

for example Parakash and Patankar (1984), Schneider et al (1978a and 

1978b) and Rice and Schnipke (1985). The successful implementation of 

such formulations has been based on developing a separate Poisson-type 

equation for pressure. However formulations of this type generally 

suffer from poor convergence rates as the pressure equation offers no 

direct constraint on satisfying the continuity, e.g. Schneider et al 

(1978a). Moreover, the specification of the pressure at the boundaries 

plays a critical role in obtaining a converged solution set. One of 

the few equal order velocity-pressure finite element formulations that 

does not suffer from these difficulties is that devised by Rice and 

Schnipke (1985). This formulation is based on a Poisson-type pressure 

equation that does satisfy the continuity. Also, the pressure boundary 

conditions are imposed in the conventional manner for FEM. The method 

has been successfully employed for a variety of flow cases in both 

laminar and turbulent regimes, see Rice and Schnipke (1985), Schnipke 

and Rice (1985) and Jones et al (1989). In all of the reported cases, 

the results were shown to be free of spurious pressure modes.

The above method has however several disadvantages. The method 

was devised for bi-linear quadrilateral elements. As was shown in 

Chapter 2, these elements, depending on their aspect ratios, may 

result in non-diagonally dominant coefficient matrices. The diagonal
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dominance of the coefficient matrices is an essential condition which 

must never be violated if iterative solution schemes are to be 

employed. Also, the method uses numerical integration which is more 

costly in computational terms than exact integration schemes. The 

method is also non-conservative in the momentum and the energy 

equations due to its treatment of the advection terms. For flow cases 

where the fluid properties vary, this may result in the global 

violation of conservation of momentum and energy. For the current 

research, a conservative equal order velocity-pressure equation for 

simplex triangular elements is developed. This method is based on the 

original method of Rice and Schnipke (1985).

4.1.2 Momentum equations
As illustrated in Figure 4.1 for a typical momentum element, 

the variations in u and v within the element, including its sides, are 

described by

is the element shape function vector. As u and v are both stored at 

the same nodal positions, the discretisation of the advection and the 

diffusion terms for X and Y momentum equations will be identical. The 

advection terms in equations (4.2) and (4.3) can be written as

where <f> stands for either u or v. The discretisation of the above

(4.4)

where

N2 (4.5)

fjCpu*) + § - W ) (4.6)
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u z , v 2

V

X, U

Figure 4.1 Three-noded momentum element.

equation follows the streamline upwind technique developed in the last 

chapter. Equation (4.6) is expressed in terms of the streamline 

coordinate system (see Figure 3.1),

W >  + (PV0) = ^ ( p u , * )  (4.7)

Equation (4.7) is then weighted and integrated over each element and 

summed for all the elements in the domain, hence

ne
I N, {§i(pu.*>} dA' (4-8)

1 A*

with the differential term approximated conservatively by (see Figure 

3.5),

_ p u <f> - p' u' <f>'
9 ( 4. *. 1 *11 *ipuj>) =* constant = -------------- (4.9)

As
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The diffusion terms are discretised by the conventional Galerkin 

weighted residual method described in Chapter 2. The general form of 

the diffusion terms is

f e U & J + l y U g )  (4-10)

where as for the advection terms, 0 may stand for u or v. Equation 

(4.10) is then weighted and integrated over each element and summed 

for all the elements in the domain, hence

e

C  k  {k (N/j 35-) + h (Vj f k)} KdA' (4-u)
.1 A e

As the elements are first order continuous, the order of the element 

integral in the above equation is reduced by employing the Gauss’s 

theorem, which gives

f fdN M 3N A 3N M 3N ) ,- -{-r— i N li k + -5— i N U -x-ki 0 dAJ e\dx dx dy j*j 3y J rk

+ { e(N, V j  1 * 0  K

(4.12)

The surface integral term is only evaluated for the boundary elements 

as those arising from the internal elements cancel out.

The first order pressure gradient terms are treated in a 

discontinuous manner. As with the advection terms, these terms are 

taken as discontinuous within each element. In the conventional 

Galerkin method, the element pressure gradient integrals would be 

distributed equally amongst the element’s nodes. Here, each node 

receives a weighted share of the integral according to
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N |£ dAe i ax
dp
dx

f |9N dN dN 1 1
1 laxl > dx2 > dx3| J (4.13)

and

N
A*

where

dp 
i ay

D =
X

D = y

^ i

i=l

3c
i=l

dA

aN
ax5

aN
dy

JL
d ay y

/ dN dN dN | )
1 dy1 dy2 > 5y3l J (4.14)

(4.15)

(4.16)

and the pressure field is assumed to be known . This poses no extra 

difficulty as a converging iterative scheme would continuously provide 

better estimates for pressure, until the actual pressure field, with 

which the continuity equation is satisfied, is established. A similar 

discontinuous treatment of the pressure gradient terms is cited in 

Baliga and Patankar (1983).

The discretisation of the body force terms is performed by the 

lumped mass approach outlined in Chapter 2. With the components of the 

gravity vector, g and g , taken as constants, the body force
x y

integrals become

n

I (4.17)e1 * A

1* To be correct on an arbitrary finite element mesh, this pressure
weighting should be normalised on the sum of the areas of elements
surrounding a node, as with the advection upwlnding. However on
regular meshes and those graded in only one direction, as in most of
the tests here, the normalisation scaling is unity and so does not
alter the results presented here.
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en r
) N N p g dAe f ...i__, 1 t J y r . (4.18)

1 J Ae 

with
3

N = \ NT L  , J
j=i

(4.18)

The discretised momentum equations can be written as

a > i  = - a“juj + f“ (4'20)
J*!

au v, ■ - H au vj + f; <4-2i)
j*i

where au and. av are the members of the fully assembled coefficient

matrices for X and Y momentum equations, a^ and a^ denote the

diagonal members with a”j and a^ their corresponding row neighbours.

The coefficient matrices only contain contributions from the advection

and the diffusion terms in equations (4.8) and (4.12). Hence they are

identical except at points where boundary conditions for u or v are

specified, and are therefore formed once for both equations, û  and v
►

denote the velocity components at the global node i. u^ and v are 

the velocity components at the nodes surrounding node i. f“ and f^ are 

the global right hand side force vectors, which contain contributions 

from the pressure gradient terms, the body force terms and the surface 

boundary terms.

4.1.3 Pressure equation

The pressure equation is derived from the continuity equation. 

Applying the Galerkin weighted residual method to equation (4.1) and 

reducing the order of the integral gives
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N ( k pu * pv) dA = N p (un + vn ) dsx y (4.22)

( 5N A dH x ,A
( pu a^ + pv a^ ) dA

= 0

On the elemental level, the above equation can be written as

( N p N u — k + N p N v ) dA* =t r i j j 3x ri j j ay »
aN (4.23)

N N p  ( N u N n  + N v N n l  ds* 1 r  I V J J k xk j J k yk'

Figure 4.2 Three-noded cont inuity element.

Equation (4.23) is expressed in terms of the nodal velocity components 

Uj and Vj. To obtain a direct equation for pressure both û  and v̂  are
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replaced by nodal values of pressure. This is achieved by first 

describing pressure variations within an element with the same shape 

function used for the velocity components. As is shown in Figure 4.2, 

the continuity element like the momentum element of Figure 4.1 is a 

three-noded triangular element for which

p = N p + N p + N p  (4.24)
y V I  2 2 3 3

with the shape function vector, given by equation (4.5) and the 

pressure field stored at the same nodal positions as the velocity 

components. |

The next step is to write equations (4.20) and (4.21) in a 

revised form as

au u = - \ " au u + eu - f N ~  dA (4.25)i* i L , 1J J 1 J ,  a x
I

<iv, = -  YZâ vj + e* ■ I , N ^ dA t4' 26)

Iwith e“ and e^ representing the body force and the surface boundary 

terms. The pressure gradient terms are now separated from the rest of 

the right hand side force vectors. Assuming that the pressure gradient

terms are known, equations (4.25) and (4.26) can be written as

u = u - Ku (4.27)i i i 9x

v = v  - Kv (4.28) 4i i i dy J

",  = 4 { - Z I a‘ j uj + e“ }  ( 4 - 2 9 )

i 1 J*i * 1
a

» . - - M  -  E  1
a ii J*i |
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K - M l11
3N
dx1 }

1 ( \ ' Ae 3N 1 1
~ av \ I , D ay1] |

(4.31)

(4.32)
i 1

with and Dy given by equations (4.15) and (4.16). Note the

approximate relationships between the nodal velocities and the 

pressure gradient terms as given by equations (4.27) and (4.28). These 

relationships need not be exact for the iterative scheme to yield a 

converged solution set. The approximation used here is similar to the 

secant approximation in a Newton’s method.

To derive the pressure equation, equations (4.27) and (4.28) are 

substituted into equation (4.23), with integrations performed over all

elements and summed, hence
en

\ f f 9N /•.. .. 3N \ 3N .. „v 3N ,.e
)  \ \ ml( V j  N„Kk as1) + a?1 (njpj ^ 0 }  p, dA

i L JAe

= | e{ I 1 (Njpj Nkak)+ (njPj nA)} dA‘

- I
N N p N u N n  dsi j j k k 1 xl

N N p N v N n dsi r j  k k l yl

(4.33)

The above equation is similar to equation (2.28) which was derived 

from the discretisation of the Poisson’s equation. The terms on the 

left hand side represent a diffusion mechanism for pressure, which 

corresponds closely to the physically elliptic behaviour of pressure.
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The coefficient matrix for equation (4.33), arising from the diffusion 

terms, is formed by the same procedure used for the diffusion terms in 

equation (4.12), with and NkKk replacing the nodal

values of viscosity in X and Y directions respectively. This 

coefficient matrix is a symmetric positive definite matrix, which 

renders itself to a number of efficient iterative solvers without 

having to develop special additional algorithms.

In the classical Galerkin approach the diagonal members of the 

momentum coefficient matrices, a^ and a^ in equations (4.20) and 

(4.21), will be small for convection dominated flows. This will 

produce large values of K“ and from equations (4.31) and (4.32). 

Such large values in equation (4.33) will have a deteriorating 

effect on the pressure solution. This problem is avoided by the use of 

the streamline upwind technique for the advection terms. Here, the 

diagonal members of the momentum equations are never allowed to 

acquire small values, which in turn ensures reasonable values of 

pressure diffusion coefficients at all times.

The first term on the right hand side of equation (4.33) 

represents the source term for pressure. The contributions to the 

source term arise from the hat velocity components given by equations 

(4.29) and (4.30). The surface integral terms in equation (4.33) 

provide a convenient method of specifying boundary conditions for 

pressure. These terms are identically zero except along the inlet and 

the outlet boundaries. As equation (4.33) was derived from the 

continuity equation, it offers a direct constraint on satisfying the 

continuity. The discretised pressure equation is written concisely as
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an pi = - Y Z  a^ j + f> (4-34)

where a^ denotes the diagonal members of the pressure diffusion 

coefficient matrix with their corresponding row neighbours a^. p̂  is 

the pressure at the global node i. p̂  are pressure values at the nodes 

surrounding node i. f^ is the pressure right hand side force vector 

containing the source and the surface boundary integral terms.

4.1.4 SIMPLER-like algorithm
The discretised momentum and pressure equations (4.21), (4.22)

and (4.34) are solved sequentially in an iterative manner as commonly 

employed in FVM. The sequence of operations is as follows:

1. With guessed values of u, v and p, the discretised momentum 

equations (4.21) and (4.22) are set up and solved to obtain better 

estimates to u and v. The initial guesses may be zero if no other 

values are available. The coefficient matrix is set up only once 

for both the momentum equations. The equation systems for u and v 

are solved separately by an iterative solver.

2. The hat velocity components from equations (4.29) and (4.30) are 

evaluated.

3. The discretised pressure equation (4.34) is set up and solved. The 

pressure diffusion matrix is evaluated using the same procedure 

that was used in computing the momentum diffusion matrix. Now only 

the diffusion coefficients are different. Using the newly computed 

velocity field and hat velocity components the right hand side 

force vector is formed. The equation system is then solved by an 

iterative solver.

4. The velocity field is updated using the following relationships
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u =

and

Av = vi i

a *—

n
au
dx

dp
dx (4.35)

i i

n

i - rz _
3N
dy

djp
dy (4.36)

i i

5. Convergence is then checked. Steps 1 to 4 are repeated until the 

solution has converged.

The above sequence of operations is akin to the SIMPLER algorithm 

of Patankar (1980). To form the force vectors in the momentum 

equations, a known pressure field is assumed. A separate Poisson type 

equation is used to obtain the pressure field. The pressure equation 

was derived from the continuity equation and is required to satisfy 

continuity. The velocity and pressure fields are obtained

sequentially. If a correct pressure field were used as the initial 

guess, the above sequence would yield the correct velocity field at 

once at the first iteration.

4.2 Energy equation
The energy equation for two-dimensional steady state laminar flow 

in its conservative form is

3_
dx

d_
dypucT ♦ pvcT = 2- ( k ) ay (4.37)

The three-noded triangular element is again used to define the 

temperature within each element so that

T = N T + N T + N T1 1 2 2 3 3 (4.38)

As before, the left hand side terms of equation (4.37) are converted
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to

pu cT (4.39)OS s

On the elemental level, the above term is approximated by the 

streamline upwind technique developed in the last chapter, so that 

with reference to Figure 3.5, equation (4.39) becomes 

a p u c T - p'u'c'T'
a— pu cT constant - -A-.?.! 1 *----- ?--- (4.40)OS s As

with c' and T' being the upstream values of the specific heat and 

temperature respectively. Equation (4.40) is then weighted, integrated 

over each element and summed for all the elements in the domain, hence
en

r  T S  K uS|CiTi - p'̂c'V)Af (4.41)

The diffusion terms on the right hand side are discretised by the 

Galerkin weighted residual method as was shown for the viscous terms 

in the momentum equations, hence

Y - ' f - f IN k + N k20* T d A 'L   t Sx j j 8x 3y j j ®y J “eA

+ N N k T dsei j j dn k

(4.42)

The surface integral term represents the outward heat flux. It is only 

evaluated, where non-zero and for elements with sides lying on the 

domain boundaries.

Treatment of the generation term follows the approach described 

in Chapter 2. When the term is constant or linearly varying with T, 

i.e.
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Q(T) = Q + Q Tc p

the Galerkin method is adopted explicitly, hence

nI N Q dA +i c N Q N T  dA i p J J

Chapter 4 

(4.43)

(4.44)

I

I

When the generation term is a non-linear function of temperature, the 

implicit formulation is employed, hence from equation (2.37)

n

I N Q dA dA (4.45)

f

+ I N1 nttj ( ar )* dA'

with Nt given by equation (4.19) and denoting quantities evaluated 

at the previous iteration.

1
%
I’i
i

The system of equations is expressed in terms of the unknown 
temperature field, which is concisely written as

iT T = - S aT T + fTi L , * 1
(4.46)

'I
1
%
'M
4
4

where a are the members of the temperature coefficient matrix 

containing the advection and the diffusion contributions. The diagonal
Tmembers, a^, also contain contributions from the implicit part of 

equation (4.45). The coefficient matrix is unconditionally diagonally 

dominant, hence allowing for the iterative solution of equation 

(4.46). The right hand side vector, f* , contains contributions from 

the surface boundary integrals in equation (4.42) and the explicit 

parts of the generation integral terms in equations (4.44) and (4.45).
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4.3 Imposition of boundary conditions
To complete the definition of velocity, pressure and temperature 

fields, boundary conditions for these fields are specified. The 

elliptic nature of the general transport equation requires fixed 

conditions to be specified along all of the internal and the external 

boundaries of the domain of interest. Boundary conditions are of 

either essential (Dirichlet) or natural (Neumann) type. In the former 

the actual values of the variable are specified. The latter involves 

the specification of the gradient value of the variable along the 

boundaries. For the current research both the essential and the 

natural boundary conditions were employed. Here it is assumed that the 

complete boundary of a domain consists of five parts: inlet, outlet, 

wall, convective and plane of symmetry boundaries. The detailed 

treatment of each of these boundaries is now presented.

4.3.1 Inlet boundaries
The inlet boundary conditions on the momentum and the 

continuity equations are necessarily interlinked. Such conditions are 

prescribed by either specifying the inlet mass flow or the inlet 

pressure. The mass flow is prescribed by fixing the velocity 

components, u and v, and providing the side lengths of boundary 

elements. The momentum equations (4.20) and (4.21) therefore reduce to

u = u , v = v (4.47)1 Inlet I inlet

where i refers to those nodes lying on the boundary. The hat velocity 

components given by equations (4.29) and (4.30) are adjusted so that

u = u , v = v (4.48)1 inlet 1 inlet
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The pressure diffusion terms given by equations (4.31) and (4.32) are 

also adjusted to account for the prescribed inlet velocities, hence

Ku = Kv = 0 (4.49)1 i

With the above velocities, the inlet boundary condition for pressure 

are obtained implicitly by evaluating the surface integrals in 

equation (4.33). From equations (4.48) and (4.49) it can be seen that 

the hat velocity components are decoupled from the pressure 

distribution along the inlet boundaries when an inlet mass flow is 

prescribed.

The prescription of the pressure at the inlet reduces the 

pressure equation (4.34) to

p = p (4.50)i inlet

where as before i refers to the nodes lying on the inlet boundary. The 

specified inlet pressure is accompanied by zero velocity gradients, 

i.e. the surface boundary integral in equation (4.12). This type of 

boundary condition would be relevant to Poiseuille type flow 

situations. For a given inlet mass flow or pressure, the energy 

equation (4.46) reduces to

T = T (4.51)i inlet

4.3.2 Outlet boundaries
Natural boundary conditions are applied to the momentum and the 

energy equations along the outlet boundaries. This results in the 

surface integral terms in equations (4.12), and (4.42) to be zero. In 

cases where the flow is forced to leave at a specified flow angle, the 

natural conditions are applied, for example, to the Y-momentum
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equation with the essential conditions imposed on the X-momentum 

equa t i on. Hence,

u = u = 0 v , Ku = 0 (4.52)i i i i

where 0 is the specified outlet flow angle.

The pressure boundary conditions along the outlet can be 

applied in two ways. Here either an outlet pressure or an outlet mass 

flow is prescribed. The former reduces the pressure equation (4.34) to

p = p (4.53)M  outlet

where i refers to those nodes lying along the outlet. With a 

prescribed outlet mass flow, the surface integral terms in equation 

(4.33) are evaluated. The hat velocity components and pressure 

diffusion coefficients are also adjusted so that

u = u , v = v (4.54)i outlet 1 outlet

and

Ku = K V = 0 (4.55)i 1

4.3.3 Wall boundaries
Along the stationary walls, the two velocity components are set 

to zero. The hat velocity components together with the pressure 

diffusion coefficients are adjusted accordingly. Hence,

^ * 6 = 0  , vi = 0i = 0 (4.56)

and

K“ = = 0 (4.57)

For moving wall boundaries, the velocity components are set such that
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u = u = u , v = v = v (4.58)1 1 slip i i slip

with the pressure coefficient given by equation (4.57).

The pressure boundary conditions along the walls become trivial. 

With both the slip and the no-slip boundaries, the surface integral 

term of equation (4.34) are zero. The pressure is therefore only 

constrained by equations (4.56) or (4.58). The wall boundary 

conditions for the energy equation can either be of the essential or 

the natural types. These are imposed by prescribing the temperature or 

its conductive flux along the walls. There are also convective fluxes 

which are dealt with in the next section. For a known wall temperature 

the energy equation reduces to one similar to

T = T (4.59)1 wal 1

For a given conductive heat flux, usually zero for adiabatic walls, 

the surface integral term in equation (4.42) is reduced to

N q ds* (4.60)1 n walles

4.3.4 Convective boundaries
These boundaries are specific to the energy equation and arise 

from the solid/fluid interfaces. In such cases, the surface integral 

term in equation (4.42) can be written as

N h ( T - T ) ds* (4.61)1 f wallJ ®s

where h and T are the known convection coefficient and the fluidf

temperature respectively, and T is the unknown temperature alongwa 1 1
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the interface. Equation (4.61) is split into two parts, with the part 

containing the unknown temperature, T u * taken over to the left hand 

side of equation (4.46), hence

4.3.5 Planes of symmetry

Along a plane of symmetry the velocity component normal to the 

plane, say v, is specified as zero, hence

v = v = K v = 0  (4.63)i i l

The surface integral for the tangential momentum equation, i.e. 

X-*momentum, is then set to zero. The surface integral for the pressure 

equation term will also be zero. The natural boundary condition of 

zero temperature gradient is imposed along the planes of symmetry 

giving zero surface integrals in the energy equation.
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Ch a p t e r  5

ITERATIVE SOLUTION PROCEDURE AND LAMINAR FLOW EXAMPLES

The overall computational sequence for the laminar flow calculations 

is first presented. A novel fast TDMA solver, developed for this work, 
is then described in detail. The relaxation strategy to avoid solution 

divergence is presented in section 5.3. In section 5.4 the convergence 

criteria employed in determining the final solution set is given. 

Section 5.5 presents the results of a number of laminar flow cases, 

including the case of the laminar jet impingement with heat transfer.

5.1 Program flowchart
Figure 5.1 shows the overall computational sequence of the finite 

element program used for the laminar flow calculations. The program 

starts by reading in a prepared input data file. This file contains 

information about mesh discretisation, variables to be solved, 

boundary conditions and control data that govern the course of the 

overall computation. Some of the more important parameters in the 

control data set are: number of global iteration loops here referred 

to as cycles, iterative matrix solution parameters, cycle relaxations, 

convergence criteria, result print-out rate and evaluation of derived 

quantities.

An isoparametric automatic mesh generation (Segerlind (1976)), is 

used to subdivide the domain of interest into simplex elements. Since 

the elements are of triangular shape, no limitations are imposed on
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Cycle

Start

Read input data

T
Generate mesh

Fix boundary conditions

I
Set initial guesses

Set up and solve momentum equations

I
Calculate hat-velocity components

I
Set up and solve pressure equationI

Update velocity components

I
Set up and solve energy equationI

Update fluid properties

I
Set up and solve additional transport equations

I
No Check convergence

I Yes

Evaluate derived quantities

"V
Stop

Figure 5.1 Program flowchart for laminar flow calculations.
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the shape of the domain to be considered. Therefore the discretisation 

of complex flow domains can be performed accurately without the need 

for redundant storage as employed in the FVM, e.g. Patankar (1980). As 

described later in the next section, the novel matrix solver works 

independently of the global node and element numbering. This offers an 

additional flexibility and allows the mesh generation sequence to be 

completed efficiently with minimal effort at the input data 

preparation stage.

Boundary conditions are read from the input data file and are 

stored at the beginning of the program for all variables. Both 

essential and natural boundary conditions may be specified. This stage 

is performed only once outside the main iteration loop. This is in 

contrast to the common practice where fixing of the boundary 

conditions appears inside the main loop after the equation for each 

variable is set up.

The initial guesses or the start-up values are also set prior to 

the main iteration loop. These can be the available analytical or 

experimental data. For example a developing duct flow can benefit from 

the analytical solution to the fully developed case. Alternatively, 

the initial guesses can be a set of results obtained when a 

computational sequence is terminated before the imposed convergence 

criteria are fully satisfied. Initial guesses may also be set 

arbitrarily based on some past knowledge about similar flow 

situations. The guessed values only help accelerate the convergence to 

the final solution. The fully converged solution set is independent of 

the initial guessed values. The iterative solution sequence can start 

with all variables initially set to zero.
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The course of the main iterative computational sequence, the 

cycle, is governed by the control data supplied at the beginning of 

the program. Figure 5.1 illustrates a general route thorough the 

various parts of this cycle. This route may be altered dramatically 

depending on the flow situation under consideration. The cycle 

commences by setting up the momentum equations. This consists of 

evaluating the element coefficient matrices and their assembly into 

the global coefficient matrix (equations (4.20) and (4.21)). As 

mentioned in Chapter 4, a“ and a^ are identical except at points 

where boundary conditions are specified. Hence, the global coefficient 

matrix is set up only once for both the X and the Y momentum 

equations. The elements force vectors, f“ and f̂ , containing the 

pressure gradient terms, are also evaluated and assembled into the 

global right hand side vectors. The solution to the simultaneous 

linear algebraic equations is obtained by a variant of the TDMA which 

is described in detail in the next section.

The newly computed velocity field is used to evaluate the hat- 

velocity components (equations (4.29) and (4.30)). The pressure 

equation (4.34) is set up by first evaluating the pressure diffusion 

coefficients (equations (4.31) and (4.32)). The right hand side force 

vector, f^, is evaluated using the velocity field together with the 

hat-velocity components. These are used to form the boundary integrals 

and the source terms respectively. The pressure equation, once fully 

assembled, is also solved using the same iterative solution procedure 

as for the momentum equations. The new pressure field is used to 

update the velocity field from equations (4.35) and (4.36). The 

updated velocity field is used to set up the advective part of the
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energy equation (4.37). The discretised energy equation (4.46) is 

fully formed when the diffusion and the source term contributions are 

also evaluated. This equation is then solved by the same solution 

procedure used for the other variables. With all the primitive 

variables, u, v, p and T computed, the fluid properties e.g. density 

and viscosity are then updated using auxiliary equations relating them 

to the primitive variables.

Other quantities which are also governed by the general form of 

the transport equation (3.1) may also be obtained at the end stages of 

each cycle. These additional quantities will have associated with them 

the appropriate diffusion coefficients. Also the source term for each 

variable must be individually specified. The iterative solution 

sequence just described employs only four basic routines to set up the 

transport equations for all the variables including the pressure. 

These are the advection, diffusion, source and boundary integral 

routines. This methodology is commonly used in FVM, e.g. Patankar 

(1980). It is the segregation of the continuity and the momentum 

equations that has made the present finite element program to be a 

strong contender with the FVM codes as is seen later in section 5.5. 

It can also be seen that the extension of the program to include 

turbulent flow situations follows naturally.

At the end of each cycle, the convergence of the solution set is 

examined against pre-specified convergence criteria. Cycles are 

performed until convergence is obtained. The derived quantities such 

as streamline and heat-flux are then evaluated. A typical cycle as 

described above is the general route employed for fully elliptic flow 

cases. This route can be shortened for cases where the flow is
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considered to be parabolic, which would result in appreciable savings 

in both computer storage and run-time. Under the parabolic flow 

condition only one slab or layer of the flow domain in the predominant 

flow direction is considered at a time. The pressure gradient term is 

assumed to be constant in that direction. The pressure gradient in the 

cross flow direction vanishes and the cross flow velocity is evaluated 

from the continuity equation. The energy equation and the other 

transport equations are also solved one slab at a time. Therefore with 

reference to Figure 5.1, for each slab, cycles are repeated until the 

convergence criteria are fully met before moving on to the next slab. 

Also in each cycle there would be no need to evaluate the hat-velocity 

components or to solve the pressure equation.

5.2 Regional Alternating-Direction Implicit Solver (RADIS)
It was shown in Chapters 2, 3 and 4 that the simultaneous sets of 

linear algebraic equations arising from the current Finite Element 

formulation are always diagonally dominant. The diagonal dominance is 

ensured regardless of element sizes or orientations. The equation sets

can therefore be solved iteratively rather than directly provided that

some sort of a nodal structure exists. This nodal structure occurs 

naturally in the FVM. As shown in Figure 5.2, in a typical FVM grid 

the centre node P(i,j) is surrounded by its neighbours S, E, N and W 

whose locational subscripts are obtained by either incrementing or 

decrementing i and/or j by one. This simple structure allows a variety 

of iterative solution procedures to be employed. A few examples of 

such procedures are Gauss-Seidel, line-by-line Tri-Diagonal Matrix 

Algorithm (TDMA) (Patankar (1980)), Alternating- Direction Implicit 

(ADI) of Peaceman and Rachford (1955) and Strongly Implicit Procedure 

(SIP) of Stone (1968).
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j-1

. N (i,j+l)
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i-1 i+1

Figure 5.2 Typical orthogonal grid used in FVM.

In general the FEM must work with unstructured grids. The freedom 

in generating and manipulating such grids is one of the major 

attractions of the FEM. This is especially true in the field of stress 

analysis where very often complicated shapes in two- and 

three-dimensions need to be considered. However, the complete 

randomness of the Finite Element grid prohibits the use of iterative 

solvers. As discussed in the first chapter, the conventional FEM 

resorts to direct solution techniques. These techniques place heavy 

demands on computer resources.

One of the primary objectives of this work was to develop a 

Finite Element algorithm that would be competitive with those 

employing the FVM. To this end a novel line-by-line TDMA, called 

RADIS, has been developed. The significance of the name will become 

clear later in this section. This iterative solution algorithm is a 

variant of the ADI method of Peaceman and Rachford (1955). RADIS is
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specifically designed for the "apparently" unstructured grids 

generated by the FEM. Here, it is shown how a simple grid manipulation 

during the mesh generation routine has lead to the development of 

RADIS. As the mesh generation routine forms an integral part of RADIS, 

a brief description of this routine is given below. However the mesh 

generation routine in itself carries no claim to novelty.

Figure 5.3(a) shows a single triangular region which is to be 

subdivided into three-noded triangular elements. The isoparametric 

subdivision begins by describing the region as an eight-noded 

bi-quadratic quadrilateral as shown in Figures 5.3(b) and (c). The 

quadrilateral is divided into the required number of rows and columns 

in the £-7} space as shown in Figure 5.3(d). The row and the column 

strips are arbitrarily graded. The intersection of the row and the 

column lines results in bilinear quadrilateral elements of varying 

sizes. Each of these elements is further divided into two triangular 

elements as shown in Figure 5.3(e). This mesh is then transformed back 

to the x-y space as shown in Figure 5.3(f), completing the mesh 

generation routine for the single triangular region.

A complex domain may be subdivided into triangular elements by 

first dividing the domain into eight-noded quadrilateral regions and 

then performing the above operation on each of these regions. Figures 

5.4(a)-(d) show the mesh generation sequence used for a heavy duty 

air-cooled first-stage gas turbine blade. This shape was chosen 

deliberately to demonstrate the RADIS’s applicability to complex 

domains as well as to more regular domains. The blade, shown in Figure 

5.4(a), is first divided into isoparametric regions as shown in Figure
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a

(a)

(c)

Figure 5.3 Various stages in the mesh generation routine,

(a) triangular region, (b) and (c) region transformation 
into a quadrilateral, (d) quadrilateral division into 
rows and columns, (e) further division into triangles 
and (f) transformation back to the x-y space.
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(a)

Figure 5.4 Mesh generation sequence for a complex domain,

(a) heavy duty air-cooled first-stage turbine blade,

(b) domain division into quadrilateral regions,

(c) regions division into three-noded triangles, and

(d) the complete finite element mesh.
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5.4(b). Each region is then subdivided into triangular elements as 

illustrated in Figure 5.4(c). The regions are then connected together 

along their external perimeters, resulting in the complete mesh shown 

in Figure 5.4(d).

The basic methodology behind RADIS is surprisingly simple. That 

is to perform the ADI procedure for each of the quadrilateral regions, 

shown in Figure 5.4(c), one at a time. An ADI sweep is completed once 

all such regions in the domain have been visited. ADI sweeps are 

repeated until some pre-specified convergence criterion is met. This 

criterion need not be strict since, at the intermediate cycles (see 

Figure (5.1)), only a tentative set of coefficients are available. 

This procedure is named the Regional Alternating-Direction Implicit 

Solver or RADIS following the above sequence of operations. The ADI 

procedure itself consists of a number of line-by-line TDMA operations 

in alternating directions. In a single line-by-line TDMA operation all 

the nodes falling on a given line are considered collectively. In the 

FVM these lines are the orthogonal lines used to generate the mesh as 

is depicted in Figure 5.2. In FEM such lines extending across the

domain do not generally exist. RADIS, however, determines its

solution direction from the row and the column lines of the 

quadrilateral regions by considering only one such region at a time.

Figure 5.5 illustrates the selected solution direction and the

active line on which a TDMA operation is to be performed for a given

region. The figure shows the selected solution direction to advance 

one column at a time starting with the first column, hence a forward 

column-sweep. Three other solution directions are also possible: the 

backward column-sweep and the forward and the backward row-sweeps as
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active nodes 
neighbour nodes 
boundary nodes forward row-sweep

first neighbour active neighbour lastcolunn coluan coluim coluen c o l u m

forward backwardcolunn-sweep (selected) colum-sweep

Figure 5.5 The ADI procedure for a single region with 
the four possible sweep directions.

shown in the figure. For an active point P on the active column there 

may be a maximum of eight neighbours. The South and the North 

neighbours, S and N, are themselves active and are handled Implicitly 

in the line-by-line TDMA. The other six neighbours, SE, E, NE, NW, W 

and SW, are treated explicitly. The two end boundary nodes on the 

active column are also treated implicitly, unless they fall on the 

external boundaries of the domain in which case the prescribed 

boundary conditions are imposed.

RADIS offers several advantages over the direct solution methods.
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Only the non-zero elements of the global coefficient matrix need be 

stored. The storage requirement is hence increased linearly with the 

total number of nodes in the domain and is unaffected by the element 

or the node numbering convention used. RADIS is therefore completely 

band-free. The two additional storage requirements of RADIS are a 

global node-neighbours matrix and a regional-node matrix. The former 

determines the neighbours of each node within the domain and the 

latter specifies the nodes that lie on the rows and columns of each 

region. Perhaps RADIS's most important feature is its inherent ability 

to treat each region of the domain quite differently to any other 

region in the same domain. For example considering a partially 

elliptic flow case, RADIS can recognize those parts of the domain 

where the flow is elliptic hence requiring more attention compared to 

the other parts for which a predominant flow direction exists. RADIS 

will then perform several row- and column-sweeps in the elliptic 

regions and will perform only a few row- or column-sweeps in the 

parabolic regions. In this manner considerable savings in computer 

time are achieved. The extension of RADIS to three-dimensions follows 

naturally from the above descriptions and no other novelty need be 

introduced. With minor modifications, RADIS can be easily adapted to 

cater for other element types, e.g. six-noded triangles and bilinear 

or biquadratic quadrilaterals. Although it must be noted that for 

convergence purposes, the resulting global coefficient matrix should 

always be (or be nearly) diagonally dominant. Finally, RADIS may also 

be used in conjunction with the FVM. This is possible if the mesh 

generation routine described earlier is used to generate orthogonal 

mesh lines, be it in the x-y or the body-fitted (i.e. curvilinear) 

coordinate systems. Then all the above mentioned advantages would also 

apply to the FVM.
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5.3 Relaxation
As described in section 5.1, the complete set of results is 

obtained by an iterative solution procedure consisting of many cycles 

(see Figure 5.1). The set of partial differential equations are 

generally coupled and are non-linear (see equations (4.2), (4.3) and

(4.37)). Non-linearity arises from the fluid properties being 

themselves functions of the primitive variables. The source term in 

equation (4.37) can also be a dependent function of temperature 

resulting in additional non-linearity. Within each cycle, these 

equations are linearised and are solved sequentially as has been shown 

in Chapters 2 and 4. Therefore under-relaxation is employed to 

minimise the risk of divergence. This results in the slowing down of 

the rate of change in the computed values at the intermediate cycles. 

Here, an implicit under-relaxation is employed.

The general form of the linear algebraic equation set

ĵ i

is slightly modified to cater for under-relaxation. Equation (5.1) can 

be written as

(5.1)

(5.2)

*The value of ^  from the previous cycle, 0^ is added to and 

subtracted from the right hand side of equation (5.2), hence
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The relaxation factor, is introduced to the above equation, hence

* <b6 =  <f> + or (5.4)

Equation (5.4) is re-written in the following form

!ii * = - r a* *  ♦ j t* ♦ ( 1 - a* ) -ii /  \ (5.5)
a* 1 I  1 1 J

Comparing equation (5.1) and (5.5), the diagonal member of the 

coefficient matrix, a^ , and the right hand side force vector, f^, arei i & i
altered in equation (5.1) to account for under-relaxation. Therefore, 

a ^  is replaced by

0a
4 i  (5.6)
a

and f* is replaced by 

a^
ff + ( 1 - "  /  (5.7)i <p Ia

The relaxation factor, a^, takes values between 0 and 1. The 

appropriate value of for each variable depends strongly on the flow 

situation under consideration. For a correct pressure field, the true 

velocity field is obtained immediately. Therefore the pressure 

under-relaxation factor, ap, is the most important parameter. With the 

correct value for ap, the success of the current formulation is 

ensured. ap also strongly influences the overall convergence rate. For 

the cases considered in this research a value of 0.50 was found to 

give satisfactory convergence rates. Relaxation factors for u, v and T 

can be set to 0.50 for safe practice. However larger values were also 

used which resulted in much faster convergence rates. In general the
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largest relaxation factor possible should be used to force the fastest 

convergence rate. Of course too large a value will result in the 

solution diverging. Also for elliptic or partially elliptic problems a 

more selective approach must be adopted in order to maximise the 

convergence rate. Cycles can initially start with low values of ofr. 

Then at later stages, larger values may be used to accelerate the 

convergence rate.

5.4 Convergence criteria
Three convergence criteria are used to terminate the iterative 

solution procedure or cycles described in section 5.2. These are the 

relative change, the total residual check, and the global balance 

check. The absolute relative change in the variable <f> at point i is 

determined from

% change = x 100% (5.8)

*where refers to the previous cycle. The relative change criterion is 

satisfied when the maximum absolute changes in all variables within 

the domain fall below a specified limit, e.g.

maximum % change =s 0.1% say (5,9)

Each primitive variable has its own specified limit. It is usually the 

pressure for which the strictest control is exercised. The above 

criterion on its own is not adequate to determine a converged solution

set. For cases where heavy under-relaxation is employed to suppress

divergence, this criterion may be automatically satisfied. This can 

give the false impression of convergence.
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The second convergence criterion is that of the total residual 

check. Considering the discretised equation for

af .* .  -  - H au V f ? (s- io)
j*i

the absolute residual at point i is then

R* = 1 - * + f* - a U
1 L , i j j 1 11 1 (5.11)

is non-zero if equation (5.10) is not fully satisfied. The total 

residual is obtained by the addition of all point residuals. Hence

R" = ) ' Rf (5.12)T
i=i

where n denotes the total number of nodes in the domain. The total 

percentage residual check can then be formed and examined against a 

prescribed limit, hence

R*
% residual check = — ?- x 100% s 0.5% say (5.13)

V
r e f

where is a physical reference value that must be deducted fromr e f

the geometry and the conditions of the flow under consideration. For
Texample in the case of pure conduction, <f> = T and V would be the 

heat transfer rate, hence with reference to Figure 5.6

VT = k ( T - T ) (5.14)re f  avrg m a x  m i n  n

Similar expressions for the momentum and pressure equations may be 

formed, where would refer to the rates of momentum and massr e f

entering the domain respectively. Equation (5.13) is a good indication 

of how well the discretised equations are satisfied at each cycle.
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The last criterion is the global balance check. This is a very 

useful convergence indicator especially for the parabolic flow 

situations. It simply requires that the overall balance of a conserved

max

f min

k = average conductivityavrg &
T . = minimum domain temperaturemin

T = maximum domain temperaturemax

L = domain length

H = domain height across which

( T - T . ; actsmax min

Figure 5.6 Pure conduction in a rectangular plate.

quantity in the domain be satisfied. For a fully converged solution 

set this means that the mass, momentum and heat transfer rates in and 

out of the domain must cancel each other out. For example, if the 

final solution indicates a sizeable imbalance between the total mass 

entering and the total mass leaving the domain, that solution is not 

yet converged. At the end of each cycle, the percentage mass flow rate 

balance is obtained by

% mass flowrate balance =
flow - flowIn out

flow in

x 100% (5.15)

It is then required that

% mass flowrate balance ^ 0.01% say (5.16)
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Other balance checks are performed in a similar fashion. In parabolic 

flow situations the global balance check is the only one carried out. 

It should be noted that this criterion is only meaningful if the 

discretisation technique itself conserves quantities such as mass, 

momentum and energy. As discussed in Chapters 3 and 4, the present 

Finite Element discretisation is of the conservative form.

5.5 Laminar flow examples
The examples considered here are arranged in the order of 

increasing complexity. The fully developed and the developing duct 

flows examine the accuracy of the program against the analytical 

result and some past predictions respectively. The backward facing 

step is used to demonstrate the ability of the program to handle a 

large number of elements efficiently. It also provides the means to 

comparing present predictions with the existing experimental data. The 

natural convection in a square cavity is chosen to test the complete 

set of coupled equations. The results for this case are compared with 

past predictions. The laminar jet impingement with heat transfer 

examines the accuracy and the overall efficiency of the solution 

technique in a conjugate fluid flow/heat transfer situation.

5.5.1 Flow in plane duct
The fully developed or Poiseuille flow in a plane duct is 

governed by the parabolic velocity profile

u = - r *  I  y < H - y  ) (5.17)

where with reference to Figure 5.7, x and y are the streamwise and the 

cross-stream directions respectively. The plate separation is H. The 

flow is symmetric about the centre-line as shown in the figure. For
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comparison purposes both the full problem and the half problem were 

considered. The former consists of the plate to plate distance, 

whereas in the latter only one plate to the axis of symmetry is

u = v = 0

OutletInlet

axis of symmetry

u = v = 0
-» x, u

Figure 5.7 Fully developed laminar flow in plane duct.

considered and the velocity gradient along the axis is zero. Two types 

of boundary conditions were used. First, the velocity field was

examined for a specified pressure gradient. The results corresponded 

exactly to the analytical solution given by equation (5.17) for both 

the full and the half problem. Secondly, the inlet velocity was

prescribed according to equation (5.17) and the outlet pressure was

fixed at an arbitrary value. The inlet pressure and the outlet

velocity profiles were then examined. Both the pressure and the

velocity fields were predicted correctly for the full and the half

problems. For this case eight triangular elements of equal size were

used. The execution time was below 10 milliseconds.

The developing laminar duct flow was then considered. This 

problem has been reported in previous works, see for example Wang and
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Longwell (1964), Gosman et al (1969), Brandt and Gillis (1966) and 

Rice and Schnipke (1986). Consistent with the work of Gosman et al 

(1969), the mesh consisted of 15 equally spaced rows and 21 columns 

whose x-coordinate positions were determined according to

x = 100 tan ( 1.55 w ) / tan ( 1.55 ) (5.18)

where w was increased from 0 to 1 in 20 equal increments. This 

resulted in 560 elements as is shown in Figure 5.8.

u = v = 0

lefts'*
'jKiKdKMVS*

'AKtWUKiaBif&smtsaMWiES*
BBSflSUSH

u = v = 0

Figure 5.8 Computational mesh for developing 
laminar duct flow (not to scale).

The average velocity at the inlet was 1. No-slip boundary conditions 

were imposed along the duct walls. The Reynolds number, based on the 

plate separation and average inlet velocity was 150. A parabolic 

solution sequence was used. Hence there were no need for downstream 

boundary conditions. The centre-line velocity profile is shown in 

Figure 5.9. It is compared with those of Gosman et al (1969) and Rice
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and Schnipke (1986), who used elliptic solution methods. The maximum 

deviation is about 9%, which is mainly due to the present parabolic 

flow considerations. Also, Gosman et al (1969) employed the FVM, which 

results in a slightly different velocity profile at the inlet. The 

entrance length, L , for which the centre-line velocity is 99% of thee

maximum velocity is given analytically by (White (1974)):

L
—  = 0.04 Re + 0.5 (5.19)
H

For Reynolds number of 150,

L
—  = 6.5 (5.20)
H

The value obtained from the current calculations is 9.11 which is 

about 29% longer than the above value.

Figure 5.10 shows the calculated pressure drop for this case. As 

expected a rapid pressure drop is predicted at the inlet. The pressure 

is quickly adjusted and a constant pressure gradient is observed for 

most of the flow. The non-dimensionalised excess pressure drop is 

given analytically by (White (1974)):

Ap - Ap
K = ------ d-e^ lop,,d (5.21)e 1 .,2- p U 2 avrg

which for this case should be

K = 0.738 (5.22)e

The value calculated here is 0.720 which is less that 2.5% from the 

above value. The parabolic solution analysis took 2.47 seconds on a 

Digital VAX-8550 machine to complete.
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1.5

1.4

1.3
- -  Gosman et al (1969)
— • Rice and Schnipke (19 86 ) 
  Current work

1.2

1 . 1

Horizontal distance from  the duct in let (m )

Figure 5.9 Comparison of centre-line velocities 
for developing laminar duct flow.

- 1.0

- 0.8

- 0.6 •

-0 .4

- 0.2

Horizontal distance from  the duct inlet (m )

Figure 5.10 Pressure drop for developing laminar duct flow.
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5 . 5 . 2  Flow over backward fa c in g  step

The laminar flow over a backward facing step is characterised 

by the primary recirculation region near the step. There, flow 

separation is caused by the sudden change in the cross-sectional area. 

This flow situation is frequently encountered in engineering practice 

and has been studied previously by Armaly et al (1983), Rice and 

Schnipke (1986), Gosman and Pun (1974), Denham and Patrick (1974), 

Leschziner (1980) and Castro (1978). A comprehensive experimental and 

theoretical study was conducted by Armaly et al (1983), whose geometry 

is chosen for the current work.

The geometry and the boundary conditions are shown in Figure 

5.11. A parabolic velocity profile is prescribed at the inlet giving 

an average velocity of 1. No-slip conditions are specified at the top 

and the bottom. Natural boundary conditions for the velocity 

components are imposed at the outlet. The pressure is fixed at zero 

along the outlet. The duct downstream of the step is sufficiently long 

for the flow to assume a fully developed profile for the range of 

Reynolds number considered here. The Reynolds number is defined as 

U D
Re = (5.24)

v

where U is the average inlet velocity, D is twice the duct openingavrg

at the inlet and v is the kinematic viscosity. The key parameter in 

this study is the primary reattachment point, whose position was 

predicted for Reynolds numbers of 100, 200, 400, 600, 800 and 1000.

The computational grid is shown in Figure 5.12. It consists of 

717 nodes and 1320 elements in comparison with the 45x45 grid density 

used by Armaly et al.
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15mm ^ ^  200mm
I u=v=o
Parabolic inlet velocity5.2mm

reattachment

Figure 5.11 Laminar backward facing step flow with imposed 
boundary conditions.

Figure 5.12 Computational grid for laminar backward 
facing step flow (not to scale).
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The grid is non-uniform and is dense around the step where sharp 

gradients in both the velocity and the pressure fields are expected. 

The mesh was chosen such that further refinements resulted in less 

than 10% change in the position of the reattachment point for cases 

with the Reynolds numbers of up to 400. Armaly et al observed that the 

flow was laminar and purely two-dimensional below Re = 400. Above this 

value, secondary recirculation regions start to appear both near the 

top and the bottom walls. The presence of such regions destroys the 

two-dimensionality of the flow. Hence the results of two-dimensional 

analyses for Re > 400 should be interpreted with caution. The flow 

remains laminar up to Re = 1200. As cited by Armaly et al, this 

peoblem is prone to spurious pressure modes.

To minimise the computational effort, the regions near the step 

were solved elliptically, and those downstream of the recirculation 

zone were solved parabolically. This was achieved by employing RADIS 

which was described in section 5.2. Table 5.1 compares the results of 

the current analysis with the experimental and the predictive data of 

Armaly et al. At Re = 100 and 400 the Armaly et al predictions 

are closer to their measurements than the current results.

X /sR

Current work
Armaly et 

Predictions
al (1983) j 
MeasurementsRe

100 3.39 3.04 3.00
200 4.87 4.88 4.79
400 6.66 7.92 8.57
600 10.98 8.32 11. 14
800 12.87 7.60 14.29
1000 14.20 7.36 16.00

Table 5.1 Comparison of reattachment points for laminar backward 
facing step flow.
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The reattachment point is predicted accurately with respect to the 

measured data for Re = 200 by both the current analysis and that of 

Armaly et al. For Re > 400, the current analysis follows the

experimental data closely. However as mentioned earlier, a direct 

comparison is not recommended here as the flow is no longer 

two-dimensional for Re > 400. The predictions of Armaly et al fall far 

short of their experimental data for Re > 400.

Figures 5.13 (a)-(c) show the graphical representation of the 

results for Re = 200. Figure 5.13(a) shows the recirculation region 

very clearly. The velocity quickly develops into a parabolic profile 

after the reattachment point. The pressure field in Figure 5.13(b) 

shows the singularity at the step due to flow separation. The pressure 

field is nearly one-dimensipnal upstream and downstream of the step. 

In the vicinity of the step, pressure first rises across the step in 

the recirculation region and then falls gradually further downstream. 

As shown in Figure 5.13(c), the primary reattachment point is 

predicted to be 23.9mm downstream of the step. This value is less than 

the experimental data by about 2%, see also Table 5.1.

Figures 5.14(a)-(c) show the velocity, pressure and streamline 

plots for Re = 400 respectively. The same observations as above can be 

made for this case. It is seen from Figure 5.14(a) that the secondary 

recirculation region along the top wall is beginning to appear. This 

is consistent with the experimental observation of Armaly et al. 

Figure 5.14(b) shows a more rapid pressure change in the proximity of 

the step than that for Re of 200. From Figure 5.14(c), the 

reattachment point is predicted at 32.6mm downstream of the step, 

which is about 22% less than the measured value. The reattachment
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ggiilglii

(b)

23-9 mm

(c)

Figure5.13 Laminar backward facingstep flow at Re = 200,

(a) velocity field, (b)pressure field and 
(c) streamline plot.
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(a)

(b)

32-6 mm

(c)

Figure 5.14 Laminar backward facing step flow at Re = 400, 
(a) velocity field, (b) pressure field and 
(c) streamline plot.
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(a)
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Figure 5.15 Laminar backward facing step flow at Re = 1000,

(a) velocity field, (b) pressure field and i
>3

(c) streamline plot.
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point calculated by Armaly et al was shorter than their measurement by 

about 7% .

Figures 5.15(a)-(c) depict the resulting flow fields for Re = 

1000. From Figure 5.15(a), the secondary recirculation region starts 

at 58.0mm downstream of the step along the top wall. This is in very 

good agreement with the experimental data of Armaly et al, who found 

the secondary recirculation to begin at about 65.8mm downstream of the 

step. The pressure field in Figure 5.15(b) shows a more vigorous rise 

and fall compared with the other two cases. It also develops into a 

one-dimensional field much further downstream of the step than for Re 

of 200 and 400. The primary reattachment point is shown in Figure 

5.15(c). It is calculated to be 69.6mm downstream of the step, which 

is about 11% below that measured by Armaly et al. The numerical 

analysis of Armaly et al gave a value of 36.1mm for the reattachment 

point which is 54% below their measured value. It must be noted that 

the results of the current analysis for Re = 1000 should not be 

compared directly with the measurements of Armaly et al, since at this 

Reynolds number the flow is no longer two-dimensional. Nevertheless, 

these results point to the stability and robustness of the current 

iterative solution scheme in providing a converged solution set even 

at such a high Reynolds number. Also the overall results clearly 

demonstrate the absence of any spurious pressure modes. The pressure 

field was obtained without any smoothing or any other relaxation 

techniques.

The above computations were performed on a Digital VAX-8550 

machine. The analysis began by obtaining the solution to the lowest 

Reynolds number case and using it as initial guess for the next



Iterative solution procedure and laminar flow examples Chapter 5

Reynolds number. This procedure was followed until all cases were

analysed. The velocity components were relaxed implicitly, see 

equations (5.5)-(5.7). The pressure was relaxed by underrelaxing the 

pressure gradient terms, see equations (4.35) and (4.36). The 

relaxation factors were 0.5 for all variables. The convergence 

criteria were based on the percentage of the absolute residuals of the 

discretised equations for momenta and pressure, and the percentage

difference between the mass flowrates in and out of the domain, see 

equations (5.13) and (5.16). In both cases a limiting value of 0.01% 

was chosen. For Re = 100, the solution took 158 cycles and 1130 CPU 

seconds to converge. The results were used as initial guesses for Re = 

200, which then took a further 110 cycles and 785 CPU seconds to

converge. For Re = 400, a further 232 cycles and 1660 CPU seconds 

yielded the converged solution set. A further 270 cycles and 1935 CPU 

seconds were required for Re = 600. For Re = 800, 324 additional

cycles took 2321 CPU seconds for convergence. At Re = 1000, a further 

418 cycles and 2997 CPU seconds provided the final solution. Also the 

case of Re = 1000 was analysed with no guessed values. This took 1658 

cycles and 11630 CPU seconds to converge.

5.5.3 Natural convection in square cavity
Natural convection in differentially heated enclosures is 

encountered frequently in engineering situations such as reactor 

insulation, room ventilation and fire prevention. It is therefore of 

interest to accurately predict the hydrodynamic and thermal 

characteristics of this type of flow. Numerous experimental and 

numerical studies of this problem have been conducted in the past. De 

Vahl Davis and Jones (1983) presented a paper in which the performance 

of 37 methods were compared with the benchmark solution of De Vahl
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Davis (1983), whose geometry and boundary conditions are shown in 

Figure 5.16.

T=T

D

y

Figure 5.16 Geometry and flow conditions for natural 
convection in square cavity.

The computational grid used for the present analysis is shown in 

Figure 5.17. It is a non-uniform grid consisting of 31 equally spaced 

rows and 31 columns with higher grid density near the side walls, 

resulting in 961 nodes and 1800 elements. It was necessary to use 

finer grids near the heated walls in order to predict the Nusselt 

number variation along the walls accurately. Note also the orientation 

of the elements with their diagonals following the main direction of 

the flow. The analysis was carried out for Rayleigh numbers, Ra, of
3 4 5 610 , 10 , 10 and 10 in compliance with the benchmark solutions of De 

Vahl Davis (1983).
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Figure 5.17 Computational grid for natural convection 
in square cavity.

Figures 5.18 to 5.21 show the results of the present analysis for
3the above Rayleigh numbers. At lower Rayleigh numbers, i.e. 10 and 

104, the fluid is circulating slowly and the pressure variation is 

nearly hydrostatic, Figures 5.18(b) and 5.19(b). At Ra of 105 and 106, 

the fluid is moving with greater velocities and there are two distinct 

stagnant regions, above and below the mid plane as is shown in Figures 

5.20(a) and 5.21(a). The pressure fields reflect the increase in fluid 

velocity especially along the top and the bottom walls, Figures 

5.20(b) and 5.21(b). As for the backward step flow, no additional 

smoothing or relaxing techniques were employed for pressure. The 

pressure contours clearly demonstrate that the present equal-order 

velocity-pressure formulation does not suffer from pressure chequer 

boarding.
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(a) (b)

(c) (d)

Figure 5.18 Natural convection in square cavity at Ra - IQ3

(a) velocity field, (b) pressure field,

(c) temperature field and (d) streamline plot.
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Ra = 103

Bench mark 
solution

Current
work

Percentage
error

Gartling Percentage
error

l ^ m i d 1.174 1. 139 2.98 1. 174 0.00

|<A1 m a x
— — — — —

x, y — — — — -

U 3.649 3.553 2.63 3.640 0.20
m a x

y 0.813 0. 800 1.60 0.824 1.35

V 3.697 3.612 2.30 3.696 0.03 !
m a x

X 0. 178 0. 169 5.06 0. 176 1. 12

Nu 1.118 1. 102 1.43 1. 118 0. 00

Nu 1.505m a x 1.456 3.26 1.506 0. 10

y 0.092 0. 100 8.69 0.080 1.23

Nu 0.692m  i n
0.722 4.34 0.691 0. 10

y 1 0. 967 3.30 0.989 1.10

3Table 5.2 Natural convection in square cavity at Ra = 10 ,
comparison of current work with bench mark solution.
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(c) (d)

Figure 5.19 Natural convection in square cavity at Ra ~ 10 
(a) velocity field, (b) pressure field,

(c) temperature field and (d) streamline plot.
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Ra = 104

Bench mark Current Percentage Gartling Percentage
solution work error error

|0 1 1 d 1 5.071 5.300 4.51 5.074 0. 06

10- 1 1 m a x  1
x, y

— — — — —

U
m a x

16.178 17.130 5.88 16.186 0. 05

y 0.823 0.833 1.21 0.824 0. 12

V
m a x

19.617 20.100 2.46 19.630 0.07

X 0. 119 0. 128 7.56 0.119 0.00

Nu 2.243 2. 100 6.37 2.250 0.31

Nu
m a x

3.528 3. 247 7.96 3.538 0.28

y 0. 143 0.200 39.86 0. 133 7.34

Nu
m i  n

0.586 0.601 2.56 0.587 0. 17

y 1 0. 967 3.30 0.989 1. 10

Table 5.3 Natural convection in square cavity at Ra - 10 ,

comparison of current work with bench mark solution.
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(a) (b)

(c) (d)

Figure 5.20 Natural convection in square cavity at Ra = 10s,
(a) velocity field, (b) pressure field,

(c) temperature field and (d) streamline plot.
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Ra - 10s

Bench mark Current Percentage Gartling Percentage
solution work error error

1K J 9.111 11.150 22.38

10 1 1 m a x  '
9.612 11.290 17.46 9.603 0. 09

X 0.285 0.335 17.54 0.281 1.40
y 0.601 0.567 5.66 0.582 3. 16

u
m a x

34.73 40.95 17.91 34.73 0.00

y 0.855 0.867 1.40 0.854 0. 12

V
m a x

68.59 73.78 7.57 68.63 0.06 !
X 0.066 0.054 18. 18 0.068 3.03

Nu 4.519 4. 196 7. 15 4.592 1.62

Nu
m a x

7. 717 6.704 13. 13 7.873 2.02

y 0.081 0. 133 64.20 0.080 1.23

Nu
m i  n

0.729 0.779 6.86 0.737 1.10

y 1 1 0.00 0. 989 1. 10

5
Table 5.4 Natural convection in square cavity at Ra = 10 ,

comparison of current work with bench mark solution.
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( c) (d)

$

Figure 5.21 Natural convection in square cavity at Ra = 106,.
(a) velocity field, (b ) pressure field,

(c) temperature field and (d) streamline plot.
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f Ra = 106

Bench mark Current Percentage Gartling Percentage
solution work error error

\ip I
' m i d 1 16.32 20.51 25.67

1* 1 ' m a x  1 16.750 20. 830 24.36 16.851 0.60

X 0. 151 0.458 203.31 0. 146 3.31
y 0.547 0.533 2.56 0.582 6.40

u
m a x

64.63 89.04 37.77 64.37 0.40

y 0.850 0.867 2.00 0.854 0.47

V
m a x

219.36 243.00 10.78 218.42 0.43

X 0. 0379 0.0289 23.75 0.0430 13.46

Nu 8.800 8.206 6.75 9.382 6.61

Nu
m a x

17.925 14.270 20.39 18.630 3,93

y 0. 0378 0.0667 76.45 0.0322 15.34

Nu
m i n

0. 989 1.097 10. 92 1.007 1.82

y 1 1 0.00 0.989 1. 10

Table 5.5 Natural convection in square cavity at Ra = 106,

comparison of current work with bench mark solution.

The numerical comparison between the current predictions, the 

bench mark solutions of De Vahl Davies and the predictions of Gartling 

, which are both quoted in De Vahl Davies and Jones (1983), are
3 6provided in tables 5.2 to 5.5 for Ra = 10 to 10 respectively.

Gartling employed the FEM with the primitive variables on a 

non-uniform mesh of 16 x 16 isoparametric 8-noded quadrilateral 

elements. Values of dj , \Jj , U , V , Nu and Nu are
mi d max max max max mi n

obtained by examining the mesh point values of these variables. The 

bench mark values are not necessarily the mesh point values and were 

computed by numerical differentiation, using a fourth-order polynomial
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approximation. The heat flux at the wall with T - T was calculated by 

a three-point forward approximation to dl/dx. The average Nusselt 

number Nu was then evaluated from the 8T/dx variation along the wall 

using Simpson’s rule.

At Ra of 103 and 104, the agreement was within 9% and 40% of the 

benchmark solutions for all the predicted values respectively compared
5with 1% and 7% for Gartling’s predictions. At Ra of 10 the agreement 

was within 64% compared to Gartling’s 3% . Ignoring field values for x 

and y below 0.04, at Ra of 10 , the velocity field was predicted to 

within 38% with the Nusselt number variation within 20% of the 

benchmark solution. Gartling’s velocity field and Nusselt number 

variation came to within 0.5% and 7% of the benchmark solution 

respectively. The large differences in the current predictions at the 

higher Rayleigh numbers are attributed to the relative coarseness of 

the grid. With finer grids it would be possible to capture in more 

detail the flow characteristics in regions where sharp gradients are 

present, especially near the heated walls. The predictions of Gartling 

are generally closer to the benchmark solution than those obtained by 

the current method and do not deviate as much from the benchmark 

solutions at the higher Rayleigh numbers. The above results are not in 

general as accurate as some of the results quoted in the comparison 

exercise of De Vahl Davis and Jones (1983). However, as they point 

out, a better estimate of accuracy may be based on equal cpu cost, 

storage or even programming effort.

The predictions were performed, as before, on a Digital VAX-8550
3machine. At Ra = 10 , 188 cycles took 1782 seconds to produce a

converged solution. This solution was used as the initial guess for Ra
4= 10 . 102 extra cycles took 840 seconds for convergence. The solution
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5set was then used as the initial guess for Ra = 10 . In this case a 

further 138 cycles took 1170 seconds to produce the final result. The 

last case at Ra = 106 used the previous results as the initial guess 

and after 368 more cycles and 3056 seconds the solution converged. A 

further run was performed at Ra = 106 with no initial guess. This case 

required 938 cycles and 8990 CPU seconds to converge.

5 . 5 . 4  J e t impingement w ith  heat tra n s fe r

Rapid heating, cooling or drying of industrial products are 

often provided by using arrays of impinging jets. Cooling of 

electronic components or turbine blades, drying of textile and paper, 

annealing of metal and plastic sheets are among the many industrial 

applications of impinging jets. In designing an impinging jet system 

for a specific thermal application, the designer is always faced with 

a number of possible geometric and flow configurations such as 

nozzle-to-target surface spacing, position of exhaust ports, surface 

motion, impingement angle, nozzle design, temperature difference 

between the jet and the impingement surface and many more. In view of 

the large number of design parameters, it is clear that a purely 

experimental approach will be time consuming, expensive and unlikely 

to yield the optimal solution to the problem. It is therefore 

necessary to supplement the experimental studies with numerical 

investigations of the complex impingement transport processes. The 

success of such numerical investigations depend on the ability of the 

proposed method to accurately capture and predict the most important 

features of the flow such as the impingement and the wall jet regions, 

the recirculation region and the surface skin friction and heat 

transfer. The accurate prediction of the surface heat transfer is of 

primary importance since it determines the effectiveness of an
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impinging jet system.

The present analysis is chosen to study the accuracy of the 

method proposed in this research for the conjugate fluid flow/heat 

transfer situation of a single confined plane laminar jet impinging on 

the surface of a heated solid block. Laminar jet impingement with heat 

transfer has been studied extensively, both experimentally and 

numerically, in the past, see for example van Heiningen et al (1975), 

Saad et al (1977), Huang et al (1978) and Law (1982). A brief review 

of the previous work was given in two recent papers by Wang et al 

(1989a) and (1989b). In most of the previous work on jet impingement 

heat transfer, only the energy equation for the fluid region is solved 

and boundary conditions are specified at the fluid-solid interface. 

However, in engineering applications of jet impingement the 

temperature or heat flux at the impingement surface is frequently 

unknown. Therefore, a proper approach should be to solve the energy 

equation for both the fluid and solid regions simultaneously. Wang et 

al (1989c) carried out an analytical investigation of the conjugate 

heat transfer characteristics of a laminar jet impinging on the flat 

surface of a solid block which was laterally insulated with prescribed 

temperature along the non-impingement surface. The geometry and 

boundary conditions of their flow arrangement is depicted in Figure 

5.22. It consists of a confined jet of air impinging at right angle on 

a heated block of copper. The air is issued with a constant velocity 

and temperature of 20°C. The block of copper is kept at a constant 

temperature of 100°C along the bottom. The nozzle to impingement 

surface ratio, D/H, is 1/16. The thickness of the solid block is 0.1 

H. The length of the impingement surface is 30 H, which is long enough 

for the flow to assume a fully developed profile at the exit.



Iterative solution procedure and laminar flow examples Chapter 5

Velocities are set to zero along the confinement plate with the 

temperature being equal to that of the air jet at the nozzle. 

Velocities are also set to zero along the impingement surface. The 

pressure is set to zero along the exit. The solid block is insulated 

at the exit. The analysis was performed for two inlet Reynolds numbers 

of 250 and 500, based on the nozzle half width and the air properties 

at the jet inlet temperature,

The computational grid is shown in Figure 5.23. It is a

non-uniform grid consisting of 386 nodes and 700 elements. In the flow 

region, the elements are oriented so as to follow the main direction 

of the flow. The grid density is high near the axis of symmetry and

the impingement surface where steep gradients are expected. It was

necessary to use high grid density along the fluid-solid interface in 

order to predict the Nusselt number variation there accurately. The 

grid was modified until further refinements resulted in less that 10% 

change in the values of the Nusselt number at the stagnation point. 

The results of this analysis should only serve to give a qualitative 

estimates of the pressure and Nusselt number variations. This is due 

to the incorrect weighting of the advection terms in the governing 

transport equations, see Af in equation (3.20), which has effectively 

resulted in the artificial enhancement of the diffusive transport by 

an approximate factor of two. Here Af was taken as the area of the

element containing the downwind node, see Figure 3.5.

Re (5.25)

Figure 5.24 shows the streamline plot at Re = 250 for the region 

close to the impingement region. The streamlines are almost parallel
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Figure 5.22 Plane laminar jet impingement with heat 
transfer (not to scale).
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i

inlet

no-slip inlet

recirculation

inlet

Hall jet

Figure 5.23 Computational grid for laminar Jet 
impingement (not to scale).
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X / D = 8

Figure 5.24 Streamline plot for laminar Jet impingement 
at Re = 250.
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at x/D = 8, indicating that the flow has nearly reached its fully 

developed profile there. The recirculation region is situated close to 

the outer edge of the jet. Figure 5.25(a) shows the variation of 

pressure along the impingement surface. Pressure is normalised with 

respect to pressure at the stagnation point. Pressure drops very 

quickly and is only 0.1% of the stagnation pressure at x/D = 7. The 

pressure variation is compared with the analytical results of Wang et 

al (1989c) and the finite element solution of Lipsett and Gilpin 

(1978). The general agreement between the three predictions is very 

good and to within 8% . Near the stagnation region, a less steeper 

pressure drop is predicted by the other two methods. The normalised 

Nusselt number variation along the impingement surface is shown in 

Figure 5.25(b). The following definition is used for the Nusselt 

number,

where qi is the heat flux at the fluid-solid interface and k is the 
i air

thermal conductivity of air. The Nusselt number at the stagnation 

point was 21. This value was used to normalise the results elsewhere 

along the impingement surface. The current work indicates that the 

rate of heat transfer drops to half of its stagnation value by x/D = 

3. In other words most of the heat is transferred to the impinging 

fluid in the stagnation region. Predictions of Lipsett and Gilpin 

(1978) also show similar trends. Although they indicated a less severe 

drop in the heat transfer rate. The agreement between the two results 

is only moderate, which is attributed to the special treatment of the 

boundary layer region by Lipsett and Gilpin (1978), who employed 

analytical techniques to obtain the velocity field in this region.

Nu = q D fk (TV air interface T ))_1inlet > (5.26)
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Lipsett A Gilpin (1978) 
Wang et al (1989) 
Current work

0.8

0.6

0.4

0.2

(a) distance from stagnation, x /D

Lipsett A Gilpin (1978) 
Current work

0.9

0.8

0.7

0.6

0.5

0.5 3 01.0 1.5 2.0
(b) distance from stagnation, x/D

2.5

Figure 5.25 Comparison of results along the impingement 
surface at Re = 250, (a) pressure variation 
and (b) Nusselt number variation. t
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Figure 5.26 shows the srtreamline plot for Re = 500. The

streamlines In the wall Jet region are almost parallel. The 

recirculation bubble occupies a bigger portion of the near Jet region 

as opposed to the previous case. It extends beyond the x/D = 8 line. 

The flow is accelerated through the channel-like constraint that is 

created between the recirculation bubble and the impingement surface.

Figure 5.26 Streamline plot for laminar Jet impingement 
at Re ~ 500.

Figure 5.27(a) shows the pressure variation along the impingement 

surface. The pressure drop Is more rapid than the previous case. 

Pressure drops below 1% of its stagnation value by x/D = 4.5. The 

agreement between the current predictions and those of Lipsett and 

Gilpin (1978) and Wang et al (1989) is very good and to within 4*/.. 

Both these workers predict a similar drop in pressure away from the
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1 2 3 4 5 6
(b) distance from stagnation, x /D

Figure 5.27 Comparison of results along the impingement

surface at Re - 500, (a) pressure variation

and (b) Susselt number variation.

3 4 5 ^ '
distance from stagnation, x/D
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stagnation point. Figure 5.27(b) compares the predicted Nusselt number 

variation along the impingement surface with that of Wang et al

(1989). The agreement is very good, especially near the stagnation 

region where there is negligible difference between the two 

predictions. The stagnation Nusselt number was 27. Compared with 

Figure 5.25(b), it is seen that a high rate of heat transfer is

maintained much further along the impingement surface, dropping to

half its stagnation value around x/D = 6.

The computations were performed on a Digital VAX-8550 machine.

The jet impingement heat transfer at Re = 250 was started without

initial guesses. It took 138 cycles and 1300 CPU seconds to converge.

The results were then used as starting values for the second case with

Re = 500. This took a further 102 cycles and 910 CPU seconds to

complete.
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Chapter 6

TURBULENT FLOW MODEL

The time-averaged differential equations of turbulent flow are 

considered. The Reynolds stress terms in the equations are modelled by 

a new method. The turbulent closure is first reviewed in section 6.1. 

The adopted approach for turbulent closure is presented. In section 

6.2 the discretised form of the equations are presented. Section 6.3 

deals with the imposition of the various boundary conditions. The 

computational aspects of the solution procedure are discussed in 

section 6.4.

6.1 Turbulent closure
In chapter 1, the turbulent closure problem was considered. This 

problem arises as the result of time averaging process on the 

nonlinear advection terms. This problem was clearly demonstrated in 

Chapter 2. From Chapter 2, the time-averaged equations for steady 

state, incompressible and two-dimensional mean flow in the Cartesian 

coordinate system are

Continuity ~  pU + ^  pV * 0 (6.1)

X-momentum (6.2)
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Y-momentum pUV + pV2 = (6.3)dx 3y
a p  a  f av —  1 a f av —  )

PV  5y 9x ( p 3x ~ puv J + 37 p Sy ~ pvv J

The three equations above contain the following unknowns; U, V, P, 

puu, puv, and pvv.

In order to solve the above equations, the Reynolds stress terms 

must be related to the mean flow quantities U, V and P. The desirable 

relations are obtained by assuming that turbulence is generated solely 

due to the transfer of part of the mean flow energy into the energy of 

the small scale disturbances, see Monin and Yaglom (1971). Following

this assumption, the Reynolds stresses must depend on the mean

velocities U and V, and result in actions similar to those of viscous

stresses. The following relations are then put forward

—  0 aU 2
- puu " 2 p t m  - 5 p k

, 811 SV ,
-  puv "  pt  ( 5y + K f )  (6 ‘ 4)

—  0 av 2 .- p w  = 2 u — - - p k^ t ay 3

where is the turbulent or eddy viscosity, unlike the laminar

viscosity, does not depend on the physical properties of the fluid. It 

rather depends on the properties of turbulence. It is a function of 

the velocity and length scale of turbulence, particularly those of the 

large scale eddies. In consequence its value may not be constant and 

may even assume negative values (Monin and Yaglom (1971)).

Substituting the relationships given by equation (6.4) in 

equations (6.2) and (6.3) produces
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X-momentum (6.5)

u

Y-momentum (6.6)

V

From the above equations it is observed that the effect of turbulent 

fluctuations on the mean flow is represented as additional mixing or 

diffusion. S and S contain the additional turbulent diffusion terms.u V

Equations (6.1), (6.5) and (6.6) may now be solved for the mean flow 

variables U, V and P, provided that an expression for exists.

The simplest expression for p̂  is that of a constant value. A

constant value eddy viscosity has been employed for free turbulent 

flows, and is shown to produce reasonable results (Monin and Yaglom 

(1971)). However, a constant value eddy viscosity yields incorrect 

results for internal turbulent flows. In these types of flow the

effect of constant p  ̂ is simply the augmentation of the laminar 

viscosity, resulting in a parabolic velocity profile which of course 

is in contradiction with the measured profiles for turbulent flow.

To overcome this problem a number of alternative routes for

determining the value of p have been employed. These range from 

simple algebraic expressions to expressions containing several

turbulence variables. In the case of multiple scale turbulence, 

several pairs of these variables are introduced, see for example 

Fabris and Harsha (1981). One of the most successful of these methods 

for evaluating p has been the two equation k-e model of Launder and
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Spalding (1972). In this model the eddy viscosity is expressed in 

terms of empirical constants, the turbulent kinetic energy, k, and its 

rate of dissipation, e.

The k-e model has been successfully applied to a wide range of 

turbulent flow problems. In the majority of these applications this 

model has been used together with the conventional upwind 

discretisation methods. As upwind approximations produce large 

numerical diffusion, the k-e model may in fact be able to predict 

more accurately the turbulent phenomenon than these applications 

suggest (Hackman et al (1984)). The streamline upwind approximation 

adopted in this research has been shown to greatly reduce the 

numerical diffusion. Therefore, the k-e model may now be more closely 

assessed.

The relative success of the k-e model in the past prompted its 

use in the present research. The turbulent kinetic energy is defined 

as

k = i (u2 + v2 + w2) (6.7)

From Launder and Spalding (1972), the turbulent kinetic energy in 

Cartesian coordinate system is calculated from the following 

differential equation

a a a ( ak 1 a f ak 1 ^k-equation _  pUk + ^  pVk = -  _ J + _ ^ _  _  j (6.8)

+ ptG - p e

where cr is a pre-assigned constant and G is the generation term 

given by the expression
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iv au w r av )21 + r au + av
Sx j l ay J J I ay dx

2
) (6.9)

The rate of turbulent energy dissipation, e, is governed by a similar 

transport equation

3 II ^  3  i> a Mt Se 1 ^  8e 1 ,,e-equation _  pUe + ^  pVe = ^  -  _  j + _   ̂_  _  j (6.10)

2
+ C M § G - C p ~ l *t k 2 k

where <r , C and C2 are pre-assigned constants. Lastly, the eddy 

viscosity is expressed in terms of k and e

C p k2
(*t - J L 5—  (611)

The constants appearing in the above equations take the following 

values

C “ 0.09

O'k
ss 1.0

O'e = 1.3

c i
= 1.44

c2 1.92

(6.12)

6.2 Discretisation of governing equations
The time-averaged equations (6.1), (6.5) and (6.6) have the same 

form as those for laminar flow, namely equations (2.7), (2.8) and

(2.9). Here the laminar viscosity is replaced by an overall viscosity 

which is the summation of the laminar and the eddy viscosities. 

Therefore the same velocity-pressure solution procedure developed in 

Chapter 4 can be employed for the turbulent flow. Since the eddy 

viscosity is expressed in terms of k and e, the transport equations
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for k and e, equations (6.8) and (6.10), must also be solved 

concurrently with the above three equations.

The discretisation of equations (6.8) and (6.10) are carried out 

in the same manner as for the other transport equations. The advection 

terms are approximated using the same streamline upwind technique 

devised in Chapter 3. The standard Galerkin technique described in 

Chapter 2 is used for the diffusion terms. The source terms require 

special treatment.

kak k = - y~" ak kii i J
J*i

and

N (i G dA -'t N p c dA (6.13)
i
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In a turbulent flow field the source terms in the k and e 

equations may become significantly larger than the transport terms.
••I

For example, in regions of high shear such as those near solid m
• J

boundaries, the generation term, equation (6.9), can become very 

large, whereas the transport terms may be small. Also, from equation 

(6.8), it is possible that k may become negative during the iterations 

if the dissipation term acquires a large value. This is physically 

unrealistic and equation (6.7) prohibits such negative values of k. By 

the same argument, equation (6.10) can also produce negative values of 

e, which are again unacceptable based on physical considerations. 

Therefore, the treatment of the generation term in equations (6.8) and ^

(6.10) should prevent the occurrence of negative values for k and e.

The following procedures for the treatment of the source terms have 

been successfully implemented by Schnipke (1986) and are adopted here.

|
The discretised k and c equations can be written as

tt

.■&>? •-?- 'ViV«.I I :v« i  ~ ‘A.-; ; V.J . . . ^ -1 i ’:
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ea e1 i i
ea e + ij J

J*i
N C n  r G dAl't k N C p r dA 2 k (6.14)

In the above equations only the transport terms have been discretised. 

In discretising the source terms the above arguments regarding these 

terms are now taken into consideration. The eddy viscosity expression 

given by equation (6.11) is used in rewriting the last term in 

equation (6.13), hence

N p e dA = N C p2 —  dA 
* H Ht (6.15)

The source term linearisation procedure described in Chapter 2 is now 

used to rewrite equation (6.15) as

N C p2 —  dA = 
H H Mt N

C p‘ 
P. ( k* + 2k*( k - k*) ) dA (6.16)

Rearranging equation (6.16)

N C p2 —  dA = fit N k*(2k - k*) dA (6.17)

The independent variables, p, and k are replaced by NjPj> and

Njki respectively. Also using the lumped mass approach described in 

chapter 2, equation (6.17) can be written as

N C p2 —  dA = -
nt

(N p )
N C — (N k V  dA

N p k tk
T 1 (6.18)

N C — N k 2N k dA i u T 1 T 1^ N u I k tk

where
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N = S NT / 1
1 = 1

Substituting equation (6.18) into equation (6.13)

( ak + bk ) k ii i

where

bk =i

and

= - S ak k + fk1 L , U  J 1j*i

N C — i-J- 2N k N dAi Lt T i TN ul k tk

(6.19)

(6.20)

(6 .2 1)

N N „  (2[(|Nku)2+ ( f k V ) 2l + [ f"k U + V H  dA i y tj | [v5x k' k' J [ dx k dy kj J

' V j 1 * 2N C  AJ  (N k ) dA1 U kf T i^ N Lt i k tk
(6.22)

Inspection of equations (6.21) and (6.22) reveals that none of the 

terms in the k equation can now become negative, hence ensuring 

positive values for k at all times.

The c equation is treated in a similar manner. Eddy viscosity 

relation, equation (6.11), is once again invoked to rewrite the fist 

of the two source terms in equation (6.14), hence

N C C p k G dAl p K (6.23)

The second term is linearised and rearranged
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2 r *2
N C p r dA = - 2 ^ k N C p dA +2
1 i J

N C p f 2e dA 2 k (6.24)

Using the lumped mass method and replacing the dependent variables 

with their discretised form, equation (6.14) can be written as

( ae + be ) e = il i i

where

V ' c , _e > a e + fL , l -> J 1 (6.25)
J*!

be = i
N p

N C 2N e N dA1 2 . . .  T i TN kk k
(6.26)

and

fe = l
U p  #

N C -i-J. (N g )2 dA1 2 . .  T 1N u1 k tk
(6.27)

N C C N p N k (2[(|̂ i U ) + (~i V ) 1 + f U + |^i V ] X dA i 1 p yj k k\ [ v a x  1/ < iJ J [ gx 1 dy l j  J

Negative values of e are avoided by the fact that all the terms in 

equations (6.26) and (6.27) are positive. The discretised equations 

for k and e, equations (6.20) and (6.25), are now in forms suitable 

for turbulent flow analyses.

6.3 Boundary conditions
The types of boundary conditions for turbulent flow are the same 

as those for laminar flow as discussed in Chapter 4. They are inflow, 

outflow and solid boundaries and planes of symmetry. The treatment of 

boundary conditions for the mean flow variables, U, V and P follows 

exactly from that of section 4.3 and is not repeated here. Boundary 

conditions for the turbulent quantities, k and e are considered in
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this section.

6.3.1 Inlet boundaries
At the inflow boundaries, inlet values of k and e are 

specified. From these values the eddy viscosity, at inlet is

calculated. Prescription of k and e at these boundaries is not as 

straight forward as specifying velocities. In the absence of any other 

information regarding the turbulent nature of the flow at inlet, 

previously measured values of turbulent intensity and length scales 

are used to determine values of k and e. This method has in fact 

proved most successful in analysing turbulent flows. However, measured 

values of such quantities are not readily available and dependence on 

such information restricts the generality of the turbulence model. 

Alternatively, estimated values of turbulent intensity can be assumed 

at inlet as suggested by previous workers for a wide ranging classes 

of flow. In this research a turbulent intensity of 5% is assumed, i.e.

1 = u U = jj— “—  = 5% (6.28)
i n l e t  inlet

where U is the predominant mean velocity component at the inlet.
i n  1 ct>

It follows that the turbulent kinetic energy, k, at the inlet can be 

determined from

k = ~ (IU )2 (6.29)
inlet 2 inlet

The rate of dissipation of turbulent energy, e, can be determined

f rom

C k 1,5
e =  (6.30)
inlet

where 1 is the characteristic length scale and C is a constant. The
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commonly used values covering a wide range of flow cases are 

C = C and 1 = 0.01 D (6.31)

where D is the width of flow at inlet. The value of at inlet can 

now be evaluated using equation (6.11).

6.3.2 Outlet boundaries
At the outlet boundaries natural boundary conditions are 

applied for k and e. The natural boundary conditions arise from the 

Finite Element discretisation of the diffusion terms in the two 

transport equations, equations (6.8) and (6.10), similar to those 

derived in Chapter 2. From equation (6.8), the diffusion term is 

discretised as

where the first term on the right hand side is the surface integral 

term, n being the direction of the outward normal. The natural 

boundary condition at the outlet implies that the rate of change of k 

with respect to n is zero. Therefore in imposing this type of boundary 

condition, the surface integral term in equation (6.32) is set to 

zero. Similarly the surface integral term for the discretised form of 

equation (6.10) is also set to zero at the outlets. Note that these 

surface integrals are identically zero on all internal elemental 

surfaces.

6.3.3 Solid boundaries
Near solid boundaries the flow of fluid is only partially
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turbulent. However, equations (6.8) and (6.10) are only applicable in 

fully turbulent flow regions. Therefore, in treating regions of flow 

near solid boundaries, the wall function method is employed. In the 

wall function approach, the wall shear stress is deduced from the Law 

of the Wall and the Log Law of the Wall. The two laws in fact govern 

the variation of velocity very close to and further away from the wall 

respectively. Hence, the wall shear stress is determined such that the 

near wall velocity varies according to the above two laws. By 

combining the two laws, the need for excessively fine mesh near this 

region is avoided.

The Law of the Wall is (White (1974))

T
u = <5 (6.33)o p.

where 6 is the perpendicular distance away from the wall, u^ is the 

velocity parallel to the wall, r is the wall shear stress and u isw
the laminar dynamic viscosity. The Log Law of the Wall is 

US l , r 6

/ v 5
; = e ln U / v * )  + B (6-34)

where k is the Kolmogorov constant (= 0.4) and B is a non-dimensional

constant which is taken to have the logarithmic form

B = - ln E (6.35)K

where E is a non-dimensional constant (= 9.0 for smooth walls) and

introducing 5

8* = - PTTp (6.36)V V w

equation (6.34) can be written as
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ln ES+ (6.37)
/ ---------— < K

/ V ?

Equations (6.34) and (6.37) are combined into one equation and written

as
u

w *w 8t  - n (6.38)

where

k 8+
p. = p . Max / 1 , -----  \ (6.39)
w V ln E5+ /

In this way the perpendicular distance from the wall determines which 

law is selected for subsequent calculations. The wall function 

approach outlined above has been employed by a number of researchers, 

e.g. Hutton (1979) and Pun and Spalding (1977). The deficiency of 

equation (6.39) is that 8+ depends on t  . This deficiency is overcome 

by employing the Generalised Log Law of Launder and Spalding (1974), 

that is 8* can be written as

-,0.25 .0.5C p k
8+ = -------  6 (6.40)

At the solid boundaries mean velocity components are set to zero. 

At the near wall regions, effective viscosity expressed by equation

(6.39) is used in the diffusion terms of the mean velocity transport 

equations.

In the k equation, at the wall region, the generation term, G, is 

expressed in terms of the wall shear stress xw

G = x -4 (6.41)w 8
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where x itself is calculated from equations (6.38) and (6.39). Thew
eddy viscosity, p , is replaced by p in the dissipation source term t w
of the k equation, equation (6.22), for near wall regions. At the 

wall, values of k are decoupled from those at the near wall region and 

do not contribute to the solution for k. Therefore a zero gradient 

boundary condition for k is effectively imposed at the wall.

The dissipation rate, e, is dominated by the turbulent length 

scale near the wall. For near wall regions, e is calculated from (Pun 

and Spalding (1977))

c0.75 k i.5
e. = — ^----  —  (6.42)
6 K S

6.3.4 Planes of symmetry
At planes of symmetry, the natural boundary conditions, i.e. 

zero gradients, are used for both k and e. Hence their treatment 

follows those of outlet boundaries.

6.4 Computational aspects
The overall computational sequence for isothermal turbulent flow 

analysis is shown in Figure 6.1. It differs slightly from the 

flowchart for laminar flow calculations shown in Figure 5.1. The 

energy equation becomes redundant and two other differential 

equations, namely those for k and e, are now solved during each cycle. 

The imposition of boundary conditions for mean velocity components and 

mean pressure follow exactly from Chapter 4. The inlet values for k 

and e are specified through equations (6.29) and (6.30) respectively. 

Zero gradient boundary conditions are applied for k and e along the 

solid boundaries and the outlets. The initial values for k and e
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Cycle

Figure 6.

Start

Read input data

r -
Generate meshI

Fix boundary conditions

T
Set initial guesses

Set up and solve momentum equationsI
Calculate hat-velocity componentsI
Set up and solve pressure equationI

Update velocity components

r
Set up and solve k-equation

T
Set up and solve e-equationI
Update fluid propertiesI

No M Check convergence   * ” — ——. ~ T f - ‘
Yes

Evaluate derived quantitiesI
Stop

Program flowchart for turbulent flow calculations.
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elsewhere within the domain may be set equal to the inlet values in 

the absence of any other data. This will provide a better starting 

point for the calculations than zero fields. The momentum and pressure 

equations are solved by the same procedure outlined in Chapter 4. In 

setting up the k-equation, the source term, G, for the near wall 

region is modified according to equation (6.41). Similarly, the 

turbulent dissipation rate, e, near the wall region is determined from 

equation (6.42). The discretised equations for the turbulent 

quantities (equations (6.20) and (6.25)) are solved by the same 

line-by-line TDMA method described in Chapter 5. From the newly 

calculated values of k and e, the turbulent viscosity, is updated

according to equation (6.11) in the fully turbulent region. The near 

wall viscosity is calculated from equation (6.39). Solution 

convergence is ensured by the use of under-relaxation for k and e. 

Under-relaxation is performed implicitly as described in section 5.3. 

The amount of under-relaxation is strongly dependent on the flow 

conditions. A value of 0.5 was found to provide a satisfactory 

convergence rate. Although higher values were also employed to produce 

faster convergence properties. The above cycle is repeated until the 

pre-specified convergence criteria were fully satisfied. The 

convergence checks for the mean velocity and pressure fields were 

those discussed in section 5.4. The only convergence criterion used 

for the turbulent quantities was the percentage residual check 

(equation (5.13), where the inlet values of k and e provided the 

reference data.

Similar to the laminar case, the above cycle shows the general 

route through the various parts of the program. Under parabolic flow 

conditions, this route is shortened considerably. The solution is
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obtained in a marching fashion, where only one slab of the domain in 

the streamwise direction is considered at a time. The streamwise 

velocity is obtained with a guessed pressure gradient. The 

cross-stream velocity is calculated from the continuity equation. The 

pressure equation becomes redundant and the turbulence quantities are 

also evaluated for the given slab. A new estimate to the pressure 

gradient is calculated and the procedure is repeated until the 

convergence criteria are fully satisfied before moving on to the next
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SUMMARY AND RECOMMENDATIONS

7 .1  Summary J

This research was concerned with the development of an efficient 

Finite Element program for the analysis of conjugate fluid flow/heat 

transfer problems. The fluid flow conditions were limited to that of 

an incompressible, steady state two-dimensional laminar/turbulent 

flow. In Chapter 2, the general sets of governing transport equations 

for both laminar and turbulent transient flow regimes in 

three-dimensional Cartesian coordinate system were presented. The sets

were simplified for the cases of steady-state two-dimensional laminar 

flow with heat transfer and isothermal turbulent flow. In deriving the 

turbulent flow equations a time-averaging approach was followed. The

sets of equations were then used as the basic flow equations in the

subsequent chapters. The Galerkin weighted residual approach was 

presented by discretising the Poisson’s equation in two-dimensions. It 

was shown that the Galerkin approach was the most appropriate method

for this research. It offered the accurate imposition of boundary 

conditions encountered in fluid flow analysis. The linear three-noded 

triangular shape was selected as the basic element for this research. 

The selection was based on physical, computational and geometrical 

considerations. The use of triangular elements ensured the

global coefficient matrix, hence allowing the use of efficient 

iterative solution tecniques.

unconditional dominance of the diagonal terms in the fully assembled
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A new advection model was introduced in Chapter 3. The model was 

monotonic and conservative and was based on the physical processes 

involved in the advection transport. The model used upwinding along 

the streamline segment passing through each element. The model was 

thus discontinuous not only amongst elements but also within each 

individual element. The upwinding resulted in the diagonal dominance 

in the element matrix. This in turn ensured diagonal dominance in the 

fully assembled global coefficient matrix. Three stringent test cases 

were employed to determine the accuracy, stability and efficiency of 

the proposed model. These were the pure advection skew to mesh, the 

Smith and Hutton case and the pure advection on a rotating disk. The 

results were compared with other formulations currently in use. This 

exercise showed that the present model captures the physics of the 

advection phenomenon more accurately. The degree of numerical 

diffusion in the model was minimal and comparable with the best of the 

previously published results. The model also showed unconditional 

stability by predicting results without any spatial oscillation for 

the entire range of the flow Peclet number. Exact integrations were 

employed in evaluating the element integrals, which increased the 

computational efficiency of the model. The upwinding used the same 

element shape functions as those in the Galerkin method. This allows 

for the straightforward incorporation of the present advection model 

into other Finite Element programs which employ the Galerkin method.

A. new equal-order velocity-pressure formulation was presented in 

Chapter 4. The velocity and pressure fields were segregated and solved 

sequentially. The solution sequence is similar to the SIMPLER 

algorithm employed in FVM. The momentum equations were discretised by 

employing the streamline upwind model for the advection terms and the
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conventional Galerkin method for the viscous terms. The pressure 

gradient terms were approximated by assuming a known pressure field. A 

separate Poisson-type pressure equation was derived from the 

continuity equation. The pressure equation hence carried the physical 

constraint of satisfying the mass conservation. The discretisation of 

the energy equation was similar to that for the momentum equations. 

The velocity components were first obtained with a guessed pressure 

field. New estimates to the pressure were calculated from the pressure 

equation. The velocity fields were then updated with the new pressure 

field. The solution to the energy equation provided the temperature 

field. The above sequence would be repeated until the velocity, 

pressure and temperature fields converged to a final solution. The 

imposition of both essential and natural boundary conditions for all 

the variables were also given. The discretisation processes for all 

the variables produced diagonally dominant matrices, which could then 

be solved by an efficient iterative scheme as opposed to direct or 

semi-direct solvers.

In Chapter 5, the overall format of the laminar flow program was 

shown. This format is similar to other programs employing the FVM. The 

format is modular and future alterations or additions to the program 

are easily facilitated. The program was organised in such a way as to 

take advantage of the nature of the flow under consideration thereby 

minimising the required computational effort. For elliptic flows, the 

full solution sequence described above would be employed. Under 

parabolic flow conditions a marching solution sequence would be 

activated. The solution would then proceed one layer at a time along 

the predominant flow direction. An iterative solution procedure named 

RADIS and based on the TDMA solution sequence was developed. RADIS was
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designed for completely unstructured grids generated by the FEM. RADIS 

worked on individual regions within the domain of interest, hence 

distinguishing between the different flow regimes present in those 

regions. RADIS required minimum computer storage which increased 

linearly with the number of nodes in the domain with only the non-zero 

coefficients being stored. The computer storage was unaffected by the 

global node/element numbering. RADIS had a convergence rate similar to 

that of the conventional ADI procedure.

The accuracy, efficiency and robustness of the program in 

predicting the flow characteristics for several laminar flow cases 

were examined. These were parallel duct flow, flow over backward 

facing step, thermal cavity and plane jet impingement with heat 

transfer. The current predictions were compared with the analytical 

values or previously published experimental or numerical data. The 

fully developed duct flow was predicted exactly. The developing duct 

flow predictions were very close to past numerical data and were to 

within 2.5% of the analytical results. The backward facing step flow 

was analysed for the Reynolds number range of 100 to 1000. The primary 

reattachment point was predicted to within 22% of the experimental 

data in all cases. The thermal cavity flow was analysed for the
3 6Rayleigh number range of 10 to 10 . The agreement between the current 

predictions and the benchmark results was to within 38% . The analysis 

of the plane jet impinging on a heated flat plate provided the Nusselt 

number variation along the fluid/solid interface. The Nusselt number 

predictions came to within 8% of the previous experimental and 

numerical data. However due to the incorrect weighting of the 

advection terms for the jet impimngement case, the results should only 

serve to provide a qualitative estimate of the pressure and Nusselt
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number variations along the impingement surface.

Spurious pressure modes were absent in all of the current 

predictions. The pressure field was obtained without the need for any 

additional relaxing or smoothing procedures. The robustness of the 

program in providing converged solutions under varying flow 

configurations and boundary conditions was established. The overall 

efficiency of the program in handling large numbers of elements was 

demonstrated.

In Chapter 6, the turbulence closure was presented. The two 

equation k-e model was employed to calculate the turbulent viscosity. 

In the vicinity of solid walls, the Law of the Wall and the Log Law of 

the Wall were combined. This eliminated the need for excessive mesh 

refinement near solid walls. The imposition of boundary conditions for 

the turbulent kinetic energy and its dissipation rate were described. 

Three cases of turbulent flow were analysed. These were developing 

duct flow, backward facing step flow and plane jet impingement. The 

results of all the turbulent cases were provided separately in 

Appendix B. This was due to an incorrect weighting of the advection 

terms and the omittion of some of the turbulent diffusion terms. The 

adopted turbulence model was capable of providing the major features 

of turbulent flows in a variety of flow configurations and boundary 

conditions.

In general, the present research has demonstrated the ability of 

the FEM in predicting the main flow characteristics for different 

geometries and boundary conditions, accurately and efficiently. Some 

novel features had to be introduced in order to achieve this goal.
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These were the stable treatment of the advection terms, the 

equal-order velocity pressure formulation, the velocity-pressure 

segregation and the use of an iterative solution algorithm. The 

relative simplicity of the present formulation was maintained by the 

use of simplex elements for which exact integration formulae exist.

7.2 Recommendations for further work
The following recommendations are aimed to provide possible 

directions for future work with respect to the present research:

1. The accuracy and the stability of the streamline upwind formulation 

should be examined more rigorously. This might be achieved by 

considering other test cases possibly in the presence of a source 

term. To examine the degree of conservatism offered by the 

formulation, test cases with variable fluid properties could be 

employed.

2. The extension of the streamline upwind formulation to 

three-dimensions and also to other coordinate systems, especially 

the cylindrical system, should be investigated. The time-dependent 

version of the formulation could open more insight into its 

behaviour.

3. The application of the segregated velocity-pressure formulation 

should be examined more thoroughly. This should include the 

examination of the laminar jet impingement with heat transfer with 

the correct advection weighting. Problems which include fluids with 

variable properties, and even non-Newtonian fluids should be 

considered. Compressible versions of the formulation could be 

developed. Its extension to other coordinate systems and to 

three-dimensions should be relatively easy and would require 

mathematical manipulations without the need for further novelties.
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The transient version of the formulation could be derived by 

employing inertial relaxation techniques.

The convergence properties of the velocity-pressure formulation 

should be examined closely. Any improvement on the convergence rate 

would obviously make the whole program more efficient. Algorithms 

based on SIMPLEST (Spalding (1980)), SIMPLEC (van Doormaal and 

Raithby (1984)) or PISO (Issa (1985)) schemes could quite readily 

be formulated.

The iterative solver may be made to converge faster by increasing 

the spatial coupling between the nodes. This could be achieved by, 

say the SIP (Stone (1968)) scheme. Also, a Multigrid method could 

be developed for which the current solver would act as the initial 

smoother.

The adaptation of the iterative solver for other element types in 

both two- and three-dimensions could provide a very efficient 

solution method for the unstructured grids frequently encountered 

in the FEM.

The accuracy of the k-e model in conjunction with the FEM should be 

investigated by incorporating the correct weighting for the 

advection terms and including the missing turbulent diffusion 

terms. Since, the streamline upwind formulation provided an 

accurate approximation to the advection terms, the applicability of 

the k-e model itself could then be assessed more precisely. This 

could include the revision of the constants used in the model.

The segregated approach of the present Finite Element formulation 

allows the efficient examination of other turbulence models in 

conjunction with the FEM. In particular, the performance of the 

Algebraic Stress or the Reynolds Stress models could be 

investigated.
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EVALUATION OF ELEMENT COEFFICIENT MATRIX

Assuming unit diffusivity, i.e. T = 1, from equations (2.28) and

(2.39) the element coefficient matrix reduces to

dN 6N ^ dU SN I ,.eQ-J + -S-l ^-J dAdx dx dy dy j (A.l)

A. 1 T r ia n g u la r  element

Evaluating the above integral for a triangular element produces (see 

Segerlind (1976))

[ A  ]* - i4A

b  b  b  b b  b c c c c c ci i l j 1 k i i i j 1 k

b  b b  b + i _ c c C C
J J J k 4A J J J k

Sym b  b Sym C ck k k k

(A.2)

where, for the element shown in Figure 2.2(a),

A = area of triangle = - L L2 ij Jk
and

V  V  yk= -% • v V  y i = L Jk • V  yi" yj= 0 and 

cr  v  V  0 • cj= V  xk= "Lij ■ ck= xj" xi= L.j

(A.3)

(A.4)

Using equations (A.3) and (A.4) in (A.2)

[ A  ] • - 2 L L ij jk

L2 -L2 0Jk Jk

-L2 L2 0
Jk Jk

0 0 0
2 L Lij jk

0 0 0

0 L2 -L2ij ij
0 -L2 L2ij ij.

(A.5)

With aspect ratio, defined as
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Evaluation of element coefficient matrix

equation (A.5) finally becomes

Appendix A

1
"a 0

X+A -A

-A A

(A.7)

A.2 Rectangular element

Evaluating the integral in equation (A.l) using 2x2 Gauss quadrature 

for the rectangular element shown in Figure 2.2(b), produces (see 

Segerlind (1976))

[ * I
. L1 Jk
6 Lij

' 2 -2 -1 1‘ T ' 2 1 -1 - 2 *
-2 2 1 -1 +  1 iJ 1 2 -2 -1
-1 1 2 -2 + 6  l r -1 -2 2 1
1 -1 -2 2 J k -2 -1 1 2

(A.8)

Using A as defined by equation (A.6), the above equation reduces to

2 n

[ > r  = §a

2+2A2 -2+A2 -1-A2 1-2A
-2+A2 2+2A2 1-2A2 -1-A2
-1-A2 1-2A2 2+2A2 -2+A2
1-2A2 -1-A2 -2+A2 2+2A*

(A.9)
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TURBULENT FLOW EXAMPLES

Three test cases were used to validate the accuracy of the turbulence 

model. The developing flow in a plane duct was chosen to test the 

parabolic solution sequence. The backward facing step provided the 

measure of accuracy, stability, efficiency and robustness of the 

overall formulation for a recirculating flow condition. Finally the 

case of a plane isothermal jet was analysed and results were compared 

with available experimental data. While analysing the above cases, the 

advection terms in the governing transport equations were incorrectly 

weighted by the area of the element containing the downwind node shown 

in Figure 3.5, rather than the correct value given by equation 3.20. 

This has in effect enhanced the diffusive transport by an approximate 

factor of two. Also there are parts of the turbulent diffusion terms, 

S and S in equations 6.5 and 6.6, which were omitted. Therefore the
U  V

results should only be interpreted qualitatively.

B.1 Developing duct flow

This flow condition has been the subject of numerous experimental 

and numerical investigations in the past, e.g. Laufer (1950), Launder 

and Spalding (1974), Pun and Spalding (1977), Hutton (1979) and 

Schnipke (1986). The flow arrangement is depicted in Figure B.l, which 

corresponds to the experimental rig of Laufer (1950). The flow is 

between two smooth parallel plates separated by a distance H. The 

domain length is 50 H, which is long enough for the flow to assume a 

fully developed profile. No-slip boundary conditions are imposed along
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the walls. A flat velocity profile is specified at the inlet. With 5% 

turbulent intensity, the inlet values of k and c are evaluated from 

equations (6.29) and (6.30), The zero gradient boundary condition is 

specified for k along the walls. No outlet boundary conditions were 

required as a parabolic solution sequence was employed, see section 

6.4.

Outlet

U = V = 0

Inlet — ^ U  inlet

50H U = V = 0  1
Y

Figure B.l Geometry and boundary conditions for developing 
turbulent duct flow (not to scale).

The computational domain is shown in Figure B.2. It consists of 

25 rows and 31 columns giving 775 nodes and 1440 elements. The mesh is 

non-uniform being denser ln the developing and the near wall regions, 

where sharp gradients in the velocity, k and e fields are expected. 

Finer meshes were also employed which resulted in less than 1% change 

in the axial position where the centreline velocity reached 99% of its 

maximum value. For the current analysis a single slab, I.e. one column 

of elements in the x-direction, was considered at a time before moving
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on to the next slab. The solution convergence was based on the mass 

flowrate check given by equation (5.15) with 0.01% maximum difference 

between the in-flow and the out-flow for each slab. The analysis was 

carried out with an inlet Reynolds number of 24600 based on the plate 

separation and the mean inlet velocity.

Figure B.2 Computat ional mesh for developing 
turbulent duct flow (not to scale).

The computed velocity profile at the outlet is compared with the 

experimental data of Laufer (1950) and the numerical prediction of 

Schnipke (1986) as shown ln Figure B.3. The values are normalised 

against the centre line velocity. The agreement between the three sets 

of data in the near wall region is very good. The same agreement is 

also observed in the core of the flow around the centre line. The 

maximum deviation from the experimental data is 4% at x/H = 0.385. The 

overall agreement between the current parabolic solution and the 

elliptic prediction of Schnipke (1986) is also very good with a 

maximum difference in the predicted velocities of 9% at x/H = 0.425.
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1 0

0 8

Laufer ( 1 9 5 0 )  
Schrtipke ( 1 9 8 6 )  
Current work

0.4

0.2

0.2 0.3
distance from  centre line, y /H

0.4 0 .5

Figure B.3 Comparison of outlet velocity profiles 
for developing turbulent duct flow.

The above parabolic analysis was performed on a Digital VAX-8550 

machine and took 13.48 seconds to complete.

B.2 Backward facing step flow

This flow is characterised by a large recirculation region 

downstream of the step caused by the sudden expansion in the cross 

sectional area. This recirculation region will strongly influence the 

rates of heat and mass transfer in the vicinity of the step as shown 

by Sparrow and Kaljes (1977). The accurate prediction of such a region 

is therefore of prime importance. The turbulent backward facing step 

flow has been studied in detail both experimentally and numerically in 

the past, e.g. Castro (1978), Leschzlner (1980) and Armaly et al 

(1983). It was also the subject of the 1980-81 Stanford Conference on 

complex turbulent flows, Nallasamy (1985). It presents a challenging
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test for the current turbulent formulation and will determine its 

accuracy in predicting the position of the reattachment point against 

the available experimental data.

The geometry and boundary conditions for this flow is shown in 

Figure B.4, which corresponds to the experimental rig of Armaly et al 

(1983). With reference to Figure B.4, they noticed that the velocity 

profile along the inlet channel was parabolic up to 4s behind the 

step. The length of the inlet channel before the step is 15mm. In the 

absence of any other data, the inlet velocity profile was taken as the 

fully developed velocity profile shown in Figure B.3. The Inlet values 

for k and e also corresponded to those calculated for the previous 

example. No-slip boundary conditions were Imposed along the top and

15mm 200mm
U=V=Q

Turbulent inlet velocity

r e a t t a c h m e n
P=Q

Figure B.4 Geometry and boundary conditions for turbulent 
backward facing step flow (not to scale).
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the bottom walls. The length of the channel downstream of the step Is 

200mm, which Is sufficiently long for the flow to approach a fully 

developed profile. Natural boundary conditions were used for velocity, 

k and c fields at the outlet with pressure fixed at zero. The inlet 

Reynolds number is given by

U D
Re = - ^ 2 —  (B.l)

v

where U is two-thirds of the maximum inlet velocity, D is twiceavrg
the channel opening at the inlet and v is the kinematic viscosity. 

Armaly et al (1983) observed that the flow was fully turbulent for Re 

> 6600. The current analysis was performed for Re = 7000. The

computational mesh is shown in Figure B.5. It is a non-uniform mesh 

consisting of 1682 nodes and 3190 elements. The mesh is dense around 

the step and near the top and bottom walls. Finer meshes were also 

employed which did not result in more than 5% change in the position 

of the reattachment point.

Figure B.5 Computational mesh for turbulent backward 
facing step flow (not to scale).
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A fully elliptic solution sequence was employed for this 

analysis, see Figure 6.1. To avoid solution divergence, implicit 

under-relaxation was employed for all variables except pressure, see 

equation (5.5). The pressure field was relaxed through the pressure 

gradient terms, see equations (4.13) and (4.14). The relaxation 

parameters were set to 0.5 for all variables. Computations were 

terminated when the maximum percentage residuals and the percentage 

mass flowrate balance given by equations (5.13) and (5.15) 

respectively fell below 0.05%. The starting values for the velocity, k 

and e fields throughout the domain were set to their respective 

maximum values prevailing at the inlet.

Figures B.6(a) and (b) show the pressure and the streamline plots 

near the step respectively. The pressure field is nearly one 

dimensional upstream of the step becoming singular at the step. It 

then rises through the expansion and subsequently falls further 

downstream of the step. Also a one-dimensional pressure field was 

observed along the main portion of the channel downstream of the 

reattachment point (not shown in the figure). The pressure field was 

obtained without any additional relaxing or smoothing techniques. This 

clearly demonstrates the success of the present formulation in 

providing realistic pressure fields in the absence of spurious 

pressure modes. The predicted location of the reattachment point on 

the bottom wall is shown in Figure B.6(b). This point is predicted to 

be 43.6mm (X /s = 8.8) downstream of the step. The value measured byR
Armaly et al (1983) was about 39.2mm (X /s =* 8). The current analysisK
is therefore overpredicting the reattachment point by about 10%. This 

difference is mainly attributed to the discrepancy between the 

prescribed inlet boundary conditions and the experimental conditions
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(b)

Figure B.6 Turbulent backward facing step flow at Re = 7000,
(a) pressure field and (b) streamline plot.
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of Armaly et al (1983). As illustrated by Hackman et al (1984), the 

position of the reattachment point, as well as being a function of the 

inlet Reynolds number, also depends strongly on the inlet conditions 

including those of the turbulent quantities. Nallasamy (1985) in his 

summary of the results for the backward facing step flow at the 

1980-81 Stanford Conference, reported that even the best methods were 

underpredicting the reattachment point by about 10%. The computations 

were performed on a Digital VAX-8550 machine. The solution converged 

after 205 cycles and 5890 seconds.

B.3 Confined plane Jet impingement
The final test case is that of a confined isothermal plane 

turbulent air jet impinging on a smooth flat surface. Jet impingement 

on a solid wall is commonly encountered in engineering practice, e.g. 

jets issuing from hydraulic outlet works, vertical take-off aircrafts, 

vectoring of fighter planes, chemical combustion devices and many 

more. Flow situations near solid boundaries depend strongly on the 

impingement conditions such as nozzle width, nozzle-to-surface 

separation, nozzle exit velocity and turbulent intensity and 

impingement angle. It is both time consuming and expensive to conduct 

extensive experimental studies on a case-by-case basis. Numerical 

modelling can on the other hand provide relatively inexpensive means 

of understanding the basic structure of impinging jet flow fields.

One-equation models have been employed to predict the flow 

characteristics under an impinging turbulent jet. These models require 

the specification of the turbulent length scale which must be 

determined from simple empirical relations, e.g. Wolfshtein (1967), 

Russell and Hatton (1972) and Lampinen (1985). In the latter, the
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height of the channel formed between the confinement plate and the

impingement surface was used as a limiting value for the length scale. 

The major drawback with the one-equation models is the empirical 

determination of the turbulent length scale which, as in the case of 

the turbulent velocity scale, has transport and history effects. The 

high Reynolds number version of the k-e model has been most popular in 

analysing two-dimensional plane turbulent jets, e.g. van Heiningen 

(1982), Guo and Maxwell (1984) and Polat et al (1985). The algebraic 

stress model has also been employed, however this was shown by Looney 

and Walsh (1984) to perform badly in the stagnation region, where 

results differed markedly from the measurements.

The flow configuration for the present analysis is shown in

Figure B.7. The flow is symmetric about the centre line. The 

separation distance between the confinement plate and the impingement 

surface is H. The nozzle half-width, D, is 0.125 H. The flow is

extended to 30 H downstream of the stagnation point. At the inlet, a

flat velocity profile is specified. With 5% turbulent intensity, inlet 

values of k and e are calculated from equations (6.29) and (6.30). 

Along the confinement plate and the impingement surface velocities are 

set to zero and natural boundary conditions are imposed for k and e. 

Pressure is fixed at the outlet with zero gradients for all other 

variables. Figure B.8 shows the non-uniform computational mesh used 

for this analysis. The mesh consists of 721 nodes and 1350 elements. 

Fine mesh grading was employed around the centre line and in the near 

wall regions along the confinement plate and the impingement surface. 

The grid independency of the results were checked for this mesh, where 

finer meshes resulted in less than 5% change in values of all 

variables at the stagnation point.
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InletH u - v = o Confinement plate

Stagnation
Impingement surface

U = V=0 

30 H

Outlet

P=0

Figure B.7 Geometry and boundary conditions for confined 
plane turbulent Jet (not to scale).

Figure B.8 Computational mesh for confined plane turbulent 
jet (not to scale).
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The jet inlet Reynolds number is calculated as

V D
Re =   (B. 2)

v

where is the jet inlet velocity, D is the nozzle half-width and v

is the kinematic viscosity. Gardon and Akfirat (1966) regarded the 

plane jet to be turbulent for Re > 1000. In accordance with the 

studies of Gardon and Akfirat (1965), Wolfshtein (1970) and Hwang and 

Liu (1989), this analysis was performed for Re = 5500 and 11000.

Figures B.9(a) and (b) show the velocity vector and streamline 

plots for Re = 5500 respectively. The velocity field was obtained by 

interpolating between the nodal values of velocity along the lines of 

constant x. The fluid, after impinging on the bottom surface, is made 

to accelerate through the channel like constraint formed between the 

recirculation bubble and the impingement surface. The recirculation 

region extends to x/D = 34 and represents a very low velocity 

circulating fluid. The growth of the wall jet along the impingement 

surface is clearly visible from Figure B.9(a). This region occupies 

about 80% of the longitudinal flow by x/D = 34. Further downstream of 

this point the flow is essentially that of a developing duct flow. 

Figures B.10(a) and (b) show the pressure and shear stress variations 

along the impingement surface. From Figure B.10(a), the agreement 

between the experimental data of Gardon and Akfirat (1965), 

predictions of Hwang and Liu (1989) using FVM and the current work is 

very good and to within 5%. The shear stress variation is also 

predicted to within 3% of the previous data up to x/D = 2.5, see 

Figure B.10(b). The current analysis indicates a sharper fall in the 

shear stress after x/D =2.5, compared to the other two sets of data.
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5

(a)

Figure B.9 Confined plane turbulent jet at Re = 5500,

(a) velocity field and (b) streamline plot
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Gardon Sc Akfirat (19 65 ) 
Hwang Sc Liu (1 9 8 9 )

-  Current work

0.8

X0.2

3.02.52.01.50.5 1.0
distance from  stagnotion po in t, x /D  

(a)

0.6
Wolfshtein (1970) 
Hwang Sc Liu (19 89 ) 

-  Current work

0.2

0.5 1.5 2.0 2.5 3.0
distance from  stagnation point. x /D

3.5 4.0

( b )

Figure B.10 Comparison of results for confined plane turbulent 
jet at Re = 5500, (a) pressure and (b) shear stress 
variations along the Impingement surface.
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The peak in shear stress is predicted to be at about x/D = 2, which is 

in excellent agreement with the other results.

Figures B.11(a) and (b) show the velocity and streamline plots 

for Re = 11000 respectively. The recirculation region extends to x/D = 

45. The fluid outside the wall jet region is almost stagnant. Figures

B. 12(a) and (b) show the comparison between the current work and the
i

previous results for Re = 11000. From Figure B.12(a), the pressure 

variation along the impingement surface up to x/D = 1.5 is predicted 

to within 5% of the experimental data of Gardon and Akfirat (1965) and 

the numerical solution of Hwang and Liu (1989). The results for x/D >

1.5 start to deviate from those of Hwang and Liu (1989), but remain 

very close to the measurements of Gardon and Akfirat (1965). The 

pressure drops to about 0.1% of its stagnation value at x/D = 3.0. The 

shear stress variations along the impingement surface are shown in 

Figure B.12(b). The current predictions are in very good agreement 

with the measurements of Wolfshtein (1970) and to within 5%. The same 

agreement is observed with the numerical solution of Hwang and Liu 

(1989) up to x/D = 1.5 after which the results start to deviate 

slightly. The maximum shear stress is predicted to occur at about x/D 

= 1.25 which is in excellent agreement with the other two data.

As for the previous test cases, the above computations were 

performed on a Digital VAX-8850 machine. The confined turbulent jet 

with Re = 5500 was started with the U-velocity, k and e fields set 

initially to their corresponding maximum values at the inlet. 

Under-relaxation of 0.5 was used for all variables including pressure. 

The solution converged after 245 cycles which took 2990 seconds of the 

CPU time. The solution set was used as the starting point for Re =
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(a)

(to)

Figure B.ll Confined plane turbulent jet at Re = 11000,

(a) velocity field and (b) streamline plot.
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0.8
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(b)

Figure B.12 Comparison of results for confined plane turbulent

jet at Re = 11000, (a) pressure and (b) shear stress

variations along the impingement surface.
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11000. A further 185 cycles took 2100 seconds to yield the final 

converged solution. The convergence criteria were those of maximum 

percentage change and the percentage residual check with the limiting 

values of 0.5% and 0.05% respectively, see equations (5.8) and (5.13).
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