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A bstract

This thesis reports on the development of a method to enable artificial systems, specifically robots, 
to autonomously acquire a diverse lexicon of natural language terms. In this case English words 
which can be used to facilitate communication between themselves and their human operators. For 
reasons that will become clear, this task is referred to as ‘lexical acquisition and grounding.’

It is argued herein that in order for this communication to succeed, the artificial systems must gain an 
intrinsic understanding of the meaning of these words. Moreover, it is argued that such an intrinsic 
understanding is ultimately founded upon the systems ability to experience, via sensory and motor 
systems, its surrounding environment. Put in simple terms, this is similar to arguing that a blind 

man could never truly understand an English word such as ‘green.’ Support for these arguments is 
provided by way of a comprehensive analysis and interpretation of a variety of recent theories (e.g. 
Harnad’s Symbol Grounding Theory) from Cognitive Science, Psychology, and Philosophy which 

reject a number of ‘traditional’ approaches to defining the meanings of words on various grounds.

A review of related work deals with a number of practical models that have been developed from 
similar theoretical foundations. Based upon an assessment of the strengths and weaknesses of each 
approach an alternative approach to the lexical acquisition and grounding task is suggested. This 
approach applies an existing theory of computation -  Adaptive Resonance Theory (ART) -  to this 
task. This new application of ART is examined empirically and then ART models are adapted and 
extended in relation to various task specific requirements.

The aim and objectives of the work described in this thesis have been achieved, in that a model has 
been developed that is able to autonomously acquire English words in an incremental and continual 
manner and demonstrates that it has an understanding of these words. Moreover, it has been shown 
that this model can concurrently learn meanings with respect to more than one sensory domain and 
that the model can operate in a manner that is fast enough to warrant its practical implementation. 

With support from empirical investigation and theoretical analysis it has been shown that, on several 

counts, the application of an ART-based framework to the lexical acquisition and grounding task 
provides significant advance on systems that have been developed in the past to address this problem.
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C hapter 1

Introduction

1.1 Background

The advent of general purpose computing technology has revolutionised the way that mod­

ern society works. In the field of engineering its impact has been profound, having brought 

about advances in diverse areas such as design (computer aided design), production schedul­

ing, robotic control, and inventory management to name but a few.

In recent years a great deal of effort has been focused toward making the powerful artificial 

systems that employ such technology easier to use. The interface between human and 

computer, man and machine, has become a topic of major research interest. One particular 

vision that continues to motivate a great deal of the contemporary work in this area is that 

of natural language communication; the realisation of artificial systems tha t can understand 

and utilize the language that humans use to communicate, e.g. spoken and written English.

The benefits to be gained from building artificial systems that can ‘speak our language’ are 

innumerable and far reaching. For one, such technology would be inherently more accessi­

ble. Currently, in a typical engineering environment, the operation of most computerised 

production systems, e.g. robotic cells, machine tools etc., entails first acquiring an under­

standing of the formal artificial language of control that the particular system exploits. 

Natural language interaction, e.g. via spoken English, would eliminate this prerequisite and 

in doing so reduce the burden of training in terms of both time and cost.

1
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The academic study of liuman-computer natural language communication has become es­

tablished within a field known as Natural Language Processing (NLP) which is itself a 

sub-field of Artificial Intelligence (AI) l . The NLP research field is far from autonomous; 

Theoretical Linguistics, Cognitive Psychology, and Philosophy are but a few, amongst the 

diverse body of disciplines that motivate and influence NLP practice.

Despite decades of active NLP research, e.g. see Grishman (1986), the scientists and engi­

neers who work in the field are still a long way from constructing an artificial system that 

can truly be said to understand even a modest proportion of natural language. In fact, the 

current state-of-the-art NLP systems still demonstrate a linguistic aptitude greatly inferior 

to that of an average pre-school child. Although a ‘full solution’ has not been forthcoming, 

significant advances have been made (Bates &; Weischedel 1993, Allen 1995, Jurafsky & 

Martin 2000). These have, by and large been confined within specific sub-areas of NLP 

proper, these sub-areas being :

• Phonetic Analysis : Considers how the basic sounds (phonemes) of spoken language 

link to produce words e.g. the word ‘create’ is constructed from the English phonemes 

k, r, ee, ay, t.

• Morphological Analysis : Considers the various constituents, or morphemes that make 

up a given word, e.g. the adjective ‘incoming’ is formed from ‘in’ (a prefix), ‘come’ 

(the root), and ‘ing’ (a suffix).

•  Syntactic Analysis : Considers the set of structural relationships (a grammar) that 

hold between the various syntactic classes of words (nouns, verbs, adjectives etc.) in 

a given language.

•  Semantic Analysis : Considers the interpretation (meaning) of linguistic expressions 

(symbols) from the lexical level (words) through to the sentential level.

1 Natural language ability is often cast as the fundamental defining feature of general intelligence. This 

view is evident in the Turing Test which was proposed, by the famous British scientist Alan Turing, as a 

measure by which to judge intelligence. A human judge is required to converse with another agent via a 

teletype system. Based upon the written responses the judge is required to determine if the agent is human 

or artificial. If an artificial agent is judged to be human then in Turing’s eyes the agent could be viewed as 

being intelligent.
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• Pragmatic Analysis : Considers the intentional, as opposed to literal, meaning of a 

linguistic expression, taking into account the surrounding communicative situation 

(discourse) and knowledge of the world.

In the area of phonology, a great deal of academic research has now developed to the 

point of commercial fruition, e.g. phonological findings have found application in the latest 

Automatic Speech Recognition (ASR) systems. The same is also true of morphological 

research; a number of practical large-scale analyzers are now commercially available (a 

review of applied morphological analysis can be found in (Karlsson & K arttunen 1996)). By 

contrast, progress in syntactic, semantic, and pragmatic analysis has been less forthcoming 

and many problems still remain.

1.2 Domain of Investigation

The work described in this thesis addresses certain issues that are of fundamental impor­

tance within the domain of semantics. Specifically, it considers how artificial systems may 

acquire an intrinsically meaningful set of basic linguistic symbols. This task — lexical 

acquisition and grounding (LAG) — is now described in greater depth.

1.2.1 Basic Linguistic Symbols

Basic linguistic symbols are the minimal meaningful units of quantity within a language, 

e.g. phrases, words, morphemes. Throughout the discussions detailed in this thesis, only 

words are considered as candidates. Based upon this consideration, a set of these basic 

symbols can be viewed alternatively as a lexicon. In the original investigations that follow 

in the latter sections of the thesis, the lexicon that is acquired is restrained to a collection 

of English nouns. The rationale for this is twofold :

1. The work presented here is put forth as a step toward natural language interaction 

between humans and robotic systems. Typically, in engineering environments such 

systems interact with solid objects in a three dimensional domain (e.g. robotic as­

sembly tasks (Howarth 1998)). For language to be of any use the lexicon employed
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must suffice to describe such a domain. In English, the words that are regularly used 

to refer to such 3D objects fall within the syntactic category of symbols labelled as 

nouns.

2. Prom an alternative perspective, members of the syntactic category of nouns — such as 

those used to refer to ‘concrete’ objects (Sales 1996) — are generally the first lexical 

symbols tha t are acquired in human linguistic development (Clark 1973, McShane 

1979).

The basic linguistic symbols are of extreme importance from a foundational point of view, 

since it is the meanings of these basic symbols that combine to give meaning to the more 

complex composite linguistic symbols, e.g. sentences. Without some understanding of the 

words ‘block’, ‘pick’, and ‘red’, the possibility tha t one might understand the sentence, ‘pick 

up the red block,’ seems remote (cf. the principle of compositionality [see section 2.1.1]).

1.2.2 Intrinsic Meaning

W ritten words such as those that combine together to make the text on this page have 

no meaning in and of themselves, they are simply arbitrary patterns and squiggles. For 

example, the word ‘dog’ does not embody any feature or property of the distal objects to 

which it refers, i.e. it has no smell, feel, sound, shape etc. that bears any relation to “man’s 

best friend” 2. Despite this fact, when processed by a competent English language user, the 

text is meaningful because each pattern or squiggle has a consistent interpretation, i.e. the 

user can associate a word with a concept (the users intrinsic semantic knowledge).

The general approach to building the semantic component of artificial NLP systems has 

traditionally relied heavily upon designer introspection. The common view is that one can 

endow an artificial system with semantic knowledge — in the form of explicit symbolic 

representations — devised on the basis of one’s own conscious understanding of the way 

the world is, i.e. the designer strives to formalise (symbolise) his, or her own knowledge. 

Figure 1.1 provides an example of how the meaning of, or the concept referred to by, the

2 It is exactly this property (arbitrariness) that gives words their symbolic status —  words are quintessen­

tial symbols (cf. (Pinker 1994, Dorifner 1995)).
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ANIMAL

CARNIVOREFURRY

QUADRUPED

Figure 1.1: Semantic knowledge: a (pseudo) symbolic representation of the meaning of 
‘cat.’

word ‘cat’ might be explicitly represented3 in terms of other symbols.

In recent years, this type of approach has come under increasing scrutiny. Arguments 

abound4 that maintain a full account of meaning cannot be captured by way of such symbol 

to symbol relations — they all point to an underlying paradox which is integral to the above 

methodology: meaning can be defined in terms of meaningless entities. A brief explanation 

of this paradox can be put as follows. When processed by humans, explicit representations 

of the type described above fulfil their function because, and only if, the definiendum (the 

symbols to which the unknown symbol is related) are meaningful entities5, e.g. a child that 

has never encountered the symbol ‘cat’ can learn about its reference based upon his/her 

implicit prior knowledge of the symbols ‘ANIMAL’, ‘f u r r y ’, etc. In an artificial NLP system 

one cannot assume this to be the case. In fact the definiendum are just more arbitrary 

squiggles tha t are in need of an interpretation themselves, i.e. ‘ANIMAL’, ‘FURRY’, etc., 

are as meaningless as ‘cat’ to the artificial system. Based upon the above approach, an 

interpretation of these definiendum can only be established by referring them to further 

symbolic definiendum, which will again be in need of interpretation. The point is, as

3 The systems of logic, semantic networks etc. that have traditionally provided the infrastructure for 

such knowledge representation are described in greater detail in chapter 2.

4 The most historically consequential of these, and other arguments that position themselves against a 

symbolic account of meaning representation, are given the full consideration that they deserve later in the 

thesis.

5 The functionality of a dictionary is dependent upon this assumption.
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C OGNITIVE SY STEM

Linguistic
Representations

Spatial
Representations

Motor 
Feedback

Motor
Information

Visual
information

Auditory
Information

Olfactory
information

Figure 1.2: Linguistic representations (e.g. lexical symbols) have intrinsic meaning because 
they are cognitively submersed (figure adapted from (Landau & Jackendoff 1993)).

Dennett so eloquently puts it, that “a computer whose only input and output was verbal 

would always be blind to the meaning of what was written” (Dennett 1969, p. 182).

The work described in this thesis takes as its lead a quite different semantic methodology 

which is founded on the premise that the symbols which represent categories to humans 

(like nouns in natural languages), are intrinsically meaningful because they are connected 

to the world (a hubbub of electromagnetic stimuli) in a causal and non-arbitrary way, 

via perception — the linguistic symbols are grounded (Harnad 1990). From this alternative 

perspective, the word ‘cat’ is rendered meaningful because it is hooked to a mental state (an 

internal concept) that analogically embodies — based on the transduction and quantisation 

of sensory signals — some structure of the distal object, or category of objects to which the 

word refers, e.g. the sort of shapes that cats are, the sounds they make, the smell they have 

etc. Hence, on the basis of the new approach, linguistic capacity is intertwined with, and 

dependent upon, a wider range of cognitive functionality, i.e. input and output transcends 

the level of verbal description (see figure 1.2).

1 .2 .3  A cq u is it io n

The majority of work that has, and continues to be conducted within the realm of NLP, 

and to a large extent within AI as a whole, can be thought of as designer-centric (DC),

i.e. artificial system designers endeavor to encode their own knowledge within artificial
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models of the world using explicit rules and representations6. Although the DC methodology 

enjoys predominance within NLP practice it is certainly not above criticism. There are two 

somewhat overlapping critiques that are commonly voiced :

1. That DC imparted knowledge is ‘brittle.’ In symbolizing his or her own knowledge, 

the designer can often overlook a potential dependency7. The result of this can be 

the creation of fragile systems which are not robust in real environments; systems 

that can fail catastrophically and unexpectedly, as Harnad illustrates in the following 

example :

A “scene-understanding” program will blithely describe the goings-on in 

a visual scene and answer questions demonstrating its comprehension (who 

did what, where, why?) and then suddenly reveal that it does not “know” 

that hanging up the phone and leaving the room does not make the phone 

disappear, or something like that. (It is important to note that these are not 

the kinds of lapses and gaps in knowledge that people are prone to; rather, 

they are such howlers as to cast serious doubt on whether the system has 

anything like “knowledge” a t all.) (Harnad 1990, p.339)

2. The manual construction and implementation of rules and representations can be 

tedious and error prone. As new knowledge is added — to overcome previously un­

foreseen knowledge gaps — the designer must check that it is not in conflict with any 

of the knowledge that already resides.

An alternative proposal, and one tha t is endorsed here, is for an artificial system to be crafted 

in such a manner as to enable it to automatically obtain a large proportion of the knowledge 

that it will require to communicate by way of natural language. This will necessitate, 

amongst other things, the acquisition of (1) lexical symbols, and (2) their meanings. The 

notion is that if the system can develop and adapt its knowledge, or understanding, in a

6 The DC approach is also often labelled as ‘representationalist.’ The best contemporary large scale 

example of the DC approach can be found in the CYC (Lenat 1990, Lenat 1997) project which stresses 

natural language understanding as one amongst its numerous goals.

7 The Frame Problem, which is well documented within AI (McDermott 1976, Pylyshyn 1987), is the 

problem of foiling to clarify and formalize such dependencies.
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bottom-up fashion, progressing from the rudimentary to the complex, then it is more likely 

to succeed where DC systems have failed, i.e. it should be robust in real environments.

The above proposal fits with, and is in part based upon, the assumption that it is the 

experience of, and interaction with, one’s environment that motivates communication and 

consequently natural language. Hence, in systems that apply the above methodology, a 

lexicon develops as required. As a system encounters, and acquires an understanding of 

novel phenomena arising within its environment, it is motivated to simultaneously acquire 

a novel lexical symbol that can be employed to refer to these phenomena. This incremental 

route of learning should remove a huge burden from the system designer, viz. the need to 

speculate about what words and knowledge might be required8.

It is now widely accepted that natural language skills piggy-back on a diverse and vast 

foundation of general knowledge. The scope of this knowledge effectively rules out the 

possibility that one might create an artificial system that is able to competently utilise 

natural language using the DC approach, and lends support to D ennett’s premise that “the 

only practical way of doing it [creating such a system] is one version or another of Mother 

Nature’s way — years of embodied learning.” (Dennett 1997, p.359)

1.2.4 Embodied Artificial Systems (EAS)

As stated briefly above, the core motivation for the work presented in this thesis arises from 

the (still distant) image of advanced natural language interaction between humans and 

robotic-type systems. It is these robotic-type systems that can be thought of as embodied 

in the following sense: they are systems that can, by way of their sensorimotor peripheries, 

experience and/or interact in, a physical world.

Although, a robotic-type domain was envisaged from the outset, to provide a framework 

from which to investigate issues in human-machine interaction, its importance vis-a-vis 

natural language semantics, and understanding (from a general perspective) was not appre­

ciated. W hat has been touched upon above, and shall be further clarified in the discussions 

that follow, is the fact that only embodied systems have any chance of truly understanding

8 It should be noted, however, that such learning will not necessarily overcome the problem of conflicting 

knowledge as stated in critique 2.
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natural language — given the premise that meaning is inextricably linked with, and derived 

from, real experience — and then only if the structure of this embodiment is apt.

This human-EAS research direction provides a stark alternative to tha t which has influenced 

the majority of NLP work, viz. that language can be thought of as a predetermined system 

of rules and representations that operates in a closed autonomous maimer, independent 

of any other cognitive functionality, e.g. visual processing. Though this view is perhaps 

strange, when one considers that before such work was initiated one of the forefathers of 

modern AI, Alan Turing, seemed to suggest that as a prerequisite to natural language use, 

machines would require the ability to learn and perceive their surrounding environment:

“We may hope tha t machines will eventually compete with men in all purely 

intellectual fields. But which are the best ones to start with? Even this is a 

difficult decision. Many people think that a very abstract activity, like playing 

chess, would be best. It can also be maintained that it is best to provide the 

machine with the best sense organs that money can buy, and then teach it to 

understand and speak English. This process could follow the normal teaching 

of a child. Things would be pointed out and named, etc.” (Turing 1950)

It has taken many years, but finally ideas that fit well with Turing’s vision are being put 

into NLP practice. In the last decade this alternative methodology has thrived. Supported 

on theoretical grounds by the arguments detailed in the following chapter it has gained 

greater momentum, and has ‘borne fruit’ in the form of several applied NLP models (e.g. 

(Dorffner 1992, Plunkett et al. 1992, Nenov & Dyer 1994, Sales 1996)). The work that is 

presented in this thesis is an attem pt to embrace and extend the current state of the art 

within this emerging research field.
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1.3 Aim and Objectives of the Study

The aim of the work detailed in this thesis is to produce a system that is able to au­

tonomously learn English Words.

The objectives were:-

1. To produce a system in which such acquisition (or learning) can be incremental and 

continual.

2. To produce a system in which the acquired words have meaning tha t is intrinsic to the 

system. This is in the sense that an understanding of words is grounded in relation 

to the system’s own sensory experience.

3. To produce a system that can demonstrate that its intrinsic understanding of words 

is similar to that of humans -  thus facilitating communication.

4. To produce a system tha t is able to address the aims stated above in a practical context 

where responsiveness, accuracy and the efficient use of resources are all important 

considerations.

These are now considered in greater detail by outlining problems that need to be addressed 

and steps that need to be taken:

1. A utonom ous acquisition o f English Words: In this sense a model must be sought 

that is able to learn for itself without the need for constant intervention, tweaking 

and/or re-programming. Consideration is required as to how words should be pre­

sented, or fed to the system, e.g. should they be provided via a voice, textual, etc. 

interface? Will some form of encoding be required?

2. Increm ental and Continual Learning: If the system developed is to be of real use 

in a future robotic system it is considered here that the breadth of language that can 

be used should not be fixed and finite for all time. As is the case with humans and 

language, a vocabulary should by developed and adaptable throughout life. Thus, 

careful consideration must be taken to ensure the learning methodologies employed 

in the system to be developed conform to these requirements.
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3. A ttain  intrinsic m eaning through sensory groundings: When a parent recites 

a word and points to an object in order to teach their child meaning, one imagines 

tha t the child is grounding its recognition of this word with respect to some aspects 

of the scene it is visually processing. In terms of developing an artificial model akin 

to this process one must consider a number of questions:

• W hat sort of sensory experience is required?

• How can words be mapped to sensory experience?

• Do words map to some higher level mental concepts that derive from sensory 

experience?

• How can input from multiple sensory sources be combined, e.g. to facilitate 

grounding with respect to shapes, colours, sounds, tastes etc.

4. D em onstrate understanding sim ilar to humans: Intrinsic meaning, based upon 

sensory experience, is very much a subjective quantity. However, for communication 

to succeed one must have inter-subjective meaning. For example, there is little hope 

that person A will correctly respond to person B’s request “point to the red one” unless 

both subjects share some consensual understanding of the word ‘red’. A number of 

quantifiable tests will be required to ensure that the model developed is acquiring 

meanings tha t are useful in this sense.

5. Consideration o f practical applicability: The aim is to create a model that can be 

realistically deployed in a practical context. In this sense it is pointless if a model can 

demonstrate understanding and correctly respond to a natural language command, 

but to do so takes many minutes or hours. Moreover, one expects to be able to deploy 

a solution on affordable hardware without seriously impacting upon performance. In 

particular, during the development cycle special attention will be afforded to:

• How long it takes a model to learn words and meanings ?

• How long it takes to recall such learning (and demonstrate understanding)?

• How much computing resource is required for such learning and recall ?
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1.4 Thesis Structure

The remainder of this thesis will cover the issues that have been touched upon above in 

greater detail. The various chapters of the thesis are set out as follows :

Chapter 2 is the first of two chapters that survey the academic literature connected to and 

surrounding the field of inquiry set out above. The chapter addresses three main areas; 

First, it reviews the domain of semantic analysis, providing an overview of the main classes 

of traditional semantic theory. Next, it considers a number of problems related to these 

traditional views. Finally, it introduces a new idea that addresses these problems and 

provides a novel theoretical framework for their interpretation.

Chapter 3 continues the consideration of related work on two lines. Initially, the text 

discusses in greater detail how connectionist models (Artificial Neural Networks), provide a 

suitable substrate for the theoretical ideas introduced in the final section of chapter 2. The 

bulk of the chapter then introduces and critiques a variety of applied systems that have 

been developed in a similar vain to the novel work presented in this thesis.

Chapter 4 proposes Adaptive Resonance Theory (ART) as an alternative and superior 

medium by which to achieve the objective of acquiring an intrinsically meaningful lexicon. 

ART encompasses a family of non-symbolic connectionist models that share certain fun­

damental characteristics. These characteristics are described and their applicability to the 

task at hand are argued.

Chapter 5 is the first of three chapters that highlight the original empirical investigations 

that have been undertaken. In this chapter the task focuses upon the acquisition of colour 

terms; a lexicon of English nouns that stand to represent colours, e.g. ‘red5. The goals that 

drive this research are threefold : (1) to determine the importance of embodiment, (2) to 

assess the effect of learning, i.e. supervised vs. unsupervised, and (3) to demonstrate and 

justify the application of Adaptive Resonance models.

Chapter 6 takes the work of Sales (1996), as a basis for comparative study. ART based 

models are applied to Sales5 original data. The results are presented and discussed in detail.

Chapter 7 investigates the acquisition of an extended lexicon which encompasses nouns 

that relate to either colour (chapter 5), or form (chapter 6). The first part of the chapter
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highlights a number of problems tha t rule out the application of standard ART models with 

respect to this task. Based on an appraisal of these problems, an adapted and improved 

architecture and associated learning algorithm — based upon ART principles — is put 

forward. A number of empirical results are presented and discussed.

Finally, Chapter 9 reviews the thesis, considering its contribution to the encompassing 

research field. Questions which have arisen from the work are then discussed, and a number 

of possible directions for further work are highlighted.



C hapter 2

Sem antics and M eaning

Sem antics - The branch of linguistics that deals with meaning; (the study or 

analysis of) the relationships between linguistic symbols and their meanings.

-  Concise Oxford English Dictionary

As the definition above suggests semantics is devoted to the investigation of meaning, partic­

ularly how language expressions convey meaning. Consequently, based on the presumption 

that understanding concerns some transfer of meaning, one can assume that a semantic 

system is a vital and necessary component of any language understanding system: natural 

or artificial.

The purpose of this chapter is to provide an insight into the broad theoretical foundations 

upon which the empirical research described in this dissertation rests. These foundations 

take the form of a contemporary lexical semantic methodology that embodies various new 

ideas and principles. This methodology endeavors to provide answers to questions that 

arise from various theoretical and empirical analyses of what shall be termed herein as 

‘traditional’ approaches to semantics and meaning.

In the ensuing section, an overview of semantics and meaning is presented which is followed 

by a brief introduction of the various semantic theories that fall under the ‘traditional’ label 

mentioned above. The penultimate section provides a discussion of various problems that in 

some way effect these traditional theories. Finally, the closing section of the chapter details 

various theoretical ideas that have been proposed in answer to these outstanding problems, 

and presents a novel graphical framework tha t intuitively conveys these ideas.
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2.1 An Overview of Semantics and Meaning

To provide an outline and structure for an overview of semantics and meaning one can do 

little better than to quote what Gazdar &; Mellish (1989) regard as the four fundamental 

questions any complete semantic theory should strive to answer :

1. W hat are the appropriate sub phrases to consider when we want to obtain the meaning 

of a phrase?

2. How does the meaning of a particular phrase depend on that of its sub-phrases?

3. W hat are the meanings of the minimal units (the phrases, words or morphemes), that 

do not themselves subdivide into smaller meaningful units?

4. W hat kinds of things should meanings be anyway? Are they symbols in the machine? 

Are they things in the world? Are they some kind of relationship between the two?

Although a complete semantic theory is ultimately sought, in practice due to the complex­

ity of the issues involved in tackling the above questions, the practitioners of semantics, 

including computational linguists and AI researchers, have divided their domain of interest 

into specific sub-fields. A brief description of these follow.

2.1.1 Structural Semantics

The first two questions Gazdar and Mellish pose fall within the realm of what has come 

to be known as structural (Partee 1981), or compositional semantics. This component of a 

semantic theory deals with the effects a formal set of rules (i.e. a syntax) has in relation to 

meaning. The foundations derive in part from the Fregean Principle of Compositionality 

(POC) which asserts that the meaning of a sentence is a systematic function of the meaning 

of its components. The POC has been widely adopted amongst semantic theories. However, 

there are notable exceptions, for example, Procedural Semantics (Woods 1968).
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2.1.2 Lexical Semantics

The third question put forward by Gazdar and Mellish relates to another sub-domain of 

semantic theory, namely lexical semantics. The task within this sub-field of semantics is to 

determine the meanings of the words (lexical components) within a language. For example, 

one would hope to equate the word ‘orange’ with a roundish, typically orange and juice 

laden fruit that is borne by certain types of tree, with a perceptual experience which is 

correlated to a certain spectral band of wavelength of reflected light photons, and also with 

a technology and communications company operating in the UK cellular phone market.

Following from chapter 1 it should be clear that the investigations detailed within this 

dissertation are primarily concentrated within the domain of lexical semantics1. However, 

the work presented herein differs from the traditional approaches within this field of study 

because of the way it accounts for Gazdar and Mellish’s fourth question — W hat kinds 

of things should meanings be anyway? Traditionally, semanticists have divided themselves 

into three camps regarding their response to this question :

M eanings are Things in th e W orld (M T W )

The terms that are used throughout the relevant literature (linguistics, philosophy, cognitive 

science etc.) to describe those theories that adhere to some form of notion whereby meaning 

resides in the world are abundant, e.g. denotational, referential, realist, and objectivist. In 

these types of theory the meaning (reference, denotation, extension) of a basic lexical symbol 

is equated with an entity, event, or state (or a category of entities, events, or states) that is 

assumed to exist objectively in the world. Thus, as figure 2.1 shows, the symbols ‘Felix’ and 

‘Tom’ are meaningful because they stand to represent two individual entities that exist, and 

the symbol ‘cat’ is meaningful because it represents a category (or set) of entities that exist. 

These ideas are clarified, from an implementational perspective, in section 2.2.1 below.

1 It should be noted that the term lexical semantics is slightly ambiguous in that it is also used in some 

circles to describe what is more appropriately identified as word-sense disambiguation. Confusion can arise 

here because this process is actually structural in nature. Given that a lexical symbol has a number of 

alternative meanings (or senses), the task is to assess which of these fits with the context of the surrounding 

content. For example, in the sentence ‘the boy peeled the orange in delight,’ the object of the disambiguation 

exercise is to attain the fact that the word ‘orange’ refers to a piece of fruit.
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SYMBOL

Felix

SYM BOL

Cat

Tom

THE WORLDLANGUAGE SYSTEM

Figure 2.1: An objectivist (MTW) account of meaning.

M eanings are Sym bols in the M achine (M SM )

Another view that is prevalent in traditional semantics is that the meaning (sense; connota­

tion; intension) of a  lexical symbol is equated with a concept that is activated in the mind 

of the understander, i.e. a mental state. These mental states are thought to be embodied 

by way of the contractual relations one symbol has with other symbols, e.g. the meaning of 

the symbol ‘cat’ might be defined through its relations with the symbols ‘animal’, ‘furry’ 

etc. (see figure 1.1 in chapter 1).

One issue tha t remains unresolved by traditionalists is whether the set of symbols to which 

a symbol is related should be open (relations can be defined between any of the lexical 

symbols), or closed (there is some set of primitive symbols to which all others are related). 

These alternatives will become clearer in light of an overview of traditional semantic theories 

which follows.

M eanings are Sym bols and Things (M ST)

One final point of view that Gazdar and Mellish highlight as a question above is that 

which integrates MTW and MSM. According to this view the contractual relations a lexical 

symbol has with other symbols, specify the necessary and sufficient conditions for reference; 

a lexical symbol refers to some entity in accordance with a mediating concept. More shall 

be offered in relation to this view later.



Chapter 2 - Semantics and Meaning. 18
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A

Figure 2.2: Ogden and Richards triangle of meaning

The Triangle o f M eaning

The essence of the various positions held vis-a-vis the question of meaning are captured 

succinctly by Ogden & Richards (1923) triangle of meaning (TOM) — a diagrammatic 

tool, depicted in figure 2.2, that has been employed extensively in semantic debate. The 

TOM is introduced here because it serves well to clarify important issues that arise later 

in the thesis. The vertices of the triangle represent a hierarchy of semantic levels, following 

Lyons (1977), these vertices are denoted using the letters A, B, and C. In the context of the 

preceding discussions, A can be substituted by symbol, B by concept, and C by entity, and 

the relations AC, AB, and ABC characterise the pure MTW, pure MSM, and integrated 

MST perspectives respectively.
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2.2 Semantic Theories

W ith a brief overview of the terrain complete, discussions now turn  to the ‘traditional’ 

semantic theories which have been influential in crafting aspects of the various theoretical 

models of meaning ventured above, and which have, and continue to provide the frameworks 

that support the implementation of these models.

2 .2 .1  M o d e ls , S e ts , an d  M ea n in g  P o stu la te s

Model-theory (MT), or model-theoretic semantics, utilizes formal mathematical models 

(which are thought to characterize the real world) in order to create a correspondence 

between linguistic expressions and the entities to which they refer. A model in this context 

is an abstract data structure that consists of :

1. U , a set of semantic objects called individuals that represent all entities within a 

domain of discourse, e.g.

U =  { 0, 1, B a rry , N athan , Rachael }

2. V , a function assigning values to constants x. For individual constants, V(x)  is an 

individual (an entity within U),  or set of individuals. If x  is an n-place predicate, 

V(x)  is a set of n-tuples of individuals, e.g.

V^a) — B arry  Female) =  { Barry] N a th a n }

V (b) =  N athan V (female) =  { Rachael}

V(c)  — Rachael F(loves) =  { <  N athan, Rachael > }

Early MT employed a particular logical language known as first order predicate calculus 

(FOPC) as a system for the representation of semantic knowledge. FOPC is purely ex- 

tensional, which means for a given model the correspondence between linguistic symbols 

and individuals is direct, i.e. FOPC supports a pure MTW perspective. Consequently, 

lexical symbols such as proper names get their meaning via their capacity to correspond
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to individuals (e.g. ‘N athan’ N athan ), and expressions like nouns, verbs, and adjec­

tives (predicates) get their meaning via their capacity to correspond to sets (e.g. ‘male’ 

=  male(x) —)■ { Barry; N athan  }). These early theories (Lyons 1977, Sabah 1993, Chier- 

chia & McConnell-Ginet 1990) proved extremely limited in their ability to capture natural 

language semantics, and as such are not considered in the ensuing debate.

Contemporary MT is often described as intensional, and owes much to the ground-breaking 

work of Montague (1988). In intensional theories lexical symbols obtain their meaning by 

way of ‘intensional concepts’ (or simply ‘intensions’). These intensions specify the necessary 

conditions for reference, i.e. they serve to pick out the individual, or set of individuals 

within the model to which a particular symbol refers. Hence, intensional theories support 

an integrated MST perspective. However, in practice “people who do model theory of this 

kind don’t really construct set-theoretical models of the universe” (Lakoff 1987, p .178) — 

when employed within ‘understanding’ systems (see section 2.3) only the intensional level of 

knowledge description is utilized. Since intensions are defined purely in terms of symbols, 

from a practical perspective intensional MT is established upon a MSM foundation.

Meaning postulates (Carnap 1952) are an im portant component of intensional MT in that 

they provide a logical device through which intensional definitions (i.e. the contractual 

relations tha t hold between predicates, or lexical symbols at all times) are specified, e.g.

Vx[man(x) —» hum an(x)] (2.1)

This is typical of the sort of meaning postulate a designer might build into an artificial NLP 

system on the basis of introspection. It states that for all individuals x, if # is a man then 

x  must also be human.

2 .2 .2  S em a n tic  P r im it iv e s

One of the first fundamental departures from MT came in the form of Componential Analysis 

(CA), which is also commonly referred to as decompositional semantics. The inspiration for 

CA came from work in the field of Anthropology, but was pioneered from an NLP perspective 

by Katz h  Fodor (1963). CA provides a different approach to the description of meaning
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which rests upon the thesis tha t words, phrases, etc. can be analysed in terms of a fixed 

set of more general semantic features, which take the form of symbolic primitives. Hence, 

CA conforms to the MSM point of view. The use of primitives is motivated by semantic 

inference (see section 2.3), the view being that one will require fewer, more general, inference 

rules to act upon the limited set of symbols.

In common with MT, CA typically utilizes a  formal language of logic as a means to represent 

semantic knowledge. A well versed example of lexical CA is that first described by Katz 

and Fodor which provides the meaning of the predicate bachelor (x) :

Xx (MALE(a;) A - - m a r r i e d  (a?) A a d u l t  (a;) A h u m a n  (a;))

i.e. I f  x is a bachelor, then x is male, x is not married, x is adult, and x is human

On the surface the example cited above has a striking similarity to a meaning postulate 

as used in MT. This is in part due to the fact that the primitives that are employed, e.g. 

m a l e  (a?), all have an obvious relation to lexical entities of the English language. However, 

these primitives should not be confused with their lexical counterparts, as Lyons notes 

“m a l e ,  a d u l t  etc., are held to belong to a set of universal atomic concepts which may or 

may not be lexicalized in particular languages” (Lyons 1977, p.318).

The notion of primitives also features strongly in Fodor’s (Fodor 1975) seminal Language 

of Thought (LOT) Hypothesis. In this work the author proposes an inner language of the 

mind, or Mentalese; a rule governed representational system of thought that underlies all 

other representational systems such as language.
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Figure 2.3: A Simple Semantic Network.

2 .2 .3  N o d e s , A rcs, and  L ab els

It should be clear from the discussions above that MT and CA were developed upon a foun­

dation of classical logic, i.e. systems of symbolic logic provide the substrate for handling 

semantic knowledge. From the position that such logic based semantic representations were 

too abstract for use in real natural-language understanding systems, researchers working 

in the field of AI developed an alternative system of semantic representation known as the 

Semantic Network (SN). Using this formalism the semantic knowledge associated with lan­

guage elements is mapped onto conceptual structures where each structure is implemented 

as a network of concepts. A typical network, as shown in figure 2.3, is crafted of three basic 

components :

• N odes in a network represent concepts of entities, attributes, events, or states.

• Arcs in a network, usually called conceptual relations, represent relationships that 

hold between the concept nodes.

• Labels on the arcs specify the relation types.

The study of semantic networks in AI has been quite prolific and the application of such 

knowledge representation systems has been diverse2. In the area of natural language, re­

lational graphs — a specific type of semantic network — have been frequently used. The

2 A volume edited by Sowa (1991) provides an excellent overview of semantic networks and details many 

uses of such systems. More recent applications of large scale semantic networks can be found in (Shapiro 

2000)
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most notable of these are probably Conceptual Dependency (CD) (Schank 1973), Preference 

Semantics (PS) (Wilks 1975), and Conceptual Graphs (Sowa 1984).

Putting aside their different computational structures, CD and PS are both founded on 

similar principles to CA: the MSM principle, and the use of semantic primitives3. Sowa’s 

approach on the other hand has more in common with intensional MT :

“Model theory can be adapted to graphs in a concise and elegant way, since 

the data structure of a model is naturally graph like. Any set of individuals 

and relations can be represented by a graph with the individuals as the nodes 

and the relations as the arcs; each arc is labelled with the name of a relation.”

(Sowa 1987, p. 1020)

2.3 Inference, Symbols, and Understanding

A discussion of the intricacies, and of the comparative advantages and disadvantages of MT, 

CA, and SN is beyond the scope and aims of this chapter4. The objective here is simply to 

indicate the common way in which these theories of meaning support logical inference — 

an ability that has traditionally been equated with that of understanding.

Inference is at the heart of symbolic logic. The idea is that one can characterize sound 

logical arguments by way of general formal rules. In the context of traditional NLP, it is 

these rules that are thought to embody meaning. For example, consider the following rule, 

which states ‘for all things £, if x  is predicated of A  then x  is also predicated of I?’5

V(a;) A(a?) —» B(x)

The utility of such general rules does not become obvious until one gives A  and B  an 

interpretation, e.g. let A  represent ‘man,’ and B  represent ‘human.’ The rule now reads,

3 Schank’s CD system employs fourteen primitives. This rises to about eighty in Wilks’ PS.

4 Discussions of this kind can be found in (Hirst 1987, Gazdar 1993, Sabah 1993).

5 Or, in plain English, if one is told that some entity can be validly described as an A, one can conclude 

that this same entity could also be described as a S .
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with the interpretation in place, ‘for all things x, if a; is a man then x  is human5 (cf. 

equation 2.1). Given this rule a priori, an NLP system that encounters a proposition such 

as ‘Nathan is a man,5 where ‘N athan5 takes the place of the entity x , can conclude that 

Nathan is human. Whilst such a simple conclusion does not instinctively warrant one to 

suggest that the system can understand natural-language, when many rules are combined 

the complexity of the system5s inferential competence gains stature and there can be, and 

indeed has been, a strong urge to grant that the system actually understands the language 

it encounters. For example consider Marconi5s description of such a system :

“From ‘There are four elephants in the living-room5 our system would infer 

that there are four large animals in the living-room, that there are four elephants 

in the house, that there is an even number of elephants in the living-room, . . . ;  

it could even infer that the living-room5s furniture is likely to be badly spoiled.55 

(Marconi 1996a, p.22)

‘Natural-language understanding systems5 such as those that can summarize portions of 

text, e.g. FRUMP (Fast Reading Understanding Memory Program) (Schank & Abelson 

1977), answer questions in relation to portions of text, or stories, e.g. GENESIS (GENer- 

alising Explanations of Stories Into Schemata) (Mooney 1985), and enter into text based 

dialog with a person concerning a simple simulated domain of activity, e.g. SHRDLU (Wino- 

grad 1972, Winograd 1973) have all operated on the basic principles cited above.

W hat is worth making quite clear here is the fact that the process of inference (understand­

ing), as described above, is not dependent upon any interpretations (e.g. that A  represents 

‘man5), the rules operate purely on the distinct form of each symbol — this fact is captured 

in Harnad5s description of a symbol system:

“A symbol system is (1) a set of arbitrary physical tokens (scratches on paper, 

holes on a tape, events in a digital computer, etc.) that are (2) manipulated 

on the basis of explicit rules tha t are (3) likewise physical tokens and strings 

of tokens. The rule-governed symbol-token manipulation is based (4) purely on 

the shape of the symbol tokens (not their ‘meaning5), i.e. it is purely syntactic, 

and consists of (5) rulefully combining and recombining symbol tokens. There
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are (6) primitive atomic symbol tokens and (7) composite symbol-token strings.

The entire system and all its parts - the atomic tokens, the composite tokens, 

the syntactic manipulations (both actual and possible) and the rules — are 

all (8) semantically interpretable: The syntax can be systematically assigned a 

meaning (e.g. as standing for objects, as describing states of affairs).” (Harnad 

1990, p.336)

In the traditional semantic theories described in the preceding section, the arcs, individuals, 

predicates, postulates, primitives, nodes, names, and networks are all examples of arbitrary 

physical tokens or strings of such tokens.

2.4 Against the Traditional Notions of Understanding  

and Reference

Of late, traditional semantic analysis, as put forth above, has become the focus of growing 

concern. In the discussions that follow a number of related arguments and critiques are 

presented tha t capture the essence of these concerns.

2 .4 .1  S earle , H arnad , an d  C h in ese  S ym b ols

In 1980 Searle (1980) presented a now famous critique — known as the Chinese Room 

Argument (CRA) — in order to discredit claims of natural-language understanding being 

brandished by the creators of certain artificial language systems, e.g. FRUMP; SHRDLU. 

Searles thesis contends that any real understanding could ever arise as a consequence of 

formal manipulation of symbols, i.e. logical inference. To clarify his position Searle devised 

an intuitive thought experiment, which can be roughly reconstructed as follows:

Imagine that a native English-speaking person who knows nothing of the 

Chinese language is locked in a room which contains a book of rules that is 

written in English and a big pile of Chinese symbols, which to the person are all 

meaningless squiggles. Now suppose that they are passed (e.g. under the door) 

a sequenced batch of Chinese symbols. Using the English rules they are able
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to correlate and manipulate the symbols. The rules specify the manipulations 

of the symbols purely formally, i.e. the symbols are identified solely by their 

different shapes, for example a rule could say: ‘if you receive a symbol like this 

( ) you may replace it with a symbol ( )’. Finally, the person is passed (under 

the door) a second batch of symbols. Other rules specify, again formally, how 

— on the basis of all the symbols to which they now have access — they should 

return (under the door) certain symbols from the pile.

As Searle points out, the batches of symbols could, unknown to the person in the room, in 

fact be (1) a story, and (2) questions relating to the story (all in Chinese written language). 

In addition, the symbols that are returned could in fact be answers to the various questions. 

Hence, Chinese-speaking observers outside the room may very well conclude that the person 

in the room understands Chinese, even though it is obvious that he/she does not. Searle 

concludes tha t traditional inferentially competent NLP systems, that operate in a purely 

formal manner (i.e. like the person in the room), cannot be said to ‘understand’ what they 

are doing or processing, noting that this is because the symbols lack intentionality.

The intentionality dilemma initially pointed out by Searle was later picked up by Harnad 

(1990) and dubbed as the Symbol Grounding Problem (SGP). Harnad argues emphatically 

that traditional ‘understanding’ systems do not understand because they do not know the 

meaning of any of the symbols that they employ:

“The symbols and the symbol manipulation, being all based on shape rather 

than meaning, are systematically interpretable as having meaning . . .  But the 

interpretation will not be intrinsic to the symbol system itself.” (Harnad 1990, 

p.338)

The essence of the SGP is that a meaningless (i.e. iminterpreted) linguistic symbol, can­

not be made meaningful by being connected to more uninterpreted symbols (cf. the MSM 

perspective of meaning). To corroborate this claim, Harnad invites the reader (who he 

assumes to be a non-Chinese speaker), to envisage the task of learning Chinese with only a 

Chinese/Chinese dictionary at ones disposal. The author notes that a ‘trip through the dic­

tionary would amount to a merry-go-round, passing endlessly from one meaningless symbol
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Figure 2.4: In symbol systems (e.g. MT, CA, & SN) the meaning of any particular symbol 
that resides within the system (at level A) is determined through its relations with other 
symbols in the system (defined at level B). The symbol system has no connection to the 
world (level C).

or symbol-string (the definiens) to another (the definiendum), never coming to a halt on 

what anything meant’ (Harnad 1990, p.339).

The SGP (and as a consequence, the CRA) prevails, no m atter how many connections and 

nodes one builds into a semantic network, or how many meaning postulates one writes, or 

how large ones rule book is, or how many definitions ones Chinese dictionary contains (see 

also (Partee 1981)). To escape the SGP and make the symbols meaningful from the systems 

perspective, one must address the issue of how symbols can be grounded in something other 

than just more meaningless symbols. MT, CA, and SN must provide an explanation of how 

the symbols (possibly just the primitives) within their internal computing languages are 

connected6 to those entities which they are supposed to symbolize.

6 In the context of these discussions the term ‘connected’ is synonymous with, and could be replaced by, 

the following terms: ‘grounded’ (Harnad 1990), ‘causally linked’ (Fodor 1980), ‘causally related,’ or ‘hooked’ 

(Jackson h, Sharkey 1996).
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Figure 2.4 has been developed by this author to capture the essence of Searles and Harnads7 

arguments from the graphical perspective of the TOM. The rules and representations that 

have been created on the basis of introspection and set within the languages of traditional 

semantic theories for the purpose of inference etc. all exist at the conceptual level (B). The 

NLP systems that employ these theories have no access to the entity, or world level (C) and 

thus, to put it bluntly, they don’t know what they are talking about.

7 The issues highlighted in figure 2.4 which axe at the core of Searles and Harnads critiques have also been 

addressed by several other authors. Variations include Lloyds debate concerning meaning without ostension, 

Chalmer’s problem of representation grounding (Chalmers 1992), Sharkey and Jackson’s internalist trap 

(Sharkey & Jackson 1994), Bickard and Terveen’s program of semantic circularity (Bickhard & Terveen 

1995), and Marconi’s discussions concerning referential incompetence (Marconi 19966, Marconi 1996a).
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2 .4 .2  R eferen ce , Lakoff, and  th e  N a tu r e  o f  C ategories

In light of the critiques discussed above, traditionalists concede tha t an autonomous system 

of symbols cannot in itself generate meaning, i.e. a pure MSM perspective is flawed. They 

generally agree that to create an artificial system to which understanding could be truly 

attributed, one requires an account of reference8 — how symbols (some at the very least) 

are connected to the world; the integration of level C of the TOM.

The account of reference tha t is favoured by the traditionalists is closely allied to an MTW 

account of meaning. They believe tha t their rules, relations, symbols etc. can easily be 

given an intrinsic interpretation (to the system) because they are internal representations 

of an objectively existing external reality, i.e. they actually embody the way the world is 

(cf. a ‘Mirror of N ature’ (Rorty 1980, Lakoff 1987)). Since what is inside the system is 

isomorphic with what is outside the system, the defenders of tradition suggest that only 

simple peripheral devices should be required in order that a system “see” the world of 

entities to which its symbols refer :

“[Fodor] posits a passive mechanism of perceptual analysis . . .  Demons each 

sensitive to a single physical parameter shriek yes or no depending on whether 

a hypothesis is present or absent in the environment. These demons activate 

innate elementary concepts which, once properly combined, are used to reason 

formally about the world.” (MacDorman 1995)

And on the presumption that these symbol-world connections are so trivial (i.e. 1:1) assume 

that they are of little academic, or practical interest :

“While connections to the world and symbol manipulations are both presum­

ably necessary for intentional processes, there is no reason (so far) to believe that 

the former provide a theoretical domain for science.” (Fodor 1980, p.431)

However, numerous findings which have recently been drawn together by Lakoff (1987)

8 For example, in response to Searle’s CRA, Fodor points to a need for ‘causal linkages between the 

symbols that the device manipulates and things in the world’ (Fodor 1980, p.431). See also (Pylyshyn 

1980, Winograd 1980).
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suggest that there is now reason to believe that (1) connections to the world are of great 

interest, (2) that passive perception will just not do, and consequently (3) tha t traditionalists 

have grossly underestimated the difficulty of picking out the entities tha t symbols refer to. In 

other words, their theoretical solution “trivializes the symbol grounding problem” (Harnad 

1990, p.340). In a comprehensive volume Lakoff collates a wealth of diverse empirical data 

and logical argument all of which refutes an MTW (which Lakoff calls ‘objectivist’) reading 

of reference. The main evidence is as follows :

• T he N ature o f Categories: To successfully map between symbols and the world, an 

objectivist theory requires that the categories of things (in the outside world) be Aris­

totelian, i.e. that category membership is an all-or-nothing phenomenon characterized 

by a set of necessary and sufficient conditions. However, empirical research on human 

categorization across a broad spectrum of disciplines has provided contrary evidence 

that suggests category membership is of much greater complexity comprising phe­

nomena such as fuzziness and prototypicality (Wittgenstein 1953, Rosch 1973, Lakoff 

1987). For example, a cat that has been in an accident and has lost a LEG, its t a i l ,  

an e y e ,  and its w h i s k e r s  is still a ‘cat’.

• A n O bjective World: Lakoff also argues at length, with support from empirical 

findings, against the notion that certain categories exist in the outside world at all. 

This is qualified by pointing to, amongst other things, colour categories:

“Wavelengths of light exist in a world external to human beings; color 

categories do not. The fact that we categorize different wavelengths as 

being in the same category partly depends on human physiology — on the 

cones in the retina and the neural pathways between the eye and the brain. 

Colors arise from our interaction with the world . . .  Colors are categories 

of the mind that do not exist objectively in the world exclusive of seeing 

beings.” (Lakoff 1987, p. 198)

• P u tn am ’s Proof: Lakoff also devotes a full chapter of his volume to a complex 

logical proof (which is beyond the scope of this thesis) devised by Putnam  (1981) that 

clearly demonstrates fundamental flaws in the MTW account of meaning.
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2 .4 .3  T h e  P ro b lem s in  P e r sp e c tiv e

In summary model-theory, componential analysis and semantic networks, are all inadequate 

as complete theories of meaning because they all lack an appropriate account of how their 

symbols refer (i.e. how they are grounded). W ithout such an account all of the symbols are 

meaningless to the system and thus the system cannot be said to understand.

However, these problems do not preclude the use of traditional MT, CA, and SN. One must 

simply be aware of certain constraints and realize that NLP systems that employ these for­

malisms are simulating understanding rather than actually understanding. The knowledge 

that is encoded within these traditional frameworks is meaningful but only to those outside 

of the system, it is not intrinsic to the system9. Hence, NLP systems that utilize such 

knowledge are simply ‘dumb’ intermediaries between a designer (who understands the ref­

erents of his symbols) and an end user (who is assumed, by the designer, to understand the 

referents of the designers symbols with a correspondence to the designers understanding). 

Accordingly, if designers can amass enough consistent knowledge (formal rules, relations 

etc.) they may well be able — and it would certainly be no mean feat (see the ‘Frame 

Problem’, section 1.2.3) — to empower the person in the Chinese room to actually fool 

those that are outside10, i.e. they may be able to create artificial systems that can pass the 

Turing Test (Turing 1950). And without a doubt such systems would prove to be extremely 

useful in many areas of application.

The area of application that is under investigation in this thesis — natural-language commu­

nication between humans and embodied artificial systems which operate within a physical 

environment (e.g. robotic systems) — is, however, one domain where simulated understand­

ing does not suffice as a substitute for the real thing. Embodied systems with sensorimotor

9 Alternatively, one might say that MT, CA, and SN provide a partial theory of meaning, i.e. there is 

certainly meaning within a Chinese/Chinese dictionary, however, the ‘relational’ type of meaning that there 

is does seem dependent upon a more fundamental ‘referential’ type of meaning.

10 However, it must be noted that designers may be foolhardy to disregard the issues raised above. As 

Harnad (Harnad 1990, p.340) suggests “the fact that our own symbols do have intrinsic meaning whereas the 

computer’s do not, and the fact that we can do things that the computer so far cannot, may be indications 

that even in AI there are performance gains to be made (especially in robotics and machine vision) from 

endeavoring to ground symbols” (see also (Glenburg 1997)).
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peripheries must be able to apply their words vis-a-vis the real world, i.e. their symbols 

must refer. If such systems are commanded to ‘pick up the blue cube’, they must know 

what the symbols ‘blue’, ‘cube’ etc. refer to within their immediate environment. Hence, 

when working with such systems the issues raised above are fundamentally important.

2.5 Rethinking Semantics and Meaning

In this, the closing section of the chapter, discussions are focussed towards a number of 

associated ideas, claims, and proposals which have been volunteered by various authors in 

relation to a complete theory of meaning, i.e. one that incorporates an adequate account of 

how symbols refer (are grounded). The objective of this section is to draw upon these various 

sources in order to provide a single coherent perspective of a non-traditional contemporary 

semantic methodology. To achieve this goal Ogden & Richards (1923) graphical tool of 

description, the triangle of meaning, has been adapted and extended.

2 .5 .1  A  N e w  T riang le  o f  M ea n in g

This thesis proposes a new general acccount of lexical meaning which is embodied in figure 

2.5. This adapted TOM provides a novel, and perhaps more intuitive means of interpretation 

for a number of essentially analogous semantic theories which have been proposed by various 

authors (see, for example, (Harnad 1990, Dorffner 1992, Gardenfors 1995, Jackson & Sharkey 

1996)). For the purpose of the discussions that follow throughout this thesis the terminology 

‘embodied semantics’ will be used to differentiate a theory of meaning tha t fits with the 

adapted TOM from the traditional theories detailed above, i.e. MTW, MSM, and MST. 

Furthermore, the acronym ENLP (Embodied NLP) will serve as a description for natural- 

language processing systems that are built upon a foundation of embodied semantics, and 

as a consequence possess the correct structure to harbour a meaningful lexicon.

The adapted TOM captures four key levels of description that are integral to a theory of 

embodied semantics: the world level (D), the sensory level (C), the conceptual level (B), 

and the symbolic level (A). The ensuing sections consider each of these levels in detail.



Chapter 2 - Semantics and Meaning. 33

The W orld Level

One of the fundamental views that is central to embodied semantics, and one which radically 

differentiates this type of theory from those that have been described above, is that the world 

— as it is ‘out there,’ external to language using systems — is not something that is neatly 

carved into nice objectively existing chunks (objects, events, etc.). Strictly speaking, from 

this alternative perspective, the objects that humans “see” do not exist as single bounded 

entities independent of humans (cf. (Jackson & Sharkey 1996)). Lakoff lends support to 

this claim:

“Take, for example, the chair I am sitting on. It exists. If it didn’t, I would 

have fallen on the floor. But that chair can be viewed correctly in many ways.

From the molecular point of view, it is an enormous collection of molecules and 

not a single undifferentiated bounded entity. From the point of view of wave 

equations in physics, there is no chair, but only wave forms. From a human 

point of view, it is a single object.” (Lakoff 1987, p.262)

Jackson & Sharkey (1996) have described what lies outside of the language using systems 

as a “rich and heterogeneous soup of electro-magnetic, chemical, and mechanical energies.” 

However, one should be wary of falling into the trap of using such ‘fundamental’ words 

to describe the world outside of an embodied system11. Following from the chair example 

one could rightly argue that a mechanical energy is simply another human construct -  one 

interpretation of that which surrounds one. Here, as in Chandler et al. (1999), the world 

level will simply be considered as an unknown.

Hence, it should be clear from this new recognition of reality that symbols cannot refer 

directly to things in the world (e.g. as in MTW and MST) but rather, as a logical conse­

quence, reference must be directed toward something that is internal to the language using 

system.
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C O N CEPTU A L (B) LEVEL 

C a teg o rica l R e p re se n ta tio n  [Har9C ] 

S R ap re sen ia tio n #  [Jac96 ]

T ypo 2 R e p re sen ta tio n  [Dor97]

S E N S O R Y  (C) LEVEL

Iconic R e p re se n ta tio n  [H ar90] 

Energy  S ig n a tu re  [Jac9 6 ]

T ypo 3  R e p re se n ta tio n  [Dor97]

W O RLD  (D) LEVELSYM BOLIC (A) LEVEL 

S ym bolic  R e p re se n ta tio n  [Har9C ] 

'R e p re se n ta tio n ' [Jac9 6 ]

T ypo  1 R e p re se n ta tio n  [Dor97]

Figure 2.5: A new triangle of meaning

The Sensory Level

Although meaning is taken to be internal to the system, an embodied semantic methodol­

ogy does not ignore the world level (cf. the MSM philosophy). From a human perspective, 

the fact that one “sees” a chair (and thus knows to what the word ‘chair’ refers) is without 

doubt, a function of something that derives from ones external environment. Accordingly, 

peripheral sensory devices — whose function it is to measure and then convert these un­

knowns to some usable internal representational format — are considered to be absolutely 

essential within this new semantic methodology.

Level C within the new TOM recognizes that a certain state within the world will give 

rise to a specific response amongst a system’s sensory devices. Given the causal nature 

of the connection, such a response is obviously non-arbitrary. Hence, the sensory level of 

description is inherently non-symbolic. These non-symbolic sensory responses have been 

given different labels by different authors: Iconic Representations (Harnad 1990); Energy 

Signatures (Jackson & Sharkey 1996); Type-3 Representations (Dorffner 1997).

11 Many thanks to Alex Reigler (personal communication) for pointing this out.
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The C onceptual Level

Whilst sensory devices provide the all important connections to the world, they alone do 

not possess sufficient computational power to satisfy an appropriate account of reference 

(i.e. generate meaning). Since entities, and categories of entities do not exist in the external 

environment per se, sensory devices cannot simply pick them out. In a theory of embodied 

semantics the process of categorization is proposed as the final piece in the puzzle of meaning.

“Imagine that on a particular morning, while you are brushing your teeth, 

your ability to perceive similarities between objects slowly dissipates. You first 

notice that the red object in your hand behaves strangely. Each time your hand 

moves, the object looks completely different. Then you look in the mirror, at 

the object you were sure was your face a few minutes ago. You tilt your head 

to the left, then to the right, but each time your own reflection in the mirror 

looks like a different face. Toothbrush and face as permanent entities have just 

vanished from your mental life. Your mind does not “see” through your eyes 

anymore. As you contemplate this continuous flow of unrelated experiences, you 

suddenly realize you are less and less able to forget a difference, to generalize, 

to abstract . . .  to think.” (Schyns &; Rodet 1995, p.234)

The passage above is cited because it succinctly captures just why sensory responses, which 

result from transduction at level C, are not immediately useful in and of themselves. The 

additional act of categorization is required to segment, or carve the mass of undifferentiated 

environmental stimuli into mental representations, or concepts, on the basis of similarities 

(e.g. distinctive, or invariant features). It is these representations at level B within the 

new TOM — christened by Harnad (1990) as Categorical Representations, by Jackson & 

Sharkey (1996) as # Representations#, and by Dorffner (1997) as Type-2 Representations 

— which essentially are the objects, events, etc. that lexical symbols symbolize. Since level 

B representations are also directly coupled to sensory input, they are non- arbitrary, and 

consequently non-symbolic in nature.
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The Sym bolic Level

The final level of description within this new semantic formalism is a place where the 

arbitrary symbols and manipulations thereof can exist happily — supported by the other 

levels.

Once some set of lexical symbols has been appropriately grounded, the symbolic level can 

come into its own. A frequently cited hypothetical example (originating from Harnad 

(1990)) demonstrates how this might work. Suppose that the lexical symbols ‘horse’ and 

‘stripes’ are grounded through levels B and C as specified above. Now the meaning of an 

unknown symbol ‘zebra’ can be specified by way of a purely symbolic proposition, e.g. a 

‘zebra’ is a ‘horse’ with ‘stripes.’ The symbol ‘zebra’ inherits a grounding. As Harnad notes: 

“In principle, someone who had never seen a zebra (but had seen and learned to identify 

horses and stripes) could identify a zebra on first acquaintance armed with this symbolic 

representation alone (plus the nonsymbolic -  iconic and categorical -  representations of 

horses and stripes that ground it).” (Harnad 1990, p.343)

2 .5 .2  A  B r ie f  S yn op sis

In summary, a semantic formalism (embodied semantics) has been described that provides 

a theoretical starting point from which to devise natural-language understanding systems 

that are referentially as well as inferentially competent. The core aspects of this alternative 

formalism are as follows:

• Lexical symbols (i.e. words) refer to, and hence are meaningful with respect to, internal 

concepts.

•  Internal concepts are mental representations created by, and for, a particular individ­

ual, hence meaning, and ones knowledge and understanding of the world is subjective 

rather than objective.

• The process of concept creation centers around the transduction and categorization 

of environmental stimuli.
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The chapter that follows considers the practical implementation of such a semantic theory. 

First it addresses how connectionist models — systems that employ ‘spatial3 rather than 

symbolic (or logical) reasoning (cf. Jackson & Sharkey (1996) — provide a suitable com­

putational framework for such a theory). This is followed by a discussion of how various 

connectionist models have actually been employed in ENLP systems.



C hapter 3

C onnection ist M odels o f Lexical 

A cquisition  and G rounding

The significance of the arguments put forth in chapter 2 has resulted in the development 

of a ‘new wave’ of applied language systems in the last ten or so years, all of which adhere 

in some respect to the new theoretical framework previously described. In the second 

part of this chapter the most im portant of these models are introduced, described, and 

then critically assessed with respect to a number of important criteria. However, as an 

important precursor to these discussions, connectionism and its application vis-a-vis the 

task of acquiring a grounded lexicon is first given some consideration.

3.1 Connectionism

All of the language systems reviewed in section 3.2, with the exception of one, employ at 

their core, connectionist computing devices. In order to provide a suitable platform from 

which to discuss these language systems it seems appropriate to first consider the nature of 

such devices. However, the purpose of this section is not to provide an exhaustive historical 

account of connectionism, nor is it to detail the individual mechanics of the myriad of 

contemporary connectionist computing devices. The purpose here is to focus on the general 

computational characteristics shared by these devices, and as a consequence to :

38



Chapter 3 - Connectionist Models of Lexical Acquisition and Grounding. 39

1. Illustrate how coxmectionism naturally satisfies the representational requirements of an 

embodied semantic methodology, and accordingly, provide an instructive connectionist 

interpretation of the theoretical ideas set out in the final section of chapter 2.

2. Show tha t connectionism naturally provides a developmental framework for language 

processing. Semantic knowledge can be acquired rather than explicitly programmed 

(cf. the DC approach; section 1.2.3).

3 .1 .1  C o m p u tin g  w ith  C o n n ec tio n is t  M o d els

Connectionist models1 (CMs) are characterized by two general features: (1) They consist 

of separate layers of interconnected simple homogeneous computing elements, or units (see, 

for example, figure 3.1a), and (2) they employ recursive rules for updating the strengths of 

the connections (often termed as ‘weights5) during learning.

Connectionist models are in essence pattern classifying devices. They are able to group 

together different sets of input patterns into various classes or categories (the learning 

function) — at a more abstract level one could say that CMs induce a set of input-output 

rules. Subsequently, given a new and perhaps novel input pattern, a CM is able to predict 

to which output class or category the input belongs (the prediction function). W hat follows 

is a brief account of the input to, and the internal structure of a CM. This provides a basis 

from which to describe in greater detail the general mechanics of learning and prediction.

The Input to  a CM

The input to a CM is an n-dimensional vector, often referred to as a feature vector. Each 

slot of the feature vector encodes the degree of presence (or equivalently, absence) of a 

particular property by way of a bounded range of values. For example, using the numerical

1 Connectionist models are also often referred to as ‘Neural Networks/ or ‘Artificial Neural Networks.’ 

Whilst the latter of these alternative descriptions is better than the first, both are still somewhat misleading. 

Connectionist models are merely inspired by brain-like computation, and most researchers now realize the 

vast chasm that exists between the make up of these models and the neural networks that nature’s creatures 

employ. As Hanson and Burr (Hanson & Burr 1990, p.472) so aptly comment, connectionism is “something 

that looks like a cartoon brain with cartoon neurons, connected by cartoon synapses.”
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YX

(b)

Figure 3.1: (a) Shows a simple feed-forward multi-layer CM with inputs X and Y, a 
layer consisting of three hidden units, and a layer of two output units, (b) Depicts the 
2-dimensional feature space for this CM. An input of {X = 0.7, Y — 0.5} produces the point 
in feature space that is shown.

range [0,1], if the n th property in question is fully present then the nth dimension of the 

vector will have a value of 1. Alternatively, if the property is only partially present, it may 

have a value of 0.5, and so on. The dimensionality of the input, and the numerical range 

of each dimension effect an input, or feature space, i.e. a continuous n-dimensional vector 

space that subsumes all possible input vectors. Figure 3.1b shows the 2-dimensional feature 

space affiliated with the CM shown in figure 3.1a.

T he Internal Structure o f a CM

Feature vectors are propagated to a layer of output units by way of the relevant connections. 

Each connection is weighted — hence, the description ‘weights.’ The weighting effectively 

regulates the proportion of the input that each unit receives. Each unit integrates all of 

the input that it receives by way of a fan-in, or activation function. From a geometric 

perspective these fan-in functions realize the formation of partitions within the feature 

space called decision boundaries. These decision boundaries are at the heart of a CMs 

classification, or categorization abilities, in that they carve the feature space into various 

regions each of which can be employed to enclose a set of points.

The complexity of a CMs categorization abilities can be governed using two distinct meth­

ods. One method centers around the complexity of the fan-in function. As shown in figures 

3.2a-c different functions give rise to differing types of boundary and hence to different 

forms of categorical region within a feature space. Alternatively, another way to increase 

categorization complexity is to use extra layers of ‘hidden’ units (Hanson & Burr 1990,
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(a)

(d)(c)

( e )

Figure 3.2: (a-c) Show how three different fan-in functions (linear, quadratic, and spherical) 
create contrasting boundary forms in a 2-d feature space, (d) Shows five linear boundaries 
being used in conjunction to create a categorical region. The job of the learning algorithm 
is to adapt the position and dimensions of the boundaries so as to create ‘categorical’ 
regions that correctly separate the o’s from the x’s. The concurrent manipulation of multiple 
boundaries to create a single region generally requires the use of a supervised learning process 
(see text), (e) Shows a boundary in a 2D feature space created by a Gaussian fan-in function 
(which is a special case of a spherical function). In this case the third dimension (in the z 
plane) provides a measure of goodness.

p.476) between the input and output layers, as is the case in popular multi-layer perceptron 

(MLP) models (Rumelhart et al. 1986). Each hidden unit effects a simple boundary. The 

hidden to output layer dynamics make it possible for the CM to combine these boundaries 

in order to create potentially complex regions within the feature space as is graphically 

illustrated in figure 3.2d.

Learning in a CM  (the acquisition o f knowledge)

The fan-in function is non-adaptable, and hence the general form of a particular boundary 

in feature space is fixed. However, the weights that are associated with a fan-in function 

are adaptable. It is these ‘free’ parameters that determine the specific placement, and 

the dimensions of a given boundary form within the feature space. Learning within a 

CM concerns the manipulation of the model’s many weights, and hence, the position and 

dimensions of numerous boundaries. The ‘training’ algorithms that enable this function 

generally come in two flavors :
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•  U nsupervised : These algorithms discover similarities between input vectors without 

feedback, i.e. the CM has no external ‘teaching’ signal informing it to which class 

(within which bounded region) a given input vector belongs. If an input vector i falls 

within the limits of a classification region that is affiliated with an output unit j ,  

then i may be considered as a member of the class Cj. Consequently, i may influence 

the size and position of this region — the weights between the input and unit j  are 

updated to take into account the new member.

• Supervised : These algorithms employ feedback. Input-target pairs are presented 

to the CM, e.g. {«, C&} if input i is a member of class C*. An error measure defines 

how far outside the correct region of feature space the input i is. Weight adaptation 

seeks to minimize this error.

Whichever learning formalism is used, the adaptation of decision boundaries enables the CM 

to geometrically separate, given the context of the feature space, certain sets of input vectors 

from others, e.g. the o’s and x’s in figure 3.2. W hat distinguishes the two formalisms is their 

respective abilities to craft the shape of categorical regions. On this front the supervised 

process is generally considered to be more powerful; indeed it has been theoretically shown 

that a multi-layer CM employing supervised learning can learn any non-contradictory input 

to output mapping (Cybenko 1989, Hornik et al. 1989).

Prediction  in a CM (the application o f acquired knowledge)

One of the most enticing properties of CMs is that they don’t just learn the information 

that they are provided in a rote manner. They possess the correct computational apparatus 

to actually learn from  the information that they are provided. CMs naturally undertake 

generalization. The categorical regions in feature space that result from learning not only 

separate the various input vectors that were used in the learning process. Given the continu­

ous nature of the feature space, each region actually separates a potentially infinite number 

of points in space, each of which is associated with a possible input vector. Hence, on the 

basis of which particular region a novel input vector falls within a CM, it can hypothesize 

vis-a-vis which output class the input belongs to. Given the nature of the n-dimensional 

spaces involved this process of prediction has been described as spatial reasoning (van Gelder
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1991, Sharkey & Jackson 1994).

3 .1 .2  C o n n ec tio n ism  an d  E m b o d ied  S em an tics

To recap from the discussions presented in section 2.5, an embodied language system must 

support three levels of representation: sensory, conceptual, and symbolic2. CMs with their 

vector based input, spatial representational substratum, and categorical output, suitably 

accommodate these requirements and thus provide a suitable mechanism for the implemen­

tation of ENLP systems. The ensuing sections address this suitability in greater depth.

Sensory V ector-based Input

Sensor based readings of environmental stimuli are generally multi-dimensional. Consider 

the human visual system. Whilst at a macro level one might consider an eye as a single 

sensory device, at a micro level one can observe that each human retina is in fact composed 

from a multitude of smaller visual sensors (e.g. cones, rods, etc.), each of which may respond 

differently to an incoming stimuli (Marr 1982). Likewise, consider a common artificial visual 

sensor, viz. the CCD camera -— as frequently employed in robotic systems. The camera 

takes a reading of the outside environment by way of an i by j  matrix of charge coupled 

sensory devices. As before, each device may respond differently with respect to a constant 

visual stimuli.

Given a multi-dimensional interpretation, one can see that sensory based inputs have an 

obvious correlation to the n-dimensional vector type inputs processed by CMs. Hence, CMs 

can process the required sensory data directly, e.g. each elementary sensing device within 

a CCD camera has the task of measuring one ‘feature’ of a visual input vector that can be 

propagated to a CMs input units and from there onward to the output units.

2 The world level is of course not a level of representation. It is simply a level of description that accounts 

for the phenomena that exist ‘out there’ in the world independent of any language system.
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C oncepts in a C onceptual Space

At the conceptual level one requires representations that capture the common characteristics 

of the entities or categories of entities, about which one wishes to communicate. As discussed 

previously, sensory input vectors will not suffice to directly fix reference for a particular 

lexical symbol because the external world is dynamic and in constant metamorphosis (cf. 

Dorffner’s claim that “probably no two patterns [sensory] at different times are ever the 

same, even if they stem from the same object” (Dorffner 1992, p.279).

Given this requirement one can immediately see the applicability of CMs. The learning 

process serves to separate a number of o’s (e.g., visual input vectors arising from observar 

tions of cats), and x’s (.. .observations of dogs). After successful separation, the resulting 

categorical regions capture the features, or relations between features that are invariant 

within the set of cat vectors (i.e. a cats common visual characteristics), and likewise for dog 

vectors. Hence, a CM’s categorical regions posses the appropriate representational quali­

ties to satisfy basic conceptual level obligations and one may interpret these regions within 

feature space as concepts situated within a conceptual space.

A pplying O utput Labels

Finally, satisfying symbolic requirements, a CM’s output nodes -  each relating to a different 

categorical region within the feature space -  can be assigned an arbitrary label (lexical 

symbol), e.g. following from above one node would be assigned ‘cat,’ the other ‘dog.’

Hence, looking at CMs from a semantic perspective, one has lexical symbols (arbitrarily 

named output nodes) that refer to, and hence are meaningful with respect to, internal con­

cepts (that are directly connected to ^-dimensional regions of feature space). The internal 

concepts are triggered by external stimuli, i.e. by readings of environmental energies at ones 

sensory peripheries (different feature vectors will fall within different categorical regions).

3 .1 .3  C M s and  L ex ica l D ev e lo p m en t

It has been shown above exactly how CMs embrace the embodied semantic methodology 

that is vital if the lexical symbols at the heart of any language system are to be intrinsically
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meaningful. Thus, as an implementational platform, it would seem that CMs are adequately 

suited to the task of grounding a lexicon. However, reiterating from chapter 1, the overall 

objective of the work presented in this thesis is to create a system that can acquire grounded 

lexical symbols as and when needed, a system that can develop autonomously just as a child 

does during its early years. The CMs as described above go part way toward this goal in 

that they support the acquisition of sensory based semantic knowledge, i.e. the shape and 

position of the categorical regions in feature space are not explicitly programmed, they are 

adapted with respect to certain input data using a learning process. However, the lexical 

symbols are not acquired, they are simply associated with output nodes in an arbitrary 

fashion by the model’s designer. The model as described above does not address the issue 

of how the lexical entities themselves emerge.

The creation of an autonomous system requires a recognition of the similarities between 

lexical and non-lexical entities — given an embodied framework. In the same way that the 

recognition of an object’s existence arises from sensory stimulation and categorization, so 

does a word’s existence3. The rudimentary sensory input from which a working lexicon is 

acquired may be acoustic (sound patterns resulting from speech), visual (the squiggles that 

constitute written words), or even haptic (patterns of bumps in Braille).

Given this sensory based interpretation of lexical symbols one can make an extended claim 

about basic language development, viz. a lexicon and its semantics grows from a historical 

coupling of sensory signals. Consequently, one can make an associated claim that osten- 

sion4 gives rise to such a developmental process (cf. (Harnad et al. 1994)). Guided by 

these principles figure 3.3 portrays a generic lexical acquisition and grounding architecture 

which comprises two basic CMs fused to form a larger structured model. The architecture

3 At least this is the case if one observes a learning-theoretic constructivist (see, e.g. (Maturana & 

Varela 1980, Peschl 1992, Quartz &; Sejnowski 1997)) perspective of cognitive development rather than a 

nativist viewpoint (e.g., (Chomsky 1980, Pinker 1994)) in which mental entities such as lexical symbols are 

assumed to reveal themselves according to some predefined congenital time-scale, and learning based upon 

environmental interaction plays no part. Karmiloff-Smith provides an interesting survey of this philosophical 

terrain in a recent volume (Karmiloff-Smith 1992).

4 Ostension is the process by which entities are pointed out and named. For example, an adult may in 

the presence of a young child gesture toward an animal in a field and say ‘look at the horse,’ or ‘can you see 

the horse,’ or even ‘say horse.’ These are all ostensive descriptions.
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Figure 3.3: Generic lexical acquisition and grounding architecture. A modular structured 
CM comprising two sensory input channels, in this case acoustic and visual.

facilitates:

1. The acquisition of sensory derived non-linguistic knowledge, e.g. object concepts de­

rived from visual input.

2. The acquisition of sensory derived linguistic knowledge, e.g. lexical symbols derived 

from acoustic input.

3. The realization of causal links between concepts/symbols that co-occur on a regular 

basis, e.g. the creation of a link between an object concept and the word “cube” (see 

figure).

This generic LAG architecture is at the heart of the novel lexical acquisition and grounding 

research described later in this thesis, and its general form is evident in a number of the 

applied language models that are reviewed below (cf. (Prem 1994)).
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3.2 Applied ENLP M odels

Since 1990 the embodied semantic philosophy has started to take hold, and indeed thrive 

in the arena of language research. Over recent years an increasing number of language 

systems have been developed that are inspired and build upon (at least partially) embodied 

semantic principles. The closing sections of this chapter detail and critically appraise a 

number of these ENLP models in a chronological order5. Before commencing this review 

process it is instructive to first identify what one might expect from a ‘model’ model, this 

can then be used as a gauge by which to assess the capabilities of each model in turn.

3 .2 .1  A  ‘M o d e l’ M o d e l

Whilst all of the work reviewed in this chapter is related to the novel work presented later 

(all being founded on similar theoretical foundations), the rationale each author has had 

for undertaking their work has varied, e.g. in one case an ENLP inspired model is employed 

in an attem pt to explain certain characteristics of language development in children. In 

the case of the work in this thesis the rationale is perhaps best described as application- 

oriented, i.e. the aim is not simply to undertake ‘pure’ language research, it is toward 

the creation of practical systems that can be applied in realistic environments to provide 

an interface enabling natural-language interaction between humans and robotic systems. 

Given this rationale there are a number of important criteria that one might deem to be 

fundamentally important, the sort of properties that an ideal model might exhibit:

Learning Properties:

• Autonomy -  Learning should be autonomous in the sense that usable lexical semantic 

knowledge should develop naturally as a direct result of the catagorisation, combina­

tion, and assossiation of incoming data captured through sensory peripheries. Any

5 Unfortunately space constraints prevent an all embracing review of related language systems. Those 

that are reviewed have been chosen because they highlight certain important issues. For reference, further 

interesting and related systems that are not discussed below include those created by Henis and Levinson 

(Henis & Levinson 1995) (see also (Gorin 1995)), by Reiger (Feldman et al. 1996), and by Gasser and Smith 

(Gasser & Smith 1993).
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model that requires a designer to continually intervene in order to artificially ‘force’ 

data into the model is at a compromise.

•  Flexibility -  Furthermore, learning should be flexible in the sense that the sort of 

patterns /  data that can be learnt are not overly constrained. The need for such 

flexibility is supported empirically by work presented in chapter 5.

• Adaptable & Scaleable -  The knowledge acquired through learning should be both 

adaptable and scaleable. As in the human case, language should develop as and when 

required in order to communicate an ever growing understanding of an operating 

environment. One should also recognize the need for a model to be able to integrate 

many different sensory channels (multi-modality) in order to build realistic lexicons, 

e.g. one can apply the word ‘orange’ with respect to visual input, haptic (tactile) 

input, and taste input. This is a key topic in chapter 7. Furthermore, there is the 

issue of temporal processing. Verbs such as ‘run’ can never be meaningful with respect 

to discrete slices of sensory information.

• Performance -  A model should be able to acquire knowledge at a reasonable rate, 

e.g. it should be able to learn new words within a few presentations (a short space of 

time), just as an adult human does. In addition, to be of any practical application, 

an ideal model should rely upon affordable computing resourses.

P red iction /R eca ll Properties:

For a model to be of any use it must be able to effectively recall the knowledge that it has 

acquired. This can be tested by way of two abilities: description, and identification:

• Description -  When non-linguistic stimuli are presented alone, a system should acti­

vate internally the appropriate lexical symbol(s), i.e. the word(s) that correctly de­

scribe that stimuli to an external observer (figure 3.4a).

• Identification -  When linguistic stimuli are presented alone, a system should activate 

internally the appropriate non-lexical symbol(s), i.e. it should be able to imagine the 

concept (e.g. an object) to which the input stimuli refers (figure 3.4b).



Chapter 3 - Connectionist Models of Lexical Acquisition and Grounding. 49

Visual Input No Input No Input Linguistic Input

Figure 3.4: Description and identification in a generic LAG architecture: (a) Description 
-  Non-linguistic sensory input that enters the left hand side of the model activates a lexical 
symbol in the right hand side of the model, (b) Identification -  Linguistic sensory input 
triggers a non-lexical symbol in left hand side of model (the model imagines).

These functions are central to the rest of the investigations detailed in this thesis, since 

they represent the ability to bridge the gap between words and the world, i.e. they provide 

some evidence of ‘understanding.’

Performance is im portant in recall just as it is in learning. A model should be able to recall 

its knowledge (i.e. describe, or identify) in a reasonable period of time. For example, if 

directed to ‘pick up an object’ one would hope that a robot would understand and act upon 

the instruction quickly.

W ith the make-up of a perfect system now specified, the remainder of the chapter reviews 

seven significant applied ENLP models, assessing how each fairs in relation to this specifi­

cation.

3 .2 .2  N en o v  an d  D y er  (1988 , 1993 , 1994)

Nenov and Dyer’s DETE — which translates as the word child in Bulgarian (Nenov’s 

mother tongue) — is described by the authors as a computational model of associative 

interactions between two cognitive modalities (visual and verbal), devised to explore how 

language semantics maps to sensory experiences. The authors first paper (Nenov & Dyer 

1988) provides a basic overview of the task domain and the practical objective of the research 

— learning to associate language descriptions of objects moving in a visual field with those 

objects (see, for example, figure 3.5). Two later papers (Nenov & Dyer 1993, Nenov & Dyer
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Figure 3.5: An example VS sequence of events to be associated with the verbal sequence 
‘small triangle moves up, hits black circle and bounces.’

1994) provide detail of the actual implementation of DETE that uses a novel connectionist 

architecture, termed Katamic Memory, and an account of results arising from a number of 

investigations with DETE.

W ith environmental interaction in mind Nenov and Dyer employ a simulated domain called 

a ‘blobs world’ which they implement by way of a 64 x 64 pixel visual space (VS). Three 

blob (object) types (circle, square, triangle) of varying size and colour have the ability to 

move about the VS in varying directions and at varying speeds. To describe the objects, 

relations, and events occurring in the VS the authors utilize a fifty word lexicon (Nenov & 

Dyer 1994, table II.).

DETE is visually interfaced to the world (i.e. the VS) by way of a single circular retina, 

called the visual field (VF). The visual information captured within the VF is passed to five 

procedural modules6 that are attuned to the recognition of shape, size, colour, location, and 

motion respectively. Each module assesses the presence of certain pre-defined features and 

produces a binary feature vector, based upon its findings, that is supplied as input to the 

Katamic memory. These vectors are actually encoded in terms of five feature planes (FPs), 

each FP  being a 2D array of 16 x 16 (256) binary units. An example of representation 

within a specific FP  is cited as follows:

“In the siZe FP the largest objects (64 pixels on the VS) cause activation in 

the upper left-hand corner while the smallest (3 pixels) cause activation in the 

lower right-hand corner” (Nenov & Dyer 1994, p .11)

6 The authors note that these modules are all specifically designed and explicitly programed (i.e. Designer- 

Centric) non-connectionist rule based systems.
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A further procedural module, called the Word Encoding Mechanism (WEM), provides an 

interface between DETE and language input. The WEM takes as input typed text and 

produces as output a sequence of gra-phonemes. There are 26 gra-phonemes, each corre­

sponding to a letter of the English Alphabet, each represented as a 64 bit binary vector. 

Hence, DETE does not receive complete word representations as input, but rather timed 

sequences of 64-bit wide distributed patterns. Yet another procedural module, the Verbal 

Activity Decoder (VAD), works contrary to the WEM producing language output on the 

basis of gra-phonemic patterns.

The authors adopted an incremental approach to teach DETE the appropriate visual-verbal 

associations. Initially single word to visual associations were taught starting with the shape 

words ‘circle’, ‘square’ and ‘triangle.’ VS scenes comprising a single shape, but with varying 

colours, sizes, locations, and motions, were presented with the appropriate gra-phonemic 

verbal sequence. Over a number of trials (i.e. different VS scenes) DETE was able to extract 

the invariant features from amongst the FPs (i.e. the shape) and form an association 

between these features from the shape FP and the verbal sequence (e.g. ‘circle’). Using the 

same approach, DETE was taught the meanings of words refering to colour, size, location, 

and motion. Finally, words relating to events, e.g. ‘bounces,’ were taught (see figure 3.5).

The breadth and scope of the DETE research work initially dazzles — it is without doubt 

the largest-scale effort in its category to date. However, a thorough and systematic analysis 

soon leads one to the conclusion that enough has been left vague and unstated, that it is 

difficult to assess exactly how DETE works as the authors claim tha t it does. Despite this 

fact, a number of constructive objections to the approach are now raised based upon the 

details that are available.

The first objection is directed at the procedural modules and FPs used to process visual 

input. Initially one can be easily fooled into thinking that DETE is a fully fledged LAG 

architecture. However, upon a closer inspection one soon realizes that many of the meanings 

within the system are to some extent specified a priori (cf. (Dorffner 1994)). Consider for 

example the shape words ‘circle’, ‘square’ and ‘triangle.’ DETE does not learn what each 

shape is in terms of invariant VF input (i.e. it does not categorize sensory data). Instead 

a procedural module determines, according to some explicit system of rules, whether VF 

input matches one of three pre-defined shape templates. This approach compromises lexical
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development, since DETE will be unable to learn the meaning of a shape word such as 

‘rectangle’ unless Nenov and Dyer explicitly add a new rectangle shape template and rewrite 

the input-output rules of the appropriate procedural module. DETE cannot develop its 

semantic knowledge autonomously as it comes into contact with new VS phenomena.

Another concern — and perhaps the reason as to why DETE cannot directly categorize 

sensory input — can be levelled at Katamic memory’s ability to handle 1-bit densities,

i.e. the number of on bits (value—1) within a binary input vector. I t would seem from 

the authors’ under-specified results tha t Katamic memory runs into problems when 1-bit 

densities exceed 40% (Nenov &; Dyer 1993, p. 129). If this is indeed the case, then Katamic 

memory would not be able to deal with realistic sensory data.

One final objection arises due to the complexity of the model’s neurobiologically inspired 

Katamic memory. The results show that in terms of computation, learning is extremely 

intensive, e.g. it takes DETE about an hour to learn the appropriate associations for three 

separate words on a CM-2 parallel computer that has 16,000 physical processors, and over 

a million virtual processors (Nenov & Dyer 1994, p.37). Presently, computational power of 

CM-2 magnitude is, in most scenarios prohibitively expensive, and as a consequence, one 

may argue against the practical applicability of the approach.

Criticism aside, there are many positive aspects to the model. Firstly, DETE builds two 

way associations that allow it to perform both verbal-to-visual association (identification) 

and visual-to-verbal association (description). Secondly, Katamic memory has temporal 

qualities that enable it to learn pattern sequences. This ability was put to good use in rela­

tion to the word ‘bounces.’ Unlike for many of the other words there was no representation 

for the meaning of ‘bounces’ built into the system priori. Its meaning was acquired through 

the extraction of an invariant sequence of VS events : (1) blob moving in some direction 

jDi, folowed by (2) blob not moving, followed by (3) blob moving in different direction 

D 2 . Thirdly, Katamic memory has a built in mechanism that allows it to switch between 

learning and prediction on a pattern-by-pattern basis. This offers a distinct advantage over 

other connectionist architectures that require a long learning phase followed by a distinct 

performance phase (this issue is addressed further in the next chapter). Finally, DETE is 

able to ground lexical symbols with respect to a number of input modalities, e.g. colour, 

shape, size, etc. This multi-modal aspect of DETE is discussed further in chapter 7.
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3 .2 .3  B a r te ll an d  C o ttr e ll (1991 )

The work of Bartell and Cottrell (Bartell Sz Cottrell 1991) has similarities to DETE in that 

it too explores associations between visual and verbal input. However, the authors visual 

domain, a ‘billiard ball world’, is quite restricted in comparison to the ‘blobs world’ and as a 

consequence the vocabulary required to describe events within the world is greatly reduced. 

The billiard ball world is an environment in which a single billiard ball may roll around a 

square table and bounce off the table’s walled edges. The actual objective of the work is to 

learn desriptions of movies based upon this environment, where each movie consists of 20 

snap-shots of the ball in successive positions on the table.

To address their objective, the authors present a structured connectionist architecture (see 

figure 3.6), called the Movie Description Network (MDN), which is an amalgamation of two 

Simple Recurrent Networks (SRNs) (Elman 1990). The application of the architecture to 

the task was as follows. The input to the MDN was a 2D vector that specified the billiard 

ball’s x , and y  position on the table7 for a particular snap-shot. The output layer consisted 

of six nodes, each tuned to a single word in the set {up, down, left, right, slowly, quickly}.

The MDN was trained, using a supervised back-propagation algorithm, for seven iterations 

through 50,000 randomly generated movies, i.e. movies in which the starting position 

< x, y > of the ball was chosen randomly, and the starting velocities Sx and Sy > were 

chosen randomly in the range [-0.3, +0.3]. Training followed two stages: first the image 

SRN was trained to predict the next visual state i.e. given < Xt, yt > predict < x t+\,yt+i >; 

then at random intervals, the word SRN was trained with the appropriate words relating 

to the sequence of snap-shots sent to the word SRN buffer layer.

To review performance the MDN was tested on a further 1,000 randomly generated movies. 

250 of these movies were ‘extended’ in the sense that they contained 50 snap-shots. A 

further 500 were ‘extended’ inasmuch as the parameters Sx, and Sy set outside the [-0.3, 

+0.3] range used in training. The reason for using these movies was to test how well the 

MDN had conceptualized the training data, i.e. acquired the invariant aspects of the input. 

If the architecture had acquired accurate concepts (meanings), then it would be able to

7 Values for x, and y  lay within the bounds (i.e. walls) of the table, which were positioned at [-1.0, +1.0] 

in each dimension.



Chapter 3 - Connectionist Models of Lexical Acquisition and Grounding. 54

Word
SRN

Image
SRN

Predict

input Layer Context Layer 1

BufferContext Layer 2

Output Layer

Hidden Layer 1

Hidden Layer 2

Figure 3.6: Architecture of the Movie Description Network (MDN). A two node input layer 
processes features x, and y taken from a movie at time, t. The image SRN is taught to 
predict the value of these features at time, t+ 1 . The word SRN then learns the required 
relations between the time based representations acquired at hidden layer 1 (via buffer layer) 
and six ouput nodes, each allied to a lexical symbol.
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Figure 3.7: After training was complete Bartell and Cottrell analysed the knowledge ac­
quired by the MDN using various techniques (Bartell & Cottrell 1991, p.808). The authors 
present a figure similar to that shown above that depicts results from the analysis. It shows 
the internal representational boundary acquired with respect to the lexical symbols ‘slowly’ 
(points inside the boundary) and ‘quickly’ (outside the boundary).

accurately describe an extended movies content. Based upon their testing (i.e. running the 

CM in its prediction mode), the authors cite quite satisfactory results. For over 80% of the 

1,000 test movies the MDN produced an entirely accurate description more than 85% of 

the time.

W hat is particularly interesting about the model is that the concepts tha t it accurately 

acquires are not based directly upon the input. The MDN’s temporal nature (see the delay 

routes in figure 3.6), enables it to learn concepts that are time dependent. Hence, in addition 

to creating boundaries in the feature space (x ,y), the MDN is able to acquire boundaries in 

the space (Sx, Sy). Figure 3.7 shows how a decision boundary separates the concepts quickly 

and slowly. Whilst temporal processing is an attribute for which one should give the MDN 

model credit, this is more than offset in relation to the following objections:

• The MDN architecture is only able to perform description. Strictly feed-forward 

processing inhibits its ability to perform identification when given lexical input alone.

• The lexical elements within the model are not acquired. They are set explicitly by 

the authors in relation to nodes in the output layer.
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• The lexicon acquired by the MDN was far too limited consisting of only six words. 

Furthermore, the quantity of training data required in order to learn the meanings for 

these words seems excessive: (50,000 movies x 20 snap-shots x 7 epochs) =  7,000,000 

input vectors (Bartell & Cottrell 1991, p.807).

• The final objections concern the use of SRN’s: a hybrid of the popular MLP CM. The 

gradient descent supervised learning algorithms (e.g. back-propagation (Rumelhart et 

al. 1986)) typically used in conjunction with these MLP type achitectures attem pt to 

minimize error by updating the majority, if not all, of the weights in the system in 

a single learning step. This fully-distributed learning — and consequently, knowledge 

representation — typically results in (1) extremely lengthy training times that can 

easily run to the order of days (cf. (Sales 1996)), and (2) developmental deficiencies: 

once such a CM has been trained, i.e. acquired certain concepts, symbols, etc. at­

tempting to teach more to the CM will usually result the corruption of previously 

learnt knowledge. One might alternatively say that in such models the ability to in­

crementally acquire and adapt knowledge is seriously compromised. These final issues 

are discussed at much greater length in the following chapter.

3 .2 .4  D orffner (1992 )

Following in the footsteps of DETE, and the MDN, Dorffner’s Sub-symbolic Language 

Model (SLM) (Dorffner 1992) also addresses visual to verbal association. However, Dorffner 

investigates lexical acquisition and grounding in relation to a static visual domain, i.e. 

individual images, rather than a dynamic movie type visual domain.

The SLM connectionist architecture, shown in figure 3.8, provides what is perhaps the 

best working example of the generic LAG architecture introduced above. Environmental 

stimuli are captured and encoded at the SLMs sensory layers. This S-layer activity is then 

propagated to a C-layer of units. Because all of the weights between these layers, and 

hence the boundaries, are randomly initialized, the S-layer activity causes a random fuzzy 

vector of activation across the C-layer units (see figure 3.9). Intra-layer competition is then 

employed which ‘focuses’ the fuzzy vector into what is termed an identifiable state. Finally, 

an unsupervised learning process adapts each weight in proportion to the activity of the
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Figure 3.8: Dorffner’s sub-symbolic language model employs five layers of processing units 
in total. Two input, or sensory (S) layers, pass visual and pseudo-acoustic (verbal) input 
respectivly to two conceptual (C) layers. A Symbol (SY) layer connects the C-layers pro­
viding the necessary structure to enable visual concepts to be linked to verbal concepts.

S-unit and C-unit that the weight connects. This competition and learning enable C-layer 

units to become tuned to the salient, or invariant properties, inherent within a group of 

sensory patterns, e.g. a sub-pattern that appears within a group of distinct visual images.

Another layer of connectionist computing units employed in the SLM is the symbol (SY) 

layer. Its chief function is to acquire mappings between units in the C-layers to which it 

is connected. Strong mappings are acquired between C-units that consistently co-occur in 

relation to each other, or in other words lexical concepts are bound to visual concepts. Each 

unit within the SY-layer is responsible for one such mapping.

One interesting aspect of natural language investigated in connection with the SLM is 

lexical taxonomy. As the author notes: “Many categories that have labels in a language 

are believed to exist on a hierarchy of subordinate and superordinate categories. Categories 

on a higher level of this hierarchy (taxonomy) are said to contain all categories on lower 

levels. Thus, any given object can be named with several labels from different levels of 

the taxonomy” (Dorffner 1992, p.304). For example, a certain dog might be described as 

a ‘poodle’ (subordinate), a ‘dog’ (basic level), or an ‘animal’ (superordinate). Dorffner 

provides a simple example of the SLMs functionality. The model is applied to the task
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Figure 3.9: Show (1) an image (2) how this relates to a point in vector space (in reality this 
will be a 25D space, however, for demonstative purposes only 2D shown) (3) put a number 
of circular boundaries in vector space, (4) show how they relate to the C-layer units in a 
fuzzy-state, (a) a fuzzy state (b) an identifiable state

of acquiring and grounding seven lexical items : two basic level -  ‘table,’ ‘chair;’ four 

subordinate -  ‘baroque (table),’ ‘kitchen (table),’ ‘arm (chair),’ ‘garden (chair);’ and one 

superordinate -  ‘furniture.’ Each is presented to the right-hand side of the SLM in a vector 

encoded format. The visual input consists of noisy8 versions of four 5x5 pixel images. Each 

image was presented in turn with each of the lexical items that correctly described it.

Further details of the investigation and the results obtained are sketchy to say the least. 

The author provides nothing in the way of empirical facts and figures. However, on the basis 

of what there is, a number of objections are raised below. Firstly, the author briefly notes 

that the SLM failed to aquire a few of the required mappings [p.308] between concepts, and 

furthermore that other mappings were too weak. In such a simple and limited domain of 

investigation (i.e. 7 words, 4 images) such results are a cause for concern.

The author also mentions on a number of occasions that for a given C-layer a certain 

grouping of patterns (a concept) will only be discovered with a certain probability. To

8 Up to 20% noise was added to the input images. This was to show that the SLM could generalize and 

conceptualize as required.
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combat this problem the use of multiple C-layers connected to each S-layer is suggested. 

However, in Dorffner’s analysis there is no suggestion as to the number of layers that 

might be required for a given task, i.e. there is a lack of design methodology. In his own 

example investigation the SLM employed five C-layers, and 4 SY-layers, requiring a total 

of 3870 connections (weights). But given the failures, Dorffner suggests more layers may be 

required. As a related point, given the very limited nature of the task a t hand in relation to 

such an extensive architecture, one must question the computational efficiency of Dorffner’s 

approach.

A futher issue that arises briefly in Dorffner’s analysis is that of word frequency. The fact 

that the verbal input ‘furniture’ was presented to the SLM on more occasions than some 

of the other verbal inputs seemed to cause some problems. In a real world application any 

‘balanced frequency’ constraint would be unacceptable.

Finally, as with the SRN used in the previously described model, the fully-distributed nature 

of the SLM effectivly restricts the developmental capacity of the model. Furthermore, other 

research has shown tha t the Interactive Activation algorithm (McClelland & Rumelhart 

1981), employed to effect C-layer competition, is flawed in its ability to maintain stable 

representations (Grossberg 1987).

On the positive side, the SLM is able to trigger verbal concepts given visual input alone 

(description) and vice versa (identification). Another favourable aspect of the model is its 

conformance to autonomous principles, i.e. symbols etc. are not explicitly built into the 

model a priori. The final quality worthy of mention is the architectures ability to deal 

directly with raw unprocessed sensory stimuli, e.g. CCD camera ouput. Such input was not 

used in conjunction with DETE or the MDN.
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3 .2 .5  P lu n k e tt  e t  a l. (19 9 2 )

Plunkett, Sinha, Strandsby and M0ller (Plunkett et al. 1992) cite their work as an investigar 

tion of concept formation and vocabulary growth. The domain of this investigation centers, 

as before, on the problem of associating static visual input and linguistic input. The work 

is actually based upon the work of Chauvin (Chauvin 1989), however, the authors note that 

whilst the architecture of the CM utilized and the nature of the problem tackled are similar, 

there are crucial differences in terms of the scale of the learning problem (Chauvin worked 

with a mere 4 lexical symbols) and the manner in which the performance of the model is 

evaluated.

Figure 3.10a depicts the structure of the CM employed by the authors — one can again see 

some resemblance to the generic LAG architecture introduced above — to tackle the specific 

task of associating visual input from a 19x9 retinal array, and lexical input, taking the form 

of 32 bit binary vectors. The visual image data was generated from 32 prototype images. Six 

noisy versions of each image constituted the 192 visual patterns used in the investigation. 

The lexical input data comprised 32 orthogonal vectors (i.e. 32 lexical symbols), each having 

a single bit active. Training the CM to complete the task consisted of three separate stages9:

1. The left half of the CM was trained (see figure 3.10b). A visual pattern is presented 

across the retinal input units and activity is propagated through the CMs layers to 

the retinal output units. The activity across the output units is compared to the 

input unit activity. The difference between the activities is recorded as an error. The 

supervised back-propagation algorithm was used to adapt the weights on the visual 

side of the CM so as to reduce the error. Hence, the CM was trained to reproduce a 

visual input at the output — an auto-associative learning task.

2. Similarly, the lexically oriented right half of the CM was trained (see figure 3.10c).

3. As a final step the CM was trained as a whole. Visual inputs and their corresponding 

lexical inputs are presented simultaneously. Errors at the output units are minimised 

by adapting all of the CMs weights.

9 An in-depth investigation of the three stage training referred to as CP training can be found in (Sales 

1996). A number of benefits in relation to a single step training strategy are noted.
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Figure 3.10: (a) The seven layer connectionist architecture employed by Plunkett et al. 
Input from each sensory modality is propagated to a distinct layer of hidden units. The 
output from both layers then converges to a second shared layer of units, (b) The first 
(visual) phase of auto-associative training (refer to main text for a full description), (c) The 
second (lexical) phase of auto-associative training. Figure reproduced from (Plunkett et al. 
1992, p.300).

The authors’ analysis of the model is based upon two measures of performance : ‘produc­

tion,’ and ‘comprehension,’ which correspond directly, and respectively to the functions of 

description and identification. After each 3-phase cycle of training (one epoch) the pro­

duction and comprehension performance of the CM was assessed. All in all the model 

was trained for a total of 100 epochs. The 100 comprehension and production scores were 

presented in a graphical form.

Whilst the authors’ own interests lie with the characteristics of the comprehension and 

production graphs, in particular how they tie in with the characteristics of vocabulary 

growth exhibited by young children with developing linguistic and conceptual systems, here 

one is more concerned with the actual figures that were achieved. The actual results show 

that the best performance values were recorded when the CM was fully trained (i.e. after 

100 epochs). At this point production and comprehension accuracies of around 85% and 

83% were achieved in relation to the original prototype images. Given that the un-noisy 

images were never presented to the CM during training, the results above lend themselves 

to the claim that the model has generalized correctly on the basis of input stimuli and 

acquired appropriate concepts, i.e. the model has correctly partitioned its feature space.

The main criticisms of the work centres around the author’s choice of connectionist model. 

In common with the SRNs employed by Bartell and Cottrell, the CM employed by Plunkett
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et al. is an MLP hybrid trained by back-propagation learning (Rumelhart et al. 1986). As 

mentioned above, such an architecture/algorithm combination brings problems in terms 

of slow training times and the ability to incrementally acquire and adapt concepts. In 

addition to these problems there is the issue of design methodology. There are no hard and 

fast rules when it comes to designing and applying MLP type models — the topology of 

the architecture, the number of nodes in each layer, the initial values of weights and other 

learning algorithm parameters, all depend upon the task at hand (i.e. the data) and are all 

typically determined through trial and error empirical exploration. Although Plunkett et 

al. make no mention of their particular route of exploration, Sales (Sales 1996) has shown 

that production and comprehension results vary widely given different parameterizations. 

As a consequence, the design process can be, and often is, an arduous and lengthy one.

One further point of interest in relation to this work is the author’s observation that in 

their model there is a linguistic influence on non-linguistic conceptualization:

“. . .  the network exploits the predictive power of the input label in identifying 

category membership, as well as the natural clustering of the distortions in the 

image plane” (Plunkett et al. 1992, p.305).

This is a contentious issue in linguistics, cognitive science etc. The arguments for and 

against are considered further in chapter 5 as a basis from which to discuss the engineering 

impact tha t such influence can have vis-a-vis the design of artificial ENLP systems.
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3 .2 .6  L am m en s (1994)

Larnmens’ (Lammens 1994) model of colour perception and naming (MGPN), is the only 

piece of applied work reviewed in this chapter that is not built upon connectionist foun­

dations. However, the underlying substrate of computation and representation is spatial 

and as such closely resembles that of a CM. Lammens’ work focuses on the definition of a 

referential semantic model of (basic) colour terms, or from a mathematical perspective on 

the construction of a mapping ft,

f t : E 4 C x I

that connects a set of possible visual stimuli, E  to a set of eleven colour terms (lexical 

symbols), C:

C — {white, black, red , green, yellow, blue, brown,purple,pink, orange, gray}

where I  represents the closed interval [0, 1] that allows one to define a ‘goodness’ rating 

between a visual stimulus E {A) e  E  and a particular colour symbol C  € C. Hence, the 

domain of investigation is again one of visual/linguistic association.

Lammens’ work is im portant and interesting for its further analysis of embodied semantic 

systems. Given an embodied view of semantics where one forfeits the notion of objective 

meaning in favour of internal subjective meaning, it is vital that communicating bodies 

have (a) isomorphic symbol to concept groundings and (b) roughly isomorphic concepts,

i.e. language is of little use if person A refers to concept X using the word W if person B 

interprets W as relating to concept X’ (cf. (Winograd 1980)). Lammens argues that the 

organization of colour experience (i.e., into colour concepts) within humans is determined 

largely by the structure of human colour receptors, and that since this structure is by 

and large standard for all members of the species, these colour concepts are more or less 

isomorphic. As a consequence, the author notes that “To define an adequate [artificial] 

model of the semantics of colour terms in natural languages, it is necessary to model the 

physiology of human colour perception” (Lammens 1994, p.16).

Constructing ft is specified as a 2 part task. The first part of the mapping deals with 

the transformation of a visual stimulus into a point in a colour space (i.e. a conceptual
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Figure 3.11: The above plot shows a 1-D Gauusian function, p places the centre of the 
category, cr defines the spread.

space that organizes colour experience). Based upon various neurophysiological findings 

the author proposes a three dimensional colour space (referred to as the NPP space) and a 

function tha t projects a physical stimulus E {A) — electro-magnetic radiation in the visible 

wavelength range [~ 380-770 nm] — onto a point p in the NPP colour space.

The second part of the mapping concerns the creation of categorical regions defined within 

the colour space, each paired with a unique colour symbol. P u t simply, it deals with a move 

from a colour space to colour names. Using data acquired by Berlin and Kay (Berlin & Kay 

1969) on how human subjects name colours, the author fitted eleven categories within the 

NPP space. Each category was based upon a normalized Gaussian function, and was thus 

modulated by way of two parameters: p, and o  (see figure 3.11). The trial-and-error fitting 

process involved trying different values of these parameters in order to minimise a specific 

error criterion (Lammens 1994, p.129).

Lammens reserved some of the Berlin and Kay data in order to test how well the referential 

semantic model could name unseen colour stimuli, i.e. perform description. Given a novel 

stimuli and applying the appropriate transformation function one can determine its position 

p in NPP space. Given p  one can then determine:

oti — Gn{p,jH,cri) (3.1)

where a* provides the likelihood that the stimuli belongs to category number i, Gn is a 

normalised Gaussian function. The highest of the eleven a  values was selected, and provided
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F ig u re  3 .1 2 :  Lam m ens’ colour nam ing process. Boxes represent devices or operations, el­

lipse represent data  representations (see tex t for details). Figure reproduced from (Lammens 

1 9 9 4 , p . 1 4 6 ) .

that it exceeded a threshold 0, the category Ci affiliated with the value was chosen. Finally, 

the lexical symbol paired with C% is elected to name the stimuli. Figure 3.12 provides a 

schematic depiction of the colour naming process.

The author presents a number of quantitative results that seem to provide evidence of 

success; in particular the error rates for blacks, greys, and oranges are almost zero. It 

should be noted, however, that the author makes no reference as to the number of test 

stimuli used in testing, nor to the distribution of these stimuli, and as such one could 

question the relevance of the results.

The most im portant qualities of the MCPN are (1) its ability to perform description and 

identification — the model could also be used in reverse, i.e. to point out examples of 

colours — and (2) the topological nature of the NPP colour space. The NPP space, like 

other physiologically and psychologically inspired colour spaces (more on these in chapter 

5), directly captures a certain order between different colours that humans introspectively 

perceive. For example, the Gaussian enclosed cluster of points associated with the label ‘red’ 

is closer to the cluster associated with ‘orange’ than it is to the one associated with ‘green.’ 

Therefore, one gets a continuity between categories, i.e. there are smooth transitions from 

one category to another as one moves linearly through the space from point p to p'. As a 

result of this the MCPN was able to produce appropriate complex names for ‘borderline’ 

colours, e.g. where two a  values exceed 9:

<*4 =  0.75 

CKg =  0.92

(3.2)

(3.3)

the model produced a compound label ‘greenish blue.’



Chapter 3 - Connectionist Models of Lexical Acquisition and Grounding. 66

Furthermore, one can argue that such a space also implicitly encodes meaning postulates 

(see section 2.2.1) without any designer input, e.g. there is no need for a rule that explicitly 

states that if something is red then it cannot be green (\/x[red(x) -fa green(x)]). The very 

fact that the green and red categories are not neighbours within the NPP space, means 

that the label ‘greenish red’ will be considered as semantically strange. In chapter 5 further 

issues relating to the topology of conceptual spaces are considered, in particular, how the 

structure of the space aids the learning of concepts within a connectionist framework.

The main negative element of the work is of course its neglect of development. The semantic 

knowledge in the model is not acquired, but is provided explicitely by the designer, hence, 

the model is one of lexical grounding rather than lexical acquisition and grounding. The 

model is thus constrained in its abilities. It would be impossible for the MCPN to develop 

linguistically as its experience of a domain develops, e.g. in much the same way that an 

artist acquires an extended colour vocabulary and talks of Ochres and Sienna.

3 .2 .7  G rum b ach  (1996)

Grumbach (Grumbach 1996) describes a hybrid model of symbol formation whose task 

domain focuses around a robot learning situation. Specifically, the objective of the work was 

to assess how grounded language terms could aid in training a mobile robot to follow a road 

whilst avoiding obstacles. A simulation was constructed of the domain, which contained a 

mobile robot which was given visual sensors and the ability to perform one of seven actions; 

increase speed, decrease speed, no change, speed up and turn left, speed up and turn right, 

slow down and turn left, slow down and turn right.

Grumbach proposed a two stage training regime for his mobile robot. The first was qualified 

as a learning by example (LBE) stage and consisted of training 13 typical static visual inputs 

the robot may encounter to produce one of the seven possible actions. The LBE stage was 

implemented using a simple associative CM with only two layers; a (visual) input layer 

and an (action) output layer consisting of seven units. Subsequent to LBE the robot was 

tested on two roads. On a simple circular road, performance was found to be satisfactory. 

However, on a more intricate road containing a number of sharp bends, the robot failed to 

keep to the desired path on a number of occasions. In an attem pt to correct these failures
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Figure 3.13: The learning architecture shows the parallel routes between the visual input 
and the action output, the first via the initially trained LBE network, the others via the 
LBI networks. LBE net trained by delta-rule, LBIs by simple Hebbian learning.

the authors proposed a second stage of training referred to as learning by instruction (LBI), 

where directions could be given to the robot using natural-language, hence, the requirement 

for a set of grounded lexical symbols.

Figure 3.13 depicts the model employed by Grumbach which consists of a number of simple 

associative CMs. Preceding LBI symbol acquisition and grounding was initiated requiring 

two of the simple CMs. The first was trained to associate the visual input from the robot 

with a verbal label describing it, e.g. left bend whilst the second was trained to associate 

each of the seven possible actions with a verbal description, e.g. slow down. W ith the 

grounded symbols acquired, another simple CM was then utilized to implement LBI by 

forming connections between the two sets of grounded symbols, i.e. the visual labels and 

the action labels. The appropriate connections were trained by supplying pairs of lexical 

items together, e.g. training the instruction “if the road bends sharply to the left, you must 

slow down and turn  to the left” , required that the lexical items sharp bend and slow down 

and turn left be presented to the CM simultaneously.

Grumbach’s model is lacking from an embodied semantic perspective on a number of fronts. 

The main weakness stems from the lack of conceptual content established within the model. 

The simple CMs employed by the author are too simple, in fact, given the overview above 

one could argue that they do not even qualify as CMs. These linear associative devices that
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utilize basic Hebbian learning simply connect sensory representations directly to arbitrary 

symbolic units. They possess no conceptual space as such, nor do they optimize categorical 

regions within this space. This means that the system must explicitly learn the mappings 

between a symbol and every possible sensory percept to which it may apply. The whole 

incentive for using CMs as a basis for embodied semantic systems (i.e., their ability to cat­

egorize, generalize etc.), seems lost on Grumbach. In his introductory preamble Grumbach 

speaks of the model acquiring concepts [p. 133], however, given the above analysis this is 

clearly not the case.

One aspect of Grumbach’s model that initially looks promising, is its ability to ground 

symbols with respect to more than one input modality, i.e. verbal to visual association, and 

verbal to action association. However, this multi-modal aspect of the model turns out to be 

an Achilles’ heel. The author uses two separate processing channels for verbal input, one 

for words relating to visual input, the other for words relating to actions. Consequently, 

one may argue that the author is making a priori assumptions regarding the meanings of 

the lexical items. This negative aspect of the model is discussed further in chapter 7

3 .2 .8  Sa les (19 9 6 )

The domain of investigation proposed by Sales (Sales 1996) is an adaptation of that ex­

amined by Plunkett et al. — the core objective being the creation of a system tha t can 

acquire a grounded lexicon autonomously through embodied interaction in a verbal and 

visual environment. However, Sales’ research stands in contrast to the research that has 

been discussed above in that it is ‘application-oriented’. In this sense LAG is not addressed 

purely as an academic task. Rather, the author is interested in how an ENLP system can 

be applied in a practical setting, e.g. as part of an intelligent navigation system for a robot. 

As such special attention is paid to issues which affect practical applicability.

The practical approach adopted by Sales is very similar in principle to that ventured in this 

thesis (see section 3.2.1). Since the aims of both pieces of work are quite similar, a detailed 

analysis of Sales’ models, investigations and results is deferred until chapter 6 where they 

are considered as a base for comparative study. What follows below is a brief overview.
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Sales proposes a lexical acquisition and grounding model based upon Weight-less Artificial 

Neural Network (WANN) technology. WANNs are often not regarded as CMs, mainly 

because they do not embody the two general characteristics that usually define such models 

(see section 3.1.1 above). Specifically, WANNs lack both weights and a fan-in function, and 

as a consequence their operating dynamics, i.e. their learning and prediction functions, are 

quite different from those described above. However, at an alternative level of interpretation 

the similarities between WANNs and conventional CMs are plain to see: they are pattern 

classifying devices, they operate upon n-dimensional vector input, and they adjudge pattern 

similarities (i.e., generalize) by way of spatial reasoning.

Sales’ justifies the choice of a WANN based LAG architecture by way of the following 

features:

• S peed  O f A cquisition : Sales suggests that as a result of their alternative dynamics 

WANNs can acquire knowledge, e.g. lexical and sensory concepts, much faster than 

many other connectionist systems.

• R e-learn ing : Another positive aspect of WANNs highlighted by the author is their 

ability to add to their knowledge in an incremental manner. Hence, such systems can 

gradually develop a meaningful lexicon adding new words as required.

The data used in Sales’ investigations did not match that employed by Plunkett et al.This 

was mainly because WANNs are unable to process analog input, all input must be binary. 

Instead in new investigations Sales generated his own visual and lexical data: 37 12x12 

(144 bit) visual patterns and 37 64 bit lexical patterns. Through the course of extensive 

investigations Sales employed a total of ninety WANN models. Each model had different 

connectivity patterns between input and output units, and each was trained using the 37 

pattern pair training set and then tested on data obtained by adding 10% noise to the 

original data.

As above, analysis of the models was based upon description and identification. In contrast 

to Plunkett et als. model it was found that performance on these tasks was far from balanced. 

The best description and identification accuracies recorded were 87.4% and 58.4% by models 

3 and 44 respectively. Model 44 also came out top when averaged over the two tasks, 

recording an identification accuracy of 57.7%.
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Starting the the positive aspects of Sales’ WANN architectures. Firstly, Sales can rightly 

boast that in comparison to other models described above WANNs are able to acquire 

knowledge at a greatly improved rate -  it took 30-40 seconds for a WANN to acquire the 

knowledge it would take about 8 hours for an MLP based model to learn. A second plus 

point is that WANN model’s can acquire knowledge incrementally. However, it should be 

noted that each WANN has a ‘storage limit’, and that “performances will begin to degrade 

as the storage limit is approached” (Sales 1996, p .178).

On the negative side one might raise the following objections:

1. A lack of autonomy is evident in the WANN approach. The results from experi­

mentation show wide performance variations on the same data given varying network 

topologies. Only trial and error seems to be offered by the author as a methodology 

for finding which topology works best with a specific data set10.

2. The WANN approach that Sales offers is only capable of dealing with binary data.

3. WANNs suffer from slow recall of knowledge. In all cases it took WANN models at 

least three and a half seconds to undertake either description or identification. By 

comparison an MLP type model can recall knowledge in the order of milliseconds.

3 .2 .9  D iscu ss io n

A total of seven models have been described and discussed in the preceding sections of 

this chapter. In each case a t least one of the requirements detailed in section 3.2.1 was 

addressed. However, in none of the models were all of the requirements met. Thus one 

can immediately see that scope for improvement remains in the field of embodied natural 

language processing models.

10 This inference is based upon numerous remarks made in Sales’ text, e.g. “a certain amount of empirical 

adjustment will be necessary” (Sales 1996, p.223), “connectivity levels for optimum performance vary with 

data format” (Sales 1996, p.223)
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One of the primary roles of the previous chapter was to remark upon the representational 

affinity that exists between embodied semantic theories and connectionist models of com­

putation, and, as a consequence, to justify in general terms the application of the latter as a 

platform for the practical implementation of the former. However, despite this general affin­

ity, the latter sections of the chapter clearly indicated that all CMs are not equally suited 

as implementational tools. Beyond their generic facade one finds tha t different kinds of 

CM exhibit and possess many different computational characteristics and constraints. As a 

result some CMs better suit the development of practical ENLP systems (see requirements, 

sec. 3.2.1) than others.

This chapter introduces and positions an alternative medium of connectionist computation 

known as Adaptive Resonance Theory (ART), as a superior means through which to imple­

ment an embodied semantic theory and consequentially as a superior means through which 

to acquire and ground lexical symbols. The sections that follow address ART in some detail 

in order to justify such a bold claim.

71
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4.1 ART: A Brief Introduction

Adaptive Resonance Theory, or ART, was first introduced in 1976 (Grossberg 1976a, Gross- 

berg 19766) and originated from an analysis of both artificial and human cognitive infor­

mation processing. Starting from a number of core principles, Grossberg, Carpenter, and 

other colleagues have steadily developed and incorporated new ideas into ART (see, for ex­

ample, (Carpenter & Grossberg 1994, Williamson 1995)). Furthermore, they have realized 

these principles and ideas through an ever evolving family of connectionist architectures 

and learning algorithms that have demonstrated increasingly powerful category learning, 

recognition, and prediction capabilities.

4 .1 .1  S ta b le  L earn ing  th ro u g h o u t Life

One of the wonders of human cognitive information processing is its plasticity. Human 

learning is, for the most part, sequential, i.e. one does not learn everything about the world 

in one shot and then simply recall this knowledge, one acquires knowledge in a step-by-step 

piecemeal fashion. For example, as an infant one learns to recognize one’s parent’s faces, 

a little later in life when starting school one must learn to recognize many new faces (i.e. 

friends), and still later, when starting one’s first job, yet more faces must be learnt. Hence, 

human learning can be said to be plastic in that it is a life-long process — information 

acquisition is incremental. Moreover, plasticity also accounts for the fact tha t knowledge is 

continually adaptable, e.g. as one’s parents grow older, one adapts one’s internal knowledge 

of their looks in order to facilitate recognition. Learned knowledge tracks environmental 

change.

A second equally im portant characteristic of human memory and learning is its stability. 

Stability in this context refers to the fact that the acquisition of new knowledge does not 

wash away, or overwrite prior learning, e.g. one does not return home after one’s first day 

at school (having learnt about many new faces) unable to recognize one’s parents. Stability 

does not necessarily mean that knowledge is not forgotten, simply tha t any loss of knowledge 

is progressive rather than instantaneous.
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4 .1 .2  T h e  S ta b ility -P la s t ic ity  D ile m m a

Most contemporary theories of connectionist processing do not match up to the human 

processing model. In fact many CMs exhibit a phenomenon that is widely referred to as 

‘catastrophic interference’ — a term first introduced by McCloskey &; Cohen (1989) founded 

upon their computational analysis of the operational properties of Multi-Layer Perceptrons 

(MLPs). McCloskey and Cohen found that MLP models have an inherent tendency to 

abruptly and completely forget previously learned information in the presence of new input 

(i.e. in a sequential learning environment) — new knowledge ‘catastrophically interferes’ 

with old knowledge. The authors termed this ‘The Sequential Learning Problem’.

Notwithstanding the fact tha t McCloskey and Cohen’s published work has done much to 

raise the profile of the above issues, put into the correct historical context, the author’s core 

findings simply echo those made earlier by Stephen Grossberg. As early as 1976 (Grossberg 

1976 a) findings had been published that a certain class of CMs (viz. feedforward competitive 

learning models) could, under sequential learning conditions, (i.e. in environments requiring 

plasticity), exhibit unstable learning. The author proceeded to show (Grossberg 1987, 

Grossberg 1988) that this instability problem was not particular to competitive models; 

pointing out tha t MLP models, such as the back propagation model, and auto-associators, 

both exhibit similar learning deficiencies. In Grossberg’s terms what all of these models 

failed to solve was what he termed the stability-plasticity dilemmas1, a predicament later 

characterised (Carpenter & Grossberg 1987, Carpenter h  Grossberg 1988) by way of a 

series of questions:

1. How can a learning system remain adaptive (plastic) in response to significant input, 

yet remain stable in response to irrelevant input?

2. How does the system know to switch between its plastic and its stable modes? (i.e. 

where is the boundary between significant and irrelevant?)

1 Although Grossberg’s analysis pre-dates that of McCloskey and Cohen many still erroneously cite the 

latter’s work when referring to the origin of these findings and give little, if any recognition to the formers 

findings (e.g., (French 1997)). As a consequence one finds that the latter’s terminology (i.e., ‘catastrophic 

interference,’ ‘sequential learning problem’) is generally employed in academic literature (e.g., (Sharkey k  

Sharkey 1995, Grossberg 1997)).
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3. How can the system retain previously learned information while continuing to learn 

new things?

4 .1 .3  T h e  F o u n d a tio n s o f  A R T

A formal analysis of how the human learning mechanism addresses the questions raised 

above, led to and provided the foundations for, the introduction of ART. An analysis of 

interdisciplinary data arising from various sources (e.g. studies in perception, cognition, 

attention, and neurophysiology), led Grossberg to postulate that stable and plastic learning 

is regulated by a matching process, whereby bottom-up stimuli from the outside world are 

matched against ‘top-down learned expectations,’ i.e. feedback from conceptual memory 

(see Grossberg (19766) for further theoretical details).

The theoretical ideas embodied by ART led to the ART family of CMs tha t have been widely 

employed in many areas of research and practice. From ART1 (Carpenter & Grossberg 1987) 

through to Gaussian ARTMAP (Williamson 1995) (the latest in a long-line of ART based 

CMs), all CMs within the ART family share a set of key characteristics and functional 

dynamics that are quite unique and set them apart from other CMs (see, for example, 

(Hanson & Burr 1990, fig. 1, p. 472)). As a result ART based CMs not only solve the 

plasticity-stability dilemma, but also support fast learning, autonomous self-organization, 

and rapid knowledge recall. In the final section of this chapter these and other properties 

of ART models are discussed with respect to lexical acquisition and grounding, however, 

first the following section addresses, in functional terms, how ART processing mechanisms 

realize these important properties.

4.2 Learning and Prediction in ART Systems

The continual development of ART has led to the creation of two main classes of connection­

ist architecture: unsupervised, and supervised. In the latter chapters of this thesis models 

of the supervised type are employed in an embodied semantic capacity. However, as it will 

be seen below, supervised ART systems — known more commonly as ARTMAP systems 

— are built upon the foundations of multiple interacting unsupervised ART CMs, with the
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former directly inheriting many of the la tter’s important properties. Hence, it seems logical 

to first discuss unsupervised ART models.

4 .2 .1  U n su p erv ised  A R T  sy ste m s

The central feature of all unsupervised ART systems (henceforth described simply as ART 

systems/models etc.), is a unique pattern matching process that compares the current input 

with a learned category representation, or active hypothesis, selected by the input. The 

matching process leads either directly to a resonant state, which in tu rn  triggers category 

learning, or to a search cycle tha t always leads to a resonant state, unless memory capacity is 

exceeded. Figure 4.1 illustrates the general form of an ART system and figure 4.2 illustrates 

the mechanics of a typical ART processing cycle. The three possible stages of this cycle are 

outlined briefly in the text that follows2.

I. B ottom -up  A ctivation  and F2  Choice

A preprocessed3 input pattern I  registers itself as a pattern X  of STM activity across the 

units in F\ (see figs. 4.1 Sz 4.2a). The F\ activity is then sent via multiple fan-ins of adaptive 

bottom-up weights to F^. Each committed4 category unit in F2  aggregates the signals it 

receives by way of a fan-in function (as described in sec. 3.1.1). This results in a vector of 

activity T across F2 . The competitive dynamics of F2  contrast-enhance T, i.e. competition

chooses the F2  unit J  that receives maximal F\ —> F2  input, where

T j  =  m ax {T j  : j  =  1, . . . ,  N }

2 For a much greater insight into ART systems (e.g. their basis in theory; the technical details of

implementation) the reader is referred to the following works: Carpenter &; Grossberg (1987), Grossberg 

(1988), Carpenter & Grossberg (1994), Carpenter et al. (1996).

3 Each input pattern may be the output pattern of a preprocessing stage. Different preprocessing is 

given, for example, to speech signals and to visual signals before the outcome of such modality-specific 

preprocessing ever reaches the attentional subsystem. Fo can thus be thought of as a filtering field that 

extracts useful information from original stimuli.

4 A committed unit is one which has already undertaken prior learning, i.e. one that has acquired a 

categorical representation.
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Figure 4.1: Anatomy of an unsupervised ART learning architecture. All such systems 
possess an attentional subsystem that contains a field (or layer) Fq of units that represent a 
current input vector J, a field F2 that contains category units, and a field F\ that receives 
bottom-up input from F0, and top-down input from F2. The F2 field has competitive 
dynamics -  category units compete for activity leading typically to a winner-take-all (WTA) 
situation. The vectors of activation that form across the fields Fi, and F2 are described 
as short-term memory (STM) representations. The STM description accounts for the fact 
that such representations (1) only typically exist during the presence of the input stimuli I, 
and (2) may be quickly inhibited by other control signals arising within the system, e.g. the 
reset signal r. In an ART 1 system a set of bottom-up adaptive weights fan-in connecting 
all Fi units to each F2 unit. A further set of top-down adaptive weights fan-out from each 
F2 unit to all F\ units. These sets of weights constitute the systems long-term memory 
(LTM). The process of learning imparts useful knowledge into the system in terms of LTM 
weight vectors. LTM information persists after input offset but remains adaptable. The 
connections between F0 and Ft units are one-to-one and are non-weighted. The orienting 
subsystem and gain control mechanisms are used to physically implement pattern matching, 
novelty assessment, and category search (see fig. 4.2 text for details). A plus sign indicates an 
excitatory connection, a minus sign an inhibitory one. All LTM connections are excitatory.
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The resulting activity vector Y  across F2 has only one non-zero component (e.g. {0,1,0,0} 

in fig. 4.2b -  only the 2nd F2 unit has activity).

II. Top-down H ypothesis Testing

In ART systems the activation of a single ‘winning’ F2 unit is deemed as simply ‘making 

a hypothesis’ about which category input I belongs to. The next stage of processing is 

to assess whether I is sufficiently similar to the chosen category representation in order 

to warrant this hypothesis. Y  is transported via top-down weights to F\ resulting in an 

F2 F\ input vector, V  (e.g. {0,1,1,0,1} in fig. 4.2b). At this point F\ is receiving two 

sources of input: the bottom-up input pattern I, and the top-down category representation 

5V. A matching process at F\ now ensues that compares I and V . If I and V  are close 

enough, by some measure (a matching function, or rule), in relation to an ART system 

parameter p called vigilance, then the hypothesis is confirmed (a match) and the system 

is said to enter a ‘resonant state.’ If they are not close enough then the hypothesis that 

I belongs to category J  is discontinued (a mismatch), and the ART system searches its 

memory (i.e. its F2 layer) for a better ‘hypothesis.’

III. R esonance, or C ategory R eset and Search

The state of resonance that follows a V-I match results in learning, whereby the LTM 

weights tha t connect the confirmed F2 winning unit to all F\ units, may be adapted, i.e. 

the selected category’s learned representation may be refined to incorporate new information 

from the current input. Alternatively, in the event of a V-I mismatch, a reset signal is sent 

to the winning F2 unit, which effectively inhibits or turns off the unit. This inhibition results 

in the removal of the F2 activity vector Y, which in turn leads to the removal of V  to F\ (fig. 

4.2c). W ithout V, and thus any mismatch between I and V, the lone bottom-up input I 

may again reinstate the original activity pattern X  across F\ which again is fed via bottom- 

up weights to F2 (fig. 4.2d). However, the enduring inhibition means that competition 

leads to the choice of an alternative unit (a new Y), and hence an alternative ‘hypothesis.’ 

As before, this new hypothesis is tested. The search process ends in one of three ways: 

(1) A committed F2 category unit is selected whose top-down category representation V
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Figure 4.2: The ART search and hypothesis testing cycle: (a) an input pattern I =  1,0,1,1,0 
registers itself as a pattern X across Fx. X is sent to F2 via bottom-up weights and following 
competition an activity vector Y =  0,1,0,0 across F2 emerges, (b) To test the hypothesis Y, 
the vector is sent back to Fi via top-down weights resulting in a top down input vector V = 
0,1,1,0,1 being fed to Fi. A matching function (in this case: I  A V = X* , as used in ART1 
& Fuzzy ART) results in the a new vector X* = 0,0,1,0,0 across F±. (c) Because X* is so 
small inhibition to the orienting subsystem from Fi drops to a level whereby a reset signal 
is propagated to F2. This inhibits the pattern Y. (d) X is again sent to F2 via bottom-up 
weights leading to a new activity vector Y =  0,1,0,0 at F2.
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sufficiently matches I, (2) if I is too different from any of the previously learned category 

representations, an uncommitted F2  unit is selected, which establishes a new category, or 

(3) the entire capacity of F2  is utilized, in which case I cannot be accommodated.

Solving th e  D ilem m a

Two particular mechanisms of ART processing that are instrumental in providing these 

architectures with their all important properties are:

• C om petition: As a result of competition, knowledge within an ART architecture is 

localized5, i.e. each F2  unit becomes tuned to a single category (e.g. one’s mother’s 

face) and the sensory information associated with this category is stored across a 

subset of LTM weights, viz. those that connect all F\ units to the particular F2  unit 

in question. If the system is required to update information about this particular 

category (plasticity), then only the values of this subset of weights are adapted, all of 

the other weights in the system (i.e. those storing information about other categories) 

remain unchanged, hence, the stability. In other CMs that lack competitive mecha­

nisms such as MLPs, the knowledge related to a particular category is not localized, it 

is fully distributed across all of the systems weights. Thus, updating information that 

relates to one category, alters all of the other categorical information in the system. 

New information overwrites old information.

• N ovelty  A ssessm ent: Competition alone does not suffice to remedy the plasticity- 

stability dilemma. To explain further, imagine a CM that has three ‘localist’ category 

units. The first has already acquired information relating to the visual appearance 

of dogs, the second to the visual appearance of elephants, and the third has not yet 

undertaken learning, i.e. an uncommitted unit. The task at hand concerns acquiring 

information about wolves whilst not disrupting the other categorical information. As 

a result of the bottom-up activation and F2  choice stage of processing, it is likely that

5 It is worth noting that whilst localist connectionism has long been overlooked in favour of distributed 

connectionism, in recent years the former has been gaining some notable support, with a number of authors 

pressing to dispell some of the unfounded myths that surround localism (Thorpe 1995, Grainger & Jacobs 

1998, Page 2000).
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the dog category will be chosen by competition as that which best matches the input -  

given the visual similarities between wolves and dogs. In a number of competitive CMs 

the processing cycle ceases at this point and thus the learnt dog information would 

be updated to take into account the new wolf information, thus corrupting the dog 

category6. However, in an ART system the choice of the dog category is only seen as a 

working hypothesis. The top-down matching process compares the hypothesised units 

categorical information to the input information and actually measures the extent to 

which they are similar. In this case, if the vigilance level is set appropriately, the 

wolf related input will be seen as too dissimilar, i.e. novel, vis-a-vis the dog related 

category information. The dog information remains unchanged, and following search, 

the third uncommitted category unit can learn the novel wolf information. Hence, 

plasticity and stability are achieved.

Vigilance is a vital element in ART processing in that it provides explicit control over the 

degree of generalization that a model exhibits. If vigilance is set low then many different 

types of inputs (e.g. dogs and wolves) are grouped together. Alternatively, if it is set very 

high ART simply becomes an exemplar learning machine; each input variation activates a 

different category unit.

As has been already noted, the ART processing cycle described above, is a feature shared by 

all ART CMs. However, each specific variation of ART also has its own distinct character­

istics which stem from (1) its fan-in (or activation) function, (2) its matching function, and 

(3) its learning function. Two specific ART implementations are used later in this thesis; 

Fuzzy ART and Gaussian ART. The specific functions that each of these implementations 

employs are provided for reference in appendix A.

6 The rules governing bottom-up activation and F'% choice in ART systems are very similar to those found 

in two other classes of competitive CM: Kohonen’s Self-Organising Maps (Kohonen 1982), and Rumelhart 

and Zipser’s Interactive Activation models (Rumelhart & Zipser 1985) (as employed by Dorffner; see section 

3.2.4). The lack of top-down processing and novelty detection in these other CMs has been directly linked 

to the instabilities in learning that each of the model types has been shown to exhibit (Grossberg 1976 a, 

Grossberg 1987).
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4.2.2 Supervised ARTMAP systems

The ARTMAP architecture was first introduced in 1991 by Gail Carpenter and colleagues 

(Carpenter et al. 1991) and is largely a fusion of two unsupervised ART modules7. The 

fusion of modules is accomplished by way of a third module -  containing a field of units 

Fafj -  which is able to learn a map tha t associates the categories learnt by one ART module 

with those learnt by the second ART module. Figure 4.3 illustrates the general form of a 

supervised ARTMAP model comprising two ART modules, ARTa and ART&; and a Map 

Field module . ARTMAP processing is described as supervised in the sense that if two 

patterns are presented to the model simultaneously then it is assumed tha t these patterns 

are linked. The model’s task, given this direction, is to learn for itself the link between 

these patterns. The process is as follows8:

IV . M ap F ield  A ctivation

Normal ART processing proceeds as described above up to a certain point, i.e. two resonant 

vectors Y a and Y& result in the choice of two category units J  and K  in the respective 

ART modules. At this point the normal cycle is broken in that long-term memory (LTM) 

learning does not occur. Instead the vector Y a is sent via multiple fan-ins of adaptive 

weights resulting in an activity vector Z across Fai.

V. M ap Field  H ypothesis Testing

An activity vector Z effectively establishes a hypothesis that an ARTa category is connected 

to a certain ART*, category. In order to test this hypothesis Y^ is transported to Fai wherein 

Y  and Z are compared9. If Y& and Z are close enough, by some measure (a matching

7 An ARTMAP model is just one class of ART model. An ARTMAP model also contains two ART 

models. The semantics of this can get confusing, thus in the context of an ARTMAP model an unsupervised 

ART model is referred to throughout th forthcoming text as an ART module.

8 Further detail of ARTMAP processing can be found in appendix A.

9 At this point, when receiving input from two sources, the dynamics of the Map Field are essentially 

the same as those operating at Fi when it is receiving bottom-up and top-down input (see phase II of ART 

processing).



Chapter 4 - Adaptive Resonance Theory. 82

ARTbARTa

i O [ O

match
tracking

o

Figure 4.3: The diagram shows two unsupervised ART modules being linked together via 
a Map Field. This fusion results in the creation of a supervised ARTMAP model.

function, or rule), in relation to an ARTMAP system parameter pai , then the hypothesis is 

confirmed (a match) and resonance follows. If they are not close enough then the hypothesis 

is discontinued (a mismatch), and ARTMAP begins a search for a better ‘hypothesis.’

V I. R esonance, or M atch Tracking and ART0 Search

Following a Map Field match learning ensues and the LTM weights in both ART modules 

and those connecting to Fai may be adapted. Alternatively, following Map Field mismatch, 

a process called Match Tracking automatically sets ARTa vigilance to a level whereby 

mismatch occurs in the ARTa module. Normal ART module processing ensues (see phase III 

of ART processing) which leads to a new activity vector Y a, and the ARTMAP processing 

cycle starts again.
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4.3 ART: An Alternative Framework for ENLP Models

One only has to do a brief scan on academic literature to find tha t ART and ARTMAP 

networks have found favour in a wide variety of practical applications throughout recent 

years. For example, in a Boeing parts design retrieval system (Caudell et al. 1994), robotic 

control (Dubrawski & Crowley 1994), and in several 3D object recognition systems (Seibert 

& Waxman 1992, Keat 1996). In this the last section of the chapter the case is put for the 

adoption of ART in a new practical context, viz. that of lexical acquisition and grounding 

(LAG) and the creation of applied ENLP models.

4 .3 .1  A R T  or A R T M A P

The first point to note is that whilst ART as a theory is suited to the LAG task, isolated 

ART models, of the unsupervised variety, are not. As discussed previously in section 3.1.3, 

a model tha t can only process a single type of input may be able to acquire or ground lexical 

symbols, however, it will not be able to acquire and, ground such symbols. ARTMAP models 

on the other hand do provide a good fit with the generic LAG architecture described in 

chapter 3. This can be seen in the similarity between figures 4.3 and 3.3. Henceforth it is 

the ARTMAP architecture that is considered as a candidate for the LAG task.

4 .3 .2  A R T M A P  an d  th e  ‘M o d e l’ M o d e l

The candidacy of ARTMAP is best assessed in relation to the properties one would expect 

an ideal model to exhibit. These properties, first introduced in section 3.2.1, shall now be 

considered in turn:

Learning Properties:

• Autonomy -  The ARTMAP architecture has been specifically devised to process two 

independent sources of input data, categorise these data and then learn mappings 

between units that symbolically represent such categories. Once underway this process 

does not require intervention. Moreover, in contrast to many other CMs (e.g. MLPs) 

ARTMAP is initialized with ease. As far as topology goes one only has to consider the
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initial size of each ART module’s F0 layer, which is obvious given tha t one knows the 

type of patterns tha t are to be received by an embodied systems sensory transducers. 

ARTMAP does not require a designer to provide their own parameterisations for initial 

LTM weight values or to concern themselves with connectivity patterns between layers 

and processing units.

• Flexibility -  An early ART implementation ART1 was confined to processing binary 

input patterns. However, this limitation has long been overcome and ARTMAP mod­

els based upon Fuzzy- and Gaussian ART are not constrained as such.

• Adaptable & Scaleable -  As discussed in depth above ART was created from the ground 

up to solve the Stability-Plasticity Dilemma. The system is forever plastic and in­

formation can be added or adapted throughout a model’s lifetime. ARTMAP also 

provides a proven scaleable architecture10 which has been deployed in numerous data 

intensive applications (see, for example, (Carpenter et al. 1992, Williamson 1995)). 

ARTMAP was devised in order to process only two input channels. This provides lim­

ited scope for lexical development because lexical symbols gain meaning from multiple 

sensory groundings. This limitation is addressed in chapter 7.

• Performance -  Competition in ART networks results in localised learning, i.e. only a 

very few weights require adaptation in order to code new knowledge. Moreover, ART 

networks in fast learn mode can stabily learn a new input pattern in relation to a sigle 

presentation of that input. These properties combined result in a system that is able 

to learn extremely quickly - typically orders of magnitude faster than non-localized 

CMs, e.g. MLPs.

10 All of the ARTMAP systems described in the following chapters were implemented by the current 

author based on the theory discussed above and complying to the equations detailed in appendix A (see 

also adapted equations in chapter 7). The implementation was founded on object-oriented programming 

principles wherby each unit and each Fab unit was created as an individual object. This allowed the 

author to create an adaptive architecture in which category units could be added as and when required and 

which always had a size optimal for the task at hand. Thus, in this case architecture scaleability is bounded 

only by memory limits on the host computer.
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P red iction /R eca ll P roperties

• Description & Identification -  An ‘out-of-the-box’ ARTMAP system provides a frame­

work to enable either identification or description dependant on which ART module 

processes which type of input. This is because the fan-in of LTM weights that con­

nect to the Fat, layer were originally designed to only provide a one-way transport for 

layer activity. However, only a simple algorithmic modification is required to enable 

two-way transport via these LTM weights and thus enable both identification and 

description to be undertaken.

• Performance -  Recall performance is not really an issue in an ART-based architecture 

as Grossberg notes: “It uses direct access to recognize familiar events [patterns] with 

a speed as fast as one’s hardware can run.” Even as an architecture scales11 input 

patterns can rapidly be categorised.

In summary, one hopes that this chapter has provided the reader with an adequate rationale 

as to why ART-based networks might provide computational framework better suited to the 

task of lexical acquisition and grounding. The three chapters that follow seek to substantiate 

this rationale through practical investigation.

11 In a software based serial implementation there is a computational cost involved with increases in 

size as each F2 unit must integrate the input it receives (fan-in function) in turn. Thus a size increase will 

result in a performance hit vis-d,-vis overall processing times. This would not be the case for a parallel 

implementation.



C hapter 5

Investigations w ith  ART, I: 

Colours and C ategories

In the last chapter Adaptive Resonance Theory was introduced and shown to offer a number 

of beneficial qualities over many other connectionist processing methodologies. It was thus 

proposed as a superior candidate model with which to acquire and ground lexical symbols. 

This chapter considers how one might move towards creating a model that could understand 

and interact with humans as they talk of colours, i.e. a model that could acquire and ground 

colour terms.

The aims of the work presented in this chapter are twofold:

1. To begin to demonstrate to the reader the validity of the claims made vis-a-vis ART- 

based models and the LAG task.

2. To demonstrate the importance of any LAG model’s cwindow-on-the-world’. By virtue 

of the nature of the transduction equipment at a model’s sensory peripheries it is 

presented with a certain view of things. Harnad has argued that such representations 

should be iconic (Harnad et al. 1994). This argument is discussed and considered 

further in relation to the new Triangle of Meaning (TOM) which was introduced in 

the latter sections of chapter 2.

86
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5.1 The Colour Task

To successfully acquire and ground colour terms one would of course require a model some­

what akin to that specified in chapter 3 -  a model able to display its understanding by way 

two recall abilities:

1. Description -  Shown an example of a colour, the model should be able to name that 

colour by recalling the correct colour term, e.g. the symbol ‘red’.

2. Identification -  Provided a colour term, the model should be able to recall a colour 

tha t the term adequately describes, e.g. point out an example of red.

Whilst the ARTMAP models described later in the chapter are quite capable of performing 

such tasks (as shall be shown in the next chapter) in this chapter such a complete LAG 

task is not considered. Instead, the investigations presented in this chapter concentrate on 

how the representation of experience perceived at the sensory level of description can aid or 

hinder the task of learning the categorical concepts which serve to ground internal symbols 

in a  LAG model.

Stevan Harnad first introduced the notion of iconic representations in his seminal 1990 

paper on Symbol Grounding (Harnad 1990). Such representations he described as being 

“internal analog transforms of the projections of distal objects on our sensory surfaces” 

(Harnad 1990, p.342). In a later paper the importance of ‘iconicity’ was stressed and its 

sense further qualified as pertaining to “how analog, non-arbitrary, or structure-preserving 

[a representation] was in relation to what it represented” (Harnad et al. 1994). In light 

of the new TOM introduced in section 2.5.1, Harnad’s qualification can become a little 

confusing. One may remember that in the new TOM, objects do not exist out there in the 

world. This begs the question: In relation to what exactly should an iconic representation 

be structure-preserving?

The answer offered here is that ‘iconicity’ in the context of the new TOM means that 

representations employed at the sensory level of one body should preserve some structure 

of those employed by a second body (see figure 5.1). Furthermore, it is suggested that 

iconicity is im portant in this sense in that it provides a similar substrate for categorisation
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Figure 5.1: (a) shows details how one body transduces some aspects of the outside world 
in terms of components i and j. (b) shows how a second body transduces the outside world 
in terms of components i' and j'. (c) shows how a third body transduces the outside world 
in terms of x and y. The second body preserves to a large degree that which is represented 
by the first body, and vice versa. The third body does not preserve any such structure.

and hence the two bodies should be able to develop a similar categorical level understanding 

of things with greater ease.

Hence in building artificial models that are to understand the world in a similar way to 

humans -  in order to communicate about this world -  it is suggested here that one needs 

to take advantage of what understanding there is of how humans process and organise 

their input stimulus due to their physical embodiment. In doing so it is proposed that one 

provides cues that will improve the learning function, i.e. building categorical concepts upon 

such representational substrates will be easier than doing so upon representations that are 

arbitrarily crafted by a designer. It is this theory that is put to the test in the investigations 

that follow.

ARTMAP based models paired with the domain of colour provide a means by which to 

test this theory. Firstly, the domain of colour has been chosen because colour science is 

an established research area where intensive investigations have considered the cognitive 

aspects of colour processing in humans. This work has spawned a body of theories that 

consider how colours may be cognitively represented and that have produced various colour 

spaces, colour models, and colour order systems. These representational models are based 

upon both physiological and psychological data and thus adhere to a set of human specific 

constraints. Secondly, ARTMAP based models provide a number of means by which one can 

assess how easily a specific conceptual quantization of the input feature space -  to provide 

colour categories -  can be obtained. Faster learning rates, better levels of performance
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Figure 5.2: Data Collection Application

when presented with novel data, and smaller populations of F\ level units are all measures 

which suggest a particular ARTMAP model required less computational power to achieve 

a certain level of performance.

5.2 Data Collection

The first step of the investigations required that named colour data be collected to provide 

input data for the ARTMAP learning system. A simple colour naming application (shown 

in fig 5.2) was developed to enable this data collection. The application generated a random 

solid block of colour and displayed it on screen. A human subject was then simply asked 

to categorise each block of colour as it appeared by pressing one of eleven buttons, each of 

which related to one of the following eleven colour terms:

{black, white, red, green, yellow, blue, brown, pink, purple, orange, grey}

These eleven terms have been defined by Berlin & Kay (1969) as being the basic colour 

terms used by English speakers. Basic colour terms have a common set of characteristics 

(Lammens 1994) in that :
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1. They are “monolexemic”; a term ’s meaning is not predictable from the meaning of its 

parts e.g. green and yellow are monolexemic, whereas greenish is not.

2. Their “signification” does not fall nnder that of any other colour term, e.g. crimson, 

scarlet both fall under the term red.

3. They apply to a wide class of objects, e.g. blond would not qualify as it generally only 

applies to the description of hair.

The generation of a colour sample was achieved by the random choice of a red (R), green 

(G), and blue (B) component from within an R G B  colour cube, where each component 

had a linear range varying between 0 and 255. Therefore, each sample was chosen from a 

possible set of 16,777,216 samples. However, for display purposes, a 16 bit palette was used 

thus reducing the set of possible samples to the order of 216, or 65,536 colours. The RG B  

model was used for the initial data collection for two reasons; firstly it is the main colour 

model supported at the software application programming level, and secondly it is based 

upon physiological constraints found within the human retina and can thus be considered 

as a prime candidate for a non-arbitrary structure-preserving representational model.

For the purpose of input to the ARTMAP system, each colour term chosen was represented 

by one of the eleven orthogonal vectors shown in table 5.1.

The initial data collection process produced a named set of 1200 R G B  colour samples. From 

these data three separate tra in /test sets were produced, each training set consisting of 1000 

colour/linguistic vector pairs drawn randomly from the named sample set with each test 

set comprising the remaining 200 vector pairs. Each RG B  colour component was scaled 

from a range Of {0 - 255} down to a range (0 - l }1 thus a typical vector pair taken from an 

RG B  based training set was as follows :

0.607843 0.419608 0.364706 0 0 0 1 0 0 0 0 0 0 0

The next stage required tha t the named RG B  based data sets be transformed into data sets 

based on alternative representation schemes. To test the theory that iconicity is important, 

meant creating some transforms that did little to preserve any of the spatial structure found 

in the R G B  model and some that did. Herein, the former are described as being arbitrary

’the allowable adaptive resonance input range



Chapter 5 - Investigations with Adaptive Resonance, I. 91

orange 1,0,0,0,0,0,0,0,0,0,0

black 0,1,0,0,0,0,0,0,0,0,0

blue 0,0,1,0,0,0,0,0,0,0,0

brown 0,0,0,1,0,0,0,0 ,0,0,0

green 0 ,0,0,0,1,0,0,0,0,0,0

grey 0,0,0,0,0,1,0,0,0,0,0

pink 0 ,0 ,0,0,0 ,0,1,0,0,0,0

purple 0,0,0,0 ,0,0,0,1,0,0,0

red 0,0,0,0,0,0 ,0,0,1,0,0

yellow 0,0,0,0,0,0,0,0,0,1,0

white 0,0,0,0,0,0,0,0,0,0,1

Table 5.1: Vector Coding of Eleven Basic Colour Terms 

representations, the latter as non-arbitrary.

5 .2 .1  C o n v e r t in g  R G B  to  H S V

The Hue (H), Saturation (S), Value (V) colour model is part of a larger family of colour 

models that are based on psychological and psychophysical findings centred around the 

appearance of colours to human observers. H S V  was therefore classified as another example 

of a non-arbitrary representational model. The model is based upon a hexacone co-ordinate 

system with the hue, saturation, and value dimensions being roughly analogous to the 

dimensions on tint, shade, and tone as used by artists. In order to obtain an H S V  based data 

set, a conversion process was employed; a point in the RG B  colour cube was transformed 

to a point in the H S V  hexacone via the sequential application of equations 5.1 through 5.8 

shown below.

V  — m ax(r,g ,b ) (5.1)

temp — m in{r,g,b) (5.2)
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S  =

tempr 

temp9

temp1P _

H  =

0  i f  F ee 0

[ y - t°mp otherwise

V  — r
V  — temp 

V - g
V  — temp 

V - b
V  — temp

undefined i f  S ee 0

tempb — temp9 i f  F ee r

2 +  tempr — tempb i f  V  = g

4 +  temp9 — tempr i f  F ee 6

H  =
(H  x 60) +  360 if J9T < 0 

(H  x 60) otherwise

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

The conversion was applied to each of the three R G B  tra in /test sets. In each case the hue 

component produced by the conversion was rescaled from a {0 - 360} range down to a {0 - 

1} range. The encoding of lexical items was kept as per the R G B  data file i.e. eleven bit 

binary vectors (table 5.1).

5 .2 .2  C o n v e r t in g  R G B  a n d  H S V  to  R G B * a n d  H SV *

RGB* and H SV*  were devised as representational models of colour which could maintain 

the full range of input allowable within both the original R G B  and H S V  models and yet 

allow all data to be encoded in a compact binary form.

The R G B * data was obtained by transforming the three numeric dimensions of the original 

RG B  data into twenty four binary valued dimensions. Each numeric R G B  dimension was 

re-scaled to the {0-255} range and then mapped to an eight bit binary vector. A typical 

green R G B  vector {16,191, 86} was transformed as follows :

The H SV*  data was obtained via the same principle but was derived from the H S V  numeric 

data, rather than the R G B  data. Again the encoding of lexical items was kept constant in
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16 — > 0, 0, 0, 0, 1, 0, 0, 0,

191 — ► 1, 1, 1, 1, 1, 1, 0, 1,

86 — > 0, 1, 1, 0 , 1, 0 , 1, 0

both cases (table 5.1).

The conversion process used in each case above was highly non-linear in nature. It warps 

the representational space, leaving some points that were close to each other in the R G B  

model as distant relatives. Because of this, RGB* and H SV*  were considered as examples 

of arbitrary representational models.

5 .2 .3  C o n v e r t in g  R G B  to  RGB**

RGB** was the final representation scheme used to encode the data. As with the models 

described in the preceding section, a binary based encoding of data was employed that 

allowed the full range of the data from the original RG B  named data set to be maintained.

To obtain the RGB** data, each dimension of the original RG B  data (again re-scaled to {0 

- 255}) was mapped to a 256 bit binary vector; the vector elements having a value of 1 if 

their position within the vector was less or equal to the numeric value being transformed, 

and having a value of 0 if all other cases. Thus, the red element of the green RG B  vector 

{16,191,86} would be mapped to a 256 bit vector having the first 16 bits set to 1 and the 

remaining 240 bits set to 0. The overall encoding vector for each colour within RGB** data 

set was thus quite large, i.e. a 768 bit binary vector.

The conversion from R G B  to RGB** has a linear nature, therefore the structure of the 

data was kept intact and RGB** was thought of as another example of a non-arbitrary 

representational model.
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5.3 Creating Colour Categories

The data collection process provided a total of 15 train /test sets, 3 each for the 5 represen­

tation schemes introduced in the previous section. In order to investigate the effect each 

representational model made to the grounding task, two ARTMAP variations were used: 

Fuzzy ARTMAP with complement coding (Carpenter et al. 1992), and Gaussian ARTMAP 

(Williamson 1995). By using the two network variations it was possible to additionally 

assess how the different competitive learning metrics used in each system (see appendix A) 

effected the overall task.

For each data set, the training portion of the set was applied to each ARTMAP variation 

for a total of twenty epochs, after each epoch two measures of performance were applied; 

the population of A R T a categories was determined and the error on the previously unseen 

test portion of the data set calculated. A final measure of performance, the total processing 

time taken to complete the 20 epoch train /test cycle was recorded for each data set. Table

5.2 provides an account of the settings of the ARTMAP free parameters used in all of the 

trials. All of the investigations were carried out on a 100MHz Pentium PC with 16Mb main 

memory.

5.4 Results and Discussion

Accounting for variations in the ARTMAP model and colour representation used, a total of 

30 result sets were obtained from the grounding investigations. In this section these results 

are introduced and discussed in detail.

Three data sets were produced for each specific colour representation used in order that 

the results obtained could be averaged to provide the underlying statistical consistency.

AR Ta Base Vigilance, 

A R Ti Vigilance, pb 

Alpha, a  (Fuzzy) 

Gamma, 7  (Gaussian)

1.0 x 10"307

1.0

0.1

1.0

Table 5.2: Parameters used in Grounding Investigations
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Figure 5.3: Fuzzy ARTMAP with Complement Coding.

Therefore, for each ARTMAP variation five averaged result sets were obtained, one for each 

of the representational schemes used.

Figure 5.3 shows the averaged results for grounding in the Fuzzy ARTMAP model. The 

results strikingly show that the R G B * and H SV*  based models produced a significantly 

greater population of ARTMAP categories; «  200% more than the other models. Also 

evident from the graph are two distinctive groupings of activity, the RGB* and H SV*  trial 

results are placed to the top right (TR) whilst the R G B , H S V , and RGB** results appear 

to the bottom left (BL).

A similar pattern of results, shown in figure 5.4, were also obtained from the Gaussian 

ARTMAP trials. Again, the arbitrary RGB* and H SV*  based models exhibit a category 

count that far exceeds those seen in the other models and once more there is some evidence 

of a BL /  TR  separation of data.

The BL /  TR separation supports the idea that a bad representational input model will cause 

an ARTMAP system to proliferate categories. A large comparative amount of categories 

conveys that the learning system has an inferior overall idea of the general mapping that
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Figure 5.4: Gaussian ARTMAP.

exists between the input and output data, i.e. a poor generalisation. Therefore, one would 

expect, as is seen, that when tested on novel or unseen data, the predictive abilities of a 

system with a large category count would fall short of a system with fewer categories.

Each graph quite clearly demonstrates a performance difference between those colour models 

that were preconceived as having a non-arbitrary nature, and those that were arbitrarily 

devised. For each type of learning methodology used, the embodied representations of colour 

require less supervised re-categorisation and allow the grounded systems in which they are 

used to correctly predict the output classes for novel test data to a far greater degree.

In each of the experimental trials undertaken, the processing times required to train and 

test each ARTMAP system for a 20 epoch cycle were recorded. Figures 5.5 and 5.6 provide 

these results in a graphical form. The most striking result that can be seen for both the 

Fuzzy and Gaussian based systems, is the considerable computational cost on both learning 

and recall when the RGB** is used. This cost is quite understandable due to the fact that 

the number of weight based calculations increase proportionally with the dimensionality of 

the input vectors used in all connectionist systems. This proportionality is much higher in
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F igu re 5.6: Gaussian ARTM AP processing tim e. The figure shows the processing times 

required by the Gaussian ARTM AP model to com plete a full twenty epoch tra in /test cycle 

for varying colour representation m odels.
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models that employ fully distributed learning such as the MLP network family. Therefore, 

one would expect the RGB** data encoding method to slow down grounding systems such 

as those described in sections 3.2.3- 3.2.5, and 3.2.8 to a far greater degree than is shown 

in the ARTMAP results.

Although both ARTMAP models suffered a delay in processing the RGB** data, the Gaus­

sian based model can be seen to be significantly slower than its Fuzzy counterpart. In the 

worst case a Gaussian based system processed the RGB** data 24 x 103 percent slower than 

when using the RG B  data. The Gaussian based model also obtained considerably poorer 

% error test results, when trained on the RGB** data than did the Fuzzy model.

This disparity can be explained by an inconsistency between the very high dimensional 

input used in the RGB** representation and the nature of the hyper-dimensional ellipses 

used to fit the data to categories in the Gaussian model. The binary nature of the data 

means that data points are clustered at the maximum and minimum of each dimension. For 

this reason the data is more suited to the multidimensional rectangles employed in the Fuzzy 

model. Williamson has clarified this point remarking that the hyper-rectangle “is perhaps 

best suited to data that are uniformly distributed within hyper-rectangles” (Williamson 

1995, p.4).

An appraisal of the results presented so far, suggests, that for reasons of performance and 

computational cost, the R G B  and H S V  are best placed to practically implement colour 

grounding. Figure 5.7 compares how each of these models performed in each ARTMAP 

system. Overall, these results show that the Gaussian /  RG B  model performs best with 

the lowest error rate measured on test data, «  8%, for a low category count, «  50 categories. 

The number of categories directly effects the memory requirements of a software ARTMAP 

implementation, therefore, as a secondary consideration, it is computationally efficient to 

give implementational preference to those models which produce low category counts.

5 .4 .1  A n  a ssessm en t o f  fa ilures

The best result obtained from the experimentation detailed in the previous section, was 

accomplished by grounding the second RG B  data set using a Gaussian based model. Using 

this combination, an error rate of 6.5% was achieved after twenty epochs of training. Thus,
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Figure 5.7: Fuzzy ARTMAP vs. Gaussian ARTMAP.

prediction failed for 13 patterns in the test set. To obtain a further insight into the nature of 

the failures, the trained system that produced each of the failure patterns was scrutinised.

Table 5.3 provides details of the failures in the second RGB test set. It shows each patterns 

R, G and B  values, and indicates the colour name predicted by the model set against the 

name provided in the test set. Upon closer inspection a total of 8 of the 13 failures were 

found to be borderline colours (see figure 5.8), i.e. when reconsidered by a human judge 

they were found to be best described by a colour mixture, e.g. pattern 15 was a purplish 

blue. Further investigation highlighted that the colour predicted by ARTMAP was the 

complementary colour of the mixture in each of these eight failures. Only three failures 

were found to be significantly unsatisfactory.

5.5 Chapter Conclusions

This chapter has introduced two variations of connectionist models, both based upon Adap­

tive Resonance Theory. These models have been applied to a subset of a full LAG task, the
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F igu re 5.8: Failures. (1st row - failures 1-4, 2nd 5-8, 3rd 9-12, 4th - 13). Note: Blocks 1 

and 6 have been shown as black blocks since the actual colours of these block are beyond 

the gamut of a printer.
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Test Set 
P attern  N o.

R G B
Value

A RTM AP
Prediction

N am e in  
Test Set

15 134, 70, 250 purple blue

47 188, 197, 217 blue grey

53 196, 181, 19 green brown

54 217, 147, 48 orange brown

60 119, 112, 154 grey purple

80 206, 10, 126 red pink

86 184, 135, 115 grey brown

98 204, 91, 52 brown orange

119 217, 174, 100 green brown

139 208, 165, 25 orange brown

141 124, 137, 57 brown green

178 194, 204, 223 blue grey

184 169, 187, 165 green grey

Table 5.3: The table above provides details of RGB based colour vectors that were incor­
rectly described by the ARTMAP models (see main text for further details).

task being to learn to describe colours by way of a  number of symbolic tokens. The results 

have in a number of cases provided evidence that ARTMAP models are able to succeed 

in learning this task. One Gaussian ARTMAP model was found to provide the greatest 

performance. Accounting for borderline colours the system was found to attain  a fair/good 

prediction rate of 98.5%. In this respect the qualities of ART models alluded to in the 

previous chapter have not been challenged and one of the aims of the chapter has been met.

W ith respect to the second aim. It has been shown clearly in the empirical investigations 

above that representation at the sensory level is an important factor. Moreover, the results 

presented suggest tha t Harnad’s call for iconicity was well placed. In all cases those models 

that formed colour concepts on the basis of structure-preserving, non-arbitrary representa­

tions were able to do so with far greater ease and success than those models whose view of 

the world was based upon arbitrary designer crafted representations.



C hapter 6

Investigations w ith  A daptive  

R esonance, II: A C om parative  

Study

The last chapter introduced a partial model of lexical acquisition and grounding in order 

to investigate the issue of representation. Since the colour related datasets employed were 

entirely novel, these simulations provided little scope to investigate how ARTMAP systems 

compare in an embodied semantic capacity to any of the related models introduced and 

discussed in chapter 3.

In this chapter a number of empirical investigations are undertaken that do provide such 

scope for comparison. These investigations are directly related to those undertaken by 

Sales (1996) (see sec. 3.2.8) in his work with WANN-based lexical acquisition and grounding 

systems, and also bear some resemblance to the investigations undertaken by both Plunkett 

et al. (1992), and Dorffner (1992) (see sections 3.2.5 and 3.2.4 respectively). Results are 

provided that further substantiate the claim that the new ART-based lexical acquisition 

and grounding proposal put forward in this thesis is indeed superior to the alternative 

contemporary proposals reviewed in chapter 3.

102
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6.1 Acquiring Grounded ‘Concrete’ Nouns

The work tha t is described in this chapter centers upon the acquisition of grounded concrete 

nouns1 which is a task that has been studied previously by Sales (1996). This particular 

task has been selected for two reasons:

1. As has already been discussed in section 3.2.8, the work reported by Sales has close 

parallels to the new work that is the subject of this thesis. Whilst theoretically the 

work is founded upon a body of ‘human’ sciences data (e.g. from Linguistics, Cognitive 

Science, and Psychology) that addresses the question of how humans have developed 

their languages and how these languages work, the primary aim is not to add to this 

particular knowledge but rather to practically apply what has already been learned in 

order to enhance human-machine interaction, e.g. to create robotic systems that can 

act upon and learn more about their operating domains through English dialogue.

2. Of all the work reported in chapter 3, the work of Sales is the only piece that pro­

vides a strong methodological description and analysis of the investigations that were 

undertaken, the data that were employed, and the results tha t were achieved. In all 

other cases such descriptions were either vague or under-specified, and as such provide 

no grounds from which to undertake any realistic empirical comparative analysis.

6 .1 .1  T h e  T rain in g  D a ta

To re-cap briefly from section 3.2.8 the task of acquiring grounded concrete nouns as spec­

ified by Sales centers upon two streams of input: visual and linguistic. A total of 37 nouns 

are employed in the investigations, each being coupled to a pictographic image that provides 

a rough visual portrayal of the shape of the entity to which the noun refers. The 37 images 

employed are shown in figures 6.1 and 6.2 in the 144 bit (12 x 12) form that was used as 

visual input where each black square represents a value of 1 within the input vector, and 

each white square represents a value of 0.

1 In this context the term ‘concrete’ is employed to describe a class of nouns that primarily refer to 

tangible physical entities, for example, nouns such as ‘dog’, ‘chair’, and ‘cup’. Alternatively, nouns such as 

‘happy’, or ‘love’ have a more abstract reference and cannot be described as concrete.
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Figure 6.1: Patterns 1-24 (ordered left to right, top to bottom) of the 37 144-bit visual 
training patterns used by Sales in his lexical acquisition and grounding simulations.
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Figure 6.2: Patterns 25-37 of the 37 144-bit visual training patterns used by Sales in 
lexical acquisition and grounding simulations.
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The linguistic input is also encoded as a binary input vector. Each noun is presented as 

a 64 bit vector using an alphabetic encoding system which represents each letter within a 

word as a 5 bit binary value according to its position in the English alphabet, i.e. the letter 

‘A’ has an associated value of 1, through to the letter ‘Z! which has an associated value of 

26. Hence, the word ‘dog’ is alphabetically encoded by the following 64 bit vector:

dog = { 0010001111001111111111111111111111111111111111111111111111111111 }

The five leftmost bits (00100) represent a value of 4 in binary thus coding the letter ‘D’, the 

next five (01111) represent 15 (O), and the next five (00111) represent 7 (G). The remaining 

bits in the vector are all set to a value of 1 and act as padding. Of course words that contain

a greater number of letters employ these other bits. Employing 5 bits per letter, the 64 bit

encoding scheme is able to encode any word that has 12 or fewer letters. The last four bits 

are always padding and thus always have a value of 1.

6 .1 .2  L earn ing  th e  T rain in g  D a ta

The nature of the training data engineered by Sales and described above is quite different to 

that described in the previous chapter. In the previous chapter the data employed consisted 

of many differing input vectors, or examples of each colour category to be learnt and the 

learning process effectively picked out a ‘prototype’ for each category. By contrast the 

training data introduced above only provides a single input vector for each object/entity 

category. Each such vector is in effect an a priori ‘prototype’ — the perfect categorical 

example.

In keeping with Sales original investigations and using such training data one can question

whether the use of the term learning (in the sense described in section 3.1.1) is appropriate

to describe the task that is being undertaken. In the context of an ARTMAP system, given 

that there is only one ‘perfect’ example of each pattern within the training data, there is no 

need for the system to utilize its generalization abilities. By initializing the vigilance values 

in the two ART modules to their respective maximum values,

AR Ta Base Vigilance, p^ — 1.0

A R T ,Vigilance, pi =  1.0
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the ARTMAP system effectively becomes a template coding mechanism where rather than 

bringing the weights associated with each F2 level unit into equilibrium based upon a cluster 

of patterns, each pattern is simply coded by a unique F2 level unit, i.e. the weight vector 

associated with an F2 unit is a direct copy of the pattern vector it has coded. Hence, given 

the above data one would expect an ARTMAP system to develop 74 F2 level units in total. 

Half of these in the F% layer, responsible for representing the 37 visual input patterns, and 

•  half in the layer, responsible for the 37 lexical patterns. Moreover, despite the fact that

the input vector dimensions are generally larger than those employed in the colour related 

investigations, the fact that ARTMAP can operate in this template mode, coupled to the 

fact that the size of the data set is notably reduced (1200 training examples were used 

in colour tasks, here only 37 are employed), one would expect to observe relatively quick 

training times.

All in all, three groups each containing five identical ARTMAP models2 were trained using 

Sales’ data. The visual input was processed by the ART0 module and the lexical input 

by the ART*, module. The first two groups were comprised of fuzzy ARTMAP models. 

The first group of models used the standard FA algorithm, whilst the second employed 

the additional complement coding normalisation technique (see appendix A, section A.1.3). 

The third group comprised 5 Gaussian ARTMAP models. In each case the models were 

trained through one epoch of the data (37 picture-word pattern pairs). The pairs were 

presented in a sequential order as shown in figures 6.1 and 6.2. To provide a basic initial 

analysis of the training process, each model was tested using the same training tests:

1. Given a visual input pattern in isolation each system was assessed to determine 

whether recall of the correct visual category was achieved.

2. Given a visual input pattern in isolation each system was assessed to determine 

whether recall of the correct lexical category was achieved (description).

3. Given a lexical input pattern in isolation each system was assessed to determine

2 Five of each model were required for the testing phase (see below) where five different data sets were 

utilized. As with the colour related tasks discussed in the previous chapter all of the ARTMAP models 

were implemented by way of unoptimised executable C + +  code, and all of the empirical investigations were 

carried out using a 100MHz Pentium computer with 16Mb of main memory.
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Recall of VISUAL Category Recall of LEXICAL Category

Visual Input Lexical Input 
(Identification)

Lexical Input Visual Input 
(Description)

FA 37 (100%) 32 (86.5%) 32 (86.5%) 32 (86.5%)

FA (CC) 37 (100%) 37 (100%) 37 (100%) 37 (100%)

GA 37 (100%) 37 (100%) 37 (100%) 37 (100%)

Table 6.1: Performance of various ARTMAP models when trained for one epoch and then 
tested using Sales’ training data. The columns of data show from left to right the results 
obtained for tests 1 through 4 (see main text). Each table cell shows how many patterns 
(out of a possible 37) correctly led to the the recall of the appropriate visual or lexical 
category.

whether recall of the correct lexical category was achieved.

4. Given a lexical input pattern in isolation each system was assessed to determine 

whether recall of the correct visual category was achieved (identification).

I
Tests 1 and 3 provide a means by which to assess how well each ART module has learnt 

the information with which it was provided. Tests 2 and 4 on the other hand act as an 

instrument through which one can determine how well each ARTMAP models Map Field 

has acquired associations between visual and lexical entities. Table 6.1 presents some of the 

findings that were obtained as a result of these testing procedures where fast learning was 

used for all ARTMAP weights (i.e. /3a =  A> =  Pmap — 1-0).

As one might expect, given tha t the five models within each group were identical and were 

trained and tested on identical data, the results obtained for each model within a group 

were exactly the same. All of the FACC, and GA models learnt the training data totally 

within one epoch and in each case 74 category units (37 visual F2a units &; 37 lexical F2^ 

units) were generated in order to encode the knowledge. As a result, in each of the four 

tests these systems registered 100% accuracy. Conversely, the FA models failed to correctly 

learn the training data. As reported in table 6.1, when recalling the data the FA systems 

failed to select all of the appropriate categories in three of the four tests. In each case five 

input patterns resulted in errors. Further analysis indicated that whilst 37 visual categories 

had been correctly created, only 32 lexical categories existed — a deficit of 5 categories.
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Figure 6.3: An input pattern maximally activates an F2 unit since it is a subset of the 
category pattern stored by the units weights. With fast learning the category pattern is 
updated so that it equals the input pattern.

These problems were traced to the internal pattern comparison mechanism used in FA 

models. In such models an input pattern can maximally activate a category unit under any 

conditions if it is a subset of the prototype category pattern that the unit has acquired. It 

matters not if vigilance is set to its maximum value, or if in vector space terms the input 

pattern is largely dissimilar to the category pattern (as shown in fig. 6.3).

The data set devised by Sales contains a number of patterns that are a subset of other 

patterns, for example on the visual side: chair C door, daddy C m um m y, and sp oon  C house 

(see figs. 6.1 & 6.2). On the lexical side: ‘daddy’ C ‘dolly’, ‘apple’ C ‘cup’, and ‘bat’ C 

‘cat’. Hence, in the case of training as described above the following scenario unfolds3: The 

first 6 input pairs (cat-‘cat’, dog-‘dog’, clock-‘clock’, chair-‘chair’, dolly-‘dolly’, & m um my- 

‘mummy’) presented to the FA model are learnt correctly, i.e. the visual and lexical patterns 

are coded by ARTa units J  =  0 through J  =  5 and ART*, units K  =  0 through K  =  5, 

and the mapfield weights appropriately associate J  = 0 K  = 0, J  = 1 &  K  = 1 etc. 

Complications now begin as both patterns within the 7th input pair (daddy-‘daddy’) are 

a subset of patterns already acquired by the FA model — daddy C m um m y, and ‘daddy’ 

C ‘dolly’. As a result, the visual and lexical patterns respectively activate and select the 

category units J  =  5 and K  — 4. Because mapfield associations have already been forged 

that link K  =  4 to J  =  4, and ,7 =  5 to i f  — 5, a mapfield mismatch is triggered. This 

resets unit J  =  5 and selects a new ART0 unit J  =  6. Learning ensues whereby the lexical 

pattern for ‘daddy’ overwrites ‘dolly’ on K  = 4, the daddy pattern is learnt by J  =  6, and

3 This particular scenario and the resulting problems arise because of the order in which the data was 

presented to the models during training. Similar problems would occur to a greater or lesser extent depending 

upon the presentation order.
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a mapfield bond is forged between J  =  6 and K  — 4. Thus, there are now separate links 

between two AR Ta units and a single A R Ti unit. These multiple links can be seen in figure 

6.4 which shows the final state of the network after one whole training epoch.

Subsequent training epochs don’t necessarily redress this problem, in fact they can cause 

further problems. I t is true that further training will remedy the deficit of ART& units. 

However, as a result category proliferation can occur in the ART0 module with multiple 

units coding the same input pattern. In the case above after a second epoch of fast learn 

training, it was found that whilst 37 ART*, units had been generated as required (one for 

each input pattern), an excess of 6 ARTa units had also been generated giving 43 ART0 

units in total. Six of the visual patterns (ca t, dolly, cup, m ouse, m oon, &; sun) had been 

coded by two separate units as shown in figure 6.5.

There are ways to enhance FA performance, however. One way is to bias the system to 

select units with a high index value. If after a number of training epochs there is a position 

where two ARTa units code an input pattern (e.g. dolly is coded by J  =  4 and J  — 38 in 

figure 6.5) it is likely tha t the unit with the highest index (e.g. J  — 38) will correctly map to 

the appropriate ART& unit. A second, equally valid approach would be to reduce the rate at 

which permanent mapfield associations become acquired (i.e. slow mapfield learning) thus 

reducing the likelihood of spurious connections. However, it should be noted that whichever 

method is preferred one still sacrifices autonomy to the extent that one must be aware of the 

data and tweak parameters of the model accordingly (i.e. f3mapfopmap)‘ For the purposes of 

the investigations described throughout this chapter all of the FA models were trained over 

two whole epochs of the training data, and the bias method was employed to select high 

index units in the testing phase.

As predicted above each model was able to learn the training data set in a very short space 

of time. Table 6.2 shows the total times required to train each of the fifteen networks in 

question and the training time per individual pattern pair. In each case it can be seen that 

a pair of patterns is learnt in under 100 milliseconds. Given that the computing equipment 

used in these tests was far from being considered state-of-the-art, the results provide no 

evidence that constrain the practical application of an ARTMAP based model.
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Acquired Mapfield 
Associations

r

37 ARTa 
Category Units

jie >ttydaddy
mummy

spoon

apple
television

rabbit
telephone

banana

moon

wheel

bucket

>
32  ARTb 
Category Units

cat
dog

clock
chair
dolly

mummy
daddy

table
fork

spoon
knife
plate

cup
television

door
fish

rabbit
telephone

mouse
frog

apple
banana

book
pear

moon
sun
ball
axe
tree

house
bat

bowl
wheel

hat
boot
shoe

bucket

Figure 6.4: After one epoch of training the Fuzzy ARTMAP model has acquired 37 visual 
category units and 32 lexical category units. Because a number of ARTb units have been 
recoded during learning the mapfield contains a number of spurious connections. For ex­
ample, initially a link was forged between ARTa unit 0 and ART{, unit 0 (shown at top of 
figure) when the units respectively coded the visual cat and lexical ‘cat’ patterns. During 
the course of later learning ‘bat’ overwrote the category ‘cat’. The model is left with a link 
that joins cat to ‘bat’.
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Figure 6.5: Shows state of Fuzzy ARTMAP mapfield after 2 epochs of training, patterns 
shown in bold have been coded by multiple ART category units
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FA training times FACC training times GA training times

total per pattern total per pattern total per pattern

1 2.40 0.065 3.35 0.091 2.58 0.070

2 2.42 0.065 3.24 0.088 2.63 0.071

3 2.41 0.065 3.24 0.088 2.47 0.067

4 2.42 0.065 3.24 0.088 2.58 0.070 j

5 2.43 0.066 3.27 0.088 2.53 0.068

Av. 2.42 0.065 3.25 0.088 2.56 0.069

Table 6.2: Training times. Two columns of data are shown for each model. The left column 
shows the total time taken to train the model on all 37 patterns. The right column shows 
the training time required per pattern (i.e. left column divided by 37). The totals relate to 
two epochs of FA training, and 1 epoch of FACC and GA training. All times are shown in 
seconds.

6 .1 .3  T estin g  th e  M o d e ls

In order to further assess the fifteen ART based models introduced above, a body of testing 

data was generated. As per Sales’ original investigations this testing data was created by 

adding noise to the training data set. Each pattern had 10% noise applied. This was 

acheived by reversing the value of 10% of the bits in the patterns, i.e. 14 of the 144 bits 

were reversed in the visual patterns, 6 of 64 were reversed in the linguistic patterns. All 

in all five different testing data sets were generated each consisting of 222 visual-linguistic 

pattern pairs (six noisy pattern pairs were generated from each of the 37 visual-linguistic 

pairs in the original training data).

Each model was trained as before (GA and FACC models for one epoch, FA models for two). 

However, this time rather than being tested on the same data (i.e. the training set) each 

model within an ARTMAP group was tested using one of the five generated testing pattern 

sets. The testing process again involved assessing the performance of knowledge recall from 

a particular model using the four tests described in the preceeding section. Tables 6.3, 6.4, 

and 6.5 detail the findings acquired from these investigations.

It is immediately clear from the first table of the trio that Fuzzy ARTMAP based models 

that do not employ complement coding are a t a distinct disadvantage compared to the other
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Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

FA 1 167 (75.23%) 187 (84.23%) 187 (84.23%) 167 (75.23%)

FA 2 174 (78.38%) 190 (85.59%) 190 (85.59%) 174 (78.38%)

FA 3 174 (78.38%) 182 (81.98%) 182 (81.98%) 174 (78.38%)

FA 4 166 (74.77%) 188 (84.68%) 188 (84.68%) 166 (74.77%)

FA 5 164 (73.87%) 187 (84.23%) 187 (84.23%) 164 (73.87%)

Average 169 (76.13%) 186.8 (84.14%) 186.8 (84.14%) 169 (76.13%)

Table 6.3: Performance of Fuzzy ARTMAP models in relation to noisy test data. The 
table provides detail of how many correct patterns were recalled (out of 222 patterns) and 
shows the mean performance of all the networks taking into account all five noisy data sets.

Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

FACC 1 214 (96.40%) 222 (100.0%) 222 (100.0%) 214 (96.40%)

FACC 2 217 (97.75%) 222 (100.0%) 222 (100.0%) 217 (97.75%)

FACC 3 218 (98.20%) 222 (100.0%) 222 (100.0%) 218 (98.20%)

FACC 4 218 (98.20%) 222 (100.0%) 222 (100.0%) 218 (98.20%)

FACC 5 215 (96.85%) 222 (100.0%) 222 (100.0%) 215 (96.85%)

Average 216.4 (97.48%) 222 (100.0%) 222 (100.0%) 216.4 (97.48%)

Table 6.4: Performance of Fuzzy ARTMAP (employing Complement Coding) models in 
relation to noisy test data. The table provides detail of how many correct patterns were 
recalled (out of 222 patterns) and shows the mean performance of all the networks taking 
into account all five noisy data sets.
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Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

GA 1 214 (96.40%) 222 (100.0%) 222 (100.0%) 214 (96.40%)

GA 2 217 (97.75%) 222 (100.0%) 222 (100.0%) 217 (97.75%)

GA 3 218 (98.20%) 222 (100.0%) 222 (100.0%) 218 (98.20%)

GA 4 218 (98.20%) 222 (100.0%) 222 (100.0%) 218 (98.20%)

GA 5 215 (96.85%) 222 (100.0%) 222 (100.0%) 215 (96.85%)

Average 216.4 (97.48%) 222 (100.0%) 222 (100.0%) 216.4 (97.48%)

Table 6.5: Performance of Gaussian ARTMAP models in relation to noisy test data. The 
table provides detail of how many correct patterns were recalled (out of 222 patterns) and 
shows the mean performance of all the networks taking into account all five noisy data sets.

ARTMAP types investigated. Averaged over five result sets the FA solution was able to 

recall only 169 visual patterns correctly from a total of 222 lexical patterns ( 76% success) 

and only 187 lexical patterns from the 222 visual patterns ( 84% success). An interesting 

point to note is the commonality that is present in the results with columns 1 and 4, and 

columns 2 and 3 of table 6.3 containing identical data. This suggests tha t the data learnt 

in the models intra-module mapfield (the semantic knowledge) is largely correct and tha t 

all the predictive failures within the system are arising from recall failures within each ART 

module, i.e. a visual pattern of a dog is not being visually recognised as a dog.

Tables 6.3, 6.4 and 6.5 show that the results acheived using the FACC and GA models 

far outstrip those acheived using plain FA models. For FACC and GA models, visual 

patterns were visually recognised correctly 100% of the time and also in each case the 

correct counterpart lexical label was recalled correctly without any need for lexical input. 

Whilst performance with lexical input alone was not quite as successful, it was still more 

than satisfactory with all of the FACC and GA models acheiving over 96% success in recall of 

both the correct lexical category and then by association the correct visual category. Again 

the symmetry in data tha t can be seen in both tables points to the fact that recognition 

failures were occuring within the ART modules, not in the intra-module mapfield. These 

failures are considered further in the following section.
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FA test times FACC test times GA test times

total per pattern total per pattern total per pattern

1 3.19 0.014 4.89 0.022 4.07 0.018

2 3.24 0.015 4.61 0.021 3.96 0.018

3 3.24 0.015 4.45 0.020 4.01 0.018

4 3.30 0.015 4.51 0.020 4.18 0.019

5 3.29 0.015 4.45 0.020 3.96 0.018

Av. 3.25 0.015 4.58 0.021 4.04 0.018

Table 6.6: Operating times. As in table 6.2 two colums of data are provided for each type 
of model. This time the left column shows the cummulative time taken by the model to 
make predictions for all 222 test patterns. The right side column shows the time for recall 
of knowledge required per pattern. All times are shown in seconds.

In addition to obtaining the success/failure in prediction data discussed above the operating 

times required by each model to make a prediction based upon an unknown noisy input was 

measured. Table 6.6 details the results of these measurements. In line with the training 

times detailed above it can be seen that the operational times that result from using ART 

models are not really at issue. In all the test cases these models were able to make a 

prediction in less than a quarter of a second. The FACC models consistently required more 

time than the other models. This is largely due to complement coding in that many more 

vector calculations are required to process the larger input patterns.
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6 .1 .4  In tr o d u c in g  M ore N o ise

The results obtained in the experiments above adequately demonstate tha t ART models 

are quite capable of handling noisy data to the extent investigated by Sales, i.e. at the 10% 

level. In order to fully assess ART’s potential this section describes futher experimentation, 

results, and analysis.

For these further investigations a new body of testing data was generated. This body 

contained 10 groups of noisy data, each containing 5 different testing data sets comprised of 

222 visual-linguistic pattern pairs. The 10 groups had noise levels varying in 2% increments 

from 12% noise (i.e. 17 of 144 visual bits reversed & 8 of 64 linguistic bits reversed) through 

to 30% noise (43 visual & 19 linguistic bits reversed). All of the tests were carried out using 

Gaussian ARTMAP systems only. The rationale for this focus being Gaussian ARTMAP’s 

overall abilities in both acuracy and speed of knowledge recall as demonstrated above.

Each model was trained as previously and then tested using one of the new noisy data 

sets. Thus, all in all a total of fifty (50) Gaussian ARTMAP models were trained and 

tested. Table 6.7 details the results obtained from the testing process. Each line of the 

table provides the figures averaged from 5 GAM models.

As one might expect it is immediately clear from the results tha t as more and more noise 

is added to the data, performance in knowledge recall deteriorates. Also evident is the fact 

that this deterioration is greater for the recall of knowledge from lexical input data alone 

(columns 1 & 4 in the table) than it is when visual input data is used in isolation. In the 

30% noise tests it can be seen tha t this divide in performance has reached a level of nearly 

40% — a significant factor.

The reasons for these differences can be explained with the aid of further analysis of Sales’ 

original data (see figs. 6.1 & 6.2). Hamming distances, d//, are a measure between points 

within an I  dimensional binary space. They provides a means by which to judge the 

similarity between two binary vectors of equal length by comparing bits thus:

I

dH (®, V) =  \xi “ V*i (6-1)
i—1

Therefore, considering the lexical vectors for the words ‘book’ and ‘dog’:
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Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

12% 209.4 (94.32%) 222.0 (100.0%) 222.0 (100.0%) 209.4 (94.32%)

14% 204.6 (92.16%) 222.0 (100.0%) 222.0 (100.0%) 204.6 (92.16%)

16% 205.6 (92.61%) 221.8 (99.91%) 221.8 (99.91%) 205.6 (92.61%)

18% 189.4 (85.32%) 221.6 (99.82%) 221.6 (99.82%) 189.4 (85.32%)

20% 186.4 (83.96%) 221.2 (99.64%) 221.2 (99.64%) 186.4 (83.96%)

22% 179.4 (80.81%) 221.0 (99.55%) 221.0 (99.55%) 179.4 (80.81%)

24% 173.6 (78.20%) 220.0 (99.10%) 220.0 (99.10%) 173.6 (78.20%)

26% 155.6 (71.10%) 220.0 (99.10%) 220.0 (99.10%) 155.6 (71.10%)

28% 141.2 (63.60%) 218.4 (98.38%) 218.4 (98.38%) 141.2 (63.60%)

30% 128.4 (57.84%) 214.0 (96.40%) 214.0 (96.40%) 128.4 (57.84%)

Table 6.7: Performance of Gaussian ARTMAP models on noisy test data.

I
book =  { 0001001111011110101111111111111111111111111111111111111111111111 } 

dog = { 0010001111001111111111111111111111111111111111111111111111111111 }

djy ( book, dog) =  5

The smaller the Hamming distance the greater the similarity between two vectors and the 

greater the probability tha t the addition of noise will lead to recall errors. Consider the 

following two noisy ‘book’ patterns:

booki =  { 0101001111111110101101111111110111111111011111111101111111111111 }

book2 =  { 0010001111011111101111111111111011111111111111111111011111110111 }

each of which have had six bits randomly reversed by noise. Bits 1,10,20,30,40 & 50 have 

been reversed in pattern 1, bits 2,3,15,31,52 & 60 in pattern 2. The application of equation 

6.1 provides the following Hamming distances:

CASE 1:

dh { booki, book) = 6
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dh {booki, dog) =  11

CASE 2:

dn:(book2 , book) =  6 

d[j( book2  , dog) =  5

The application of noise in case 1 has has resulted in a pattern booki tha t still shares 

greater similarity with its originating pattern book than it does with the alternate pattern 

dog. However, in the second case the noise addition has resulted in a pattern book2  that 

now shares more in common with dog than it does with book. In this case one would expect 

from a correctly functioning ARTMAP model to suggest that fcoofo is in fact a dog.

The probability of a failure occurring as above is therefore a function of (1) the hamming 

distance between patterns, and (2) the amount of noise added to a pattern.

Figures 6.6 and 6.7 provide a detailed picture of all of the Hamming distances between 

the lexical input and visual input patterns respectively. The figures show clearly that 

the Hamming distances between the lexical patterns are less than those between the visual 

patterns. Farther calculations show that the average Hamming distances between the lexical 

and visual patterns are 12.8 and 46.4 bits respectively. Thus the average Hamming distance 

within a lexical pattern is 20% of the patterns overall length. For a visual pattern this figure 

rises to 32%. It is therefore obvious that given a fixed percentage addition of noise the recall 

of lexical knowledge will be poorer than for visual knowledge.

To conclude an analysis of the results it should be noted that as before there is a clear 

symmetry within the results and furthermore that this is consistent with the fact that the 

lexical knowledge acquired by the models during training is accurate. The failures can again 

be attributed to problems of recall within each ART module (as discussed in this section).
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cat 9 12 11 13 12 10 13 9 10 15 15 3 23 13 10 15 24 12 11 10 14 10 10 12 6 6 6 12 12 1 9 12 3 11 10 15

dog 9 11 14 8 11 11 12 8 13 14 12 10 22 4 9 18 23 9 8 17 17 5 9 5 9 11 7 9 9 8 6 13 8 6 11 14

clock 12 "  H I 9 13 12 14 17 11 8 9 13 13 25 9 12 13 24 12 9 16 12 6 12 10 10 12 10 14 12 13 11 10 15 9 6 13

chair 11 14 9 14 13 13 14 12 w 12 12 12 24 16 9 16 23 15 14 11 15 11 13 15 15 11 9 13 15 12 12 9 14 14 9 14

dolly 13 8 13 14 7 5 10 10 17 12 12 14 20 8 11 16 17 13 12 13 17 9 13 7 13 7 13 11 13 12 8 13 12 6 13 18

m u m m y 12 m i 12 13 7 8 13 15 12 13 15 11 21 13 14 19 18 12 11 : 12 18 12 14 8 10 10 10 10 14 13 13 12 11 13 12 15

daddy 10 11 14 13 5 8 7 13 16 15 11 13 19 11 10 11 16 14 11 10 14 14 10 12 14 8 12 8 14 9 11 10 9 11 12 17

table 13 12 17 14 10 13 7 H 13 14 8 14 20 14 9 10 19 15 14 7 15 15 11 13 13 9 15 11 15 12 12 11 12 14 13 12

fork 9 « 11 12 10 15 13 12 £ H  ‘ 5 14 16 8 24 8 5 14 25 11 10 15 15 5 11 9 11 11 13 13 11 8 6 15 10 10 13 12

spoon 10 13 8 11 17 12 16 13 151 13 15 11 23 15 14 15 24 18 7 12 12 10 14 12 6 10 8 10 18 11 13 8 13 13 6 13

knife 15 14 9 12 12 13 15 14 14 13 8 14 26 12 15 16 25 9 12 i t 19 11 13 9 15 13 13 15 9 16 12 11 16 10 11 14

plate 15 12 13 12 12 15 M 8 16 15 8 14 22 12 13 14 21 11 16 9 19 15 7 15 15 13 11 11 9 14 12 9 14 10 11 14

cup 3 10 13 12 14 11 13 14 8 11 14 14 24 14 11 16 25 13 12 9 17 11 . 9 13 5 9 7 13 13 4 10 15 6 12 13 12

television 23 22 25 24 20 21 19 20 24 23 26 22 24

22

22 25 26 13 25 22 25 17 23 21 23 21 19 25 19 25 22 24 21 22 22 21 26

door 13 4 9 16 8 13 11 14 8 15 12 12 14 9 16 23 9 8 19 15 5 7 5 11 11 11 11 9 12 8 15 12 4 11 16

fish 10 9 12 9 11 14 10 9 5 14 15 13 11 25 9 13 26 14 11 12 14 8 10 10 14 8 12 12 14 9 5 12 11 9 10 13

rabbit 15 18 13 16 16 19 11 10 14 15 16 14 16 26 16 13 21 19 16 15 11 15 11 19 15 13 19 17 17 14 16 15 16 16 15 6

telephone 24 23 24 23 17 18 16 19 25 24 25 21 25 13 23 26 21 24 23 24 18 24 22 24 22 20 26 20 24 23 25 20 23 23 22 23

mouse 12 9 12 15 13 12 14 15 11 18 9 11 13 25 9 14 19 24 15 14 20 12 12 10 16 18 12 14 2 13 13 12 11 13 16 15

frog 11 8 9 14 12 11 11 14 10 7 12 16 12 22 8 11 16 23 15 15 13 7 13 9 9 9 9 5 15 10 10 11 12 8 7 14

apple 10 17 16 11 13 12 10 7 15 12 11 9 9 25 19 12 15 24 14 15

18

18 18 14 16 14 10 10 12 14 11 13 12 11 17 14 13

banana 14 17 12 15 17 18 14 15 15 12 19 19 17 17 15 14 11 18 20 13

12

12 16 18 14 10 18 16 18 13 15 14 15 13 12 13

book 10 5 8 11 9 12 14 15 5 10 11 15 11 23 5 8 15 24 12 7 18 10 6 8 8 10 12 10 9 5 14 11 5 8 11

pear 10 9 12 13 13 14 10 11 11 14 13 7 9 21 7 10 11 22 12 13 14 16 ■o H i 12 10 10 10 10 10 9 11 14 9 9 12 13

m o o n 12 5 10 15 7 8 12 13 9 12 9 15 13 23 5 10 19 24 10 9 16 18 6 12 10 10 10 12 12 13 7 14 11 7 10 17

sun 6 9 10 15 13 10 14 13 11 8 15 15 5 21 11 14 15 22 16 9 14 14 8 10 10 1 B 8 12 16 7 11 14 9 9 8 13

ball e 11 12 11 7 10 6 9 11 10 13 13 9 19 11 8 13 20 18 9 10 10 8 10 10 s  H f 10 10 16 5 7 12 7 7 8 15

axe e 7 10 9 13 10 12 15 13 8 13 11 7 25 11 12 19 26 12 9 10 18 10 10 10 8 10

8

8 12 7 11 10 7 11 8 15

tree 12 9 14 13 11 10 8 11 13 10 15 11 13 19 11 12 17 20 14 5 12 16 12 10 12 12 10 14 11 11 8 11 11 8 17

house 12 9 12 15 13 14 14 15 11 18 9 9 13 25 9 14 17 24 2 15 14 18 10 10 12 16 16 12 -4 ^I'­ 11 14 9 11 16 13

bat 8 13 12 12 13 9 12 6 11 16 14 4 22 12 9 14 23 13 10 11 13 9 9 13 7 5 7 l l 11 8 13 2 10 11 14

bowl 9 6 11 12 8 13 11 12 6 13 12 12 10 24 8 5 16 25 13 10 13 15 5 11 7 11 7 11 11 11 8 H ' < 10 4 9 14

wheel 12 13 10 9 13 12 10 11 15 8 11 9 15 21 15 12 15 20 12 11 12 14 14 14 14 14 12 10 8 14 13 ■n '5 13 6 17

hat 3 8 15 14 12 11 9 12 10 13 16 14 8 22 12 11 16 23 11 12 11 15 11 9 11 9 7 7 11 9 2 10 15 §H : 13 16

boot 11 8 9 14 8 13 11 14 10 13 10 10 12 22 4 9 16 23 13 8 17 13 5 9 7 9 7 11 11 11 10 4 13 1 2 | 7 16

shoe 10 11 6 9 13 12 12 13 13 8 11 11 13 21 11 10 15 22 16 7 14 12 8 12 10 8 8 8 8 16 11 9 6 13 7 1M
bucket 15 14 13 14 18 15 17 12 12 13 14 14 12 26 16 13 8 23 15 14 13 13 11 13 17 13 15 15 17 13 14 14 17 16 16 17

Figure 6.6: The table above shows the Hamming distances (see main text for details) 
beween lexical patterns taken from Sales’ data.
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c h a ir 43 57 53 37 48 36 42 39 36 43 32 44 65 26 52 52 60 58 45 42 37 35 32 47 43 44 37 63 48 40 40 39 36 50 43 52

d o lly 44 54 58 37 33 21 43 36 29 36 31 45 72 27 37 47 63 63 50 39 34 36 33 36 36 35 38 42 39 27 39 48 37 63 50 43

m u m m y 43 49 71 48 33 12 42 43 44 51 24 38 79 26 42 44 60 64 47 34 51 23 32 47 45 20 47 39 8 40 40 59 48 44 57 32

d a d d y 43 53 65 36 21 12 46 31 32 39 20 36 79 14 36 46 66 88 47 30 39 21 28 43 37 20 37 33 20 28 32 53 40 50 57 32

ta b le 45 51 51 42 43 42 46 41 38 41 38 38 63 52 36 50 64 62 39 36 35 39 36 43 35 50 41 63 50 42 34 43 14 54 41 42

fo rk 58 64 48 39 36 43 31 41 17 22 43 45 64 31 49 57 77 55 50 41 20 40 31 50 42 49 52 54 51 19 43 38 35 51 48 51

s p o o n 61 71 47 36 29 44 32 38 m 7 40 52 61 34 48 62 72 62 53 48 15 43 28 41 41 48 45 47 52 20 48 37 32 58 49 56

k n ife 66 78 46 43 36 51 39 41 22 7 47 53 60 41 51 63 79 59 54 47 18 48 29 46 42 55 50 50 59 17 49 36 35 53 46 59

p la te 43 45 65 32 31 24 20 38 43 40 47 46 75 30 36 48 62 78 47 36 43 27 40 47 39 24 33 35 32 48 32 49 32 50 55 36

c u p 37 45 63 44 45 38 36 38 45 52 53 46 61 38 32 34 58 36 35 18 45 21 30 41 37 34 53 63 38 40 20 55 36 36 35 24

te le v i s io n 64 74 54 65 72 79 79 63 64 61 60 75 61 83 77 77 47 53 60 67 60 62 75 58 82 69 58 72 79 69 73 58 67 59 58 69

d o o r 45 57 63 26 27 26 .14 52 31 34 41 30 38 83 48 48 66 58 51 36 39 21 26 47 39 30 37 41 22 30 42 57 42 48 57 38

f is h 49 43 61 52 37 42 36 36 49 48 51 36 32 77 48 38 66 60 45 26 45 39 34 39 31 30 55 57 50 44 22 51 28 60 39 28

ra b b i t 37 33 55 52 47 44 46 50 57 62 63 48 34 77 48 38 64 50 31 36 57 43 46 49 43 44 67 63 42 54 30 51 48 62 41 40

te le p h o n e 61 53 73 60 63 60 66 64 77 72 79 62 58 47 66 66 64 60 57 62 69 65 68 43 69 50 63 59 58 74 64 61 66 66 61 50

m o u s e 55 61 59 58 63 64 68 62 55 62 59 78 38 53 58 60 50 60 49 48 55 53 44 49 63 66 71 91 60 54 54 63 60 42 27 56

fro g 30 46 60 45 50 47 47 39 50 53 54 47 35 60 51 45 31 57 49 31 48 44 39 48 50 47 64 72 47 49 31 52 37 57 34 39

a p p le 39 43 73 42 39 34 30 36 41 46 47 36 18 67 36 26 36 62 48 31 41 23 24 47 35 26 53 61 36 38 16 43 32 40 31 22

b a n a n a 56 66 48 37 34 51 39 35 20 15 18 43 45 60 39 45 57 69 55 48 41 42 29 36 40 51 44 56 59 19 41 36 29 57 40 51

b o o k 36 50 74 35 36 23 21 39 40 43 48 27 21 62 21 39 43 65 53 44 23 42 25 44 36 23 32 50 23 39 31 60 37 33 48 23

p e a r 45 55 65 32 33 32 28 36 31 28 29 40 30 75 26 34 46 68 44 39 24 29 25 39 29 32 51 57 36 18 30 47 30 44 33 30

m o o n 50 58 56 47 36 47 43 43 50 41 46 47 41 58 47 39 49 43 49 48 47 36 44 39 52 39 40 50 49 43 41 50 41 67 40 39

s u n 48 52 62 43 36 45 37 35 42 41 42 39 37 82 39 31 43 69 63 50 35 40 36 29 52 47 52 60 53 35 33 52 29 57 46 41

b a ll 45 47 75 44 35 20 20 50 49 48 55 24 34 69 30 30 44 50 66 47 26 51 23 32 39 47 47 37 20 48 28 49 44 48 51 16

a x e 52 68 60 37 38 47 37 41 52 45 50 33 53 58 37 55 67 63 71 64 53 44 32 51 40 52 47 48 49 51 49 56 39 51 62 51

t r e e 62 66 66 63 42 39 33 63 54 47 50 35 63 72 41 57 63 59 91 72 61 56 50 57 50 60 37 48 41 49 55 62 59 71 80 47

h o u s e 39 49 73 48 39 8 20 50 51 52 59 32 38 79 22 50 42 58 60 47 36 59 23 36 49 53 20 49 41 48 40 63 56 44 61 28

b a t 53 67 53 40 27 40 28 42 19 20 17 48 40 69 30 44 54 74 54 49 36 19 39 18 43 35 48 51 49 48 40 43 36 54 45 48

b o w l 31 41 65 40 39 40 32 34 43 48 49 32 20 73 42 22 30 64 54 31 16 41 31 30 41 33 28 49 55 40 40 39 28 48 33 20

w h e e l 58 62 42 39 48 59 53 43 38 37 36 49 55 58 57 51 51 81 63 52 43 36 60 47 50 52 49 56 62 63 43 39 43 61 42 51

h a t 43 51 53 36 37 48 40 14 35 32 35 32 36 67 42 28 48 66 60 37 32 29 37 30 41 29 44 39 59 56 36 28 43 58 37 40

b o o t 57 71 67 50 63 44 50 54 51 58 53 50 36 59 48 60 62 66 42 57 40 57 33 44 67 57 48 51 71 44 54 48 61 58 43 46

s h o e 44 54 56 43 50 57 57 41 48 49 46 55 35 58 57 39 41 61 27 34 31 40 48 33 40 46 51 62 80 61 45 33 42 37 43 47

b u c k e t 35 43 75 52 43 32 32 42 51 56 59 36 24 69 38 28 40 50 56 39 22 51 23 30 39 41 18 51 47 28 48 20 51 40 46 47

Figure 6.7: The table above shows the Hamming distances between visual patterns taken 
from Sales’ data.
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6 .1 .5  A n  em p ir ica l com p a riso n  o f  A R T  b ased  sy ste m s w ith  W A N N s

W ith the experimentation and results from the sections above now in place this section 

returns to the primary aim of the chapter, i.e. to compare the performance of ARTMAP 

against WANN based systems on a lexical acquisition and grounding task. The comparisons 

consider three empirical quantities:

1. The time required for a system to record information, i.e. training time.

2. The time required for a system to recall information, i.e. operating time.

3. The accuracy of the information recalled.

Training tim es

“Typical training times for the networks were 30-40 seconds — around 1 

second per training pattern learned” (Sales 1996, p. 186)

It is unquestionable from the data presented in figure 6.8 that ARTMAP systems have the 

upper hand when it comes to training speed. All of the ARTMAP models employed in the 

investigations above were faster than WANNs at learning data by roughly a factor of 10. A 

fairly significant advantage.

O perating tim es

On the topic of operating times Sales’ remains a little vague. It is noted that in the WANN 

model operating times are a function the networks size (or in Sales terminology -  storage 

cost). Sales provides operating time figures for only 2 of the 30 network variations that were 

employed. Networks 1 and 15 — the smallest and largest of the networks — required 3.9 and 

16.2 seconds respectively to make a prediction per pattern (Sales 1996, p. 186). Based on 

an assumption that operating time rises linearly in relation to network size one can assume 

from the above figures that the networks that performed best in Sales’ investigations (see 

next section) would have required in the order of 6 to 8 seconds to perform recall.

Figure 6.9 shows the operating times achieved by Sales employing WANNs and those



Chapter 6 - Investigations with Adaptive Resonance, II. 123

40 r

30 -

o> 2 0  " 

c1I—

10 ‘

0
FA GA FACC WANN

M odel T ype

Figure 6.8: The figure shows the time required for the five models of each architecture type 
to learn all 37 patterns from the training data set (see also figure 6.2).

achieved in the investigations detailed above (see table 6.6). In the case of operating times 

the divide in performance between WANNs and ART based systems is even greater than 

those for training times already shown above. In fact the divide is so great that in the figure, 

a visualisation of the operating times for the ART based models is lost because of the scale 

necessary to plot the WANN results. With recall times in the order of 20 milliseconds per 

pattern all of the ART systems operate over 100 times faster than the fastest of the WANN 

models and about 300 to 400 times faster than the WANN models that performed the LAG 

task best. This is a very significant performance advantage. In a human-machine commu­

nication environment operating times of WANNs are simply unfeasable. Having issued a 

natural language command one would not expect to have to wait 6 to 8 seconds for the 

command to be actioned.
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Figure 6.9: The figure shows the time required (in seconds) for the five models of each 
architecture type to recall a learnt pattern based on an input pattern (see also figure 6.6).

Accuracy o f recall

As already noted in chapter 3 Sales employed a total of 90 WANN networks in his investi­

gations that fell into three groupings:

1. 45 networks with balanced connectivity

2. 24 networks with connectivity biased to linguistic processing

3. 21 networks with connectivity biased to visual processing

Figures 6.10 to 6.13 detail the accuracy of recall for the four tests identified at the beginning 

of the chapter. In each figure the results from 3 WANN models (the best performing WANN 

model from each of the groupings discussed above) are plotted against the average results 

from all the tests detailed in the sections above (see tables 6.3 to 6.5 & 6.7). Each graph is 

now discussed in detail.
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Figure 6.10: Graph showing performance on lexical -» lexical task. Plotting % accuracy 
for 3 WANN networks vs. FA, FACC, & GA on 10% noisy data and also lOx GA (12% - 
30% noise)
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Figure 6.11: Graph showing performance on visual -* lexical task. Plotting % accuracy 
for 3 WANN networks vs. FA, FACC, & GA on 10% noisy data and also lOx GA (12% - 
30% noise)

It has already been discussed above that due the nature of the data, ART based systems 

will tend to fair better recalling past learning from visual input rather than from that 

which is lexical. Despite this fact figure 6.10 shows the ART based models tested using 

equivalent 10% noisy data all outperforming each of the WANN models on a lexical input /  

lexical recall task. Taking this further the majority of the GA models tested on data with 

a greater noise component than that employed by Sales also manage to outperform each of 

the WANN models on this task. In fact it is only when one gets to those models to the far 

right of the figure -  those tested on data with greater than 26% added noise -  that one sees 

performance figures in line and below those achieved by Sales’ best performing networks. 

Again this is quite a significant result.

Moving to a description task (visual input /  lexical recall) figure 6.11 again shows the clear 

performance superiority that most of the ART models have over their WANN counterparts 

— even in the presence of far greater noise levels. This same pattern of superiority is
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Figure 6.12: Graph showing performance on visual -> visual task. Plotting % accuracy for 
3 WANN networks vs. FA, FACC, & GA on 10% noisy data and also lOx GA (12% - 30% 
noise)

also evident in figure 6.12 which shows how each of the networks faired in a visual in /  

visual out task. It can be seen in both of these graphs that the FA type ART models are 

the only models that under-perform the WANN models tested. One can put this down to 

the problem of visual input patterns being subsets of other patterns as discussed above in 

section 6.1.2.

Finally, figure 6.13 shows the data acquired during the identification tests (lexical in /  visual 

out). This final graph again provides evidence that an ARTMAP type architecture is better 

suited to a lexical acquisition and grounding task than a WANN architecture. In this case 

all but one of the ARTMAP models achieved results ranking above the competition.
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100.0%  -

F igu re 6.13: Graph showing performance on lexical -» visual task. P lotting % accuracy 

for 3 WANN networks vs. FA, FACC, & GA on 10% noisy data and also lOx GA (12% - 

30% noise)
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6 .1 .6  A R T  v s . W A N N S : A  F in a l A n a ly s is

The primary objective of this chapter was to substantiate the claim that ART-based lexical 

acquisition and grounding architectures are superior in many ways to other contemporary 

architectures. The investigations detailed above provided scope for a direct comparison 

between ART-based architectures and WANN architectures and thus a means by which to 

substantiate the above claim. And in all cases the results obtained from these investigations 

demonstrate clearly that in terms of three quantifiable measures ART systems are indeed 

superior to WANNs. They excel in their ability to learn about data quickly and then recall 

this data both quickly and accurately.

Sales’ work focussed strongly upon the issue of “applicability to practical usage in realistic 

environments.” (Sales 1996, p. 178). To bring this chapter to a close this issue is considered 

again. It is used below to provide scope for further direct comparisons between ARTMAP 

and WANN architectures.

In WANN architectures both generalisation and the topology of the networks (number 

of nodes, weight connectivity etc.) are set explicitly based upon the designers a priori 

knowledge of the environment. In both cases these settings can impact significantly upon 

performance (for evidence, see (Sales 1996, pp 223-225)). In ARTMAP systems this is not 

the case, for example, the generalisation mechanism is itself adaptable and is directed by 

the environment itself without human intervention. In a realistic learning environment a 

designer would be fortunate to know everything about the environment in advance. Even 

in the case where it may be possible, it is also possible that the designer could overlook 

things. Thus, in this respect the benefits of the autonomous operation offered by ART 

based systems speaks for itself.

In discussing WANNs and the VRAM nodes upon which they are based Sales’ provides the 

following admissions:

“The VRAM is a particularly good solution for problems where a known 

number of input patterns . . .  need to be learned. The VRAM is not suitable for 

use where an upper bound for the number of training patterns is not known in 

advance.” (Sales 1996, p.61)
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Again in a realistic learning environment it cannot be assumed tha t one will know the 

number of objects, colours, words etc. that a system may be exposed to. This places a 

constraint on WANN systems that one need not worry about when using systems based 

instead on ART.

One final point worth addressing again is that WANNs employ a learning mechanism that 

functions from a basis of prototype data. In a realistic learning environment one is provided 

only with the noisy real world and not with prototype data. By contrast as the investigations 

in the previous chapter demonstrated ARTMAP systems can form their own prototypes 

based upon noisy data.



C hapter 7

A M ulti-M odal A cquisition  and  

G rounding A rchitecture

The previous two chapters have considered how connectionist architectures based upon 

Adaptive Resonance Theory can be used in various lexical acquisition and grounding tasks. 

These architectures have been shown to provide distinct performance benefits when com­

pared to many of the CMs discussed in chapter 3. The final stage of the work presented in 

this thesis embraces and extends these investigations by proposing a learning model based 

upon ART principles tha t can acquire and ground diverse lexical terms in the presence of 

multiple sensory stimuli. This task is referred to as multi-modal (MM) grounding.

In this chapter the task of MM grounding is considered in some detail. A number of issues 

are addressed that question the applicability of a standard ARTMAP model to this task. 

On this basis, a new learning architecture based on ARTMAP is introduced, discussed, and 

then explored empirically vis-a-vis a practical MM grounding task, namely that of acquiring 

and grounding a lexicon that relates to both colour and form.

131
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7.1 M ulti-M odal Grounding

The various lexical acquisition and grounding tasks that were investigated in chapters 5 

and 6, and the ARTMAP connectionist architectures that were deployed to tackle these 

tasks can be considered as somewhat naive if one contemplates the breadth of lexicon that 

even a young infant is able to understand and use. In both cases the ARTMAP systems 

could only ground lexical symbols with respect to a single specific sensory domain; colour in 

chapter 5, and form in chapter 6. Consequently, the nature of the grounded lexicon acquired 

by each system was extremely constrained. For example the model described in the last 

chapter was able to acquire some basic meaning of an English term such as ‘dog.’ However, 

it would have been quite impossible for this same model to acquire any aspect of meaning 

vis-a-vis other common English terms such as ‘red,’ ‘hot,’ and ‘fast’ simply because it was 

not endowed with the abilities to sense, or experience those stimuli to which these terms 

primarily relate, i.e. colour, temperature, and sequences of events or actions. To attem pt 

to teach the meanings of such terms to any artificial model that is without these abilities 

is akin to the task of teaching a human who lacks hearing the meaning of a term such as 

‘loud’ — a fundamentally difficult, if not impossible problem.

The grounding tasks described in chapters 5 and 6 can be thought of as single mode tasks 

and consequently the ARTMAP models as single mode systems. These single mode tasks 

and systems have been the primary focus for the majority of established research within 

this field1 and have been im portant from the perspective of understanding the basic issues 

that surround automated lexical acquisition and grounding. However, many of these basic 

issues have now been addressed, and given the results presented in the previous chapters, 

it is suggested here that this line of research is moving toward maturity. Therefore, it now 

seems an opportune time to advance beyond these single mode systems and consider more 

advanced learning architectures that could develop a broader class of meaningful lexicon. 

To meet this objective new ENLP systems must be endowed with the abilities lacking in 

those that went before, i.e. they must be able to process input from multiple sensory, and 

eventually motor modalities. Such systems can be thought of as multi-modal (MM) systems.

1 The majority of related models and tasks discussed in this thesis (e.g., see chapter 3) fall squarely into 

the single mode realm.
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MM grounding is an obvious step forward but one which has not been addressed adequately 

in literature, probably due to the relative infancy of this research field. W ith reference to 

their single mode grounding models both Dorffner (1992, p.291) and Sales (1996, p.239) 

make passing reference to architecture scalability, and the ability to relate lexical symbols 

to more than one sensorimotor modality. However, in neither’s work is there any real 

evidence tha t any in-depth thought has been given to the impact an upgrade may have 

in respect to the learning algorithms tha t each author exercises. Moreover, neither author 

actually implements and empirically investigates MM grounding.

In chapter 3, two models were described which did empirically investigate lexical acquisition 

and grounding tasks in the presence of more than a single sensorimotor modality. In the 

work described by Grumbach (1996) lexical symbols were acquired and grounded in relation 

to two sensorimotor modalities and in DETE (Nenov Sz Dyer 1994), this acquisition and 

grounding occurred in relation to five sensory modalities. The approach taken in each of 

these systems is now considered in greater detaij.

In Grumbach’s model (described fully in section 3.2.7), two classes of lexical symbols were 

acquired and grounded. The first- class consisted of symbols such as ‘left bend’ and ‘sharp 

bend’ which were grounded with respect to visual input while the second class consisted of 

symbols such as ‘slow down’ and ‘turn left,’ these being grounded with respect to motor 

actions. A big problem with Grumbach’s model is that it is incapable of autonomous 

operation -  one of the criteria specified in section 3.2.1 -  because the author insists on 

processing linguistic input in two different ways (see, section 3.2.7 for further details). 

Thus, Grumbach makes decisions on behalf of the model. In a more realistic environment 

autonomous learning will be required; the designer will not always be around to help the 

ENLP model out. As far as the model is concerned, all linguistic input is simply delivered 

via one sensory input stream, and an arbitrary pattern I1 will be treated no different to a 

pattern I2.

The scope of lexical acquisition and grounding demonstrated in Nenov and Dyer’s model 

DETE, (described fully in section 3.2.2) far exceeds that shown in Grumbach’s work. Lexi­

cal symbols were acquired and grounded with respect to four static sensory modalities, these 

being colour, form, size, and location. In addition to these static abilities the recurrent na­

ture of the connectionist architecture used in DETE made the acquisition of non-linguistic
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concepts relating to time dependent occurrences possible. The model was thus able to ac­

quire and ground lexical terms such as ‘bounces’ — a word that relates to motion dynamics. 

Unlike Grumbach’s model, DETE used a single input channel for all lexical input.

The main weakness of DETE as a MM grounding model is one of developmental inadequacy. 

In many of the systems sensory modalities no learning functionality is present and the 

sensory concepts used in grounding are hard coded into the system a priori, e.g. DETE 

used 3 pre-designed form concepts; circle, square, and triangle. This lack of non-linguistic 

learning capacity ultimately constrained the scope of lexical terms that could be grounded 

e.g. It would have been impossible for DETE to obtain a good grounding for a lexical term 

such as “dog” because this term could only be grounded with respect to one of the models 

three a priori form concepts2.

The deficiencies described above have provided the main impetus to seek a better solution 

to the MM acquisition and grounding assignment. In the following sections a new MM 

ENLP system based upon ART principles is introduced and investigated.

2 If a picture of a dog were presented to DETE it would not be recognised as a dog but rather as either 

a circle, a square, or a triangle.
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7.2 An ARTM AP M M  Grounding Architecture

The rationale that guides the development of a new MM grounding model is no different 

to that stated in a previous chapter, i.e. one aims to create a practical system that can be 

applied in realistic operating environments. As such the ‘Model’ model criteria specified in 

chapter 3 remain just as valid when discussing this new task. As such, considering points 

*  raised in the preceding section, special attention should be extended to:

• Autonomy -  In contrast to Grumbach’s approach, a single integrated learning archi­

tecture is sought. W ith a single lexical input channel, this type of architecture could 

be feasibly interfaced to a commercial speech recognition system, which would provide 

a constant stream of diverse patterns encoded from natural speech.

• Development -  In contrast to the DETE approach, learning should not be artificially 

bounded. The ability to construct new internal concepts based on raw sensory data is 

of utmost importance. It is this capacity to continually categorise sensory experience
I

that actively drives lexical growth.

A further factor tha t is considered important vis-a-vis the properties of an MM model is 

that of modularity. It is known that specific areas of the human brain are involved with 

specific sensorimotor activities, e.g. within the field of visual research it is documented 

that visual input is segregated into colour,form, movement, and depth components, each 

processed within a specific modular sub-system (Livingstone & Hubei 1988). Moreover, 

a number of empirical Neurobiological findings indicate language learning occurs through 

interaction between language modules and other cognitive modules.

It should now be clear from chapters 4 to 6 that ARTMAP networks comply with the 

aforementioned criteria. Further to this the basic ARTMAP architecture is very modular by 

design. However, what ARTMAP lacks in its current guise is enough modular components. 

Given that for a LAG task one ART module must process lexical input, there is only one 

module left for sensorimotor purposes. Thus, MM grounding is out of the question.

To create a new MM grounding model it seems that the most obvious approach is to 

extend the standard ARTMAP architecture, enabling the integration of further sensorimotor 

machinery. Figure 7.1 illustrates a novel architecture that is proposed as the underlying
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Figure 7.1: Basic Overview of the Multi-Modal Grounding Architecture. The figure shows 
the category, or F2 layers of each ART module (F2a - colour, F2b - linguistic, and F2C - form) 
used and graphically indicates how these are connected via a novel three way associative 
map layer, Fabc. The new model is like a fusion of two standard ARTMAP structures. The 
modules ARTa, ART&, and their interconnectivity through the Map Field constituting one 
such structure and the modules ARTC, ART&, and their interconnectivity through the Map 
Field constituting a second such structure.
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“hardware” for a new MM model of lexical acquisition and grounding. The architecture 

embraces the vision of modularity inherent in the standard ARTMAP architecture and 

expands upon this through the addition of an extra ART module, ARTC. Two learning 

modules are available for sensorimotor purposes and thus MM grounding can be feasibly 

realised.

7.2.1 Structure Of The Model

The general structure of the new learning architecture bears a close resemblance to that 

found in a standard ARTMAP architecture (see chapter 4), however, with the addition of 

a new module there are specific differences. The full structural details follow :

1. Input (F I) Layers. The size of F I  is fixed within each ART module. The particular 

size is dependent on the particular processing requirement e.g. a module processing 

RGB colour input would have three F I  nodes, one stimulated by red activity, one by 

green activity, and one by blue activity.

2. C ategory (F2) Layers. The size of the F 2 is dynamic within each module and 

expands as new categories/concepts are acquired.

3. F I <=> F2 C onnections. Adaptive pathways lead from each F I  node to all F2  nodes, 

and from each F 2 node to all F I  nodes.

4. M ap Field  Layer, F abc- The F0& layer utilised within a standard ARTMAP system 

to learn a consistent mapping between ARTa and ART& categories is replaced in the 

new architecture by the F a&c layer. The new Faj,c layer is required to learn consis­

tent mappings between ARTa and ART*, categories, and between ARTC and ART& 

categories.

5. F 2a <=> F abc C onnections. In a standard ARTMAP system uni-directional adap­

tive pathways propagate activity on an F 2 node in the ARTa module to all nodes in 

the Fabc layer. In line with the modifications discussed in section 4.3.2, these adap­

tive pathways have been made bi-directional, thus facilitating both ‘description,’ and 

‘identification’.
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6. F2b O  F abc C onnections. As in a standard ARTMAP system there is a single 

bi-directional nonadaptive pathway linking each F2 node in the ART*, module to a 

corresponding node in the Fa(,c layer.

7. F2C <=> F abc C onnections. The connections between the new ART modules F 2 

layer and the map field are identical to those between the ARTa F 2 layer and the 

Map Field; with bi-directional adaptive pathways linking each F 2 node to all Faic 

nodes.

8. Fabc O  O Sa Error Feedback. As in a standard ARTMAP architecture there 

is a control mechanism between the Map Field and the ARTa modules orienting 

subsystem, which facilitates predictive error minimisation.

9. F abc ^  >■ O Sc Error Feedback. In the new system there is an additional control 

mechanism between the Map Field and the ARTC modules orienting subsystem.

7.2.2 Operation Of The Model

W ithin the new setup the ART& module is responsible for the processing of all lexical input 

with the remaining modules ARTa, and ARTC, dedicated to sensorimotor processing. The 

connectivity between the Map Field and the three art modules supports associative learning 

between ARTa and ART&, and also between ARTC and ART*,. Therefore, lexical input can 

be grounded with respect to both sensorimotor domains.

Given the structure of the new model an Adaptive Resonance inspired pseudo cycle of 

operation can be derived as follows :

1. Apply in p u t v e c to rs  to  ARTa , ARTj,, and ARTC.

2. Find th e  winning F2  nodes J ,  K ,  and L  in  ARTa , ART5, and ARTC.

3. (a) Compute th e  a s s o c ia t iv e  p re d ic t io n  between J  and K .

(b) Compute th e  a s s o c ia t iv e  p re d ic t io n  between L  and K .

4. (a) i .  I f  J  does no t p re d ic t  K  th en  r e s e t  ARTQ node J ,

r a i s e  v ig i la n c e , f in d  new winning F2 node J ' in  ARTa ,

re tu r n  to  s te p  2 re p la c in g  J  w ith  J ' .
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visual input
lexical input

circle

Figure 7.2: An example of typical input available to a MM grounding model. It shows a 
visual scene containing a single black circle and an accompanying description “black circle”.

i i .  i f  J  does p re d ic t  K  th en  update system w eights to  mahe 

p re d ic t io n  s tro n g e r .

(b) i .  I f  L  does no t p re d ic t  K  th en  r e s e t  ARTC node L ,

r a i s e  v ig i la n c e , f in d  new winning F2 node L f in  ARTCJ 

r e tu r n  to  s te p  2 re p la c in g  L  w ith  L '.

|t i i .  i f  J  does p re d ic t  K  th en  update system w eights to  make

p re d ic tio n  s tro n g e r .

7 .2 .3  A u to n o m y  an d  A m b ig u o u s D a ta

Data ambiguity is an inherent evil in the new MM grounding model due to its architecture. 

Problems arise because during the course of undertaking an MM grounding task, where 

various lexical terms must be grounded with respect to either colour or form, a learning 

system will typically be presented with:

1. a visual scene depicting a coloured object.

2. a linguistic description of the scene.

Consider the example depicted in figure 7.2. In this case the input available to the model 

is of the form:

{< si > ,<  s2 > ,<  h > ,< h  >}

w ith  s i  a s an  in p u t  v ecto r  re p resen tin g  th e  co lou r b lack  (e .g . th e  RGB v ecto r  - {  0 ,0 ,0  }  ), 

S2 as a  v ec to r  en co d in g  o f  a n  n  x  n b in a ry  p ix e l array, an d  h  an d  li a s vector  en co d in g s o f
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the terms “black” and “circle” respectively.

In the new architecture, for the purpose of autonomy, all lexical input is provided through 

a single lexical channel. The dynamics of the lexical ART module constrain it to processing 

a single input vector at a time, i.e. each lexical item in isolation. Consequently, processing 

both the lexical inputs l\ and I2  requires two sequential cycles of learning. Dining each of

these cycles the visual input is constant, therefore, the actual input sets processed by the

model are:

cycle 1 {< si >, < S2 >, < h  >}

cycle 2 {< si > , < S2 >, < I2  >}

where si, and S2 are respectively supplied as inputs to the learning modules ARTa, and 

ARTC over both learning cycles, l\ is the input fed to ART5 in the first cycle, and I2  is the 

input fed to ART*, in the second cycle.

In chapters 5 and 6 all of the training data provided to the ARTMAP grounding models 

was of the form

{< s >, < I >}

and was accurate3, i.e. a given sensory input, s was correctly described by the accompanying 

lexical input, I. By contrast, in the new model, data can be said to be ambiguous in the 

sense that it is not known (by the model) whether:

• li is related to s\.

• 11 is related to S2 -

• 11 is related to both s\ and S2.

or whether:

• I2  is related to s\.

• I2  is related to S2-

• I2  is related to both s i and S2-

a negligible percentage of data used in chapter 5 was actually inaccurate (see section 5.4.1).
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7.3 Applying Adaptive Resonance Learning in the 

M ulti-modal Grounding M odel

In the single mode ARTMAP grounding systems discussed in chapters 5 and 6 the two 

major aspects of learning required for lexical acquisition and grounding were :

#  1. The acquisition of F2  concepts based upon generalisations of lexical and sensory

stimuli.

2. The creation of associative links between concurrently active sensory and lexical F 2 

concepts.

In the MM system, given the inherent existence of ambiguous training data, the nature 

these learning requirements are further complicated. Whilst step one remains unchanged, 

step two takes on an extra dimension :

2. The creation of associative links only between active sensory and lexical F 2 concepts 

that consistently reoccur over a number of cycles of learning.

Thus, given MM input data such as :

Visual Input Lexical Input

black circle “black circle”

black square “this is a black square”

black triangle “the object is black”

one requires a learning process to capture, through associative consistency4, the relation 

black “black” , and disregard other relations such as b la c k y  “this”, and s q u a r e ^  “black”.

In section 7.4 a number of adapted control and learning equations especially developed for 

the MM ARTMAP system are introduced and discussed that facilitate this new learning 

process. The new equations were developed through an understanding of the various defi­

ciencies of the standard ARTMAP equations in the context of their application to the MM

4 the visual input black is presented with the term “black” more than with any other term and vice 

versa.



Chapter 7 - Multi-Modal Acquisition and Grounding. 142

task. The aim of the current section is to furnish the reader with an insight into these 

shortcomings and thus provide a foundation for the algorithmic changes tha t follow.

In order to avoid unnecessary complexity, all descriptions of ARTMAP operations in the 

ensuing explanations are given in the context of a Gaussian based system. Any specific 

differences tha t may emerge from the use of Fuzzy based systems are highlighted.

7 .3 .1  A R T M A P  L earn ing

In order to describe the deficiencies of the standard ARTMAP equations it will be benefi­

cial to first reiterate the learning process5. In a standard bi-modal ARTMAP system the 

supervised learning process can be described as follows :

Two inputs a 1 and 61 activate the ARTa and ART& categories J  — 1 and 

K  — 1. Fast Map Field learning ensures that category J  — 1 learns to predict 

only category K  — 1, thus creating an associative link between a 1 and 61. Next 

a2 and b2 are presented as inputs. Input a2 activates ARTtt category J  — 1 and 

b2 activates a new ART*, category K  =  2. Following from this state a conflict 

arises at the Map Field layer. This is because the active ART0 category J  — 1 

predicts the ART*, category K  — 1 but the currently active ART& category is not 

K  — 1, but K  =  2. This mismatch prompts the Map Field to send a reset signal 

to the ART0 orienting sub-system which de-activates the ARTa category J  — 1.

The ARTa search process leads to the activation of a new category J  — 2. Since 

J  — 2 currently makes no prediction there is no mismatch at the Map Field 

hence Map Field resonance occurs and J  = 2 learns to predict K  — 2. Thus, an 

associative link is created between a2 and b2.

The purpose of this supervised learning process can be clarified as follows. Suppose that 

the ARTa module is processing colour data6 and that the inputs a1 and a2 are examples

5 A full description of Fuzzy and Gaussian ARTMAP parameters and algorithms is provided in appendix

A.

0 For ease of graphical explanation suppose that this colour input is two dimensional, thus ax =  (a f ,a f)  

and M  — 2.
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Figure 7.3: The figure shows the ART0 modules two dimensional categorical (weight) space. 
a1 and a2 are shown as points in the input space. The contours are shown to exemplify 
decreasing levels of match between points in space and the category representaion that J = 1 
has learnt. Outside of these contours the level of match is such that it is less than pa , and 
as such mismatch will be registered.

of the colours red and orange respectively. Initially the input a 1 is presented to the ARTa 

module and since no previous learning has taken place an uncommitted category J  = 1 is 

activated and learning ensues. Next, a2 is presented as input to the system and initially 

because J  = 1 is the only committed category it becomes activated, i.e. the network makes 

an initial hypothesis that 02 belongs to category J  = 1. The ART hypothesis testing process 

now checks if a? is sufficiently similar (in vector terms) to the category representation learnt 

by unit J  =  1. In this case sufficient similarity is found. Figure 7.3 shows this situation 

graphically, the Gaussian category J  =  1 is centered about the vector a 1. The vector a2 

falls within the match region of category J  — 1.

The current state that has been adopted is wrong. Whilst a 1 is a red input vector and is 

thus correct in activating category J  = 1, a2 is an orange input vector and thus should not 

activate category J  = 1 but a new category; an orange item should not belong to the class 

of items that are red. To overcome this error one applies the supervised ARTMAP learning 

process.

Suppose that the ART*, module processes lexical input and that 61 and b2 are two lexical 

inputs that represent the terms “red” and “orange”. Now a 1 is presented to the model in 

conjunction with 61. Again a 1 activates category J  = 1. The lexical input 61 activates
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J = 2

Figure 7.4: The figure shows the m atch regions of the two Gaussian categories J  =  1 and 

J  =  2 that are a product of the supervised ARTM AP learning.

category K  = 1. Map Field resonance occurs and category . 7 = 1  learns to predict K  =  1, 

thus forming a link between red ( a 1) and “red” (b1). Next a 2 ,the orange colour vector, is 

presented with b2, the “orange” lexical vector. Since a 2, the orange vector, falls relatively 

close in sensory space to the vector a 1, it initially activates category J  =  1. The lexical 

input b2 activates category K  =  2. Category J  — 1 has learnt to predict K  =  1, however, 

the current active ART*, category is K  =  2. Therefore, there is mismatch at the Map 

Field layer and a reset signal is sent to the ART0 orienting sub-system. Category J  =  1 is 

de-activated, pa is raised to the level of ART0 reset, and a new competitive search process 

leads to the committal of a new AR,Ta category ,7 =  2. There is no Map Field mismatch 

between J  =  2 and K  =  2, therefore resonance occurs and . 7 = 2  learns to predict K  =  2. 

Following this, the weights that fan-out from category unit J  =  2 to the Map Field layer 

{w^k) are set so that in future when a2 is presented in isolation, it will activate the category 

J  = 2 rather than J  =  1 without the need for supervision. Figure 7.4 graphically shows the 

situation following supervised learning.
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7 .3 .2  L earn ing  W ith  A m b ig u o u s D a ta

The supervised learning process defined in the previous section is very powerful in that it 

allows errors to be minimised for any arbitrary set of ARTa/ART& category relations. One 

main assumptionvthat is made when applying this supervised learning is that the training 

data is consistent, i.e. that an ARTa input pattern is directly related to the ART& pattern 

with which it is concurrently presented. In the MM grounding model the consistent data 

assumption does not hold. One finds tha t sensory input is presented to the model in con­

junction with lexical input where there is no relation between the two. This ambiguous data 

leads to a proliferation of pointless sensory categories. The reasons for this are explained 

below.

Suppose that the two inputs a 1 and a2 are in fact both (good) examples of the colour 

red. Because of the nature of the MM grounding task these two inputs are supplied in 

conjunction with the two ART*, inputs 61 and b2 respectively, where b1 represents the term 

“red” and b2 represents “circle” (a term that is totally unrelated to the domain of colour). 

The input a1 activates category J  — 1 and bl activates category K  — 1. W ith fast Map 

Field learning {(3 =  1.0) J  — 1 learns to predict only K  — 1 and vice versa. Thus, an 

associative link is created between red . ( a 1) and “red” (61). Next the input a2 activates 

category J  — 1, which is correct since a 1 is an example of the concept red. However, b2 is 

unlike 61 and hence activates a new category K  =  2. This causes Map Field mismatch and 

thus category J  — 1 is de-activated. A new ARTa category J  =  2 is selected to code a2.

Suppose two further inputs a3 and a4, again both (good) examples of the colour red, are 

presented to the system in conjunction with the two inputs 61 i.e. “red” and b3, which 

represents the term “square” . The input a3 activates category J  =  1 and in the ART*, 

module b1 activates category K  — 1. Since J  — 1 predicts K  =  1 Map Field resonance 

occurs. The weight vector \i\ is updated to take into account the input a3. The input 

a4 activates category J  — 1, which is correct since a4 is an example of the concept red. 

However, b3 activates category K  = 3. This causes Map Field mismatch and thus category 

J  =  1 is de-activated. A new ARTa category J  =  3 is selected to code a4.

The inputs a1 through a4 should all have been coded on the same ART0 category. However, 

because of the Map Field dynamics three ARTa categories have been used to code these
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inputs and only one of these has encoded a satisfactory associative connection to the ART& 

network.

7 .3 .3  F ast v s . S low  M ap F ie ld  L earn ing

In the previous two sections the ARTMAP calculations were described from the perspective 

•  of fast Map Field learning (the parameter /3map =  1.0). W ith fast Map Field learning an

active ARTa category, e.g. J  =  1, learns to predict only the current active ART & category, 

e.g. K  =  1. The associative links between J  =  1 and all other ART& categories (where 

K  ^  1) are set to zero. Following this learning, if an input ax activates J  — 1 and a 

concurrently presented ART& input bx activates a category K  where K  ^  l a  conflict 

occurs and mapfield mismatch is registered, as in the above case. Algorithmically this is 

because:

w JbK  (  =  0 - 0  )  <  Pmap

>

W ith slow(er) Map Field learning (/3map < 1.0) an active category J  =  1 again learns to 

maximally predict ART& category K  = 1. However, the associative links between J  — 1 and 

the other ART& categories are not nullified but simply reduced in strength, e.g. Wjbk — 0.8, 

for all fc’s where k ^  K . Following a single presentation of slow learning if an input ax 

activates J  — 1 and a concurrently presented ART& input bx activates a category K  where 

K  1 no conflict occurs and Map Field resonance is registered. This is because now:

W<J K  (  =  ^  Pmap

Therefore, the application of slow Map Field learning has averted category proliferation in 

the presence of data ambiguity. If slow Map Field learning is applied to the example data

defined in the previous section (7.3.2), then, when a2 is presented with 62 (“circle”) there

is no longer mismatch between J  =  1 and K  — 2. Therefore, input a2 is coded by category 

J  — 1 as is required. In the same way a4 is no longer coded on a new category J  =  3, it 

now wins as required on J  =  1.

Following from the above it would seem that the properties of a slow learning system are well 

suited to the MM task domain. Unlike in a fast learn system where any relation inherent
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within the training data is learnt by the system within one presentation, in a slow learn 

system, it appears that only those relations that occur consistently throughout the whole 

of the training data are acquired. Although this observation holds true, it does so only to 

a certain point. One can explain this position fully through an extension of the learning 

process described in the previous example.

Suppose tha t the data in the previous example is presented again to the network a number 

of times, e.g. a second, third, fourth, . . .  epoch. In each epoch a 1, a2, a3, and a4 activate 

ARTa category J  = 1 and in each epoch this category is active concurrently with the ART& 

categories K  — 1, K  — 2, K  = 1, and K  = 3. Since J  — 1 is continually being presented in 

conjunction with K  — 2 and K  = 3 less number of times than it is with K  — 1 the weight 

values W12  and begin to diminish considerably and to a greater degree than the 

weight value, thus :

n„ab   ...ab - 0l1ab
w 12 ~  W 13 <  W U

Although this system state embodies exactly the relations that one hoped would be learnt,

i.e. that an input (ax) which activates J  = 1, is more likely related to the term “red” and 

less to the terms “circle” or “square” , there are problems in terms of further training. The 

weight values lufl and eventually get so low that when an a vector tha t activates J  — 1 

is presented to the system with the term “circle” or “square” the ARTMAP mismatch test 

registers predictive conflict, i.e.

Wj k  ( =  SUiall ) < pmap

Following this result extra ART0 categories are recruited by the system, the problem of 

category proliferation returns.

One obvious solution to this particular problem is to make learning very slow (Pmap ~

0.0) and make the Map Field vigilance level very small (pmap ~  0.0) thereby effectively 

disabling the ARTMAP Match Tracking process. Although this action will stop the process 

of MM category proliferation, e.g. the creation of many overlapping red concepts, it will also 

completely block the creation of any other valid concepts (as described in section 7.3.1), 

e.g. the creation of a blue concept. As discussed below, this failing will consequently cause 

greater problems.



Chapter 7 - Multi-Modal Acquisition and Grounding. 148

Training ART0 ART*,
Cycle Input Input

1 a 1 (red) b1 (“red”)

2 a 1 (red) 62 (“circle”)

3 a2 (blue) 63 (“blue”)

4 a2 (blue) 62 (“circle”)

ARTC
Input

c1 (circle)

c1 (circle)

c1 (circle)

c1 (circle)

•  Table 7.1: Training data used in a simple experiment (see main text for details).

Suppose that in a different training example a1 and a2 are examples of red and blue respec­

tively. Given that both of these inputs are supplied to the learning system in conjunction 

with a single ARTC input, which represents an example of a circle, the training data available 

to the ARTa and ART& can be derived as shown in table 7.1.

In a slow learn system a1 and a2 will continually activate category J  = 1 (since Match 

Tracking can’t create a new category for a2). Referring to the data in table 7.1 one can 

see that J  — 1 will be active over four cycles in conjunction with the categories K  =  1, 

K  =  2, K  — 3, and K  — 2. In this example since J  =  1 is continually being presented in 

conjunction with K  = 1 and K  — 3 less number of times than it is with K  — 2 the weight 

values w fi and diminish to a greater degree than the wf?, weight value, thus :

=

One can see tha t the system has now learnt the entirely wrong relation, i.e. that an input 

(ax) which activates J  = 1 is ultimately related to the term “circle”. There is also one 

further problem. Although the vectors a 1 and a2 are actually activating the same category 

J  — 1 it is possible tha t they may be situated some distance apart in the sensory vector 

space. Following ART learning category J  =  1 will acquire a prototype vector that is based 

upon some generalization of these two vectors, thus the centre of the category will reside 

somewhere centrally between these vectors . Figure 7.5 shows this situation graphically.

The problem with this is that the region of space that resides between these vectors, and 

where the centre of the category is situated, may well have little to do with either red or 

blue and more to do with another sensory category, e.g. purple. Thus, one has created a 

relation between purple and “circle” , which is of little use.
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category
prototype
vector

j2

Figure 7.5: The placement (centre) of the Gaussian category in space is based upon some 
generalization of the points a1 and a2.

The inability to create valid concepts such as blue is a serious failing since the issue of 

concept development is vital in a grounding system. This point cannot be stressed enough. 

If an artificial system cannot form the correct concept boundaries within sensory space then 

it has no way of securing any ‘meaningful’ meaning 7 for the lexical terms it acquires.

The discussions above have considered how both fast and slow learn standard ARTMAP 

systems can be applied to an MM grounding task where training data is inherently ambigu­

ous. It has been shown that, given this data, the learning task is non-trivial and that the 

standard ARTMAP approach is not sufficient in either its fast or slow learn guise.

7 By virtue of some reference to a region in sensory space one might argue that an acquired lexical term 

will have some meaning. However, since this conceptual region does not directly correspond to the region 

that a human observer may expect, the ‘understanding’ the artificial system has for this term will differ 

from that the human observer would typically have. Consequently to the human observer the meaning that 

the artificial system has acquired is meaningless.
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7.4 A Novel Adaptive Resonance Algorithm for M ulti-M odal 

Grounding

In light of the failings described above, a fundamental and im portant contribution of the 

work described in this thesis has been to develop an adapted method of learning that can be 

applied in a MM context. In the following sections the details of a number of adaptations 

to the standard ARTMAP learning algorithms are presented and described.

7 .4 .1  A d d ress in g  M ap  F ie ld  C on tro ller  P ro b lem s

One of the main problems tha t emerged from the examinations of standard learning set out 

in the previous sections centered around the process of Match Tracking. To reiterate, the 

problem is as follows. On one hand the process is vital, without it there is no way to resolve 

possible predictive errors that are highlighted from the presentation of accurate training 

data, but on the other hand the process fails to deliver when confronted with ambiguous 

data, as good associative mappings are corrupted.

The onset of Match Tracking is governed in an ARTMAP system by the Map Field Con­

troller. Consequently, in order to redress this issue modifications have been made to the 

Map Field control equations. The new equations work toward8 overcoming the problem of 

ambiguous data by taking into account the current activity in all three ART modules. The 

new equations are introduced below and then their application in in the context of a MM 

training task is considered.

8 The full solution also additionally depends on (1) an adapted Map Field learning algorithm, and (2) 

some new initialisation steps. These variations are expanded upon in later sections of the chapter.
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R ULE 1

i f  W<J K  —  Pmap & W<L K  —  Pmap

•  r e g i s t e r  ARTa 43- ART*, M atch  an d  ARTC 44> ART*, M atch .

•  i n i t i a t e  ART0 , ART*,, an d  ARTC R e so n a n c e  and L e a r n in g .

•  i n i t i a t e  ARTa 4=> ART  ̂ an d  ARTC 4^ ART& Map F i e l d  R e so n a n c e  an d  L e a r n in g .

RULE 2

e ls e  i f  w fK >  pmap & w°lk  <  Pmap

•  r e g i s t e r  ARTa 44> ART& M atch  an d  ARTC 43- ARTj, M ism a tc h .

•  i n i t i a t e  ARTOJ an d  ART5  R e so n a n c e  and  L e a r n in g .

•  i n i t i a t e  ART0  4=> ART& Map F i e l d  R e so n a n c e  and L e a r n in g .

RULE 3

e ls e  i f  w f K < pmap & w f K > pmap

•  r e g i s t e r  ARTa 4=> ART*, M ism a tch  and  ARTC 44> ART& M atch .

•  i n i t i a t e  ART*,, an d  ARTC R e so n a n c e  an d  L e a r n in g .

•  i n i t i a t e  ARTC 4=> ART5  Map F i e l d  R e so n a n c e  and L e a r n in g .

RULE 4 

e ls e

•  r e g i s t e r  ARTa 43> ART*, M ism a tch  an d  ARTC 4^ ART& M ism a tc h .

• initiate ARTa, and ARTC Match Tracking.
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Training
Cycle

ART0
Input

ART*,
Input

ARTC
Input

1 a 1 (red) 61 (“red” ) c1 (circle)

2 a 1 (red) b2 (“circle”) c1 (circle)

3 a 1 (red) b1 (“red”) c2 (square)

4 a 1 (red) 63 (“square”) c2 (square)

Table 7.2: Training data used in another experiment (see main text for details).

To avoid a proliferation of unnessesary committed categories in a Gaussian based MM model 

one also has to make slight amendments to the Match Tracking process. As per standard 

Match Tracking, vigilance in both the ARTa and ARTC modules is raised to a level whereby 

resonance of J  and L  is inhibited and further ART processing either results in:

1. Resonance of a different committed category, e.g. J ' or L'

2. Resonance of a new uncommitted category if no committed categories resonante, i.e. 

pass the Matching test.

If the case arises where Match Tracking would result in resonance of a  different committed 

unit in one module and resonance of a new uncommitted category unit the other module 

then vigilance in the latter module is lowered to its previous level so tha t resonance of the 

original unit is reinstated. Thus one ends up in a situation where J ' resonates simultaneously 

with L, or J  with L r.

The application of these equations is now examined by reconsidering the simple training 

situation introduced in section 7.3.2. A high level description of the data that is applied to 

the MM model over four cycles of training is provided in Table 7.2.

The initial cycles of activation, prediction, and learning that emerge from applying the 

adapted algorithm follow a similar pattern to those already described in section 7.3.3. To 

re-iterate, in the first learning cycle the inputs a 1, 61, and c1 activate the categories J  — 1, 

K  — 1, and L — 1 respectively. Since both the weights WjbK and w fK are maximal, Map 

Field control initiates resonance and learning. Following learning the Map Field weights 

Wjbk and w fk: for all fc’s where k ^  1, are reduced in strength by small proportion. In the 

next cycle the inputs activate J  — 1, K  =  2, and L — 1. Resonance and learning prevail



Chapter 7 - Multi-Modal Acquisition and Grounding. 153

J=1
K=1
L=1

J=1 
K=2 
L—1

J=1
K—1 
L~2

J=1
K—3 
L=2

Total
weight
change

“ u - - -2
< s “ - - -3
w fl - - - -3

< - -1

< - -1
w f3 - - -2

- -1

»22 - - -2

< 3 - -1

Table 7.3: Table shows how Map Field weights change over four learning cycles. A (-) 
shows that a weight has decreased in value following the learning in any given cycle. The
final column of the table shows the total change for each weight.

and in this step the Map Field weights Wjk and wjbk, for all fc’s where k 7̂  2, are reduced 

in strength. In the third cycle J  = 1, K  — 1, and L — 2 are active. Again resonance and 

learning are initiated. In this cycle the Map Field weights w fk and wc£k, for all /c’s where 

k 1, are reduced in strength. Finally, in the forth cycle J  =  1, K  — 3, and L = 2 are 

active. Following resonance and learning the Map Field weights W j\ and wfbk, for all /c’s 

where fc ^  3, are reduced in strength. Table 7.3 shows graphically how the various Map 

Field weights change over these four cycles of learning.

In order to demonstrate the beneficial properties of the new Map Field algorithm an assump­

tion is now made as follows. pmap is set such tha t its value is greater than any Map Field 

weight which has had its value decreased more than three times. Following this assumption 

a second epoch of learning is now considered.

In the first cycle of the second epoch the inputs again activate J  =  1, K  =  1, and L  =  1. 

Since w fb and w fl are both still greater than pmap, Match is registered and learning ensues. 

The Map Field weights Wjbk and w fk, for all /c’s where k ^  1, are reduced in strength. 

Consequently, the weights wfy and have now decreased in value four times. In the

second cycle the inputs a 1, b2, and c1 activate the categories J  =  1, K  — 2, and L  =  1.

Since w fK is now less than pmap an ARTa<^ART^, Mismatch is registered. At this point
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J=1
K=1
L=1

J =  1 
K=2 
L=1

J=1
K=1
L=2

J=1 
K—3 
L—2

J=1 
K=1 
L—1

J=1
K=2
L=1

J=1 
K=1 
L—2

J=1
K=3
L=2

Total
weight
change

n„abW  n  

<
- - - - -

-2
-5
-5

«Si
<
“ it

- -
-2
-2
-4

< - - -2

«22 - - - - -4
- - -2

Table 7.4: After two epochs of learning the state of Map Field weights is as above. It 
can be seen from the table that in learning cycles 2 and 4 (epoch 1) the value of was 
reduced. However, in cycles 6 and 8 (epoch 2) this weight reduction is avoided and as such 
the total weight reduction after two epochs remains equal to that registered after 1 learning 
epoch (see table 7.3).

the application of the standard Map Field control algorithm would initiate the process of 

Match Tracking and a new ARTa category would become committed. By applying the new 

algorithm, this Match Tracking scenario can be avoided. Mismatch is still registered but 

because w^K is greater than pmap Match Tracking is not initiated. In addition the new 

algorithm prevents ambiguous data from damaging other knowledge within the system. 

This prevention can be seen in table 7.4 where Match Tracking can be seen to block 

weight reduction. This is important since this weight holds the association between the 

ART0 category tha t encodes the colour red and the ART& category that encodes the term 

“red” , and to effectively represent this relation must be kept at a value greater than pmav .

Two im portant factors that were implicit in the example described above were :

1. Slow M ap  F ie ld  L ea rn in g  -  It was noted above tha t when weights were reduced 

in value they were so by a small proportion. The new Map Field control algorithm 

will only function appropriately if it is implemented in conjunction with slow Map 

Field learning. In a fast learn system the weights between an active sensory category 

and all of the non active lexical categories e.g. Wjbk, where k ^  K  have their value 

reduced to below the Map Field vigilance threshold in a single learning cycle. The
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adapted algorithm is dependent on the associative consistency within the input data

2. Categorical Separation - It was assumed in the example above that ARTc input 

patterns c\ and C2 would naturally activate different category units L — 1 and L — 2. 

In the initial stages of learning with certain network parameters this assumption may 

not hold. Solutions to this are addressed in section 7.4.3 below.

7 .4 ,2  A d d ress in g  M ap  F ie ld  L earn ing

In the last section the importance of slow Map Field learning was addressed. In this section a 

number of adaptations to the standard slow learn algorithm are introduced that complement 

the new Map Field control system. These changes centre around the addition of three new 

parameters 77, (f) and (3\ where:

1. 77 and (j> facilitate predictive reinforcement

2. (3' facilitates confident fast learning.

An explanation of these abilities follows the specification of the new learning mechanism. 

A dapted Learning B etw een  ART0 and ART&

tha t allows some weights to remain above the pmap threshold whilst others fall below 

it.

w fk =  (1 -  P')Wf k + 0 '((Yk A w fk) + r,)

where

1.0 if w fK =  1.0 and w fK < p,nap
(7.1)

(3 otherwise

and

0.0 if (j) < WjbK > 1.0
(7.2)

otherwise
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A dapted Learning B etw een  A RTC and ART&

< k  =  (1 -  P > L k  +  A < * )
cb

where

1.0 if w fK -  1.0 and w fK < pmap 

ft otherwise
(7.3)

and

7] =
0.0 if (f) < w^K > 1.0 

otherwise
(7.4)

where ft is the standard ART learning rate parameter (see appendix A) and Y b is the vector 

of activation across the ART*, F2  layer, (j) is described below.

Predictive R einforcem ent

In the standard approach to learning all Map Field weight values are initialised with unitary 

value and then only allowed to decrease as learning progresses. If categories J  and K  are 

active then following the standard leaning rule (see appendix A, equation A. 19), the weight 

between the active categories W j bK  remains unchanged whilst the weights between the active 

ARTe category J  and all of the non-active ART*, categories, i.e. w°jbk for all fc’s where k ^  K . 

are reduced in value by multiplying each weight’s current value with the quantity (1 — (3).

In the new approach the weight reduction process remains unchanged, however, the value 

for the weight between the active categories J  and K  is now allowed to increase by the 

quantity r). This allows the model to maintain strong associations between units that are 

regularly active together and also provides the basis for confident fast learning, which is 

described in the following section.

As can be seen in equations 7.2 and 7.4 the value rj is dependent on the current value of 

the of the weight tha t connects the active ARTa or ARTC category with the active ART&
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J=1
K=1
L=1

J=1 
K=2 
L—1

J=1
K=1
L=2

J=1
K=3
L=2

Total
weight
change

w fl + - + - 0

“ 12 - + - - -2
,}nab WIS - - - + -2

w fi - 0

< 2 - 0

< - - -2

“ 21 + - 0

“ 22 ~ - -2
- + 0

Table 7.5: Shows how predictive reinforcement affects the change in Map Field weights 
over four learning cycles. A (-) shows that a weight has decreased in value, a (+) that a 
weight has increased in value, following the learning in any given cycle.

category. If this weight currently has a maximal unitary value then rj is set to a value of 

zero, i.e. the weights value will not increase. This is important since all Map Field weights 

must be kept within certain bounds:

“ ,t  6 [0,1]

The value of rj is also set to zero when the weights value reduces below a threshold (j) j 

where 4> £ [0,1]. Therefore, once a weight between two Map Field categories falls below 

this criteria it can no longer rise in value.

Outside of the above constraints rj is always set to a value of (Y£ A ~1). This

value has been chosen in order tha t the weight in question will have its value increased 

by the proportion with which it last reduced. To the best of the authors knowledge such 

a weight increase has never before been implemented in conjunction with an Adaptive 

Resonance model. Table 7.5 shows a reworking of the weight changes described in section 

7.4.1 (summarised in table 7.3) with predictive reinforcement in place.
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Confident Fast Learning

Generally for the new model to function as desired quite slow learning is a requirement. 

However, in certain confident situations it is possible to override this default operation and 

increase the speed of learning.

Suppose the target of learning is for a certain ARTa category J  to predict an ART*, category 

K  =  1. During a training period J  is presented in conjunction with K  = 1 slightly more 

than it is with any other k. Therefore, with predictive reinforcement WjbK retains its initial 

unitary value whilst the Wjbk weights diminish slightly. Also during training ARTC category 

L  is been presented with K  — 2 significantly more than it is with K  =  1 and consequently 

wLK-> where K  =  1 has diminished considerably to below pmap, he. there is no relation 

between L  and K  — 1 .

Following the above, three inputs are presented to the model and these activate the cat­

egories J, K  =  1, and L. Since WjbK is maximal and wfjK is minimal one can infer that 

K  — 1 is unambiguously related to the the AR,Ta domain. Consequently, the assumption 

must be that J  is related to K  = 1 and thus whilst WjbK remains maximal the weights Wjbk 

can be reduced to zero. Equations 7.1 and 7.3 enable this functionality, when f t  = (3 slow 

learning holds but when f t  — 1.0 fast learning intervenes.

Backward C om patibility

An important aspect of the new Map Field learning algorithm is its backward compatibility 

in relation to the standard ARTMAP model. In the MM application that is discussed 

throughout this chapter, i.e. that task of concurrently grounding terms relating to either 

colour or form, it is doubtful that activity could be present in one sensory module (colour), 

without there being activity in the other module (form), since both of these stimuli would 

typically registered through the same sensory substrate. However, in alternative target 

domains it is quite possible that the various sensory stimuli will not always be coupled 

in such a way. Consequently, the problem of ambiguous data vanishes and the standard 

learning approach will suffice. In such a situation, the new Map Field learning algorithm 

will function with equivalence to the standard algorithm.
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Figure 7.6: Figures (a) and (b) show the two dimensional categorical (weight) spaces for 
two separate unsupervised ART systems. In both cases input vectors o1 and o2 are shown 
as points projected onto this space. In (a) a low level of ART vigilance effects a large match 
region for the category J  = 1. As a result input 02 is also seen as belonging to this category.
In (b) a higher level of vigilance effects in a much smaller match region. In this case <22 
mismatches J  — 1 which leads to the choice or creation of a new category J  = 2.

7 .4 .3  C a teg o r ica l S ep ara tion

One final issue, mentioned briefly above, that one must address is that of initial categorical 

separation. Earlier in the chapter (see section 7.3.1 and figure 7.3) it was shown that 

ARTMAP supervised learning, effected by Map Field processing, can overcome problems 

where two distinct inputs can be categorised as the same thing; the result being that two 

categories are correctly created rather than just one. Such operation was, however, falsely 

assumed in the preceding examples where c l (circle) and c2 (square) were said to respectively 

activate units L = 1 and L = 2 in the initial learning trials. This is because such operation 

in the initial cycles of learning is dependent 011 either:

• A maximal Map Field learning rate.

• Maximal ARTMAP vigilance.

• A high learning rate coupled with a high ARTMAP vigilance

and such parameterisations are simply not appropriate when faced with ambiguous data.

One way to overcome this issue is by setting higher levels of vigilance in each of the ART 

modules. As shown in figure 7.6 this results in a higher likelihood that two distinct inputs
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will be independently categorised. The main problem with this approach is tha t it can lead 

to a ‘greedy’ system that requires many extra ART processing units and does not comply 

with the ART philosophy of maximising performance whilst minimising system resources.

Another method, and that which is preferred here, works by initialising a small number 

of categories, which are marked as committed, prior to any learning. These are initialised 

with randomised weight vectors, thus effectively distributing them within the weight space. 

In a Fuzzy-based network this practice may lead to a larger than normal population of 

categories since Fuzzy dynamics minimise LTM weight values. This is not a concern for 

Gaussian-based networks since the mean weight values can go up as well as down.

7.5 Evaluating the Adapted ARTM AP Algorithm

In order to assess the new ARTMAP algorithms a simple MM task has been devised. 

Following from the work in the previous two chapters this task considers lexical acquisition 

and grounding in the presence of two forms of sensory input and one lexical input:

•  RGB colour patterns.

• 144-bit 12x12 pixel visual patterns.

• 10 bit lexical patterns

To create a training data set five of Sales’ pixel based images were selected (dog, cat, dolly, 

clock, & chair (see figure 6.1 in chapter 6)) and five colours (orange, red, yellow, blue, green). 

Fifteen variations of each of the five colours were employed thus generating a training set 

containing 75 differently coloured objects. The images were matched to colours in a uniform 

way, i.e. there were 3 yellow chairs, 3 yellow dogs etc.

A single MM model was employed that was made up of three Gaussian ART modules — 

ARTa processing colour data, ART*, lexical data, and ARTC form data. In each of the 

modules, 10 ART category (F2 ) units were initialised with random weight configurations. 

The main ART parameters9 were set as follows:

9 For a full description of ART parameters refer to Appendix A.
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rhomap = 

rho^ase =

(3

T ab le  7.6: Param eters used in Investigations

15

i—  dog

dolly
♦ chair
*  clock

10

§  5

0
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— ►— o ran g e  
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—• — g reen  
— •—  red

yellow10
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T raining C y cles  T rain ing  C y cles

Figure 7.7: The two graphs show the frequency with which data from the training set was 
presented to the MM grounding model. The left- and right-hand graphs show how many 
items of a particular colour and how many of a particular form were presented in various 
training training periods.

Two epochs of training were undertaken, during which each coloured object was presented 

in turn with each of the words that described it, e.g. Yellow Dog. Thus, in each epoch there 

were a total of 150 input cycles (75 coloured objects described by 2 lexical entities). The 

training data was presented in a random order, the frequency of which can be seen in the 

graphs shown in figure 7.7. The graphs show that over a full epoch of learning 15 examples 

of each colour and each object were provided to the learning system.

Upon presentation of an input triplet normal Gaussian ART processing within each of the 

3 modules ensued. Following this the winning (resonating) units J , K  and L and in the 

three ART modules was noted. During the course of training a total of five units in each of 

non-lexical modules were found to resonate -  units 0, 2, 5, 8, and 9 in ARTa and units 4, 

5, 6, 7, and 8 in ARTC. Figure 7.8 shows unit resonance activity for the full 150 cycles of 

processing in the first epoch.
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30 40 50 60 70 80 90 100 110 120 130 140 150
Training C ycles

30 40 50 60 70 80 90 100 110 120 130 140 150
Train ing  C y cles

F igu re 7.8: ART unit resonance data. The left side graph provides a record of F-z unit 

resonance in the colour processing module, ARTa. The right side graphs provides similar 

data in respect of the form processing m odule, ARTC.

Following unit resonance the new Map Field rules were applied and learning was undertaken. 

Following this, the Map Field weights connecting winning (resonating) units in the ARTa 

and ARTC modules to those in the ART6 module were examined to note what changes have 

occurred. The graphs presented below in figures 7.9 through 7.18 provide the detail of all 

of these changes.

Figure 7.9 shows how the weights that connect F2 unit 0 in ARTa to all F2 units in ART6 

vary over the course of learning. In the first 7 cycles one can see zig-zag patterns that 

show certain weights decreasing and increasing in value over consecutive cycles. In cycle 

1 the value of the weight which effectively binds ARTa unit 0 to the lexical term ‘blue’ 

stays maximal whilst all others decrease. This is followed in cycle 2 by an increase in the 

weight value which binds the unit to the term ‘dog’ and a decrease in all the other weight 

values. Cycles 3, 4, and 5 see the weight values binding the unit to ‘blue’,‘dolly’, and ‘blue’ 

respectively increase whilst all others fall.

The zig-zap phenomena is consistent with what one would expect in the early cycles of 

learning as the MM model has not yet seen enough consistency between resonance in the 

various ART modules and thus cannot yet dismiss many potential associations. In technical 

terms, a number of weight values have yet to fall below the level of pmap, therefore, the new 

Map Field rules 2, 3, and 4 can not yet be applied to aid learning and overcome the data
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Figure 7.9: The two graphs show how the Map Field weights that connect F2 unit 0 in 
ARTa to all F2 units in ART6 vary over the course of learning. The key provides detail 
of ARTt, units in terms of the lexical term they encode. Hence, each coloured graph line 
shows the association between unit 0 and a lexical term. The black horizontal line provides 
a reference of the value of pmap (= 0.5). The left-hand graph shows how the weights change 
when (3' is always equal to /3. The right-hand graph shows how weights change when allowing 
beta' to equal 1 under certain conditions, i.e. adding a confident fast learn component to 
the mix.
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Figure 7.10: The two graphs show how the Map Field weights that connect F2 unit 2 in
ARTa to all F2 units in ART5 vary over the course of learning.
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ambiguity problem. Hence, in cycles 2 and 4 the weight values that connect ARTa unit 0, 

a colour unit, with the terms ‘dog’ and ‘dolly’ are unfortunately reinforced.

Cycle 6 of ARTa unit resonance sees a different pattern emerge as all of the weights keep a 

constant value. This type of pattern is consistent with the application of the new Map Field 

rule 3. Assuming the weight that connects unit J  =  0 to a resonating unit K  is less than 

pmap (this is true in all cases where lines in the graph have fallen below the black horizontal 

line, e.g. the ‘clock’ line) and that which connects L  to K  is greater than p map the rule 3 

inhibits ARTa to ART& Map Field learning.

Following cycle 7 it can be seen from the graphs in figure 7.9, that all of the lines but for 

one have fallen below the horizontal pmap line. This means that unit J  — 0 has established 

a positive connection with a single unit K  since the values of those weights that have fallen 

below the line cannot again rise. In this case one can see that a strong bond has been 

established between this unit and the ART*, unit that encodes ‘blue’.

Figure 7.10 shows similar zig-zagging early on as J  — 2 simultaneously resonates with the 

ARTfc units that encode ‘orange’, ‘dog’, ‘red’, and ‘cat’ during the first 16 resonance cycles. 

A new phenomena arises in this figure in the guise of the long plateaus that can be seen 

between cycles 7-10 and 11-15. In these cases rule 3 is being applied over consecutive cycles 

resulting in no weight changes. However, this can only happen if, in between, rule 4 is being 

applied, i.e. match tracking is working to stop unit 2 from coding a wrong colour. After 16 

cycles unit 2 establishes a strong connection with ‘red’.

After zig-zags in relation to ‘chair’ and ‘cat’ in cycles 2 and 4, figure 7.11 shows that by the 

eighth cycle ARTa unit 5 has established a firm connection to the ART*, unit that encode 

‘green’.

Figure 7.12 again demonstrates the need for match tracking. In early cycles it can be seen 

that unit 8 is resonating in response to both ‘orange’ and ‘yellow’ input patterns. This is 

not good as the unit will be learning some diluted mix of both colours. Lexical feedback in 

the form of match tracking is required to force the unit to focus upon only one type of input 

colour. Due to a greater frequency of yellow objects by cycle 14, the relation to ‘orange’ has 

fallen below pmap• The longer plateaus that follow show that the the unit is again trying 

to resonate in respect of ‘orange’ inputs. However, this is being stopped by rule 4. In the
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Figure 7.11: The two graphs show how the Map Field weights that connect F2 unit 5 in 
ARTa to all F2 units in ART6 vary over the course of learning.
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Figure 7.12: The two graphs show how the Map Field weights that connect F2  unit 8 in
ARTa to all F2  units in ART5 vary over the course of learning.
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Figure 7.13: The two graphs show how the Map Field weights that connect F2 unit 9 in 
ARTa to all F2 units in ARTft vary over the course of learning.

following cycle rule 3 is keeping weights constant. This rule 3 and 4 interaction again causes 

this pattern.

Figure 7.13 shows two graphs with interesting variations to those already discussed. No 

zig-zags are evident with the link to ‘orange’ staying maximal throughout learning as all 

others fall during every cycle. This occurs because of the match tracking events described 

above. ‘Orange’ input patterns originally cause resonance in ARTa unit 8, however, as 

discussed above after cycle 14 of unit 8 resonance, the unit hats decided it should not be 

learning about such patterns. The match tracking that stops this causes resonance to occur 

in another ARTa unit, in this case unit 9. In the following cycle ‘orange’ again causes 

resonance first in unit 8, but this time, since the lexical input is a form term, the weight 

between L and K  is greater than pmap and rule 3 instead of 4 is applied (causing longer 

plateaus in unit 8). As this happens time after time, the non-orange weights never rise or 

stay constant but always fall.

The left side graph shows that after 4 cycles unit 9 has established a firm connection with 

‘orange’. The right side graph shows that by employing fast confident learning this same 

connection is established after only 2 resonance cycles.

Figures 7.14 through 7.18 show graphs for ARTC resonating units which exhibit patterns 

similar to those described above. Units 4, 5, 6, 7, and 8 eventually establish connections to 

‘chair’, ‘clock’, ‘dog’, ‘dolly’ and ‘cat’ respectively.
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Figure 7.14: The two graphs show how the Map Field weights that connect F2 unit 4 in 
ARTC to all F2 units in ART6 vary over the course of learning.

In order to provide scope for further analysis, a ‘snapshot’ of the MM model was taken after 

every 30 learning cycles. At this stage the training process was temporarily halted and the 

model was tested on the full training set. Thus except for last ‘snapshot’ this meant the 

model was actually being tested on some number of unseen coloured objects, i.e. novel data. 

The task was to describe both the colour and form of the objects by recalling ART& lexical 

categories. The graphs presented in figure 7.19 provide the results of these tests.

The left side graph shows how naming of the colour component of the input performs after 

the various training stages. After 30 training cycles it can be seen that the model is able 

to name the colour component of green input objects with 100% success. However, naming 

fails totally for all other coloured objects. This pattern occurs simply because after 30 

training cycles only ARTa unit 2 has seen enough data to establish a firm association with 

a single ART& category, i.e. only one weight remains above the the pmap level. As one might 

expect, performance on the task improves progressively as the amount of training data the 

model has seen increases. As can be see from the graph it takes the model a lot longer to 

learn to correctly name orange input objects than objects of any other colour. This is of 

course because ARTa unit 9 does not start learning about orange till later on (see fig. 7.8) 

after unit 8 has learnt that it shouldn’t be learning about this colour and instead focuses its 

attention upon learning yellow. After 2 epochs of learning it can be seen that the MM model 

has learnt to name the colour component of all objects in the training set with complete 

success.
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Figure 7.15: The two graphs show how the Map Field weights that connect F2 unit 5 in 
ARTC to all F2 units in ART6 vary over the course of learning.
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Figure 7.16: The two graphs show how the Map Field weights that connect F2  unit 6 in
ARTC to all F2  units in ARTfe vary over the course of learning.
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Figure 7.17: The two graphs show how the Map Field weights that connect F2 unit 7 in 
ARTC to all F2 units in ART6 vary over the course of learning.
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Figure 7.18: The two graphs show how the Map Field weights that connect F2 unit 8 in
ARTC to all F2 units in ART6 vary over the course of learning.
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F igu re 7.19: The two graphs show how well the model is able to  recall, at various snap­

shot stages, correct lexical categories when provided with coloured objects that make up the 

training data. The left side graph shows recall of terms resulting from input to the ARTa 

module. The right side graph shows that resulting from input to the ARTC module.

Colour Form
Component Component

No. of patterns correctly named 69 75
% of patterns correctly named 92% 100%

Table 7.7: Final results: Shows the number of patterns (out of a total of 75) that were 
correctly described by the MM model.

The right side graph shows that after 30 training cycles the model is only able to successfully 

name the form component of cat shaped input objects. However, after 60 cycles it has learnt 

enough to enable complete success for all objects in the training set.

The final stage of the evaluation process was to test the trained model on a set of novel test 

objects. The test set comprised a further 75 coloured objects. All of the objects had different 

shades of the 5 colours to those in the training set. Furthermore, the form component of 

the data had 10% noise added (as per the experiments in the previous chapter). Table 7.7 

shows the results obtained from this testing process.

As can be seen from the table naming of the form component of all of the noisy test objects 

was completely successful. However, there were a total of 6 errors in correctly naming the 

colour component of the objects. Further investigation showed that all of the errors arose 

in relation to the presentation of orange coloured objects and in all cases these were named
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as yellow objects. The cause of this is down to the fact that in the early stages of training 

ART0 unit 8, which eventually established a connection with ‘yellow5, actually learnt a 

number of orange input patterns before this connection was established. One would expect 

that further epochs of training, or even better, a much larger training data set containing 

more examples of each colour would help remedy this problem by giving unit 8 more time 

to ‘forget’ its early ‘orange5 learning as it learns more and more yellow input patterns. 

Moreover, ARTa unit 9 would be able to learn more orange input patterns.

Overall, the results demonstrate tha t the new architecture is able to satisfactorily perform 

MM grounding in respect of two sensory inputs.



C hapter 8

D iscussion

The subtitle of this work could be construed as misleading in as much as very little mention

has been made of robotic systems throughout the main body of the text- However, whilst

the empirical investigations themselves may not have dealt with actual robotic systems it is

still felt by the author tha t further application of this work is best suited to such systems.

Moreover, the seeds of the work that has been presented are grounded in investigations that

were undertaken with real robotic systems.
*

In Chandler et al. (1995), this author reported upon a system that had been developed 

using a commercial automatic speech recognition (ASR) system to drive a robotic measuring 

device (originally developed by Balendran (1994)). In this system a number of known and 

distinct states of motor output were mapped to recognized states provided by the ASR 

system. The limitations of this approach soon became apparent as the system was not able 

to generalize the mappings it had learnt to other very similar motor states. Each motor to 

recognition state mapping had to be explicitly defined by the designer. It was clear from 

this tha t the meanings of words must surely be more complex than such mappings.

An initial literature review highlighted what have been referred to within this text as “tradi­

tional” approaches to addressing such limitations. In AI research early attem pts to address 

meaning and semantics in natural language processing centered upon the design of explicit 

rules and representations that were said to contain, or capture meaning. Thus, considering 

the system above, rather than mapping many different states of motor output to a word
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such as ‘fast’, one instead employed an explicit rule, e.g. if revolutions per second of the 

motor is greater than a certain value then the word ‘fast’ applies. Early AI NLP sys­

tems such as SHRDLU (Winograd 1972) relied wholly on such representational formalisms. 

However, as has been discussed in much greater depth in chapter 2, whilst various forms 

of such traditional approaches continued to arise so did serious questions that called into 

disrepute any such systems in which symbolic representations are not grounded. Recent 

findings (Glenburg & Robertson 2000, Thompson 1997) continue to lend support to such 

questioning. It was on this basis that further investigations became focussed solely upon 

grounded language models.

The first grounded model studied in any depth was that described by Dorffner (1992). To 

gain a better understanding of the model discussed by Dorffner, a computational imple­

mentation of his learning equations was undertaken. This implementation, developed in 

C-{—I- code, helper to uncover the limitations of this particular model (see section 3.2.4 for 

more detail) and ultimately helped shape a set or requirements tha t one might expect of 

a more ‘ideal’ model (see 3.2.1). A less hands on approach was taken to reviewing other 

related models as in many cases not enough, if any, detail was provided to facilitate such 

implementation.

Three main elements were seen to be missing in part or in combination from the reviewed 

models: plasticity, performance and scalability. In lacking plasticity -  the ability to contin­

ually learn without corrupting previously learnt information -  many of the models reviewed 

were not able to meet the second objective of this work (as detailed in the opening chapter). 

It was further discovered that in many cases where plasticity was lacking it was due to the 

fact that many of the models employed certain kinds of Artificial Neural Networks (ANN) 

to facilitate learning. These networks were known to lack the ability to learn sequentially 

(see section 4.1.2). Performance, another of this work’s objectives, was also not a major 

concern for many of the works reviewed. As such whilst one of the more advanced systems 

DETE (see 3.2.2) offered much by way of direction the lack of consideration for performance 

meant that the realistic application of such technology was out of the question. Finally, in 

many models not much consideration was given to the scalability factor. In the context of 

the objectives of this work such scalability was considered as the ability to ground words 

with respect to multiple rather than a single sensory domain -  thus facilitating a greater
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breadth of lexicon.

The plasticity factor in the context of ANN learning initially provided the impetus to 

investigate Adaptive Resonance Theory (ART). The reason being that Grossberg notes that 

one of the motivating forces (Grossberg 1976a, Grossberg 19766) sought to address when 

developing ART was tha t of plasticity, suggested that the use of models which were guided 

by ART’s principles may provide a better framework upon which to base a model of lexical 

acquisition and grounding. To investigate this possibility attention was initially focussed 

towards a model known as ART1. Based upon detail provided in Carpenter & Grossberg 

(1987) an implementation of an ART1 model was developed. Again this implementation 

was created from the ground up using C + +  code, the design being led by object oriented 

principles. Each processing unit in the main ART processing layers (see chapter 4 and 

appendix A for further explanation) was modeled as an object. This allowed the author to 

develop an implementation that was able to add new F2 level category units to classify input 

as and when required in a dynamic fashion. Before application to any LAG related task, the 

implementation was initially tested against known samples of data (provided in Carpenter 

& Grossberg (1987)) to ensure that the ART1 dynamics had been correctly implemented.

W ith a validated ART1 implementation assured, attention was turned to how such a model 

could acquire a set of colour categories that would be required to ground colour nouns, 

e.g. ‘red’, ‘blue’. I t was on this basis that limitations of the ART1 model first surfaced. 

On the basis that colour cameras connected to a robot would be able to determine varying 

levels of RED, GREEN, and BLUE in an input signal it was initially envisaged that such 

inputs would provide a direct feed into the input layer of the ART1 model. However, the 

ART1 architecture is unable to take as input analog sources of information such as these 

but is constrained to processing discrete binary input patterns. Initially, this was not seen 

as presenting any great problem and a number of methods were devised to encode the three 

analog variables into binary patterns (see sections 5.2.2 & 5.2.3 1). Results obtained from 

tests with these binary data sets and the ART1 model were disappointing. It was found 

that the model was not able to generalise well from one colour sample - colour category 

mapping to another. In many cases it was found that the trained models believed a shade

1 Whilst in these sections the encodings are discussed in the context of other ART models they were first 

devised and employed in the early ART1 investigations discussed here.
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of colour A to be a much closer relation to a colour B rather than a similar shade of A. 

Thus colour concepts and/or categories were not being correctly formed.

These findings actually provided an important result. They suggested to the author that 

the process of arbitrarily encoding sensory representations may be at fault and may actually 

hamper the ability to learn grounded representations. This suggestion prompted further 

research which highlighted two other models built upon ART principles, Fuzzy ART and 

Gaussian ART, both of which were able to process analog inputs.

From here the investigations detailed in chapter 5 started to take shape. Implementations 

of Fuzzy and Gaussian ART were devised -  again following an object oriented methodol­

ogy -  on the basis of the algorithmic detail provided in (Carpenter et al. 1990, Williamson 

1995, Williamson 1996) and in the case of Gaussian ART also with help from the architec­

ture’s creator2. Using known data each of these implementations was validated to ensure 

accordance with original specifications.

Using the same colour data as discussed in section 5.2 these implementations were put 

to the test. However, whilst the results were encouraging in comparison to the ART1 

results they were still felt to be unsatisfactory. Upon closer inspection it was felt that the 

unsupervised learning algorithms employed in these models simply lacked enough power to 

make the task of learning grounded colour categories a simple one (evidence found later in 

Clark & Thornton (1997) offers validation and a good explanation of why this occurs). This 

reasoning led the author to discover the ARTMAP architecture -  a blueprint for systems 

that facilitate supervised learning but which still adhere to the basic fundamentals of ART, 

e.g. the plasticity-stability dilemma.

ARTMAP architectures were also immediately appealing for another reason in that it nat­

urally provided the right sort of framework that could be applied to enable simultaneous 

acquisition of both lexical and sensory inputs in addition to acquiring the mapping between 

these. In fact, it provided a good fit with the sort of system discussed in section 3.1.3 (see 

also figure 3.3). Implementations of Fuzzy and Gaussian ARTMAP devised by this author 

were put into place and it was these implementations that provided the actual basis for

2 Many thanks to Mark Williamson (personal communication) for help with implementing and validating 

the algorithms that make up Gaussian ART and ARTMAP.
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the investigations detailed in chapter 5. Given the nature of the ARTMAP architecture it 

was possible to simply extend upon the coding work that had already been undertaken to 

implement the unsupervised Fuzzy and Gaussian ART models. Again further validation of 

the models was required and undertaken.

A further benefit that soon became apparent from the use of ART based algorithms were 

their inherent performance. The system were able to learn categories at rates of orders 

of magnitude greater than some of the other LAG models reviewed. It was from these 

finding tha t the investigations detailed in chapter 6 were initiated. The implementations 

devised above were adapted to accommodate the data described in section 6.1.1 and many 

tests using these were executed on a Pentium 100MHz computing platform having 16Mb 

of main random access memory. The full empirical results have already been presented in 

chapter 6. These results provide conclusive evidence that on numerous performance mear 

sures ARTMAP architectures excelled. Such performance can be attributed to the nature 

of the processing employed in these architectures. Localist processing means that learning 

is greatly focused leading to systems that are required to perform far fewer calculations. 

ANN researchers have dismissed models that employ such processing citing many pitfalls 

associated with their use. However, in recent times localist processing is again in favor and 

a great deal has been done by Page (2000) and Grainger & Jacobs (1998) amongst others 

to dispell the notion of such pitfalls.

W hilst it was felt tha t ART based architectures had sufficiently addressed the issues of plas­

ticity and performance, the scalability issue was another matter. Based upon the guiding 

principles of ART, it was originally envisaged that one may be able to bind three unsu­

pervised ART models in an ARTMAP like fashion making use of the standard ARTMAP 

algorithms. An implementation was devised upon this basis and the multi-modal grounding 

task described in chapter 7 was used to assess the applicability of such a model. It was 

soon evident tha t something was very wrong with this approach. A long and painstaking 

analysis of how the architecture performed in relation to 3-way input resulted in the author 

uncovering the problems detailed in sections 7.2.3 through 7.3.3. Through a process of cal­

culation, trial and error this author developed a number of adaptations to the core learning 

algorithms employed in the architecture as described in section 7.4. A full implementation 

was devised and used as the basis of the investigations detailed in the latter half of chapter
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7. In terms of the scalability issue a degree of success has certainly been achieved. However, 

the author also realises that the solution provided may not scale to systems where sensory 

input is coming from four, five or more pieces of sensory apparatus. Such scope would 

require further research and assessment.



C hapter 9

C onclusions

In the final chapter of this thesis the major achievements of the work undertaken are pre­

sented and then discussed in the context of the aims presented in the opening chapter. 

These discussions extend to consider possible directions for further work.

The work described in this thesis falls into a number of domains, of which lexical semantics, 

symbol grounding and adaptive neural networks are considered the most important. In 

relation to these it is felt that the following contributions have been made:

• A novel graphical means of interpretation has been put forward that seeks to clarify 

four key levels of representation that should be considered in a symbol grounding 

context. A clear understanding of these levels within the new Triangle of Meaning 

has been vital. The empirical investigations in chapter 5 helped to clarify the levels of 

the new TOM by demonstrating the importance of any grounded models interface with 

the world, i.e. the nature of its sensory peripheries. W ithout the basis of understanding 

tha t is in essence captured by the new TOM it is felt that this work would have failed 

in meeting any of its objectives.

• The introduction and application of Adaptive Resonance models to the domains of 

lexical semantics and symbol grounding. To the best of this authors knowledge such 

application is novel and has been important in a number of ways that are clarified in 

a number of the points that follow.

• The introduction of an ART based model in chapter 6 that was able to acquire and
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ground lexical symbols in relation to visual sensory information. This particular 

model was shown to address a number of stated aims in that it demonstrated the 

ability to acquire words and their meanings in an autonomous and incremental fashion. 

Furthermore, by way of the tests of description and identification it was shown that the 

meanings the model had acquired were similar to those of humans subjects. Finally, it 

was shown by way of many empirical tests that the model put forward by this author 

was able to operate with greater speed and accuracy than comparable models whilst 

still paying close attention to the efficient use of resources.

• The original development and implementation of a number of adapted learning algo­

rithms and a novel ARTMAP-inspired architecture that fuses three rather than two 

unsupervised ART modules. This novel system has been applied to the task of lexical 

acquisition and grounding and has been shown to be an im portant development in 

the sense that it has enabled one to ground lexical symbols with respect to more than 

one single sensory input. This ability was important in the context of meeting the 

second objective of this work as set out in the first chapter. It should be noted that the 

adapted learning algorithms and architecture are generic in terms of a learning system 

and may well have application beyond the context of lexical semantics and symbol 

grounding. However, such application is beyond the scope of the work detailed here.

However, further to these achievements there are a number of issues tha t one might raise 

in relation to the work presented in this thesis from a wider language perspective.

The first point tha t one might raise in relation to the ART systems discussed in the previ­

ous chapters concerns their innate inability to acquire meanings for a large class of lexical 

symbols. As set out in the introductory chapter the domain of investigation for the work 

detailed in this thesis was constrained to the creation of a system that could acquire one 

particular class of lexical symbols, viz. an intrinsically meaningful set of English nouns. 

Although this choice was justified in the opening chapter there was a further reason for se­

lecting this particular category of lexical symbols. Nouns were chosen because the entities to 

which they typically refer (e.g., people, places, objects) can be thought of as static, i.e. their 

meanings can be largely derived (as has been shown) from time-independent regularities 

inherent within sensory information. The referents of most verbs on the other hand have a 

temporal trait. For example, DETE learnt the meaning of the word ‘bounces’ by capturing
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certain temporal relations, i.e. regularities inherent within sequences of visual input (see 

section 3.2.2). The ART CMs that have been introduced and investigated above lack any 

temporal processing functionality and therefore cannot capture such regularities. Hence, 

one may reason correctly, that ART CMs lack the computational machinery required to 

appropriately ground verbs.

Despite the above, the application of ART vis-a-vis lexical semantics is not at a ‘dead­

end.’ Indeed ART based frameworks for temporal learning have been proposed in a number 

of guises. Hagiwara (Hagiwara 1994) adopts a third F% layer of processing units in his 

Time-Delay ART (TD-ART) system in order to learn the sequence of concept activity at 

1*2• Carpenter and Grossberg (Carpenter & Grossberg 1994), the originators of ART, have 

also considered temporal learning and point to ARTSTORE — a computational system that 

integrates ART CMs with STORE (Sustained Temporal Order REcurrent) models (Bradski 

et al. 1992, Bradski et al. 1994). The latter capture and then transform time-dependant 

regularities to a representational format that can be learnt and recalled using ART CMs. 

Moreover, it has been shown by way of mathematical, computational, and simulation data 

(Grossberg & Merrill 1996) that ARTSTORE systems escape an obstacle that plagues many 

alternative temporal learning architectures, namely the inability to acquire large amounts 

of temporally ordered information rapidly and in a stable fashion, i.e. in the same way that 

ART models solve the stability-plasticity dilemma in relation to spatially defined input 

data, ARTSTORE systems do so for temporally defined data.

Thus it is suggested that such systems could be harnessed to provide a framework that 

supports the learning of verbs and their associated meanings. This is an avenue for further 

investigation.

Another issue that has been addressed in related research (see Dorffner’s work; section 3.2.4) 

but has been neglected here is that of lexical taxonomy. Simply put, evidence suggests 

that the world is not conceptualized at a single level, but rather that there is a multi­

level hierarchy consisting of subordinate level categories (e.g. poodle), basic level categories 

(e.g. dog), and superordinate level categories (e.g. animal). Here again ART is unique in 

connectionist terms in that one has direct control over the degree of generalization through 

variation of the vigilance parameter. Bartfai (Bartfai 1995) has already created such ART- 

based models called HART (Hierarchical ART) which employ multiple values of vigilance
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in order to achieve multi-level pattern clustering. Again, such models provide an avenue for 

further investigation.

Another issue worthy of note in such a discussion is that that of linguistic naivity. Many 

who practice the methods of traditional semantic theory will argue tha t models such as 

those presented herein have a very limited vocabulary and are thus lexically naive (for 

evidence of this refer to (Dorffner 1992, Chrisley 1994)). It is conceded that the breadth 

of the vocabularies used in those models discussed in chapter 3 and in the new ART-based 

models introduced in the latter chapters are limited. However, ‘naivity’ is contended, since 

these models have a much greater depth of lexical understanding for those words that they 

do use. The principle followed has been tha t one must take a step back in order to take two 

in a forward direction. Many traditional language models, whilst having a large vocabulary, 

have proved to be limited in their domain of application because what they know of the 

words they use is very constrained. It is hoped tha t by using a grounded vocabulary in the 

future new language models built upon the principles discussed in this thesis will not run 

up against the barriers that have stopped the traditional models in their tracks.

The investigations and discussions in chapter 5 noted im portant ramifications for lexical 

acquisition and grounding models vis-a-vis how their sensory peripheries measure aspects 

of the external world. In this context it is suggested that LAG models will improve as science 

uncovers more about the unconscious and cognitively impenetrable conceptual skills that 

humans take for granted. Moreover, improvements should also come, as such systems are 

able to interact with the world (e.g. via artificial limbs) with greater ease and dexterity, 

e.g. see Saffiotti & LeBlanc (2000). It has been suggested that a lack of such advanced 

interaction is something tha t has held back the development of grounded language models 

so far (MacDorman 1999, Ziemke 1999).

To conclude it is felt that the work tha t has been described herein has been successful in 

meeting the aim and objectives originally conceived. However, in a wider context and as 

the title of this thesis suggests in its use of the word ‘towards’, there is still much to be done 

to create grounded language systems are truly useful. The previous couple of paragraphs 

suggest possible paths forward and it is hoped that others will travel this path  and that 

the work and discussions provided within thesis have provided at least some inspiration 

to do so. Moreover, it is hoped that language models based upon some of the principles
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introduced in this thesis will one day provide artificial agents (e.g. robotic systems) with an 

enhanced and powerful means by which they can communicate with the human species.
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A p p en d ix  A

ART M odel D ynam ics

The work described in the main body of this thesis has employed and extended upon 

two particular ART based CMs: Fuzzy ARTMAP, and Gaussian ARTMAP. As a point 

of reference this appendix details an algorithmic description of these models, and of the 

* relevant unsupervised ART models upon which they rely, in a step-by-step fashion.

A .l Fuzzy ART  

A . 1.1 C o m p o n en t S p ec ifica tio n

The input a to a Fuzzy ART architecture is an M-dimensional vector ({ a i,.. -, a ^ } ), where 

each element has a value in the interval [0,1]. It follows that the Fq layer of the ART system 

must have M  units. In an ART system that employs complement coding (see below) as a 

means of input normalization F\ must contain twice as many units as Fo, i.e. 2M . Finally, 

the F2 layer contains N  units. Both M, and N  may be arbitrariliy large.

Each F‘2  level unit j  (where j  =  1 , . . . , I V )  has an associated weight vector Wj (a single 

vector suffices because in a fuzzy ART model the bottom-up LTM weights, and the top- 

down LTM weights are functionally equivalent, having the same values at all times) that 

has 2M  weights, each connecting the imit j  to a different F\ unit i (where i =  1 , . . . ,  2M).
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All weights are initialized with a unitary value:

W j i  =  . . .  =  W j 2 M  = 1.0 (A.l)

and each category is said to be uncommitted.

A . 1.2  M o d e l P a ra m e ters

The dynamics of Fuzzy ART CMs are controlled by way of three parameters:

1. A Choice Parameter, a: The value of a  must be > 1.0. If a  is small, categories 

with small weight vectors \wj\, and thus occupying large regions of feature space, are 

favoured; if a  is large, the opposite.

2. A Learning Rate Parameter, (3: The value of (3 is set in the interval [0,1]. Employing 

the maximum value will result in fast one-step learning. W ith lower values, the 

adaptation of weights is undertaken with greater moderation. This can provide greater 

resiliance to noise.

3. A Vigilance Parameter, p: The value of p is set in the interval [0,1]. Low vigilance 

effects broad generalization, i.e. categories that occupy large regions of feature space 

encompassing many possible input patterns. Conversly, high vigilance effects less 

generalization creating smaller categorical regions.

A . 1.3 P r o c e ss in g  fu n ctio n s  

Input Preprocessing

Complement coding is a preprocessing step that normalizes a raw input vector (see (Car­

penter et al. 1990) for a detailed discussion). The preprocessed input vector I  that is output 

from Fq is twice the size of the raw input vector a, where

I  — (o, a c)

and a c is the complement of a  (i.e. {1 — a \ , . . . ,  1 — a^ } ). Thus if the M-dimensional vector

a =  {0,1,1}
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then ac — {(1 -  0), (1 -  1), (1 -  1)} and thus the 2M-dimensional vector I  is as follows:

I = {  0, 1, 1, 1, 0, 0}

B ottom -up  A ctivation  and Fz Choice

Each i *2 category unit j  aggregates the signals it receives by way of the following fan-in 

(activation) function

=  M  (A.2)
a + \ w j \

where the fuzzy AND operator A chooses the lower of two values, e.g.

(0.4 A 0.7) =  0.4

and where |.| denotes the magnitude of a vector, which is measured by summing the values 

of a vectors elements, e.g.
2 M

K l  =
i - 0

Competition is engaged at the F? layer by way of a choice function that selects the F% unit 

J  that has maximal T activity

T j  =  rnax{Tj  : j  — 1 , . . . ,  N } (A.3)

Top-down H ypothesis Testing

By choosing unit J  an ART system makes a hypothesis about which category I  belongs to. 

The category representation connected with this category is that stored in the weights which 

connect unit J  to all F\ units, i.e. w j. The matching function (|J  A tu j |) ( |/ |) -1 measures 

how close this representation is to the current input vector. If this measurement is small 

enough in relation the systems vigilance measure; that is, if

^  >  P (A.4)
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then I  and w j  are deemed to be close enough (a match) and learning is triggered (see 

below), however, if

no longer compete to code I .  A Search process is initiated whereby a new J  is chosen, by 

equation A.3. The search continues until a J  is chosen where equation A.4 is satisfied.

Learning

Once search ends, the weight w j is updated according to the equation

The Fuzzy ART processing cycle described above is depicted graphically in figure A .l

A .2 Gaussian ART

A .2.1  C o m p o n en t S p ec ifica tio n

The physical specification of a Gaussian ART CM differs from its fuzzy counterpart in two 

ways. Firstly, in a Gaussian CM there is no need to employ complement coding and as 

such the F\ layer contains the same number of units M  as the Fq layer. Secondly, each F2  

unit is linked to the units in the F\ layer by way of two weight vectors pj (which controls 

the mean position of the Gaussian category, i.e. boundary in feature space) and (which 

controls the variance, i.e. width of the category). In addition each Gaussian Fz unit has 

an associated parameter ny, which measures the number of input patterns a particular unit 

has coded, and thus is initialized with a value of zero. The other parameters are initialized 

as follows

(A.5)

then J  is a bad hypothesis. In this case T j  is set to -1 (reset) in order tha t unit J  can

J n e w )  =  p {1  A J o  M)j +  ( j  _ (A.6)

P j i  —  . . .  —  p j M  — 1.0

CTji —  . . .  —  CTjM  —  '7

(A.7)

(A.8)
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BEGIN

For each F 2 unit that is not reset, 
compute its activation

T,=

Find wi nning unit J, where

T j  =  m a x  (T j :  j  =  N  )

Reset unit J

Update LTM weights for 
winning unit J, where i =

Another input ?

END

Figure A .l: Figure shows the algorithmic processing cycle employed in the implementation 
of an unsupervised Fuzzy ART CM.
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A .2 .2  M o d e l P a ra m eters

The dynamics of Gaussian ART CMs are controlled by way of two parameters:

1. A Vigilance Parameter, p: (see section A.1.2 above).

2. A Variance Initialization Parameter, 7 : This parameter is used to initialize the vari­

ance vector <jj for each Gaussian category unit (see eq. A.8). Large values facilitate 

slower, more graceful noise tolerant learning, and vice versa.

A .2.3  P r o c e ss in g  fu n ctio n s  

Input Preprocessing

There is no requirement for input preprocessing in Gaussian CMs, however, the architecture 

performs best when the values of each element of the input vectors it processes have similar 

bounds.

B ottom -up  A ctivation  and F2 Choice

Each F2 category unit j  aggregates the signals it receives by way of the following fan-in 

(activation) function

As with a Fuzzy system competition is engaged at the F2 layer by way of a choice function 

that selects the F2 unit J  that has maximal T activity

(A.9)

where

T j  ~  m ax {T j  : j  — 1, . . . ,  N } (A.U)
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Top-down H ypothesis Testing

By choosing unit J  an ART system makes a hypothesis about which category I  belongs 

to. In a Gaussian system the matching function Gj (see eq. A. 10) measures how close the 

current input vector is to category J . If this measurement is small enough in relation the 

systems vigilance measure; that is, if

Gj (A.12)

then I  is deemed to be close enough (a match) and learning is triggered (see below), however, 

if

Gj < p (A.13)

then J  is a bad hypothesis. In this case T j  is set to -1 (reset) in order that unit J  can

no longer compete to code I . A Search process is initiated whereby a new J  is chosen, by

equation A .ll. The search continues until a J  is chosen where equation A.12 is satisfied.

Learning

Once search ends, the count parameter n j ,  and then sequentially the weight vectors p j  and 

crj are updated thus

n j  ~  n j  +  1 (A.14)

p j  — (1  —)pj  + —  (A.15)n j  n j

orj = \ (1  )crj ~\------------— (A.16)
V n j  n j

A .3 Fuzzy and Gaussian ARTM AP  

A .3 .1  C o m p o n en t S p ec ifica tio n

An ARTMAP architecture incorporates two functionally equivalent unsupervised ART CMs 

(ART modules), ARTa, and ART&, that are connected by a map field F ab. A fuzzy system
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employs fuzzy ART modules, and likewise a Gaussian system uses Gaussian modules. The 

input a to ARTa is a vector of size M a ({0 1 , . . . The input b to ART*, is a vector

of size M b ({ a i, . • •, ciM1’})' Each element of a and b has a value in the interval [0,1].

The map field contains the same number of units N b as the ART& F2  field, and each F ab 

unit k is linked by a single non-adaptive connection to a single F b level unit k (where 

k — 1 , . . . ,  N b). Its connection to the ART0 module is facilitated by way of more adaptive 

LTM weights: each ARTU F2  level unit j  has a weight vector Wj tha t connects it to all the 

units in the map field.

A .3 .2  M o d e l P a ra m eters

Each ART module is controlled by way of its own set of intrinsic parameters (see sections 

A. 1.2 and A.2.2 above), however, unlike in a stand-alone ART CM the ARTa vigilance 

parameter pa becomes an adaptive internally controlled component. At the beginning of 

each input presentation its value is set in accordance with a baseline vigilance parameter p^, 

which itself is set in the interval [0, 1] -  employing the minimum value results in maximal 

ART0 generalization. The map field also has its own vigilance parameter pai which is also 

set in the interval [0,1].

A further control parameter that is unique to fuzzy ARTMAP CMs is the match tracking 

parameter e which is set in the range

- 0.01 < e < + 0.01

where a small negative value improves generalization, but at a slight cost to accuracy, and 

vice versa for a small positive value, (see (Carpenter et al. 1996) for further detail).

A .3 .3  P r o c e ss in g  fu n ctio n s  

U nsupervised  Processing

The unsupervised modules ARTa and ART;, independently process the input vectors I a and 

I b respectively as per above with one exception, viz. a resonant state does not immediately 

initiate learning. The initiation of learning is ceded to map field control mechanisms.



- ■ '  m
-t
t-v.

' i

Appendix A  - A R T  Dynamics. 204

M ap Field  A ctivation

The map field is activated whenever one of, or both of, the ART modules that in connects 

are in a state of resonance. The vector of activity z ( {z i , . . . ,  zNi})  accross the map field is 

dependant upon the input it receives as follows:

•  Case 1: If both ART modules are in the resonant state with the F$ unit J, and |  

unit K  concurrently active, then

z  = d ‘ /\v fj

where yb is the output vector.

•  Case 2: If only ARTa is in the resonant state with the F$ unit J  solely active, then

Z  —  W j  l

■7

•  Case 3: If only ART*, is in the resonant state with the F% unit K  solely active, then |

z  = yb

R esonance or M ism atch

In the case where
Nb

\z \ =  5 3  ^  ~  Pob (A*17)
k—l

the full ARTMAP system is said to be in a resonant state. This state facilitates both 

prediction and learning (see below). Alternatively, if

Nb
\z \ =  5 3  ** < Pob (A.18)

k = 1

then there has been a predictive mismatch between the units J  and K . The match tracking 

process (see below) is employed to remedy this problem.
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Prediction  and Learning

The coarse of prediction and learning is dependant not only on the satisfaction of equation 

A.17, but also upon the nature of the input that the map field is receiving:

•  Case 1: If ARTtt and ART*, are both active, then map field learning ensues as follows

w * ( n e w )  =  A  w * ( o l d +  ^  _  p } w < o l d )  ^  ^

In addition the weight values in each module are updated according to the appropriate 

equations (eq. A.6, or eqs. A.14-A.16). Finally, if match tracking has caused an 

increase in ARTa vigilance its original value is reinstated

•  Case 2: If only ARTa is active, and prior map field learning has taken place then an 

F$ category J  may predict an F% category K , where K  is the index of the F$ unit 

that recieves maximum top-down input (i.e. F ab activity (z))

Tk  =  max{Tk : k  =  1 , . . . ,  N b} (A.20)

In addition learning is initiated in the ARTa module (eq. A.6, or eqs. A.14-A.16).

•  Case 3: If only ART*, is active, then case 2 applies but with the roles of each modules 

reversed.

M atch Tracking and A RTa Search

A predictive mismatch occurs in an ARTMAP system when an F% unit J  has already been 

active in conjuction with (and thus associated to by way of map field learning) an F% unit 

fc, where k does not have the same index as the F b unit that is currently active (i.e. k ^  K ). 

Given that the ART0 input I a should predict the ART& category K , the input cannot belong 

to ARTa category J. Hence, the ARTMAP system resets unit J  and initiates search for 

a more appropriate F^  category unit. This process is actioned by raising ART0 vigilance 

just above the level of match between the current ART0 input vector and the chosen F% 

category representation as follows
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In a fuzzy-based system:

In a Gaussian-based system:

- -  B E S T ( 4 §  r a ’)
In either case, the ARTa choice function (see equations A.4 and A.12) is no longer satisfied, 

which results in the ART0 system inhibiting unit J  and initiating a search process for a 

better category unit.

An example processing cycle for a fuzzy ARTMAP system is illustrated graphically in figure 

A.2.
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BEGIN

(Re)set a r t . 
vigilance

For each F 2 unit that is not reset, 
compute its activation:

T fc = U b - w k l / ( a  + l w |cl )

For each F unit that is not reset, 
compute its activation:

T  = I V  '  w I /  ( a  + I w I )

Find wi nning unit J, where 
T j = max (T  s : j  =  3 }

Find wi nning unit K , where
T R = max ( T |t: k =  b }

Reset unit J Reset unit K

NO NO
(11“ " Wj l ) ( l l 3 1)-1 >  p ( I I b " w K I ) ( I l b I )-' > p(

YES YES

Compute mapfield 
activation:

Reset unit J and raise 
vigilance:

NOpB = ( ( l l “ " w Jl ) ( l l “ l ) - ' ) +  e

z l > P ,

YES

YES Update all LTM weights : (1) ARTa , (2) ARTb, & 

(3) map field :-
Another input 
pair (1“ , I b) ?

(2) W K1= (  1-  p ) w K1+ P ( I b, “ w K|) i =  1,...,2M
(3) wJfc = ( t - p ) w Jk + P ( ybk" w Jk) k =NO

END

Figure A .2: Shows the learning process in a fuzzy ARTMAP model.
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C hapter Six — Further D ata

This appendix contains further data that supports the information presented in chapter 6.

B .l  Full GA Sales Results

The following section contains the full results of the investigations described in section 6.1.4. 

In the main body of this thesis these results are summised in table 6.7.

\
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Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

GA 1 210 (94.59%) 222 (100.0%) 222 (100.0%) 210 (94.59%)

GA 2 207 (93.24%) 222 (100.0%) 222 (100.0%) 207 (93.24%)

GA 3 209 (94.14%) 222 (100.0%) 222 (100.0%) 209 (94.14%)

GA 4 208 (93.69%) 222 (100.0%) 222 (100.0%) 208 (93.69%)

GA 5 213 (95.95%) 222 (100.0%) 222 (100.0%) 213 (95.95%)

Average 209.4 (94.32%) 222 (100.0%) 222 (100.0%) 209.4 (94.32%)

Table B .l: 12% Noisy Test Data.

Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

GA 1 202 (90.99%) 222 (100.0%) 222 (100.0%) 202 (90.99%)

GA 2 198 (89.19%) 222 (100.0%) 222 (100.0%) 198 (89.19%)

GA 3 210 (94.59%) 222 (100.0%) 222 (100.0%) 210 (94.59%)

GA 4 207 (93.24%) 222 (100.0%) 222 (100.0%) 207 (93.24%)

GA 5 206 (92.79%) 222 (100.0%) 222 (100.0%) 206 (92.79%)

Average 204.6 (92.16%) 222 (100.0%) 222 (100.0%) 204.6 (92.16%)

Table B.2: 14% Noisy Test Data.

Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

GA 1 210 (94.59%) 222 (100.0%) 222 (100.0%) 210 (94.59%)

GA 2 213 (95.95%) 221 (99.55%) 221 (99.55%) 213 (95.95%)

GA 3 200 (90.09%) 222 (100.0%) 222 (100.0%) 200 (90.09%)

GA 4 199 (89.64%) 222 (100.0%) 222 (100.0%) 199 (89.64%)

GA 5 206 (92.79%) 222 (100.0%) 222 (100.0%) 206 (92.79%)

Average ’ 205.6 (92.61%) 221.8 (99.91%) 221.8 (99.91%) 205.6 (92.61%)

Table B.3: 16% Noisy Test Data.
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Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

GA 1 190 (85.59%) 222 (100.0%) 222 (100.0%) 190 (85.59%)

GA 2 191 (86.04%) 221 (99.55%) 221 (99.55%) 191 (86.04%)

GA 3 193 (86.94%) 222 (100.0%) 222 (100.0%) 193 (86.94%)

GA 4 191 (86.04%) 222 (100.0%) 222 (100.0%) 191 (86.04%)

GA 5 182 (81.98%) 221 (99.55%) 221 (99.55%) 182 (81.98%)

Average 189.4 (85.32%) 221.6 (99.82%) 221.6 (99.82%) 189.4 (85.32%)

Table B.4: 18% Noisy Test Data.

Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

GA 1 187 (84.23%) 222 (100.0%) 222 (100.0%) 187 (84.23%)

GA 2 179 (80.63%) 222 (100.0%) 222 (100.0%) 179 (80.63%)

GA 3 188 (84.68%) 221 (99.55%) 221 (99.55%) 188 (84.68%)

GA 4 190 (85.59%) 220 (99.10%) 220 (99.10%) 190 (85.59%)

GA 5 188 (84.68%) 221 (99.55%) 221 (99.55%) 188 (84.68%)

Average 186.4 (83.96%) 221.2 (99.64%) 221.2 (99.64%) 186.4 (83.96%)

Table B.5: 20% Noisy Test Data.

Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

GA 1 180 (81.08%) 221 (99.55%) 221 (99.55%) 180 (81.08%)

GA 2 181 (81.53%) 221 (99.55%) 221 (99.55%) 181 (81.53%)

GA 3 180 (81.08%) 222 (100.00%) 222 (100.00%) 180 (81.08%)

GA 4 173 (77.93%) 220 (99.10%) 220 (99.10%) 173 (77.93%)

GA 5 183 (82.43%) 221 (99.55%) 221 (99.55%) 183 (82.43%)

Average 179.4 (80.81%) 221.0 (99.55%) 221.0 (99.55%) 179.4 (80.81%)

Table B.6: 22% Noisy Test Data.
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»
Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

GA 1 169 (76.13%) 217 (97.75%) 217 (97.75%) 169 (76.13%)

GA 2 179 (80.63%) 220 (99.10%) 220 (99.10%) 179 (80.63%)

GA 3 176 (79.28%) 222 (100.00%) 222 (100.00%) 176 (79.28%)

GA 4 175 (78.83%) 221 (99.55%) 221 (99.55%) 175 (78.83%)

GA 5 169 (76.13%) 220 (99.10%) 220 (99.10%) 169 (76.13%)

Average 173.6 (78.20%) 220.0 (99.10%) 220.0 (99.10%) 173.6 (78.20%)

Table B.7: 24% Noisy Test Data.

Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

GA 1 164 (73.87%) 221 (99.55%) 221 (99.55%) 164 (73.87%)

GA 2 154 (69.37%) 221 (99.55%) 221 (99.55%) 154 (69.37%)

GA 3 152 (68.47%) 220 (99.10%) 220 (99.10%) 152 (68.47%)

GA 4 162 (72.97%) • 218 (98.20%) 218 (98.20%) 162 (72.97%)

GA 5 146 (65.77%) 220 (99.10%) 220 (99.10%) 146 (65.77%)

Average 155.6 (70.10%) 220.0 (99.10%) 220.0 (99.10%) 155.6 (70.10%)

Table B.8: 26% Noisy Test Data.

Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

GA 1 145 (65.32%) 217 (97.75%) 217 (97.75%) 145 (65.32%)

GA 2 140 (63.06%) 217 (97.75%) 217 (97.75%) 140 (63.06%)

GA 3 140 (63.06%) 221 (99.55%) 221 (99.55%) 140 (63.06%)

GA 4 138 (62.16%) 217 (97.75%) 217 (97.75%) 138 (62.16%)

GA 5 144 (64.86%) 220 (99.10%) 220 (99.10%) 144 (64.86%)

Average 141.2 (63.60%) 218.4 (98.38%) 218.4 (98.38%) 141.2 (63.60%)

Table B.9: 28% Noisy Test Data.
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Recall of VISUAL Knowledge Recall of LEXICAL Knowledge

Lexical Input 
(Identification)

Visual Input Visual Input 
(Description)

Lexical Input

GA 1 123 (55.41%) 213 (95.95%) 213 (95.95%) 123 (55.41%)

GA 2 131 (59.01%) 213 (95.95%) 213 (95.95%) 131 (59.01%)

GA 3 125 (56.31%) 214 (96.40%) 214 (96.40%) 125 (56.31%)

GA 4 142 (63.96%) 214 (96.40%) 214 (96.40%) 142 (63.96%)

GA 5 121 (54.50%) 216 (97.30%) 216 (97.30%) 121 (54.50%)

Average 128.4 (57.84%) 214.0 (96.40%) 214.0 (96.40%) 128.4 (57.84%)

Table B.10: 30% Noisy Test Data.
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Training Times Operating Times

total per pattern total per pattern

1 2.58 0.070 4.07 0.018

2 2.75 0.074 4.12 0.019

3 2.64 0.071 3.95 0.018

4 2.53 0.068 3.95 0.018

5 2.52 0.068 4.12 0.019

6 2.69 0.073 4.12 0.019

7 2.74 0.074 4.18 0.019

8 2.69 0.073 4.12 0.019

9 2.64 0.071 4.06 0.018

10 2.58 0.070 4.17 0.019

11 2.69 0.073 4.23 0.019

12 2.64 0.071 4.12 0.019

13 2.53 0.068 4.12 0.019

14 2.58 0.070 4.39 0.020

15 2.69 0.073 4.12 0.019

16 2.59 0.070 4.17 0.019

17 2.52 0.068 4.12 0.019

18 2.58 0.070 4.18 0.019

19 2.58 0.070 4.34 0.020

20 2.58 0.070 4.01 0.018

21 2.58 0.070 4.12 0.019

22 2.53 0.068 4.12 0.019

23 2.74 0.074 4.34 0.020

24 2.64 0.071 4.17 0.019

25 2.63 0.071 4.18 0.019

Table B .ll: Times (in seconds) taken for AETMAP models (1-25) to learn and recall 
training patterns.



Appendix B - Chapter 6 Extended Results. 214

Training Times Operating Times

total per pattern total per pattern

26 2.63 0.071 4.12 0.019

27 2.86 0.077 4.17 0.019

28 2.52 0.068 4.18 0.019

29 2.53 0.068 4.12 0.019

30 2.69 0.073 4.23 0.019

31 2.64 0.071 4.17 0.019

32 2.53 0.068 4.28 0.019

33 2.69 0.073 4.23 0.019

34 2.69 0.073 4.12 0.019

35 2.53 0.068 4.17 0.019

36 2.69 0.073 4.23 0.019

37 2.59 0.070 4.22 0.019

38 2.58 0.070 4.12 0.019

39 2.64 0.071 4.12 0.019

40 2.59 0.070 4.28 0.019

41 2.63 0.071 4.40 0.020

42 2.63 0.071 4.34 0.020

43 2.58 0.070 4.23 0.019

44 2.58 0.070 4.18 0.019

45 2.58 0.070 4.17 0.019

46 2.53 0.068 4.34 0.020

47 2.58 0.070 4.67 0.021

48 2.64 0.071 4.45 0.020

49 2.58 0.070 4.45 0.020

50 2.63 0.071 4.84 0.022

Table B.12: Times (in seconds) taken for ARTMAP models (26-50) to learn and recall 
training patterns.
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