
[F O R REFERENCE ONLY

FADI: A Fault-Tolerant Environment for Distributed

Processing Systenr

Taha Mohammed Osman

A Thesis submitted in partial fulfilment of the

requirements of the Nottingham Trent Univer

sity for the degree of Doctor of Philosophy.

March 1998

(o l 1 1 3lot
40 0675771 1

ProQuest Number: 10183026

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10183026

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Acknowledgments

I am greatly indebted to my project supervisor, Prof. Andrzej Bargiela, for his valuable

help and advice. Without his continuous support and able expertise this project could not

have been completed.

I am grateful for my research colleagues for the constructive discussions and consultations

about this work. I specially thank Mr. Evtim Peytchev for his useful suggestions concern

ing the implementation of the software model.

I would like to thank Mr. Chris Noble, our system engineer, for putting up with numerous

requests regarding the setup of the distributed processing environment.

I would also like to thank my dearest friend, Dr. Sabbah Razzaq for his moral support. He

has been a true comrade.

Finally, I would like to dedicate this work to my parents, Fatima and Osman, for their sin

cere belief in me and for their encouragement at all stages of life.

ABSTRACT

This thesis describes the research done on the development of a FAult-tolerant Distributed
Processing Environment (FADI). The main motivation for designing FADI is to create an
efficient low-cost fault-tolerant environment, enabling reliable execution of concurrent
user-application processes in presence of hardware faults that affect one or more of the
distributed system nodes.

There are two aspects to any fault-tolerant system: error detection and fault recovery. In
FADI, a user-transparent mechanism was developed for the detection of both permanent
(power failures, network malfunction, etc.) and transient (temporary memory faults, radi
ation affects, etc.) processor node failures. The Detection mechanism in FADI also allows
the incorporation of additional user-programmed error checks and, by dynamically meas
uring the network traffic, it identifies the error latency thus facilitating damage confine
ment and assessment.

The recovery of user-processes affected by faults is based on the principles of checkpoint
ing and roll-back. The application processes record their execution states at regular time
intervals (take a checkpoint), and upon the occurrence of a hardware failure, the failed
process is restarted from the last recorded execution state (roll-back of the process).

In contrast to the redundancy-based fault-tolerant systems, the adopted approach does not
require any extra hardware, nor does it demand the replication of application processes.
Instead, it optimises the use of an existing distributed system to save the checkpoints, and
to migrate the application processes from the faulty hardware to operating nodes. This
reduces both the cost of building the recovery software and its overhead on the running
time of the application-processes. The novel checkpointing mechanism developed in the
course of this research is user-transparent and is computationally efficient since it does not
require freezing the application-process while its checkpoint is being taken.

The checkpointing mechanism has been initially evaluated in the context of stand-alone
applications and the experimental results have shown that it is very robust. Subsequent
research extended the developed checkpointing protocol, so that it covers the possible
inter-process communications taking place between the distributed application processes.
This ensued the development of a novel algorithm that supports checkpointing and roll
back of message passing (interactive) processes in FADI. The algorithm introduces a
novel technique to tolerate faults that might occur whilst inter-process messages are in
transit. It also tolerates the duplication of inter-process messages and has a low failure-
free overhead due to its policy of coordinated checkpointing and selective message log
ging-

The performance studies indicate that FADI exhibits low overhead on the execution time
of the applications and it has confirmed its potential in the context of computation-inten
sive scientific programs and distributed telemetry and telecontrol industrial systems.

The work described in this Report is the Author's own, unless otherwise

stated, and it is, as fa r as he is aware, original

Table of Contents

chapter l . Introduction ...1

1.1. The Need for Distributed Computing Systems ...1
1.2. Advantages of Distributed System s.. 2
1.3. Computer Organization for Distributed System s...3
1.4. Fault-Tolerance in Distributed Processing System s...5

1.4.1. Overview.. 5
1.4.2. Fault-Tolerance Principles5
1.4.3. Recovery in Distributed S ystem s..6

chapter 2. Background to Fault-Tolerant Environment Research8

2.1. General Background..8
2.2. Targeted Class of Applications...11
2.3. Requirements specification..13

2.3.1. General Requirements ... 13
2.3.2. Requirements to the Implementation of the Software M odel....................14

2.4. FADI Development. A High Level View of the System Context15
2.5. Inter-Process Communications... 17

2.5.1. FADI Requirements for the Communication System 17
2.5.2. The Message Passing Interface...18
2.5.3. PVM: The Parallel Virtual M achine.. 19

2.6. Conclusions 22

chapter 3. The Error Detection M echanism (EDM) 23
3.1. Faults in Computer System s... 23
3.2. Error Detection Techniques ... 24

3.2.1. Transparent Error D etection.. 24
3.2.2. User-Assisted D etection ...27

3.3. Application, Environment and Failure Model ... 28
3.4. Design of the E D M .. 28

3.4.1. Detecting Host Failures ...29
3.4.2. Detecting Application-Task Failures ..34

3.5. Implementation Details ..35
3.5.1. Terms and Definitions... 35
3.5.2. Functional D escription... 37

3.6. Testing The EDM System ... 40
3.7. Conclusions .. 41

chapter 4. Backup an d Recovery of User-Application Processes43

4.1. Saving the State of the Application Process: An Introduction............................43
4.1.1. The Checkpointing Process ...43
4.1.2. Checkpoint Interval ... 44

4.2. Review of Checkpointing Technologies.. 45
4.2.1. Checkpointing Built into the Operating System ...45
4.2.2. Checkpointing Built on the Top of the Operating S y s te m 47

4.3. Bytestream Checkpointing: The Mechanism Functionality.................................51
4.3.1. Limitations of Condor’s Bytestream Checkpointing 54

4.4. Checkpointing and Rollback in FADI .. 54
4.4.1. The Interface to the Checkpointing M echanism...55
4.4.2. Saving the User-Files S ta te:56
4.4.3. Looking Ahead: Checkpointing and Message Passing.............................. 58
4.4.4. Reducing the Checkpointing Overhead ..59

4.5. A Complete Checkpointing and Rollback C y c le ..59
4.6. Integration of Checkpointing/Rollback Recovery into FADI62
4.7. The Checkpointing Mechanism Performance ..64

4.7.1. Overview...64
4.7.2. Experimental Results ... 66

4.8. Constraints of FADI Checkpointing Protocol ..70
4.9. Conclusions ... 70

chapter 5. Reliable Distributed Computing for M essage Passing Systems 72
5.1. Introduction ...72

5.1.1. Live-lock Problem ..72
5.1.2. The Domino E ffe c t..73
5.1.3. The Checkpointing and Rollback Overhead... 74

5.2. Conventional Checkpointing and Rollback M ethods...76
5.2.1. Semi-Automatic Techniques...76
5.2.2. Message Logging Techniques...77
5.2.3. Coordinated (Consistent) Checkpointing Techniques 77
5.2.4. Hybrid Techniques ..78

5.3. A Novel Reliable Algorithm for Checkpointing & Rollback of Distributed
Applications ... 80
5.3.1. Design Considerations and Assum ptions..80
5.3.2. The Algorithm’s Recovery Strategy: Coordinated Checkpointing with

Selective Message logging ... 81
5.3.3. Data Structure of the A lgorithm ...84
5.3.4. Functional D escription... 86
5.3.5. A Distributed Checkpointing Scenario.. 89
5.3.6. Proof of Correctness..90

5.4. Algorithm Implementation..92
5.4.1. Introduction...92
5.4.2. Communication between Application Processes93
5.4.3. Integrating the Reliable Distributed Communication Protocol into FADI 95

5.4.4. Limitations Incurred by the Algorithm Implementation 98
5.5. Conclusions .. 99

chapter 6. Evaluation of The Fault-Tolerant System100

6.1. Benchmarking FADI Using a Synthetic Application...100
6.1.1. Hardware Setup ..100
6.1.2. Application Program s... 101
6.1.3. Evaluation...102
6.1.4. Conclusions.. 106

6.2. FADI Evaluation By Applying a Real-Life Distributed Processing System ... 107
6.2.1. Background to the Industrial Application... 107
6.2.2. Functional Description of the Monitoring and Control Application . . . 108
6.2.3. Inter-process Communication between the Application M odu les I l l
6.2.4. The Test Environment... 112
6.2.5. Experimental Results ... 112
6.2.6. Conclusions.. 116

chapter 7. FADI’s Application Programming Interface (A PI)......................117

7.1. Programmer’s Guide to Using FADI .. 117
7.1.1. Pre-processing on the Application c o d e ... 117
7.1.2. Instructions to Building the Application Programs 118

7.2. The Tel and the Tk GUI Development Toolkit ... 125
7.3. The Integrated Input and Monitoring Environm ent...128

chapter 8. Conclusions an d Future W ork 132

8.1. Conclusions ... 132
8.2. Areas of Future R esearch ... 134

References ... 138

appendix a . Data-Flow Design , ...153

APPENDIX B. Data Dictionary 1 5 9

appendix c . Process Specification ...165

appendix D. Data-Structured D esig n .. 176

List of Figures

FIGURE 2-1 System C ontex t.. 13

FIGURE 2-2 FADI: Schematic Diagram ... 15

FIGURE 2-3 The Communication Interface...18

FIGURE 2-4 PVM Computation M odel... 21

FIGURE 2-5 PVM Architectural O verview .. 21

FIGURE 3-1 The Error Detection M echanism ; 29

FIGURE 3-2 The Host Monitoring Task ...30

FIGURE 3-3 Plot Of Network Round Trip Time (RTT)..31

FIGURE 3-4 User-Task M onitoring... 35

FIGURE 3-5 Central Host Monitoring T ask ...38

FIGURE 3-6 Host Watchdog T a s k ... 38

FIGURE 3-7 Monitoring User-Tasks ... 39

FIGURE 4-1 Creating a New Checkpoint By Kernel Core Dumping48

FIGURE 4-2 Address Space of a UNIX Process ..51

FIGURE 4-3 Example of Incorrect Rollback of Files Opened for A p p en d 56

FIGURE 4-4 Example of Incorrect Rollback of Files Opened for U pdate................... 56

FIGURE 4-5 FADI Algorithm for Saving and Restoring the State of User-Files . . . 57

FIGURE 4-6 Checkpointing & Rollback in F A D I..61

FIGURE 4-7 FADI General Structural D esig n .. 63

FIGURE 4-8 Error Detection Latency ... 65

FIGURE 4-9 Application run-time (matrix m ultiplication)... 68

FIGURE 4-10 Application run-time (simulated annealing)... 68

FIGURE 4-11 Checkpointing Overhead of the Matrix Multiplication Program 69

FIGURE 4-12 Checkpointing Overhead of the Simulated Annealing P rogram 69

FIGURE 5-1 Live-Lock .. 73

FIGURE 5-2 Rolling-Back Interactive Processes..73

FIGURE 5-3 Recovery-Line Consistency (a) ...82

FIGURE 5-4 Recovery-Line Consistency (b) ...83

FIGURE 5-5 A Checkpointing Scenario ...90

FIGURE 5-6 Interfacing Application Programs with FADI L ib raries93

FIGURE 5-7 Reliable Distributed Computing Protocol...96

FIGURE 6-1 Interaction between Fault-Management Procedures and the Application 102

FIGURE 6-2 Failure-Free Overhead as a Function of Message Exchange Frequency 104

FIGURE 6-3 Failure-Free Overhead as Function of the Checkpoint Interval (a) 105

FIGURE 6-4 Failure-Free Overhead as Function of the Checkpoint Interval (b) . . . 105

FIGURE 6-5 Water Network On-Line Monitoring and Control Schem e................... 109

FIGURE 6-6 FADI Running the Water Systems Monitoring and Control Application 113

FIGURE 6-7 The Water Systems Monitoring and Control Application..................... 114

FIGURE 6-8 Overhead of the Water-Systems Monitoring and Control Application . 115

FIGURE 7-1 Building FADI Applications................„.. 118

FIGURE 7-2 Pre-Processing “C” Application Programs in F A D I..............................120

FIGURE 7-3 Sample FADI “C” Make File ..121

FIGURE 7-4 Pre-processing FORTRAN Application Programs in FADI 123

FIGURE 7-5 Sample FADI “FORTRAN” Make F ile ... 124

FIGURE 7-6 Structure of a Tel Application.. 126

FIGURE 7-7 Entering The Distributed Application Specifications............................129

FIGURE 7-8 Distributed System Configuration.. 130

FIGURE 7-9 A Snap-Shot of FADI in Operation... 131

FIGURE 8-1 Open Reliable Distributed Computing ... 137

List of Tables

TABLE 3-1 Accuracy of Round-Trip Time Estimation ... 33

TABLE 3-2 Num. of Incorrect Diagnoses of Host F ailu re ...33

TABLE 3-3 Detecting Transient Hardware Faults ... 41

TABLE 4-1 Data D ictionary..64

TABLE 4-2 General Checkpointing R esults.. 66

TABLE 5-1 Data D ictionary..97

CHAPTER 1 Introduction

This chapter introduces briefly the history of developing distributed computing systems,

their applications, and why they are considered a powerful computing paradigm. Different

technologies to achieve fault-tolerance in Distributed Computing systems are discussed

and evaluated.

1.1 The Need for Distributed Computing Systems

There are many and varied definitions of distributed systems. In this research a distributed

system is understood to be a system in which there are several autonomous but interacting

processors and/or data stores at different geographic locations.

Two main stimuli have been behind the sharp rise in the utilisation of distributed systems

since the late 1960s:

advances in computer technology. Until the spread of minicomputers in the early 1970’s

a commonly accepted rule Was Grosch’s law: “The cost per machine instruction executed

is inversely proportional to the square o f the size o f the machine” [Enslow 78]. This eco

nomics of scale in computing led to the centralisation of computer resources [Martin 81],

and all work became funnelled into centralised factory-like data processing shops.

With the growth in microelectronics and the introduction of VLSI in the early 1970s, peo

ple started questioning Grosch’s law. The price-performance ratio was continuously

changing in favour of multiple low-performance processors, rather than large single high-

performance processors [Krame 87]. Moreover, the interconnection and communication

costs have fallen dramatically in the past few years. Buses, packet-switched networks,

LANs, and internet connectivity are now readily available and cost-effective.

need fo r distributed applications. User demand for distributed computing is manifested in

two main areas:

1) Inherently distributed and potentially distributed applications: Inherently distributed

systems are systems that must respond to, or manage, simultaneous activities in their

external environment. Examples of such systems can be found in such diverse application

I

CHAPTER 1. Introduction

areas as monitoring and control of industrial processes, hospital patient monitoring, air traf

fic control, fly-by-wire and multimedia. Collectively these systems are sometimes referred

to as real-time telemetry systems.

Another class of inherently distributed systems are database management and transaction

processing systems such as flight reservation systems and electronic commerce, where the

data is distributed on geographically remote locations by nature.

Potentially distributed applications are applications that might benefit from distributed

implementation [Bacon 93]. These are usually number-crunching long-running programs

that need to process large amount of data. Examples are EFT algorithms and computations

of fluid dynamics [Fatoohi 94]. Distributed systems provide an ideal cost-effective plat

form for running the potentially concurrent components in parallel to speed-up their execu

tion.

2) Resource sharing. A number of resources, such as computers, peripherals, special pur

pose processors, software, and databases are interconnected by a communication system in

order to allow the sharing of the resources. These can be local networks within an office

block or research establishment, or inter-continental client-servers over wide-area-net-

works (WANs).

1.2 Advantages of Distributed Systems

Low Cost. The advent of the low cost distributed system nodes provided the main impetus

for distributed processing [Krame 87]. In the same time the cost of peripheral devices has

not declined dramatically, which provided additional motivation for distributed computing

systems that share expensive resources (laser printers, special-purpose processors, etc.).

Modularity. Distributed systems are constructed in a very modular fashion, where each

component provides well-defined interfaces or services to the rest of the system. This

enforced modularity leads to simpler system design, installation and maintenance, and

allows application tasks to exploit the strength of different components of the distributed

system.

Flexibility and Extensibility. The modular design of distributed systems has the added

advantage of facilitating modification or extension of a system to adapt to a changing envi

2

CHAPTER 1. Introduction

ronment without disrupting its operation. Therefore it is possible to start with a small con

figuration, and provide functional or performance upgrades by adding additional computers

at low cost increments.

Reliability. Distributed systems introduce the possibility of independent failures - inde

pendent components can fail while the others continue running. Using Fault-tolerant tech

niques faults can be detected and recovered from by making use of the redundant

resources.

1.3 Computer Organization for Distributed Systems

The term distributed processing is used to describe systems with multiple processors that

cooperate to perform a computational task. However, the term has a broad meaning

because the processors can be connected in many ways for various reasons. From the con

nectivity point of view, distributed systems can be generally divided into two categories:

1) Systems that have multiple processors connected by in-plant wiring (centralized

systems). Examples of such systems are:

a. Multiprocessor systems which share a common memory (e.g intel_ i860, Sun

Sparc20 MP, Cray Systems).

b. Massively parallel systems with thousands of processing elements, where each ele

ment has a dedicated memory module, (e.g transputer networks such as MEMSY

and Parsytec).

These systems are built for high-performance computing and need specific class of applica

tions (SPMD, MPMD, Multi-threaded programs) to fully exploit the parallelism of their

multi-processor topology and the fast communication links between the processors.

2) Networked systems. They represent a group of autonomous computers (workstations,

PCs) linked through a communication network. Each of the network computer systems has

its private memory module, sometimes local stable storage, and local peripheral interfaces.

This configuration makes such systems attractive to single users, in addition to their use in

the distributed resources pool when inter-linked with a communication network.

3

CHAPTER 1. Introduction

Utilising networked systems for distributed computing has the following advantages:

a. The universality of networked systems made them the most popular distributed sys

tems setup in various environments ranging from small office LANs to huge net

works of heterogeneous computer systems. Networked systems are widely utilised in

scientific, commercial, and industrial establishments. Sales of their computer sys

tems (Unix-based workstations - HP-RISC, Sun Sparc, DEC Alpha, Power Mac) far

exceed that of dedicated parallel and distributed systems of the first category, which

made networked systems much more accessible.

b. Networked systems are interconnected in a loosely coupled structure that makes

them highly scalable. They can grow in small increments to systems including many

nodes, depending on the requirements of the targeted distributed applications.

c. The high availability of networked systems motivated research into development of

high-level programming interfaces that enable the use of networked nodes as a large

parallel computer. Examples of such interfaces are PVM [Geist 94], LINDA [Frings

97] and MPI [Sun 97].

However, networked systems concede in performance to centralised systems. The main

reason for that is that networked systems share a single communication link -usually the

relatively slow Ethernet (10-100 Mbps)-, while the centralised/massively parallel systems

can make use of fast peer to peer and shared memory communication solutions.

Using a high-speed interconnection network like FDDI, ATM [Gaida 96] or the Fast Ether

net (with communication rates ranging from 100Mbps to a Gigabit per second) can signifi

cantly offset this disadvantage and, it is believed, it will ensure the future prominence of

networked systems.

For the above reasons, it is important that clusters o f networked workstations, which pro

vide hardware environment for a large number of real-life applications, offer also a reliable

distributed computing environment which avoids the loss of computations if one of the net

worked nodes fails. Pursuance of this objective is the subject of this research.

4

CHAPTER 1. Introduction

1.4 Fault-Tolerance in Distributed Processing Systems

1.4.1 Overview

With the advent of VLSI design, computer systems became more sophisticated, powerful

and most importantly affordable. This led to an ever-increasing utilisation of computer sys

tems in solving complex scientific and industrial problems, and consequently increased the

demands on their reliability. The development of fault-tolerant techniques dates back to the

work of Von Neumann in the mid 1950s [Birman 94]. The extent to which such techniques

are actually used has of course varied as computer hardware technologies have changed,

and has depended on the stringency of the reliability requirements that had to be satisfied.

1.4.2 Fault-Tolerance Principles

To make any fault-tolerant system one needs to consider: “What can go wrong with the sys

tem? What happens if it does go wrong and what can be done to prevent it? Answers to

these three questions form the fundamental concepts of fault-tolerance:

(i) Error Detection: In order to tolerate a fault in a system, its effects must first be detected.

While a fault cannot be directly detected by a system, the manifestation of the fault will

generate errors somewhere in the system. Thus, the usual starting point for fault-tolerance

techniques is the detection of an erroneous state. In a computer system errors might be

caused by external influences (failures of power supply, radiation, etc.), by a design fault

(temporary memory flips, stack overload, etc.) or indeed by a human fault whether it is the

operator or the system user.

(ii) Damage confinement and assessment: When an error is detected, it is possible that

because of the likely delay between the manifestation of a fault and its detection invalid

information might have spread within the system, leading to other errors which have not

yet been detected [Anderson 81]. Therefore it is important to asses the extent to which the

system state had been damaged and possibly take appropriate measures to confine the dam

age.

(iii) Error Recovery: Following error detection and damage assessment, techniques for

error recovery must be utilised. Unless the error is removed, the erroneous state may cause

a failure of the system in the future.

5

CHAPTER 1. Introduction

1.4.3 Recovery in Distributed Systems

Due to the inter-dependency of their components, distributed systems are particularly vul

nerable to failures. The failure of one component might induce the failure of the whole sys

tem. Therefore, it is necessary to act fast not only to recover the failed node, but to prevent

the waste of processing accomplished on the whole distributed system when one of its

nodes fail.

The problems of providing recovery in distributed systems are exacerbated by inter-process

communication between the computing nodes. This complicates the recovery mechanism

in two ways: 1) the inter-node propagation of the failure needs to be confined; 2) recovery

of all interactive processes needs to be coordinated in order to recreate a global consistent

system state. Hence, the fault-tolerant techniques have to take into consideration the state

of the communication channels between the distributed system nodes at failure time, as

well as the local state of the application processes running on each individual node.

One of the early approaches to providing fault-tolerance, which was widely studied by

many researchers is that of process replication [Birman 94] [Appel 92]. With this tech

nique, several copies of each process are executed concurrently on different computers so

that the probability that all replicas would fail is acceptably small [Cooper 85]. Since the

replicas execute the same code and make use of the same data, a distributed computation

should proceed correctly as long as there exists one living replica of each process, i.e r-1

faults can be tolerated in an r-replicated system. Although these techniques incur a smaller

degradation in performance when compared to checkpoints mechanisms, they are not over

head-free. The failure-free overhead is caused by using multicasting mechanisms to deliver

every outgoing message to the troupe of replicated destination processes [Elnozahy 92].

However, the problem associated with the process-replication methods is the heavy cost of

the redundant hardware for the execution of the replicas. Despite claims that such tech

niques are becoming more feasible with the increasing size of distributed systems and sub

sequently the amount of the available redundant hardware [Chiu 94], their use remains

confined to large-budget, mission-critical systems with stringent reliability requirements

(e.g air-traffic control systems [Dugan 94], nuclear reactor controllers, etc.).

An alternative approach that has drawn an increasing attention in distributed systems, is to

provide fault-tolerance based on checkpointing/rollback mechanism. In contrast to process

6

CHAPTER 1. Introduction

replication mechanisms, this method does not require the duplication of the underlying

hardware or the replication of the application processes. Instead, each process periodically

records its current state and/or some history of the system in a stable storage, an action

called checkpointing. When a failure occurs, processes return to the previous checkpoint

(rollback) and resume their executions from this checkpoint. The overhead that this tech

nique incurs is greater than that of process replication mechanisms because checkpoints are

taken during failure-free operation, and rollback-recovery requires certain actions to be

taken to ensure consistent recovery when processes crash [Deconinc 93]. Nevertheless, this

overhead is getting smaller as the computers and communication networks become more

efficient. Furthermore, new methods such as checkpoint space reclamation [Wang 92] and

copy-on-write message logging [Elnozahy 94] are being devised all the time to reduce the

checkpointing overhead. Such advances in checkpointing technology supported by the

low-cost for providing it, motivated the adoption of the checkpointing/rollback strategy in

a large european project FTMPS [Vounckx 93] concerning the development of fault-toler

ant mechanisms for massively parallel systems.

7

CHAPTER 2 Background to Fault-Tolerant
Environment Research

This chapter reviews state of the art reliable computing systems, and discusses the motiva

tion behind developing the fault-tolerant environment, the class of application it targets

and specifies the essential requirements for its implementation accordingly. Finally the

chapter covers the underlying message passing interface used for interprocess communi

cation in the FAult tolerant Distributed environment (FADI).

2.1 General Background

Computational complexity of real life problems necessitates the use of distributed com

puting systems. The demand for distributed computing is growing with the sharp rise in

the amount of applications that are inherently distributed, potentially distributed, or that

simply requiring to share common computational resources.

Another factor in favour of distributed systems is the ever decreasing cost-performance

ratio of distributed system nodes and the modularity with which they are constructed. This

modular design facilitates the modification or extension of a system to adapt to a changing

environment without disrupting its operation.

Loosely coupled distributed systems such as NoWs (Network of Workstations) consist of

many nodes which, despite improvements in hardware reliability, can and do fail [Morin

97]. Consequently, for a system comprising many workstations the Mean Time Between

Failure (MTBF) may be significantly reduced. Following the example given by Seligman

[Seligman 94] on a workstation with a mean-time between failures of 16 days, a one day

computation has a 94% chance of completing successfully, while on a cluster of ten

machines, there is only a 54% (0.9410) chance that a one day computation will complete

before a failure occurs. Faults in the communication link (e.g network partitioning) fur

ther reduce the distributed system MTBF. This emphasises the importance of taking fault-

tolerant measures not only to recover the failed computing node, but also to prevent the

waste of processing accomplished on the whole distributed system when one of its nodes

fails.

Three main components constitute fault-tolerant distributed computing environments:

8

CHAPTER 2. Background to Fault-Tolerant Environment Research

1. An inter-process communication system that links the distributed computing resources.

There exist many high-level interfaces that provide users with a parallel platform for

running their applications without worrying about the complexity of the implementation

of the underlying network protocols;

2. Error detection mechanism that covers permanent and transient faults that might affect

the distributed applications and/or the underlying hardware.

3. A backup and recovery mechanism to safe-guard the executing application processes

and the inter-process communication channels against detected faults.

Many existing systems such as PVM and P4 [Butler 94], and Amoeba [Tanenbaum 90]

provide distributed computing services but have no provision for fault-tolerance. Other

systems like Libckpt [Plank 95], Condor [Briker 91], Libft [Huang 93] support the reliable

execution of independent stand-alone application processes, but do not support distributed

processing. This research focuses on investigation of reliable, distributed computing sys

tems.

$ DOME (Distributed Object Oriented Migration Environment) [Seligman 94], provides a

C++ library of data parallel objects and uses PVM for its process control and communica

tion. DOME fault-tolerant model relies on checkpointing/rollback techniques, it periodi

cally saves the current state of the distributed program to one or more checkpoint files and

allows the program to be restarted from the most recent checkpoint after failure. Once

restarted, the program should proceed normally from the position of the last checkpoint.

Checkpointing/rollback is implemented at the application-level and require the application

programmer to insert the calls to the checkpoint and restart mechanisms. It is also the

responsibility of the programmer to ensure that all system variables are encapsulated in

DOME objects for saving the application state. While DOME claims that this approach

guarantees the environment portability to any system that supports PVM and C++, it sacri

fices transparency to the user/programmer and restricts the utilisation of the environment to

the application programmer. The error detection mechanism in DOME is restricted to tran

sient faults that cause the premature exit of the application tasks and faults leading to node

crashes are not covered.

$ Fail-Safe PVM [Leon 93] is another package that uses PVM to facilitate network com

munications. This system employs transparent checkpointing/rollback techniques for

backup and recovery of application processes. The Fail-Safe PVM reliability model can

9

CHAPTER 2. Background to Fault-Tolerant Environment Research

recover from at most one failure at-a-time. In Fail-Safe PVM, all checkpoints must be

taken at once. It forces a global synchronization before allowing a checkpoint to proceed.

After such a barrier, the global state is guaranteed to be consistent and unchanging. The set

of local checkpoints taken under these circumstances is a valid snapshot of the state of the

session. This method incurs significant overhead on the running time of the application

because all application processes are suspended until the complete checkpoint is taken.

Another limitation of the Fail-Safe PVM reliability model is that it can recover from only

one failure at-a-time. The failure model in Fail-Safe PVM assumes that faults cause com

plete failure of the node in which they occur. The error detection mechanism does not cater

for transient faults.

$ STAR [Sens 93] is a system managing fault-tolerant distributed applications in a network

of workstations. STAR builds its own communication model for interprocess communica

tion on UNIX-like operating systems using UDP, TCP/IP sockets. Information about the

performance and spectrum of functionality of this model was not available. The recovery

mechanism is based on checkpointing. The checkpointing process is user-transparent and

relies on the logging of every inter-process communication message on the receiver’s end

to guarantee a global consistent system state. This technique is adapted for applications

composed of processes exchanging small streams of data, but the logging overhead can be

unacceptable for communication-intensive applications. STAR operates a logical structur

ing of hosts in a logical ring o f detection for host crashes. Each host only checks its imme

diate successor in the ring. If the successor does not acknowledge, the fault is reported and

the detection ring is re-configured. Transient hardware faults that might result only in the

failure of the application processes are not covered.

$ Paralex [Davoli 96] is a modem distributed system that makes extensive use of graphic

editors to aid the parallel application programmer in defining, editing, and executing paral

lel scientific programs in a fault-tolerant environment. To achieve fault-tolerance, Paralex

uses the ISIS coordinator-cohort toolkit to implement passive process replication. Each

node (process) that requires fault tolerance is instantiated as a process group consisting of

replicas for the node. One of the group members is called the coordinator in that it will

actively compute. The other group members remain inactive other than receiving multi-

casts addressed to the group. Only the coordinator of the destination node will compute the

data value while the cohorts simply buffer it in an input queue. When the coordinator com

pletes computing, it multicasts the results to the process groups at the next level and signals

10

CHAPTER 2. Background to Fault-Tolerant Environment Research

the cohorts so that they can discal'd the buffered messages. Upon the detection of a failure,

one of the cohorts is nominated a coordinator and it resumes computing from the messages

at the head of its input queues. ISIS relies on hardware-level multicast -whenever the hard

ware architecture permits- to reduce the overhead of message replication. The error detec

tion methodology is part of the coordinator-cohort replication strategy. ISIS relies on an

exchange of timed-out request-acknowledgment messages to detect the failure of the proc

esses. The time-out interval is adaptively adjusted to the communication link load. Per

formance results have shown that fault-management incurs very small overhead on the

execution time of the application. Replication-based techniques do not have the overhead

of taking a snap-shot of the of the application execution image and its communication

channels state and writing them to stable storage. However, the heavy cost of this method

incurred by the need for redundant computing nodes to execute the replicas makes it unat

tractive for a large class of business and scientific applications which neither have large

computing budgets nor very stringent real-time constraints.

The objective of this research is to develop a cost-effective, reliable, distributed com

puting environment that is transparent to the user/programmer of distributed applications.

This environment should be structured to encompass all aspects of fault-tolerant distributed

computing, it should: provide automatic support for distribution/remote execution of appli

cation processes; have a high fault-coverage mechanism for detecting hardware transient

and permanent faults that is capable of dynamically adjusting the error latency to the distri

bution network load; use robust, low-overhead, checkpointing/rollback techniques for the

recovery of interactive -message passing- application processes. These goals are translated

into the requirement specifications for the fault-tolerant distributed environment (FADI)

described in the next section.

2.2 Targeted Class of Applications

FADI is designed to support a class of applications that are computation-intensive but do

not have stringent real-time constraints. These applications may require hours or days of

computations to execute on dozens of networked workstations [Davoli 96]. While the

required level of reliability for such applications necessitates the prevention of the loss of

the results of the long-running computations, it does not justify the use of expensive hard

ware replication fault-tolerance techniques. Examples of this large and important class of

applications are complex neural-networks training algorithms, structural analysis of

l i

CHAPTER 2. Background to Fault-Tolerant Environment Research

mechanical constructions [Chadna 96] or simulations of large scale engineering and envi

ronmental systems such as weather simulations [Chen 96], simulations of mass and heat

transfer [Riberio 95], aerodynamic simulations [Meakin 90].

Computational fluid dynamics (CFD) provides a good example for this type of scientific

computing. Fluid flows are modelled by a set of partial differential equations, the Navier-

Stokes equations. Except for special cases no closed-form solutions exist to the Navier-

Stokes equations, and it is interesting to note that this particular computational task was in

fact one of the motivations by John von Neumann for the development of electronic com

puters.

Solving a particular CFD problem generally involves first discretizing the physical domain

that the flow occurs in, such as the interior of turbine engine or the radiator system of a car.

This discretization is straightforward for very simple geometries such as rectangles or cir

cles, but is a difficult problem in CAD (Computer-Aided Design) for more complicated

objects. Currently automatic “mesh generators” are simply not adequate, requiring exten

sive investment of time on the part of the scientist or engineer. This leads to problems in

human-computer interfaces (HCI) and CASE tools, as well as fundamental problems in

graph theory since the resulting discretization gives a mesh that is best dealt with as a

graph.

On the discretized mesh the Navier-Stokes equations take the form of a large system of

non-linear equations: the transition from the continuum to the discrete set of equations is a

problem that combines both physics and numerical analysis: For example, it is important to

ascertain that the laws of physics such as conservation of mass are not affected by the dis

cretization, which in itself is necessary for numerical computations. This usually calls for

the introduction of static variables, at each node in the mesh, which enable some compen

sation of the affect of discretization. Typically between 3 and 20 variables are associated

with each node: the pressure, the three velocity components, density, temperature, etc. Fur

thermore, capturing physically important phenomena such as turbulence requires

extremely fine meshes in parts of the physical domain. Currently meshes with 20,000 to 2,

000,000 nodes are common, leading to systems with up to 40,000,000 unknowns.

Such a system of non-linear equations is typically solved by a Newton-like method, which

in turn requires solving a large, sparse system of equations in each step. Sparsity here

means that the matrix of coefficients for the linear system consists mainly of zeros, with

12

CHAPTER 2. Background to Fault-Tolerant Environment Research

only a few non-zero entries. With 4.0e7 unknowns, clearly one cannot store the matrix as a

2D array with 1.6el5 entries!

A practical approach to solving such engineering problems is to partition the problem

domain into sub-problems and to solve them in a coordinated fashion on a distributed com

puting system.

The objective of this research was to develop a cost-effective and efficient distributed fault-

tolerant system for a broad class of scientific and engineering applications (as exemplified

above).

2.3 Requirements specification

Figure 2-1 represents the context model of the fault-tolerant distributed system at the high

est level of abstraction. A more detailed illustration of the system DFD (data-flow dia

gram) is included in the appendix “A”.

U SE R

(IN PU T D EV IC E)
 1 <-----

\ \ distributed applica-
» \ tion specification

FAULT-
T O LER A N T

D IST R IB U T ED
E N V IR O N M E N T

host status
information

network hosts
configuration

re-enter input
\

\
task management

information A i
U SER

(VDU)

f i g u r e 2-1 System Context

2.3.1 General Requirements

• In the Interest of portability the system is assumed to make use of the UNIX operating

system environment. This assumption is consistent with the operating environment of a

large class of scientific/engineering applications.

13

CHAPTER 2. Background to Fault-Tolerant Environment Research

• The distributed system is assumed to operate with no additional hardware to support

fault-tolerance (the fault-tolerance of the whole distributed system is defined by the

most reliable node). The required reliability of the central host might be obtained by

hardware duplication, but the detail of achieving it is not relevant to the discussion of

the FADI itself.

• The system is required to be transparent to the application programmer, i.e no modifica

tions to the original program code by the user/programmer should be necessary.

2.3.2 Requirements to the Implementation of the Software Model

• The system is required to automatically detect the hardware setup of the underlying dis

tributed network and provide automatic means for the parallel execution of user-applica-

tion tasks on the network hosts.

• A high-level interface is required to support the synchronisation and communication

between distributed application processes.

• There will be an error detection mechanism capable of detecting hardware permanent

and transient faults that might occur in the distributed nodes.

• A mechanism is required for recovering and migrating (if needed) of the application

tasks running on the faulty hardware.

• Considering that the targeted class of applications is mainly computation-intensive,

long-running tasks without stringent real-time constraints two decisions were made

about the recovery mechanism:

a) checkpointing and rollback techniques will be adopted as the backup and recovery

technology.

b) because of the large MTBF (Mean-Time Between Failures) of modem systems,

greater emphasis will be put on efficient failure-free operation than on efficient

recovery from failure.

• A user-friendly interface to input the distributed application specifications is required.

The user should have the option to choose the host machines by default, by specifying a

particular host, or a general hardware architecture.

• FADI should incorporate an on-line monitoring system that presents the current state of

the distributed system hosts and the application tasks running on them.

14

CHAPTER 2. Background to Fault-Tolerant Environment Research

2.4 FADI Development. A High Level View of the System Context

By analysing the requirements for FADI, the overall system design can be broken down to

the modules displayed in Figure 2-2.

GUI

U ser-A pplication
specificationN etw ork Config. +

H ost and Task S ta tus

PROCESS
ALLOCATION

SK I £133 £33

s ta rt user-task2 start u ser-task l
on npde I on node III

* restarted \
* user-task2>

^ ___
user-task2

user-task failure

<TMUMTOR
HOST
STATE

host crashERRO R
D ETECTION

user-taskl

MONTI
USER

TASKS

user-process and
com m , channel state

(C heckpoint)
R eschedule failed
task2 on node II

Failed T ask ID
5S355 SSS3

BACKUP
&

read/w rite
- checkpoints

RECOVERY s
&sa ssc <333 isss

FIGURE 2-2 FADI: Schematic Diagram

15

CHAPTER 2. Background to Fault-Tolerant Environment Research

FADI functionality can be represented by describing the task of each module and the data

and control flows between the modules.

Process Allocation Module. Initially the module automatically detects the configuration of

the distributed system network. Then it accepts the distributed application specifications

entered by the user and validates them against the current distributed system setup. This is

necessary in order to advise the user whether the available hardware resources are suffi

cient to run the distributed application reliably. Next it spawns the application tasks on the

specified hosts.

Error detection module. This module is composed of two sub-modules:

The first monitors the state of the distributed nodes to detect any permanent hardware

faults. If a host crashes it initiates the recovery of the user tasks running on the faulty node.

The second sub-module monitors the distributed user-application tasks. It analyses the exit

status of the task to determine whether it exited normally or prematurely due to a transient

hardware failure. If the latter occurs then measures are taken for the failed task recovery.

Application Backup and Recovery module. The most important module for FADI, is

composed of two units:

The checkpointing (backup) sub-module is responsible for recording the state of the appli

cation processes and the communication channels between them.

The rollback (recovery) sub-module performs the re-configuration of the distributed system

after a node crashes. This sub-module is also responsible for the recovery of the failed

application tasks by retrieving their saved state from backup (and re-scheduling to opera

tive hardware if necessary) to form a global consistent state of the distributed application.

User-Interface module. This module facilitates the user-friendly interaction between the

user and FADI. It performs the following operations:

• entering the system specifications;

• extending the network by adding more nodes to the distributed system;

• on-line display of the distributed nodes status and the application tasks running on them.

The modular design of FADI supports the parallel execution of its control and monitoring

tasks. In addition, the whole system is message driven which dramatically reduces the

16

CHAPTER 2. Background to Fault-Tolerant Environment Research

response time to events occurring in the distributed environment. On the other hand this

emphasises the importance of adopting a flexible and efficient message passing interface.

The interface should facilitate the communication between the control and monitoring

processes of FADI as well as between the distributed application processes.

2.5 Inter-Process Communications

2.5.1 FADI Requirements for the Communication System

The message passing interface should provide a transparent mechanism for explicit mes

sage passing and process-synchronisation between the distributed application tasks.

Figure 2-3 shows a simplified view of the envisaged interaction between the interface and

the application programmes.This interface should relieve the programmer from having to

deal with low-level networking details such as socket communication, IP addresses, net

work load, etc. The message passing interface should also be able to exchange messages

between UNIX machines that have different data representations.

It is important that the communication interface preserves the order of messages sent from

a single source for the purpose of analysing inter-process dependencies when recovering

failed distributed application tasks.

17

CHAPTER 2. Background to Fault-Tolerant Environment Research

HOST “A:

source
task

D ata Transfer

A p p lic a tio n L e v e l

send message request
- destination task ID;
- send buffer address;
- message length & tag

i immiiiimiiiiiiiiiii
T r a n sp o r t L e v e l

processing send-request
- identify IP address and arch f
of destination task host;
- establish comm, channels
between the hosts;
- convert data packets to a
representation comprehensi
ble by destination host;
- transfer data packets via 1
physical lines (TCP/UDP !
sockets) to destination host.

P h x s ic a l L in k

HOST “B”

m i n i u m
, ;

MessageMessage
Passing

Interface
Passing

Interface

TCP/IPTCP/IP

receive message request
: - source task ID;
| | - receive buffer address;
m- max. message length & tag.

a
-

processing receive-request
- queue all messages
incoming via physical
layer;
- deliver required mes
sage (by tag & source ID)
from incoming messages
buffer;
- acknowledge succ. mes
sage receipt, host;

■ i i ii ii 111111111 in ■ m u ii mi i h i in i mi uni n u n i n in m i mi 11 n m iiiiiiini

f i g u r e 2-3 The Communication Interface

2.5.2 The Message Passing Interface

PVM (Parallel Virtual Machine) was adopted as the underlying communication medium

for FADI. This message passing system has more users than any other parallel program

ming environment, and is a de facto standard for message passing environments [Mattson

94]. Many fault-tolerant systems rely on PVM for inter-process communication and proc

ess distribution and control (e.g [Stellner 95], DOME [Seligman 94], fail-Safe PVM [Leon

93]).

In addition to satisfying our essential requirements for message passing and process syn

chronization, the PVM library offers a rich set of programming tools that makes it

18

CHAPTER 2. Background to Fault-Tolerant Environment Research

extremely attractive for any parallel programmer. Among these tools are: automatic spawn

ing of user-tasks on the distributed system host, balancing of the computing load on the

network nodes, dynamic process group operations, and many more.

PVM is a public shareware that can be downloaded using anonymous ftp and it delivers

reasonable performance for heterogeneous distributed processing systems. In a study by I.

Martin [Martin 95], investigating the performance of PVM compared to a two dimensional

processor mesh architecture, it was found that although the processor-to-processor commu

nication offered more efficient interprocess communications, it has been concluded that

PVM is a suitable vehicle for building large scale distributed systems from the available

workstations if the granularity of computations is coarse enough. With the availability of

high speed communication networks (FDDI, Fast Ethernet, ATM), PVM can be an effec

tive alternative to traditional supercomputers handling a significant class of large scale

problems.

2.5.3 PVM: The Parallel Virtual Machine

The PVM software provides a unified framework within which parallel programs can be

developed in an efficient and straightforward manner using existing hardware. PVM ena

bles a collection of heterogeneous computer systems to be viewed as a single parallel vir

tual machine. PVM transparently handles all message routing, data conversion, and task

scheduling across a network of incompatible computer architectures [Geist 94].

The PVM computing model is simple yet very general, and accommodates a wide variety

of application program structures. The programming interface is deliberately straightfor

ward, thus permitting simple program structures to be implemented in an intuitive manner.

The user writes an application as a collection of cooperating tasks. Tasks access PVM

resources through a library of standard interface routines. These routines allow the initia

tion and termination of tasks across the network as well as communication and synchroni

zation between tasks. The PVM message-passing primitives are oriented towards

heterogeneous operation, involving strongly typed constructs for buffering and transmis

sion.

Communication constructs include those for sending and receiving data structures as well

as high-level primitives such as broadcast, barrier synchronization, and global sum.

19

CHAPTER 2. Background to Fault-Tolerant Environment Research

Owing to its ubiquitous nature (specifically, the virtual machine concept) and also because

of its simple but complete programming interface, the PVM system has gained widespread

acceptance in the high-performance scientific computing community.

The PVM computing model is based on the notion that an application consists of several

tasks. Each task is responsible for a part of the application’s computational workload.

Sometimes an application is parallelized along its functions; that is, each task performs a

different function, for example, input, problem setup, solution, output, and display. This

process is often called functional parallelism. A more common method of parallelizing an

application is called data parallelism. In this method all the tasks are the same, but each one

solves a small part of the data. This is also referred to as the SPMD (single-program multi-

ple-data) model of computing. PVM can support well both functional and data parallelism.

Depending on their functions, tasks may execute in parallel and may need to synchronize

or exchange data, although this is not always the case. An exemplary diagram of the PVM

computing model is shown in Figure 2-4. and an architectural view of the PVM system,

highlighting the heterogeneity of the computing platforms supported by PVM, is shown in

Figure 2-5.

20

CHAPTER 2. Background to Fault-Tolerant Environment Research

Input &
Partitioning

C om p 1 C om p 2

SPMD SPMD

GD Output &
Display

---------------- Inter-component comm & sync

- — — - Inter-instance comm & sync

f i g u r e 2-4 PVM Computation Model

Cluster 1

Cluster 3Cluster 2

Vector SCPVM: /
Uniform
Mew of
Multiprogrammed
Virtual Machine

FIGURE 2-5 PVM Architectural Overview

21

CHAPTER 2. Background to Fault-Tolerant Environment Research

2.6 Conclusions

This chapter surveyed several reliable computing systems and discussed the rationale for

continuing research and improving the efficiency of fault-tolerant systems, which was the

motivation behind developing FADI. It is argued that the development of a cost-effective,

reliable, distributed computing environment that is transparent to the user/programmer of

distributed applications is feasible. However, a research challenge is to develop new tech

niques for dealing with concurrent (communicating) applications and to assess their per

formance. FADI should provide automatic support for distribution of application processes

and integrate an error detection facility for hardware permanent and transient faults with a

low-overhead backup and recovery mechanism for the recovery of distributed application

processes.

FADI targets scientific/engineering applications that are computation-intensive but do not

have stringent real-time constraints. Consequently, it has been concluded that a checkpoint

ing/rollback is the best-suited fault-tolerance technology for FADI. The checkpointing

mechanism should have a small overhead during failure-free operation even at the expense

of longer recovery time owing to the longer running time of the targeted applications and

relatively large MTBF of modem computer systems.

PVM was chosen as the message passing interface for FADI. PVM provides a high level

library interface for interprocess communication, process synchronization, and many use

ful tools for the parallel programmer as dynamic process-group operations. The Parallel

Virtual Machine has a huge user-base support and research have certified that its parallel

environment can be an efficient and economic alternative to some bespoke computer sys

tems in handling some large scale problems.

22

CHAPTER 3 The Error Detection Mechanism
(EDM)

This chapter presents the error detection mechanism for FADI. It gives an introduction to

existing error detection techniques and subsequently defines the distributed system failure

model. It explains the design and implementation of the EDM, and comments on the test

results of the mechanism.

3.1 Faults in Computer Systems

There are a number of ways to classify faults in a computer system. From the error recov

ery viewpoint, it is useful to divide these faults into two groups:

External faults. These are faults caused by the interaction of the computer system with

the outside world. Three types of failures are described below:

• Environmental faults: power supply, air conditioning, radiation, etc.;

• Design miscalculations of adequate safety margins built into the system to enable it to

cope with any unusual load that may strain the processing or storage capacity of the

system [Gibbons 76]. This is particularly relevant to distributed systems where

resources such as disk space and RAM are shared by a number of processes or proces

sors;

• Human operator mistakes can also affect the normal operation of a computer system.

Some of the mistakes they can make are: overriding normal operation of the system by,

for example, purging or locking files, aborting programs or responding incorrectly to

console messages from the operating system or user programs.

Inherent design faults. These can be faults in any hardware component (CPU, memory,

peripherals, storage media, etc.) caused by human or machine errors during the design or

manufacturing stage of the production of the component. Inherent design faults can also

be caused by mistakes made during the design or coding of the application program.

Among the possible types are: Arithmetic errors (e.g division by zero, overflow); Data

format errors (e.g. attempts to use character data as numeric); Violation of storage protec

23

CHAPTER 3. The Error Detection Mechanism (EDM)

tion rules to disk files or process memory space; Attempts to execute privileged instruc

tions.

This research is focused on the development of mechanisms for recovery from external

faults only. The reason for that is that the inherent design faults are irrecoverable if there is

no change to the physical hardware or software module.

However, detecting inherent design faults is useful during the development phase of the

hardware or the software model of a computer system, and often fault injection techniques

(the deliberate insertion of faults into an operational system to determine its response) are

used for this purpose. FERRARI [Kanawati 95] is a fault injection tool that uses software

methods to emulate hardware and software faults in order to validate the dependability

properties of fault-tolerant computer systems and obtain statistics on parameters such as

fault-coverage and detection latency. In the same way software-based error injection was

used to evaluate the effectiveness of FADI error detection mechanism as discussed in sec

tion 3.6.

3.2 Error Detection Techniques

The starting point for all fault-tolerant strategies is the detection of an erroneous state, that

is a state which, in the absence of any corrective actions, could lead to a failure of the sys

tem. Thus the success of any fault tolerant system will be critically dependent upon the

effectiveness of the techniques for error detection.

From the user/programmer viewpoint, error detection measures can be classified into user-

transparent and user-assisted mechanisms.

3.2.1 Transparent Error Detection

These checks are made by the error detection mechanism without the intervention of the

application programmer, they include:

Replication Checks are one of the most powerful measures for detecting errors in a compu

ter system, but are also among the most expensive in terms of resources required. The rep

licates must of course run on separate processing nodes. Errors are detected by comparing

equivalent output messages from different replicates of a software components. The Delta-

24

CHAPTER 3. The Error Detection Mechanism (EDM)

4 Open Distributed Computing System [Powell 88] outlined some of the consistency con

ditions for such a comparison to be possible: first of all it is necessary that replicates on

non-faulty nodes remain consistent so as to produce the same output messages. It is also

necessary that there be some way of identifying equivalent messages, i.e messages that

should be the same and can thus be compared. Each replicate must also receive the same

messages in the same order from all the distributed system tasks. It is clear that the over

head of maintaining the consistency increases if the software replication checks have no

information about the behavioural model of the application, which is a necessary precondi

tion for maintaining the transparency of the EDM to all the distributed applications.

The advantage of this method of error detection is that the replication of software compo

nents and the associated error processing protocol serve not only for detecting the errors

but also for the recovery from them. In order to tolerate “n” active faults, at least “2n+l”

replicates are necessary for there to be a majority of replicates executing on non-faulty

hosts.

A different approach to replication checks is adopted in [Cin 93]. In order to avoid the large

overhead resulting from multiple modular redundancy for the whole system, they restrict

the redundancy to the duplication of the most crucial hardware resources such as the CPU.

Duplication inside the computer nodes of the system is based on the master-checker (MC)

mode. With this mode, both processors run fully clock-synchronously the same program

and process the same data stream. Only one processor (the master) exchanges data with the

outer world via the bus. The output bus drivers from the other processor (the checker) are

disabled. During a data transfer the comparators on the checker pins compare the internal

signals generated by the checker and those driven by the master. In the case of a mismatch

an error is signalled.

The problem with this technique is that it requires modifications to the hardware architec

ture of the computer system, and therefore it is not applicable to off-the-shelf computer sys

tems.

Bearing in mind the class of applications for which this research has set to develop the

fault-tolerant environment, the replication technology was rejected as a recovery method

for FADI on economic grounds.

25

CHAPTER 3. The Error Detection Mechanism (EDM)

Timing Checks. If the specification of the system includes timing constraints on the provi

sion of service then a timing check can be provided in the system to determine whether the

operation of the component meets these constraints. If the constraints are not met then the

timing check can raise a “timeout” exception to indicate the failure of the component.

Such checks are implemented by an error detection algorithm implemented for the

Parsytec [Altmann 95] massively parallel multiprocessor. Parsytec is built from units of 16

processing elements PEs (INMOS T805 transputers) which are interconnected by a two-

dimensional grid. Timing checks are performed on each processor. With this algorithm

there is no central testing node, results are obtained by self-tests' sent by fault-free nodes

within a predefined time-out limit to all neighbouring processors (<I’m alive> messages).

On receiving a message, each neighbour compares the received self-test result with local

reference values received previously from the same node. At the initial phase, all proces

sors have an initial, system-level diagnostic image (i.e about the state of all the system

processors not only the four neighbouring PEs). An error is detected if the <I’m alive>

message does not arrive within the predefined time-out interval, or if its value does not

match the local reference value (contains information about a faulty non-neighbouring

processor). The algorithm also can segregate the diagnostic image into subgraphs if a set of

faulty processors isolate a group of fault-free processors.

The overhead of the complexity of the algorithm incurred by the mesh connection of

Parsytec PEs does not apply to FADI hardware module, where the topology of hardware

platform is a group of autonomous processors connected by a common network.

System Error Detection Mechanism (EDM). Most operating systems have built-in error

detection mechanisms that monitor address, data and control buses. The Sun SPARC sys

tem has detection mechanisms that include traps for illegal instructions, bus errors, seg

mentation faults, arithmetic exceptions, etc.

Illegal instruction faults can arise from attempts to execute an instruction with an unidenti

fiable opcode or inadequate operands. Bus errors result mostly from address line errors

generated when a program seeks an illegal memory location (e.g non-aligned address

value). One of the situations that can lead to a segmentation fault is writing to the read-only

text segment. Improper mathematical operations (e.g division by zero or the square root of

a negative number) raise arithmetic exceptions.

26

CHAPTER 3. The Error Detection Mechanism (EDM)

Application programs affected by these errors are usually terminated by the OS kernel with

a signal number corresponding to the trapped error type.

A system dependability study in [Kanawati 95] established that 43% of the transient errors

generated by fault-injection were detected by the OS built-in error detection and protection

mechanisms. Hence, it is crucial that the error detection mechanism of FADI monitors the

OS management of the application processes.

3.2.2 User-Assisted Detection

These techniques require the user/programmer to layout the strategy for detecting errors.

These measures are based on knowledge of the internal design and construction of the

application program and the computing environment in which it is executing. An example

of this detection method is accounting checks. These checks are suitable for transaction-

oriented applications with simple mathematical operations such as air line reservation sys

tems, library records, and the control of hazardous materials. The simplest form of account

ing checks is the cheksum. Whenever a large number of records is transmitted or received,

a tally for both the total number of records and the sum over all records of a particular data

field can be compared between source and destination.

Another type of programmer-induced error detection is reasonableness tests. These tests

detect software failures by use of pre-computed ranges, expected sequences of program

states, or other relationships that are expected to prevail.

An illustration of reasonableness checks is the determination of the airspeed in a flight con

trol system. The speed of the aircraft must be within the structural capabilities of the air

frame (e.g 140-1100 km/h). Thus if the true air speed is outside this range, then there is

something wrong with either the sensor or the computer [Pradhan 86].

These error checks are of interest to the fault tolerant environment if they can diagnose a

fault in the computer hardware as in the previous example. Then measures can be taken to

migrate application programs to operative computing machines or switch execution to a

redundant hot stand-by system.

27

CHAPTER 3. The Error Detection Mechanism (EDM)

3.3 Application, Environment and Failure Model

The distributed system consists of a number of nodes (processors) that can run concurrent

user-tasks. Nodes communicate via a message passing interface over an asynchronous net

work. It is assumed that a central host will run the main error detection task. This central

host must be fault-tolerant, i.e the probability of its failure is negligible. The required relia

bility of the central host might be obtained by hardware duplication. In the interest of port

ability and ease of use the error detection mechanism should be transparent to the hardware

nodes and the application tasks, i.e no intervention from the user/programmer in the setup

of the detection mechanism should be necessary [Storm 87].

The following assumptions are made about the detection environment and failure model:

• We assume that the processing nodes are fail-silent, i.e they only send correct messages,

or nothing at all. However, the processes are not required to be fail-safe, i.e with a zero

error latency.

• The detection mechanism should cover processor node crashes, as well as transient

hardware failures (temporary memory flips, bus errors, etc.) that cause the failure of a

single application task.

• The detection system should have a straight-forward interface to integrate user-assisted

(application-specific) error checks into the detected errors dictionary.

3.4 Design of the EDM

Throughout the work, emphasis was put on the modularity of the design to ensure that the

EDM can be smoothly integrated into a Fault-Tolerance System that will provide process

recovery from the detected errors.

At the initialisation stage the EDM accepts validated system specifications (host & task

specifications entered by the user are checked against the network configuration) from the

user/programmer as shown in Figure 3-1. These specifications are then broadcasted to the

Host and User-Tasks monitoring subtasks, they detect host crashes and recovery and user-

tasks failure and recovery and subsequently update the active host and active task tables.

These tables are shared with the fault-tolerance system recovery mechanism (RM) and are

28

CHAPTER 3. The Error Detection Mechanism (EDM)

used in the recovery process of the failed tasks. IDs of manually recovered hosts are also

fed to the system for them to be subsequently monitored by the EDM.

M onitor
U ser
Tasks

M onitor
H ost
State

Active
H ost
Table

E D M

ID s o f m anually
recovered hosts

in p u t by u se r

system sp ec’s

host ID, task ID,
task-host ID

ID ’s o f tasks recovered by
fault-tolerant recovery mech.

se n t b y reco very m e c h .(R M)

add/rem ove
task ED

add/rem ove
host ID

sh a red by
R M Active

Task
Table

f i g u r e 3-1 The Error Detection Mechanism

3.4.1 Detecting Host Failures

Detection of host failures is based on a central host monitoring task, running on the master

host, which is responsible for the coordination of host crash detection in all the system

nodes. This central host monitoring task (Figure 3-2) periodically sends acknowledgment

requests to all the hosts in the system.

29

CHAPTER 3. The Error Detection Mechanism (EDM)

Each host must reply to the acknowledgment request within a predefined time interval

“tack_timeout”, otherwise it will be considered by the monitoring task as having “crashed”.

If the reply is received at a latter acknowledgment cycle (because of network delay) or if a

message is sent by the user declaring that the host has been manually recovered, then the

host is considered as “recovered”, and it is reinstated to the system host pool.

crashed
host id

host id

J r / crashed
/ U r t n f i/1

crashed
host id

recovered
host id

REPORT HOST
FAILURE

M O N ITO R
H O ST STATE

READ ACTIVE
HOSTTABLE

REMOVE
CRASHED HOST

FROM HOST TABLE

RECEIVE INFO
ABOUT MANUALLY
RECOVERED HOSTS

ADD RECOVERED
HOST TO ACTIVE

HOSTTABLE

WAIT FOR REPLY
WITHIN CURRENT

Tack. TIMEOUT

SEND ACKNOWL
EDGMENT REQ. TO
HOST WATCHDOG

FIGURE 3-2 The Host Monitoring Task

The difficulty associated with this detection technique is the calculation of the acknowledg

ment timeout. Research in the Delta-4 system [Powell 88] asserted that the total message

traffic between components of a dynamically evolving system (e.g, a multi-user shared

communication inter-link as the Ethernet) cannot in practice be assumed to be determinis

tic. Thus it is impossible to know a priori how quickly acknowledgments return to the

source. The total time-out required for a segment to travel to the destination and an

acknowledgment to return to the source varies from one instant to another. Figure 3-3

which shows measurements of round-trip times across the network for 100 consecutive

packets illustrates the problem.

30

CHAPTER 3. The Error Detection Mechanism (EDM)

R J T (m s e c)

1000

900

800

700

600

500

400

300

200

----------------- _ ------- -------------------------------------- ----------------------- r-----------------------------------

Wii

I 4

f
t

. JUL--- A ..-Ai A | J 1 A i^f- m .

----- ‘i 1 " 11 i i i -i ■ i

11 21 31 41 51 61 71 81 91 Datagram

FIGURE 3-3 Plot Of Network Round Trip Time (RTT)

To accommodate the variation in the network delays, it is necessary to dynamically calcu

late the round-trip time (RTT) of inter-host messages with relation to the current network

traffic, and update the acknowledgment timeout accordingly. A background task was

designed to send dummy messages between pairs of machines in the distributed system.

The difference in time between sending the dummy message and getting the acknowledg

ment is used to estimate the network round-trip time. Each new round-trip sample (Srtt) is

filtered into a “smoothed’ estimate according to the formula:

R T T i + 1 = a X R T T . + (1 - a) X S r t t (EQ 3-1)

where R T T . is the current estimate of round-trip time, R T T . is the new computed value,

and a is a constant between 0 and 1 that controls how rapidly the estimated rtt adapts to the

change in network load.

The EDM’s acknowledgment time-out (ATO) can then be computed from R T T (. The for

mula is:

A T O (~ (3 X R T T { (EQ 3-2)

31

CHAPTER 3. The Error Detection Mechanism (EDM)

Where p is a constant, greater than “1 ”, chosen such that there is an acceptably small prob

ability that the round-trip time for the packet exceed A T O i .

The underlying implementation of the FADI distributed system interconnection (PVM

message passing interface) uses the TCP/EP protocol to transfer datagrams between the

hosts. The specification of this protocol [Postel 81] suggests values in the range of “0.8” to

“0.9” for a and “1.5” to “2.0” for p.

Representative samples of the network round-trip time were taken during different inter

vals when the traffic of our academic network is expected to vary: Early in the morning,

when most users are logging in at approximately the same time, creating extensive short

overload on the network; in the early afternoon, when the number of users and the utilisa

tion of the network is at its maximum; and late at night when the network usage is mini

mum. The measurement intervals were 4 hours each amounting to a total of 12 hours. The

pattern of the network delay was similar to the network RTT measurements on Figure 3-3

and shows that the round-trip times are roughly Poisson distributed, but with brief periods

of high delay. Using the standard way of calculating RTT and ATO (equations 3-1 and 3-2)

with the TCP recommended values for a (average of 0.8, 0.85, 0.9) and P (2.0), the esti

mated RTT could not adapt swiftly enough, resulting in a an average of 37 transgressions or

incorrect diagnoses of host failure over the 12 hours period. Considering the need of recon

figuration of the distributed system at the detection of the fault, which involves the migra

tion of user-tasks to an operative host, this estimation algorithm has proven very costly.

An improvement to the algorithm was proposed by Mills [Mills 83]. He suggests a non-lin

ear filter, that will allow the R T T i to adapt more swiftly to sudden increases in network

delay. The change amounts in using two values for a , one (a l) when Srtt < R T T [in equa

tion 3-1, and the other (a2) when Srtt >= R T T . , with a l >a2, i.e:

< R T T >

S > R T T
(EQ 3-3)

The affect is to make the estimation more responsive to upward-going trends in delay and

less responsive to downward-going trends. For the purpose of estimating the acknowledg

ment time-out for FADI error detection mechanism, this method helps the RTT estimate to

32

CHAPTER 3. The Error Detection Mechanism (EDM)

follow sudden increases in network delay and smooth-out sharp drops, thus minimizing the

transgressions of the calculated ATO over the Srtt.

Tables 3-1 and 3-2 present the accuracy of the RTT estimation and a number of incorrect

diagnoses of the host failure (ATO < Srtt) for the above experiment respectively, where:

a l g {0.8, 0.91, 0.94, 0.95} and a2 e {0.67, 0.75, 0.83, 0.9}.

t a b l e 3-1 Accuracy of Round-Trip Time Estimation

a la2 0.8 0.91 0.94 0.95

0.67 91.46% 89.87% 88.76% 87.80%

0.75 92.26% 90.78% 89.81% 88.97%

0.83 X 91.84% 91.05% 90.36%

0.87 X 92.43% 91.77% 91.18%

0.9 X 92.81% 92.25% 91.73%

TABLE 3-2 Num. of Incorrect Diagnoses of Host Failure

a la2 0.8 0.91 0.94 0.95

0.67 6 2 1 1

0.75 6 3 1 1

0.83 X 4 3 2

0.87 X 4 3 2

0.9 X 7 3 3

Unfortunately, what is good for reducing the latency of detecting the errors (more accurate

estimates of RTT) is disastrous for diagnoses of host failures. If the R T T . is very close to

Srtt, this results in a large number of incorrect fault diagnoses, and subsequently unneces

sary reconfiguration of the distributed system and migration of user-tasks (7 incorrect diag

noses for the highest measured accuracy “92.57%”). From the above tables I concluded

that values al=0.94 and a2=0.75 (with P=2) gave the best balance between the error

latency and fault diagnoses.

This host crash detection technique makes effective use of fault-tolerant master-host and

affords flexible mapping between the logical and physical connectivity of nodes.

33

CHAPTER 3. The Error Detection Mechanism (EDM)

An alternative technique used in STAR [Sens 93], operates a logical ring o f crash detec

tion, where each host only checks its immediate successor in the ring. Although this tech

nique reduces the message traffic, it introduces a limitation associated with the dependence

on network structure. The logical structuring of the crash detection ring must match the

physical connectivity of the nodes in the network, which is not always possible, e.g the

user/programmer might choose to omit certain computing nodes from the logical structure

of the distributed system.

3.4.2 Detecting Application-Task Failures

Transient hardware failures can cause the failure of the application processes. Most of these

errors are detected by mechanisms built in the system hardware and operating system ker

nel. These mechanisms include traps for illegal instructions, bus errors, segmentation

faults, interrupts, arithmetic exceptions, etc. An elaborate study for the Sun SPARC system

EDM can be found in [Young 74]. The errors that cannot be revealed by the system EDM,

are classified as inherent design faults and imply the need to re-design the hardware and/or

the OS kernel.

Upon the detection of an error the kernel EDM kills the affected process with a signal

number that corresponds to the error type. Hence, the process monitoring user-tasks oper

ates as follows: Initially, it receives the ID’s of the active user-tasks, and waits indefinitely

for a task to exit. When a user-task exits, the monitoring process analyses the task exit sta

tus to determine whether it exited normally or prematurely due to a failure. In both situa-

34

CHAPTER 3. The Error Detection Mechanism (EDM)

tions the task is removed from the active tasks table, but the in case of task failure, the fault

is reported to the EDM as illustrated in Figure 3-4.

failed
task id

exit
status

J y failed
V task id K recovered V l

vO task id v
crashed
host id

normal
exit task id

failed
task id °

REPORT TASK
FAILURE

MONITOR
USER TASKS

WAIT FOR
TASK TO EXIT

ANALYZE
TASKJEXIT

STATUS

REMOVE TASK
ID FROM ACTIVE

TASK TABLE

ADD RECOVERED
TASK TO ACTIVE

TASK TABLE

GET ID’s OF TASKS
RUNNING ON

CRASHED HOST

RECV. RECOVERED
TASK ID ’s FROM

RECOVERY MECH.

FIGURE 3-4 User-Task Monitoring

The monitoring process also receives notifications from the fault-tolerance recovery mech

anism about the recovered tasks and includes their ID’s in the active tasks table.

With regard to the user-assisted error detection, a special signal handler was dedicated to

service the detection of such errors. All that the programmer has to do is to raise an inter

rupt with a predefined signal number and the detection mechanism will handle the error as

if it was raised by the kernel EDM.

3.5 Implementation Details

3.5.1 Terms and Definitions

FADI error detection mechanism was implemented using the Parallel Virtual Machine

(PVM) as the underlying message passing interface. PVM offers via a high-level interface

most of the facilities required for distributed programming: process control, inter-task com

munication, and process synchronization in a heterogeneous environment. The main PVM

routines used for the implementation of the FADI EDM system are listed below:

35

CHAPTER 3. The Error Detection Mechanism (EDM)

• pvm_spawn() - starts a new process on the specified host;

• pvm_barrier() - blocks the calling process until all processes in a group have called it;

• pvm_send() - sends a message to another process (including processes in remote hosts);

• pvm_recv() - receives a message (the calling process is blocked until msg is received);

• pvm_nrecv() - non-blocking receive;

• pvm_trecv() - receive with timeout;

• pvm_notify() - requests notifications of a certain event in the parallel machine.

The use of the PVM interface for process control and interprocess communication requires

a minimum level of application code modifications. In addition to linking applications with

the FADI EDM library, the application code must include two statements at the start and

the end of the main() function: pvm_mytid() and ed_pvm_exit(). The first routine is neces

sary to enrol the task in the PVM system and the second is for the EDM to identify the task

upon successful termination.

The following definitions are used in the functional description of the error detection mech

anism:

• a c t iv e j h o s t s : nodes that are currently considered as “operative” in the distributed sys

tem;

• tack_timeout: maximum acceptable interval to wait for host acknowledgment. This

variable is dynamically updated in relation to the network load;

• host_group: dynamic group of processes that contains the Host_Monitoring task run

ning on the master host and the host_watchdog tasks running on active_hosts;

• hn: number of activejhosts;

• active_tasks: user-tasks currently running in the distributed system;

• receivedjrnessage_type: identification tag attached to the message;

• SuccessfulJTermination: user-task was executed successfully;

• WaitJExit: user-task exited;

• TaskJRecovered: failed user-task recovered by the fault-tolerance recovery mecha

nism.

36

CHAPTER 3. The Error Detection Mechanism (EDM)

3.5.2 Functional Description

Functional description of the EDM tasks is shown in Figure 3-5, 3-6 and 3-7. Host crash

detection is initialised by starting the host_watchdogs on the active hosts. The sole task of a

host_watchdog is to send an acknowledgment message to the central HostCrashDetection

task upon the receipt of an ack_request. pvm_barrier() is used to synchronize communica

tion between the HostCrashDetection task and HostWatchdog tasks.

After each detection cycle, the EDM scans for recovered hosts. Firstly it checks if there are

any pending acknowledgments from hosts considered as crashed at the previous detection

cycle(s). The delay in receiving these messages might have been caused by network over

load, but the host was considered failed regardless, because the delay exceeded

tackjtimeout. If that is the case, then contact with the recovered host is reinstated. Next the

system checks if there is any notification sent by the user about manually recovered hosts,

the recovered hosts are added to the active-hosts pool, and the watchdog task is restarted on

them.

CHAPTER 3. The Error Detection Mechanism (EDM)

InitializeO
pvm _spaw n(host_w atchdog on active_hosts)
pvm _barrier(host_group , h n + 1)
H ostC rashD etection()

e n d Initialize

HostCrashDetectionO
rep ea t

pvm _send(ack_requests to host_w atchdogs in ac tiv e jh o s ts)
f o r ea ch a c tiv e jh o s t d o

pvm _trecv(replies to a ck jreq u ests from host_w atchdog /
in ta c k _ tim e o u t)

z /rep ly no t received th e n
rem ove host from active_host_ tab le
report the h ost fa ilu re
se t tack_tim eout to zero

e n d i f
e n d
ScanJForRecoveredHosts()

u n til stopped
e n d H ostC rashD etection

ScanForRecoveredHosts()
pvm _nrecv(delayed rep ly from failed (considered crashed) h o s t)
i f rep ly received th en

add host to active_host_ tab le
e n d i f
pvm _nrecv(notification ab o u t m anual host recovery from u s e r)
i f notification received th e n

pvm _spaw n(host_w atchdog on recovered h o s t)
add host to ac tive_host_ tab le

e n d i f
e n d ScanForR ecoveredH osts

f i g u r e 3-5 Central Host Monitoring Task

HostWatchDogO
pvm _barrier(host_group , n + 1)
rep ea t

pvm _recv(ack ._ request from detec tion task on m as
ter h o s t)

pvm__send(rep ly to th e a c k jr e q u e s t)
u n til s to p p e d

e n d H ostW atchD og

f i g u r e 3-6 Host Watchdog Task

Monitoring the user-tasks starts by executing pvm_notify(). With TaskExit as an argument,

this function causes all user-tasks registered in the distributed system to send notification

38

CHAPTER 3. The Error Detection Mechanism (EDM)

messages with message tag “WaitJExit” to the calling task upon their exit. However, this

notification does not manifest itself if the task exited abnormally or due to a fault. In order

to overcome the last problem the pvm_exit() routine has been overloaded, and it automati

cally sends a message tagged with “Successful_Termination” declaring the successful exe

cution of the user-task. Because PVM guarantees the order of messages delivered from one

source, if a Wait_Exit message is received before Successful_Termination message from

the same task, this means that a failure occurred and the task was abnormally aborted.

As can be noticed from Figure 3-7, the monitoring task is message driven, i.e managed by

analysing messages sent either by the user-task (Wait_Exit and SuccessfulJTermination) or

the fault-tolerance recovery mechanism (Task_Recovered).

MonitorUserTasks()
pvm _notify(about T a skE x it o f active_tasks w ith m s g j y p e /

W ait_Exit)
re p e a t

pvm _recv(any m essage from active_tasks)
c a se received_m essage_type o f \

Successful T erm ination:
add task to norm al_exits record
b rea k

W ait E x it:
i f task in norm al_exits record th en

report successful task term ination
e lse

report task failure
e n d if
rem ove task from active_task_table
b rea k

Task R ecovered :
add task to active_task_table
pvm _notify(about T askE xit o f recovered_task)
b reak

e n d ca se
u n til all tasks exited successfu lly

e n d M onitorU serTasks

f i g u r e 3-7 Monitoring User-Tasks

Taking into consideration the centralised error detection and the delays to the message

passing interface that might be caused by the overload of the network, the error latency of

detecting task failures can be calculated with 99% confidence by the formula:

Tlatency. = E(Tedm) + 3 x a (Tedm) +RTT.
I X

(EQ 3-4)

39

CHAPTER 3. The Error Detection Mechanism (EDM)

where:

E(Tedm) - average reaction time of the kernel error detection mechanism;

a(Tedm) - standard deviation of the Tedm;

RTT. - estimated round-trip time from the master host to active_hosts.

3.6 Testing The EDM System

In order to test the reaction of FADI error detection mechanism to permanent hardware

faults, two processor node crashes were engineered:

1) powering down one of the distributed system nodes (SPARCstation IPC). In this case,

the error latency was 0.63 seconds upon network load of: (Trtt = 76 msec).

2) disconnecting a processing node from the Ethernet. The error latency was 0.58 seconds

under (Trtt = 52 msec). When the connection was restored, the EDM diagnosed that the

crash was caused by network delay and reinstated the “recovered” host to the active host

pool.

Three types of hardware transient failures were simulated by software-based error injection

to test the efficiency of error detection for failed application tasks: a) Bus errors were simu

lated by attempting to access a non-aligned (even) memory address; b) Segmentation faults

were generated by performing a write to a read-only memory location; c) An attempt to cal

culate the square root of a negative number was performed to raise an arithmetic exception.

Table 3-3 gives a representative sample of results for “bus error” .

Since the test experiments in Table 3-3 table were performed under approximately the same

network load conditions, i.e implying the same Trtt, then according to formula 3-4, the

error latency is determined by the reaction time of the OS kernel EDM (Tedm). Therefore,

nodes running the same operating system have been found to have similar error latency.

40

CHAPTER 3. The Error Detection Mechanism (EDM)

TABLE 3-3 Detecting Transient Hardware Faults

Master Host & Remote Host & Latency
Arch. / OS Arch. / OS (seconds)

Hostl Hostl
SPARC multiprocessor 0.974
SOLARIS 2.4

Host2
w SPARCstation 0.802

SOLARIS 2.4

Host3
// SPARCstation 0.731

SOLARIS 2.4

Host4
// SPARCstation 0.291

SUNOS 4.2

Host5
// SPARCstation 0.286

SUNOS 4.2

Host6
rr HP-APPOLO 400 0.305

HP-UX08

Host7
rr HP 340 0.343

HP-UX08

3.7 Conclusions

This chapter presented an efficient user-transparent error detection mechanism for distrib

uted systems. The detection mechanism covers processor node crashes and hardware tran

sient failures (e.g bus errors, segmentation faults, etc.). The EDM also enables integration

of user-programmed error checks into the error detection mechanism.

We implemented a modular and efficient centralised error detection structure, where the

main error detection modules (remote-host & user-process monitoring tasks) run on a fail

ure-free master host. It is assumed that the processing nodes are fail-silent, and therefore,

faults in the communication link (e.g messages delivered with erroneous content, or the

sending of extra messages) are not considered. The detection mechanism does however,

cater for a possibility of propagation of errors in the distributed computing system by

allowing a non-zero error latency.

41

CHAPTER 3. The Error Detection Mechanism (EDM)

Since this research is motivated by developing a reliable support environment for distrib

uted computing, message traffic on the inter-connection network might affect the error

detection latency. Therefore, a mechanism was implemented that dynamically measures the

round-trip time of the underlying network and updates the host acknowledgment time-out

and error latency accordingly.

The detection mechanism was tested on a set of heterogeneous workstations connected by

Ethernet and the results show that the system is viable for network distributed computing.

42

CHAPTER 4 Backup and Recovery of User-
Application Processes

Chapter 4 begins with the explanation of the basic concepts of checkpointing and rollback

recovery. It then reviews current trends in checkpointing technology and introduces FADI

checkpointing mechanism and the measures taken to reduce its overhead on the run-time

of the checkpointed application. The chapter is concluded by evaluating the performance

of the checkpointing/rollback mechanism and summarizing the research results.

4.1 Saving the State of the Application Process: An Introduction

This research focuses on scientific and engineering applications that are computation

intensive but do not have stringent real-time constraints. While the required level of relia

bility for such applications necessitates the prevention of the loss of the results of the

long-running computations, it does not justify the use of expensive hardware replication

fault-tolerance techniques. Checkpointing and rollback provides support for fault-toler-

ance without requiring the duplication of the underlying hardware or the replication of the

application processes.

4.1.1 The Checkpointing Process

To checkpoint an application, its entire state is periodically saved into stable storage. In

the case of a fault, the system can be restored (rolled-back) to a previously valid check

point state. With checkpointing in place, loss of computation can be reduced to that which

is performed between checkpoints.

The checkpoint contains the complete state of a process. It is a fairly complex task to

determine the smallest necessary contents of the checkpoint. It includes system - as well as

application parameters. For a UNIX process the system parameters include the state infor

mation about the process maintained by the kernel, i.e the state of the process registers,

any special handling requested of various signals, and the status of open files and file

descriptors. The application parameters mainly consist of the process address area (text,

data, and stack segments). If the checkpoint is saved as a hot backup, i.e a freezed live

43

CHAPTER 4. Backup and Recovery o f User-Application Processes

copy of the original process, then rolling-back will imply simply activating the checkpoint.

If the checkpoint is stored as a cold backup “to disk”, then at the time of recovery, the proc

ess is loaded as it would be if it was started for the first time. Its address space is then allo

cated and copied from the recorded memory information.

4.1.2 Checkpoint Interval

The checkpointing frequency (and thus the length of the checkpointing interval) has a large

impact both on the overhead during failure-free operation and on the work-progress that

will be lost when rolling back. The optimal checkpointing interval is mainly dependent on

the failure-rate of the system, on the time it takes to do the checkpointing (failure-free over

head) and the user/programmer consideration of the acceptable loss in computations due to

a failure.

Several methods for adapting the length of the checkpoint interval (or to adjust the check

pointing frequency) can be given. The most important ones include:

• determination by the programmer when the checkpointing-routines are invoked. Chandy

and Ramamoorthy [Chandy 72] originally proposed a graph-theoretic method by which

the programmer could decide where to insert checkpoints. The program is decomposed

by the programmer into a sequence of tasks between which the checkpoint can be

inserted. It is assumed that the execution time, the checkpointing time and the recovery

time for each of these tasks is known in advance. With this information their algorithm

can determine the optimal places to insert checkpoints so that the checkpoint time and

run time can be minimised. A similar approach was taken by Toueg and Babaoglu

[Toueg 84], However, as indicated by Chandy and Ramamoorthy, this approach requires

a large effort on the part of the programmer to partition the program, to determine the

execution time of program segments, and to select optimal checkpoints.

• invoking the checkpointing after k messages have been sent [Bhargava 88]. This

approach is application-dependent and is beneficial only if the number of sent messages

indicates that a useful computation cycle is executed and checkpointing is necessary to

safe-guard it.

44

CHAPTER 4. Backup and Recovery o f User-Application Processes

• invoking the checkpointing after t local clock ticks (when a pre-stable timer gets off). In

[Young 74] a first order approximation to an optimal checkpoint-interval (t clock ticks)

with respect to checkpointing duration and MTBF (mean time between failure) is given.

In [Geist 88] an optimal checkpoint interval for transaction processing is given, as a

function of system down-time. It maximises the probability of critical-task completion

on a system with limited repairs.

This research aims to develop a generic environment for the reliable execution of distrib

uted applications. Therefore, the checkpointing interval has to be determined in an applica

tion-independent manner, which favours the last approach. Additionally, in a distributed

processing environment, the last approach alleviates the complexity of finding consistent

recovery-lines of the distributed application tasks because all checkpoints can be taken

approximately at the same time interval and hence reduces roll-back time of the applica

tion. In this work checkpointing is invoked at regular intervals that are determined by the

user/programmer according to the reliability requirements of the application.

4.2 Review of Checkpointing Technologies

While there has been a great deal of research into checkpointing algorithms aiming at the

derivation of consistent checkpoints, there is very little published work on checkpointing

implementation and performance. From the transparency of implementation point of view,

reported checkpointing techniques can be broadly classified into two categories:

4.2.1 Checkpointing Built into the Operating System

With these techniques, the checkpointing/restart protocols were either envisaged upon the

development of the operating system, or part of the system kernel was re-designed and

modified to accommodate the fault-tolerance facilities. KeyKOS and UNICOS are two

examples of systems using such checkpointing technology:

$ KeyKOS

The KeyKOS [Landau 92] is an object-oriented microkernel operating system. KeyKOS

achieves persistence of objects by taking frequent system-wide checkpoints of the entire

system state to disk. On restart from a failure, the entire system is restored to the state of

45

CHAPTER 4. Backup and Recovery ofUser-Application Processes

the last checkpoint, and processes resume execution as if there had been no interruption.

The KeyKOS kernel was built around the idea of having reliable persisting objects, there

fore, many of the system resources were built to support checkpointing, including the pag

ing system, virtual memory and non-volatile storage swapping. For example, paging of

virtual memory is integrated with the checkpointing mechanism, allowing KeyKOS to

achieve high disk I/O performance while writing out the checkpoint. A drawback of the

system is that all the processes running in the kernel domain are stopped until a snap shot of

the entire system can be taken regardless of the behavioural model and reliability require

ments of each individual application.

t UNICOS

UNICOS [Attig 93] operating system provides facilities for checkpointing of NQS Batch

Jobs running on CRAY systems. It provides automatic checkpointing for all tasks running

under its kernel, and also offers the user/programmer the possibility to change the time

interval between two checkpoints and to switch to user-triggered checkpointing. The UNI

COS spawns a checkpointing daemon that engages in a wait loop, waiting for a signal to

arrive. The signal can be sent by the system alarm, by a user-defined timer, or directly from

a user program (in case of user-triggered checkpointing). Upon receipt of the signal, check

pointing is performed for the corresponding NQS jobs which can be restarted from the

saved checkpoint files. CRAY UNICOS report claims that the CPU time overhead induced

by the additional checkpointing activity is negligible. For a 10 CPU hours, using the default

checkpointing interval of 30 minutes and considering a normal production batch job (with

average memory usage), the total CPU time spent for the checkpointing feature is about

240 milliseconds. In spite of the impressive performance, checkpointing in UNICOS is

limited not only to the hardware platform of CRAY systems, but also to the NQS requests

applications.

The conclusion is that despite the efficiency demonstrated by operating system built-in

checkpointing/rollback mechanisms, they are not portable outside their environment, and

are specialized in certain class of applications. Moreover, the extensibility and reusability

of these mechanisms is virtually limited to their developers because of the necessity of a

low-level knowledge of the OS kernel design and architecture to add/modify fault-toler-

ance library modules.

46

CHAPTER 4. Backup and Recovery o f User-Application Processes

4.2.2 Checkpointing Built on the Top of the Operating System

These techniques use existing operating system facilities to save the execution state of the

process, without the need for processing OS kernel libraries. Among these systems the fol

lowing are reviewed:

$ System kernel core dump

This checkpointing technique was developed as part of the Condor software package

[Briker 91]. Two components of the UNIX process must be taken into consideration in

order to save its state: the process address area (text, data, and stack segments), and the

state information about the process maintained by the kernel. The state of the process regis

ters, any special handling requested of various signals, and the status of open files and file

descriptors.

The idea is to create a new checkpoint file from pieces of the previous checkpoint and a

core image. The checkpoint itself is a unix executable file (“a.out”) [Litzkow 92]. While

core files are generally intended to aid in debugging a failed process, they also serve as a

portable mechanism for saving the state of a process at a given point in time.

In order to save the process state a kernel core dump has to be produced by sending a termi

nation “SIGQUIT” signal to itself.

The text for the new checkpoint (executable) is of course an exact copy of the text from the

original. This core dump is then processed to copy the data area recorded in it to the initial

ised data area of the new executable file (Figure 4-1). The saved stack area is also copied

into the new executable in a section which is not normally used by the UNIX process ini

tialisation mechanism. At a later stage the old stack is restored and the program counter

(PC) is set to resume execution where it stopped in the original process.

47

CHAPTER 4. Backup and Recovery o f User-Application Processes

O ther info O ther info

Stack Stack
O ther info

D ata D ata
Stack

D ata
Text

Core
Previous Checkpoint
(or original process) Text

New Checkpoint

f i g u r e 4-1 Creating a New Checkpoint By Kernel Core Dumping

A disadvantage of this method is the large size of disk space that the core dump occupies

which implies significant network communication overhead. Moreover, the extensive

manipulation of the data in the core to produce a core dump requires dealing with highly

platform specific formats of the “core” and “a.out” files which restricts the system portabil

ity

$ A Checkpointing Mechanism for Mach3.0/UX

Russinovich and Segall in [Russinovich 95] present an application-transparent checkpoint

ing mechanism for Mach 3.0/UX operating system. Their checkpointing implementation

relies on a Mach 3.0 property that allows a process to use a pager that is external to the ker

nel to manage its memory. The checkpointing implementation uses this feature to add

memory management to Mach 3.0/UX - the Mach implementation of UNIX 4.3BSD. Proc

esses that run with the checkpointing policy use the Mach 3.0/UX pager to keep track of

page modifications. After the process has been started, the pager keeps track of any modifi

cations on page by page basis. At a checkpoint these modified pages are saved to stable

storage.

At the time of recovery, a process is loaded as if it were started for the first time. Its address

space is then allocated and copied from the checkpointed memory information.

The checkpointing mechanism also performs complex processing of the OS process control

blocks, file descriptors, etc. to record the OS maintenance information of the process.

48

CHAPTER 4. Backup and Recovery o f User-Application Processes

With this technique, monitoring and update of page modifications incurs an overhead on

the failure-free operation of the application. The application processes are also suspended

whilst taking a snapshot of the whole system state. This is reflected in the comparatively

moderate performance of this checkpointing/rollback mechanism: for a typical workstation

environment snapshots take less than 10 seconds and checkpoint commit duration up to 45

seconds (maximum measured checkpoint commit of FADI checkpointing mechanism was

5 seconds).

$ Libckpt

Libckpt is a tool for transparent checkpointing on uniprocessors running UNIX [Plank 95].

It implements incremental and copy-on-write checkpointing, and introduces user-directed

checkpointing facility that works under the assumption that the user/programmer has ade

quate knowledge of the functionality of the application.

In Libckpt, incremental checkpointing uses page protection hardware to identify the

unchanged portion of the checkpoint, so that only the portion that was updated since the

previous checkpoint is saved. This reduces the size of each checkpoint, and thus the over

head of checkpointing. However, incremental checkpointing can yield little or no reduction

in the size of checkpoints if a large segment of the application program is modified between

checkpoints.

Libckpt user-directed checkpointing is used to exclude static or temporary memory loca

tions from the checkpoint, thus reducing its size. This is achieved by specifying points in

the program where it is most advantageous for checkpointing to occur. Experimental

results in libckpt have proven that user-directed checkpointing can yield large improve

ments in the performance of checkpointing. However, the utilisation of this method in a

distributed environment - where the checkpointing of all the application processes has to be

coordinated to guarantee consistent rollback- is very cumbersome. It requires extensive

bookkeeping (checkpoints order in time, history of sent/received messages, etc.) to keep

track of dependencies between processes that take their checkpoints asynchronously.

Libckpt saves the state of open files with the checkpoint but does not consider the handling

information of the OS signals requested by the checkpointed process.

49

CHAPTER 4. Backup and Recovery o f User-Application Processes

Although Libckpt offers more optimizations to the checkpointing mechanism, most of

them are not suitable for distributed computing as described above.

$ Bytestream Checkpointing

This is the checkpointing and process migration mechanism for Condor - a batch process

ing system for UNIX. Condor serves the purpose of executing long-running, computation

intensive jobs on workstations which would otherwise be idle. When Condor detects an

activity on a workstation upon which it is currently running a job, it creates a checkpoint of

the job before killing it. This checkpoint is written to disk and contains all the process state

information necessary for Condor to restart the job exactly where it left off. Once a work

station becomes available, Condor transfers the checkpoint to the new workstation and

restarts the job.

The Condor system has a different objective to FADI: It does not support inter-process

communication and the checkpointing/rollback module is designed for process migration

rather than for supporting fault-tolerance (e.g no integrated error-detection mechanism is

available). However the idea of core checkpointing and job restoration is of relevance to

FADI.

The basic idea of bytestream checkpointing is that a checkpointing process should write its

state information (stack, data, OS and processor information) directly into a disk file, and a

restarting process should read that information directly from a disk file byte by byte - hence

the name “bytestream”.

Unlike in core-dump checkpointing only the state information needed for process restora

tion has to be saved. This information is retrieved directly without the need for complex

pre-processing of the OS platform-specific memory maps, process control blocks, or ker-

nel-dump format. This increases the checkpointing efficiency, and enhances the recovery

system portability. The Bytestream code is freely distributed (public shareware) with the

Condor software package - university of Winscon-Madison ftp site: ftp.cs.wisc.edu/condor,

and is supported by comprehensive documentation.

50

ftp://ftp.cs.wisc.edu/condor

CHAPTER 4. Backup and Recovery o f User-Application Processes

4.3 Bytestream Checkpointing: The Mechanism Functionality

The goal of checkpointing is to establish a recovery point in the execution of the program,

and to save enough state to restore the program to this recovery point. For a UNIX process

(Figure 4-2), this recovery point consists of the process address space which is generally

divided into text, data, and stack areas, along with other state information about the process

maintained by the kernel. This information includes the state of the process registers, any

special handling requested for various signals, the status of open files and file descriptors.

The following paragraphs briefly explain how every component of the process state is indi

vidually saved and restored.

S t a c k P o in te r (S P) -------- ^

s b r k (0) -------- ^

P r o g r a m C o u n te r (P C) >

f i g u r e 4-2 Address Space of a UNIX Process

$ Text and Data Segments

Statically linked UNIX processes are created with their entire text loaded into virtual mem

ory by the kernel, generally beginning at address “0 ”. Since the same executable is used

for both the original invocation and when restarting a process, nothing has to be done to

save and restore the text segment.

A process data generally begins at some page boundary above the text area, and is a contig

uous area of memory. Once the process begins execution, the initialised data may be over

written, therefore, information in the executable file cannot be used to save this area.

Instead, in Condor Bytestream checkpointing, the entire data segment is written to the

checkpoint file at checkpoint time, and is read back into the same address space at restart

K ernel D ata A rea

m ain()

foo()....

A llocated D ata(heap)

U ninitialised D ata

Initialised D ata

C heckpointing P ro logue

U ser Text

Stack Area

D ata Area

Text Area

51

CHAPTER 4. Backup and Recovery o f User-Application Processes

time. To accomplish this, the start and end address of the data segment are needed. The

starting address is constant location that is usually platform specific and can be found as a

linker directive in the man pages. The ending address is effectively the top of the heap. This

address can be obtained within UNIX via the sbrk() system call.

$ Stack Segment

Preserving the stack requires saving and restoring the stack context (data structure contain

ing the stack pointer amongst other stack related information), and the actual data that

makes up the stack itself.

To save and restore the stack context, standard “C” functions setjmpQ and longjmpQ are

used. setjmpQ is called with a pointer to a system defined type called a JMPJBUF.

setjmp() saves the current stack context into JMP_BUF and returns “0”. If longjmp() is

then called with a pointer to the JMP_BUF and some value other than “0”, the stack con

text saved in JMP_BUF is restored and the execution returns back in the code to the point

where the original setjmpQ was made. This time the return value from setjmp() is the one

specified in the longjmp() call, i.e something other than “0”.

However, a limitation of setjmp()/longjmp() is that JMP_BUF does not contain the actual

data contained in the stack space itself, only pointers into the stack space. To save the stack

data, the stack’s start and end points are required. The start of the stack is a well known

static location which is defined as a constant on some platforms, or can be obtained from

the man pages on others. The end of the stack, by definition, is pointed by the stack pointer.

Thus, to determine the end of the stack, setjmp() is called to pull the stack pointer value

out of the JMPJBUF.

Restoring the stack is more difficult. Unlike restoring the data area, the stack space is used

(for local variables) while being replaced. Directly replacing a process stack space with the

space saved in the checkpoint file will irreversibly corrupt the executable image. To avoid

this, the stack pointer is moved into a safe buffer reserved in the process data area. Moving

the stack pointer is accomplished with yet another call to setjmp(), manually manipulating

the stack pointer in the JMP_BUF to point to our buffer in the data area, followed by a

Iongjmp(). Then, the reserved space in the data area is used as a temporary stack to safely

replace the process original stack area with the one previously saved in the checkpoint file.

52

CHAPTER 4. Backup and Recovery o f User-Application Processes

So when moving the execution stack pointer back to its original place, we will effectively

be using the restored stack.

t Open Files

Any files which are held open by a process at checkpoint time should be re-opened with the

same “attributes” at restart time. The attributes of an open file include its file descriptor

number, the mode in which it is opened (e.g. read, write, or read-write), the offset to which

it is positioned, and whether or not it is a duplicate of another file descriptor. These

attributes are recorded at the time the file descriptor is created via an open() or dup() sys

tem call. The offset at which each file descriptor is positioned is captured at checkpoint

time by performing lseek() system call upon each file descriptor. All this information is

kept in a table in the process address space. Upon restart, the checkpointing prologue walks

through this table and re-opens and re-positions all of the files as they were at checkpoint

time.

$ Signals

In a UNIX process, signals may be blocked, ignored, take default action, or invoke a pro

grammer defined signal handler. At checkpoint time a table is built, again in the process

data segment, which records the handling status of each possible signal. The set of blocked

signals is obtained from the sigpromask() system call, and the handling of each individual

signal is obtained from the sigaction() system call. During restart, signal states are restored

by stepping through this table. To handle pending signals (sent to a process while that proc

ess has the signal blocked), the checkpointing mechanism determines the set of pending

signals with the sigispending() system call at checkpointing time call at checkpoint time.

During restart, the checkpointing library first blocks each pending signal, then sends itself

an instance of each pending signal. This ensures that if the user code later unblocks the sig

nal, it will be delivered.

$ CPU State

Saving the state of the process is potentially the most machine-dependent part of the check

pointing code. However, a characteristic of UNIX signalling mechanism is that the signal

handler saves and restores all the relevant CPU states. In other words the signal handler can

53

CHAPTER 4. Backup and Recovery ofUser-Application Processes

interrupt the execution code, but when it returns, the interrupted code should continue with

out error. Hence, with the bytestream checkpointing mechanism a checkpoint is always

invoked by means of sending the process a signal.

4.3.1 Limitations of Condor’s Bytestream Checkpointing

The most important shortcoming of bytestream checkpointing is its inability to checkpoint

and migrate one or more of a set of communicating processes. Processes which communi

cate with each other via signals, sockets, pipes, or those that are dynamically created via

fork() or execQ are not dealt with in Condor’s bytestream checkpointing. Another limita

tion is that the mechanism does not maintain the integrity of files if they are updated

between checkpoints. At checkpoint time the offset location of the file is recorded and the

file is rewound to that position upon restart, but modifications made to the file structure

after taking the checkpoint are not undone.

4.4 Checkpointing and Rollback in FADI

The FADI checkpointing mechanism is intended to safe-guard the distributed application

processes against faults that might occur in the underlying hardware. If all the distributed

application processes are consistently checkpointed then, when the error detection mecha

nism detects a fault, the affected application processes can be rolled-back to the most recent

global checkpoint and then restarted on the same host if the fault is temporary, or migrated

to another host if the hardware fault is permanent.

Because FADI is intended to operate with NO additional hardware to support fault-toler-

ance there is a need for a degree of homogeneity of the distributed system, i.e at least one

spare node per CPU architecture where the application processes can be rolled-back in case

of permanent hardware failures.

The checkpointing/rollback mechanism should have access to a centralised file system

(NFS type) that is identical to all the distributed system hosts. This is important for the

relocatability of the application processes: if the process is recovered on another hardware,

their checkpoints should still be accessible. This file system will form the stable storage for

saving the checkpoints, therefore, it is necessary for it to survive the crash of the individual

nodes of the distributed system.

54

CHAPTER 4. Backup and Recovery o f User-Application Processes

FADI integrates Condor byte stream checkpointing model into the fault-tolerant environ

ment checkpointing/rollback mechanism to aid in saving the execution state of the applica

tion process [Taha 97].

4.4.1 The Interface to the Checkpointing Mechanism

Our goal is to provide a fault-tolerant environment that is transparent to the user/program

mer. However, unlike truly fault-tolerant operating systems such as KeyKOS and Sprite

[Doughs 91], where process models are carefully defined and implemented to accommo

date checkpointing and migration, creating a user-transparent checkpointing mechanism in

a general purpose operating system like UNIX is possible only with some automated pre

processing of application source code.

The main pre-processing change made to the user code is the modification of the name of

the initial procedure in user program from main() to user_main(). This enables FADI

checkpointing prologue to gain control of the program as it starts, check the command line

to verify if this is a normal run of the user program or a request for a rollback as a result of

fault. The parameters passed to the checkpointing prologue are:

“ <start/roll> <path> <checkpoint_interval> where:

start/roll - specifies if this the required execution is a normal run of the user program, or a

request for a rollback to the last checkpoint to recover from a fault.

path - specifies the directory in which the checkpoint files are created. The default is the

current directory.

checkpointJnterval - defines the interval between checkpoints. As argued in section 4.1.2,

checkpointing the application processes at pre-determined intervals is particularly advanta

geous for distributed applications. It simplifies finding consistent recovery lines of the dis

tributed application tasks as all checkpoints can be taken at the same checkpointing

interval. FADI checkpointing prologue calls setitimer() that sets the local system interval

timer to signal SIGALRM at the elapse of every checkpoint_Jnterval. The signal handler

for SIGALRM interrupts the execution of the target user code and initiates the checkpoint

ing process.

55

CHAPTER 4. Backup and Recovery ofUser-Application Processes

4.4.2 Saving the User-Files State

Condor bytestream checkpointing code and most existing checkpointing algorithms sup

port saving the state of user-files only to a limited extent. Condor confines user-files check

pointing/rollback to recording the file’s attributes and offsets at checkpoint time. When

rollback is initiated, the file is re-opened with the same attributes and its pointer is moved

to the offset recorded at checkpoint time. Some algorithms go further and record the file

size at checkpoint time, upon rollback, the user-file is truncated to the recorded size. This

simple approach to save the file state has two shortcomings:

1) This scheme deals only with files that were active at the time of taking the checkpoint.

Figure 4-3 gives an example for which the above solution will result in corrupting the data

structure of the file. In Figure 4-3, the size of int.dat is not recorded in the checkpoint

because it is not active at checkpoint(). As a result, int.dat is not truncated when a rollback

occurs, and the character “4” will be incorrectly appended twice.

/* user file “ in t.dat” con tains three integers: 1,2 and 3*/
checkpoint!);

fp = fopen(“ in t.dat” , “a”); /* for append */
fprintf(fp, “% d”, 4);
fcolse(fp);

/* failure occurs, ro ll back */

unlink(“in t.d a t”); /* rem ove the file */

FIGURE 4-3 Example of Incorrect Rollback of Files Opened for Append

2) Modifications made to the contents of the file are not undone upon rollback. In Figure 4-

4, the integer value held in the file is updated after checkpoint!). As a result, upon rollback

the file will contain an incorrect initial integer value of “9” instead of “3”.
/* user file “in t.da t” holds in itial in teger value = “3” *1

checkpoint!);

fp = fopen(“in t.da t” , “+ r”); /* fo r update */
pos = ftell(fp) /* g e t current o ffse t o f “in td a t” */
fread(& d, sizeof(in t), fp); /* d is = 3 */

d = d**2;

fseekffp, pos, SE E K _S E T); /* rew ind file to p repare for update */
fw rite(& d, sizeof(in t), 1, fp);
fcolse(fp);

/* failure occurs, ro ll back */

f i g u r e 4-4 Example of Incorrect Rollback of Files Opened for Update

56

CHAPTER 4. Backup and Recovery o f User-Application Processes

These incorrect rollbacks can be avoided only by direct intervention of the programmer,

otherwise they can often lead to unpredictably corrupt files. Requiring the users to under

stand and deal with such limitations on file rollback contradicts the requirements of trans

parency and ease of use.

FADI maintains the integrity of user-files across the checkpointing/rollback process by

tracking appends and updates to user-files. UNIX system calls and “C ” library functions

that write to user-files are augmented by in-house functions that first perform bookkeeping

operations before calling the requested system call or "C” library function. The developed

algorithm to save the user-files state is depicted in Figure 4-5.

upon opening a file
- record file nam e and attributes in open-files table;
- if the file w as opened fo r append, then:

if file nam e is not in appended-files table, then add it to the table

and record its size into stable storage;

- call the OS open rou tine w ith the g iven attributes.

upon writing to a file open for update
- if a shadow copy o f the file does no t already exist, then create one;

o therw ise, if file nam e is no t in updated-files tab le , add it to th e table;
- call th e requested w rite routine (w rite , fw rite, prin tf, etc.).

upon writing to a file open for append
- if file nam e is not in appended-files table, add it to the table;
- call the requested w rite routine (w rite, fw rite, prin tf, etc.).

upon closing a file
- rem ove file nam e from open-files .table;
- call OS close routine.

upon checkpointing
- m ake shadow copy o f all files in updated-files tab le , then c lea r the table;
- update file size o f all files in appended-files table, then clear th e table.

upon rollback
- replace files opened for update w ith their shadow copies;
- truncate files opened fo r append to their recorded sizes;
- re-open all files active at last checkpoin t w ith the sam e attributes.

FIGURE 4-5 FADI Algorithm for Saving and Restoring the State of User-Files

57

CHAPTER 4. Backup and Recovery o f User-Application Processes

4.4.3 Looking Ahead: Checkpointing and Message Passing

PVM is adopted as the message passing interface for FADI. It provides FADI with the tools

to facilitate the communication between FADI control and monitoring tasks on one hand

and between the distributed application processes on the other.

In order to enable FADI central error detection and task recovery tasks to interact with the

checkpointed code, and allow the distributed application programmer to use PVM power

ful communication facilities, the following measures had to be taken:

• at the start of the program execution the checkpointing prologue calls pvm_mytid() to

enrol in PVM, allowing PVM to open communication channels between the current

processes and others running under the PVM daemon on local and remote hosts;

• Investigation into PVM message passing interface has shown that taking a checkpoint

when PVM routines are packing or unpacking data messages can corrupt the message

content. The checkpointing mechanism can not checkpoint and recover whilst PVM is

performing complex manipulation of TCP/IP sockets operations and data format con

versions between different platforms. Therefore, in order to maintain the integrity of

transformed data, checkpointing has to be temporarily blocked until the packing/

unpacking process is completed. This is achieved by augmenting PVM routines respon

sible for packing/unpacking interprocess messages.

When the user requests packing or unpacking of a message a special routine is called

that firstly executes sigblock() to mask out the checkpointing signal SIGALRM, then

the PVM routine responsible for packing/unpacking the message is called. After the

completion of the packing/unpacking process, the masking routine executes sigset-

mask() to restore the old signal mask and release the blocked checkpointing signal.

• upon the termination of the user program, the checkpointing prologue calls pvm_exit()

to exit PVM and sends a message to the FADI task monitor process, declaring the suc

cessful termination of the user task.

58

CHAPTER 4. Backup and Recovery o f User-Application Processes

4.4.4 Reducing the Checkpointing Overhead

For the targeted class of long-running scientific/engineering applications, reducing the fail

ure free overhead is of essential importance. Checkpointing contributes to this overhead by

suspending the execution of the application program while the checkpoint is taken and

written out to disk. This overhead builds up with the increase in the checkpointed image

size - larger process image incurs more “slow” I/O operations to disk.

In an attempt to minimise the checkpointing overhead, this research has introduced a novel

technique of non-blocking checkpointing. A copy is made of the program’s data space and

use an asynchronous thread of control that performs the checkpointing routines, i.e reads

the process state and records it to disk, while the user process continues the execution of

the program code.

The UNIX fork() system call provides the mechanism needed to implement non-blocking

checkpointing. The checkpointing prologue calls forkQ that creates a child process (the

checkpointing thread) with a fixed snapshot of the parent process (the checkpointed user-

program) and a separate thread of control.

4.5 A Complete Checkpointing and Rollback Cycle

Figure 4-6 gives a high-level picture of FADI checkpointing and rollback mechanism.

When the user-task is called with a set of parameters, the checkpointing prologue takes

over the program execution. If the parameters indicate a normal run of the user program,

FADI sets the local system timer to invoke the checkpointing of the user task at regular

intervals specified by the user in the parameters, it then calls the user-main() routine. At

the elapse of every checkpointing interval, the system timer signals SIGALRM to invoke

the checkpointing routine. At this stage, a copy (thread) of the user process is spawned to

perform the checkpointing routines while the user process continues the execution of the

application code.

Checkpointing starts by recording information about the stack context, signal state, and

open files into data structures built in the process data area. Then it writes the data and

stack segments into the checkpoint file. Next it creates shadow copies of files that were

open for update during the last checkpointing interval, and makes a record of the sizes of

59

CHAPTER 4. Backup and Recovery o f User-Application Processes

files that were open for append. Now that the checkpoint is taken, and the forked thread is

terminated with a user signal.

If a hardware fault was detected and a rollback of the user program is requested, then the

checkpointing prologue calls the restore routine. It first replaces user files that were opened

for update with their shadow copies and truncates files that were opened for append to the

size recorded at the most recent checkpoint. These operations are performed only if the

contents of the file were modified since the last checkpoint. Then the data segment is

replaced with the one stored in the checkpoint file. Now the restore routine has the list of

open files, signal handlers, etc. in its own data space, and restores those parts of the pro

gram state. Next it switches the stack to a temporary location that was current at the time of

taking the checkpoint and returns to the user code at the same instruction that was inter

rupted when the last checkpoint was invoked. Finally, because checkpointing was per

formed by a signal handler, UNIX OS restores all CPU registers to their state before

checkpointing took place.

CHAPTER 4. Backup and. Recovery o f User-Application Processes

Terminate
with user-
signal

Save open
files status

cheek UNIX
process ID?

Copy data
segment into
ckpt file

Copy stack
segment intc
ckpt file

child process
(forked copy)

parent process
(user program)

Normal run
request

Save the pro
cess signal
handling status

perform check
pointing routines

continue execut
ion of application
code

SetJmpO - save
stack pointer &

register status

Start user-
main process

Roll-back request

Restore saved
signals status

Checkpointing
signal handler

Check command
line parameters

Checkpointing
prologue

fo rk () - create an exact
thread of the user-program

Restore open
files status

Set system timer to
periodically invoke
ckpting handler

create shadow copies
for updated files &
recorded sizes of
appended user files

Read saved data segment
from ckpt file and over
write current segment

Move execution stack
into temp, buffer.
Overwrite original stack
with stack saved at ckpt

replace updated files with
their shadow copies &
truncate appended files

Long Jm p () - restore
saved execution stack
pointer to return to
user-main()

FADI Non-Blocking
Checkpointing

FIGURE 4-6 Checkpointing & Rollback in FADI

61

CHAPTER 4. Backup and Recovery o f User-Application Processes

4.6 Integration of Checkpointing/Rollback Recovery into FADI

This section explains how the core checkpointing and rollback protocol -explained in sec

tion 4.4- is incorporated into the fault-tolerant environment to support the reliable execu

tion of the application processes. The overall structural design of FADI is illustrated in

Figure 4-7. A data dictionary interpreting the flow of data between FADI tasks is presented

in Table 4-1.

At the start of execution, the process allocation module automatically identifies the config

uration of the network where FADI is running, and passes the initial active hosts table to

the user and the rest of FADI processes. The user can select to run the application processes

on a specific host, on any of a group of hosts with a similar hardware architecture or on any

default host. Upon receipt of the application tasks specifications from the user-interface,

the PROCESS ALLOCATION process uses pvm_Spawn() to automatically distribute the

user tasks on the specified hosts. PVM performs a load balancing routine to identify the

least loaded host if there is a choice between a number of them. If all the application proc

esses are not spawned, the distributed system is declared to have insufficient resources to

run the application and FADI is halted, otherwise, the spawned tasks specifications is

broadcasted to the rest of FADI processes.

When the CHECKPOINTING COORDINATOR receives a list of spawned tasks on the dis

tributed system hosts, it triggers their checkpointing at the elapse of every checkpointing

interval. The checkpointing protocol computes and stores the checkpoints in the back

ground using non-blocking checkpointing while the main application code continues nor

mal execution.

Upon host crash the MONITOR HOST STATE process informs the RECOVER FAILED

TASKS process of the crashed host_ID so that it won’t try to restart (rollback) failed tasks

on it. The RECOVER FAILED TASKS process is also promptly notified about recovered

hosts (failed hostJLD) to avoid migrating the failed task into another host if the crash was

caused by a network delay and the host was reinstated into the active hosts pool.

The failed host_ID is also sent to the MONITOR USER TASKS process to determine the

IDs of the user-tasks that were running on the faulty host before the crash. These IDs are

then sent to the RECOVER FAILED TASKS process so that it can initiate their recovery.

62

CHAPTER 4. Backup and Recovery o f User-Application Processes

The MONITOR USER TASKS process detects user-tasks that have exited prematurely due

to a transient hardware failure and similarly sends the failed task id to the RECOVER

FAILED TASKS process. The failed task IDs are also passed to the CHECKPOINTING

COORDINATOR to suspend their checkpointing.

The RECOVER FAILED TASKS process retrieves the most recent saved checkpoint of the

failed task from stable storage. If the failure was caused by a transient hardware failure,

then it attempts to restart the failed task from the checkpoint file on the same host where it

was running before the occurrence of the fault. Otherwise it migrates the checkpoint to an

active host with similar OS architecture and attempts to restart (rollback) the failed process

there.

Task_IDs of successfully recovered user tasks are broadcasted by the RECOVER FAILED

TASKS process so that the MONITOR USER TASKS process can resume their monitoring

and the CHECKPOINTING COORDINATOR can resume their checkpointing. It’s crucial

that the MONITOR USER TASKS gets the ED’s of the recovered tasks because they have

been restarted as new executables with different task IDs.

USER
INTERFACEUSER

INTERFACE insufficient
resourcestask

specs
checkpointing

interval
PROCESS

ALLOCATION
spawned

tasks
hosts
table

RECOVER
FAILED
TASKS

CHECKPOINT.
COORDINATOR

checkpoint
storage

recovered
tasks specs

failed task id

MONITOR
USER

TASKS

MONITOR
HOST STATE

crashed host id

recovered host id

FIGURE 4-7 FADI General Structural Design

63

CHAPTER 4. Backup and Recovery o f User-Application Processes

TABLE 4-1 Data Dictionary

IT E M U S A G E ; ■ ' : ; ' P

crashed host id \ hosts that failed to fulfil the acknow ledgm ent request at the current
m om ent in tim e \

failed task id \ id o f tasks that exited w ith erroneous status \

hosts table \ list o f available hosts on the net (host id + arch) \

insufficient resources \ inadequate processing pow er to run all u ser tasks \

recovered host id \ id o f hosts that recovered either m anually o r from netw ork delays \

recovered tasks specs \ specifications o f processes that w ere ro lled b ack from the las t check
poin t \

spaw ned tasks specs \ task-id + task-host id + task checkpointing in terval \

checkpoin ting interval \ tim e interval betw een tw o consecutive checkpo in ts \

task specifications \ task nam e + task-host nam e + checkpoin ting in terval \

It is worth mentioning that the distributed nature (concurrent execution) of FADI fault-

management processes and the fact that they are constructed in an event-processing fashion

- that is message driven, supports acquiring more accurate approximations of the error

detection latency and aids in the prompt update of the active hosts table to prevent attempts

of roll-back on a faulty host and to avoid migrating the failed task into another host if the

crash was caused by a network delay and the host was reinstated into the active hosts pool.

4.7 The Checkpointing Mechanism Performance

4.7.1 Overview

All fault-tolerance procedures will inevitably result in a degradation in the system perform

ance. As a general guideline, it has been suggested in the literature that the overhead

incurred by making the application tolerant to faults should not exceed “10%” of the appli

cation run-time [Plank 94]. The most significant overhead introduced by fault-tolerance

measures is the overhead of taking and storing the checkpoint. The non-blocking check

pointing technique reduces this overhead by interleaving the execution of the original task

and the checkpointing task. Because of this concurrent execution our system affords a

degree of immunity to the variation of efficiency of taking and storing the checkpoint, as

long as the current checkpointing process terminates before the next one is initiated.

64

CHAPTER 4. Backup and Recovery o f User-Application Processes

The checkpoint size can increase the checkpointing overhead and occupy valuable disk

space. A technique of Incremental checkpointing [Plank 95] has been suggested for reduc

ing the checkpoint size and consequently the checkpointing overhead. The idea is that

when a checkpoint is taken, only the portion of the checkpoint that has changed since the

previous checkpoint needs to be saved. The unchanged portion can be restored from previ

ous checkpoints.

However, experimental results by J. S. Plank and K. Li in libckpt [Plank 95] have shown

that incremental checkpointing does not necessarily suit all types of applications. If large

amount of the program’s address space is modified between checkpoints, this can lead to

little or no reduction in the checkpoint size. This conclusion is corroborated by other

researchers (e.g Pierre Sens [Sens 93]). Consequently, the incremental checkpointing was

not adopted for FADI.

Moreover, considering that it is necessary that the inter-checkpoint interval is larger than

the expected error latency, an error occurring in the “nth” checkpoint interval will be at

Stmost detected in the un + 1 ” interval (Figure 4-8). Hence, there is no need to save more

than two consecutive checkpoints at any moment in time to rollback safely a particular

process. This devalues the gain from incremental checkpointing since there is only one

possible increment on the checkpoint size.

ckpt
q (n -l)

ckpt
q(n)

process

ckpt
r(n)

ckpt/
r (n - l)

detectionerror
la te n c y

FIGURE 4-8 Error Detection Latency

65

CHAPTER 4. Backup and Recovery o f User-Application Processes

4.7.2 Experimental Results

The checkpointing and roll-back mechanism was tested by disrupting the normal execution

of the user-application process using all possible methods: powering down the host

machine, disconnecting the host machine from the ethemet, killing the process explicitly

from the command line “kill -9 ” and killing the process from the PVM console using

pvm_kill(). Every time the user-application process was successfully rolled back to the

most recent checkpoint and continued execution on the same host or on a host with similar

OS architecture.

In order to evaluate the computational overhead of the checkpointing protocol, two numer

ically intensive applications have been benchmarked.

The first application involved the multiplication of two 256x256 matrices which are read

from disk file via NTS, and the product matrix is written to an output file. The second appli

cation uses the principles of Simulated Annealing [Lee 96] to work-out an optimal decom

position of network nodes for distributed processing. The initial network node

configuration is read from disk and the optimization results are printed to the screen. The

executables were built using GNU C++ compiler “g++ ” and were run on a SPARC.station

IPC running SunOS 4.1.3.

The average results for checkpointing the matrix multiplication and simulated annealing

applications for a 20sec checkpointing interval are presented in Table 4-2, and the full

experiment results are illustrated in figures 4-9 to 4-12.

t a b l e 4-2 General Checkpointing Results

User Application
Normal run
time

(sec)

Sequential
Ckpting

(sec)

non-blocking
Ckpting

(sec)

Ckpting
interval

(sec)

Matrix Multiplication 317.93 326.7 322.04 20

Simulated Annealing 804.53 808.58 806.00 20

As expected the checkpointing overhead for matrix multiplication is higher than that for

simulated annealing application, the reason is the large image size caused by maintaining

three 256x256 static variables in the processes address space.

66

CHAPTER 4. Backup and Recovery o f User-Application Processes

Figures 4-9 and 4-10 show the effect of varying the checkpointing interval from 10 to

80sec on the execution time of the matrix multiplication and simulated annealing applica

tions respectively. It is clear that the execution time for checkpointed applications (both

sequential and non-blocking) increases as the checkpointing interval is reduced.

This ascertains the importance of balance between increasing the required level of reliabil

ity (taking checkpoints more frequently, i.e shorter checkpointing intervals) and the subse

quent degradation in performance. The task of our software is to determine the minimum

possible checkpointing interval, then it is up to the user to fine-tune the reliability-perform-

ance balance.

The percentage by which checkpointing is slowing the normal run-time of the applications

is illustrated in Figures 4-11 and 4-12. We can notice that non-blocking checkpointing sig

nificantly reduces the application checkpointing overhead, specifically upon short inter

checkpointing intervals (up to 30% reduction in overhead over sequential checkpointing).

The results in Figures 4-11 and 4-12 also show that FADI checkpointing mechanism per

formance is well below the recommended limit of “10%” overhead even for sequential

checkpointing. The maximum recorded overhead with the minimal possible checkpointing

interval (10 seconds) for Matrix Multiplication using sequential checkpointing (worst pos

sible scenario) was 0.8%.

67

CHAPTER 4. Backup and Recovery o f User-Application Processes

sec
345

340

N orm al R un
T im e

S eq u en tia l
C h eck p tin g

N on-B locking
C kpting

335

330

325

320

315

Checkpointing
Interval (sec)

310
20 40

FIGURE 4-9 Application run-time (matrix multiplication)

sec
810

809

N orm al R un
T im e

808

S e q u e n tia l
C h eck p tin g

N on-B lock ing
C kpting

807

806

805

804

Checkpointing
Interval (sec)

803
20 80

FIGURE 4-10 Application run-time (simulated annealing)

68

CHAPTER 4. Backup and Recovery o f User-Application Processes

0.1

10
■ L

20 40 80

S e q u e n tia l
C h e ck p o in tin g

N on-B lock ing
C h e ck p o in tin g

Checkpointing
Interval (sec)

f i g u r e 4-11 Checkpointing Overhead of the Matrix Multiplication Program

(%)

1 1

S e q u e n tia l
C h e ck p o in tin g

N on-B lock ing
C h e ck p o in tin g

Checkpointing
Interval (sec)

f i g u r e 4-12 Checkpointing Overhead of the Simulated Annealing Program

69

CHAPTER 4. Backup and Recovery o f User-Application Processes

4.8 Constraints of FADI Checkpointing Protocol

Due to the incompatibility of the UNIX systems (discrepancies in the a.out format, man

agement of the process’s address space by the MMU, etc.), rolling-back (restarting) the

process from the previous checkpoint on another computer system is limited to hosts with

similar Operating System architecture to the failed one.

Another limitation of the checkpointing mechanism is that user-application programmes

have to be statically linked with FADI checkpointing library. Despite the fact that minor

modifications have to made to be the user code, the user program must still be called as a

function from the checkpointing prologue to allow for initialisation and control of the

checkpointing and restart processes of the user-program. As a result, FADI checkpointing

library is limited to users that have access to the source code but does not work for users of

third party software.

4.9 Conclusions

FADI utilises Condor bytestream checkpointing model to save the execution state of the

application processes. To guarantee the integrity of exchanged inter-process messages, a

technique was developed to block checkpointing initiation during the packing/unpacking of

message datagrams. Another original contribution to the checkpointing/rollback technique

is the development of mechanisms for performing the rollback of user-files. It uses a com

bination of copy-shadowing and file size bookkeeping to undo modifications to user-files

upon rollbacks. This module guarantees the reliable recovery of user-files that were open in

read-only as well as in append and update modes.

Performance measurements showed that the new non-blocking checkpointing technique

significantly reduces the checkpointing overhead. With this method, an exact copy (thread)

of the checkpointed program is forked, this thread performs all the checkpointing routines

without suspending the execution of the application code. Experimental results also dem

onstrated that the performance of the developed checkpointing protocol compares favoura

bly with results published of similar work in [Sens 93] and [Plank 94].

The checkpointing protocol was combined with the error detection mechanism and an auto

matic process allocation module to provide an integrated environment for transparent relia-

70

CHAPTER 4. Backup and Recovery o f User-Application Processes

ble execution of distributed application programs. The integrated modules execute

concurrently on a fault-tolerant host and cooperate in a message driven system to enhance

FADI’s response to events occurring in the distributed system.

71

CHAPTER 5 Reliable Distributed Computing for
Message Passing Systems

Chapter 5 generalises the FADI checkpointing and rollback technique to interactive (mes

sage passing) application processes. It reviews most of the conventional checkpointing

and rollback methods developed by other researchers, evaluates their advantages and

shortcomings, then it introduces a novel algorithm for checkpointing distributed interac

tive applications that is based on a coordinated checkpointing and selective message log

ging technology.

5.1 Introduction

Chapter 4 discussed the details of the design and implementation of FADI checkpointing/

rollback mechanism in the context of stand-alone applications and the experimental

results have shown that the developed mechanism is very robust. Now, the developed

checkpointing protocol has to be extended to cover the possible inter-process communica

tions taking place between the distributed application processes. The next section dis

cusses the problems incurred by checkpointing/rollback of interactive processes.

5.1.1 Live-lock Problem

If the rollback of the processes is not synchronized, live-lock can occur [Koo 87]. This

means that one single failure produces an infinite number of rollbacks, which prevents the

system from making progress [Deconinc 93]. This is illustrated in Figure 5-1: proc

esses ’a ’ and ’b ’ send messages m l and n l respectively. The indices (1 ’denote the incarna

tion number (the current run/re-run) of the process. If a failure occurs in process ’a ’ before

message n l is received, then it rolls back to its last checkpoint and resumes execution, i.e

sends m2 and receives n l that was under way. To undo the receiving of message m l (of

which process ’a ’ has no notice), process’/?’ rolls back and resumes its operation, i.e it

sends n2. Again the state is not consistent any more because process’a ’ has no notion of

the receipt of n l, while process’/)’ has no notion of sending that message, so process’a ’

72

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

should rollback a second time. Then process rolls back to restore consistency to undo

the receiving of m2 which in turn forces V to roll back, etc. So, due to a single failure, the

system will rollback endlessly to its previous checkpoint.

C a l
Pa

Pb

f i g u r e 5-1 Live-Lock

This live-lock problem can be avoided when messages with other incarnation numbers are

discarded [Silva 92] or if a two-phase commit-protocol assures that processes rollback at

the same time [Koo 87],

5.1.2 The Domino Effect

Figure 5-2 illustrates a process execution sketch that can lead to the domino effect.

Ca2C a l
Pa

Pb
C b l Cb2

checkpoint (X) error message

 ► normal execution V ^ / rollback

f i g u r e 5-2 Rolling-Back Interactive Processes

Process V and ’b ’ are part of the same concurrent application whose checkpoints are taken

user-transparently (checkpoint #1: Cal, C bl; checkpoint #2: Ca2, Cb2). Looking at the

73

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

message m sent from ’b ’ to ’a \ then if process ’a ’ fails at e l , it can be rolled-back to the last

checkpoint Ca2 and restart the execution from there.

However, by rolling back process ’a ’ to Cal the receipt of message m will be undone, and

a will be waiting for a message from ’b ’ that will never arrive, so *b* should also rollback

to Cbl. Similarly, ’b ’ would expect a message from V , so ’a ’ should rollback, etc. Finally,

both ’a ’ and ’b ’ roll back to their initial state. The so called domino-ejfect [Lee 90] can be

avoided by using the following techniques:

• The specification of a consistent recovery line (Semi-automatic checkpointing);

• Storing inter-process communication into stable storage (message logging);

• Freezing of all the application processes until a snapshot of the entire system is taken

(coordinated or consistent checkpointing);

• A combination of the two previous techniques (hybrid methods).

The above techniques differ with respect to their computation/communication overhead.

Their characteristic features and relative strength will be evaluated later in this chapter.

5.1.3 The Checkpointing and Rollback Overhead

The checkpointing overhead can be quantified in terms of time, storage or communication

and it can manifest itself during the normal failure-free operation or during the rollback

recovery.

5.1.3.1 Time Overhead

The most important include:

• Computation time lost during checkpointing: while the checkpoint is taken, a fraction

(depending on the checkpointing frequency) of computation time is lost for processing

and storing the program execution state. Some of the operations performed during

checkpointing are: retrieval of the program signal handling status, CPU registers, open

files and communication sockets state, records of interprocess messages in transit, etc.,

and writing this information together with the contents of the data and stack segments

into stable storage (the slowest component of the checkpointing cycle);

74

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

• Computation time lost during rollback: a set of consistent checkpoints has to be

restored, and all computations performed by the application since the last global check

point should be re-executed. There is a trade-off to be made between time lost during

checkpointing and during rollback; the checkpointing frequency depends on the desired

fault-tolerance characteristics. For FADI application domain of long-running scientific/

engineering applications, emphasis is put on minimising the performance reduction

(overhead) in the failure-free case, when errors are considered as an exception rather

than a rule;

• Kernel overhead: a part of the CPU time is used for checkpoint/rollback related topics

(sending/delivering bookkeeping, control messages, message logging, checkpointing

timers monitoring, etc.). This is a persistent overhead over the life-time of the program

(not only during checkpointing time) and therefore it has to be minimal.

• Time overhead when other processes take their checkpoint or rollback: for the blocking

algorithms, other processes participating in a checkpoint or a rollback session should

suspend normal operation until checkpointing or rollback of all partners is complete

[Bauch 92].

5.1.3.2 Storage Overhead

Storage overhead is in local volatile memory (in RAM) as well as secondary storage (on

disc). After a fault has occurred, access to the stored checkpoints must be guaranteed. This

overhead includes:

• local memory usage: 1) For storing the checkpoints. If the checkpoint is stored in the

volatile memory, the availability of this memory for active processes is significantly

reduced. 2) A part of local memory is needed for storage of the checkpoint and the

recovery management processes. Typically message-logs, databases and other book

keeping information are stored in the node.

• disc usage: 1) For storing the checkpoints. At least one complete (permanent) check

point should be stored. Some schemes require also a place for the tentative check

points) on stable storage. 2) A part of the bookkeeping info should be kept in stable

storage; this includes data about the stored checkpoints, the running processes and their

interactions, message logs, etc.

75

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

5.1.3.3 Communication Overhead

Communication overhead has two components, one due to the communication between the

distributed computing nodes and the other due to I/O operations associated with storage

and retrieval of checkpoints, i.e the reduction in the disc bandwidth, useful for the applica

tion.

• Load on data-network by increased number or size of the messages: extra control-infor-

mation must be sent, possibly attached to normal communication. This includes infor

mation associated with the checkpointing and rollback (send/receive sequence numbers

[Storm 87], incarnation numbers [Elnozahy 92], or crash counters [Silva 92], etc.) and

messages to obtain special communication protocols (acknowledgments, etc.). Espe

cially for communication-intensive applications, this can produce a large overhead.

• Load on I/O-network caused by exchanging checkpoints on disks: in the worst case the

entire system state should be checkpointed and restored at once. Some algorithms use

hardware support, e.g segmentation, to store only those parts of the process state that

changed since the last checkpoint (incremental checkpointing).

5.2 Conventional Checkpointing and Rollback Methods

5.2.1 Semi-Automatic Techniques

The application-programmer is directly involved in the backward error recovery, either in

organizing the application process in a chain of recovery block constructs [Kim 83], or by

calling the checkpointing routine, specifying to which recovery line the checkpoint should

belong, and possibly its application-dependent contents.

This method’s failure-free overhead is minimal because only when the checkpoint is taken

(on demand of the programmer) the system suspends its operation for saving the check

point and doing some bookkeeping. In-between the checkpointing intervals there is no

extra overhead. The user can also reduce the size of the checkpoint by specifying the con

tents of the checkpoint and indicating the memory-ranges and system parameters to be

included (memory exclusion by user-directed checkpointing in Libckpt [Plank 95]).

However, Despite of its advantages, this method is only rarely used because of its reliance

on an in-depth knowledge of the application source code by the user.

76

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

5.2.2 Message Logging Techniques

Different processes are logged independently of each other (one process at a time). All

inter-process messages are recorded in a message log. After a failure is detected, the previ

ous checkpoint is restored and the logged messages are replayed (in the same order) to

bring the failed processes back to a consistent system state.

In pessimistic schemes the processes are suspended after each message until it is logged

[Borg 83]. Optimistic schemes continue their operation during the log of messages (asyn

chronous), but need extra bookkeeping (e.g dependency tracking) to know which computa

tion depends on which message and which messages have been logged [Sista 89].

Both schemes require only one process to take the checkpoint at a time, this lowers the load

on the communication bandwidth especially if all the nodes share a single stable storage

system. Pessimistic message logging draws a considerable failure-free overhead because

normal operation is suspended until each message unit is logged.

Although optimistic logging avoids blocking processes by logging messages asynchro-

nously, the overhead of logging every message is still significant. Optimistic logging also

requires applications to be deterministic and adds significant time overhead associated with

dependency tracking and communication overhead, especially if there is extensive inter

process interaction.

5.2.3 Coordinated (Consistent) Checkpointing Techniques

In these techniques the domino effect is avoided by checkpointing all (interacting) proc

esses together; hence, these checkpoints form a consistent recovery line.

With Global Checkpointing the whole application is frozen to be able to take a snapshot of

the entire system state. In [Bauch 92] a two-phase commit-protocol, where by tentative

checkpoints are taken while permanent (previous) checkpoints are kept in memory. If all

the new checkpoints of the application processes are successfully saved, a commit message

is broadcasted. After acknowledging the commitment the application processes delete the

old checkpoints and resume normal computation. This is a rather expensive method

because of the time overhead caused by suspending all the application processes until the

complete checkpoint is taken.

77

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

Process level Checkpointing was introduced to improve the performance of global check

pointing by allowing only interacting processes to checkpoint together rather than the

application as a whole. These interacting processes are the set of processes that have been

communicating since last checkpoint [Koo 87]. The cost is the extra bookkeeping needed

to construct these interacting sets.

This technique does not require the application to be deterministic. The major advantages

of coordinated checkpointing schemes are: the ease of finding a recovery-line (because

consistent recovery lines are checkpointed as a whole), and the small overhead during fail

ure-free operations (because no logging is necessary). The cost is time and communication

overhead to store complete recovery-lines at once and hence the blocking of applications.

This overhead can increase significantly with higher checkpointing frequencies. Another

disadvantage is the load on the communication bandwidth resulting from saving the check

points of all of the process at the same time.

5.2.4 Hybrid Techniques

These techniques are based on coordinated checkpointing, but avoid the freezing of the

application (hence, a non-blocking checkpoint) mostly by using the marker rule [Chandy

85] by logging “some” messages (e.g those crossing the recovery line).

The marker rule technique sends markers through the communication channels to deter

mine their state. This technique assumes that the channels are error-free, preserve the

ordering and guarantee message delivery in a finite time. Then a global consistent state can

be obtained by using a marker sending rule (a process sends a marker through each of its

send-channels immediately after taking a checkpoint) and a marker receiving rule (when a

marker is received before a checkpoint is taken, this checkpoint is immediately taken and

an empty channel state is included; if the marker is received after the checkpoint is taken,

then the channel state contains all the messages between the time that the checkpoint was

taken and the time that the marker was received). This ensures that a consistent global state

will be taken.

Hence, these hybrid techniques merge the advantage of the message logging techniques to

take checkpoints for a single process at a time (without blocking the application), with the

benefit of coordinated checkpointing techniques to save complete recovery lines as a whole

resulting in small failure-free overhead [Deconinc 93].

78

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

These conclusions are corroborated by Elnozahy in [Elnozahy 94] who found that the cost

of writing the message logs and managing the recovery line outweigh the cost of coordinat

ing the checkpoints during failure-free operation and the cost of contention on the stable

storage server during the global checkpoint.

This research adopted the hybrid methods for developing FADI reliable distributed

computing algorithm in favour of pure message logging and consistent checkpointing tech

niques because of the following:

• The algorithm has inherently low failure free overhead. No messages have to be system

atically logged and no heavy bookkeeping (dependency tracking) as in optimistic log

ging schemes is necessary. This of course is at the expense of rolling-back

all(interacting) processes and a possibly longer rollback that is tolerable because of the

lengthy execution time of the FADI application domain.

• Strong coupling between the concurrent processes is typical of the majority of large

scale scientific/engineering distributed applications, where the computation load is dis

tributed between the application processes and strict synchronisation is required to com

municate the results of various stages of the computation). Hence, checkpointing all the

applications at once is an advantage because of process coupling. With independent

checkpointing, the checkpoints of different processes cause slow down of the entire

application. Instead, with coordinated checkpointing, all processes take a checkpoint at

essentially the same time, causing only a single slow-down of the application [Zwaenep-

oel 92].

• The time-consuming task of finding consistent recovery lines is avoided - in coordinated

checkpointing each sequence of checkpoints (a global checkpoint) by definition forms a

consistent recovery line. This contributes to reducing the rollback time of the applica

tion.

• Coordinated checkpointing eliminates cyclic rollbacks (domino effect) by guaranteeing

that processes do not need to roll back beyond their last checkpoint.

79

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

5.3 A Novel Reliable Algorithm for Checkpointing & Rollback of

Distributed Applications

5.3.1 Design Considerations and Assumptions

The basic model is that all processes cooperate to create a global consistent recovery line,

beyond which rollback is unnecessary. A centralised process running on a fail-safe node

will coordinate the initiation and validation of checkpointing in all the application proc

esses to form a consistent recovery line. This coordinating task will also be responsible for

maintaining the information logged to stable storage necessary for the selective rollback of

interacting processes (logged messages, communication trees, etc.).

Considering that the targeted applications are mainly computation-intensive, long-running

applications, it is important to minimize the fault-tolerance overhead during normal (fail

ure-free) operation in order to maximize the throughput of the system. This might be at the

cost of a longer roll-back. The longer rollback can be admissible owing to the extended

execution time of the application and the relatively small MTBF of today’s Computer sys

tems.

The checkpointing/rollback algorithm must provide an adequate level of user-application

transparency. The fault-tolerance procedures and prologues should be integrated into the

distributed application tasks without the involvement of the user. The following assump

tions about the checkpointed environment were made:

• Fail-Stop processors are assumed, i.e processors generate correct results or no results at

all. The system is assumed to stop immediately when a fault occurs and no false mes

sages are sent. However, non-zero detection latency is tolerated [Taha 95].

• FIFO communication channels are assumed, i.e messages sent to the same destination

are guaranteed to be delivered in the right order. These channels are also reliable, i.e

they do not corrupt or lose messages. However, the duplication of messages is tolerated.

• A message received by a node might not be delivered to the destination process until it

is requested, i.e messages might have already been received by the message passing dae

mon, but not yet consumed (requested) by the destination task. The algorithm should be

able to recover from faults that occur while inter-process messages are in transit.

so

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

• Applications are not required to be deterministic in the sense that the output of the proc

ess is not only a function of its state and the input, but also is a function of time and

other external factors (as is the case of real-time telemetry systems).

5.3.2 The Algorithm’s Recovery Strategy: Coordinated Checkpointing with

Selective Message logging

The adopted hybrid checkpointing methodology is based on the coordinated checkpointing

strategy which implies taking checkpoints of the whole application at approximately the

same time interval. Coordinated checkpointing is improved by the logging of messages that

can invalidate the recovery line consistency, thus avoiding freezing of the application proc

esses while the global checkpoint is being taken. So, two issues need to be addressed to

develop a reliable distributed computing algorithm based on the hybrid techniques:

1) Checkpointing Coordination: processes should not start taking another checkpoint

until the previous global checkpoint is already complete. It is important to allow the algo

rithm to investigate the consistency of the recovery line that is formed from the previous

group of checkpoints (global checkpoint).

Since we assume a central Coordinator task responsible for initiating and controlling

checkpointing process, probably the best way to guarantee the correct checkpointing coor

dination is to manage the exchanges of checkpoint requests-acknowledgments between the

Coordinator task and the application processes. The coordinator task will not send another

checkpointing request to any of the application tasks until all of them have acknowledged

taking the previous one.

2) Recovery-Line Consistency: a consistent recovery line is a group of checkpoints, of

all the application processes, beyond which rollback is unnecessary, i.e in the event of fail

ure all the processes can safely rollback to checkpoints belonging to the last recovery line.

The main problem here is the consideration of the state of the communication channels

whilst checkpointing is in progress, i.e messages that cross the recovery line. This problem

is illustrated by considering two execution scenarios and attempting to propose the appro

priate solutions.

81

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

The following notations will be used throughout the rest of this section:

P a : Process with index a;

Pset : Set of all the application’s distributed processes;

Cci : the ith checkpoint of process a;

Ri : the recovery line containing the ith checkpoint of all processes;

GSti : the ith global state interval between recovery line i, i+1.

Scenario 1 Messages sent in one state interval and received in a subsequent one:

GStQ r i

Ca\ £
GSti
e2

R2 GSt2 GSt3

. C a J Ca3y "

\ /\ m l

V ± J / H .C b l ^ C b i r C m /

❖ checkpoint ® error • — ► m essage

FIGURE 5-3 Recovery-Line Consistency (a)

In Figure 5-3, if an error occurs in GStl (el or e2), then processes Pa, Pb will roll back to

the recovery line Rl. Hence, the receipt of ml by Pa will be undone, but ml will not be re

send by Pb after the rollback.

The most commonly adopted approach to solve this problem was suggested by Silva in

[Silva 92] and Elnozahy in [Elnozahy 94], The messages are appended with the sender’s

state interval sSt which is compared with the receiver’s local (current) state interval ISt

upon message receipt. If ISt > sSt, this indicates that the message was sent from a previous

state interval across the last recovery line so it is logged. Upon rollback, these messages are

replayed to maintain consistency.

However, these algorithms do not distinguish between the delivery and the consumption of

the message. Messages delivered to destination tasks (on remote or local hosts) - whether

using a low-level transfer protocol like TCP/IP [Comer 93] or a high-end message passing

interface like PVM [Geist 94] - are buffered by the transfer protocol at the receiver’s end

until they are requested by the destination task (consumed).

82

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

This request for consumption can be pending even before the message is delivered, can

occur shortly after the message is delivered, or can be delayed for a considerable time

while the destination task is performing other computations.

What follows is that the above approach compromises two aspects of the algorithm’s relia

bility:

• It applies only to errors occurring after message consumption (e2 in Figure 5-3), but

does not take into account errors occurring after the message was delivered but before

its consumption (el), in which case the message (ml) will not be logged because the

destination task (Pa) has not received it yet.

• It does not consider messages that might cross more than one recovery line (m2). All

sent messages are assumed to be delivered at latest in the next state interval.

A principal prerequisite for recovery line consistency is the logging of all messages that

cross it from left to right. In order to avoid the shortcomings of the solution suggested

above by Silva, there are two realistic options to maintain the consistency of the recovery

line:

1) Indiscriminate sender-based message logging;

2) Identification of messages that crossed the recovery line, waiting for their receipt, log

ging them and only then confirming that the recovery line is consistent.

The first option is quite expensive in terms of failure-free overhead, as explained in the pre

vious section, so this research proposes a solution based on the second option.

Scenario 2 Messages sent in one state interval but received in a previous one:

GSto GSti GStzR2R1
Ca2Pa

m3
Pb

C b 2C b l

f i g u r e 5-4 Recovery-Line Consistency (b)

83

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

Figure 5-4 illustrates the case when the error occurs in GSt2 (e.g at e3), then process Pb

will roll back to the recovery line R2 and re-run. The sending of m3 by Pb will be repeated,

but will not be matched by a corresponding receive request from Pa. Possible solutions to

this problem include:

1) Assigning a send sequence number “SSNa” for every destination task “dtaska”, incre

menting this number every time a message is sent to that destination and appending it to the

sent message. The destination task compares the received SSN with that appended to the

last message received from the same source. If it is less or equal, then the message is iden

tified as redundant and discarded.

The disadvantage of this approach is that it requires the application to be deterministic

since it assumes that an exact copy of m3 will be sent after Pb’s rollback. However, this

approach can be used to identify duplicate messages (sent within the same state interval)

that are caused by network malfunction.

2) Freezing of all processes until each have taken a local checkpoint. This approach implies

a significant time and communication overhead during the failure-free operation of the

application that can be computationally expensive for long-running algorithms.

3) Identifying messages sent from a subsequent state interval using state interval labels

[Silva 92]. If (ISt < sSt), the receiving process takes a checkpoint before consuming the

message to preserve the algorithms consistency.

The third solution does not require determinism because the sending and receiving of mes

sage m3 will be accomplished within the same state interval “GSt2 ” and both operations

(send and receive) will be redone (if needed) upon rollback. It also does not incur the over

head of freezing all the application processes as required in the second solution. Hence, we

adopt the third solution to the consistency problem highlighted in scenario 2.

5.3.3 Data Structure of the Algorithm

5.3.3.1 Data Structure Maintained by the Application Processes

LSt : local state interval;

SSNa : send sequence number of latest message sent to process(a);

RSNp : receive sequence number of latest message received from process((3);

84

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

LRmsg : message crossing the recovery line from right to left.

5.3.3.2 Data Structure Maintained by the Coordinator Task:

GSt : global state interval;

Pset : set of all applications of the distributed process;

C(l,m) : true/false communication flag indicating if process(l) has interacted with
process(m) since the last global checkpoint;

UBmsg : record of unbalanced messages (sent but not yet received) since the last
global checkpoint.

5.3.3.3 Control and Data Messages

Application message

Sender ID Destination ID SSN LSt Message Body

Checkpointing Request

GSt

Received Messages Request

Checkpointing Acknowledgment

Ackn. ID SM(ns) k RM(nr)

where: ns - number of messages sent by acknowledging process since the last LSt;

nr - number of messages received by acknowledging process since the last LSt;

SM - array of: [Destination ID(i), SSN(i)], i = 1 .. ns;

RM - array of: [Sender ID(i), RSN(i)], i = 1 .. nr.

Received Messages Acknowledgment

Ackn. ID RM(nr)

85

CHAPTER 5. Reliable Distributed Computing fo r Message Passing System s

5.3.4 Functional Description

5.3.4.1 Sending and Receiving Messages

Upon message send, the message is augmented with three pieces of information: send

sequence number of the destination process SSNa, the sender ID, and the sender current

local state interval LSt. After the message is successfully delivered, SSNa is incremented.

Every sent message is broadcasted to the Coordinator task. The Coordinator task keeps a

list of communication flags C for all pairs (l,m) of application processes. This flag is set if

any of the pair (l,m) sends a message to the other. The flags are cleared at the start of each

new global state interval.

procedure send_msg()
begin

append [SSN(destJd) + senderjd + dest_id + sSt] to message body;
broadcast message to Coordinator task;
SSN(destJd) ++;

end

Upon message receipt, the SSN included in the received message is compared with the

sequence number of the latest message received from the same process (stored locally in

RSN). If the previous sequence number (RSN) is greater or equal to the newly received

SSN, this means that the message is a duplicate of a previously received one and it is dis

carded. Next the receiver process compares the received sSt with the current local ISt, if the

local state interval is greater, then the message was sent from a previous state interval

crossing the recovery line LRmsg and it should be logged, if it is smaller, a local checkpoint

of the receiver state is taken to preserve the algorithm consistency.

86

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

procedure receive_msg()
begin

unpack [senderjd + dest_id + sSt & message body];
if (SSN <= RSN(senderJd)) then

discard received message;
else

RSN(senderJd) = SSN;
endif
if (sSt < ISt) then

log msg to LRmsg in stable storage;
else if (sSt > ISt) then

take a local checkpoint;
endif

endif
end

S.3.4.2 The Checkpointing Protocol

At regular intervals the Coordinator task sends a checkpointing request (ckptjreq) to the

application processes. The ckptjreq is sent together with the global state interval GSt. Each

process takes a local checkpoint and sends an acknowledgment message ckpt_ack which

contains local arrays of received messages (RM) and sent messages (SM). Each RM array

holds for every message originator two items of information: the “senderjd” and the

receive sequence number of the last received message “RSN”. Similarly to the RM array,

the SM array contains: “d e s tjd ” and the send sequence number “SSN” of last message

sent to that destination.

After the Coordinator task receives ckpt_ack from the application process, it checks if all

the sent messages were received by the correspondent destination tasks. If that is the case,

then the recovery line is declared consistent and the global state interval is incremented.

Otherwise, information about unbalanced (unreceived) messages is added to the inconsist

ency (unbalanced messages) list “UBmsg”. In this case, no new checkpoints are requested,

and the Coordinator task inquires the processes on the receiving end of the unbalanced

messages to check if the messages have been received (recvjreq). When all messages in

UBmsg are received, the last recovery-line is declared consistent, Gst is incremented, and

the normal checkpointing operation is resumed.

87

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

procedure checkpointO
begin

at periodic intervals do
begin

send ckpt_req[GSt] to all processes in Pset;
await* for ckpt_ack[SM[sn], RM[rn]] from every p(i) in Pset;
for each p(i) in Pset

for each SM(k) in SM[sn]
if not exists RM(j=l..rn) that ((RM(j).RSN == SM(k).SSN) &&

(RM(j).sender_id == SM(k).dest.id)) then
add SM(k) to UBmsg;

endif
end

end
if UBmsg is not empty then

at periodic intervals repeat
send recvjreq to all SM(k).dest_id in UBmsg;
await* for recv_ack [RM[rn]];
for each SM(k) in UBmsg

if exists RM(j=l..rn) that ((RM(j).RSN == SM(k).SSN) &&
(RM(j).sender_id == SM(k).destid)) then

remove SM(k) from UBmsg;
endif

end
Until (UBmsg is empty)

endif
Declare Recovery-Iine(GSt) consistent;
free logged messages from GSt-1;
Gst++;
clear communication flags C(l,m);

end
end

(*) w h ile the C oordinator is w aiting for th e acknow ledgm ent m essages to arrive, it concurrently listens to the
error-detection task [Taha 95] for m essages about process failure. I f one o f the requested processes fail, the
C oord inator re-sends the request to it after its rollback.

5.3.4.3 The Rollback Protocol

When a process fails, the Coordinator task looks up the communication table C(l,m) and

only the process that interacted with the failed process since the last global checkpoint are

rolled-back. Messages addressed to the rolled back processes are replayed from the log.

88

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

procedure ro!lback(fail_processID)
begin

look up processes in C(fail_processID, *);
for all * processes

rollback to Gst;
unset C(fail_processID, *);
replay all messages to * from LRmsg;

end
rollback fail_process;
replay messages from LRmsg to fail_process;

end

5.3.5 A Distributed Checkpointing Scenario

Figure 5-5 illustrates a complex checkpointing scenario that demonstrates all the features

of the proposed distributed checkpointing algorithm. The initial global checkpoint “CO” is

taken before any communication or computation takes place, thus it is guaranteed that the

recovery-line RO is consistent and if an error occurs at “el ” processes will rollback to their

“CaO” checkpoint.

After receiving ckpt_ack for checkpoint “C i” from Pa,b,c the Coordinator task adds ml

and m2 to the UBmsg list. Here if an error occurs at “e2”, the application processes can not

rollback to “C al ” since the recovery-line R1 is not consistent because the messages that

crossed it from left to right are not logged yet.

During the next interval the Coordinator sends a recv_req to Pb and Pc (Rqbl, Rqcl). By

now ml is consumed and consequently logged, so it is removed from UBmsg. Subse

quently the recvjreq is sent to Pc (Rqc2), which acknowledges it with a confirmation that

m2 has been received (consumed) and the recovery-line R1 {Cal, Cbl, Cel} is declared

consistent. So, in the case of failure (e.g at “e4”), the application processes can now roll

back to this recovery line. Following that the Coordinator initiates the next global check

point “C2”.

89

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

RO R1
C a l .Pa ►

m 2
CbO

Pb Rqbi C b 2Cbi

m
C c o

Pc
e l ' Cci- Rqci Rqc2 e4 TCt2

Recovery-line “R l’:
declared Consistent

♦ R eceived_m essages r e q u e s t ► R ollback

FIGURE 5-5 A Checkpointing Scenario

5.3.6 Proof of Correctness

In order to prove the correctness of the protocol, we need to show that the checkpointing

protocol will eventually terminate forming a consistent recovery line (the set of check

points in stable storage is consistent). The protocol must be able to recover the application

distributed processes to a consistent state after host crashes.

$ lemma 1: at any instance of the applications execution there will always be a consistent

recoveiy line.

proof: at the start of the applications execution, all the application processes take a check

point before they start executing their main code. These checkpoints of course form a con

sistent recovery-line because no computation or communication have been carried out yet.

Taking into consideration that the Coordinator task will not discard the previous consistent

recovery-line until the current is confirmed consistent, we prove the lemma.

t lemma 2: The checkpointing process (protocol) eventually terminates.

proof: for the checkpointing protocol to terminate successfully two conditions have to be

met:

90

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

1) All the ckpt_req and recv_req messages must be delivered to the Pset of application

processes, where they will be processed and the acknowledgment information (ckpt_ack,

recv_ack) must be returned to the Coordinator process.

The Coordinator process is fail-safe and the communication channels are assumed reliable.

Therefore, the request-acknowledgment cycle can deadlock only if the application proc

esses fail before they receive the ckpt_req or recv_req* from the Coordinator. In this case

the Coordinator task will be informed about the failure and it will re-send the request to the

rolled-back process. This avoids the dead-lock trap.

2) The undelivered messages in UBmsg will be eventually received.

The Coordinator task will not terminate the current checkpointing until all the UBmsg list

is empty. For every message m sent a communication flag C(l,m) corresponding to the

sender/receiver is set. If any of them fails before the message is received, then they will

both be rolled-back to the previous recovery-line - that always exists from lemma “ 1” - and

the message will be re-sent and ultimately received.

(*) the ckpt_req and recv_req m essages are interrupt signals, they suspend the application process until the
requests are served. This m eans tha t they cannot be b locked and reduces the possib ility o f their loss.

£ lemma 3: at the end of the checkpointing protocol, a consistent recovery-line can be

obtained.

Definition: A recovery line is consistent if all the application processes have taken a local

checkpoint and messages crossing the recovery line from left to right are logged.

Proof: from lemma “2” the Coordinator task will not terminate the checkpointing protocol

until:

a) it receives ckpt_ack from the Pset processes, which implies that all the application proc

esses have taken a checkpoint;

b) all unbalanced messages are eventually received. Since our algorithm identifies mes

sages sent from a previous state interval (LRmsg) and logs them on receipt (see 5.2.1), then

it is guaranteed that all messages crossing the recovery line will be logged.

Paragraphs “a)” and “b)” comply with the above definition of a consistent recovery line.

91

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

$ lemma 4: Only one global checkpoint need to be saved to stable storage.

proof: from lemma “3” the last committed global checkpoint is consistent. Hence, failed

processes do not have to rollback beyond checkpoints from the last recovery line. Mes

sages that were sent from previous intervals are replayed from LRmsg log. Therefore the

domino effect is avoided and multiple rollbacks are not possible.

$ Theorem X: All the application distributed processes can be recovered to a consistent

state after host failures. In addition, only processes that interacted since the last checkpoint

are rolled back.

proof: from lemma “2” & “3”, there will always be a consistent recovery line in a stable

storage, and messages crossing the recovery line are logged and replayed to/from stable

storage in the same order via the assumed FIFO channels.

5.4 Algorithm Implementation

5.4.1 Introduction

Throughout the implementation of the algorithm emphasis was put on maintaining the

transparency of the user application to the distributed checkpointing protocol. CUMULVS

[Kohl 96] is a distributed processing environment similar to FADI, whose applications also

use PVM as a message passing substrate. It supports interactive visualization and remote

steering of distributed applications, and provides fault tolerance to applications running in

heterogeneous distributed environments. Although its developers claim that it requires

minimal modification of the user application to specify the nature and decomposition of the

data fields, it nevertheless requires a profound knowledge of the user-application-program

ming model to be able to describe the decomposition of the program data fields and opti

mum points to insert the user-directed checkpoints.

Our goal is to develop a general-purpose transparent fault-tolerance model that will free the

application-programmer from involvement in the application error recovery, and more

importantly, permit the use of conventional PVM applications that were not customised to

run in a particular distributed environment.

92

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

To achieve the required transparency, every application-program is automatically assem

bled with a checkpointing prologue with the help of a specially designed pre-processor

without requiring any intervention from the user/programmer side. This prologue performs

all the backup and recovery operations on behalf of the application-program, thus minimiz

ing the modifications needed to integrate the application code with FADI environment. As

illustrated in Figure 5-6 the checkpointing prologue serves the checkpointing and recovery

of the application code with three procedures:

1. Initialisation of the checkpointing/rollback protocols (e.g setting checkpointing signal

handlers) before starting/re-starting the user program.

2. Handling of the checkpointing-request signals sent by the checkpointing coordinator.

3. Performing recovery-related operations for augmented PVM and UNIX functions

before calling the original ones (e.g saving the name and attributes of a file before call

ing UNIX open() to actually open the file).

I Reliable Distributed
I Computing Modules

(2) >
checkpointing /-j\ *

interrupt signals (f j start/re-start applica
tion-program FADI Library Level

i ii i i i immiiiHiyiiimiit i i i imiiiim
/ -i- Application Level

Checkpointing
Prologue

augmented functions

Application Code

FIGURE 5-6 Interfacing Application Programs with FADI Libraries

5.4.2 Communication between Application Processes

The Parallel Virtual Machine PVM is deployed to facilitate the communication between the

control and monitoring processes of FADI on one hand and between the distributed appli

cation processes on the other. Hence, FADI applications should use PVM as a message

passing substrate if they want to exchange interprocess messages - although this is not a

prerequisite if the application consists of stand-alone programs.

93

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

FADI distributed applications can utilise almost all the PVM functionality including inter

process communication, process synchronization and many other useful parallel program

ming tools such as dynamic process-group operations and multi-threaded debugging. The

only exception is multi-cast (message broadcast operations). Investigation into PVM

implementation of message broadcast operations (pvm_mcast() and pvm_bcast()) revealed

that they do not wait for the message to be received by all the tasks within the broadcast

group (asynchronous message delivery). Therefore, if one of the destination tasks fails,

PVM multi-cast will not be able to identify it and consequently measures can not be taken

by the reliable distributed computing protocol to re-send the message after task recovery.

To achieve the reliability of the communication interface, PVM functions were augmented

to perform recovery-related tasks. A header file is prepended to the application code that

re-defines PVM functions targeted for augmentation. When the application code calls

pvm_recv() for instance, the function is re-defined as ftpvm_recv() which is executed by the

checkpointing prologue. ftpvm_recv() performs the necessary recovery related preprocess

ing before returning to the application code to execute pvm_recv(). In this manner, the fol

lowing adjustments were made to the PVM library:

1. Checkpointing has to be blocked during the process of delivery (send buffer initialisa

tion - data packing - message sending) and the receipt (receiving message - unpacking

data) of a PVM message. The reason is that send and receive buffers are maintained by

the host PVM daemon and are freed (deleted) after a message is successfully sent or

received. So, if a checkpoint is taken during packing/unpacking of a message, then

when a rollback is made to this checkpoint, the restarted task will fail to access these

buffers because the PVM daemon has removed its internal pointers to them. Therefore,

PVM functions that initiate the send or receive processes (pvm_initsend(),

pvm_mkbuf(), pvm_recv(), pvm_nrecv(), etc.) are augmented to initially mask-out the

checkpointing signal. PVM functions that terminate the send or receive processes

(pvm_send(), pvm_psend(), pvm_upck(), etc.) are augmented to reset the checkpointing

signals.

2. The checkpointing prologue needs to take over execution before any data is packed into

the send message in order to prepend bookkeeping information first such as the message

send sequence number, the local state interval of the process, the sender id, etc. Simi

94

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

larly PVM message receive functions are preprocessed to unpack this bookkeeping

information first and make decisions about logging the data packets carried in the mes

sage.

5.4.3 Integrating the Reliable Distributed Communication Protocol into FADI

The Data-flow diagram in Figure 5-7 illustrates how FADI main modules are interfaced

with the application processes via their checkpointing prologues to realize the fault-tolerant

communication protocol. A data dictionary interpreting the flow of data between the proc

esses is presented in Table 5-1. See appendices “A” and “B” for complete listing of Data

flow and Data-structured Design of FADI.

Three modules collaborate to perform the reliable distributed communication protocol. The

checkpointing coordinator and recovery process are integral parts of the FADI software

daemon. They control checkpointing and rollback of the application processes by exchang

ing control and data messages with the application-process prologue.

5.4.3.1 The Application Process Prologue

When FADI spawns the application tasks on one of the distributed system hosts upon task

start or restart (in case of failure), the application prologue takes over the process execution.

It first logs the application process into PVM and disables direct task-to-task message rout

ing. In PVM, it is difficult to track the set of open communication sockets if direct routing

is enabled, because routes are created as messages are either sent or received. Therefore

communication between application tasks is performed past PVM daemons pvmd that are

resident in the application host kernel. Task-to-pvmd communication channels are stable

and their state can be restored upon rollback. This implementation incurs overhead on mes

sage delivery time.

Next the prologue initiates the checkpointing procedures: it initialises the open file table to

save/restore the state of files held open by the application at checkpointing time, then

installs functions to handle the checkpointing coordinator checkpointing signals and calls

the application-program main procedure.

At checkpointing time the application process prologue receives the global state interval

index from the checkpointing coordinator and acknowledges it by sending sent & received

95

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

messages record. A copy of the application-program is forked to save the process image

without blocking the execution of the application code. The saved image is considered as a

tentative checkpoint and is not saved into permanent storage until the next checkpoint is

requested - which confirms that the last recovery line (global checkpoint) was consistent.

As explained above the prologue also performs recovery-related tasks on behalf of the

application process: It masks out checkpointing signals during checkpointing and analyses

bookkeeping information prepended to received messages to decide whether to log the

message body into a stable storage. The prologue also detects unsuccessful send operations

due to destination task failure, in which case it requests the new ID of the recovered desti

nation task from the recovery process and re-sends the message.

. USER
INTERFACE

CHECKPOINT
COORDINATOR

application
ckpting interval sent & received

messages record

— received messages
request

ckpting request ^

consistent recovery-
line index

APPLICATION
PROCESS

PROLOGUEreplayed messages
normal exit task id

request new
destination id

message logrecovered task
specs recovered task id process

checkpointRECOVERY
PROCESS

failed task id
message log

STABLE
STORAGE

/ ERROR 1
I DETECTION
\ MODULE y

process
checkpoint

FIGURE 5-7 Reliable Distributed Computing Protocol

96

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

T A B L E 5 - 1 Data Dictionary

ITEM ' USAGE :

checkpointing interval \ tim e interval betw een tw o consecutive checkpoints \

norm al ex it task id \ successfully term inated application task \

failed task id \ id o f tasks th a t exited w ith erroneous status \

recovered task specs \ specifications o f processes tha t w ere rolled back from the las t check
po in t \

sent & received m essages
record

\ arrays com prising indices o f last sent or received m essage by an
application p rocess to the o thers since last checkpoint \

received m essages request \ an interrupting request sent to send received m essages array to verify
if m essages crossing the recovery line are received by the destination \

ckpting request \ an interrupting request to take a local checkpoin t and send sent &
received m essages records \

consistent recovery-line
index

\ index o f latest recovery-line verified by the checkpointed coordinator
o f holding consisten t checkpoints \

replayed m essages \ m essages rep layed to recovered tasks after the ir ro llback \

request new destination id \ requesting ID o f recovered destination task upon send fa ilu re \

recovered task id \ responding to sender request fo r new destination ID \

m essage log \ m essages crossing the recovery line from left to right saved into per
m anen t storage \

process checkpoint \ saved im age and kernel state inform ation o f an application process \

5.4.3.2 The Checkpointing Coordinator

Communication in FADI is built strictly on a message passing system, which allows the

application tasks and FADI software modules to be distributed on several nodes. Hence, all

FADI main modules reside on a fault-tolerant central host, from where they control and

coordinate the reliable execution of all the distributed application-programs. This central

ised structure alleviates the need for replicating the checkpointing coordinator and recov

ery process for every network host and eliminates the overhead of their backup/recovery if

the network node fails.

The checkpointing coordinator sets a system timer to send checkpointing signals(requests)

to the application tasks at the elapse of every application checkpointing interval. Software

flags are used to send either a checkpointing request or a received-messages request if the

recovery line is not consistent. The received sent & received messages records from all

application tasks are balanced to verify the recovery line consistency. If the recovery line is

97

CHAPTER 5. Reliable Distributed Computing fo r Message Passing Systems

consistent, then its index is sent to the recovery process and the log is freed from messages

belonging to the previous recovery line. Otherwise, the checkpointing flag is set to request

received messages records at the next checkpointing interval. Upon the receipt of a recov

ered task specs from the recovery process, the ID of the failed task is updated and a check

pointing request is re-sent to the recovered task if its failed predecessor was in debt of

checkpointing acknowledgments. When an application task exits normally, the checkpoint

ing coordinator is informed to remove the task ID from the checkpointed task list.

5.4.33 The Recovery Process

Upon the receipt of a failed task ID from the Error Detection Mechanism (EDM), the

recovery task rolls back the failed task to the last consistent recovery line. The new ED is

sent to the checkpointing coordinator and the EDM to resume its backup and monitoring.

The index of the consistent recovery line is promptly sent by the checkpointing coordinator

and updated locally. Logged messages belonging to that recovery line axe replayed. The

replayed messages are stripped of the bookkeeping information because that information

needs not to be analysed since the messages were sent from a previous checkpointing inter

val, therefore should not be balanced and they already reside in the message log. To allow

the application process prologue identify the replayed messages they are prepended with a

negative state interval number.

5.4.4 Limitations Incurred by the Algorithm Implementation

Adopting off-the-shelf software product will always constrain the software module under

development, and there will necessarily be points of conflict that would not arise had all the

software been tailor-developed to suit a particular application. Using the PVM message

passing interface for inter-process communication resulted in the following limitations to

FADI’s applications programming model:

• Multi-cast operations are not supported because PVM message broadcast operations are

asynchronous and thus unreliable. Therefore, a failure of sending to a destination task

cannot be singled out within the broadcast group of destination tasks.

• Direct task-to-task message routing is not allowed because its use would make it virtu

ally impossible to save/restore the state of the communication channels as argued above.

98

CHAPTER 5. Reliable Distributed Computing fo r Message Passing System s

• Programmers should avoid identifying incoming messages by the originator ED for two

reasons: 1) the sender ED changes after task restart, of which the destination has no

knowledge; 2) after task restart, logged messages will be replayed by the recovery proc- t

ess, not the original task. It is recommended to label messages with unique tags for mes

sage identification.

However, the advantages of using PVM message passing interface certainly outweigh the

constraints resulting from its integration into FADI. PVM provides a high level library

interface for interprocess communication, process synchronization, and many useful tools

for the parallel programmer as dynamic process-group operations’ Furthermore, The Paral- &

lei Virtual Machine has a huge user-base that consequently reflects on the number of poten- <

tial FADI applications.

5.5 Conclusions

J
This research resulted in a novel checkpointing and rollback recovery technique for distrib-

t

uted computing systems. It is based on a hybrid technique that combines consistent check

pointing with its low failure-free overhead, with logging of messages that cross the 1
recovery line (to avoid blocking the application process during the checkpointing proto

col).
j

In contrast to other published fault-tolerant techniques, FADI is tolerant to errors occurring i

whilst messages are in transit, i.e messages are delivered to the destination (queued at mes

sage passing daemon or transport protocol thread), but not yet requested (consumed) by the

receiving task. Another important feature of FADI is that it tolerates duplication of mes

sages by the communication channels and requires only one global checkpoint to be

recorded in a stable storage. •

The correctness of the algorithm has been theoretically proven, and its integration into the

distributed processing environment has been described. I

99

CHAPTER 6 Evaluation of The Fault-Tolerant
System

This chapter is composed of two sections: the first describes performance studies of FADI

using a synthetic application. The purpose of this study is to benchmark FADI’s operation

and analyse the overheads associated with the reliable execution of application processes

on-distributed computing resources. The second section examines the application of FADI

to a real-life complex distributed decision-support system.

6.1 Benchmarking FADI Using a Synthetic Application

Chapter ‘4’ studied the performance of FADI checkpointing mechanism in the context of

stand-alone “non-interactive” applications to verify its validity as the nucleus backup and

recovery protocol for the fault-tolerant system. The algorithm presented in the previous

chapter expanded on the non-blocking checkpointing mechanism to cover the possible

inter-process communications taking place between the distributed application processes

[Taha(2) 97]. Hence it is necessary to re-evaluate the performance of FADI in relation to

providing reliable distributed computing for message-passing “interactive ” applications.

This chapter does not document unit and integration tests (white-box testing) of FADI.

Although these tests are necessary - and have been carried out - to verify the behaviour of

the software modules and the interfaces facilitating communication between them [Press

man 92], they do not contribute to the scientific substance of this thesis. Here emphasis is

given to validation and system tests that should permit to determine how the execution of

distributed applications is affected by the overheads of managing their tolerance to hard

ware faults and establish the optimum conditions to minimize this overhead.

6.1.1 Hardware Setup

The performance tests were carried out on a network of three workstations connected by a

10 Mbit/sec Ethernet. The main host running the Fault-management tasks is a SPARC_20

server running SOLARIS 5.5.1 (60 MHz clock rate, 32 Mbytes of main memory, 5 Gbyte

SCSI disk drives). The applications were distributed between two diskless SPARCstation

IPCs running SunOS 4.1.3 (40 MHz clock rate, 8 and 16 Mbyte of main memory).

100

CHAPTER 6. Evaluation o f The Fault-Tolerant System

The communication network is part of the general departmental LAN, and is affected by

the network traffic of other users, unlike dedicated networks used in performance studies

by other researchers such as in [Elnozahy 94]. This is bound to affect the overhead of the

fault-tolerant system, albeit on a small scale.

6.1.2 Application Programs

Some related work have implemented solutions to engineering problems (FFTs, matrix

multiplication, Gaussian elimination, etc.) to benchmark the performance of their fault-tol-

erance techniques for distributed systems [Janakiraman 94] [Sens 95]. We opted for a syn

thetic application because it allows us to fine-tune the application variables (heap size,

message rate, communication-computation ratio) to test various aspects of the system per

formance.

This study evaluates FADI’s performance for managing fault-tolerance for message-pass

ing applications. Therefore, a test application was designed which is communication-inten

sive and with small computation cycles, so that the measured overhead will mainly be due

to interprocess communication. Four tasks were distributed amongst two SPARCstation

/PCs. The first generates random numeric data, passes it to the second, where it is hashed

by a simple arithmetic operation, and the same is repeated by the third task. The fourth task

holds the hash keys for the second and third tasks. It decodes the received data package and

sends it back to the first task where it is checked against the original values to verify that

the data integrity was maintained throughout the pipeline. The application code was written

in “C” and PVM was used to facilitate interprocess communication.

101

CHAPTER 6. Evaluation o f The Fault-Tolerant System

6.1.3 Evaluation

6.1.3.1 Performance Metric Requirements

As shown in Figure 6-1 application programs execute in parallel with the FADI fault- man

agement modules. These modules run on the main “server” host and can affect the execu

tion of the application code only upon start/restart of the application programs and during

processing the checkpointing cycles using interrupt control messages. The application pro

logue takes over the execution of the application program - the shaded area in Figure 6-1 -

to handle the interrupt and perform checkpointing initialisation or recovery related opera

tions.

FADI Reliable D istributed Computing

 •ERROR DETECTION

CHECKPOINTING COORDINATOR t

PROCESS ALLOCATION

restart application program checkpoint application program

run application program

Fault-Tolerance
Prologue

Application Code

f i g u r e 6-1 Interaction between Fault-Management Procedures and the Application

FADI application domain is mainly long-running scientific/engineering applications.

Hence, emphasis is put on evaluating the performance in the failure-free case where the

accumulation of the checkpointing overhead can tangibly affect the application run-time.

102

CHAPTER 6. Evaluation of The Fault-Tolerant System

Because of the long MTBF of modem computer systems, failures are considered an excep

tion rather than a rule, therefore the overhead of application rollback can hardly affect its

execution time. However, for on-line distributed applications (e.g flight reservation sys

tems, industrial decision support systems), the disruption of distributed services must be

within acceptable limits to the system operator. The average rollback time for the synthetic

applications experiment was 6.5 seconds.

The initialisation of the checkpointing/rollback protocols is performed once before the

start/restart of the application program and does not affect the mn-time overhead of the

application. Therefore, the overheads to be studied for the performance analysis are:

a) The message logging overhead: it includes the overhead of tracking the dependencies

of sent/received messages exchanged between the application processes (e.g. augment

ing bookkeeping information to messages, processing this information to maintain the

consistency of the communication channels, etc.), and the overhead of logging incon

sistent messages into stable storage.

b) The checkpointing overhead: it includes the overhead of taking the checkpoint (obtain

ing and saving the process image: open-files, communication sockets state, signal han

dling information, process data and stack segments), and the time spent on writing the

checkpoint to a disk.

6.1.3.2 Experimental Results

Figure 6-2 shows the affect of varying the rate of messages exchanged between the applica

tion processes on the failure-free overhead of the application. Incrementing the message

rate mainly affects the time spent on augmenting each message with bookkeeping informa

tion (12 bytes containing: State interval, sender ID, send sequence number), and tracking

the dependencies of the exchanged messages, i.e keeping records of the last sent and

received message for every application. This overhead is persistent as long as there are

messages sent/received between the application processes, while the message logging

overhead affects the execution of the application only if a message crosses the recovery

line due to our selective message logging policy. Subsequently the failure-free overhead

gradually grows, but even with a considerable message exchange rate (6.4 Kbyte/sec) the

overhead was measured at 2.9% which comfortably falls within the widely acceptable

“10%" overhead on application execution time [Plank 94].

103

CHAPTER 6. Evaluation o f The Fault-Tolerant System

Sens in [Sens 95] implemented an independent checkpointing scheme with pessimistic

message logging, and for a much less communication-demanding application (0.06 Kbyte/

sec) the overhead was 3.0% with a similar checkpointing interval of 2min.

From Figure 6-2 it can also be noticed that changing the size of the application processes

while varying the message rate has little affect on the failure-free overhead, the curves for

various heap sizes of the application process almost overlap.

Overhead (%)

2.5

1218 KB
580 KB
235 KB

1.5

0.5

Message
- J Rate
6.4 (KB/sec)0.2 1.5 3.6

f i g u r e 6-2 Failure-Free Overhead as a Function of Message Exchange Frequency

Figure 6-3 illustrates the checkpointing overhead of the application for three image sizes

versus the frequency of taking the checkpoints.

For the three variations of the application the overhead is observed as the checkpointing

interval is reduced, the reason being that with smaller intervals (higher checkpointing fre

quencies), more checkpoints are taken. When employing the non-blocking checkpointing

policy, the checkpointing procedures are virtually performed by a forked thread while the

main program concurrently continues execution. However, some execution time is still lost

when the OS kernel makes the context switch and swaps one of the processes out.

This slight increase in the overhead escalates with large image sizes (more data to write to

disk) and hence the deviation in the overhead of the three curves in Figure 6-3 as the check

pointing interval decreases. Figure 6-4 highlights the advantage of non-blocking check

pointing. For the most moderate overhead conditions (362 KB applications size and 10

104

CHAPTER 6. Evaluation o f The Fault-Tolerant System

min. checkpointing interval) the overhead of sequential checkpointing was 5.72% as

opposed to 0.12% for non-blocking checkpointing.

Overhead (%)
4.5 ------------ Non-Blocking C heckpointing

3.5

1336 KB
754 KB
362 KB2.5

1.5

0.5 Ckpting
Interval
(min)

f i g u r e 6-3 Failure-Free Overhead as Function of the Checkpoint Interval (a)

Overhead (%)
Sequential Checkpointing

362 KB

Ckpting
Interval
(min)

f i g u r e 6-4 Failure-Free Overhead as Function of the Checkpoint Interval (b)

105

CHAPTER 6. Evaluation o f The Fault-Tolerant System

In general the overhead recorded in the second experiment is higher than the first. Taking

more checkpoints increases the probability of messages crossing the recovery line, and

subsequently the number of logged messages (disk I/O) which takes significantly more

execution time than computation cycles for tracking the dependencies for higher message

exchange rates.

Under similar message rate and image size conditions, Elnozahy and Zwaenepoel’s mes

sage logging with coordinated checkpointing algorithm [Elnozahy 94] scored less overhead

for higher checkpointing frequencies (1.8% compared to ours 2.8% for 2min interval), but

our algorithm perfonned better as the checkpointing frequency decreased (0.2% overhead

compared to Elnozahy’s 0.3% for lOmin checkpointing interval). This is despite the added

complexity to our algorithm caused by catering for failures occurring whilst interprocess

messages are in transit [Taha(2) 97].

Figure 6-4 highlights the advantage of non-blocking checkpointing. For the most moderate

overhead conditions (362 KB applications size and 10 min. checkpointing interval) the

overhead of sequential checkpointing was 5.72% as opposed to 0.12% for non-blocking

checkpointing.

6.1.4 Conclusions

The performance study on synthetic applications indicates that FADI’s reliable distributed

computing protocol incurs low overhead even with high message exchange rates, thus

making it suitable for communication-intensive distributed applications. The largest over

heads (although still acceptable “<< 10%”) were measured for shorter checkpointing

intervals. Because of the transparency of the implementation of our reliable distributed

computing algorithm, the checkpointing frequency can be tuned without any modification

to the application code. The requirements of FADI scientific/engineering application

domain (extended execution time) allow for higher checkpointing frequencies and will

therefore bear low overhead when run under FADI. The experimental results have also

shown that our implementation has improved performance over related algorithms for reli

able distributed computing.

The stable-storage reliability can be improved by introducing a replicated file system. This

can be achieved at hardware level by using duplicate hot-swappable disk drives (e.g

1 0 6

CHAPTER 6. Evaluation o f The Fault-Tolerant System

RAPED™ high security drives from Digital Interactive Solutions™ [Digital 97]) without

extra overhead or modifications to the software.

We conjecture that these results will hold on modem hardware platforms as well. The com

munication rate of the test environment was 10 Mbit/sec but Fast Ethernet can deliver a

rate up to a Gigabit per second and the latest Sun SPARCstation “ULTRA 2/1200” clocks

200 MHz as opposed to the 60 MHz of the experiment’s SPARC_20 server.

6.2 FADI Evaluation By Applying a Real-Life Distributed Processing

System

Most of the performance evaluation work described in the literature [Elnozahy 94] [Ber

nard 94] [Li 94] have chosen number-crunching applications for classical engineering

problems: (matrix multiplication, Gaussian distribution, FFT applications, etc.) to evaluate

the performance of their distributed computing systems. Although valid, these tests often

do not reveal the actual behaviour of the fault-tolerant distributed environment when

deployed to run realistic engineering applications. This research has undertook to evaluate

the performance of FADI also on a real-time telemetry application to complement the eval

uation described in the previous section. Here, we seek to demonstrate the practicality of

the use of FADI for providing a fault-tolerant platform for real-life distributed systems.

6.2.1 Background to the Industrial Application

The selected application is concerned with Computer-Assisted Control o f Water Distribu

tion Networks. Original work on this control system was carried out by A. Bargiela [Bar-

giela 84]. The developed on-line monitoring system comprises of a number of concurrent

software modules, including network simulator, telemetry system estimator, state estima

to rs) and the operator’s interface. The principal task of this system is to process redundant,

noise-corrupted telemeasurements in order to supply a real-time data base with reliable

estimates of the current state and structure of the network.

The measurements are processed on a continues basis (lm in scan rate) and the state estima

tion module identifies discrepancies between the mathematical model of the network and

the actual meter readings. These discrepancies are then analysed so that their causes, such

1 0 7

CHAPTER 6. Evaluation o f The Fault-Tolerant System

as the presence of leakages, closed valves, or erroneous transducer data, are found and rem

edied [Bargiela 95].

Two methods of state estimation, with different numerical characteristics, were imple

mented. The first method uses an augmented matrix formulation of a classical least-squares

problem, and the second is based on a least absolute value solution of an over-determined

set of equations. Two water systems, one of which is a realistic 34-node network, were

used to evaluate the performance of the proposed methods.

The realisation of such complex monitoring and control system as for most industrial deci-

sion-support systems constitutes the utilisation of distributed computing environment. The

main reasons for this approach are:

1. On-line monitoring and control requires that a number of computational tasks execute

simultaneously in parallel or in pipe-line fashion (e.g bad data processing, state estima

tion and calculating optimal valve controls), which is more effectively implemented in a

true distributed system than in a time-shared uni-processor environment.

2. The price of the adoption of such numerical techniques such as state estimation incurs a

considerable computational load. Parallel and distributed algorithms are seen as an

answer to the computational complexity problems of such techniques [Bargiela 93].

3. With the increase of the system size to several hundred nodes, the topological decompo

sition, which maps well onto distributed computing, becomes a natural way of describ

ing the system.

6.2.2 Functional Description of the Monitoring and Control Application

There are three main groups of programs in the package (Figure 6-5). The programs of the

first group simulate the behaviour of the real network and provide measurement informa

tion which in practice is retrieved using some telemetry system. This data is effectively the

only source of information for the second group of programs monitoring the network.

A major role of the monitoring programs is to supply information about the system state

both for the human operator and control algorithms, Since the telemetered data is being

updated without the intervention of a human intermediary the monitoring programs are said

to be on-line to the process.

108

CHAPTER 6. Evaluation o f The Fault-Tolerant System

Exact
Data

OBSERVABILITY
TEST

ESTIMATION

BAD - DATA
PROCESSING

Monitored
Data

NETWORK TELEMETRY
SIMULATION SIMULATION

Telemetered
Data

MONITORING

GRAPHICAL
DISPALY

ZJ“
CONTROL

VALVE
CONTROL

C ontrols
OPERATOR
INTERFACE

f ig u r e 6-5 Water Network On-Line Monitoring and Control Scheme

After checking topological observability of the system, with respect to the current set of

valid measurements, the estimates of the state vector are calculated. This is followed by

identification of bad data points which were not found during the preprocessing stage,

1 0 9

CHAPTER 6. Evaluation o f The Fault-Tolerant System

Depending on the state estimation algorithm employed, the monitoring procedure involves

either an iterative elimination of bad data from the set of valid measurements and re-com

putation of the state vector, or it simply marks erroneous measurements having rejected

them in the course of the estimation. The results obtained with the monitoring programs are

made available to the operator in the form of a print-out, graphical display and data file

which is also used by control algorithms.

The third group of programs closes the control loop by devising and implementing control

action, The flow of information between the programs implies that algorithmically calcu

lated controls are off-line to the process since they are implemented by a human operator.

Such a structure is natural at the initial stage of the computerised monitoring and control of

a water network. However, it must be emphasized that the computer assisted control can be

easily converted into a full on-line control scheme since the system is monitored on-line.

i) Network Simulation Module

The water network simulation program (SYSSYM) provides a facility to carry out on-line

monitoring studies without recourse to a real-life telemetry system, The input data for the

network simulator represents exact information about the system and, as such, are not

available to the monitoring programs. This data can only be modified by the control action

of the operator.

The simulator calculates an exact state vector, by applying a Newton-Raphson iterative

procedure to the square set of non-linear mass-balance equations, and passes it to the

telemetry simulation program which calculates the values of the measurements.

ii) Telemetry Simulation Module

Using an exact state vector, supplied by the network simulation program, and information

about the meter positioning the telemetry simulation program (SYSTEL) calculates the

exact values of the measurements. In order to obtain realistic set of telemeasurements, a

pseudo-random measurement noise is superimposed on the meter readings. The program

also enables the simulation of manufacturing of telemetry or instrumentation by making

provision for the corruption of the measurement set by gross measurement errors and/or

topological errors.

1 1 0

CHAPTER 6. Evaluation o f The Fault-Tolerant System

iii) State Estimation Module

The state estimation program plays a key role in the network monitoring package. It proc

esses raw telemetered data augmented by pseudo-measurements which are generated by

the observability routine, and calculates an estimate of the state vector. The output of the

state estimator also includes estimates of the measurement residuals, thus enabling detec

tion and identification of bad data points. Two state estimators based on the augmented

matrix method (SYSESTLS) and on the linear programming approach (SYSESTLP) are

implemented.

iv) Operator Interface Module

Operator interface program (OPERATOR) enables the operator to select and implement

controls using information provided by the monitoring programs and optimal valve control

algorithm. It also allows modification of the set of measurement points, the changing of

Gaussian noise parameters, and the simulation of the occurrence of bad data by corrupting

the values of the telemeasurements.

6.2.3 Inter-process Communication between the Application Modules

Program organization and interprocess communication between the application modules in

the original implementation of the water system monitoring and control software program

is described in [Bargiela 88]. Each task communicates with others through shared memory

areas with specified access privileges. The timing of task execution and synchronization

has been achieved by reference to semaphores and event keys in shared data. The shared

memory segments appear as common blocks within FORTRAN programs. The original

implementation has been targeted for two 32-bit minicomputers Perkin Elmer and DEC-

VAX, and consequently the process communication and synchronization have been imple

mented using the facilities of the OS32 and VMS operating system.

The water system monitoring and control software program was re-implemented for a

modem computing platform consisting of a cluster of UNIX - based workstations con

nected via an Ethernet network. No changes were made to the algorithmic computing mod

ules (the FADI application programming interface supports FORTRAN as well as C/C++

applications), but the interprocess communication and synchronisation was restmctured to

adjust to the facilities of the new environment. PVM was used for interprocess communica

tion and synchronisation. A centralised control scheme was adopted. The central control

111

CHAPTER 6. Evaluation o f The Fault-Tolerant System

task holds the common areas and grants access rights through a request-acknowledgment

message exchange with the requesting task on a FIFO basis.

6.2.4 The Test Environment

The hardware setup is similar to that used for the performance studies with synthetic appli

cations in section 6.1.1 on page 100. The five water system monitoring and control tasks

(central synchronisation and control, simulation, telemetry, estimation, and operator) were

distributed between two diskless SPARCstation IPC’s and a Sun SPARC_10 workstation.

PVM-TCP/IP was used for communication over a 10 Mbit/sec Ethernet. FADI error-detec-

tion and fault management tasks were executed on a SPARC_20 central server.

6.2.5 Experimental Results

The water system monitoring and control application is both computation and communica

tion-intensive. The sophisticated algorithms used for the determination of observability,

state estimation and bad data detection average a CPU load of over 30% during execution

time, and for five iterations of estimation - telemetry - control continuing for approximately

2 minutes, the average message exchange rate was 42 messages per second. Therefore, this

distributed system, in addition to being a functional on-line distributed control system, rep

resents quite a challenge from the computation and communication overhead point of view.

Figures 6-6 and 6-7 show the distributed application operating in FADI fault tolerant envi

ronment.

112

CHAPTER 6. Evaluation o f The Fault-Tolerant System

RTTS
Real Time

S y s te m S p ecs Start FADI A ctiv a te H ost Quit

N e tw ork View

andrzej
SUMSOL2 W

harp ®SUM

k0t0 M
SUM W

T ask Monitor

@ STARTING USER - APPLICATION TASK
task ’caa (c0003)’ started on ’koto’ .
task ’syssym <100002)’ started on ’riti’ .
task ’systel (100003)’ started on ’riti’ .
task ’sysestls (140002)’ started on ’harp’
task ’operator (140003)’ started on ’harp’ .

x all user-tasks started successfullyx

H ost M onitor

@ STARTING THE “FTDPE” HOST MONITOR

f i g u r e 6-6 FADI Running the Water Systems Monitoring and Control Application

113

CHAPTER 6. Evaluation o f The Fault-Tolerant System

' water
.■ I .'. :,. .: ,.: ..'..: :.. :. .: .

OPERATOR &
System Start

Estimator Parameters

Insert Leak Node

Telmetry Parameters

Gross Measurm.
Errors

node_1 node_2 value
20......... [bioi.....

Cancel I Accept j

Tmmrw "
TELEMETRY : WAITING FOR
SYMULATOR

ilTIM Es 2 MTIME= 2

MEASUREMENT SCAN COMPLETED

ITIME= 3 MTIME= 2

MEASUREMENT SCAN COMPLETED

ITIM E=4 MTIME= 3

MEASUREMENT SCAN COMPLETED

ITIM E=4 MTIME= 4

MEASUREMENT SCAN COMPLETED

SIMULATOR
X0(34)= 0.092700

X0(37)= -0.022900

X»(3$)=-0.049000

X0(39)=-0.039200

X0(40)= 0.02S400

X0(41)= 0.041400

X0(42)= 0.104300

ESTIMATOR

X(13)= 49.274 X(27)=-15.24C X(41)= 0.04140

X(14)= 49.122 X(2$)= -33.423 X(42)= 0.10430

MEASUREMENT ABSOLUTE RELATIVE MARK
TYPE NODE ERROR ERROR

MEASUREMENT ABSOLUTE NORMALISED MARK
TYPE NODE ERROR ERROR

* WEIGHTED SUM OF SQUARED RESIDUALS WSSERR=
0.2548E-07
*AVRH= 0.4177E-03 VARH= 0.S442E- 04 AVRF= 0.3874E-05

VARF= 0.9435E-10
ESTIMATOR : N.R. CON VERGED IN 1 ITERATIONS

ESTIMATED STATE OF THE SYSTEM

X(1)= 32.459 X(15)= 49.009 X(29)= 31.494

X(2)= 43.437 X(14)= 49.290 7i(30)= 43.419

X(3)= 45.942 X(17)= 40.359 X(31)= 44.005

X(4)= 44.525 X(10)= 49.305 X(32)= - 45.010

X(5)= 43.139 X(19)= 40.915 X(33)= -34.501

— -------1 „ — --------------------- m i , , i m m f . . . ■■ i

f i g u r e 6-7 The Water Systems Monitoring and Control Application

Unlike synthetic applications, the application parameters that can affect the overhead of the

fault-tolerant environment (e.g heap size, message rate, etc.) can not be regulated to test the

system performance in various conditions. Hence the performance study is confined to

examining the influence of varying the checkpointing interval on the application failure-

free overhead, as shown in Figure 6-8.

114

CHAPTER 6. Evaluation o f The Fault-Tolerant System

The graphs indicate that non-blocking checkpointing significantly reduces the failure-free

overhead of FADI (up to 80% reduction with short checkpointing intervals). The reduction

is more significant than that measured for non-interactive applications in section 4.7.2 on

page 66 (a maximum reduction of 30%) mainly because of the extra overhead of sending

records of sent/received messages at each checkpoint to the checkpointing coordinator

task.

The failure-free overhead at checkpointing intervals of half a minute is relatively high

(although still within 10% of application running time for non-blocking checkpointing),

but for the default measurement scan rate it is below 5%. This emphasizes the importance

of understanding the dynamics of the system when choosing checkpointing intervals.

Clearly with the highest checkpointing rate the FADI system was interfering with the nor

mal measurement collection cycle thus making it more difficult to maintain the check

points.

The Average recovery time for the water distribution networks application was 8 seconds.

Overhead (%)

45

40

35

30

25

20

15

10

5

0
0.5 1 1.5 2 2.5

S eq u en tia l
C h eck p tin g

N on-B locking
C kpting

Checkpointing
Interval (min)

f i g u r e 6-8 Overhead of the Water-Systems Monitoring and Control Application

115

CHAPTER 6. Evaluation o f The Fault-Tolerant System

6.2.6 Conclusions

This section presented a performance study of FADI by applying it to an advanced water

systems monitoring and control software system. This application exemplifies a class of

industrial systems where the FADI fault-tolerant environment can be utilised. The software

system is inherently distributed and it needs to execute on continuous basis. It can tolerate a

small delay in the operation of one or more of its tasks (while the are rolled back and

restarted from checkpoints backup), but a complete halt of the system can lead to a critical

failure of the decision-support system. FADI represents a low-cost and efficient alternative

to hardware-redundancy based fault-tolerant computing environments to implement such

systems.

The experimental results confirm that, due to the non-blocking checkpointing methodol

ogy, FADI achieves low overhead on the running time of applications.

The performance study has also highlighted the importance of a joint consideration of syn

thetic and real-life application when evaluating software environments such as FADI. In

this context, we are confident to recommend the use of FADI to provide fault-tolerance for

a broad class of computation-intensive distributed applications.

116

CHAPTER 7 FADI’s Application Programming
Interface (API)

This chapter addresses the user-interface issues associated with the FADI environment.

The first section explains how to prepare the application programs for execution under

FADI, highlighting the environment constraints and advantages. The second section intro

duces Tcl/Tk, the software package used to built FADI graphical user interface. It explains

how the interface is used to input the distributed application specifications into FADI and

to monitor both the progress of the application execution and the-hardware platform it is

running on.

7.1 Programmer’s Guide to Using FADI

7.1.1 Pre-processing on the Application code

Some proprietary operating systems such as Sprite [Douglis 91] and KeyKOS [Landau

92] have built-in fault-tolerance mechanisms, where process models are carefully defined

and implemented to accommodate checkpointing and migration. In these systems, fault-

management is performed on the application executable (binary) code without the

involvement of the user.

The FADI generic processing environment was built on the top of the UNIX general pur

pose operating system where the absence of kernel-based implementations for saving the

process execution state, meant that minor alterations have to be made to the application

source code to enable FADI fault-management procedures to perform recovery related

procedures. In order to achieve user-transparency, a special pre-processor was designed to

automatically link the application-source code with FADI fault-management libraries as

illustrated in Figure 7-1.

1 1 7

CHAPTER 7 . FADI’s Application Programming Interface (API)

FADIApplication

Source-Code

(C/C++
FORTRAN)

FADI

pre-processor
include files

Pre-processed

Application
Source-Code

FADI

Fault-Tolerance
Libraries

C/C++

Fortran

Compiler

FADI
ready-run

user
executable

f i g u r e 7-1 Building FADI Applications

7.1.2 Instructions to Building the Application Programs

The fault-tolerant environment was originally developed for application programs written

in the “C ” programming language. “C ” is the most widely-spread programming language

and most of the UNIX kernel code is written in “C ”. The latter is important because it pro

vides access to the UNIX-kemel internals that is needed to record the execution state of the

process (take checkpoints). However, within the application domain of FADI (long-run

ning, computation-intensive scientific/engineering applications) a significant proportion of

programs were written in FORTRAN. Moreover, there is a wealth of algorithmic and math

ematical libraries, that are extensively used in large scientific applications which are writ

ten in FORTRAN (e.g HARWELL, NAG, etc. [Harwell 97] [Kendall 95]). The PVM

project [Geist 94] reached similar conclusions and they provide an analogous FORTRAN

interface for their “C” libraries.

Hence, it was decided to provide both FORTRAN and C/C++ application programming

interface (API) for FADI.

7.1.2.1 The “C” Interface

To build application programs written in “C ” the user should follow the next steps:

1. Run FADI applications preprocessor from the command line:

f a d i _ p p - c < f i l e 1 . c , f i l e 2 . c p p , . . .>

118

CHAPTER 7. FADFs Application Programming Interface (API)

The preprocessor edits the source code to perform four tasks:

i. scan the source code for the use of FADI-restrained UNIX and PVM system calls and

procedures and inform the user accordingly.

ii. Change the main function call to MAIN to allow the checkpointing prologue to take

over process execution upon start or rollback of the user application.

iii. Insert delimiters for unpacking PVM messages (end_unpack). This is necessary to

instruct the checkpointing prologue to unmask the checkpointing signal and complete

processing the bookkeeping information of the received message.

iv. Include type definitions in the program code for augmenting certain PVM functions

and UNIX system Calls to enable the checkpointing prologue to perform recovery

related functions before calling the original procedures. Figure 7-2 presents an exam

ple of such augmentation for the PVM function performing the sending of interproc

ess messages:

2. If the first pass is successful, then it is recommended that the user copies the sample

Makefile (Figure 7-3) from FADI source directory and follow the included instructions

to modify the Makefile in order to compile the application programs. Next the user exe

cutes a UNIX script (provided with the FADI distribution) that verifies the programming

environment (e.g existence of libraries, mode of environment variables, etc.), then trig

gers the compilation of the source file(s):

m f a d i - c c m a i n u s e r - e x e c u t a b l e >

3. Once the application is successfully linked with FADI libraries, the user/programmer

can use the GUI to run and monitor the distributed applications as detailed in the section

7.3.

119

CHAPTER 7. FADFs Application Programming Interface (API)

/ * o r i g i n a l f i l e * /

main() {

info = pvm_send(destination_id, message_tag);
FADI PREPROCESSOR

/ * p r e p r o c e s s e d f i l e * /

MAIN() {

info = ftpvm_send(destination_id, message_tag);

/ * F A D I c h e c k p o in t in g p r o lo g u e * /

ftpvm_send(destination_id, message_tag) {
do

get status of destination_id task;

if (destination_id task) is running then

info= pvm_send(destination_id, message_tag);
increment send_sequence_number for destination_id task;

else

get recovered(rolled-back) new destination_id from FADI recovery manager;
update records holding old destination_id;

goto the start of the loop;
endif

until message “message_tag” is successfully sent to destination_id task;
return info;

}

f i g u r e 7-2 Pre-Processing “C” Application Programs in FADI
i

i

1 2 0

CHAPTER 7. FADI’s Application Programming Interface (API)

#Make file for FADI C/C++ Application Programs

For source code compilation:
1) PVM must be installed on the system and the environment vars PVM_ROOT
and PVM_ARCH need to be set;
2) Enter the appropriate information when required (indicated by #++);

#++ Enter FADI Installation Directory
FDIR
#++ Enter Application Source Directory
ADIR
#++ Enter Executables Directory (default is applications directory)
XDIR = $(ADIR)

#++ Enter C/C++ compiler (default g++)
CC = g++

Libraries & includes
#FADI
FADI_LIB= -L$(FDIR)/lib -lfadi
FADI_INCLUDES=-I$(FDIR)/include
#PVM
PVM_LIB= -L$(PVM_ROOT)/lib/$(PVM_ARCH) -lpvm3 -lgpvm3 $(ARCHLIB)
PVM_INCLUDES=-I$(PVM_ROOT)/include
PVM_FLAGS= $(ARCHCFLAGS)

#++ To change the compiler switches, for example to change from -O to -g, change the
#++ the following line:
CFLAGS = -O

CC_SWITCHES = $(CFLAGS) $(PVMJFLAGS)

#++ Enter names of object files (user_main.o, filel.o, file2.o, etc.)
OBJECTS = user_main.o, filel.o

Main user-executable file name is extracted from the command line: "mfadi [exe_file3"
$(USER_MAIN): $(OBJECTS)

$(CC) $(CFLAGS) $(FADI_INCLUDES) $(PVM_INCLUDES) $(OBJECTS) $(PVM_LIB) \
-lm -o $(USER_MAIN)
cp $(USER_MAIN) $(XDIR)/

#++ Enter dependencies of the user_main and other object files (if any). Replace
#++ user_main.*, and filel.cpp, etc. with appropriate source file names.
user_main.o: $(ADIR)/user_main.c

$(CC) $(CFLAGS) -c $(FADI_INCLUDES) $(PVM_INCLUDES) $(ADIR)/user_main.c

filel.o: $(ADIR)/filel.cpp
$(CC) $(CFLAGS) -c $(FADI_INCLUDES) $(PVM_INCLUDES) $(ADIR)/filel.cpp

FIGURE 7-3 Sample FADI “C” Make File

1 2 1

CHAPTER 7. FADI's Application Programming Interface (API)

1,12.2 The FORTRAN Interface

In order to avoid rewriting FADI fault-management procedures for the FORTRAN API, the

skeleton of the application programs was retained in “C”. This skeleton performs all the

required initialisation of FADI checkpointing and rollback procedures before calling FOR

TRAN main routines.

The following instructions should be followed to link FORTRAN programs to FADI:

1. The user should make sure that the FORTRAN main program has a “PROGRAM” and

“STOP” statements. Some compilers such as the SPARCworks F77 compiler [Sun 94]

assume them by default, but they need to be declared explicitly because they are neces

sary for FADI preprocessor to identify main FORTRAN application modules.

2. Run FADI preprocessor from the command line:

f a d i _ P P - f < f i l e 1 . f , f i l e 2 . f , . „ >

the preprocessor edits the source to perform the following tasks:

i. scan the source code for the use of FADI-restrained UNIX and PVM system calls and

procedures and inform the user accordingly.

ii. edit the FORTRAN text in order to change the FORTRAN declaration for main pro

gram to a subroutine that can be called from within a “C ” code. Next the preproces

sor augments some of the FORTRAN PVM and UNIX procedures to cross-call their

corresponding fault-tolerant versions implemented in “C ”. Diagram 7-4 illustrates

the process of building FORTRAN applications for use in the FADI environment.

3. If the first pass is successful, then it is recommended that the user copies the sample

FORTRAN Makefile (Figure 7-5) from FADI source directory and follow the included

instructions to modify the Makefile in order to compile the application programs. Next

the user executes a UNIX script (provided with the FADI distribution) that verifies the

programming environment (e.g existence of libraries, mode of environment variables,

etc.), then triggers the compilation of the source file(s):

m f a d i - f < m a i n u s e r - e x e c u t a b l e >

4. Once the application is successfully linked with FADI libraries, the user/programmer

can use the GUI to run and monitor the distributed applications as detailed in the next

section.

1 2 2

CHAPTER 7. FADFs Application Programming Interface (API)

/* original fo rtra n source file: syssym .f */

PROGRAM SIMULATOR

pvmfsend(destination_id, message Jag, info);

STOP

END

(FADI PREPROCESSOR)

/* m ain source file coded in “C": syssym .c */

MAINQ {
/* preprocessed fortran source file : syssym_f.fi */

1 SUBROUTINE SIMULATOR
f_init(); /* initialise FORTRAN 10 */ JT J c external link to the checkpointing prologue

simulator; /* call FORTRAN main external ftpvmfsend !$pragma C(ftpvmfsend)
f_exit(); /* reset FORTRAN 10 */

/* fo rtra n interface fo r FADI ckpting prologue */

ftpvmfsend_ (int *tid, int *msgtag, int *info)

*info = ftpvm_send(tid, *msgtag);

}

call ftpvmfsend(destinationjd, msg_tag, info)

RETURN

END

/* FADI checkpointing prologue */

ftpvm_send(destinationJd, message_tag) {
do

get status of destination_id task;
if (destination_id task) is running then

info= pvm_send(destination_id, message_tag);
increment send_sequence_nubmber for destination_id task;

else

get recovered(rolled-back) new destinationjd from FADI recovery manager;
update records holding old destinationjd;

goto the start of the loop;

endif

until message “message_tag” is successfully sent to destinationjd task;
return info;

}

FIGURE 7-4 Pre-processing FORTRAN Application Programs in FADI

123

CHAPTER 7. FADI’s Application Programming Interface (API)

#Make file for FADI FORTRAN Application Programs

For source code compilation:
1) PVM must be installed on the system and the environment vars PVMJROOT
and PVM_ARCH need to be set;
2) Enter the appropriate information when required (indicated by #++);

#++ Enter FADI Installation Directory
FDIR=
#++ Enter Application Source Directory
ADIR=
#++ Enter Executables Directory (default is applications directory)
XDIR= $(ADIR)

#++ Enter C/C++ compiler (default g++)
CC= g++
#++ Enter FORTRAN compiler (default g77)
F77= g77 -f_init-local-zero #g77 does not set uninitialised local vars to 0

Libraries & includes
#FADI
FADI_LIB= -L$(FDIR)/lib -lfadi
FADI_INCLUDES=-I$(FDIR)/include
#PVM
PVM_LIB= -L$(PVM_ROOT)/lib/$(PVM_ARCH) -lfpvm3 -lpvm3 -lgpvm3 $(ARCHLIB)
PVM_INCLUDES=-I$(PVM_ROOT)/include
PVM_FLAGS= $(ARCHCFLAGS)

#++ To change the compiler switches, for example to change from -O to -g, change the
#++ the following line:
CFLA G S= -O

CC.SWITCHES =$(CFLAGS) $(PVM_FLAGS)

#++ Enter names of object files (userjnain.o, filel.o, user_main_f.o, file2.o, etc.)
OBJECTS= fpp.o, user_main.o, user_main_f.o, file2.o,...

Main user-executable file name is extracted from the command line: "mfadi [user_main]"
$(USER_MAIN): $(OBJECTS)

$(CC) $(CFLAGS) $(FADI_INCLUDES) $(PVMJNCLUDES) $(OBJECTS) \
$(PVM_LIB) -lm -o $(USER_MAIN)
cp $(USER_MAIN) $(XDIR)/

#++ Enter dependencies of the user_main and other object files (if any). Replace
#++ user_main.*, and file2.f, etc. with appropriate source file names.
user_main.o: $(ADIR)/user_main.c

$(CC) $(CFLAGS) -c $(FADI_INCLUDES) $(PVM JN C LU D ES) $(ADIR)/user_main.c

user_main_f.o: $(ADIR)/user_main_f .f fpp_f.h
$(F77) $(CFLAGS) -c $(FADI_INCLUDES) $(PVM_INCLUDES) $(ADIR)/$user_main_f.f

file2.o: $(ADIR)/file2.cpp
$(CC) $ (CFLAGS) -c $(FADI„INCLUDES) $(PVM_INCLUDES) $(ADIR)/file2.cpp

FADI preprocessor file, no change necessary
fpp.o: fpp.c

$(CC) $(CFLAGS) -c $(PVM_FLAGS) $(PVM_INCLUDES) fpp.c

f i g u r e 7-5 Sample FADI “FORTRAN” Make File

CHAPTER 7. FADI’s Application Programming Interface (API)

7.2 The Tel and the Tk GUI Development Toolkit

Tel and Tk are software packages that provide programming system for developing and

using graphical user interface applications. Tel is a simple scripting language for control

ling and extending applications; its name stands for “tool command language” [Ousterhout

94]. Tel provides generic programming facilities, such as variables and loop procedures,

that are useful for a variety of applications. Furthermore, TCL is embeddable. Its inter

preter is a library of “C” procedures that can easily be incorporated into applications, and

each application can extend the core Tel features with additional commands for that appli

cation.

One of the most useful extensions of Tel is Tk, which is a toolkit for the X Window System

[Nye 90]. Tk extends the core Tel facilities with commands for building user interfaces, so

that one can construct Motif-like user interfaces by writing Tel scripts instead of “C” code.

Tcl/Tk is already utilised in a variety of serious graphical and communication software

packages, the IMIS system [Thiran 96] uses Tcl/Tk to implement tools for telediagnoses

and 3D medical image processing.

Together Tel and Tk has many advantages to the application developers and users:

• The main benefit of programming in Tcl/Tk is rapid application development. Many

interesting GUI applications can be written as scripts, using a windowing shell called

wish. This allows to program at much higher level than in “C ” or C++, and Tk hides

many of the details that “C” programmers must address. Compared to toolkits where

programming is in “C”, such as the Motif toolkit, there is much less to leam in order to

use Tel and Tk and much less code to write. New Tcl/Tk users can often create interest

ing user interfaces after just a few hours of learning, and many people have reported

reductions in the code size and development time when they switched from other

toolkits to Tcl/Tk.

125

CHAPTER 7. FAD Vs Application Programming Interface (API)

• Tel is an interpreted language. When using Tel applications such as wish, one can gener

ate and execute new scripts on the fly without re-compiling or restarting the application.

For example to change the font of a text frame tagged “TJFrame” while it is active,

merely one line of script has to be executed from within the wish shell:

“ TJFrame configure -font <new_font> “

This is particularly useful at the prototyping stage of the GUI. The GUI developer can

make changes on the fly to suit the customer requirements, get instant feedback, make

few more modifications, etc.

• Tel makes it easy for applications to have powerful script languages. To create a new

application, all that needs to be done is to implement a few new Tel commands that pro

vide the basic features of the application. Then these commands can be linked with the

Tel library to produce a full-function scripting language that includes both the com

mands provided by Tel (called the Tel core) and those written by the programmer. This

allowed Tel to include many different library packages, each of which provides an inter

esting set of commands as in Figure 7-6. Tk is one example of such library.

T k L ibrary

Tel L ibrary

Tel
Interpreter

□□□□□
B uilt-in C om m ands

□□□□□ □□□□□
U ser Package

□□□□
A pplication C om m ands

FIGURE 7-6 Structure of a Tel Application

Tel scripts can also be used as a communication mechanism to allow different applica

tions to work together. For example, any windowing application based on Tk can send a

Tel script to any other Tk application to be executed there.

126

CHAPTER 7. FADTs Application Programming Interface (API)

Besides the general benefits to GUI developers, the Tcl/Tk Toolkit has features that are spe

cifically advantageous to FADI’s behavioural model:

• Tcl/Tk is built on the top of the X I1 interactive window system. It provides a network

transparent, graphics operating environment [Jones 90]. Most UNIX-based computer

systems - which is FADFs hardware platform, utilise X I1 to build graphical front-end

interface to their operating systems.

• Tk offers a wide range of graphic widgets: frames, labels, buttons, radio-buttons, scroll

lists, text windows, menus, text entries, canvas drawing, and many more, i.e ready-made

graphical tools to support FADI user-input and system monitoring tasks.

• The Tcl/Tk Toolkit provides a high-level bidirectional interface to programming mod

ules written in C. The initialisation script executed when the application starts should

contain declarations of “C ” procedures which are called directly from a Tel script. To

execute Tel scripts from within a “C ” procedure, information about the Tel application

Tel interpreter has to be embodied in the procedure. No further changes are required to

the normal “C” code. Hence, FADI GUI tools can be written in Tel, because scripts are

easier to write, they can be modified dynamically, and they can be debugged more

quickly because there is no need for re-compilation after each bug fix. FADI error detec

tion and recovery modules are implemented in “C” because it is faster, and has access to

low-level OS facilities (e.g network socket operations) that are not available to Tel

scripts.

• Once the initialisation stage is complete, the Tel application enters an event loop to wait

for user-interactions. Whenever an interesting event occurs, such as the user invoking a

menu entry, moving the mouse, or a call from a “C ” procedure, a Tel script is invoked to

process that event. This perfectly complies with the distributed behavioural model of

FADI central processes which is constructed in an event-processing fashion - that is

message driven.

• The interaction between the application programs and FADI Tcl/Tk GUI is implemented

by exchanging interprocess messages via the PVM message passing interface. This

made linking FORTRAN applications to the GUI effortless, without the need to cross

link the “C ” GUI code to the FORTRAN application programs.

127

CHAPTER 7. FADFs Application Programming Interface (APR

7.3 The Integrated Input and Monitoring Environment

The purpose of FADI GUI is to provide the application programmer with a user-friendly

form for inputting the specifications of the distributed system, and to aid in on-line moni

toring of the application tasks and the underlying hardware platform (computer nodes).

Following is a description of the interface:

t The System S p ecs submenu contains entry forms for the input of the distributed sys

tem specification as shown in Figure 7-7:

• Application Checkpointing Interval:

• Specifications of the Application Tasks:
- Task Nam e (executable file);
- Spawn In (the task host): Host (by host name);

Arch (by CPU/OS architecture);
Default (Spawn on any available host).

$ The Network View window displays icons representing the distributed system compu

ter nodes. At the start of the application, the distributed system configuration is automati

cally detected and displayed in the icon form shown in Figure 7-8. It comprises the node

name, its CPU/OS architecture, and its current state: On - operative, Off - crashed.

$ Start FADI button launches the process allocation, error detection, and the checkpoint

ing/rollback tasks.

$ Activate Host invokes an entry form that allows the user to manually add new hosts to

the distributed system configuration.

$ Host Monitor and Task Monitor text windows display information about the operation

status of FADI during the current run of the distributed application such as: detected hard

ware failures, failed-user tasks, the latency of the errors, process allocation and migration

information, etc.

128

C H A P T E R 7 . F A D F s A p p l i c a t i o n P r o g r a m m i n g I n t e r f a c e (API)

RTTS
R eal T im e

T elem etiy System s j

S y s te m S p e c s S ta r t FADI A ctiva te H ost

Application Checkpointing In terval (s e c) : 120

A pplica tion -T asks Specification

T a s k nam e: ju ta sk 2
u t a s k l
u ta sk 2

SPAWN IN @ cu rren t: anch> SUN4|

H ost

Arch

D efault ^ SUN4SOL2

^ S U N M P
♦ SUN4

In se rt D elete Change OK

Quit

f i g u r e 7-7 Entering The Distributed Application Specifications

129

CHAPTER 7. FADI’s Application Programming Interface (API)

RTTS
R eal T im e

\ T e le m e tiy System s

S y s te m S p e c s S ta r t FADI A ctivate Host Quit

Network View

! !

cello
SUN4SOL2

koto
SUN4

banj0 f tSUN4SOL2 S i r #

f i g u r e 7-8 Distributed System Configuration

Figure 7-9 represents a snapshot of the system operation. The configuration of the dis

tributed system consists of five processing nodes that have three different CPU/OS archi

tecture.

An artificial application is initiated under FADI. The application consists of two user-appli-

cation tasks (see process allocation information in the Task Monitor window). One task

was allowed to run to successful termination, while an engineered hardware fault inter

rupted the execution of the other.

The hardware fault was simulated by powering down the host of u_task2 “riti”. FADI error

detection mechanism detected the fault and initiated the migration of u_task2 to host

“koto” - that has the same CPU/OS architecture to “riti”, when it is rolled back to the most

recent saved checkpoint and continues execution until its successful termination.

130

CHAPTER 7. FADI’s Application Programming Interface (API)

RTTS
R eal T im e

] T elem etiy System s

S y s te m S p e c s S ta r t FADI A ctivate H ost j Quit

Network View

koto
S U M

banjo
SUN4SOL2

ns L ©

lu te
s u n m p

T ask M onitor

@ Starting Process Allocation - Monitoring -
Migration..

task ’u jtask l (100005)’ started on ’koto’
task ’u_task2 (140004)’ started on ’riti’

all user-tasks started successfully

* task u_task2(140004) Failed (Host Crash)

task ’u_task2’ was Rolled-Back and
Restarted on ’koto’

task u_task1(100005) Exited Normally !

x task u_task2(100006) Exited Normally !

H ost Monitor

1 Starting the Host Monitor -

«====#■ riti CRASHED!
Error latency: 3 sec, 517204 usee

figure 7-9 A Snap-Shot of FADI in Operation

131

CHAPTER 8 Conclusions and Future Work

This chapter reviews the original contributions of this research, discusses the limitations

of the fault-tolerant distributed environment limitations and highlights lessons learnt

throughout the development of the system. Based on the above, suggestions for future

research are proposed.

8.1 Conclusions

The first stage of this research was explorative by nature. A broad spectrum of fault-toler

ant systems has been examined, their characteristic features and relative strength have

been compared. This stage served to identify the need for a new fault-tolerant system that

was particularly well suited for the execution of computation-intensive applications on a

network of workstations. The aim of the research was to develop an integrated environ

ment that encompasses all aspects of modem fault-tolerant distributed computing: auto

matic remote process allocation, user-transparent detection of hardware errors, and a

technique to recover executing distributed user processes from these errors. This fault tol

erant environment can be used to execute long-running number-crunching scientific appli

cations, where a fault occurring on a single computing node could incur the waste of hours

or even days of computations performed in the distributed system. Another potential

application area are on-line distributed programs in industrial systems, where a complete

halt of the system because of a permanent or a transient hardware fault cannot be toler

ated.

Based on the investigation of the variability of the round-trip time of the communica

tion network and its effect on the error latency and the accuracy of fault diagnoses, this

research has recommended a formula for the dynamic calculation of the acknowledgment

time-out (resulting in more accurate fault diagnoses), and the optimisation of the associ

ated parameters for error latency.

Various fault-tolerant solutions have been considered, and the checkpointing and roll

back was adopted as the backup and recovery methodology for distributed user-applica-

tions running in FADI (FAult Tolerant Distributed Environment) in preference to process

132

CHAPTER 8 . Conclusions and Future Work

replication fault-tolerance methods. The main reason for this decision is the avoidance of

the heavy cost of the redundant hardware needed for the execution of the replicas.

A novel non-blocking checkpointing algorithm has been proposed. With this method, an

exact copy(thread) of the checkpointed program is forked, which performs all the check

pointing routines without suspending the execution of the application code thus signifi

cantly reducing the checkpointing overhead. A problem overlooked by many

checkpointing algorithms is the rollback of user files open at checkpoint time. For instance

Condor bytestream checkpointing successfully rolls-back user files only if no modifications

were made to them since the last checkpoint was taken. The non-blocking checkpointing

algorithm introduces a module that uses a combination of copy-shadowing and file size

bookkeeping to undo modifications made by append or update to user-files upon rollbacks.

Experimental results demonstrated that the performance of the developed checkpointing

protocol compares well with results published of similar work in [Sens 93] and [Plank 94].

A generalisation of the checkpointing algorithm to cater for interactive (message pass

ing) applications has been developed and its correctness has been theoretically proven. The

algorithm is a hybrid of consistent checkpointing, with its low failure-free overhead, and

selective logging of messages that cross the recovery line to avoid blocking the application

process during the checkpointing protocol. The low failure-free overhead is at the expense

of a longer rollback time which is deemed to be admissible because of the extended execu

tion time of the targeted applications.

The main contribution of this new technique is that in contrast with similar algorithms, it is

tolerant to errors occurring whilst messages are in transit, i.e messages are delivered to the

destination (queued at message passing daemon or transport protocol thread), but not yet

requested (consumed) by the receiving task. The algorithm requires only one global check

point to be recorded in a stable storage and avoids multiple rollbacks (domino effect).

This research has advanced the understanding of the overheads associated with fault-

tolerant execution of applications on distributed computing resources. The theoretical con

siderations has been backed-up by extensive experimentation with synthetic applications

using the FADI environment. The gained results showed that the system compares favoura

bly with similar fault tolerant environments and exhibits low-overhead even with a over

estimated process memory requirements and inter-process message exchange rate. FADI

133

CHAPTER 8 . Conclusions and Future Work

has also been subjected to a performance study while running a real engineering applica

tion: a computer-assisted control o f water distribution networks system developed at the

The Nottingham Trent University. The test-runs of this application have confirmed the

practicality of employing the FADI fault-tolerant environment to reliably execute realistic

distributed real-time telemetry applications.

On the practical level, this research resulted in the development of a portable fault-tol

erant environment that has an application programming interface to FORTRAN and C/C++

applications. The automated pre-processing of the application and the graphical user-inter-

face to FADI make it a user-transparent and convenient distributed processing software

tool.

Due to the incompatibility of the UNIX -FADI OS platform- systems (discrepancies in

the a.out format, management of the process’s address space by the MMU, etc.), rolling-

back (restarting) the process from the previous checkpoint on another computer system is

limited to hosts with similar Operating System architecture to the failed one. FADI also

does not consider the checkpointing of processes that were created dynamically - e.g using

UNIX fork() or exec(). The absence of built-in fault-tolerance tools (such as in SPRITE,

KeyKOS) in the UNIX OS, means that the application programs need to be staticaly linked

to FADI fault-management libraries to allow for process checkpointing and recovery.

8.2 Areas of Future Research

1. Traditionally, communication among processes in a distributed system is based on copy

ing data and using a message-passing model (in FADI, PVM was adopted as the mes

sage passing interface). An alternative shared-memory model can be used to provide

application programs with a shared address space that can be used in the same way as

local memory, for read and write operations. Morin [Morin 97] claims that the primary

advantage of shared-memory for the application programmer is that the model for using

shared data is identical to that used when writing sequential programs, allowing a natu

ral transition from sequential to distributed applications. As an extension of the current

research, It would be interesting to investigate the advantages and disadvantages of a

shared-memory implementation for the FADI distributed communication model from

134

CHAPTER 8 . Conclusions and Future Work

the point of view of the ease of development of distributed applications, the efficiency of

implementation and the fault-management overhead of this technique compared to that

of message-passing implementation.

2. Currently FADI supports the recovery of the application processes on hosts that have

similar OS architecture to the original host where the checkpoints were taken. This is

due to the incompatibility of the format of the executable processes on different operat

ing systems. A fruitful area of research might be to explore the generalisation of the

FADI environment for an architecture-independent programming platform as offered by

Java. Java is an object-oriented programming language that is’ portable across multiple

machine architectures, operating systems and GUIs [Manger 96].

Extending the FADI API for Java programs will allow to take checkpoints in a machine

independent format, which means that the application programs can be checkpointed

and restored on heterogeneous systems.

3. A natural expansion of the FADI project can be in the area of Distributed Object Com

puting. CORBA (Common Request Object Broker Architectures) is an open standard

that is considered as the leading edge in distributed object computing technology. It

defines a set of components that allow client applications to invoke operations in remote

object implementations. CORBA enhances application flexibility and portability by

automating many common development tasks such as object registration, location and

activation; demultiplexing; and operation dispatching [Maffeis 97].

To enable the adoption of such technology as the backbone for the next-generation of

distributed object services (such as electronic commerce, personal communication sys

tems, satellite surveillance systems, distributed medical imaging, real-time data feeds

and flight reservation systems), the technology must be reliable and highly available.

Neither the CORBA standard nor conventional implementations of CORBA directly

address the problems of reliability. Maffies and Schmidt presented an extension to the

Object Management Architecture in CORBA based on the virtual synchrony model that

improves support for reliability by means of expensive hardware replication [Schmidt

97]. For application that do not have stringent real-time constraints (e.g flight reserva

tion systems and electronic commerce), FADI can provide an efficient and cost-effective

reliability model for building fault-tolerance into CORBA. On an abstract level the

CORBA architecture is similar to FADI: the distributed objects resemble FADFs

135

CHAPTER 8 . Conclusions and Future Work

remotely allocated application processes and the method invocations (returned values)

on these objects are similar to the message-passing communication system in FADI. The

FADI non-blocking checkpointing technology can be utilised to save the execution state

of active (remote) objects and the reliable message-passing algorithm can be used to

safe-guard the delivery of remote method invocations on the distributed objects.

Plans for Further work in paragraphs 2. and 3. can be combined to develop an open reli

able object distributed computing environment (Figure 8-1). Java offers the flexibility

of architecture-independent programming, CORBA delivers network-transparent dis

tributed object infrastructure, and FADI deals with the reliability issues. FADFs Tcl/Tk

GUI could usefully be re-written in Java to build a portable FADI client that can be exe

cuted on any user’s desktop workstation or PC. This will allow users (whether remote or

local) to use FADI services from any web-enabled computer system.

CHAPTER 8 . Conclusions and Future Work

LAN

'■IIIMIIIIIiliiiiiiiiiu,,
■llllllllllllllllllllll,,!,

WAN

CORBA OOP

Remote Host
FADI
web

client

Execution results
for V isualisation
& C ontrol

Local Host
FADI
web

client

D ispatching
D istributed
Processing Jobs

figure 8-1 Open Reliable Distributed Computing

137

References

[Al-Dabass 81]
[1] D. AI-Dabass. “Partitioning and Synchronization Concepts for Computing Dynami

cal Systems Algorithms on Distributed Computer Control Networks”, 1FAC 3rd

International Workshop on DCCS, Beijing, China, August 1981.

[Altmann 95]
[2] J. Altman, T. Bartha and A. Pataricza. “On Integrating Error Detection into a Fault

Diagnosis Algorithm for Massively Parallel Computers”. Proceedings o f the Inter

national Computer Performance Symposium, p. 154-164, April 1995.

[Anderson 81]
[3] T. Anderson and P. A. Lee. “Fault Tolerance. Principles and Practice”, Prentice Hall,

1981.

[Appel 92]
[4] B. Appel et al. “Implications of Fault Management and Replica Determinism on the

Real-Time Execution Scheme of VOTRICS”.

[Attig 93]
[5] N. Attig and V. Sander. “Automatic Checkpointing of NQS Batch Jobs on CRAY

UNICOS Systems”, Proceedings o f Cray User Group Meeting (Spring), KFA-ZAM-

IB-9303, Montreux, March 1993.

[Bacon 93]
[6] J. Bacon. “Concurrent Systems. “An Integrated Approach to Operating Systems,

Database, and Distributed Systems”, Addison-Wesley, 1993.

[Bargiela 84]
[7] A. Bargiela. “On-Line Monitoring of Water Distribution Networks”, PhD Thesis,

Faculty o f Science, University o f Durham, May 1984.

138

References

[Bargiela 88]
[8] A. Bargiela and D. Al-Dabass. “A Simulated Real-Time Environment for Verification

of Advanced Water Network Control Algorithms”, Systems Science Journal, Vol. 14,

No. 3, 1988.

[Bargiela 93]
[9] A. Bargiela, A. Argile, and J. Hartley. “Parallel Processing for Probabilistic Decision

Support in Water Distribution Systems”, SERC Seminar, Bumel University, Septem

ber 1993.

[Bargiela 95]
[10] A. Bargiela and J. Hartley. “Parallel Simulation of Large Scale Water Distribution

Systems”, Proceedings o f the 9th European Simulation Multiconference, 1995.

[Bauch 92]
[11] A. Bauch, B. Bieker, and E. Maehle. “Backward Error Recovery in the Dynamical

Reconfigurable Multiprocessor System DAMP”, Workshop on Fault-Tolerant Paral

lel and Distributed Systems, Amherst, MA, p. 36-43, July 1992

[Bernard 94]
[12] G. Bernard and D. Conan. “Flexible Checkpointing and Efficient Roll-Recovery for

Distributed Computing”, Proceedings o f SUUG International Conference on Open

Systems: Solution fo r Open World, p. 25-29, April 1994.

[Bhargava 88]
[13] B. Bhargava and S. Lian. “Independent Checkpointing and Concurrent Rollback for

Recovery in Distributed Systems”, Proc. 7th Symposium on Reliable Distributed Sys

tems, p. 3-12, 1988

[Birman 94]
[14] K. P. Birman and R. V. Renesse. “Reliable Distributed Computing with the ISIS

Toolkit”, IEEE Computer Society Press, 1994.

[Borg 83]
[15] A. Borg, J. Baumach and S. Glazer, “A Message System Supporting Fault-Toler-

ance”, Proc. 9th Symp. on Operating Systems Principles, p. 90-99, Oct. 1983.

139

References

[Briker 91]
[16] A. Briker, M. Litzkow and M. Livny. “CONDOR Technical Summary”, University o f

Wisconsin - Madison, Ver4.1b, Sept. 1991.

[Butler 94]
[17] R. Butler and E. Lusk. “Monitors, Messages and Clusters: The P4 Parallel Program

ming System”. Parallel Computing, Vol. 20(4), p. 547-564, April 1994.

[Carriero 89]
[18] N. Carriero and D. Gelemter. “LINDA in Context”, Communications o f the ACM,

32(4), p. 444-458, April 1989.

[Chadna 96]
[19] H. Chadnaand J. Baugh. “Network-Distributed finite element analysis”, Advances in

Engineering Software, Vol. 25, Iss. 2-3, p. 267-280, April 1996.

[Chandy 72]
[20] K. Chandy and V Ramamoorthy. “Rollback and Recovery strategies for computer

programs”, IEEE Transactions on Computers, Vol. 22, p. 546-556, June 1972.

[Chandy 85]
[21] K. Chandy and L. Lamport. “Distributed Snapshots: Determining Global States of

Distributed Systems”, ACM Transactions on Computer systems, Vol. 3(1), p. 63-75,

Feb. 1985.

[Chen 96]
[22] P. Chen. “Climate and Weather Simulations and Data Visualisation Using a Super

computer, Workstations and Minicomputers”, Proceedings o f the SPIE - The Interna

tional Society fo r Optical Engineering, Vol. 2656, p. 254-264, 1996.

[Chiu 94]
[23] J Chiu and G. Chiu. “Process Replication Technique for Fault-Tolerance and Per

formance Improvement in Distributed Computing Systems”.

[Cin 93]
[24] M. Cin et al. “Error Detection Mechanisms for Massively Parallel Multiprocessors”,

Proc. o f Euromicro Workshop on Parallel and Distributed Processing, p. 401-408,

Jan. 1993.

140

References

[Clark 95]
[25] J. Clark and D. Pradhan. “Fault Injection. A Method for Validating Computer-system

Dependability”, Computer, June 1995.

[Comer 93]
[26] D. Comer and D. Stevens. “Internetworking with TCP/IP. Volume m . Client - Server

Programming and Applications”, Prentice Hall, 1993.

[Cooper 85]
[27] E. C. Cooper. “Replicated Distributed Programs”, In Proc. o f the 10th ACM Sympo

sium on Operating Systems Principles, p. 206-211, December 1985.

[Davoli 96]
[28] R. Davoli et aL “Parallel Computing in Networks of Workstations with Paralex”,

IEEE Transactions on Parallel and Distributed Systems. Vol. 7, No 4, April 1996.

[Deconinc 93]
[29] G. Deconink et a l “Survey of Checkpointing and Rollback Techniques”. ESAT-

ACCA Laboratory, Katholieke Universitei Leuven, Belgium, 1993.

[Digital 97]
[30] Digital Interactive Solutions Ltd. http://www.digital-interact.co.uk/. 1997

[Douglis 91]
[31] F. Douglis and J. Ousterhout. “Transparent Process Migration: Design Alternatives

and the Sprite Implementation”, Software - Practice and Experience, 21(8),:757-785,

1991.

[Dugan 94]
[32] J.B. Dugan and M.R. Lyu. “System Reliability Analysis of an N-Version Program

ming Application”. IEEE Transactions on Reliability”, Vol. 43, No 4, Dec. 1994.

[Elnozahy 92]
[33] E. N. Elnozahy and W. Zwaenepoel. “Replicated Distributed Processes in Mantheo”.

In Proc. Conf on Fault-tolerant Computing Systems, p. 18-27, July 1992.

141

http://www.digital-interact.co.uk/

References

[Elnozahy (2) 92]
[34] Elmootazbellah Elnozahy and Willy Zwaenepoel. “Mantheo: Transparent Rollback-

Recovery with Low Overhead, Limited Rollback, and Fast Output Commit”, IEEE

Transactions on Computers, Vol. 41, No. 5, May 1992.

[Elnozahy 94]
[35] E. Elnozahy and W. Zwaenepoel. “On the Use and Implementation of Message Log

ging”, Digest o f Papers. The 24th International Symposium on Fault-Tolerant Com

puting, p. 289-307, June 1994.

[Enslow 78]
[36] RH. Enslow. “What is a ‘distributed’ system?”, Computer, Jan. 1978, pp. 13-21.

[Fatoohi 94]
[37] R. Fatoohi and S. Weeratunga. “Performance Evaluation of Three Distributed Com

puting Environments for Scientific Applications”, Proceedings SuperComputing ‘94,

p. 400-409, Nov. 1994

[Frings 97]
[38] J. Frings. “LINDA - A Development Platform for the Planning of ATM networks”,

ITG-Fachberichte Journal, Iss. No. 141, p. 181-189, Feb. 1997.

[Gaida 96]
[39] K. Gaida. “ATM Hits the Desktop”, Byte, November 1996.

[Geist 88]
[40] R. Geist, R. Reynolds and J. Westall. “Selection of a checkpoint Interval in a Critical-

Task Environment”, IEEE Trans, on Reliability, 37(4), Oct. 1988.

[Geist 94]
[41] A. Geist et al. “PVM: Parallel Virtual Machine. A Users’ Guide and Tutorial for Net

worked Parallel Computing”. The MIT Press, Cambridge, Massachusetts, 1994.

[Geist 96]
[42] G. Geist. “Advanced Programming in PVM”, Proceedings o f the Third European

PVM Conference, p. 1-6, Munich, Oct. 1996.

142

References

[Gibbons 76]
[43] T. K. Gibbons. “Integrity and Recovery in Distributed Systems”, NCC Publications,

The National Computing Centre Limited, 1976.

[Gropp 94]
[44] W. Gropp and E. Lusk. “The MPI Communication Library: Its Design and a Portable

Implementation”, Proceedings o f the Scalable Parallel Libraries Conference, CA,

USA, p. 160-165, 1994.

[Gunneflo 89]
[45] U. Gunnfelo and J. Karlsson. “Evaluation of Error Detection Schemes Using Fault

Injection by Heavy-ion Radiation”, Proceedings o f the 19th Symposium on Fault-Tol

erant Computing, Chicago, p. 340-346, June 1989.

[Halfill 97]
[46] T. Halfill. “Building Network Applications. Java Gets Down to Business”, Byte, Vol.

22, p. 87, October 1997.

[Harwell 97]
[47] Harwell Subroutine Library (HSL). http://www.dci.clrc.ac.uk/Activity.asp7HSL.

[Huang 93]
[48] Y. Huang and C. Kintala. “Software Implemented Fault Tolerance: Technologies and

Experience”, Proceedings o f 23rd Int. Symposium on Fault-Tolerant Computing, p 2-

9, Toulouse, France, June 1993.

[Hurwicz 97]
[49] M. Hurwicz. “Preparing for the Gigabit Ethernet. Byte Special Report on Extending

the Enterprise”, Byte, Vol. 22 NO. 10, p. 63, October 1997.

[Janakiraman 94]
[50] G. Janakiraman and Yuval Tamir. “Coordinated Checkpointing-Rollback Recovery

for Distributed Shared Memory Multicomputers”, Proc. The 13th Symposium on

Reliable Distributed Systems, p. 42-51, CA, 1994

143

http://www.dci.clrc.ac.uk/Activity.asp7HSL

References

[Johnson 88]
[51] D. Johnson and W. Zwaenepoel. “Recovery in Distributed Systems Using Optimistic

Message Logging and Checkpointing”, Proc. o f the 7th Annual Symp. on Principles

o f Distributed Computing, Toronto, Canada, p. 171-181, August 1988.

[Jones 90]
[52] O. Jones. “Introduction to the X Window system. 1st edition”, Prentice Hall, 1990.

[Kanawati 95]
[53] G. Kanawati, N. Kanawati, and J. Abraham. “FERRARI: A Flexible Software-based

Error and Fault Injection System”, IEEE Transactions on computers, Vol. 44 Iss. 2, p.

248-260, Feb. 1995.

[Kendall 95]
[54] R Kendall et al. “High Performance Computing and Computational Chemistry: a

Review of Methods and Machines”. Reviews in Computational Chemistry 6. p.209-

316 K.B Lipkowitz, D.B. Boyd (Eds), VCH Publishers Inc., New York, 1995.

[Kim 83]
[55] K. H. Kim and A. Kavianpour. “A Distributed Recovery Block Approach to Fault-

Tolerant Execution of Application Tasks in Hypercubes”, IEEE Trans, on Parallel

and Distributed Systems, p. 104-11, Jan. 1983.

[Kohl 96]
[56] J. Kohl and A. Geist. “CUMULVS: Providing Fault-Tolerance, Visualization and

Steering of Parallel Applications”, Internal Report. Computer Science And Mathe

matics Division. Oak Ridge National Laboratory.

[Koo 87]
[57] R. Koo and S. Toueg. “Checkpointing and Rollback Recovery for Distributed Sys

tems”, IEEE Trans on Software Engineering, SE-13(1), p. 23-21, Jan. 1987.

[Krame 87]
[58] M. Sloman and J. Kramer. “Distributed Systems and Computer Networks”, Prentice

Hall, 1987

144

References

[Kumar 91]
[59] V. Kumar and E. Unger. “A non-FIFO Checkpointing Protocol for Distributed Sys

tems”, Symposium on Applied Computing, p. 266-272, April-1991.

[Lamotte 91]
[60] W. Lamotte, K. Ellens. “Surface Tree Caching for Rendering Patches in a Parallel

Ray Tracing System”, Proceedings o f the Conference on Scientific Visualisation of

Physical Phenomena, p. 189-207,1991

[Landau 92]
[61] C. Landau. “The Checkpointing Mechanism in KeyKOS”, Proc. o f the Second Inter

national Workshop on Object Orientation in Operating Systems, p. 86-89, Sept. 1992

[Landis 95]
[62] S. Landis and R. Stento. “CORBA with Fault Tolerance”, Object Magazine, Vol. 5,

Iss. 7, p. 62-66, Nov. 1995.

[Lee 90]
[63] P. Lee ant T. Anderson. “Fault-Tolerance: Principles and Practice”, Second Revised

Edition, Series: “Dependable Computing and Fault-Tolerant Systems”, Vol. 3,

Springer-Verlag, NY. 1990.

[Lee 96]
[64] F. Hsieng Lee. “Parallel Simulated Annealing n a Message Passing Multi-Compu

ter”. PhD Thesis, Utah State University, Logan, 1995.

[Leon 93]
[65] J. leon and P. Steenkiste. “Fail-Safe PVM: A Portable Package for Distributed

Processing with Transparent Recovery. Technical Report CMU-CS-93-124, Carnegie

Mellon University, February 1993.

[Li 94]
[66] K. Li, J. Naughton, and J. Plank. “Low-Latency, Concurrent Checkpointing for Paral

lel Programs”, IEEE Transactions on Parallel and Distributed Computing, Vol. 5.

No. 8, p. 874-879, August 1994.

145

References

[Litzkow 90]
[67] M. Litzkow and M. Livny. “Experience with the CONDOR Distributed Batch Sys

tem”, Proc. o f the IEEE workshop on Experimental Distributed Systems, Hunstville,

AL October 1990.

[Litzkow 92]
[68] M. Litzkow and M. Solomon. “Supporting Checkpointing and Process Migration

Outside the UNIX Kernel”, Usenix Winter Conference, San Francisco, California,

1992.

[Maffeis 97]
[69] S. Maffeis. “Pirhana: A CORBA Tool for High Availability”, Computer, Vol. 30, No:

4. April 1997.

[Manger 96]
[70] J. Manger. “Essential Java. Developing Applications for the World Wide Web”,

McGraw-Hill, 1996.

[Martin 81]
[71] J. Martin. “Computer Networks and Distributed Processing”, Prentice Hall, 1981.

[Martin 95]
[72] I. Martin et a l “Distributed Parallel Computers Versus PVM on a Workstation Clus

ter in the Simulation of Time Dependent Partial Differential Equations”, Proceedings

Euromicro Workshop on Parallel and Distributed Processing, CA, USA, p. 20-26,

1995.

[Mattson 94]
[73] T. G. Mattson. “Programming Environments for Parallel Computing: A comparison

of CPS, Linda, P4, PVM, POSYBL, and TCGMSG”, Proceedings o f the 27th Hawaii

International Conference on System Sciences. Vol. II: Software Technology (Cat. No

94TH0607-2), p. 586-594, 1994.

[Meakin 90]
[74] Meakin, R.L. “Overset Grid Methods for Aerodynamic Simulation of Bodies in Rel

ative Motion”, 8th Aircraft/Stores Compatibility Symposium, Oct. 1990.

146

References

[Morin 97]
[75] C. Morin and I Puaut. “A Survey of Recoverable Distributed Shared Virtual Memory

Systems”, IEEE Transactions on Parallel and Distributed Systems, Vol. 8, No. 9,

Sept. 1997.

[Mills 83]
[76] D. Mills. “Internet Delay Experiments; RFC889”, In ARPANET Working Group

Requests for Comments, No. 965. SRI International, Menlo Park, Calif., Sep. 1983.

[Mullender 95]
[77] S. Mullender. “Distributed Systems”, Addison Wesley, 1995.

[Nye 90]
[78] A. Nye. “The Definitive Guides to the X Window System. Xlib. Volume 1: Xlib Pro

gramming Manual”, O'Reilly & Associates, Inc., 1990.

[Ousterhout 94]
[79] J. Ousterhout. “TCL and the TK Toolkit”, Addison Wesley, 1994.

[Plank 94]
[80] J. S. Plank and K. Li. “A Consistent Checkpointer for Multi-computers”, IEEE Par

allel & Distributed Technology, 2(2), p. 62-67, 1994

[Plank 95]
[81] J. Plank, M. Beck and G. Kingsley. “Libckpt: Transparent Checkpointing Under

Unix”, Proc. ofUSENIX Winter 1995 Technical Conference, Jan. 1995.

[Plank 97]
[82] J. Plank, M. Puening. “Checkpointing Java”, Project Description at the DoC website

at the University o f Tennessee, http://www.cs.utk.edu/~plank/javackp.html.

[Postel 81]
[83] J. Postel et al. “Transmission Control Protocol; RFC793.”, In ARPANET Working

Group Requests fo r Comments, No. 793. SRI International, Menlo Park, California.

Sep. 1981.

147

http://www.cs.utk.edu/~plank/javackp.html

References

[Powell 88]
[84] D. Powell et a l “The Delta-4 Approach to Dependability in Open Distributed Com

puting Systems”, Proc. o f the 18th International Symposium on Fault-Tolerant Com

puting, p. 246-251, June 1988.

[Pradhan 86]
[85] D. Pradhan. “Fault-Tolerant Computing Theory and Techniques, Volume II”, Pren-

tice-Hall, NJ 1986.

[Pressman 92]
[86] Roger Pressman. “Software Engineering. A Practitioner’s Approach”, McGraw-Hill

International, UK 1992.

[Riberio 95]
[87] L. Riberio et. a l “Numerical simulations of liquid-liquid agitated dispersions on the

VAX 6250/VP”, Computing Systems in Engineering”, Vol. 6, Iss. 4-5, p. 465-469,

Oct. 1995.

[Russinovich 95]
[88] M. Russinovich and Z. Segall. “Application -Transparent Checkpointing in Mach

3.0/UX”, Proc. o f the 28th Annual Hawaii International Conference on System Sci

ences, p. 114-123, 1995.

[Schmidt 97]
[89] S. Maffeis and D. Schmidt. “Constructing REliable Distributed Communication Sys

tems with CORB A”. IEEE Communication Magazine, Vol. 14, No. 2, February 1997.

[Segall 88]
[90] Z. Segall et al. “FIAT - Fault Injection Based Automated Testing Environment”, In

Proc. 18th International Symposium on Fault-Tolerant Computing, p. 102-107, June

1988.

[Seligman 94]
[91] E. Seligman and A. Beuelin. “High-Level Fault Tolerance in Distributed Programs”,

Technical Report CMU-CS-94-223, School o f Computer Science, Carnegie Mellon

University, Pittsburgh, December 1994.

148

References

[Sens 93]
[92] P. Sens and B. Folliot 1993. “STAR: a Fault Tolerant System for Distributed Applica

tions”. Proc. o f the 5th IEEE Symposium on Parallel and Distributed Processing,

Dallas, Texas, p. 656-660, Dec. 1993.

[Sens 95]
[93] P. Sens. “The performance of Independent Checkpointing in Distributed Systems”,

• Proc. The 28th Hawaii International Conference on Systems Sciences, January 1995.

[Silva 92]
[94] L. Silva and G. Silva. “Global Checkpointing for Distributed Programs”, Proc. o f the

11th Symposium on Reliable Distributed Systems, Huston, Texas, p. 155-162, Oct.

1992.

[Sista 89]
[95] A. Sista and J. Welch. “Efficient Distributed Recovery Using Message logging”,

Proc. 8th Annual ACM Symp. on Principles o f Distributed Computing Systems, Aug.

p. 222-238, 1989.

[Stellner 95]
[96] G. Stellner. “CoCheck: Checkpointing and Process Migration for MPI”, In Proceed

ings o f the 10th International Parallel Processing Symposium (IPPS‘96), Hawaii,

April 1996.

[Sterling 84]
[97] M. Sterling and A. Bargiela. “Minimum Norm State Estimation for Computer Con

trol of Water Distribution Systems”, IEE Proceedings, 131, D, 2, March 1984.

[Sterling(2) 84]
[98] M. Sterling and A. Bargiela. “Leakage Reduction by Optimised Control of Valves in

Water Networks”, Transactions o f The Institute o f Measurement and Control”.

[Storm 87]
[99] R. Storm, S Yemini and D. Bacon. “Towards Self-Recovering Operating Systems”,

The International Conference on Parallel Processing, North-Holland, 1987.

149

References

[Sun 94]
[100] “SPARCworks & SPARCcompiler reference guide, Version 3.0.1 for Solaris”, Sun

Soft, Sun Microsystems Inc., 1994.

[Sun 97]
[101] M. Sun and L. Tong. “Communication Performance and Parallel Performance

Research of a Networked Parallel Computing System”, Mini-Micro Systems, Vol. 18,

Iss. 1, p. 13-18, Jan. 1997.

[Taha 95]
[102] Taha Osman, and Andrzej Bargiela. “Error Detection For reliable Distributed Simu

lations”, In proceedings o f the 7th European Simulation Symposium, p. 385-362,

1995.

[Taha 97]
[103] T. Osman and A. Bargiela. “Process Checkpointing in an Open Distributed Environ

ment”, In the Proc. o f the 11th European Simulation Multiconference, p. 536-541,

Turkey, June 1997.

[Taha(2) 97]
[104] Taha Osman and Andrzej Bargiela. “A Selective Message Logging Checkpointing

Algorithm for Reliable Distributed Computations”, submitted fo r publication in the

IEEE Transactions on Reliability.

[Tamir 89]
[105] Y. Tamir and T. M. Fraizer. “Application-Transparent Process-level Error Recovery

for Multicomputers”, Hawaii International Conf. On System Sciences, Jan. 1989.

[Tanenbaum 90]
[106] A. Tanenbaum et. al. “Experiences with the Amboeba Distributed Operating Sys

tem”, Communication o f the ACM, Vol. 33, p. 46-63, Dec. 1990.

[Thiran 96]
[107] J. Thiran et al. “IMIS: A Multi-Platform Hardware Package for Telediagnoses and

3D Medical Image Processing”, Proceedings. International Conference on Image

Processing (Cat. No. 96CH35919), Vol. 2, p. 273-276, Sept 1996.

150

References

Toueg 84]
108] S. Toueg and Ozlap Babaglu. “On the optimum checkpoint selection problem”, SIAM

Journal on Computing, Vol. 13, p. 630-649, Aug. 1984.

Vounckx 93]
109] J. Vounckx et al. “The FTMPS-Project: Design and Implementation of Fault-Toler-

ance Techniques for Massively Parallel Systems”. Katholieke Universitei Leuven,

Belgium.

Wang 92]
110] Y. Wang and W. Kent. “Optimistic Message Logging for Independent Checkpointing

in Message-Passing Systems”,

Ward 85]
111] P. Ward and S. Mellor. “Structured Development for Real-Time Systems. Volume 1:

Introduction & Tools”, Yourdon Press Computing Series, 1985.

Ward 86]
112] P. Ward and S. Mellor. “Structured Development for Real-Time Systems. Volume 3:

Implementation Modelling Techniques”, Yourdon Press Computing Series, 1986.

Wojcik 90]
113] Z. Wojcik and B.E. Wojcik. “Fault Tolerant Distributed Computing Using Atomic

Send and Receive Checkpoints”, Proc. 2nd IEEE Symp. on Parallel and Distributed

Processing, p. 215-222, 1990.

Young 74]
114] J. Young. “A First Order Approximation to the Optimum Checkpoint Interval”, Com

munications o f the ACM, 17(9), Sept. 1974.

Zwaenepoel 92]
115] E. Elnozahy and W. Zwaenepoel. “The Performance of Consistent Checkpointing”,

Proc. o f he 11th IEEE Symp. on Reliable Distributed Systems, pp. 39-47,1992.

151

Design Appendices

Design is the technical kernel for software engineering. In developing FADI, we took

great consideration in developing a modular design, where software is logically parti

tioned into components(modules) that perform specific functions and subfunctions. These

modules exhibit functional characteristics. This resulted in a representation of FADI that

is implementation-independent to boost the reusability of its software components. The

error detection, process allocation, and the backup and recovery are all stand-alone mod

ules with clear definition of the interfaces between them which simplified their modifica

tion or even replacement without affecting the integrity of the whole system. For instance,

replacing the checkpointing/rollback recovery method with a one based on hardware

redundancy/process replication can be swiftly achieved while keeping the other modules

and interface connections intact. The same concept applies for reusing FADI components

for incorporating fault-management in the rapidly growing field of internet-based distrib

uted object computing as for CORBA’s Object Request Brokers (ORB) [Landis 95].

The abstract view that the design diagrams provide also improves the readability of the

system for fast generation of quality code on one hand, and aid in giving a detailed but

simple representation of the system on the other.

FADI design was implemented following the Data-Flow/structured design methodology.

For details of the modelling techniques and notation information of this methodology

refer to Ward & Mellor valuable document on structured software development [Ward

85]. Listing of all the software design stages are provided in appendices A-D.

152

APPENDIX A Data-Flow Design

This appendix contains listing of the data-flow diagrams representing the processes (data

transformations) of FADI modules.

Data-Flow Design

-p

-H

-P

4-1

-H

4-4
-H

P4
CO I—I

fi -H (D -p
•P CO

-P

O <D

CC

A -l 154

Data-Flow Design

-H

CO CNJ

•H
O H
ZJ P1 -P

•H -H
fj .V Id
to w O
y +j M-t-H

-H
-H ■H

i—IP

-H -H

P P

M

-H
■H

-H

A -2 1 5 5

i
4,v^i

0
-

FA
UL

T-
TO

LE
RA

NT

DI
ST

RI
BU

TE
D

PR
OC

ES
SI

NG

EN
VI

RO
NM

EN
T,

MA

IN
.D

FD

Fa
ul

t-
To

le
ra

nt

Di
st

ri
bu

te
d

Pr
oc

es
si

ng

En
vi

ro
nm

en
t

TA
HA

3-
Ju

n-
97

Pa
ge

1
of

1

Data-Flow Design

a*

tytr>-PO rC
+-> * ti tP <U■H4->

C/5

< 3-
a> 4-> 4-J >—)m m

A-3 156

0-
s3

-
CO
NT
RO
L

FT
DP
E,

CO
NT

RO
L.

ST
D

Fa
ul

t-
To

le
ra

nt

Di
st

ri
bu

te
d

Pr
oc

es
si

ng

En
vi

ro
nm

en
t

TA
HA

3-
Ju

n-
97

Pa
ge

1
of

1

Data-Flow Design

v) o m cw
03 •o

T>

03 a

a) t d
S-l - P

> -p

A-4 157

i

2
-

CE
NT
RA
L

TA
SK

MA
NA

GE
ME

NT
,

TA
SK

MA
N.

 D
FD

Fa
ul

t-
To

le
ra

nt

Di
st

ri
bu

te
d

Pr
oc

es
si

ng

En
vi

ro
nm

en
t

TA
HA

3-
Ju

n-
97

Pa
ge

1
of

1

Data-Flow Design

1 5 8

2.2

-
CH

EC
KP

OI
NT

IN
G

&
RO
LL
BA
CK

PR
OC
ES
S,

CK
&R

OL
L.

DF
D

Fa
ul

t-
To

le
ra

nt

Di
st

ri
bu

te
d

Pr
oc

es
si

ng

En
vi

ro
nm

en
t

TAH
A

3-
Ju

n-
97

Pa
ge

1
of

1

APPENDIX B Data Dictionary

This appendix presents a dictionary depicting the flow of information between the system

processes.

1 5 9

Data Dictionary

Project: H:\CC416350\FADI_DGN\

Title : FAULT TOLERANCE IN DISTRIBUTED COMPUTER SYSTEMS V

Date: 6-Nov-97 Time: 11:45

Report: Flow Decomposition Summary (BNF)

This report generates an alphabetical data dictionary listing of all items which may have a
BNF clause.

Name: all tasks terminated normally

Type: Control flow

Bnf: \ The distributed application tasks were succssesfully executed \

Name: application ckpting interval

Type: Discrete flow

Bnf: \ time interval used by the system timer to periodically raise a checkpoiniting inter
rupt \

Name: ckpting request

Type: Discrete flow

Bnf: \ a signal sent to the application process at every application checkpointing interval. It
interrupts the application process and calls the checkpointing handler \

Name: consistent recovery-line index

Type: Discrete flow

Bnf: \ An indexes set of consistent checkpoints of all the distributed application processes,
to which processes can rollback in case of node failure. \

Name: crashed host id

Type: Discrete flow

Bnf: \ hosts that failed to fulfil the aknowledgment request at the current moment of time \

B-l
1 60

Data Dictionary

Name: failed task id

Type: Discrete flow

Bnf: \ id of tasks that exited with erroneous status \

Name: host status info

Type: Discrete flow

Bnf: \ operation status of hosts running in the network environment \

Name: hosts table

Type: Discrete flow

Bnf: \ list of available hosts on the net (host id + arch) \

Name: insufficient resources

Type: Control flow

Bnf: \ not enough processsing power to run all user tasks \

Name: invalid input

Type: Control flow

Bnf: \ entered host and task specifications are not compatible

Name: logged messages

Type: Discrete flow

Bnf: \ messages retrieved from stable storage and re-sent to the restarted application proc-
esses\

Name: message log

Type: Discrete flow

Bnf: \ Messages logged to stable storage. These messages will not be re-sent after the proc
esses rollback, therefore they must be replayed from stable storage \

B-2 161

Data Dictionary

Name: normal exit task id

Type: Discrete flow

Bnf: \ id of tasks that exited without failure \

Name: process checkpoint

Type: Discrete flow

Bnf: \ an image of the processes state (stack, data,CPU,etc.) at the current moment of exe
cution. \

Name: received messages request

Type: Discrete flow

Bnf: \ interrupt-request to the application process to send info about undelivered messages\

Name: recovered host id

Type: Discrete flow

Bnf: \ process ID of recovered host to be re-instated in active hosts pool \

Name: recovered task id

Type: Discrete flow

Bnf: \ process ID of a recovered task requested by a destination process \

Name: recovered task specs

Type: Discrete flow

Bnf: \ specifications of checkpoint processes that are to replace the failed tasks \

Name: request new destination id

Type: Discrete flow

Bnf: \ request of process ID of a restarted task \

B-3
162

Data Dictionary

Name: re-enter input

Type: Control flow

Bnf: \ user to re-enter invalid input \

Name: sent & received messages record

Type: Discrete flow

Bnf: \ bookkeeping information about messages received and sent by the process. It allows
the ckpting coordinater to verify the consistency of the taken checkpoint. \

Name: spawned tasks specs

Type: Discrete flow

Bnf: \ (task-id) + (task-host id) + (task checkpointing interval) \

Name: Stable Storage

Type: Store

Bnf: message log + process checkpoint

Name: start

Type: Control flow

Bnf: \ run the FTDPE master daemon \

Name: stop

Type: Control flow

Bnf: \ terminate FTDPE system operation \

Name: system configuration info

Type: Discrete flow

Bnf: \ task id + task name + task-host id + application checkpointing interval \

B-4 163

Data Dictionary

Name: task management info

Type: Discrete flow

Bnf: (spawned tasks specs) + (failed task id) + (recovered task specs) + (normal exit task
id)

Name: task specifications

Type: Discrete flow

Bnf: \ task name + task-host name + checkpointing interval \

— End of report —

B-5 164

APPENDIX C Process Specification

This appendix contains listing of the process specification (pseudo-code) in structured

english (PDL - Program Description Language).

165

Process Specification

@IN = system configuration info

@OUT = hosts table

@OUT = invalid input

@OUT = re-enter input

@OUT = task specifications

@OUT = application ckpting interval

@PSPEC Process User-Input

whenever enabled,

get “system configuration info”

get list of available hosts on the net

if (user-specified host not operative)

or (syntax error in task specifications) then

issue “re-enter input”

set “invalid input” to true

else

set “invalid input” to false

send “task specifications” + “hosts table” +

“application ckpting interval”* to task management

endif

@

C - l 166

Process Specification

@IN = hosts table

@IN = task specifications

@OUT = insufficient resources

@OUT = spawned tasks specs

@PSPEC Task Allocation Process

upon receipt of “task specifications” and “host table” do

if (hosts are specified by the user), then

repeat

spawn user task on user-specifiefied host with \

argument: checkpointing interval

if (failed to spawn task on user-specified host), then

repeat

spawn user task on a host with similar arch. from\

the host table with argument: checkpointing interval

until (spawn O.K or end of hosts table)

endif

if (user task still not spawned) then

issue “insufficient resources”

terminate the process

endif

until (all user tasks are spawned)

else

repeat

repeat

spawn user task on a host from host table with \

argument: checkpointing interval

until (spawn O.K or end of hosts table)

C-2 16 7

Process Specification

if (user task still not spawned) then

issue “insufficient resources”

terminate the process

endif

until (all user tasks are spawned)

endif

send “spawned tasks specs” to task monitoring processes

send task spawning information to GUI

@

C-3 168

Process Specification

@IN = application ckpting interval

@IN = recovered task specs

@IN = spawned tasks specs

@IN = normal exit task id

@IN = sent & received messages record

@OUT = consistent recovery-line index

@OUT = received messages request

@OUT = ckpting request

@PSPEC Checkpointing Coordinator

upon receipt of “spawned tasks specs” do

set checkpointing flag

unset received messages flag

at every “application ckpting interval” do

if checkpointing flag is set then

send “ckpting request” to all application processes

unset checkpointing flag

endif

if received messages flag is set then

send “received messages request” to all application\

processes

unset received messages flag

endif

until [all tasks exited normally]

case received message of:

[sent & received messages record]:

if the balance of “sent & received messages record” is\

correct then

send “consitent recovery-line index” to recovery task

set checkpointing flag

C-4 169

Process Specification

else

set received messages flag to wait for undelivered \

messages

endif

break

[recovered task specs]

update id of failed task in checkpointed tasks list

if recovered task is in debt of acknowledgment then

re-send checkpointing or received messages request

endif

break

[normal exit task id]

remove exited task from checkpointed tasks list

break

endcase

@

C-5 1 7 0

Process Specification

@IN = consistent recovery-line index

@IN = crashed host id

@IN = failed task id

@IN = hosts table

@IN = message log

@IN = process checkpoint

@IN = recovered host id

@IN = request new destination id

@OUT = recovered task id

@OUT = logged messages

@OUT = recovered task specs

@PSPEC Recovery Process

on receipt of “hosts table” do

case received message of:

[crashed host id] :

remove “crashed host id” from hosts table

break

[recovered host id] :

add “recovered host id” into hosts table

break

[request new destination id] :

send “recovered task id” to requesting task

break

[failed task id] :

get “process checkpoint” belonging to “consistent

recovery-line” of failed task from stable storage

get “message log” of the failed task from stable storage

restart failed task from consistent checkpoint

replay logged messages to the recovered task

send “recovered task specs” to task monitoring & GUI

break

endcase

@

C-6 171

Process Specification

@IN = ckpting request

@IN = logged messages

@IN = received messages request

@IN = recovered task id

@OUT = sent & received messages record

@ OUT = message log

@OUT = process checkpoint

@OUT = request new destination id

@PSPEC = Application Process Prologue

on receipt of ckpting request do

take a local checkpoint of the process

save “process checkpoint into stable storage”

send “sent & received msg record” to ckpting coordinator

end

on receipt of received messages request do

send “received messages record” to ckpting coordinator

end

upon (message send) do

if message cannot be sent because destination failed

request new destination id from recovery task

await for receipt of recovered task id

endif

end

C-7 172

Process Specification

upon (message receipt) do

if ((received msg was not replayed “logged messages”) and

(it cannot be resent upon rolled-back)) then

record “message log” into stable storage

elseif (message is duplicated)

ignore received message

endif

end

@

C -8 173

Process Specification

@IN = recovered, task specs

@IN = spawned tasks specs

@IN = crashed host id

@OUT = failed task id

@OUT = normal exit task id

@OUT = all tasks terminated normally

@PSPEC Monitor User Tasks

upon receipt of “spawned tasks specs” do

repeat

upon receipt of wait-exit message do

add any “recovered task specs” to the spawned tasks list

if (‘exited task id’ is in spawned tasks list), then

case (exit status) of :

[normal ex it]: send “normal exit task id” to

ckpting coord & GUI

[abnormal exit] : send “failed task id” to recovery

process

endcase

remove exited task id from spawned tasks list

endif

upon receipt of “crashed host id” message

send “failed task id” of all tasks running on crashed \

host to recovery task

until (all tasks exited normally)

issue “all tasks terminated normally”

@

C-9 17 4

Process Specification

@IN = hosts table

@OUT = recovered host id

@OUT = crashed host id

@OUT = host status info

@PSPEC Monitor Host State

upon receipt of “hosts table” do

at ‘pre-defined intervals’ repeatedly do

send request of aknowledgment to all hosts on “active\

hosts table”

if (host fails to acknowledge), then

remove crashed host id from “active hosts table”

send “crashed host id” to user-task monitoring & \

recovery processes

else, do

if (host not in ‘hosts list’), then

send “recovered host id” to the recovery process

endif

endif

report “host status info” to GUI

until (stopped)

@

CIO 175

APPENDIX D Data-Structured Design

This appendix contains data-structured design diagrams. Their main purpose is to aid in

the implementation analysis of the system [Ward 86].

176

D a t a - S t r u c t u r e d D e s i g n

0-0°£

a g

o-o

D-I 177

FA
UL

T-
TO

LE
RA

NT

DP
E,

MA
IN

.C
SD

..
.r
an
t

Di
st

ri
bu

te
d

Pr
oc

es
si

ng

En
vi

ro
nm

en
t

PC
19
1

9-
Ju

l-
96

Pa
ge

1
of

1

Data-Structured Design

SY
ST
EM

MO
NI

TO
RI

NG

&
ER
RO
R

DE
TE

CT
IO
N

ME
CH

AN
IS

M,

DE
TE

CT
.C

SD

..
.-

To
le

ra
nt

Di

st
ri

bu
te

d
Pr

oc
es

si
ng

En

vi
ro

nm
en

t
TA
HA

OS
MA
N

7-
Fe

b~
96

Pa
ge

1
of

1

Data-Structured Design

CH
EC

KP
OI

NT
IN

G
CO

OR
DI

NA
TO

R,

CO
OR

D.
CS

D
..
.-

To
le

ra
nt

Di

st
ri

bu
te

d
Pr

oc
es

si
ng

En

vi
ro

nm
en

t
TAH

A
OS
MA
N

10
-M

ar
-9

8
Pa
ge

1
of

1

D a t a - S t r u c t u r e d D e s i g n

E-j

4-> - H

O A4 O m a> rd
O 4->■f>

O (U
• H i n

W oEh E-<
O. O

■M (D U CU

4-> U P. <D a, 04

Eh

S &!

D 4 180

. J

ER
RO
R

RE
CO
VE
RY

ME
CH

AN
IS

M,

RE
CO

VE
RY

.C
SD

..
.r
an
t

Di
st

ri
bu

te
d

Pr
oc

es
si

ng

En
vi

ro
nm

en
t

PC
19
1

9-
Ju

l-
96

Pa
ge

1
of

1

Data-Structured Design

-H

H-H
U >4 -i

-P -H

M

M

CO

CO

D-5 181

SY
ST
EM

TE
RM

IN
AT

IO
N,

TE

RM
.C

SD
..

.-
To

le
ra

nt

Di
st

ri
bu

te
d

Pr
oc

es
si

ng

En
vi

ro
nm

en
t

TA
HA

OS
MA
N

15
-M

ay
-9

5
Pa
ge

1
of

1

