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Abstract

This work concerns the applicability of neural networks for the implementation of 
decision support (DS) systems in operational control of industrial processes. Decision 
support has two distinct but closely interrelated aspects: mathematical modelling of 
physical plants and processes, and the modelling of a decision making process. The first 
one forms the basis for detailed optimization of operations and the second one attempts 
to mimic an abstract mental reasoning about plant’s operation by human operators. This 
research attempts to integrate both aspects of decision support within a single 
computational framework of neural networks. The prototype DS system is validated 
using case-studies taken from the water industry. The optimal control of water systems is 
a challenging problem because the models are non-linear and large-scale and 
measurements are noisy and frequently incomplete. The results of this research are 
general and are directly applicable to other systems, for example, gas and power utilities 
or road traffic systems.

In the first part of the project the neural network approach to the state estimation 
problem and confidence limit analysis for water systems is proposed. Since state 
estimation process is a computationally demanding task new approaches to solving it are 
constantly being looked for. The neural networks are one of the possible options. The 
resulting algorithms are the mixture of the well known and tested ways of solving systems 
of nonlinear equations (the Newton-Raphson method), the optimization criterions (the 
LS, LAV and their variations) and a relatively new artificial neural network (ANN) 
technique of finding the solution to the overdetermined systems of linear equations. The 
problems of bad data rejection, ill-conditioning, arriving at the solution within a 
predefined period of time are addressed and suitable ANN techniques are proposed and 
evaluated.

No state estimator can give accurate results from inaccurate data. A  way of utilising 
the neural networks, that have been used to produce the state estimates, for quantifying 
the measurement uncertainty impact on the state estimates is shown. Two methods of 
obtaining the confidence limits in form of upper and lower bounds for each state estimate 
are investigated. The first method presents the usage of neural networks to find the 
sensitivity matrix which enables calculation of these bounds. In broader terms the way of 
finding inverse and pseudoinverse matrices, using ANN, is shown. The second method 
utilizes the superposition principle where each disturbance is analysed separately and the 
partial results are gradually combined to produce overall confidence limits.

Finally an integrated neural based system for state estimation and confidence limit 
analysis has been developed and tested for realistic water distribution network.

The second part of this project concerns the development of flexible fuzzy neural 
recognition system and its application to water systems’ state interpretation task.

First a new general fuzzy neural network for clustering and classification is proposed. 
It can process both deterministic and fuzzy input patterns, combines the supervised and 
unsupervised learning techniques within a single training algorithm, grows to meet the 
demands of the problem and learns on-line.

The problems of fault diagnosis and water state interpretation are then addressed. A 
completely new approach to bad data detection and identification in water systems based 
on pattern examinations using neural recognition system is demonstrated. The use of state 
estimates and residuals with corresponding confidence limits is examined. The extensive 
performance studies for 24 hour of water network operations with particular emphasis on 
detection and correct location of leakages are carried out.



The work described in this Thesis is the Author's own, unless otherwise 
stated, and it is, as fa r  as he is aware, original.
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Glossary of Terms

Activation function
A function that maps the neuron’s infinite domain to a prespecified range.

Adaptive Fuzzy Leader Clustering (AFLC)
A hybrid neural-fuzzy system which can be used to learn cluster structure in a self­
organizing, stable manner. The algorithm utilizes a single point to represent the center of each 
cluster and uses Euclidean distance from a cluster prototype as a measure of similarity.

Adaptive Resonance Theory (ART)
A class of neural network architectures that carry out stable self-organization of recognition 
categories in response to arbitrary sequences of input patterns. The concept of adaptive 
resonance was introduced by Grossberg (Grossberg, 1976b) and was first cast into a neural 
network formalism by Carpenter and Grossberg (Carpenter & Grossberg, 1987).

Artificial Neural Network (ANN)
Mathematical models of information processing that have certain performance characteristics 
in common with biological neural networks.

Competitive learning
Unsupervised learning used in a class of neural networks where a group of neurons compete 
for the right to be active. In the most extreme example the activation of the neuron with the 
largest output is set to 1 and the activations of all other nodes are set to 0. This mechanism is 
often called “winner-takes-all”.

Confidence Limit Analysis (CLA)
The process of quantification of the inaccuracy of state estimates caused by the input data 
uncertainty.

Fuzzy Min-Max Neural Networks
Clustering and classification neural networks that are built using hyperbox fuzzy sets. A 
hyperbox defining a region of the n-dimensional pattern space is used as a cluster 
representation. A fuzzy Hamming distance from the edges of an n-dimensional hyperbox is 
used to calculate the degree to which an input pattern belongs to this hyperbox.

Hazen-Williams Formulae
The most commonly used empirical formulae describing the frictional head loss in a pipe.

Hyperbox
A representation of a cluster in the min-max clustering and classification neural networks 
(Simpson, 1992; Simpson, 1993). A hyperbox is completely defined by its min point and its 
max point. The combination of the min-max points and the hyperbox membership function 
defines a fuzzy set (cluster).

Hyperbox membership function
A function describing the degree to which an input pattern fits within the hyperbox.

LAV criterion
An optimization criterion where the sum of absolute values of errors is minimised.

Learning (training) algorithms
Procedures for setting, modifying the values of the neural network weights.

LS criterion
An optimization criterion where the sum of the squared values of errors is minimised.
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G lossary o f  Terms

Minimax (Chebyshev) criterion

An optimization criterion where the largest error is minimised.

Monte Carlo simulation

A method used to analyse the influence of parameters variability on the solution of systems. 
Very often used for sensitivity analysis of the nonlinear systems where the analytical 
relationship between the variability of parameters and system’s solution cannot be found and 
repeated simulation for a large number of parameters with random variations is used instead.

Neural Network Architecture

Arrangement of artificial neurons organized into layers and linked with weighted 
interconnections.

Outlier

A measurement containing large error.

Overdetermined set of equations

The set of equations where a number of equations is greater than a number of unknowns.

Pseudomeasurements

Values which represent consumption predictions or information about water distribution 
network topology.

Reynolds number (Re)

The dimensionless parameter indicating the type of flow (i.e. laminar or turbulent flow).

Sensitivity matrix

A matrix in which the (i,j)-th element relates the sensitivity of the i-th estimated value to the 
variations in the j-th element of the measurement vector.

State estimation

A procedure that provides a means of reconciling the discrepancies between the mathematical 
model of the system and the input data.

State vector

The minimum set of variables that uniquely describe a system and from which other variables 
may be calculated.

Supervised learning

A learning algorithm in which each input pattern is presented with an associated target output 
and weights are gradually updated so that the error between the desired and the network’s 
output is reduced.

Unsupervised learning

A means of modifying the weights of a neural network without specifying the desired output 
for any input patterns.
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Chapter 1

Introduction

1.1. Project description

The overall aim of this research project is to investigate the applicability of neural 

networks for the implementation of decision support (DS) systems in operational control 

of industrial processes.

Decision support has two distinct but closely interrelated aspects: mathematical 

modelling of physical plants and processes, and the modelling of a decision making 

process. The first one forms the basis for detailed optimization of operations and the 

second one attempts to mimic an abstract mental reasoning about plant’s operation by 

human operators. This research attempts to integrate both aspects of decision support 

within a single computational framework of neural networks. The research will build on 

our recent research results concerning analog neural networks, and extends other 

researchers’ work which confirmed the feasibility of mapping both numerical and fuzzy 

optimization tasks onto appropriate neural networks.

The novelty of the project is in defining more efficient neural network models for 

optimization, as well as enhancing existing models, and then combining them into a 

coherent environment for robust optimization of industrial processes. Neural network 

technology has matured enough to indicate its potential use in real-time industrial 

situations.

The prototype DS system will be validated using case-studies taken from the water 

industry. The optimal control of water systems is a challenging problem because the 

models are non-linear and large-scale and measurements are noisy and frequently 

incomplete. The results of this research are general and are directly applicable to other 

systems, for example, gas, electric power or road traffic systems.

All parts of the project and their interconnections can be presented in a form of the 

block diagram presented at Figure 1-1.

1
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Figure 1-1: Block diagram illustrating different phases of the project and their
interconnections.
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Chapter 1 -1 .2 . W ater distribution system s

1.2. Water distribution systems

Modem water distribution systems, as the other two major utility systems - electricity 

and gas, are characterised by their complexity and large scale.

Additionally, it is quite difficult to identify atypical water distribution system. Each one 

has some unique characteristics due to the water source, service area topography, history 

of the system, etc. In general, all that can be said is that there are water sources and water 

users and that they are connected by pipes. The pipes can be made of many different 

materials (cast iron, steel, concrete etc.) and may be connected in-many configurations.

There may be a single source such as a central pump station, or water may be supplied 

by a large number of wells. While pumps are a common component of many systems, 

there are networks which do not have any pumping and the water is supplied from some 

sources at high elevation.

Most systems contain some storage capacity in the form of tanks which are connected 

directly to the system, from which water must be pumped or which hold water under 

pressure.

Valves are required to shut off lines, suppress surges, release air, drain pipes, or control 

pressure.

Booster pumping may be required to provide adequate pressure in certain portions of a 

system when there is significant variation in elevation or use rate. On the other hand, 

pressure reducing valves serving just the opposite purpose may be needed.

Thus, water distribution systems consisting of large number of pipes, pumps, valves 

etc. are indeed complex hydraulic systems.

As indicated by the block diagram of the project (Figure 1-1) this project is focused on 

operational control of water distribution systems rather than design or management of 

such systems.

Efficient control of a complex water distribution system requires accurate information 

about its current operating state. At present in the water industry, modem telemetry 

hardware systems are being installed to meet these needs. Unfortunately, due to financial 

constraints, it is not practical to measure all variables of interest. By variables of interest 

we mean here heads at all network nodes and inflows at fixed -head nodes which are the
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components of the state vector of the system since given this information and the static 

parameters of the network all other variables, such as pipe flows or consumptions, may 

be calculated immediately.

A practical way of finding the system state is to solve a set of mass balance equations 

which combine the network topology data, the measured or estimated consumptions and 

the inflows into the system. This method, known as load-flow method, is often used in 

water network simulation studies. However, from on-line control point of view the load- 

flow method has two major drawbacks. Firstly, if one measurement is incorrect or lost, 

the load-flow approach gives incorrect results or no results at all. And secondly, the 

method uses only the system inflows and consumptions which, as in the case of predicted 

values, may carry considerable errors, while other more accurate and readily available 

measurements are not used.

A method that overcomes these drawbacks is known as a state estimation procedure and 

over the last two decades has been the key point for the implementation of monitoring 

and control of large scale public utility systems. Its strength lays in processing all 

available measurements and formulating the problem in terms of redundant equations. 

This redundancy is essential for the successful performance of state estimation procedure 

since it enables the erroneous information to be filtered out. In water systems the degree 

of redundancy is achieved by combining the measurement information with the 

pseudomeasurements1. Thus, by increasing the number of measurements it is possible to 

improve both the reliability and accuracy of state estimation.

The simulation of any complex engineering system will always include a degree of 

uncertainty. No meters can be fully accurate, no mathematical model can fully reflect the 

intricacies of a real system’s behaviour and no engineer’s knowledge is complete. Water 

distribution systems are no exception to this rule.

This measurement uncertainty has clearly an impact on the accuracy to which state 

estimates can be calculated. It is, therefore, very important that the level of uncertainty 

present in state estimates can be quantified in some way if these estimates are to be used 

as the basis for making control decisions.

1. Pseudomeasurements represent consumption predictions or information about network topology.
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The quantification of the inaccuracy of calculated state estimates caused by the input 

data uncertainty is known in water distribution systems as confidence limit analysis 

(CLA). In the effect of applying this procedure the lower and upper limits for each state 

estimate value are produced and the state vector is rather presented with corresponding 

confidence limits than in deterministic form.

The material presented so far, concerning the state estimation and CLA, is well 

researched and documented. But although the knowledge of the current operating state, 

and how accurate the estimates are, is absolutely essential it is only the first step on the 

way from measurement readings to operational decision making. The second step, that 

seems to be much more difficult, is the task of interpreting or classifying the current state 

of the network (i.e. normal operating state, leakage in area i, etc.) and subsequently, on 

the basis of this classification, making an operational decision (i.e. close valve k, do 

nothing, etc.).

There have been attempts to develop operational decision making algorithms based on 

the probabilistic mathematical models1. However, there has also been emphasized the 

need for human operator to close the control loop, especially in “non-standard”, difficult 

to formalise situations where the operator’s ability to make a choice is required.

Therefore, the state interpretation task, as well as making operational decisions, is often 

carried out by experienced, human operator. Experience, in this case, is the key word 

because the decision making process, although rational, is largely not formalised.

This points to the need for years of learning from other operators/engineers, observing 

the behaviour of the system and recollection of similar events from the past.

1.3. Why neural networks?

As modem computers become ever more powerful, scientists continue to be challenged 

to use machines effectively for tasks that are relatively simple for humans. Based on 

examples, together with some feedback from a “teacher”, we learn easily to recognize the 

letter A or distinguish a cat from a bird. More experience allows us to refine our responses 

and improve our performance. Although eventually, we may be able to describe rules by

1. Probabilistic mathematical model - a model that takes into consideration and quantifies the uncer­
tainty existing in the system. Such a model is seen as reflecting more naturally the operator’s reasoning
about the system.
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which we can make such decisions, these do not necessarily reflect the actual process we 

use. Even without a teacher, we can group similar patterns together. Yet another common 

human activity is trying to achieve a goal that involves maximizing a resource while 

satisfying certain constraints. Each of these types of problems illustrates tasks for which 

computer solutions may be sought.

Traditional, sequential, logic-based digital computing excels in many areas, but has 

been less successful for other types of problems. The development of artificial neural 

networks began approximately 50 years ago, motivated by a desire to try both to 

understand the brain and emulate some of its strengths. Early successes were 

overshadowed by rapid progress in digital computing. Also, claims made for capabilities 

of early models of neural networks proved to be exaggerated, casting doubts on the entire 

field.

Recent renewed interest in neural networks can be attributed to several factors. Training 

techniques have been developed for the more sophisticated network architectures that are 

able to overcome the shortcomings of the early, simple neural nets. High-speed digital 

computers make the simulation of neural processes more feasible. Technology is now 

available to produce specialised hardware for neural networks. However, at the same time 

that progress in traditional computing has made the study of neural networks easier, 

limitations encountered in the inherently sequential nature of traditional computing have 

motivated some new directions for neural network research. Fresh approaches to parallel 

computing may benefit from the study of biological neural systems, which are highly 

parallel. The level of success achieved by traditional computing approaches to many 

types of problems leaves room for a consideration of alternatives.

Neural nets are of interest for researchers in many areas for different reasons. Electrical 

engineers find numerous applications in signal processing and control theory. Computer 

scientists find that neural nets show promise for difficult problem areas such as an 

artificial intelligence and pattern recognition. For applied mathematicians, neural nets are 

a powerful tool for modelling problems for which the explicit form of the relationships 

among certain variables is not known. For us they are especially interesting because of 

two potential application areas: optimization problems and pattern classification.
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1.4. Organisation of the thesis

Chapter 2 is wholly devoted to mathematical modelling in water distribution systems. 

First the basic laws governing the hydraulics of water systems and mathematical models 

of simple elements that are parts of these systems are described. Next the methods of 

combining these laws and models of elements to produce concise model of the water 

network are presented. Since the uncertainty is an inherent part of water systems the ways 

of introducing it into the network model are discussed. Having developed the system of 

equations describing the pipe network some numerical technique is required to arrive at 

a solution. So in the next section the existing solution techniques are reviewed. Finally, 

the problem of large scale systems is tackled.

Chapter 3 introduces artificial neural networks. What are they? How do they work? 

Where can they be applied? How are they implemented? A background information 

about the neural networks organised in four sections attempting to find the answers to 

these questions is provided in this chapter.

The material presented in the next four chapters can be regarded as the major 

contribution of this thesis. It can be divided into two main streams: the usage of neural 

networks for the optimization problems treated in Chapter 4 and Chapter 5 and the 

application of the classification/clustering neural networks to fault diagnosis and water 

state interpretation tasks covered in Chapter 6 and Chapter 7.

Chapter 4 describes the application of analog neural networks for water network state 

estimation. Several neural networks for solving overdetermined systems of linear 

equations according to least squares (LS) criterion, least absolute value (LAV) criterion 

and the combination of these two criterias are presented. The problems of bad data 

rejection, ill-conditioning and arriving at the solution within a predefined period of time 

are addressed. Computational results for a realistic 34-node water network are also given.

In Chapter 5 a neural network approach to confidence limit analysis is discussed. An 

integrated neural system, based on NNs from Chapter 4, for state estimation and CLA is 

described in detail. Its performance and results produced in a form of state vector with 

corresponding confidence limits for the same 34-node water network are reported.

Chapter 6 documents the development of a new general fuzzy classification and 

clustering neural network that is able to process input patterns in both deterministic and
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fuzzy forms, combines the supervised and unsupervised learning algorithms, can produce 

fuzzy or crisp classification decisions and can grow to meet the demands of the problem.

A completely new approach to fault detection and identification in water distribution 

systems based on neural pattern recognition system is proposed and presented in 

Chapter 7. The emphasis is put on diagnosis of topology errors (e.g. leakages, wrong 

statuses of valves). Strengths and limitations of the neural recognition systems trained for 

state estimates and residuals including confidence limits are investigated. The 

computational results are given for the large training and data sets covering 24 hour of 

water distribution network operations.

Finally, Chapter 8 presents the main conclusions of the project and some suggestions 

for further research.



Chapter 2

Mathematical modelling of water 

distribution networks (WDN)

2.1. Basic laws in WDN

Solving many water distribution design and operation problems requires an 

understanding of the equations of closed conduit hydraulics. Usually, as it will be shown 

later in this chapter, the solution process involves simultaneous consideration of the 

energy and continuity equations and some independent relationship describing head loss.

The most important equations are the continuity, momentum, and energy equations. 

Since the problem of steady-state estimation is treated in this thesis the integral forms 

(taking into consideration average velocity and pressure) of continuity and energy 

equations are presented. The momentum equation, that may be used directly to evaluate 

the force causing a change of momentum in a fluid, have been omitted. The reason for 

this omission is the fact that the applications where the momentum equation is used 

include:

• determining forces on pipe bends and junctions, nozzles and hydraulic machines - 

useful for designing the water network; or

• solving problems when the flow is unsteady.

The project and problems described in this thesis are not concerned with either of these 

applications. For the similar reason the differential forms of these equations, used when 

information on such things as velocity distribution within the pipe is required, are also 

neglected. More information on dynamic behaviour of the fluids can be found in (Casey, 

1992; Chadwick & Morfett, 1986; Merritt, 1967; Walski, 1984).
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2.1.1. Continuity equation

During any time interval b t, the principle of conservation of mass implies that for any 

control volume the mass flow entering minus the mass flow leaving equals the change of 

mass within the control volume. It can be written as follows

m. — m = Am . (EQ 2-1)in o u t s to re  v ^  '

where: min - mass flow entering 

m o u t  " mass fr°w leaving

Am store -Chan§e ° f maSS St° red

If the flow is steady, then the mass must be entering (or leaving) the volume at a 

constant rate. If we further restrict our attention to incompressible flow, then the mass of 

fluid within the control volume must remain fixed. In other words, the change of mass 

within the control volume is zero.

Taking these assumptions into consideration and knowing that:

q = f  (EQ 2-2)

where: p - density of fluid (water) 

t - unit of time 

m - mass flow 

q - volumetric flow 

we can rewrite the equation (EQ 2-1):

<hn -  = 0 (EQ 2-3)

This form of continuity equation will be used for water distribution problems discussed 

later in this work.

2.1.2. Energy equation

In general terms for the fluid (water) flowing in a pipe the energy equation states that, 

given the energy at the entry to the pipe, the energy at the exit from the pipe equals the 

energy at the entry, plus the net work done on the fluid (work done on water minus work 

done by water), minus any energy losses due to friction.
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In a form of mathematical equation this can be written as follows:

Eex = Een + W - H (EQ 2-4)

where: Eex - energy at the exit point 

Een - energy at the entry point 

W - net work done on the fluid 

H - friction energy loss

This energy equation in simplified form for a pipe loop will be presented and used with 

appropriate head-loss-flow formula when the models of the network will be discussed.

2.1.3. Types of flow and head loss formulas

Before the end of 19th century classical hydrodynamicists had long been puzzled by 

certain aspects of flow which did not conform to the known mathematical formulations. 

Towards the end of the 19th century, Reynolds designed an experiment in which a 

filament of dye was injected into a flow of water. The discharge was carefully controlled, 

and passed through a glass tube so that observations could be made. Reynolds discovered 

that the dye filament would flow smoothly along the tube as long as the velocities 

remained very low. If the discharge rate was increased gradually, a point was reached at 

which the filament became wavy. A small further increase in discharge was then sufficient 

to trigger a vigorous eddying motion, and the dye mixed completely with water.

Thus this experiment demonstrated that there were two kinds of flow - laminar and 

turbulent. Reynolds found that transition from laminar to turbulent flow occurred at a 

critical velocity for a given pipe and fluid. He expressed his results in terms of the 

dimensionless parameter, Re, called Reynolds number

VD
Re = —  (EQ 2-5)

where D is the pipe diameter, V is the average velocity of flow and v is the kinematic 

viscosity.

He found that for Re less than about 2000 the flow was always laminar, and that for Re 

greater than about 4000 the flow was always turbulent. For Re between 2000 and 4000, 

he found that the flow could be either laminar or turbulent, and termed this the transition 

region.
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In a further set of experiments, he found that for laminar flow the frictional head loss in 

a pipe was proportional to the velocity, and that for turbulent flow the head loss was 

proportional to the square of the velocity.

These two results had been previously determined by Hagen and Poiseille (h~V) and

of laminar and turbulent flow.

Since most of the flows which are encountered in water distribution systems are 

turbulent flows we restrict our considerations to turbulent flows.

The Darcy-Weisbach head loss equation for turbulent flows can be written as follows:

where X is the pipe friction factor, L  is the pipe length and g is the acceleration due to 

the gravity.

The original investigators presumed that the friction factor was constant. Nikuradse, 

however, found that the turbulent flow could be divided into three regions and that the 

value of friction factor depends on relative roughness (k/D) of the pipe and Re. These 

three kinds of turbulent flow can be described as follow:

• Smooth turbulence - the limiting line of turbulent flow that is approached by all values 

of relative roughness (k/D) as Re decreases.

• Transitional turbulence - the region in which X varies with both Re and k/D. In practice, 

most of pipe flow lies within this region.

• Rough turbulence - the region in which X remains constant for a given k/D, and is 

independent of Re.

The following equation:

that relates the friction factor to k/D and Re is known as the Colebrook-White transition 

formula. It is applicable to the whole of the turbulent region for commercial pipes using

Darcy and Weisbach (h~ V2 ), but it was Reynolds who put these equations in the context

h ~ X2gD (EQ 2-6)

(EQ 2-7)

an effective roughness value determined experimentally for each type of pipe.
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Although the Darcy-Weisbach equation using Colebrook-White formula is the most 

accurate for the head loss assessment it had not been easy to use for engineers' hand 

calculations. There was a need for simpler empirical formulae. For water distribution 

system analysis the most commonly used of empirical formulas is the Hazen-Williams 

equation.

where: q.. 
i j

q.. = 0.27746 C -D 2’63^ i j  i j  ij

flow from node j to node i

I I  h

\

0.54
(EQ 2-8)

C .. - Hazen-Williams coefficient for pipe

Du

h

h j

H:

diameter of pipe 

length of pipe 

head at node j 

head at node i

J  1

or for computer program implementation

, -0.46

where R.. is the resistance between nodes i and j given byIj

R.. = 10.742 C :/'85L..D^-87
I J  I J  I J  IJ

(EQ 2-9)

(EQ 2-10)

Most water system engineers have a very good feel for the meaning of the Hazen- 

Williams C factor, while pipe roughness remains a mystery to many practising engineers. 

It has to be stressed, however, that Hazen-Williams formula is valid in the transition 

turbulent flow region, and using it for flows outside this region may produce errors 

(Casey, 1992; Walski, 1984; Powell, 1992), so the caution must be taken in applying it.

Nevertheless for the purposes of this project the head loss has been calculated using the 

Hazen-Williams equation.

13



Chapter 2 - 2.1 .Basic law s in WDN

2.1.4. Head/flow models for other elements

Pumps

Pumps are usually modelled by a parabolic equation:

(EQ 2-11)

where: a . ., are empirically determined constants.

(EQ 2-12)

Since the root qt - -  -  b . . -  JT7. causes unstable operation the root qt- = -  b^  + J77. 

is chosen from (EQ 2-12) to calculate flow for a pump.

Valves

For the purpose of the modelling of control valves the same formula (EQ 2-8) can be 

used as for pipes. This formula has to be only slightly modified to take into account the 

controlling action of the valve.

The models presented below are written with the assumption of the ideal, steady state 

conditions and the dynamics of control valves depending on the physical construction of 

the valve are neglected.

• pressure reducing valve - reducing a pressure immediately downstream of its position 

in the pipeline to a pre-determined value HpRV

• pressure sustaining valve - sustaining a pre-determined pressure Hpsv immediately 

upstream of its position in the pipeline

(EQ 2-13)

'  0 if HpRV< Hi

(EQ 2-14)
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• non-return valve - also called check valve, retaining valve, reflux valve or foot valve is 

the valve through which flow can proceed in one direction only. A reversal of flow 

causes the valve to close and remain closed until flow is re-established in the unique 

direction.

where: 0 < (p < 1

2.2. Network modelling

Water network modelling is essentially combining all the mathematical models of 

elements and laws presented in previous section into a consistent set of equations 

describing as accurately as possible the behaviour of the system at hand.

A typical water distribution system may serve many thousands of consumers and may 

consist of a large number of interacting elements. Even with the computing power that is 

available today, modelling on this scale is impractical for most applications. Therefore, 

modelling on more manageable scale is required.

There are methods of combining system elements to form an “equivalent” single 

element (Hamberg & Shamir, 1988; Powell, 1992; Walski, 1984). For instance, pipes 

connected in series or parallel can be combined to form a single pipe element in the 

model, a small loop of pipes can be combined to form a simpler pipe junction in the 

model, or pumps working in parallel can be combined to form a single “equivalent” pump 

model. In similar manner groups of consumers can be lumped together and represented 

in the model as a single node with consumption being a sum of individual consumptions. 

It has to be stressed, however, that extreme care must be taken when reducing the network 

in this way because of the danger of reducing the potential model accuracy (Eggener & 

Polkowski, 1976).

(EQ 2-15)

• control valve - actuating the flow in the pipe

(EQ 2-16)
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2.2.1. Network models

In previous section the continuity (EQ 2-3) and energy (EQ 2-4) equations were 

presented in a context of a single node and pipe. Here they are rewritten in a more detailed 

form for a water network consisting of p  pipes and n nodes.

Applying the continuity equation (EQ 2-3) to n nodes we obtain a set of so called nodal 

equations:

X  Qii  +  U i ~  d i i = l . . .n  (EQ 2-17)
J * *

where n is the number of nodes in the network, Q . is a set of nodes connected to node i, 

ui is the inflow to node i, and d i is a demand (also called consumption or load) in node i.

Inflow

Demand

+  +  =  d i

Figure 2-1: Continuity law for /-th node.

Applying the energy equation (EQ 2-4) written for a single pipe to a pipe loop, since 

the beginning and ending points are the same (Een = Eex), the head loss around the loop 

is equal to zero:

X  ht = 0 k  1 (EQ 2-18) 
is  n,

where hi is the head loss in i-th pipe, Q,k is a set of pipes which comprise the k-th loop, 

k is the number of loop.

The number of independent loops / for a network with n nodes and p  pipes can be 

determined from the rule:

l=p-n+l (EQ 2-19)
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An independent loop is a loop for which the energy equation cannot be derived from 

the energy equations written for the other loops.

Positive 
head loss 
direction

h l + h2 ~ h^ + h4 = 0 

Figure 2-2: Energy law for k-th loop.

The continuity law (EQ 2-17) and energy law (EQ 2-18) can be now coupled with a 

suitable head-flow formula (e.g. Hazen-Williams or Darcy-Weisbach/Colebrook-White) 

to construct a set of network equations.

These network equations relate either the network’s nodal pressures or the network’s 

flows to measurement or pseudomeasurement values and can be expressed by the 

following equation:

g(x)=z (EQ 2-20)

where x is an ^-dimensional state vector which can consist of nodal pressures and/or 

flows, z is the measurement vector that consists of real measurements values and 

pseudomeasurements, and g() is a nonlinear network function.

The state vector is made up of n independent state variables. It may include nodal 

pressure variables and/or flow variables, but must be sufficient to completely specify the 

operating state of the system. When this is the case, any other system variable can be 

calculated directly from x.

There are three main ways of constmcting the network equation.

In the first of these methods the network equation is set up by using the flow rates as 

unknowns (state variables) and writing one energy equation for each independent loop 

and one continuity equation for each node. It results in deriving p  equations (where p is 

the number of pipes) called the flow equations since the flows are the unknowns.
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Second approach to setting up the network equation is to write energy equations in such 

a way that, for an initial solution, the continuity equation is satisfied. Then it becomes a 

matter of correcting the flows in each loop in such a way that the continuity equations are 

not violated. This can be done by adding a correction to the flow to every pipe in the loop. 

These corrections are the unknowns in a set of I equations - one for each loop.

In the third method the network equation is derived by combining the continuity 

equation for each node with head loss equations. The state vector in this method consists 

of nodal pressures and inflows into fixed head nodes if any of such nodes are in the 

system.

It has been found (Osiadacz, 1988) that the last method, based on node equations, is 

much better for solving large networks than the other two. Therefore, this method is used 

for setting up network equation throughout this work.

2.2.2. Numerical solution techniques

Since the network equation is nonlinear and direct solution of the systems of nonlinear 

simultaneous equations is not feasible, it is necessary to use iterative solution methods. 

In general, these methods start with an estimated solution which is iteratively refined by 

repeated corrections until the deviation from the true solution is reduced to an acceptable 

tolerance value. One of the earliest methods is the one of Hardy-Cross based on loop by 

loop iterative computations. This method was very useful for hand calculations because 

only one loop flow correction is made at a time. This, however, is also the reason for very 

slow convergence.

Definitely more powerful and faster method is the Newton-Raphson method. It obtains 

the solution to a system of nonlinear equations by iteratively solving system of linear 

equations. This method has been adopted in this work for solving the network equation. 

Hence, more detailed explanation of the Newton-Raphson method in a context of the 

network equation is given below.

Expanding g(x) by an initial guess of the state vector x , using a first-order Taylor 

series and defining z  ̂  = g  (* ) , we obtain

z = z <0)+Az (EQ 2-21)

g (x) = g ( x (0)) + J <0) Ax  (EQ 2-22)
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Using the linearised models (EQ 2-21), (EQ 2-22) and the network equation (EQ 2-20) 

we obtain the following set of linear equations:

where: J W  = | |

J (k)A x W = z - g ( x ik)) (EQ 2-23)

- Jacobian matrix evaluated at ('k>
(k)

X  -  X

( k )Ax - the correction vector

( k )x - the current estimate of the state vector

z  - the measurement vector

( k )  ( k )g  (x ) - the network function evaluated at x

k=0,l,... - step of the iterative solution finding process

Since the network equation (EQ 2-20) is nonlinear, the solution finding is an iterative 

process with the consecutive state estimates calculated by under-relaxation of the linear 

solution

I 1* * 0 = X (k}  +yA xW ,k=0,l,... (EQ 2-24)

where y  is the coefficient taking values between 0.6 and 0.8.
(M

If all elements of Ax in k-th iteration are lower or equal to a predefined convergence 

accuracy, the iteration procedure stops. Otherwise, a new correction vector is calculated 

using equation (EQ 2-23) with x + ^  instead of x ^  .

2.2.3. Uncertainty of the network model and solution

A critical part of analysing a water distribution system is to combine the numerical 

techniques embodied in a computer model with a description of the physical system to 

arrive at a model of the system that can be used with confidence. In reality a model of a 

specific system consists not only of a computer program but also of data describing the 

system. Usually, these data are the weakest link in the modelling process. Computer 

programs can produce results that are accurate to several decimal places, but when the 

data used to produce the model are inaccurate one cannot expect to obtain reliable, 

accurate results.
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As it has been mentioned before, the simulation of any complex system involves a 

certain degree of uncertainty that cannot be avoided. It is, however, essential to be aware 

of the potential sources of inaccuracies in the modelled system and their possible impact 

on the network solution.

There are two main sources of uncertainty and errors in water distribution system 

simulations. First is associated with the modelling of the physical elements and represents 

static (or slowly changing) inaccuracy of network model. The second source of 

uncertainty has dynamic nature and is associated with inaccurate predictions of 

consumptions and inaccuracies of measured values. While, for'instance, the pipe’s C 

factor or friction factor usually varies gradually over years or decades, consumptions and 

flows in the network change from minute to minute and are of unpredictable nature (How 

to predict that someone will turn on water somewhere at some particular moment?).

Model inaccuracy

There have been a lot of research work done in order to develop methods for improving 

the network model accuracy. One of the sources of inaccuracies of network model is a 

simplified representation of a physical system.

The effect of skeletonization on the results produced by simplified models was studied 

in (Eggener & Polkowski, 1976) and it was found that the resulting errors are small if the 

skeletonization is done properly. In the same work C-values were identified as the 

weakest factor in water network models, however, it was also suggested that with enough 

effort put into input data development, any practical degree of accuracy can be attained.

In many publications (Cesario & Davis, 1984; Coulbeck, 1984; Lansey, 1988; Ormsbee 

& Chase, 1988; Ormsbee & Wood, 1986; Shamir & Howard, 1977; Walski, 1984) the 

topic of network calibration was explored. The calibration is known as a process of 

network parameters adjusting (especially C-values and friction factors) so that the model 

predictions agree with observed pressures and flows.

In all the publications dealing with methods of assessing and improving the accuracy 

of network models it has been emphasized that models must be calibrated and 

recalibrated regularly. On the basis of the above briefly discussed research work it can be 

said that there will be only a small amount of residual inaccuracy if the network model is 

constructed and calibrated properly.
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Consumption predictions and measurement uncertainty

The problem of measurement and pseudomeasurement uncertainty and their influence 

on accuracy of the network equation solution has received much less attention in the 

literature than the investigations of model accuracy and model calibration.

Constructing the network equation (EQ 2-20) it was assumed that the minimum data 

required to find the solution, namely at least one reference pressure measurement, the 

inflows into the network, and consumptions (or their predictions) at nodes, were known. 

In practise these values are measured with finite accuracy specified by the type of meter 

used or predicted in case of some nodal consumptions, making this type of data very 

unreliable.

One way of reducing the effect of variations of predictions is to consider a large number 

of consumers when individual use is evened out and the predictions can be carried out 

quite accurately (Fallside & Perry, 1975c; Sterling & Bargiela, 1985; Canu et al., 1990; 

Cubero, 1991). However, when the scale of prediction is reduced to a nodal level, with 

smaller number of consumers considered, accuracy suffers. Short-time water demand 

prediction methods based on time series analysis can be found in (Chen, 1988; Quevedo 

et al., 1988). There have been many suggestions for how nodal consumptions should be 

modelled and predicted (Suter & Newsome, 1988; Wright & Cleverly, 1988). These 

involved modelling different types of consumptions, e.g. domestic use, industrial use etc., 

separately and combining them to represent overall nodal consumption. However, the 

fact that predictions carry a substantial inaccuracy remains unchanged and some way of 

quantifying their impact on model performance is required.

Although accuracy of meters used in water distribution systems allows, in most of the 

cases, to obtain more reliable information than in case of predictions of nodal 

consumptions and other pseudomeasurements, the inaccuracies introduced in such a way 

into the system model cannot be overlooked. In (Bargiela & Hainsworth, 1988) 

techniques were shown relating the position and accuracy of the meter, to the 

corresponding benefit that can be derived from these measurements, in the process of 

mathematical modelling.

Another way of diminishing the effect of inaccuracies in measurements and 

pseudomeasurements on the solution is to redefine the method of solving the network 

equation. Since the number of unknowns is equal to the number of equations in the
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linearised model (EQ 2-23) of the network equation (EQ 2-20) used in the Newton- 

Raphson method, each inaccurate data has a huge influence on the solution. It could even 

lead to the case when there would be no solution to the set of equations (EQ 2-20) at all. 

The more robust method, known as the state estimation procedure, utilizing all available 

measurements and pseudomeasurements is, therefore, used. Using all available 

information results in constructing overdetermined set of equation (number of equations 

is greater than the number of unknowns) and the solution can no longer be found by 

simply solving a square set of equations. The solution finding problem has to be defined 

as the optimization of a suitably chosen cost function. On the other hand, these additional 

measurements, also known as redundant measurements since they are not absolutely 

necessary to arrive at some solution, allow the corrupted data to be rejected and to obtain 

a more reliable solution. The estimation procedures are discussed in more detail in 

Chapter 4.

The methodology and algorithms for quantifying the impact of measurement and 

pseudomeasurement inaccuracies on the state estimate vector in water distribution 

systems were first introduced in (Bargiela & Hainsworth, 1989) under the name of 

confidence limit analysis. This problem is also considered later in Chapter 5.

2.3. Large scale systems

On-line monitoring and control of a water distribution system requires an efficient and 

reliable state estimator.

The difficulties to satisfy the conflicting requirements on speed, accuracy, low memory 

occupation and capability of detecting and identifying anomalous data increase with the 

system's size. For some large-scale systems, because of their shear size, the estimation 

task is computationally so demanding that a conventional solution, using "integrated" 

methods, is impossible on the available computer or the solution computing time is so 

great that it is no longer suitable for on-line applications.

The above mentioned difficulties, together with the natural evolution towards 

hierarchical control strategies of the utility systems have influenced the conceptual 

foundations leading to multi-level state estimation approaches. Another factor that has 

also influenced and guided this evolution is the progress in developing the general 

hierarchical theory of large-scale systems.
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The problems encountered when estimating the state of large scale systems and the 

possible solutions using hierarchical, decomposed techniques have been discussed in 

many publications (Bargiela, 1992; Brdys et al., 1990a; Brdys et al., 1990b; Brdys & 

Ulanicki, 1994; Coulbeck et al., 1988a; Coulbeck et al., 1988b; El-Keib et al., 1992; 

Fallside & Perry, 1975a; Fallside & Perry, 1975b; Hartley, 1996; Hartley & Bargiela, 

1995; Hosseinzaman & Bargiela, 1992; Lin et al., 1989; Osiadacz & Salimi, 1988a; 

Osiadacz & Salimi, 1988b; Sundareshan & Elbanna, 1990a; Sundareshan & Elbanna, 

1990b; Ulanicki, 1991; Ulanicki & Orr, 1991; Van Cutsem & Ribbens-Pavella, 1983).

The basic idea is to reduce the complexity associated with the "integrated" high order 

problem by decomposing it into lower order subproblems. In the case of the distributed 

systems, the physical structure of the problem can be utilised when decomposing it into 

a number of smaller subproblems. Each of these subproblems will be solved by a 

conventional centralised method. These are solved individually and the solutions are 

recombined in some way to achieve the solution of overall problem. To take into account 

the interactions between the subproblems, solution usually proceeds iteratively with 

information exchange between subproblems and a coordinating master problem. The 

manner in which coordination is achieved characterises the different decomposition 

methods.

In practise, the hierarchical (also called multi-level, decomposed, decentralised) 

algorithm may be implemented within the two different structures:

i) aggregation o f subsystems - where the system comprises a certain number of 

subsystems, each controlled by a local control centre and coordinated by an upper 

supervisory dispatching centre. For implementation of this method, a set of spatially 

distributed computers can be used, each of them in charge of a subsystem.

ii) decomposition into subsystems - where the system is decomposed into subsystems but

is controlled as a whole in a single dispatching centre. In this case, two computer 

structures may be envisaged for implementing this decomposed algorithm:

• a multiprocessor system, composed for example of a set of microprocessors 

operated as peripherals of a main computer. Each microprocessor is in charge of 

one subsystem whereas the main computer deals with synchronization, data 

sharing and coordination tasks. In fact, this structure combines sequential and 

parallel operations. It is well suited to estimation algorithms having considerable
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information exchanges, owing to the high-speed links connecting main computer 

with microprocessors. Examples of this type of implementation for water 

networks can be found in (Bargiela, 1992; Hartley, 1996; Hartley & Bargiela, 

1995; Hosseinzaman & Bargiela, 1992).

• a single computer. In this case, the various procedures of all levels are carried out 

simultaneously. Of course, the data are all centralized in this computer. Although 

practically all decentralised algorithms have the potential to be implemented on 

parallel architectures a lot of reported results of hierarchical method 

implementations have been obtained via simulation on a single computer (El-Keib 

et al., 1992; Osiadacz & Salimi, 1988a; Osiadacz & Salimi, 1988b).

The advantages of using the hierarchical algorithms, like the increased speed of 

solution finding or dimension reduction of problems to be solved, come at a price. The 

decentralised state estimation algorithms are more complicated than the conventional 

ones. This is due to the need for an additional coordination level where, among others, 

the problem of unequal estimates in common links or nodes of the individual 

subnetworks, has to be resolved. Theoretical developments of estimation theory show 

that, given a set of all measurements in the network, the most accurate estimate is the 

“integrated” one, i.e. that obtained by minimizing a suitable global criterion. In this sense 

some of the hierarchical algorithms are not optimal.

As it has been put in (Van Cutsem & Ribbens-Pavella, 1983) the integrated state 

estimator is “robust by experience and optimal by definition” (provided, of course, that 

the estimation algorithm is properly chosen), but it requires heavy information flows for 

modelling and comparatively large computing times both for the estimation procedure 

itself and for bad data analysis.

The aim of neural network approach to the state estimation problem and confidence 

limit analysis, presented in Chapter 4 and Chapter 5 respectively, is to utilise the naturally 

parallel structure of neural networks promising high computational efficiency while 

optimizing the global criteria ensuring the optimal solution. This would combine the 

efficiency of hierarchical algorithms implemented on multiprocessor systems with 

known robustness and optimality of “integrated” estimators.
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Chapter 3

Artificial neural networks - an 

overview

3.1. What is a neural network?

There are various points of view as to the nature of an artificial neural net. For example, 

is it a specialized piece of hardware or a computer program? We shall take the view that 

neural nets are basically mathematical models of information processing. They provide a 

method of representing relationships that is quite different from Turing machines or 

computers with stored programs. As with other numerical methods, the availability of 

computer resources, either software or hardware, greatly enhances the usefulness of the 

approach, especially for large problems.

3.1.1. Biological neural systems

The human information processing system consists of the biological brain. The basic 

building block of the nervous system is the neuron, the cell that communicates 

information to and from the various parts of the body. Figure 3-1 shows a simplified 

representation of a biological neuron. The neuron consists of a cell body called soma, 

several spine-like extensions of the cell body called dendrites, and a single nerve fibre 

called the axon that branches out from the soma and connects to many other neurons.

The many dendrites receive signals from other neurons. The connections between 

neurons occur either on the cell body or on the dendrites at junctions called synapses. The 

signals are electric impulses that are transmitted across synaptic gap by means of 

chemical process. A helpful analogy is to view the axons and dendrites as insulated 

conductors of various impedance that transmit electrical signals to the neuron 

(Churchland, 1986; Kandel & Schwartz, 1985). The nervous system is constructed of 

billions of neurons with the axon from one neuron branching out and connecting to as
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INPUT from oilier neurons OUTPUT to oiler neurons

sends signal down, tie aoson

Axon

Terminal branches

Figure 3-1: Biological neuron

many as 10,000 other neurons. All the neurons - interconnected by axons and dendrites 

that carry signals regulated by synapses - create a neural network.

3.1.2. Artificial neural networks

An artificial neural network is an information-processing system that has certain 

performance characteristics in common with biological neural networks. The extent to 

which a neural network models a particular biological neural system varies. For some 

researchers, this is a primary concern, for others, the ability of the net to perform useful 

tasks (such as approximation of a function) is more important than the biological 

plausibility of the net. Although our interest lies almost exclusively in the computational 

capabilities of neural networks, we shall briefly present some features of biological 

neurons that may help to clarify the most important characteristics of artificial neural 

networks.

An artificial neural network is characterized by:

a) its topology of interconnected neurons with their non-linear activation functions 

(called its architecture),

b) its method of encoding information (called its training or learning algorithm).

Artificial neural networks are made up of large number of individual models of the 

biological neurons (artificial neurons). Each neuron is connected to other neurons by 

means of directional communication links, each with an associated weight. The neuron
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models that are used are typically much simplified versions of the actions of a real neuron. 

The weights represent the information used by the net in solving a particular problem.

Several key features of the processing elements of artificial neural networks are 

suggested by the properties of biological neurons:

• The processing element receives many signals.

• Signals may be modified by weight at the receiving synapse.

• The processing element sums the weighted inputs.

• Under appropriate circumstances (sufficient input), the neuron transmits a single 

output.

• The output from a particular neuron may go to many other neurons.

• Information processing is local.

• Memory is distributed: a) long memory resides in the neurons’ synapses or weights, b) 

short-memory corresponds to the signals sent by the neurons.

• A synapse’s strength may be modified by experience.

• Neurotransmitters for synapses may be exitatory or inhibitory.

Yet another important characteristic that artificial neural networks share with biological 

neural systems is fault tolerance. Biological neural systems are fault tolerant in two 

respects. First, they are able to recognize many input signals that are similar but not 

identical to any input that was seen before. Second, damage to individual neurons can 

occur in the brain without a severe degradation in its overall performance (Hopfield, 

1982; Hopfield et al., 1983; Hopfield, 1984). If a portion of a brain is removed, the 

knowledge of the concept or idea is still retained through the redundant, distributed 

encoding of information. In a similar manner, artificial neural networks can be designed 

to be insensitive to small damage to the network, and the network can be retrained in 

cases of significant damage.

In the final attempt to answer the question: What is a neural network? let us quote the 

definition taken from (Hecht-Nielsen, 1988):

A neural network is a parallel, distributed information processing 

structure consisting of processing elements (which can possess a local 

memory and carry out localized information processing operations)
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interconnected together with unidirectional signal channels called 

connections. Each processing element has a single output connection 

which branches (“fans out”) into as many collateral connections as desired 

(each carrying the same signal - the processing element output signal).

The processing element output signal can be of any mathematical type 

desired. All of the processing that goes on within each processing element 

must be completely local: i.e., it must depend only upon the current values 

of the input signal arriving at the processing element via impinging 

connections and upon values stored in the processing element’s local 

memory.

3.2. Fundamental features of ANNs

After an attempt to explain, in general terms, what an artificial neural network is and 

where the inspiration for neural computing came from, the subsequent sections will 

present typical neural network architectures and training algorithms. For the reason that 

this thesis is not dedicated to neural networks themselves but rather their applications to 

water systems’ specific problems, the remaining sections of this chapter will have general 

and grossly introductory character. The more detailed description will be given: for 

analog neural networks used in state estimation process in Chapter 4 and for fuzzy 

classification/clustering neural algorithms in Chapter 6.

3.2.1. Artificial neurons and activation functions

Artificial neurons

Artificial neurons, also referred to as nodes or processing elements, are the ANN 

components where most, if not all, of the computing is done. The most commonly used 

neuron model is depicted in Figure 3-2 and is based on the model proposed by McCulloch 

and Pitts in 1943 (McCulloch & Pitts, 1943). Each neuron input, x x - xn , is weighed by 

the adjustable values - w . A  bias, or offset, in the node is characterized by an 

additional constant input of 1 weighted by the value of wQ. The output, y, is obtained by
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Synapses

Weights
Bias

Axon

Axons
Dendrites

f
Non-linearity

w,x, + w

Output

Figure 3-2: McCulloch-Pitts model of neuron, 
summing the weighted inputs to the neuron and passing the result through a non-linear

activation function, f(). Mathematically this operation is defined as:

y  ' L w
\  i = 1

(EQ 3-1)

Various types of non-linearity are possible and some of these are shown below.

Activation functions

Activation functions, also called threshold functions or squashing functions, map the 

neuron’s infinite domain (the input) to a prespecified range (the output). Four common 

activation functions are the linear, ramp, step, and sigmoid functions. Table 3-1 shows the 

mathematical equations describing these functions and their typical shapes.

Name and mathematical 
description Shape Remarks

Linear function 

f { x )  = a x

f(x)J {

a  is a real-valued constant that regu­
lates the magnification of the neuron 

activity x.
X

Ramp function „
* r y if x > y

f ( x )  = |  x  if |x| < y
- y  if x < -y

f(x)j
r

[

The output is bounded to the range 
[-y,+y]. Values yand -yare commonly 

referred to as the saturation levels.
*x

-Y

Table 3-1: Four common activation functions.
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Name and mathematical 
description Shape Remarks

Step function
y if x>0 

/(■*) -  {_g otherwise

{ Step function respond only to the sign 
of the input, emitting +y if the input 

sum is positive and -6 if it is not. y and 
8 are positive scalars. Often step func­
tion is binary in nature emitting a 1 if 

x>0 and 0 otherwise.

. .  . ____

X

- 8

Sigmoid function 

f { x )  = ( 1 + e ‘V 1

f(x)i Sigmoid function is bounded, monot­
onic, non-decreasing function that 
provides a graded, nonlinear re­

sponse. The saturation levels are 0 
and 1. In the ANNs described in 

Chapter 4 another type of sigmoid 
function is used, the hyperbolic tan­
gent f(x)=(3tanh(x) which has satura­

tion levels at -(3 and +(3

X

Table 3-1: Four common activation functions.

3.2.2. Typical architectures

ANN architectures, or topologies, are formed by organizing neurons into layers (also 

called fields or slabs) and linking them with weighted interconnections.

There are three primary neuron interconnection schemes: lateral connections, inter­

layer connections, and recurrent connections. Lateral connections are connections 

between neurons in the same layer of neurons. Inter-layer connections are connections 

between neurons in different layers. And finally, recurrent connections are connections 

that loop and connect back to the same neuron.

Interlayer connection signals propagate in one of two ways, either forward or back. 

Feedforward signals only allow information to flow amongst neurons in one direction. 

Feedback signals allow information to flow amongst neurons in either direction and/or 

recursively. On the basis of these two types of signal propagation the difference between 

two methods of information recall in ANNs can be defined as follow. During feedforward 

recall, the input cue is passed through the memory, represented by the weights W, and 

produces an output response in one pass. During feedback recall, the input cue is passed 

through the memory and produces an output response that is, in turn, fed back into the 

memory until the cue and response cease to change. The neural networks in Chapter 4 are 

the examples of feedback recall.
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Layer configurations combine layers of neurons, information flow and connection 

schemes into a coherent architecture. Layer configurations include lateral feedback, layer 

feedforward, and layer feedback. A layer that receives input signals from the environment 

is called an input layer and a layer that emits signals to the environment is called an output 

layer. Any layers that lie between input and output layers are called hidden layers and 

have no direct contact with the environment. Figure 3-3 illustrates four common ANN 

topologies.

a.

x.n.

b)

Input Hidden Output
layer layer layer

Figure 3-3: Four common ANN architectures: a) two-layer feedforward ANN; b) 
three-layer feedforward ANN; c) one-layer lateral feedback ANN; d) two-layer

feedback ANN.

3.2.3. Training/Learning algorithms

In addition to the architectures, the method of setting the values of the weights (learning 

or training) is an important distinguishing factor of different neural nets. As it has been 

pointed out in (Hassoun, 1995), in the context of artificial neural networks, the process of 

learning is best viewed as an optimization process. More precisely, the learning process 

can be viewed as “search” in a multidimensional (weight) space for a solution, which
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gradually optimizes a prespecified objective (criterion) function. This view allowed 

Hassoun to unify a wide range of existing learning rules which otherwise could have 

looked more like a diverse variety of learning procedures.

All learning methods can be classified into two categories, supervised learning and 

unsupervised learning, although aspects of each may co-exist in a given architecture. In 

addition, there are nets whose weights are fixed without an iterative training process.

In supervised learning (also called learning with a teacher) each input vector, pattern 

or signal is presented with an associated target output vector. Usually the weights are 

gradually updated with each step of the learning process so that the error between the 

desired (given) target and the network’s output is reduced.

On the other hand, unsupervised learning, also referred to as self-organization, is a 

process that incorporates no external teacher. Unsupervised learning involves the 

clustering or detection of similarities among unlabelled patterns of a given data set. Here, 

the weights and the outputs of the network are usually expected to converge to 

representations of the input data.

There is some ambiguity in the labelling of training methods as supervised or 

unsupervised and some authors find a third category, reinforcement learning or self­

supervised learning, useful. Reinforcement learning involves updating the network’s 

weights in response to an “evaluative” teacher signal; this differs from supervised 

learning, where the teacher signal is the “correct answer”.

In general, however, there is a useful correspondence between the type of training that 

is appropriate and the type of problem we wish to solve. Some examples of ANN 

applications are given in the next section.

3.3. ANN applications

The purpose of this section is to give a sample of various areas of ANN applications 

and to illustrate a strong preference for using certain types of neural nets to solve certain 

types of problems.

Multilayer; feedforward, supervised ANN applications

Among the supervised learning methods for multilayer neural nets the backpropagation 

algorithm is by far the most popular. Backpropagation and its variations have been
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applied to a wide variety of problems, including pattern recognition, signal processing, 

image compression, speech recognition, medical diagnosis, prediction, nonlinear system 

modelling, and control.

One of the earliest applications of backpropagation was the system known as NETtalk 

that converts English text into speech (Sejnowski & Rosenberg, 1987). Another example 

of a multilayer feedforward ANN application is a neural based adaptive interface system, 

known as Glove-Talk, that maps hand gestures to speech (Fels & Hinton, 1993).

The recognition of handwritten digits is a classic problem in pattern recognition. 

Specifically, the Postal Service is interested in the recognition of handwritten ZIP codes 

on pieces of mail. A backpropagation network has been designed to recognize segmented 

numerals digitized from handwritten ZIP codes that appeared on U.S. mail (Le Cun et al.,

1989).

ALVINN (autonomous land vehicle in a neural network) - a backpropagation-trained 

feedforward network designed to drive a modified Chevy van (Pomerleau, 1991) - is an 

example of a successful application using sensor data in real time to perform a real-world 

perception-control task.

Clinical diagnosis is often fraught with great difficulty because multiple, often 

unrelated disease states can surface with very similar historical, symptomalogic, and 

clinical data. As a result, physicians’ accuracy in diagnosing such diseases is often poor. 

Feedforward multilayer neural networks trained with backpropagation have been 

reported to exhibit improved clinical diagnosis over physicians and traditional expert- 

system approaches (Bounds et al., 1988; Yoon et al., 1989; Baxt, 1990).

One of the major objectives for the management of a water supply and distribution 

system is the forecasting of the daily demand. The multilayer feedforward ANNs, 

reported in (Canu et al., 1990; Cubero, 1991), have been used to accomplish this task.

Feedforward, unsupervised ANN applications

The best known ANN in this group is the self-organizing map, developed by Kohonen, 

which has the special property of effectively creating spatially organized “internal 

representations” of various features of input signals and their abstractions. The self­

organizing map has been particularly successful in various pattern recognition tasks 

involving very noisy signals.
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One of the applications demonstrating the power of the map method when dealing with 

difficult stochastic signals is the area of speaker-independent recognition of speech. The 

example of the self-organizing map application to speech recognition is the “phonetic 

typewriter” net (Kohonen, 1988).

Other areas where self-organizing maps have been successfully used include control of 

robot arm (Graf & LaLonde, 1988; Veelenturf, 1995), EEG signal analysis (Veelenturf, 

1995), control of industrial processes, especially diffusion processes in the production of 

semiconductor substrates (Marks & Goser, 1988).

Feedback, unsupervised ANN applications

Dynamic associative memories (DAMs), the most representative in this group, are a 

class of recurrent ANNs that utilize a learning/recording algorithm to store vector 

patterns as stable memory states. A part of the DAMs are Hopfield networks that have 

been successfully applied to many combinatorial optimization problems- situations that 

require the minimization of multiple-constraint cost function to determine the set of 

optimal system parameters.

An example of the optimization problem, that was addressed in (Hopfield & Tank, 

1985) using recurrent neural network, is the classical travelling salesperson problem. A 

salesperson wants to visit n cities, once each, along a path that ends at the initial city. The 

problem is to perform this loop in such a way as to minimize the total mileage. An 

interesting feature of the solution proposed by Hopfield and Tank is the fact that weights 

are defined by the problem (they are the distances between the cities) and not set using 

some learning method.

A similar ANN has been used for solving the water network state estimation presented 

in Chapter 4.

Other than combinatorial optimization applications, the Hopfield ANN’S ability to 

reconstruct entire patterns from partial cues stands out as one of its primary application 

strengths. In addition, the Hopfield ANN’s nearest-neighbour response and fault 

tolerance qualities are also appealing. Because of these qualities, pattern classification 

and noise removal from patterns are key Hopfield network’s applications.

One more type of ANN and its applications is worth mentioning here: ART (Adaptive 

Resonance Theory) clustering neural network. This unsupervised ANN has been
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particularly of interest for us due to the fact that the second part of this project involves 

developing clustering/classification neural net for water network state classification.

The reported applications of the ART network include the clustering of motor unit 

potentials in the electromyogram (EMG) signal (Wang, 1991) or radar signal 

classification (Mertz et al., 1992).

3.4. ANN implementations

A wide variety of ANN implementations have been developed that attempt to 

streamline the computation and take advantage of the inherent parallelism. In (Simpson,

1990) we find that the broad range of existing ANN implementations can be placed into 

three categories:

1) computer implementations - defined as any software implementation that is created 

on a machine that was not made explicitly for ANN processing

2) electronic implementations - defined as any electronic implementation that is made 

with the sole purpose of performing ANN processing

3) optical/electro-optical implementations - defined as any ANN implementation that 

involves the use of optical components

3.4.1. Computer implementations

Computer implementations of ANNs can be further divided into implementations on 

supercomputers, massively parallel computers and conventional computers. Although 

supercomputers (e.g. Cray from Cray Research, Nec’s SX-2, etc.) and massively parallel 

computers (e.g. Inmos Transputers, Texas TMS320, CAPP of University of 

Massachusetts, etc.) were not specially designed for neural implementations, in many 

cases very high performance rates have been obtained. However, very often these 

powerful computers are limited by their inability to provide efficient processing with 

extensive human interaction, the expensive purchase/operation costs or very little 

portability due to the fact that implementations are programmed in languages that are 

often unique to each machine.

On the other hand conventional computers using any programming language can 

implement virtually any ANN; it just takes longer to process. As a matter of fact majority
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of ANN implementations are software simulations and there are several versatile ANN 

simulation packages available today for common computers (neural-net-faq.html). The 

conventional computer is the first step to any engineering project concerning ANNs and, 

depending on the size of application, it could be sufficient for the entire project.

3.4.2. Electronic implementations

• PC accelerator cards and neurocomputers

Very large networks may only be practical with specialized neural network hardware.

While large general purpose parallel machines can certainly provide sufficient 

performance, cheaper alternatives are available with co-processor, or accelerator, cards 

for PC. There are also more elaborate neurocomputers with multiple boards and extensive 

software environments. Such neurocomputers may be expensive but are still much 

cheaper than the big parallel mainframes.

Several of the now available accelerator cards simply use fast RISC processors (e.g. 

NeurodynamX XR50 - Intel i860, Vision Harvest NeuroSim - Intel i860) or DSPs (e.g. 

BrainMaker Accel. - TITMS320C25 DSP, Neural lech  NT6000 - TITMS320C20 DSP) 

as coprocessors to speed up the network processing. A disadvantage with many such co­

processors cards is that they have to use the slow PC bus.

Examples of neurocomputers include: the Adaptive Solutions CNAPS that uses the 

Inova N64000 chip on VME boards in a custom cabinet run from a UNIX host; the HNC 

SNAP Neurocomputer with 2 VME boards, each with four NAP 100 chips; the Siemens 

SYNAPSE-1 using a systolic array of 8 MA-16 chips in a custom cabinet with a Unix 

host.

• Integrated circuits

The implementation of neural networks in the form of integrated circuits has been 

emerging from a research and development phase and moving into a phase in which 

neural chips are available in the electronic marketplace. Perhaps it is most accurate to say 

that two activities are now overlapped: the exploratory research continues while, at the 

same time, early generations of working chips have been produced.

Implementing a neural network architecture in silicon is like trying to map a three- 

dimensional space onto a plane. The multiple interconnectivity of neurons in a network

!ji
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demands a three-dimensional geometry to avoid an impossible multiplicity of 

crisscrossing synapses, rapidly rising with the increasing number of neurons.

Another geometric constrain involves the number of input/output lines that are needed. 

The numbers of I/O nodes that a single chip can contain is limited by the pinout counts 

that can be provided for integrated circuits - and the pinout count is limited, in turn, by 

the sizes of the bonding pads and of the leads from pads to the macroscopic outer world 

of switches and power supplies.

Therefore, it was necessary to develop physical arrangements that could preserve the 

three-dimensional requirements of the network, as well as the needed multiplicity of 

connections to the outer world. Various ways of tackling this problem have been 

generated.

We can divide the VLSI implementations into three broad categories: digital, analog, 

and hybrids.

On the basis of available chips the digital VLSI neural networks can be further divided 

into few categories including:

• slice architectures - based on the bit slice concept of conventional digital processors, 

the neural network slice chips provide building blocks to construct networks of 

arbitrary size and precision. Examples of the NN slice chips include: the Hitachi WSI, 

the NeuraLogix NLX-420 Neural Processor Slice, or the Philips Lneuro 1.0.

• multi-processor chips - based on the idea of putting many small processors on a chip. 

Two architectures dominating this design can be distinguished: single instruction with 

multiple data (SIMD) and systolic arrays. Examples of SIMD chips include Inova 

N64000 and HNC 100 NAP, and a systolic array system can be built with Siemens MA- 

16.

• radial basis functions (RBF) - as the name points out these chips aim at the simulation 

of RBFs. Two commercial products now available are: Intel’s NilOOO and IBM’s 

ZISC036.

• other digital design - examples of these include Micro Circuit Engineering MT19003 

Neural Instruction Set Processor and Hitachi Wafer Scale Integration chips. First is 

simple RISC processor optimized for implementation of multi-layer nets. In turn
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Hitachi produced wafers for implementing Hopfield networks and multi-layer networks

using backpropagation learning algorithm.

Among analog hardware neural nets we can find Intel’s 80170NW ETANN and 

Synaptics’ Silicon Retina chips, and although analog technology can exploit some 

physical properties to obtain high speed and densities the analog design can be very 

difficult to implement and use due to the variations in manufacturing, temperature, etc.

The third group of integrated circuits for NN implementations includes hybrid designs 

attempting to combine the best of analog and digital techniques. Typically, the external 

signals are digital to facilitate integration into digital systems, while internally some or 

all of the processing is analog. Examples of this group include AT&T’s ANNA, 

Bellcore’s or Ricoh’s RN-200.

The material on neural hardware presented in this section has been compiled from the 

overview papers (Heemskerk, 1995; Ienne & Kuhn, 1995; Lindsay and Lindblad, 1994) 

where more detailed information concerning architectures and other technical parameters 

can be found.

3.4.3. Optical implementations

There are a few good reasons for using optics - either instead of, or along with 

electronics - to implement neural nets. Foremost among these is the fact that light rays do 

not suffer, as electrical wires do, from cross-talk. No matter how closely you pack the 

optical paths in and out of a processing element, or even if they cross, they do not perturb 

one another.

Thus, optics allows very large fan-ins and fanouts among processors. This is an ideal 

attribute for neural processing elements in a multiply connected network.

In addition to the lack of cross-talk, optical paths are physically easier to pack together 

than electronic paths. The electronic paths leading in and out of a processor are wire 

leads, which need to be bonded to bonding pads in the package that contains a processing 

chip, and need to come out of the package in the form of pins that can be connected to 

sockets or traces on a pc board. The constraints on implementing these I/O connections 

are rapidly becoming the governing factor in how small you can make an electronic chip.
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Optically, the I/O leads can be tightly packed bundle of hair-thin light-conducting fibres 

- or, better yet, mere paths through the air between optical processors. The light must be 

brought to a photosensitive area, but it need not and cannot be bonded to it. Making and 

breaking connections, difficult in electronics, is trivial in optics.

Low power consumption is another benefit of optics. The ratio of energy dissipation for 

an electronic system versus that for an equivalent optical system is very large.

In summary, because neural networks are characterized by large number of processing 

elements, with a large multiplicity of interconnections, it is a good idea to implement 

them in a technology that not only allows large fan-ins and fanouts but also keeps power 

dissipation low, even when all this is happening in a small volume. Optics does it all.

At the same time, electronics is much further along in terms of having been practically 

implemented and perfected over decades of computer technology. For the time being, 

then, it remains the principal way in which ANNs are built, despite the theoretical 

advantages of optics.
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Chapter 4

Neural state estimation

4.1. Introduction

Efficient control of a complex water distribution system requires accurate information 

about its current operating state. Over the last two decades the water industry has been 

making a significant investment in modem telemetry hardware systems to meet these 

needs. Unfortunately, due to financial constraints, it is not practical to measure all 

variables of interest. Therefore, the information supplied by the telemetry system must be 

supplemented by the less accurate predictions of consumptions at the nodes in the 

network. These predictions are frequently referred to as pseudomeasurements. 

Measurements and pseudomeasurements are used to calculate flows and pressures in the 

distribution network through the use of state estimators which provide a means of 

reconciling the discrepancies between the mathematical model of the system and the 

input data.

In general, the state estimation problem can be viewed as the process of constructing 

and optimization of a suitably chosen cost (also called energy or Lyapunov) function. The 

choice of the optimization criterion (the type of cost function) characterises different state 

estimators. According to the criterion used the state estimation procedures can be divided 

into the following three major groups:

• least squares (LS) criterion - where the sum of the squared differences between the 

measured and estimated values is minimised;

• least absolute value (LAV) criterion - where the sum of the absolute differences 

between the measured and estimated values is minimised; and

• minimax (also called Chebyshev) criterion - where the maximum difference between 

the measured and estimated values is minimised.
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The proper choice of the criterion depends on the specific applications and greatly on 

the type of errors that are likely to occur in the system. Due to this fact, that will be 

discussed in more detail in the following sections of this chapter, only the first two 

criterions (LS and LAV) and their variations have been practically used in water systems’ 

state estimation problem.

The state estimators gradually became the key utility for the implementation of 

monitoring and control of large scale public utility systems such as water, gas or electric 

power distribution systems.

However, with the increasing complexity of modem water distribution systems there is 

a need for more efficient state estimators which will form a basis for the implementation 

of real time control of these systems. Among the potential algorithms and techniques for 

state estimation neural network based estimators are of great interest because of their 

potential computational efficiency due to massively parallel nature of ANN. The recent 

wave of interest in artificial neural network models has led to new theoretical results and 

advances in VLSI technology (see Chapter 3, Section 3.4) that make it possible to 

fabricate microelectronic network of high complexity. Much of this interest began when 

ANNs were devised to solve some optimization problems (Hopfield & Tank, 1985; Tank 

& Hopfield, 1986). While the full potential of neural networks for mathematical 

optimization can only be realised with appropriate computing hardware, their 

performance, in this work, has been assessed through the simulation studies.

j
4.2. State estimation in water distribution networks

4.2.1. Review of state estimation methods

Before we begin the proper review of state estimation methods for water systems let us 

take a closer look at the optimization criterions mentioned above and find out why the LS *

and LAV criterions have been so popular amongst water systems researchers.

From robust statistics (Hampel et al., 1987; Huber, 1981) it is known that the LS, LAV j
j

and minimax criterions are optimal for certain error distributions. The standard LS
%

criterion, that has been the most popular one and in use for a long time, is optimal for the 

Gaussian (normal) distribution only. However, in many applications the assumption that 

the distribution of measurement errors is Gaussian is unrealistic. For a non-Gaussian
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error distribution a standard LS estimation may be very poor, especially where 

measurements contain large errors called "measurement outliers". In order to reduce the 

influence of the outliers the more robust iteratively re-weighed LS or LAV estimator can 

be used. The LAV criterion may be also preferable when very little is known about the 

distribution of errors. It was also shown that the use of LAV criterion produce optimal 

results for an error distribution having long tails, i.e. the Cauchy distribution. If the error 

distribution has sharply defined transitions, such as the uniform distribution, the 

Chebyshev criterion can be the most suitable choice. Because the maximum deviation is 

minimized in the minimax criterion it is an appropriate one to be used when the data are 

relatively free from outliers.

When we now look at the most likely errors to occur in water networks we find that 

there are two main types of errors: these associated with transducer noise, A/D 

conversions etc. that can be classified as having Gaussian distribution and these 

associated with topological anomalies, caused by the physical system deviating from the 

original system as modelled (e.g. due to a new pipe burst), and meter malfunctions, that 

can be classified as gross errors or outliers. In view of these facts the choice of LS and 

LAV estimators for water systems state estimation seems to be justified.

Although the choice of appropriate optimality criterion is absolutely crucial the 

algorithms used to solve these optimization problems are also very important. As a matter 

of fact the problems with using the LAV and minimax criterions, mainly due to the non- 

differentiability of the objective function which may and have caused some analytical and 

numerical problems, have been another reason why the LS criterion is so popular. In 

water systems different algorithms such as linear programming, non-linear programming, 

unconstrained optimization have been used to solve the state estimation problem. A 

review of the currently used techniques that fall under these headings is presented below.

The comparison of the weighted least squares (WLS) problem solved using the 

augmented matrix approach with the LAV problem solved using linear programming 

technique can be found in (Bargiela, 1984). Via simulation results Bargiela found that the 

LS estimator in its augmented matrix formulation is computationally efficient and 

exhibits very good numerical stability characteristics, especially in the case of 

structurally ill-conditioned systems. However, the LS approach was found to be 

intrinsically sensitive to measurement outliers thus requiring further bad data processing
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followed by re-estimation of the state variables. In contrast, the LAV produced unbiassed 

estimates automatically rejecting the bad data but the solution time of the linear 

programming technique dramatically increased with the size of the network preventing 

its on-line application to large-scale problems. To enhance the efficiency of 

implementations both methods utilized the sparsity of matrices involved in problem 

formulations.

The sensitivity of the LS estimators to the outliers has been recognised and reported in 

many other publications dealing with the utility systems state estimation problem 

(Dopazo et al., 1970; Falcao et al., 1981; Gabrys & Bargiela, 1995; Handschin et al., 

1974; Hartley, 1996; Merill & Schweppe, 1971; Powell et al., 1988; Powell, 1992; 

Schweppe et al., 1970; Sterling & Bargiela, 1984). In order to diminish the influence of 

the bad data on the final solution several techniques used with the LS estimators have 

been developed.

In (Schweppe et al., 1970) two tests were used: observing the weighted sum of squared 

residuals for detection of bad data and using the list of largest normalised residuals as a 

guide for the identification of bad data points.

A similar method was proposed in (Dopazo et al., 1970). This technique, based on 

hypothesis testing theory, uses a Student’s t-test instead of normalised residuals for 

identification of bad data points.

Another approach to improvement of the LS estimates in presence of the bad data is the 

use of methods penalizing the largest residuals so that the potential bad data have a 

reduced influence on the final estimates. In these methods of state estimation the non­

quadratic cost functions, which approximate to a standard LS criteria when all the data 

are good, are often used (Falcao et al., 1981; Handschin et al., 1974; Merill & Schweppe, 

1971). Another set of examples of iteratively reweighted LS estimators, based on 

detecting the largest residuals, can be found in (Hartley, 1996; Powell et al., 1988; Powell, 

1992).

An alternative formulation to the LS criterion, that can be classified as another case of 

a non-quadratic criterion and is known as the weighted least absolute method (WLAV), 

has been proposed by a number of authors for utility systems applications (Bargiela, 

1984; Falcao et al., 1981; Gabrys & Bargiela, 1995; Hartley, 1996; Kotiuga & 

Vidyasagar, 1982; Sterling & Bargiela, 1984). There are three principal numerical
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algorithms to solve the WLAV optimization problem found in the literature: linear 

programming (Bargiela, 1984; Barrodale & Zala, 1986; Bazaraa & Jarvis, 1977; Sterling 

& Bargiela, 1984), non-linear programming (Bazaraa & Shetty, 1979; Beck et al., 1983) 

and approximate methods (Bargiela, 1995; Christensen & Soliman, 1989; Christensen & 

Soliman, 1990; Cichocki & Bargiela, 1997; Cichocki & Unbehauen, 1992a; Cichocki & 

Unbehauen, 1992b; Gabrys & Bargiela, 1995; Hartley, 1996). The neural methods, using 

LAV criterion, presented in the following sections of this chapter fall into the last 

category.

4.2.2. Formulation of the state estimation problem

While presenting the network equation (EQ 2-20) and discussing the methods of setting 

up this set of equations it was assumed that all needed measurements represented by the 

vector z are accurate and known. However, in real situation (as it was explained in 

Chapter 2, Section 2.2.3) the measurements are not fully accurate due to the finite meter 

accuracy, noise, gross errors or the necessity of using the inaccurate predictions of 

consumptions. Therefore, the network equation (EQ 2-20) should be written in the 

following form:

z=g(x)+co (EQ 4-1)

where go is the unknown vector, that accounts for measurement noise, model errors and 

disturbances; z is the vector of m  measurements contaminated by errors and noise; g() is 

the nonlinear function (also called network function) describing the system; x is the state 

vector consisting of n-/nodal pressures and/fixed-head node inflows; and m > n .

Because the measurements, to be used in the calculation of the system state, are 

contaminated there is a need to use all available information (all available measurements) 

in the estimation process. These measurements fall into four categories:

• nodal pressure or head measurements;

• fixed-head node inflows;

• pipe flows; and

• consumer demands.
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Each of these measurements (pseudomeasurements) is associated with one type of 

equation constituting to the set of equations (EQ 4-1) and therefore we can distinguish 

the following four types of equations:

1) For nodal pressure (head) measurements if the z-th measurement, z t , corresponds to 

the j -th pressure (head) variable, x . , the network function g. (x) is given by
J  I

xj = zt (EQ 4-2)

2) For fixed-head node inflows if the z-th measurement, z t , corresponds to the j-th fixed- 

head node inflow variable, x . , the network function g. (x) is given by

Xj = Zi (EQ 4-3)

3) For the pipe flows if the z-th measurement, z ., is a flow measurement, the network 

function g t (x) is given by

fyk (xj* xk) = z i (EQ 4-4)

where q.k is the hydraulic pressure-flow relationship for the element (e.g. pipe, valve,

pump as given in Chapter 2, Section 2.1.3 and Section 2.1.4) placed between node j  and 

node k.

4) For consumer demands if the z-th element in z, zt , is a consumer demand prediction or

measurement, the equations represent the mass-balances at nodes as given by 

(EQ 2-17) and can be written as

X  qkj + x,  = z, (EQ 4-5)
J  6 Q*

where k is the load node, Q k is a set of nodes connected to node k, x t is the inflow 

variable for node k.

Having defined the overdetermined (m > n ) set of simultaneous equations (EQ4-1) 

taking into account the unknown vector of measurements errors, r, we can now formulate 

the estimation problem associated with (EQ 4-1).

The state estimation can be expressed as a problem of minimization of discrepancies 

between the actual measurements and the values calculated from the mathematical model 

subject to a suitable optimality criterion.
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Using the least squares criterion the state estimation problem can be expressed as:

min E2 (x ) = \  (z ~ g  ( x ) ) TW ( z - g  (x ) ) (EQ4-6)
X

Similarly, using the least absolute values criterion the state estimation is expressed as:

min ^ ( x )  = >t>r |z - £ ( x ) |  (EQ4-7)

where:

x  e R n - an estimate of the state vector x

w g  R m - measurement weight vector

W  = diag [wp w2, ..., wm] - measurement weight matrix

The proposed solution to the state estimation problem (EQ 4-6) or (EQ 4-7) is based on 

the Newton-Raphson method described in Chapter 2, Section 2.2.2.

After the linearisation of (EQ 4-1)we obtain the following set of equations:

( k) (k)
J  (x  ) Ax ~ z - g ( x  ) + r  (EQ 4-8)

where:

(&) ITlXtl (̂ )
J  (x ) g  R - Jacobian matrix evaluated at x  

r - vector of residuals (an estimate of go) 

k=0,l,... - step of the estimation process 

Equations (EQ 4-6) and (EQ 4-7) can be therefore expressed as

min E 2(Ax ) ( A z - / ( £ ( }) Ajc) W {A z - J ( x ^ )  Ax ) (EQ4-9)
Ax

and

min E,  (A t) = w T\a z - J ( x ( ^)Ax| (EQ4-10)
A x

As it was explained in Chapter 2, because the measurement equations (EQ4-1) are 

nonlinear, the solution to (EQ4-6) or (EQ4-7) is an iterative process with the 

consecutive state estimates calculated by under-relaxation of the linear solution

(*+i) (*) (k)
x = x  + yAx , k=0,l,... (EQ 4-11)
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If all elements of Ax  in k-th iteration are lower or equal to a predefined convergence

accuracy, the iteration procedure stops. Otherwise, a new correction vector is calculated

(Jfc+l) (*)
using equation (EQ4-8) with x  instead of x  and minimizing a criterion

function.

As we can see from the above formulation the problem of state estimation in water 

distribution systems has been defined as the process of iterative solving of the 

overdetermined system of linear equations (EQ 4-8) with respect to some optimality 

criteria. In this work this overdetermined system of linear equations is solved via the 

feedback neural networks that are discussed in the following sections.

4.3. ANNs for solving systems of linear equations

4.3.1. General method description

For the sake of readability and clarity of further derivations let us rewrite the linearised 

network equation (EQ 4-8) in the following form

A Ax  = b + r (EQ 4-12)
(k) (k)

where A = J  (x  ) and b = z - g  (x  ) .

Cichocki and Unbehauen in (Cichocki & Unbehauen, 1992a) proposed a three step 

scheme of obtaining a neural network for solving systems of linear equations. The key 

step is to construct an appropriate computational energy function E  so that the lowest 

energy state will correspond to the desired optimal solution. Next by employing a general 

gradient approach for minimization of a function, the minimization problem is 

transformed into a set of ordinary differential or difference equations. And finally, on the 

basis of these differential or difference equations ANN architectures, with appropriate 

synaptic weights and nonlinear activation functions, are designed. This scheme will be 

used for constructing practically all neural networks presented in the following sections.

The minimization problems described by (EQ 4-9) and (EQ 4-10) can be generalised as 

follows:

m

min E ( A x )  = X  r̂ i (Aj0 3 (EQ4-13)
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where:

E  is a general cost (energy) function 

Tr. (Ax) = <*. Ax -  b{ is the z-th element of the vector of residuals 

a i [r.] represents a suitably chosen convex functions.

2In a special case when (r.) = w -r ./2  we obtain the standard weighted least-

squares criterion (EQ 4-9) and for a . (z\) = w.|r.| we have the weighted least absolute

values criterion (EQ 4-10).

The minimization of the energy function described by (EQ 4-13) by standard gradient 

descent method leads to the following system of nonlinear differential equations written 

in the matrix form

//Ax T
= -\L (t) VE  (Ax) = (r (A x)) (EQ 4-14)

where p (f) = [ |X . .  (f) ] is nxn positive-definite matrix that is often diagonal 

p , ( r )  = diag ( p . p  \i2, ..., |Xm )  and VE  (Ax) is a gradient of the energy function 

E (Ax)  .In  general the entries of the matrix j l l  (t) depend on the time and the vector A x.

The system of equations (EQ 4-14) can be written in the following scalar form

dAx-
dt jp yL au

p -  1 M  =  1

f t

\

X  aik&xk - b l 
\k=  1

(EQ 4-15)

where

9 a ; (r.)
/,(r,.(A  x ))  =

is an activation function dependant on the type of o . ( r .) and for instance:

(EQ 4-16)

• fo ra , (r.) = w.r. / 2  we have/ . (r. (A x )) = w.r. (Ax) - linear activation function

• for a . (r.) = w.|r-| we have / .  (r- (A x )) = sign [wiri (Ax) ] - signum activation 

function.

The system of differential equations (EQ4-15) can be implemented directly by an 

artificial neural network depicted at Figure 4-1.
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riWf  ----
— '■ZjCj & ------  — 1 ^-

Ax

Ax.
r2{x\ Ax,

Ax,
Ax,

Figure 4-1: Neural network for solving systems of linear equations.

The circuit consists of three layers of artificial neurons and is an example of feedback

neural network with connection weights set to represent the system of overdetermined

linear equations and appropriate energy function to be minimized rather than adjusted

according to some learning algorithm via the process of presenting a sequence of training

vectors. These connection weights denoted by and \f-p represent the coefficients of

the matrices A and p.. The weights can be fixed or time-variable depending on the entries

of the matrices A and jx. Note that matrix A representing the Jacobian matrix and vector 
(*)b -  z - g ( x  ) change in every step of Newton-Raphson method and therefore 

appropriate connection weights in ANN have to be set accordingly. Although in most of 

the networks presented below the matrix JI is diagonal with constant coefficients set at the 

beginning of simulation it will be shown in Section 4.3.4 that adaptive selection of 

ji j  (?) can greatly increase the convergence rate.

However, the specific choice of the coefficients j\i. (?) must ensure the stability of the 

differential equations and an appropriate convergence speed to the stationary solution
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state. It is easy to prove that the system of differential equations (EQ 4-15) is stable (i.e. 

it has always a stable asymptotic solution) since

dE v 1 dE d&Xj 7/ d A x \
:dt = £ § a 7 l f =  (V £ (A x ) ) ’I - * )

7 = 1
(EQ 4-17)

= - (V E (A x ))  |i ( f )  V £(A x) < 0  

when the matrix ji (?) is positive-definite for all values of Ax and t.

The neural network from Figure 4-1 has been implemented in MATLAB and 

SIMULINK in more compact form using vector and matrix notations and is depicted in 

Figure 4-2.
first (input) layer second third (output) layer

layer

dAx/dtA’f(r)
Matrix

Activation
function

Sum Integrator Output Axatrix A’

Vector b Stop
Residuals

Stop Scope Ax

Figure 4-2: ANN for solving a system of linear equations (EQ 4-12) based on the 
system of differential equations (EQ 4-14) with optional activation functions 

(implementation in MATLAB and SIMULINK)

On the basis of the above implementation let us explain in a few words the functions of 

each of three layers.

The first layer senses actual variables Ajc . (r) and computes the actual errors e( (Ax)

(  n \

e (Ax) = / X  aikAx
Vjfc= 1

i = 1, 2, ..., m (EQ 4-18)

5s (A x )
The second layer estimate the gradient components —

de (Ax) 
dAx„ = ' L a i„ei (  A*) p =  1,2 n

i = 1
(EQ 4-19)
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m /
f  n ) \

\ (k+1)  A (k) (&) A V  Axj = Axj - p .. At 2 ,  a,.. fi ^  a . A x ^  -  b.X-J ip p i
i = 1 V ^p  — l )

The third layer comprises “response elements'* and constitutes the proper learning 

system (when p. changes during the simulation).

dtsxj (8e(A*n 
*  . AxJ ( O ) = A x j 0) , j  = (EQ4-20)

So far it has been implicitly assumed (via the fact that the differential equations have 

been used) that the implementation of the ANN is continuous-time but it can be shown 

that by applying the standard first-order discretization technique (Euler integration rule) 

to the system of differential equations (EQ 4-15) (with matrix p  diagonal), this system 

can be converted to the difference equations

(EQ 4-21)

with (0) = Axj°^ , j  = 1, 2,

(k)It should be noted that for discrete-time algorithms the controlling parameter p̂ . At

(k)must be bounded in a small range ( 0 < p /  At< \ imaxAt) to assure stability of the

(k)algorithms. However, a small p . At means that the convergence to a solution is slow, 

(k)while a large p̂ . At  means that oscillations may occur and stability may be lost. Such

an effect occurred for the ANN’s C implementations using the systems of difference 

equations. On the other hand, for continuous-time algorithms (simulated using more 

sophisticated integration methods i.e. Gear method provided with MATLAB software 

package) the parameters p  ■ > 0 can be set to a theoretically arbitrarily large value without 

affecting the stability of the system.

4.3.2. Iteratively reweighted least squares criterion

In the presence of outliers or wild noise in the observation vector b (and effectively in 

vector of measurements z), the standard least squares criterion can provide very poor, 

biased estimates. In order to reduce the influence of the outliers we will employ the non­

quadratic criterions, which approximate to a standard LS criteria when all the data are 

good. This approach is also known as the iteratively reweighted least squares criterion

51



Chapter 4  - 4 .3 .A N N sfor so lving system s o f  linear equations

(Bargiela, 1995; Cichocki & Bargiela, 1997; Cichocki & Unbehauen, 1992a; Gabrys & 

Bargiela, 1995;Hampel et a l, 1987;Huber, 1981; Merill & Schweppe, 1971).

Three types of non-quadratic functions, to be put in place of G- [ r f] in (EQ 4-13),have

been used: logistic function, Huber’s function and Talvar’s function. They were chosen 

because of their robust behaviour in the presence of outliers. Their mathematical forms 

are as follows:

a) Logistic function

p
a ; ( r >) = °z .(r;) = a * « (c o sh (a  r,.))

b) Talvar’s function

(EQ 4-22)

('•,•) = M r/)

c) Huber’s function

r - / 2  for |r.| < (3 

p2/ 2  for |r (.j > p
(EQ 4-23)

2rf / 2 for n  *  p
(EQ 4-24)

P | r . | - ( P / 2) for |r.| > p

Now using equation (EQ 4-16) we can calculate appropriate activation functions to be 

used in the first layer of the ANN. These activation functions are represented by the 

following mathematical formulas:

a) Sigmoid activation function

3gl ( r .) d(I\ ln  ( cosh ( a r . ) ) )

d r i

b) Talvar’s activation function

3 a r (r.)

c) Huber’s activation function

dr- ptanh ( a r  ) (EQ 4-25)

r. (x) for |r-| < p

0 otherwise
(EQ 4-26)

M ri) dr.

- p for

CCL !V

r f x ) for

CO.
VI

■ P for r i > p

(EQ 4-27)
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The graphical representations of these functions are shown in Figure 4-3.
a)

a  =  0.5

a  = 0.2

•0.4

a  =  1 0 0

■26

r

c)

■0.2

-0.6

•0.6 0■2 1.6 2

b)

•0,2

•0.4

•0.8

•2 ■0.5 0 1 1.6 2

Figure 4-3: Activation functions with 
p = i

a)Sigmoid function
b)Talvar’s function
c) Huber's function

The use of nonlinear activation functions in the first layer of “neurons” is essential for 

overdetermined linear systems of equations since it enables us to obtain more robust 

solutions, which are less sensitive to outliers in comparison to the standard linear 

implementation. The sigmoid and Huber’s activation functions prevent large absolute 

values of residuals from being greater than prescribed cut-off parameter p > 0. The 

Talvar’s activation function provides that all equations (from the system described by 

(EQ4-12)) with large absolute values of residuals above the cut-off parameter p are 

neglected and they have no influence on the final solution.

Another useful property of the sigmoid activation function is that if the cut-off 

parameter p is chosen large with a  = 1 /  P , then we will come close to the standard least
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squares criterion, but taking p = 1 and a  large gives something similar to the LAV 

criterion, where the sum of the absolute values of the residuals is minimized since then 

the activation function given by (EQ 4-25) closely approximates the signum function.

4.3.3. Augmented lagrangian with regularization

The above proposed schemes and structures are suitable for well-conditioned problems. 

However, for ill-conditioned problems such schemes may be prohibitively slow and they 

may even find a solution with large error. For the purpose of improving the convergence 

properties and the accuracy of the desired networks we can use the following energy 

function (augmented Lagrangian function) for the problem (EQ 4-12):

E (A x )  = y T ( A x ) K r ( A x )  + XTr{Ax)  - \ ^ X  (EQ4-28)

m m

E ( A  x)  = \£  k r f  (Ax)  +  2  ( ty i (A * )  (E Q 4-29)
1 =  1 1 = 1

where:

r(Ax)=AAx-b - the residuals 

X - the Lagrange multipliers

K = diag (kv k2, ..., km) - the weighting penalty coefficients (0 < k t < 1)

cp > 0 - the regularization parameter

The augmented Lagrangian is obtained from the ordinary Lagrangian by adding penalty 

terms (Bertsekas, 1982). Since an augmented Lagrangian can be ill-conditioned a

regularization term with coefficient (p is introduced to eliminate the instabilities

associated with the penalty terms. The problem of the minimization of the above defined 

energy function can be expressed as:

a) a set of differential equations

m
dAx.

- J T  = -H;  X  (V ;  ( +  V  (EQ 4-30)
i = 1

dX,
- j t = p,.(r,.(Ax) (EQ4-31)
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with i= l ,2,...,n; j - l ,2,...,m; \ij > 0 ; p?- > 0

b) a set of difference equations

m

(EQ 4-32)

(EQ 4-33)

or presented in the compact form:

dAx t

where: y

(EQ 4-34)

(EQ 4-35)

p — diag (P p  p 2> •••? Pn) 

p = diag (pp  p2, pm) 

cp > 0

The sets of differential equations (EQ 4-34) and (EQ 4-35) has been implemented in the 

form of ANN depicted in Figure 4-4.

We can see that the structure of this network is very similar to the one shown in 

Figure 4-2. The only difference to be noticed is the presence of subnetwork, representing 

the Lagrangian elements from the energy function, in place of activation functions. It has 

to be said, however, that various activation functions can be used within this structure in 

the way they were used in the ANN from Figure 4-2.

4.3.4. Artificial neural network with time processing independent of the 
size of the problem

In some real time applications it is required to assure that the specified energy function 

E(Ax) reaches the minimum at a prescribed finite period of time, say tr , or that E(Ax)

become close to the minimum with a specified error 6 > 0 (where 5 is an arbitrarily 

chosen positive very small number). Such a problem can be solved by making the
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a)

Matrix Ax
Output

1/s
Sum Integrator-MiMatrix A’

Aug. lag. 
module

Vector b

Stop

StopResiduals Scope

b)

Ro 1/s
Residual r Sum1 k*r+lambdaSum2 IntegratorRo

:aJf£«J
phi

Figure 4-4: a) ANN architecture for solving the system of the linear equations (EQ 4-12) 
based on the system of the differential equations (EQ 4-34), (EQ 4-35) (implementation 

in MATLAB and SIMULINK); b) Aug. Lag. module-subsystem of a)

coefficients |ij (/) adaptive during the minimization process, under the assumption that

the initial value E  ( Ax(0)) and the minimum (final) value of E(Ax*) of the energy 

function E(Ax(t)) are known or can be estimated (Cichocki & Unbehauen, 1992a).

Let us consider the problem (EQ4-12), which can be mapped to the system of 

differential equations

dAx
dt = - l x 0 (/)A ( A A x - b )  

where the adaptive parameter jiQ (/) can be defined as

(EQ 4-36)

M'O ( 0  —

^ 0  max 

T T
r AA r

for E(Ajc ( t ))  = 0 

otherwise
(EQ 4-37)
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Note that for this problem E (A x (0)) = ^ X  and E(Ax*)=0. The time derivative of
1=1

the energy function associated with the system of differential equations (EQ 4-36) is:

dE v 1 dE ( __ t ( dAx']
*  = 2 3 A 7 . 1 V J  = [ V £ ( A * ) ) ]  ( ^ r J  (EQ 4-38)

1 = 1

T j  dAx
= -Ji0 (r) r AA r = -(J, < 0 for & 0

dE _ dAx
a  ~dt = 0 only f o r = 0 .

It follows that the energy function decreases in time linearly during the minimization 

process as:

E{ Ax)  = E  (Ax(0)) -  ji t  (EQ 4-39)

and reaches the value 6 - 0  after the time

( 0) .E ( A x K - 6  __ i = i
\i “ p,tr = — -̂--- 77^   = - L=-Lrt  (EQ  4-40)

By choosing p = E ( A x ^ )  / t max we find that the system of equations (E Q 4 -3 6 ) 

reaches the stationary point in the prescribed time tr = tmax independent of the size of the 

problem. The suitable network has been implemented and is depicted in Figure 4-5.

u1/u2 ; »Matrix A
Sum Matrix A’ Integrator Outputdivider

Stop
Vector b

fAA’r Limiter Stop

Residuals

Scope

Figure 4-5: ANN providing a linearly decreasing in time energy function giving a 
predetermined speed of convergence (implementation in MATLAB and SIMULINK)
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4.3.5. Neural network model by using inhibition principle

Inhibition plays an important self-regulatory control function in many artificial neural 

networks mainly for various decision making and selection tasks. In general, the function 

of the inhibition subnetwork is to suppress some signals (e.g. the strongest signals) while 

allowing the other signals to be transmitted for further processing.

The inhibition principle has been also heavily exploited in the water systems state 

estimation procedures (Hartley, 1996; Powell et al., 1988). However, the algorithms used 

by Hartley and Powell are based on iteratively re-weighting the equations with large 

residuals. New weights are inversely proportional to the current values of residuals. This 

scheme (i.e. find LS solution, identify large residuals, re-weight accordingly to the 

residual values, find LS solution etc.) tends to be slowly convergent. By convergence in 

this case we understand the instance when all equations with large residuals have been 

sufficiently suppressed so that they do not influence the final solution.

In this work the application of this method has been expanded to neural state estimation 

(Gabrys & Bargiela, 1995) and carried one step further. The basic idea is that after finding 

the standard LS estimates x , instead of using slow process of re-weighting we can 

compute all residuals r. (x) (i=l,2,...,m) and select from them the I largest residuals that

correspond to the largest measurement errors in the observed vector b and suppress them 

completely the moment they have been identified. The number I depends on the rejecting 

criterion and for instance when we want to obtain the LAV estimates the m-n equations 

corresponding to the m-n largest residuals have to be suppressed (rejected). On the other 

hand one may use the rejecting criterion stating that all equations corresponding to the 

residuals |r. (x) -  r (x) | > 3 a  (where a  is a standard deviation, and r (x) is the average

value of residuals calculate for x ) should be rejected.

Example o f LAV estimation using an ANN incorporating the inhibition principle.

The computation occurs in two phases. Suitable ANNs for carrying the first and second 

phase of calculations are depicted in Figure 4-6 and Figure 4-7 respectively. In the first 

phase all values of St = 1 (i=l,2,...,m) (closed switches) and the network computes the

least-squares solution x of the problem (EQ4-12) and the associated residuals r. (x)

(i=l,2,...,m). At the same time the suitable subnetwork (SI in the Figure4-6b) selects
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continuously in time the m-n largest (in absolute value) residuals r. (x) from the set of 

m residuals r. (x )  . In the second phase of computation the m-n (found in the first phase) 

largest residuals are inhibited by setting corresponding 5̂ . to zero (opening corresponding 

switches), while allowing smallest residuals to be further processed in the network. Thus 

in the second phase of computation only n equations are selected for which the residuals

are minimized to zero while the rest of the equations is discarded,
a)

Matrix K>
-M i

1 / s
Sum Integrator OutputMatrix

Vector b
Outputl Stop

ScopeStopResiduals

b)

in 1
Abs
Abs r Sum1

1/s
Integrator!

0
0

Ro

Switc I out 1
Sum3

Sum2
n-
rn-n

Figure 4-6: a) ANN to compute the first phase of solving least-absolute norm problem 
using the inhibit principle, b) S1 subnetwork selecting the (m-n) largest (in absolute

value) residuals

s > — ►Matrix 1/s
Sum Integrator OutputMatrix -M i

Vector b

Stop
ScopeStopResiduals

Figure 4-7: ANN to compute the second phase of solving least-absolute norm problem 
using the inhibit principle (where vector S=S1 and S1 found in the first phase)
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4.4. Computational results

The neural networks presented in this chapter have been first tested for many simple 

examples. The performance statistics like times of simulation, estimated times of 

convergence assuming the hardware implementation, etc. and all values of parameters 

used while simulating the ANNs for several simple examples are included in 

Appendix A.

The performance of the proposed methods for water system state estimation was tested 

on the realistic 34-node network (42 state variables) depicted at the Figure 4-8 (Gabrys 

& Bargiela, 1995).

f ‘“] - fixed-head node
- load node

- load or inflow 
-O -  - parabolic pump

- valve

tU |H -0H 2

Figure 4-8: 34 - node water network

A complete definition of network parameters are contained in (Sterling & Bargiela, 

1984). In order to achieve sufficient measurements redundancy (defined as a ratio of the 

number of measurements and pseudomeasurements to the number of state variables), the
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set of the mass balance equations was augmented by a number of several flow and 

pressure measurements.

Two sets of measurements were processed having redundancy ratios 1.74 and 1.4.

Since the unbiased estimates are the most important feature of state estimators the 

testing examples were devised to include some ‘bad data’. The effect of ‘bad data’ 

measurements was simulated by introduction of systematic gross errors in head and flow 

measurements.

The specification of these errors are given in the following examples.

Example 1:

Introduced gross errors:

head in node 22 = 42.59 [m Aq] (exact value = 46.59 [m Aq])

load in node 8 = -0.025 [m 3/ s  ] (exact value = -0.075 [m 3/ s  ])

Example 2:

Introduced gross errors:

head in node 22 = 42.59 [m Aq] (exact value = 46.59 [m Aq])

head in node 29 = 35.70 [m Aq] (exact value = 31.70 [m Aq])

head in node 30 = 48.58 [m Aq] (exact value = 43.58 [m Aq])

load in node 8 = -0.025 [m 3/ s ]  (exact value = -0.075 [m3/s' \)

Table 4-1 and Table 4-2 show the state estimates calculated for redundancy ratios 1.74 

and 1.4 respectively. The corresponding state estimation errors are shown in Table 4-3 

and Table 4-2. The ANN used to obtain these results is the one from Figure 4-2 with 

sigmoid activation function. The LS and LAV estimates were obtained by changing the 

a  and p parameters of sigmoid activation function. The state vector shown in column 2 

of Table 4-1 and Table 4-2 is the state vector obtained by exact network simulation and 

is referred to as a vector of reference values. State estimates of LS and LAV methods 

calculated for data not including gross errors are presented in column 3 and 4 of Table 4-1 

and Table 4-2 respectively. State estimates calculated for data including gross errors are 

presented in columns 5, 6,7  and 8.
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b)a) 32 .607

J  n t n
LS (ex.2)LS (ex .l)

Number of iteration

d)
32.68

E
1
.1

LAV (ex .!) LAV (ex.2)

32 .6  V. . , . . , . , , ,  32 .6  V ............................................................................................................
0  ' 5 * 5 0  1 * 1 ‘ 5Number of iteration u Number of iteration

Figure 4-9: Estimates of the head in the node 1 (x1) using: a) LS
estimator for example 1, b) LS estimator for example 2, c) LAV 

estimator for example 1, d) LAV estimator for example 2

b)

LS (ex.2)

Number of iteration

d)

a)

?  «2i LS (ex .l)

42.1

Number o f iteration

LAV (ex.2)
LAV (ex .l)

42.1

Number o f iteration

Figure 4-10: Estimates of the head in the node 8 (x8) using: a) LS 
estimator for example 1, b) LS estimator for example 2, c) LAV 

estimator for example 1, d) LAV estimator for example 2

LAV (Least Absolute Values) method.

Table 4-1 (columns 6 and 8) shows the results of examples in which higher 

measurement redundancy has been used. Table 4-2 (columns 6 and 8) shows the 

corresponding results for lower measurement redundancy. Comparison of these results

6 2



Chapter 4  - 4.4. Com putational results

indicates that a smaller number of equations (measurements) was sufficient for accurate 

estimation with a specific pattern of measurements considered. However, an increased 

number of measurements contributes mainly to an improved reliability of the estimation 

and ensures the rejection of a larger spectrum of errors. In conclusion, the LAV problem 

solution is median solution and passes through at least n (n - number of state variables) 

of the m data points (measurements). The feature of producing interpolatory fits that 

closely approximate most of the data while neglecting gross errors is an extremely useful 

property of the LAV criterion. Provided sufficient basic measurements are available, the 

LAV estimator can then act as filter for incoming data.

LS (Least Squares) method.

The ordinary LS problem solution is the mean solution since it tries to satisfy all the 

equations in the set, but usually this solution will not solve exactly any of these equations. 

The results shown in columns 5 and 7 of Table 4-1 and Table 4-2 are a very good example 

of the influence of gross errors on a standard LS state estimation. A measurement 

containing gross error has the biggest effect on estimation of the state variables in the 

node where the error occurred and nodes of the closest vicinity. An increased number of 

measurements, in this case, helps to reduce an influence of gross errors (averaging 

process) but the main cause of using the state estimation methods is insufficient number 

of measurements.

Figure 4-9 and Figure 4-10 illustrate the convergence of the estimation process 

(variables xl and x8 respectively) for the LS and LAV estimators.

All simulations have been carried out on Sun Workstation using SIMULINK (Dynamic 

System Simulation Software) and MATLAB (High-Performance Numeric Computation 

and Visualization Software) programs. The corresponding lapsed times for these 

simulations were of order of hundreds of seconds. Various integration algorithms have 

been used for many different values of the parameters y, a ,  P and p .  The results

presented in Table4-1 and Table4-2 have been obtained for y~0.6, p  = le 6 , Gear 

integration algorithm. Parameters a  and P have been set as follows: a  =0.1, p =10 for 

LS and a  =500, p = l for LAV estimators.
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State
variable

Exact val­
ue LS LAV LS (Ex.l) LAV

(Ex.l) LS (Ex.2) LAV
(Ex.2)

1 32.638 32.658 32.661 327552“ ....'52.661" 35.63d 32.666
2 43.749 43.756 43.759 43.460 43.757 43.507 43.757
3 46.041 46.058 46.042 45.547 46.042 45.700 46.042
4 46.618 46.645 46.622 46.133 46.622 46.342 46.622
5 43.265 43.267 43.271 43.160 43.269 43.369 43.270
6 43.024 42.980 42.971 43.129 42.988 43.654 42.990
7 42.402 42.384 42.371 42.860 42.400 43.260 42.401
8 42.130 42.108 42.097 42.871 42.140 43.361 42.142
9 43.798 43.789 43.783 43.604 43.780 44.157 43.781
10 47.950 47.943 47.948 47.879 47.947 47.931 47.948
11 44.664 44.677 44.670 44.329 44.669 44.745 | 44.670
12 44.004 44.020 44.014 43.762 44.001 44.288 44.003
13 49.274 49.298 49.300 49.206 49.300 49.484 49.301
14 49.099 49.095 49.098 49.086 49.098 49.119 49.098
15 49.057 49.052 49.054 49.047 49.054 49.066 49.054
16 49.298 49.319 49.321 49.212 49.321 49.545 49.322
17 47.970 47.965 47.968 47.878 47.968 48.010 47.969
18 49.338 49.341 49.342 49.218 49.342 49.599 49.344
19 49.029 49.040 49.038 48.818 49.037 49.107 49.038
20 46.618 46.645 46.622 46.135 46.622 46.352 46.622
21 45.623 45.645 45.631 45.249 45.629 45.580 45.630
22 46.588 46.614 46.592 46.131 46.589 46.355 46.589
23 48.379 48.386 48.380 48.087 48.378 48.348 48.379
24 43.249 43.231 43.224 43.186 43.233 43.760 43.236
25 42.532 42.499 42.488 42.964 42.519 43.472 42.522
26 32.086 32.098 32.101 32.091 32.101 33.149 32.107
27 -15.233 -15.196 -15.196 -15.173 -15.196 -15.201 -15.196
28 -33.521 -33.499 -33.500 -33.487 -33.500 -33.482 -33.500
29 31.692 31.699 31.702 31.670 31.702 32.680 31.707
30 43.582 43.607 43.601 43.436 43.600 43.980 43.603
31 44.188 44.199 44.198 43.753 44.197 43.783 44.197
32 -45.710 -45.750 -45.721 -45.877 -45.721 -45.912 -45.721
33 -36.572 -36.582 -36.581 -36.566 -36.581 -36.299 -36.580
34 -12.184 -12.197 -12.197 -12.162 -12.197 -11.665 -12.192
35 0.0723 0.0722 0.0723 0.0722 0.0723 0.0714 0.0723
36 0.0927 0.0925 0.0926 0.0897 0.0926 0.0886 0.0926
37 -0.0229 -0.0229 -0.0229 -0.0225 -0.0229 -0.0168 -0.0229
38 -0.0519 -0.0523 -0.0522 -0.0554 -0.0523 -0.0514 -0.0522
39. -0.0391 -0.0392 -0.0390 -0.0393 -0.0390 -0.0411 -0.0390
40 0.0254 0.0261 0.0254 0.0252 0.0254 0.0243 0.0254
41 0.0614 0.0614 0.0614 0.0616 0.0614 0.0635 0.0614
42 0.1061 0.1063 0.1063 0.1067 0.1063 0.1039 0.1063

Table 4-1: 34-node-system state estimates (73 equations; redundancy ratio=1.74) 
1-34: nodal heads (m Aq) at nodes 1-34;

335-42: fixed-head nodes in/out flows ( m / s ) at nodes 27-34 
LS - least squares method; LAV - least absolute values method
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State
Variable

Exact val­
ue LS LAV LS (Ex.l) LAV

(Ex.l) LS (Ex.2) LAV
(Ex.2)

1 32.638 32.662 52.661 35.607 32.665 33.697 32.673
2 43.749 43.750 43.756 43.326 43.756 43.823 43.758
3 46.041 46.069 46.052 45.273 46.052 45.811 46.073
4 46.618 46.656 46.637 45.859 46.635 46.468 46.662
5 43.265 43.250 43.263 43.096 43.263 43.820 43.269
6 43.024 42.971 42.976 43.068 42.978 44.150 43.000
7 42.402 42.363 42.380 42.853 42.391 43.829 42.393
8 42.130 42.094 42.106 42.854 42.130 43.907 42.131
9 43.798 43.789 43.786 43.470 43.780 44.638 43.815
10 47.950 47.943 47.944 47.725 47.946 48.048 47.947
11 44.664 44.681 44.672 44.165 44.670 45.010 44.671
12 44.004 44.022 44.016 43.619 44.007 44.658 44.039
13 49.274 49.306 49.303 49.016 49.306 49.703 49.315
14 49.099 49.098 49.095 48.932 49.096 49.271 49.097
15 49.057 49.055 49.052 48.897 49.050 49.214 49.050
16 49.298 49.327 49.324 49.022 49.327 49.734 49.337
17 47.970 47.967 47.967 47.719 47.969 48.148 47.970
18 49.338 49.349 49.346 49.029 49.348 49.767 49.358
19 49.029 49.049 49.044 48.591 49.046 49.248 49.058
20 46.618 46.656 46.637 45.863 46.635 46.484 46.661
21 45.623 45.652 45.640 45.028 45.637 45.804 45.663
22 46.588 46.624 46.607 45.863 46.606 46.499 46.632
23 48.379 48.396 48.388 47.843 48.389 48.488 48.405
24 43.249 43.225 43.227 43.115 43.223 44.245 43.253
25 42.532 42.487 42.497 42.933 42.509 44.005 42.520
26 32.086 32.103 32.101 32.016 32.105 33.230 32.115
27 -15.233 -15.197 -15.197 -15.145 -15.197 -15.231 -15.198
28 -33.521 -33.500 -33.499 -33.479 -33.500 -33.474 -33.500
29 31.692 31.704 31.702 31.570 31.706 32.778 31.717
30 43.582 43.606 43.603 43.315 43.590 44.392 43.629
31 44.188 44.206 44.198 43.527 44.201 43.910 44.201
32 -45.710 -45.747 -45.725 -45.929 -45.721 -45.951 -45.721
33 -36.572 -36.582 -36.581 -36.560 -36.581 -36.298 -36.580
34 -12.184 -12.196 -12.193 -12.145 -12.198 -11.659 -12.191
35 0.0723 0.0722 0.0723 0.0719 0.0723 - 0.0716 0.0723
36 0.0927 0.0925 0.0925 0.0886 0.0926 0.0874 0,0927
37 -0.0229 -0.0229 -0.0229 -0.0223 -0.0229 -0.0170 -0.0229
38 -0.0519 -0.0523 -0.0523 -0.0554 -0.0524 -0.0510 -0.0522
39 -0.0391 -0.0392 -0.0391 -0.0394 -0.0391 -0.0427 -0.0393
40 0.0254 0.0261 0.0257 0.0249 0.0254 0.0235 0.0254
41 0.0614 0.0614 0.0614 0.0619 0.0614 0.0633 0.0614
42 0.1061 0.1063 0.1063 0.1073 0.1063 0.1033 0.1062

Table 4-2: 34-node-system state estimates (59 equations; redundancy ratio 1.4) 
1-34: nodal heads (m Aq) at nodes 1-34;

35-42: fixed-head nodes in/out flows ( m3/ s )  at nodes 27-34 
LS - least squares method; LAV - least absolute values method
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State
variable

Exact val­
ue

State estimation errors

LS LAV LS (Ex.l) LAV
(Ex.l) LS (Ex.2) LAV

(Ex.2)
1 32T38'.... 0.020 0.023 0.024 O.023 0.992 O.O28
2 43.749 0.007 0.010 -0.289 0.008 -0.242 0.008
3 46.041 0.017 0.001 -0.494 0.001 -0.341 0.001
4 46.618 0.027 0.004 -0.485 0.004 -0.276 0.004
5 43.265 0.002 0.006 -0.105 0.004 0.104 0.005
6 43.024 -0.044 -0.053 0.105 -0.036 0.630 -0.034
7 42.402 -0.017 -0.031 0.458 -0.002 0.858 -0.001
8 42.130 -0.021 -0.033 0.741 0.010 1.231 0.012
9 43.798 -0.009 -0.015 -0.194 -0.017 0.359 -0.017
10 47.950 -0.007 -0.002 -0.071 -0.003 -0.019 -0.002
11 44.664 0.013 0.006 -0.335 0.005 0.081 0.006
12 44.004 0.016 0.010 -0.241 -0.003 0.284 -0.001
13 49.274 0.024 0.026 -0.068 0.026 0.210 0.027
14 49.099 -0.004 -0.001 -0.013 -0.001 0.020 -0.001
15 49.057 -0.005 -0.003 -0.010 -0.003 0.009 -0.003
16 49.298 0.021 0.023 -0.086 0.023 0.247 0.024
17 47.970 -0.005 -0.002 -0.092 -0.002 0.040 -0.001
18 49.338 0.003 0.004 -0.120 0.004 0.261 0.006
19 49.029 0.011 0.009 -0.211 0.008 0.078 0.009
20 46.618 0.027 0.004 -0.483 0.004 -0.266 0.004
21 45.623 0.022 0.008 -0.373 0.006 -0.043 0.007
22 46.588 0.026 0.004 -0.457 0.001 -0.232 0.001
23 48.379 0.007 0.001 -0.292 -0.001 -0.031 0.000
24 43.249 -0.018 -0.025 -0.063 -0.016 0.511 -0.013
25 42.532 -0.033 -0.043 0.432 -0.013 0.940 -0.010
26 32.086 0.012 0.015 0.005 0.015 1.063 0.021
27 -15.233 0.037 0.037 0.060 0.037 0.032 0.037
28 -33.521 0.022 0.021 0.034 0.021 0.039 0.021
29 31.692 0.007 0.010 -0.022 0.010 0.988 0.015
30 43.582 0.025 0.019 -0.146 0.018 0.398 0.021
31 44.188 0.011 0.010 -0.434 0.009 -0.405 0.009
32 -45.710 -0.040 -0.011 -0.167 -0.011 -0.202 -0.011
33 -36.572 -0.010 -0.009 0.006 -0.009 0.273 -0.008
34 -12.184 -0.013 -0.013 0.022 -0.013 0.519 -0.008
35 0.0723 -0.0001 0 -0.0001 0 -0.0009 0
36 0.0927 -0.0002 -0.0001 -0.0030 -0.0001 -0.0041 -0.0001
37 -0.0229 0 0 0.0004 0 0.0061 0
38 -0.0519 -0.0004 -0.0003 -0.0035 -0.0004 0.0005 -0.0003
39 -0.0391 -0.0001 0.0001 -0.0002 0.0001 -0.0020 0.0001
40 0.0254 0.0007 0.0000 -0.0002 0.0000 -0.0011 0.0000
41 0.0614 0 0 0.0002 0 0.0021 0
42 0.1061 0.0002 0.0002 0.0006 0.0002 -0.0022 0.0002

Table 4-3: 34-node-system state estimation errors for the state estimates shown in 
Table 4-1(73 equations; redundancy ratio=1.74)

1-34: nodal heads (m Aq) at nodes 1-34; 35-42: fixed-head nodes in/out flows (m3/s ) at nodes 
27-34; LS - least squares method; LAV - least absolute values method
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State
Variable

Exact val­
ue

State estimation errors

LS LAV LS (Ex.l) LAV
(Ex.l) LS (Ex.2) LAV

(Ex.2)
i ~ J T b W ~ " M  ■.... -0.031 “ 0.025 ~ n m — 0.035
2 43.749 0.001 0.007 -0.423 0.007 0.074 0.009
3 46.041 0.028 0.011 -0.768 0.011 -0.230 0.032
4 46.618 0.038 0.019 -0.759 0.017 -0.150 0.044
5 43.265 -0.015 -0.002 -0.169 -0.002 0.555 0.004
6 43.024 -0.053 -0.048 0.044 -0.046 1.126 -0.024
7 42.402 -0.039 -0.021 0.451 -0.011 1.427 -0.009
8 42.130 -0.035 -0.024 0.724 0.000 1.777 0.001
9 43.798 -0.009 -0.012 -0.328 -0.018 0.840 0.017
10 47.950 -0.007 -0.006 -0.225 -0.003 0.098 -0.003
11 44.664 0.017 0.008 -0.499 0.006 0.346 0.007
12 44.004 0.018 0.012 -0.385 0.003 0.654 0.035
13 49.274 0.032 0.029 -0.258 0.032 0.429 0.041
14 49.099 -0.001 -0.004 -0.166 -0.003 0.172 -0.001
15 49.057 -0.002 -0.005 -0.160 -0.006 0.157 -0.006
16 49.298 0.029 0.026 -0.275 0.029 0.436 0.039
17 47.970 -0.002 -0.003 -0.251 -0.001 0.178 0.000
18 49.338 0.011 0.008 -0.309 0.010 0.429 0.020
19 49.029 0.020 0.015 -0.437 0.017 0.219 0.029
20 46.618 0.038 0.019 -0.755 0.017 -0.134 0.043
21 45.623 0.029 0.017 -0.595 0.014 0.181 0.040
22 46.588 0.036 0.019 -0.725 0.018 -0.088 0.044
23 48.379 0.017 0.009 -0.536 0.010 0.109 0.026
24 43.249 -0.024 -0.022 -0.134 -0.026 0.996 0.004
25 42.532 -0.045 -0.035 0.401 -0.022 1.473 -0.012
26 32.086 0.017 0.015 -0.070 0.019 1.144 0.029
27 -15.233 0.036 0.036 0.088 0.036 0.002 0.035
28 -33.521 0.021 0.022 0.042 0.021 0.047 0.021
29 31.692 0.012 0.010 -0.122 0.014 1.086 0.025
30 43.582 0.024 0.021 -0.267 0.008 0.810 0.047
31 44.188 0.018 0.010 -0.661 0.013 -0.278 0.013
32 -45.710 -0.037 -0.015 -0.219 -0.011 -0.241 -0.011
33 -36.572 -0.010 -0.009 0.012 -0.009 0.274 -0.008
34 -12.184 -0.012 -0.009 0.039 -0.014 0.525 -0.007
35 0.0723 -0.0001 0 -0.0004 0 -0.0007 0
36 0.0927 -0.0002 -0.0002 -0.0041 -0.0001 -0.0053 0
37 -0.0229 0 0 0.0006 0 0.0059 0
38 -0.0519 -0.0004 -0.0004 -0.0035 -0.0005 0.0009 -0.0003
39 -0.0391 -0.0001 0 -0.0003 0 -0.0036 -0.0002
40 0.0254 0.0007 0.0003 -0.0005 0 -0.0019 0
41 0.0614 0 0 0.0005 0 0.0019 0
42 0.1061 0.0002 0.0002 0.0012 0.0002 -0.0028 0.0001

Table 4-4: 34-node-system state estimation errors for the state estimates shown in 
Table 4-2 (59 equations; redundancy ratio 1.4)

1-34: nodal heads (m Aq) at nodes 1-34; 35-42: fixed-head nodes in/out flows (tn / s )  at nodes 
27-34; LS - least squares method; LAV - least absolute values method
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4.5. Concluding remarks

To the author’s knowledge the neural network approach to the state estimation problem 

in water systems has not been reported in the literature before and in this sense it is an 

original contribution of this work. The resulting algorithms are the mixture of the well 

known and tested ways of solving systems of nonlinear equations (the Newton-Raphson 

method), the optimization criterions (the LS, LAV and their variations) and a relatively 

new ANN technique of finding the solution to the overdetermined systems of linear 

equations.

This chapter presented several neural network’s formulations of the problems that 

traditionally have been solved using techniques like the linear programming or Gauss 

elimination. It has been found, through the simulation study, that neural network based 

state estimators provide an efficient means of water system state estimation. It is 

interesting to notice that all the neural networks discussed in this chapter are very similar 

and can be implemented by one “general purpose” artificial neural network with a 

suitable control subsystem which depending on the requirements will be able to find a 

solution of the system of linear equations according to the desired criterion (LS or LAV 

criterion).

It has been confirmed that while the LS estimates have shown to be strongly affected 

by any change in the measurement vector, the LAV estimates proved to be resistant to 

large changes in the data. This is a very useful property when the known data in the 

measurement vector are contaminated with occasional gross errors.

The main restriction of a VLSI implementation of neural networks is the number of 

connections between the processing units on a chip. It is envisaged that, with the current 

rate of development in microelectronic and optical technology, it will be possible to 

implement an arbitrarily large ANN in the near future. Consequently the state estimation 

process, as discussed in this chapter, will be accomplished in a time of order of hundred 

microseconds.
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Chapter 5

Confidence limit analysis - a neural 

network approach

5.1. Introduction

In the previous chapter the state estimation algorithms that produce optimal state 

estimates for certain distributions of errors were described. It is to say that for a given set 

of measurements the obtained state estimates are close to the true operating state. 

Although for a given set of measurements and estimation criterion there is only one 

optimal solution, due to the inaccuracies of measurements there are many possible, 

different combinations of measurement values. This implies that there are many feasible, 

different state estimate vectors.

Since the uncertainty is inevitable part of water distribution systems it is very 

important, from the safety of the system operational control point of view, to know how 

the inaccuracies can affect the estimated solution or in other words how reliable the state 

estimates are. In the scientific literature the process of assessing the influence of 

perturbations or inaccuracies of mathematical models or measurements is known under 

the names of sensitivity analysis, error propagation, perturbation theory or calculating of 

confidence intervals. In water systems the quantification of the inaccuracy of state 

estimates caused by the input data uncertainty is called confidence limit analysis 

(Bargiela & Hainsworth, 1988).

Some applications, semi-automated or on-line decision support for instance, need a 

confidence limit analysis procedure that can produce uncertainty bounds in real time. 

This is, however, the task requiring much of computational effort. ANNs, considering 

their known properties like massively parallel structure, fault tolerance etc., are seen as a 

means of overcoming the computational complexity.
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In this chapter, after presenting the review of previous research, the ways of utilizing 

the neural networks, discussed in Chapter 4, for the purpose of finding confidence limits 

are given. Then, an integrated neural based system for state estimation and confidence 

limit analysis in water network is presented. This system is tested for a realistic water 

network.

5.2. Review of previous research

Several works have been published which deal with the problems of state estimation 

under measurement uncertainty. Many of these are concerned with the problem of 

uncertainty in utility systems (Bargiela & Hainsworth, 1988; Borkowska, 1974; Dopazo 

et al., 1975; Hainsworth, 1988; Sobierajski, 1979; Stuart & Herget, 1973).

In the previous chapter the deterministic state estimation algorithms were presented 

which find the state that best fits the measurement data. As it was shown this state 

estimation approach relies on statistical or probabilistic assumptions about behaviour of 

the measurement errors. Similar assumptions about the behaviour of measurement errors 

can be used to provide an indication of the reliability or accuracy of these deterministic 

state estimates.

In (Dopazo et al., 1975; Stuart & Herget, 1973) it was shown that assuming the 

statistical properties of measurement errors are known in advance the state covariance 

T -1  “ 1matrix (J  R J ) (where R  is the measurement covariance matrix and J  is the

Jacobian matrix calculated for the optimal state estimates) can be found. The elements on 

the leading diagonal of this state covariance matrix correspond to the variance of each 

state variable and thus they have been suggested as a measure of the accuracy of state 

variables. It can be carried even further since from statistics it is known that, with 99% 

probability, the true value of the variable is contained within the interval enclosed by its 

estimated value ±3 times its standard deviation. This, however, implies the normal 

distribution of errors that, as it was discussed in previous chapter, is very often unrealistic 

assumption.

Other statistical methods, using probability density functions defined for each state 

variable in order to calculate the probability that a given variable is above or below 

certain limit, have also been used (Borkowska, 1974; Sobierajski, 1979). This approach
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requires even more accurate information about the type of distribution of measurement 

errors which, again, is not available in enough detail for water distribution systems.

The most widely used method of assessing the sensitivity of the linear (or linearised) 

system solution is based on the system matrix condition number (Golub & Van Loan, 

1986). The condition number for LS problem is defined as the ratio of the largest and 

smallest singular values of the system matrix. In the case of water networks presented in 

this work this system matrix is Jacobian calculated for the optimal state estimates. If the 

columns of Jacobian matrix are nearly linearly dependent then condition number is large 

and we say that the problem is ill-conditioned. And the ill-conditioned LS problems have 

sensitive solutions. It means that small perturbations in the vector of measurements can 

cause large changes in the solution. In this sense, the condition number gives a measure 

for the quality of the solution for a particular measurement set. However, since only one 

value is provided by this method it cannot be used to produce absolute, tight bounds for 

each individual state variable as is required by confidence limit analysis. In other words 

while the bound obtained using condition matrix method can be justified for some 

perturbations in the measurement vector it will be a gross overestimate for others.

The extensive work on quantification of the influence of measurement and 

pseudomeasurement uncertainties in water distribution systems, called confidence limit 

analysis, has been carried out by Bargiela and Hainsworth (Bargiela & Hainsworth, 1989; 

Hainsworth, 1988). In this work we adopted the following model with unknown-but- 

bounded errors used by Bargiela and Hainsworth:

z  = g ( x )  +co , |co.|<|e.| , i=l,...,m (EQ5-1)

where e is the vector representing the maximum expected measurement errors.

Please notice that the assumption of the unknown-but-bounded errors means that the 

knowledge of statistical properties of errors is not required and the only restriction 

imposed is the one of errors falling within a range bounded by e. However, it also means 

that the data has to be free of gross errors, or in other words the gross errors have to be 

filtered out before using the above model. Since the gross errors are of random and 

unbounded nature the reasonable boundary in e could not be set.

Let us now review several confidence limit analysis algorithms.
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In general, there is no direct, theoretical way of finding the sensitivity of the solution to 

the changes in model parameters in nonlinear systems as the one described by (EQ 5-1). 

The uncertainty in the measurement data means that the measurement vector, instead of 

being single valued, can take any one value of a whole range of feasible states. The basic 

idea is to use the deterministic state estimator repeatedly for a large number of 

measurement vectors chosen from within this range. This approach to the sensitivity 

analysis of nonlinear systems is known as the Monte Carlo method. Each calculated state 

estimates are checked against the maximum and minimum values obtained from previous 

simulations and new maxima are set where appropriate. In this way the error bounds for 

the state variables can be gradually increased until, after many trials, their limits are 

asymptotically reached.

Although the Monte Carlo method is effective in providing realistic state error vectors, 

its computational complexity tends to be a major drawback. Even for a medium-sized 

system the number of feasible measurement vectors is enormous, thus rendering this 

approach impractical for on-line control applications. In view of these limitations, the 

methods based on the linearised model of the system have been used.

In contrast to the nonlinear systems the perturbation theory or sensitivity analysis for 

linear systems has been well documented and researched (Cope & Rust, 1979; Golub & 

Van Loan, 1986). It is due to the fact that linear systems are simpler and there are a lot of 

existing, formal methods used to analyse such systems. Bargiela and Hainsworth 

proposed two alternative methods, to the Monte Carlo method, based on an accurate 

linearisation of the system model.

First of these methods uses the linearised network equations as constraints in a 

mathematical optimization problem and confidence limits are found solving the standard 

linear programming problem. This method produced the acceptable results (the 

linearisation did not significantly affect the values of calculated error bounds) much faster 

than the Monte Carlo method. However it was reported to be not efficient enough for on­

line decision support.

In the second method the linearisation of the system model was used to construct the 

sensitivity matrix. The sensitivity matrix, as given in (Bargiela & Hainsworth, 1989), is 

the inverse of the Jacobian matrix calculated for the state estimates obtained using the 

deterministic state estimator. So in this method first a state estimate is produced on the
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assumption that the measurement vector is correct. Then the possible error of the 

measurement set is considered and it is used, together with the sensitivity matrix, to 

predict the resulting error in the state vector. Due to significantly fewer mathematical 

operations required, this approach proved to be more efficient than previously discussed 

two methods while producing almost identical results as the linear programming method.

In the following sections we will show how to use neural networks presented in the 

previous chapter to obtain confidence limits. All algorithms presented below are based on 

the linearised model of the system. There will also be shown the implications of using 

different estimation criterions while calculating confidence limits and dealing with 

overdetermined systems of equations.

5.3. Neural linearised confidence limit algorithms

The linearised model of the system, as presented in Chapter 2, was written in the 

following mathematical form

J (k) &x{k) = z - g ( x w ) (EQ 5-2)

do
Let h represent the difference z — g (x) and J  = g-j

( k )
. If Jc in equation

X  — X

(EQ 5-2) is replaced by the best estimate of the true state vector, x , for the system, b will 

then represent the difference between the measured vector and the values of the measured 

variables calculated for x .

With the symbols introduced above the linear equation (EQ 5-2) takes form:

J  Ax  = 6 (EQ 5-3)

It was shown in (Hainsworth, 1988) that for the water systems the linearised model 

(EQ 5-3) can be used while analysing the influence of measurement uncertainties in the 

non-linear model (EQ5-1) and the confidence limits produced using this linearised 

model compare very well with the results obtained from the Monte Carlo method.

So, now it is of interest to see how the solution of the equation (EQ 5-3) is affected by 

perturbation in vector of measurements B (effectively in vector z since g (x)  is constant 

for a fixed state vector). While Hainsworth carried out the confidence limit analysis for 

square systems of equations where as long as the Jacobian matrix is non-singular there is
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only one solution the CLA for overdetermined systems of equations involves the 

optimization criterias. For a square system of linear equations every change in the 

system’s parameters results in changes in the solution. On the other hand, a solution to an 

overdetermined system need not to be affected by changes to some system parameters at 

all or the influence of disturbances is averaged in the process of optimization. However, 

the need to use an optimization criterion makes the CLA more difficult. It will be shown 

now that the sensitivity matrix method resulted from the sensitivity consideration of the 

overdetermined system of linear equations solution according to the ordinary least 

squares criterion and it should not be used directly when the state estimate vector is found 

using LAV or other weighted criteria.

5.3.1. Sensitivity matrix method

If we introduce the vector of perturbations 5b into (EQ 5-3) we have

7 ( A x  + Axp) = b + 8b (EQ 5-4)

where 8b is a vector of perturbations and Axp is a vector of changes in state estimates 

caused by perturbations 8 b .

If 7  has full column rank then there is a unique LS solution Ax  to the equation (EQ 5-3) 

and it solves the symmetric positive definite system

T T
7  7 Ax  = 7  b (EQ 5-5)

Ax = (7 r7) l7 Tb (EQ 5-6)

Now when we do the same for the set of equations (EQ 5-4) we have:

7  7  (Ax + Axp) = /  (b + 8b) (EQ 5-7)

Ax + Axp = (7 r7) 7  (b + 8b) (EQ 5-8)

Combining (EQ 5-6) and (EQ 5-8) we obtain the following relationship between the 

changes in the vector of measurements and the solution of (EQ 5-3) according to LS 

criterion

= (7T7 )~ l7 T8b (EQ 5-9)
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Matrix S = (J  J) 7  e  Rnxm is the pseudoinverse of the Jacobian matrix J . It is 

also called the sensitivity matrix because the (zj)-th element s^ of this matrix relates the 

sensitivity of the z'-th element, x ., of the vector x  to the j-th  element, Zj, of the 

measurement vector z.

Vector 5b in (EQ 5-9) consists of values that are within the range: ±variability of 

consumption or ±accuracy of meter in case of a measurement. The underlying principle 

of the CLA is the consideration of the worst possible case. It means that the maximum 

variabilities of consumptions and inaccuracies of meters are assumed during the 

calculations. Now, for one state variable x {, calculating its error bound is just a matter of

maximizing s f i b , where s. is the z'-th row of the sensitivity matrix S.

Since the equation (EQ 5-9) is linear the calculated bounds are symmetrical meaning 

that upper bound is equal to the absolute value of the lower bound for each state variable.

The main problem in the sensitivity matrix method is finding the sensitivity matrix 

itself, but before the way of utilizing the neural networks presented in Chapter 4 for the 

purpose of calculating the inverse and pseudoinverse matrices will be shown, let us 

clarify that the sensitivity matrix method should not be directly used for calculating 

confidence limits when criterions other than LS have been used to obtain the state 

estimates.

The above presented sensitivity analysis of the LS solution to (EQ 5-3) resulted in the 

direct relationship between hypothetical disturbances (uncertainties) 5b and the vector 

of changes in the LS solution Axp , caused by 6b . Unfortunately for other optimization

criteria (e.g. LAV or weighted LS where weights depend on current values of the 

residuals and effectively on a particular measurement vector) it is not possible to derive 

the direct solution of the type represented by (EQ 5-6). The nonlinearities involved in 

these optimization criteria make also the derivation of the sensitivity-perturbation type of 

formula represented by (EQ 5-9) impossible. In such cases the sensitivity analysis can be 

carried out using the Monte Carlo method. This method, however, is not suitable for on­

line confidence limit analysis. It is therefore suggested that the criteria resistant to the 

gross errors in data should be used as preliminary filters. Once the data is gross error free,
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which is implied by the model (EQ 5-1) anyway, the LS criterion and more efficient CLA 

(e.g. sensitivity matrix method) can be used.

5.3.2. Pseudo-inverse matrix - a neural approach

In (Golub & Van Loan, 1986) it can be found that the matrix A* e Rnxm, referred to as 

the pseudo-inverse of A, is the unique minimal 2-norm solution to the problem

min \\A Y -I\L  (EQ5-10)
Y e R nxm

and satisfies the four Moore-Penrose conditions:

(i) A  YA = A ; (ii) Y A Y  =  Y;(iii) ( A Y )  and (iv)

In order to find the pseudo-inverse matrix F the problem (EQ 5-10) can be mapped to 

the task of finding the solutions to the m problems

min | |A F . - / J 2 i=l,...,m (EQ5-11)
Yi e R n

where F. is the z'-th column of the matrix F; J. is the z-th column of the identity

T n mxmmatrix/ <= R

(EQ 5-11) represents the LS problems of finding the solution to the overdetermined sets 

of linear equations as discussed in previous chapter. Therefore in order to find the pseudo­

inverse matrix F we can use the neural network shown in Figure 4-2 with linear activation 

function. Repeating computation m times we find m columns of the pseudo-inverse 

matrix F Please notice that the columns of F  can be found independently thus 

significantly reducing the computation time.

Having found the sensitivity matrix, the inverse or pseudoinverse of the Jacobian 

matrix J , we can now carry out the maximization process in order to obtain the 

confidence limits for state variables as given in (Bargiela & Hainsworth, 1989).

For the z-th state variable, calculating its error bound was done by maximizing the 

product of the z-th row of the sensitivity matrix S  and the vector b b . This maximization 

was performed for each row of the sensitivity matrix separately. However, the same 

results can be easily obtained by making all values of the sensitivity matrix positive and 

assuming positive values for the elements of the vector b b . In this way the error bounds
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are obtained by straightforward matrix-vector multiplication without the need for the 

maximization process repeated for each state variable separately.

5.3.3. Superposition method

The sensitivity matrix presented in the previous section contains a lot of information 

about possible behaviour of the system in the near future. The value of the element of 

this matrix says how sensitive the z-th state variable is to the changes in the y-th 

measurement at this particular operating state while the sign of the s -  element says if the

value of the z-th state variable will increase or decrease when the y-th measurement will 

increase or decrease. For example if our y-th measurement is the consumption at some 

node, looking at the y-th column of the sensitivity matrix will tell us which pressures in 

the network can be affected the most by this change and whether they will increase or 

decrease. Such information might have a paramount consequence for safety of the system 

operation.

However, when the major values of interest are the confidence limits for the state 

variables the procedure of obtaining them can be made quicker than the one finding the 

sensitivity matrix first and then computing the confidence limits as described above.

Again, utilizing the fact that the equation (EQ 5-9) is linear and each measurement has 

potentially the same degree of influence on the final solution each perturbation can be 

analysed separately and their impacts can be summed up. This technique is known under 

the name of the superposition and has been widely used for analysis of linear systems 

(e.g. in linear circuit analysis). The proposed method of finding the confidence limits 

utilizes the neural network presented in Figure 4-2 with the linear activation function.

Making the vector Ab of the equation j A x ^  = A successively [a&j 0 ... 0 , 

A b2 ... oj |j) 0 ... Ab j  the confidence vector x cl is found by summing up 

the absolute values of A x ^  for each source of inaccuracy Ab(, i=l,...,m.

x cl = X Kf (EQ 5-12)
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Notice that the vector x c[ representing error bounds for state vector x  is sequentially

increased for each non-zero source of inaccuracy (each non-zero element of A b ). Since 

in every water distribution network model there is a number of mass balance equations 

written for nodes where there is no inflows or consumptions (i.e. it is represented by 

Ab( = 0 ) the effective number of possible sources of inaccuracy is diminished by the

number of such equations. Therefore, in comparison to sensitivity matrix method the 

smaller number of iterations is required to obtain the confidence limits.

In the following sections of this chapter it is shown that using relatively simple neural 

structure described in previous chapter and incorporating some control elements it is 

possible to construct a system finding optimal state estimates and subsequently assessing 

the reliability of this solution via confidence limit analysis.

5.4. An integrated neural system for state estimation and CLA

The system depicted in Figure 5-1 is an implementation of a Newton-Raphson method 

for solving systems of nonlinear equations. The description of this method for water 

distribution network was given in Chapter 2.

Apart from the state estimation achieved by means of implementing N-R method the 

system also incorporates the necessary logic and other elements (integrators, absolute 

value block etc.) to obtain confidence limits for the state estimates. The design and the 

performance of this system has been reported in (Gabrys & Bargiela, 1996).

The functionality of this system can be summarised as follows:

/v (̂ 1 (0)1) For the initial guess x  calculate the Jacobian J  and the right hand side of the

(0) -j
linearised system of equations z - g  (x ) .

2) Using the analog neural network for solving systems of linear equations (“Neural 

Estimator”) solve Ax  = z - g  (x ) .

3) If all elements of Ax (k=0,l,2,... - number of iteration) are lower or equal to 

predefined accuracy, go to point 7, otherwise go to point 4.
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4) Adjust the current state estimate values according to formula:

A(*+i) A(*) (*)x = x -bjAx

5) For x^k ^  calculate the Jacobian + and the right hand side of the linearised

(*+1)system of equations z - g  (x  ) .

6) Using neural based state estimator find the solution to the system of linear equations

r {k + 1) A ( k +  1) .  ̂ ( k +  0J  Ax = Z - g  {x  ) and go to point 3.

7) For the Jacobian calculated for the optimal state estimate vector x , calculate the 

confidence limits making the right hand side vector Ab of equation ) A x ^  = Ab ^

P  _ T1 r* T r* *1 y
successively [Aiq 0 ... OJ , [O Ab2 ... oj |0  0 ... A^?J and summing

X""' I (0x cl = \^x d  ’ w^ere x d  t l̂e vector ° f  confidence limits of x  calculated for the 
i — 1

vector of disturbances Ab and the state vector x .

5.4.1. Detailed description of the system and subsystems

There are two output signals from the “Neural Estimator” block. First - LEC (Linear 

Estimation Control) is the control signal normally set to 0 (zero). It changes from 0 (zero) 

to 1 (one) (an impulse is generated) every time when the convergence criterion (accuracy 

condition) of the neural estimator is met. Only then the second signal x (, which is a vector 

of current estimates of the neural estimator, is allowed to be processed.

Following the signals LEC and x t we now go to the block “NFTControl”. The function

of this subsystem is to produce control signals enabling us to distinguish between the state 

estimation and the confidence limit analysis stages of computation.

Four control signals C l, C2, C3 and C4 of the “NR Control” block decide if the signal 

y=LEC*x/ is directed to: the “Newton-Raphson method integrator” block - the state

estimation stage or the “Confidence Limits Integrator” block - the confidence limits 

finding stage.
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Referring to Figure 5-3 we can see that C l is equal to LEC when C2 is 1 (one) and 0 

(zero) otherwise. C2 is 1 (one) as long as the convergence criteria of the Newton-Raphson 

method is NOT satisfied, namely when there is even one value of the vector y (at the state 

estimation stage) greater than predefined accuracy. C2 changes to zero when the state 

estimation process is completed and we go to the confidence limits analysis stage.

C3 is a logical negation of C2. When C3=l (equivalent of C2=0) the C4 =LEC. At this 

stage signal y is directed to the “Confidence Limits Integrator” block.

STAGE 1

At the stage 1 (C2=l) after every adjusting of the state vector x, the change of the 

Jacobian and the right hand side of the linearised system (RHSLS) of equations, 

synchronised by C l, is carried out. These newly calculated values are than set in the 

“Neural Estimator” block (Jacobian - Matrix A, Jacobian transposed - Matrix AT, RHSLS 

- Vector b) and the new adjustments of the state vector are computed. It has to be stressed 

that there must be enough time available between two subsequent impulses of LEC for 

calculating Jacobian, RHSLS and setting these parameters in the “Neural Estimator” 

block. If the time of carrying out those operations is not known or can not be determined

Estimatesr  H  chpar2j^h
I Jacobian
I updating Mux N ew ton-R aphson  

method integrator

Cl
Productl

C2

LEC C3
NR Control

ProductNeural
Estimator

AND] Logical 
—-j— I OperatorC4

-<j chparTj^ -  
Disturbances

Product2
Mux1

Abs Abs

Counter and 
simulation termination

Stop Simulation Confidence limits 
integrator

c l  Confidence

Mux

Mux

STOP

I— ►

Limits

Figure 5-1: The system for estimation (based on Newton-Raphson method) and
confidence limit analysis.

80



Chapter 5  - 5.4. An integrated neural system  f o r  sta te estimation and CLA

the easy solution could be an introduction of a new control signal. The function of this 

signal would be to make sure that after generating the first LEC impulse there would not 

be generated the next LEC impulse before the newly calculated Jacobian and RHSLS 

were not set up in the “Neural Estimator” subsystem.

STAGE 2

Since the adapted method of the confidence limits finding is based on sequential solving 

of a system of linear equations, we can use the “Neural Estimator” to achieve it. As it has 

been described previously the matrix A  = J  of the system of equations Ax=b (at this 

stage) does not change. It is the Jacobian calculated for the optimal state estimate vector 

x .  Making vector b successively Ja&j 0 ... oj , [o Ab2 ... oj |o 0 ... A 

(synchronised by the signal C4) and summing the influences of each disturbance on state 

vector (“Confidence limit integrator” block), we finally get the confidence limits for 

given vector of disturbances Ab and calculated vector of state estimates x .
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Figure 5-2: a) Neural network for solving systems of linear equations - Subsystem 
of the system from Figure 5-1, b) The "Finished Estimation” subsystem of a) - 
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Figure 5-3: The “NR Control” subsystem of the system from Figure 5-1
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The simulation terminates when the influence of the last disturbance on the state vector 

has been adjusted to the vector of confidence limits.

5.5. Simulation results

The performance of the proposed methods for water-system state estimation and CLA 

was tested on the realistic 34-node network (42 state variables) presented at Figure 4-8. 

The results are presented in two forms:

a) table containing the state estimates and corresponding confidence limits for three 

different cases

b) time diagrams - in order to show the relations between control signals and iteratively 

calculated values of state estimates and confidence limits.

■©  . ©  ©
uS  -45.5] \-----------1----------------------------------------------- 1-----

0 1 0.5' 1 1.5 2 1 2.5
Time x10"6

Figure 5-4: The simulation time diagram for 34-node water network - 
case 3. Dashed lines mark three phases of simulation: 1) First stage 
- state estimates adjusting; 2) State estimation finished, beginning of 

the second stage; 3) Second stage - confidence limits finding
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Three different cases are considered below.

First we consider the case of minimal set of measurements when we have available only 

one reference head measurement at node 30. The state estimates and corresponding 

confidence limits for this case are shown in columns 3 and 4 of Table 5-1 respectively. 

The purpose of calculating the confidence limits is to obtain an information about how 

far from the real state the estimated values could be in the worst case. The requirement to 

have the state estimates as close as possible to the real state is equivalent to the 

requirement of having the confidence limits to be as tight as possible. The means of 

achieving that is the introduction of additional accurate measurements into the system.

In the highlighted row (columns 3 to 6) of Table 5-1 we can see the worst (the biggest) 

confidence limit for the estimated state vector. In order to improve it, in the second case 

apart from the reference head (node 30) we have also measured the head at node 28. With 

the metering accuracy of 2%, the measured value can vary within the range of ±0.7024.

The state estimates and corresponding confidence limits for the second case are shown 

in columns 5 and 6 of Table 5-1 respectively. Comparing the confidence limits for the 28- 

th state variable it can be seen that the considerable improvement has been achieved.

Repeating the procedure of finding the biggest confidence limits for the second case two 

new measurements have been added to the system in the third case. These were the heads 

in nodes 33 and 34. The state estimates and corresponding confidence limits for the third 

case are shown in columns 7 and 8 of Table 5-1 respectively. The two highlighted rows 

(columns 5 to 8) show the variables of interest. In this case apart from the improvement 

regarding state variables for nodes 33 and 34 we can observe the big improvement in 

nodes in their direct vicinity (nodes 1, 26, 29) as well as in nodes laying a bit further 

(nodes 13, 14,15,16,17,18, and 19). The effect wears off with the increasing distance 

from the meter.

The simulation time diagram for this case is shown in Figure 5-4.

In all cases the simulated time of the calculations (the time that would be required by 

the actual neural network) was in order of microseconds. It needs to be pointed out, 

however, that the simulation of the neural network was performed on a serial computer 

(SpareStation IPC) and the corresponding lapsed time for the simulation was of order of 

hundreds of seconds.
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It is commonly known that with the bigger number of measurements the reliability of 

estimation increases. It is due to averaging property of systems with high redundancy 

ratio. Redundancy ratio is defined as the ratio of the number of equations to the number 

of unknowns. In other words the influence of single measurement or pseudomeasurement 

or strictly speaking its inaccuracy is smaller (averaged) for the system with high 

redundancy ratio.

On the other hand introducing a new measurement we introduce a new source of 

inconsistency which is the finite accuracy of a meter. The conclusion that can be drawn 

from these considerations and results is as follows. Addition of the new measurement for 

z-th state variable can have the tightening effect on the confidence limit of this variable 

only if the error resulted from the inaccuracy of the meter is smaller than confidence limit 

calculated for existing set of meters.

5.6. Concluding remarks

In this chapter, the problem of reliability of the deterministic state estimation solution 

of water distribution system, given uncertain measurements, has been examined.

The uncertainty resulting from inaccurate data has been first introduced to the 

mathematical model of the water distribution system using the concept of unknown-but- 

bounded errors. The reason behind including this uncertainty into the model is the fact 

that no deterministic state estimator can produce accurate results from inaccurate data. 

Therefore, in order to ensure the safe and reliable operation of the water distribution 

system the state estimates have to be qualified with the degree of confidence that can be 

put in them.

In (Bargiela & Hainsworth, 1989) it was shown that the results produced by the Monte 

Carlo method are the most mathematically reliable but the computational burden 

involved makes this method an unrealistic proposition for real-time applications. On the 

other hand, the sensitivity matrix method, based on an accurate linearisation of the system 

model, was said to be computationally efficient while producing comparable results with 

those of the Monte Carlo method.
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State
variable Exact state State esti­

mates (ex.l)
Confidence 
limits (ex.l)

State esti­
mates (ex.2)

Confidence 
limits (ex.2)

State esti­
mates (ex.3)

Confidence 
limits (ex.3)

1 32.6566 33.2501 1.9336 33.2500 1.9251 32.6906 0.6503
2 43.7173 43.7581 0.3647 43.7843 0.3728 43.7254 0.4234
3 46.0554 46.1320 0.4666 46.1814 0.4754 46.0530 0.4621
4 46.6476 46.7040 0.4468 46.7568 0.4535 46.6187 0.4199
5 43.2138 43.1581 0.2449 43.1734 0.2560 43.1439 0.3001
6 42.9352 42.8410 0.1701 42.8553 0.1768 42.8168 0.2339
7 42.3122 42.1258 0.3563 42.1339 0.3574 42.1239 0.3619
8 42.0405 41.8311 0.3776 41.8418 0.3804 41.8194 0.4069
9 43.7703 43.7536 0.0415 43.7686 0.0469 43.7054 0.1279
10 47.9759 48.0797 0.8288 48.0949 0.8263 47.8126 0.5228
11 44.6783 44.6814 0.1452 44.7043 0.1574 44.6290 0.1930
12 44.0043 44.0056 0.0565 44.0271 0.0686 43.9596 0.1301
13 49.3371 49.5421 1.0835 49.5603 1.0814 49.2088 0.5546
14 49.1419 49.3029 1.0651 49.3169 1.0616 48.9583 0.6168
15 49.0994 49.2563 1.0576 49.2698 1.0541 48.9131 0.6175
16 49.3563 49.5702 1.0824 49.5900 1.0805 49.2422 0.5369
17 47.9938 48.1156 0.8156 48.1294 0.8141 47.8566 0.4793
18 49.3736 49.5980 1.0817 49.6149 1.0804 49.2728 0.5213
19 49.0700 49.2514 0.8981 49.2762 0.9069 48.9854 0.5082
20 46.6476 46.7040 0.4468 46.7566 0.4530 46.6181 0.4182
21 45.6441 45.6825 0.2950 45.7180 0.3069 45.5983 0.2866
22 46.6183 46.6792 0.4385 46.7255 0.4480 46.5794 0.3936
23 48.4099 48.5566 0.7486 48.5869 0.7649 48.3352 0.4772
24 43.1961 43.1332 0.1117 43.1468 0.1178 43.1066 0.1753
25 42.4415 42.2816 0.2864 42.2931 0.2902 42.2661 0.3257
26 32.1117 32.6021 1.7594 32.6035 1.7515 32.0839 0.6300
27 -15.1991 -14.9994 0.9501 -14.9739 0.9568 -15.2686 0.5679
28 -33.4978 •̂35.1219;; ' 3.0669 • "-33.4718 0.6839... -33.4716 0.6840
29 31.7221 32.1481 1.6298 32.1521 ~ f.3229 " 31.6796 0.6221
30 43.5819 43.5820 0.0000 43.6007 0.0229 43.5372 0.1659
31 44.1703 44.3208 0.5354 44.3604 0.5494 44.2578 0.5855
32 -46.3812 -46.4228 0.9293 -46.3792 0.9382 -46.4679 0.9750
33 -36.5478 -36.1842 2.2204 -36.1941 O M 0.7564
34 -12.1963 -11.6190 2.1379 ;-TR6198 . 2.1279 • 112.2956 . 0,3880
35 0.0723 0.0729 0.0022 0.0729 0.0022... 0.0728 0.0023
36 0.0927 0.0908 0.0025 0.0926 0.0015 0.0928 0.0015
37 -0.0229 -0.0236 0.0012 -0.0236 0.0012 -0.0240 0.0014
38 -0.0518 -0.0516 0.0018 -0,0517 0.0018 -0.0513 0.0021
39 -0.0391 -0.0396 0.0015 -0.0396 0.0015 -0.0394 0.0016
40 0.0254 0.0251 0.0013 0.0251 0.0013 0.0253 0.0013
41 0.0614 0.0612 0.0020 0.0612 0.0020 0.0611 0.0022
42 0.1063 0.1061 0.0028 0.1061 0.0028 0.1048 0.0038

Table 5-1: 34-node water network state estimates and confidence limits
1-34: nodal heads (m Aq) at nodes 1-34;

35-42: fixed-head nodes in/out flows (in / s ) at nodes 27-34
All the results have been obtained for the following parameters: variability of consumptions - 
±10 %, accuracy of head measurements - ±2 %,  coefficient y  of Newton-Raphson method - 0.6, 
integration time constant - 10e-8 [s]
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Bearing in mind that the confidence limit analysis for water distribution systems can be 

carried out for the linearised model without significant loss in accuracy of obtained 

results the ANN for solving overdetermined systems of linear equations has been used 

for this purpose. First, however, it has been shown that the sensitivity matrix method 

resulted from the sensitivity analysis of the ordinary LS solution to the overdetermined 

system of linear equations and it should not be used when the estimates were obtained 

using other optimization criteria. It is, therefore, advised that first the more robust criteria 

should be used to identify and reject gross errors and only then the full estimation and 

confidence limit analysis using sensitivity matrix method could, be carried out for the 

remaining gross errors free data.

Assuming now that the data is free from gross errors two ANN based methods for CLA 

have been proposed. The first is a neural implementation of the sensitivity matrix method 

and the second one utilizes the linearity of the system and is based on the superposition 

principle.

Since ultimately the neural network structures presented in this work should be 

implemented in hardware (e.g. using VLSI or electro-optical technology) a suitable 

integrated, dynamical, neural based system for state estimation and CLA has been 

developed and simulated. A major conclusion that can be drawn from these simulations 

is that using relatively simple neural network solving systems of linear equations it is 

possible to significantly reduce the time of obtaining results of state estimation and CLA 

in such complex and nonlinear systems as water distribution networks. It must be 

emphasized once again that providing hardware implementation of this neural structure 

the computation could be accomplished in order of microseconds, regardless of system 

size, compared to seconds or minutes required by standard procedures executed on serial 

computers.



Chapter 6

Neural networks for classification 

and clustering

6.1. Introduction

In previous chapters the ANN based state estimation and CLA algorithms for water 

distribution networks were presented. These two algorithms are the first two steps on the 

way from measurement readings to the operational control decisions. Before any control 

decision can be made the state of the network has to be interpreted - classified. This 

interpretation task is usually carried out by an experienced, human operator. However, the 

growing size and complexity of modem water distribution systems makes this task more 

and more difficult. The need for the “diagnosis” of a water network state (i.e. normal 

operating state, leakage between node i and node j  etc.) has prompted our investigation 

into classification and clustering neural networks.

The main thesis of the second part of this research is that the fuzzy state clustering and 

classification performed by neural networks mimics to a large extent the high level 

information processing by human operators.

6.2. Pattern recognition - general remarks

A lot of scientific effort has been dedicated to pattern recognition problems. The reason 

for this is the fact that pattern recognition is a key element to many engineering solutions. 

Different medical, image processing, control, and diagnostic applications, to mention 

only a few, all require the ability to accurately classify a situation.

A field of pattern recognition strongly follows recent achievements of different areas of 

science and engineering incorporating them for formation of more efficient and reliable 

classification algorithms. On the other hand, a rapid development of technology enabled
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building of more efficient recognition systems, capable of processing huge volumes of 

data such as, for example, in satellite image processing or vision channels for intelligent 

robots.

Despite tremendous achievements obtained, pattern recognition is confronted with 

continuous challenge coming from human beings. Humans seem to be more efficient in 

solving many complex classification tasks which still cannot be handled easily by a 

computer.

It should be mentioned that human reasoning is somewhat fuzzy in nature. Fuzzy sets 

can be seen as a suitable tool able to cope with the uncertain or ambiguous data so often 

encountered in real life and usually used by man. Hence, to enable the system to deal with 

the ambiguous data in an effective manner, one may incorporate the concept of fuzzy sets 

into the neural network.

6.2.1. A general model for pattern recognition problem

All pattern recognition problems can be partially or completely described in terms of 

the goal of classifying some set of measurements into categories. In a general case the 

pattern recognition process can be abstracted as a sequence of three steps: data 

acquisition, feature extraction and classification procedure.

At the first step data to be classified is collected via a set of sensors. The other two steps 

ultimately have the same goal, namely to transform the input into a form that is trivially 

convertible into a class decision. Traditionally the feature extraction is used to convert the 

raw input into a form that is easily classified. This is a common place to incorporate 

domain-specific knowledge that will greatly enhance performance over the blind use of 

automatic techniques. For example, for water distribution systems, in the context of 

pattern recognition problem, the state estimation procedure can be viewed as a robust 

method used to transform raw measurements into a vector of state estimates (feature 

vector) uniquely describing the system. Finally at the third stage of the scheme, the 

classifier is constructed. Trained classifiers are developed using a set of feature vectors. 

Typically the training develops a set of discriminant functions, one for each class, which 

are optimized in an attempt to produce the largest value for the function corresponding to 

a correct class. In other words a transformation between classes and feature vectors is 

established. This transformation could be, for instance, a Bayesian rule of computation
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an a posteriori class probability, nearest-neighbour rule, nearest prototype classifier, etc. 

One of more recent methods of implementing the discriminant functions are the systems 

combining neural networks with fuzzy sets. These methods will be described in more 

detail in later sections of this chapter.

6.2.2. Desirable properties of pattern classifier

The ultimate product of this part of research is a classification system. Before 

embarking on description of existing methods of constructing pattern classifiers, let us 

quote a list of properties (Simpson, 1992) that a good pattern classifier should possess. 

These are:

• On-Line Adaptation

A pattern classifier should be able to leam new classes and refine existing classes 

quickly and without destroying old class information.This property is sometimes referred 

to as on-line adaptation or on-line learning.

• Nonlinear Separability

A pattern classifier should be able to build decision regions that separate classes of any 

shape and size.

• Overlapping Classes

In addition to pattern classes being nonlinearly separable, they also tend to overlap. A 

pattern classifier should have the ability to form a decision boundary that minimizes the 

amount of misclassification for all of the overlapping classes. The most popular method 

of minimizing misclassification is the construction of a Bayesian classifier. 

Unfortunately, to build a Bayesian classifier requires knowledge of the underlying 

probability density function for each class. This information is quite often unavailable.

• Training Time

A very desirable property of a pattern classification approach, able to leam nonlinear 

decision boundaries, is a short training time.

• Soft and Hard Decisions

A pattern classifier should be able to provide both soft and hard classification decisions. 

A hard, or crisp, decision 0 or 1. A pattern is either in a class or it is not. A soft decision
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provides a value that describes the degree to which a pattern fits within a class.

• Verification and Validation

It is important that a classifier, neural or traditional, have a mechanism for verifying and 

validating its performance in some way.

• liming Parameters

A classifier should have as few parameters to tune in the system as possible. Ideally, a 

classifier system will have no parameters that need to be tuned during training. If there 

are parameters, the effect these parameters have on the system should be well understood.

• Nonparametric Classification

Parametric classifiers assume a priori knowledge about the underlying probability 

density functions of each class. If this information is available, it is possible to construct 

very reliable pattern classifiers, but often this information is not available. If the classifier 

is nonparametric, it should be able to describe the underlying distribution of the data in a 

way that provides reliable class boundaries.

6.2.3. Clustering and classification - standard and neural algorithms

There are two possible training strategies while constructing pattern classification 

procedures: supervised and unsupervised learning.

In supervised learning (also called supervised classification or pattern classification), 

class labels are provided with pattern exemplars and the decision boundary between 

classes that minimizes misclassification is sought.

In unsupervised learning (also called unsupervised classification, cluster analysis, or 

pattern clustering), the training pattern data is unlabelled and one has to deal with the task 

of splitting a set of patterns into a number of more or less homogenous clusters with 

respect to a suitable similarity measure in such a sense that the patterns which are similar 

are allocated to the same cluster, while the patterns which differ significantly are put in 

different clusters. Apart from the clustering method applied the final result is always a 

partition of patterns in disconnected or overlapped clusters.

There are many different techniques that have been offered for solving classification 

and clustering problems. In the following two sections a brief review of some traditional, 

fuzzy and neural network classification and clustering techniques respectively is given.
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6.2.3.I. Classification techniques

1) Statistical Classification - Bayesian classifier: Statistical approach to pattern 

classification is based on the assumption that patterns are drawn from a mixed population 

of c statistical distributions, that have known prior probabilities and class-conditional 

probability density functions (PDFs). Given prior probabilities and PDFs Bayes rule 

allows us to compute an a posteriori probability p(i/x) which is essentially the probability 

of pattern jc belonging to class i. The statistical methods of pattern classifications are well 

covered in the literature and good treatments of the subject can be found in (Duda & Hart, 

1973; Devijver & Kittler, 1982). It was demonstrated on many occasions that the 

existence of situations where complete knowledge of the statistical model describing the 

pattern-generating mechanism enables the designer to determine both the optimal 

structure and the performance of the pattern classifier. However, in practical applications, 

such a perfect knowledge of the underlying distributions is practically never available. 

The derivation of the optimal solution to a classification problem will, as a mle, be 

beyond the reach of the practitioners. They will usually have either to satisfy themselves 

with an approximation to the optimal solution, or to resort to suboptimal classification 

methods such as those briefly discussed below.

2) k-  Nearest Neighbour Classifiers: By contrast to the statistical classification the k- 

nn rule exchanges the need to know the underlying distributions for that of knowing a 

large number of correctly labelled sample patterns from each class. In principle, this shift 

in viewpoint brings us a lot closer to the reality of practical problems. The mode of 

operation can be described as follows: Given an unlabelled input pattern x, and a large set 

of correctly labelled patterns S, find the k nearest neighbours to x  from S and assign x to 

the class which is most heavily represented in the k-nn neighbourhood. Further discussion 

of the k-nn rule and its derivatives can be found in (Dasarathy, 1990; Devijver & Kittler, 

1982; Duda & Hart, 1973).

3) Discriminant Functions: While the previous two approaches did not presuppose 

any particular “shape” for the decision boundary in case of discriminant functions the 

functional form of the decision boundary is selected a priori. In other words, the 

analytical expression of the decision boundary is given except for the values of a set of 

parameters. This set of parameters is estimated on the basis of training set to produce a 

problem specific classifier. For numeric-valued patterns, the discriminants are based on
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one of two concepts. In one case, the discriminant consists of a measure of distance, and 

patterns are classified in accordance with the class membership of nearest neighbours, or 

with the nearest prototype or cluster center. In the other case, the discriminants are 

hypersuifaces, and patterns are classified in accordance whether they are on one side or 

another of a hypersurfaces or a set of hyperplanes.

4) Neural Network Classifiers: When neural network is operating as a classifier net, it 

can be regarded simply as a box, or algorithmic representation of a classifier function. A 

number of different learning rules, network architectures and class representations have 

been used in order to produce effective mapping from feature space to class space. Some 

neural networks, such as probabilistic neural network (Specht, 1990), learning vector 

quantization (Kohonen, 1984), or radial basis functions (Hassoun, 1995), make use of the 

statistical mean and variance of data clusters to define center and size of pattern classes. 

Some neural networks, such as perceptron (Pao, 1989), create linear discriminant 

functions that partition the pattern space. Some neural networks, such as back- 

propagation, the Boltzman machine, optimize a cost function that gives an input-output 

mapping that in turn produces nonlinear decision boundaries. And finally, some neural 

networks, such as the related coulomb energy neural network, and the min-max 

classification neural network (Simpson, 1992), build decision boundaries by creating 

subsets of the pattern space.

5) Fuzzy Classification: Inability of the traditional (statistical) approaches for pattern 

classification to deal with problems where a process of “hard” labelling is difficult to 

perform or completely artificial, called for more flexible way of labelling and accounting 

for certain types of uncertainty. The theory of fuzzy sets which allows for fuzzy 

membership functions was suggested as a way to remedy this difficulty. The earliest 

reference to the use of fuzzy sets in pattern recognition, with a general description of the 

classification process indicating a role of fuzzy sets, was (Bellman et al., 1966). Since 

then the combination of fuzzy sets and pattern classification has been studied by many 

people. The fuzzy k-nn classifier was developed (Bezdek et al., 1986) and shown to be a 

generalised version of the standard k-nn classifiers. Another fuzzy generalization of the 

standard classification technique is fuzzy c-means algorithm (Bezdek, 1981). Keller and 

Hunt first attempted to incorporate the idea of membership functions into the classical 

perceptron algorithm (Keller & Hunt, 1985). Other works on fuzzy classification include: 

(Pedrycz, 1990) discussing a state-of-the-art (as of then) methodology and algorithms of
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fuzzy sets in the field of pattern recognition, (Bezdek, 1992) is an excellent discussion on 

interaction between statistical, fuzzy, and neural-like models for pattern recognition 

system design, in (Bezdek, 1981) Bezdek studied the application of fuzzy objective 

functions for pattern recognition. The aforementioned flexibility of fuzzy sets and the 

computational efficiency of neural networks with their proved record in pattern 

recognition problems has caused a great amount of interest in the combination of the two 

(Bezdek, 1992; Mitra & Pal, 1994; Pedrycz, 1992; Simpson, 1992; Yager & Zadeh, 

1994). Many of the efforts have focused on methods of implementing fuzzy rules in a 

neural network framework and techniques of parallelizing successful fuzzy system 

applications.

6.2.3.2. Clustering techniques

1) Traditional Clustering: There are many clustering algorithms that have been 

developed to date, including ISODATA, FORGY, WISH, and CLUSTER (Dubes & Jain, 

1976), many of which are commercially sold. Jain (Jain, 1986) has reduced these 

clustering techniques to two popular methods:

•Hierarchical Clustering: A hierarchical clustering technique imposes a hierarchical 

structure on the data which consists of a sequence of clusters.

•Partitional Clustering: A partitional clustering technique organizes patterns into a 

small number of clusters by labelling each pattern in some way. Unlike hierarchical 

clustering, which offers several partitions of the data, partitional clustering finds a 

single cluster partition.

In addition to the two techniques cited above, there are also combinations of the two 

clustering approaches that are employed. There are many books that describe classical 

approaches to pattern clustering, including (Anderberg, 1973; Everitt, 1974; Hartigan, 

1975; and Duda & Hart, 1973)

2) Fuzzy Clustering: Fuzzy sets bring a new dimension to traditional clustering 

systems by allowing a pattern to belong to multiple clusters to different degrees. Bezdek 

has organized fuzzy clustering algorithms into five categories:

•Relation Criterion Functions: Clustering driven by optimization of criterion function 

which assesses partitions according to some global property of the grouped data. 

Ruspini (Ruspini, 1969) was the first to utilize this technique in the fuzzy community
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and he and Bezdek (Bezdek, 1981) have since considerably extended this pioneering 

work.

•Object Criterion Functions: Clustering directly on the data set A in the n-dimensional 

feature space according to some objective function is the most popular form of the 

fuzzy pattern clustering. The fuzzy c-means and fuzzy ISODATA algorithms 

introduced by Dunn (Dunn, 1974) and generalised by Bezdek (Bezdek, 1981), are the 

most popular techniques for this class of fuzzy clustering algorithms.

•Convex Decomposition: The decomposition of a fuzzy partition (a set of fuzzy 

clusters) into a combination of convex sets. The use of the convex decompositions 

may provide added insight into data structure that otherwise might be lost. Bezdek & 

Harris (Bezdek & Harris, 1979) describe three algorithms that can perform this 

decomposition.

*Numerical Transitive Closures: The extraction of crisp equivalence relations from 

fuzzy transitive similarity relations. This technique is closely related to hierarchical 

methods based on graph-theoretic models.

• Generalised Nearest Neighbour Rules: Although the nearest neighbour algorithm is 

used mostly for classification, there is a clustering version as well. This technique is 

primarily used once the data set has already been partitioned using another clustering 

algorithm such as fuzzy c-means.

3) Neural Network Clustering: Neural network clustering offers the ability to 

determine the size, shape, number, and placement of pattern clusters adaptively while 

intrinsically operating in parallel. In addition, the use of clustering to form sensory maps 

has a strong biological support. Although there is a large number of neural networks 

available today there are only two primary neural clustering techniques currently in 

widespread use:

•Competitive Learning: Similar to the c-means clustering algorithm, competitive 

learning finds the centroids of decisions regions in the n-dimensional pattern space. 

Although this form of neural network learning seems to have been introduced by 

Grossberg (Grossberg, 1972, Grossberg, 1976a) and von der Malsburg (von der 

. Malsburg, 1973), it has been most successfully championed by Kohonen (Kohonen, 

1984), who has extended the neural dynamics to include topographic constraints.
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•Adaptive Resonance Theory: Similar to the leader cluster algorithm, adaptive 

resonance theory nondestructively creates pattern “codes” (clusters). The concept of 

adaptive resonance was introduced by Grossberg (Grossberg, 1976b) and was first 

cast into a neural network formalism by Carpenter and Grossberg (Carpenter & 

Grossberg, 1987). There have been numerous extensions and refinements since 

(Carpenter & Grossberg, 1987). The most recent results of ART evolution are the 

algorithms combining ideas of ART and fuzzy logic.

6.2.3.3. Concluding remarks

From the above brief descriptions of the existing classification and clustering 

techniques it is not difficult to notice that the focus of our investigations will be on fuzzy 

neural methods. The large scale of the problem, the fuzzy nature of the input patterns 

(state estimates with confidence limits), the need for the accommodation of labelled and 

unlabelled patterns called for a system that could grow to accommodate the needs of the 

problem, has potential to combine supervised and unsupervised learning strategies within 

a consistent, single frame and provides flexibility of modelling and processing 

uncertainty associated with fuzzy systems. Fuzzy neural networks for classification and 

clustering developed from the concept of adaptive resonance theory seem to have a great 

potential of fulfilling all of those requirements.

Evolution of ART NNs has led to developing various fuzzy neural networks by 

different, independent researchers. The first two examples of such networks are Fuzzy 

ART (Carpenter & Grossberg, 1994) and Fuzzy ARTMAP (Asfour et al., 1993; Carpenter 

et al., 1992; Carpenter & Grossberg, 1994) developed by Carpenter and Grossberg, the 

original inventors of the ART neural networks. Fuzzy ART is a generalisation of ART1 

(Carpenter & Grossberg, 1987) that incorporates operations from fuzzy logic. It is 

unsupervised network that can leam to classify both analog and binary input patterns. The 

categories formed by Fuzzy ART are hyperboxes. Fuzzy ARTMAP is the supervised 

neural network built from two Fuzzy ART modules (ARTa and ARTb). During supervised 

learning ARTa receives a stream of input patterns and ARTb receives a stream of the 

correct predictions. These modules (ARTa and ARTb) are linked by an associative 

learning network and an internal controller that ensures autonomous system operation. 

Although, a number of successful applications have been reported, Fuzzy ARTMAP has 

unnecessarily complicated control structure resulting from combination of two clustering
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networks. Moreover, it allows hyperbox clusters to overlap, which in turn results in 

pattern cluster ambiguity - a pattern can have full membership in more than one cluster.

Another very interesting development influenced by the original ART neural network 

is adaptive fuzzy leader clustering (AFLC) neural network (Kim & Mitra, 1993; Newton 

& Mitra, 1992; Newton et al., 1992; Pemmaraju & Mitra, 1993). AFLC is a hybrid neural- 

fuzzy system which can be used to leam cluster structure in a self-organizing, stable 

manner. The architecture consists of a learning mle in the form of the fuzzy K-means 

clustering algorithm embedded in a control structure similar to that found in ART-1. 

AFLC is primarily used as a classifier of feature vectors employing an on-line learning 

scheme. It utilizes a fuzzy membership function to describe the degree to which the input 

pattern belongs to each cluster. A single point - centroid of the cluster - is used to 

represent each cluster. The membership function is effectively an Euclidean distance 

from a cluster prototype (centroid). Adapting the clusters is based on the attempt to 

optimally position a cluster prototype. Although the AFLC NN has some interesting 

properties there are two main disadvantages: a) the improper cluster representation 

(centroid) for the type of data we need to classify and b) each adjusting of centroid 

requires all the data belonging to the cluster.

The third and the most compelling alternative are the min-max clustering and 

classification neural networks developed by Simpson (Simpson, 1992; Simpson, 1993). 

These neural networks seem to be especially interesting because of their representation 

of classes (clusters) which is a hyperbox in ^-dimensional pattern space. A hyperbox is 

completely defined by pairs of min-max points. By analogy the state of the water network 

after the confidence limit analysis can be viewed as a hyperbox in rc-dimensional space 

defined by upper and lower bounds for each state variable. Some other properties like on­

line learning, the number of clusters (classes) that grows to meet the demands of the 

problem, the potential to combine the clustering and classification within one network are 

equally appealing and worth further investigation.

6.3. The Fuzzy Min-Max Clustering and Classification Neural 

Networks

The fuzzy min-max clustering and classification neural networks are built using 

hyperbox fuzzy sets. A hyperbox defines a region of the n-dimensional pattern space, and
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all patterns contained within the hyperbox have full cluster/class membership. A 

hyperbox is completely defined by its min point and its max point. The combination of 

the min-max points and the hyperbox membership function defines a fuzzy set (cluster). 

In the case of classification hyperbox fuzzy sets are aggregated to form a single fuzzy set 

class.

Learning in the fuzzy min-max clustering and classification neural networks consists of 

creating and adjusting hyperboxes in pattern space as they are received. It is an 

expansion/contraction process.The learning process begins by selecting an input pattern 

and finding the closest hyperbox to that pattern that can expand (if necessary) to include 

the pattern. If a hyperbox cannot be found that meets the expansion criteria, a new 

hyperbox is formed and added to the system. This growth process allows existing 

clusters/classes to be refined over time, and it allows new clusters/classes to be added 

without retraining. One of the residuals of hyperbox expansion is overlapping 

hyperboxes. Hyperbox overlap causes ambiguity.lt is reasonable to assume that a pattern 

can have the same partial membership in more than one cluster/class. It is not reasonable 

to assume that a pattern can completely belong to more than one cluster/class. In the case 

of classifying NN the overlap is eliminated for hyperboxes that represent different 

classes. A contraction process is utilized to eliminate any undesired hyperbox overlaps.

In summary, the fuzzy min-max clustering and classification learning algorithm is a 

four-step process:

1) Initialization: Initialize all the min-max points prior to any learning.

2) Expansion: Identify the hyperbox closest to the input pattern that can be expanded 

and expand it. If an expandible hyperbox cannot be found, add a new hyperbox.

3) Overlap Test: Determine whether the recent expansion caused any undesired overlap 

between hyperboxes.

4) Contraction: If the overlap test identified overlapping hyperboxes, contract the 

hyperboxes to eliminate overlap.

Having implemented and tested these NNs a new fuzzy neural algorithm based on the 

concept of the Fuzzy Min-Max Classification and Clustering NNs has been developed 

(Gabrys & Bargiela, 1997a).
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This new NN combines the functionality of both the Fuzzy Min-Max Classification and 

Clustering NNs and at the same time a few major changes have been made to 

accommodate the input in a form of the state vector with confidence limits and improve 

the effectiveness of the algorithm. We will refer to this new algorithm as a Generalised 

Fuzzy Min-Max (GFMM).

The remainder of this chapter is organised as follows. In Table 6-1 the detailed 

description and comparison of the original fuzzy min-max and GFMM algorithms is 

given. The discussion and reasoning behind changes in GFMM in comparison to the 

original Fuzzy Min-Max NNs is given in Section 6.4. The neural network 

implementation of the GFMM algorithm is given in Section 6.5. In Section 6.6 the 

examples are presented. And finally the last Section is assigned for discussion and 

conclusions.
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6.4. The discussion and reasoning behind changes in the GFMM 

classification/clustering algorithm.

All the differences between the original Fuzzy Min-Max NNs and our algorithm can be 

seen in Table 6-1 presented in Section 6.3. In the following subsections the origins of and 

reasons behind changes are explained in detail.

6.4.1. Input

As mentioned earlier, the developed algorithm is to be used for the classification of the 

states of the water distribution network. More specifically the classification procedure is 

to process the confidence limits for each state variable. This is achieved by specifying the 

input to classification/clustering algorithm as a pair of two vectors: X h = [Xlh Xjj] - the 

lower and upper limits for the state vector. In other words instead of a point in n- 

dimensional space that has to be classified we have a hyperbox with the min point 

determined by the vector X lfi and the max point determined by the vector X uh . It can be 

observed, however, that when the min and max points are equal our hyperbox shrinks to 

the point. It is to say that our algorithm is capable of classification/clustering inputs in a 

form of the n-dimensional vector without any changes to the algorithm because a point 

in n-dimensional space is simply the special case of a hyperbox with the min and max 

points equal.

Because of the size of the modem water distribution networks it is impossible to predict 

and cover all possible combinations of consumption-inflow patterns and anomalies that 

can occur in the network during day-to-day operations. It is not difficult to imagine that 

some of the network states can be labelled (i.e. normal operating state etc.) and others 

cannot.

In order to allow labelled and unlabelled inputs to be processed an additional index, 

dh = 0 meaning that the input pattern is not labelled, has been introduced. Using neural 

network phraseology we attempt to define hybrid, supervised (labelled inputs - 

classification) and unsupervised (unlabelled inputs - clustering), NN. This fusion of 

supervised and unsupervised NNs resulted in several changes in our algorithm in 

comparison to the original Fuzzy Min-Max NNs. These alterations are discussed below.
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6.4.2. The differences between membership functions

The fuzzy hyperbox membership function plays the crucial role in the Fuzzy Min-Max 

Classification and Clustering algorithms.The decisions whether the presented input 

pattern belongs to the particular class or cluster, whether the particular hyperbox is to be 

expanded, depend mainly on the membership value describing the degree to which an 

input pattern fits within the hyperbox. Following (Simpson, 1992) let the j'-th hyperbox 

fuzzy set, B -, be defined by the ordered set

Bj = { X h, Vj, Wj, bj (Xh, V., Wj) } ■ (EQ 6-1)

for all h=l,2,...,m, where X h -  [Xlh X 1̂] is the h-th input pattern,

is the min point for the jr-th hyperbox, 

Wj = (Wjp Wj2’ •••» wjn) is Ihe max point for the j-th hyperbox, and the membership 
function for the i-th hyperbox is 0 < b . ( X h, W.)

It is a natural assumption that the degree of membership of X h for the hyperbox Bj is 

one if X h is contained within the hyperbox Bj , and the degree of membership decreases 

as X h moves away from the hyperbox B j .

Unfortunately neither the membership function presented in (Simpson, 1992) 

(Figure 6-2) nor the membership function presented in (Simpson, 1993) (Figure 6-3) 

satisfy this assumption. The two dimensional example shows that even for patterns that 

are far from the hyperbox the membership values are large. It can also be observed that 

the membership values do not decrease steadily with increasing distance from the 

hyperbox.

To meet the required criteria a new membership function has been defined and is 

presented in Figure 6-4. The short interpretation of this function could be put in words as 

the minimum value of maximum min-max hyperbox points violations for all dimensions. 

The one dimensional membership function is shown in Figure 6-1.

It can be noticed that in the membership function from point c the sensitivity parameter 

Y = [ , J2’ • • • > Yn] that regulates how fast the membership values decrease, is specified 

for each dimension. The reason why we introduced the sensitivity parameter for each 

dimension (in comparison to one y for all dimensions in original algorithm) is the fact 

that our input patterns can consist of different physical quantities (i.e. node pressures, 

inflows) that may need to be tuned using different yi .
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Figure 6-1: One dimensional membership 

function for the hyperbox B and i-th 
dimension. Examples for different y.

a) _L v
b j  (A h) = 2n ^  (0, 1 -  majc (0, y min ( 1, ahi -  w ^ ) ))  +

i = 1
+max (0, 1 -  max  (0, ymin ( 1, v- -  ahi) ) )  ]
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Figure 6-2: The example of membership function by presented in (Simpson, 1992) for 
the hyperbox defined by min point V=[0.2 0.2] and max point W=[0.3 0.4]. Sensitivity

parameter y=4
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Figure 6-3: The example of membership function bj presented in (Simpson, 1993) for 
the hyperbox defined by min point V=[0.2 0.2] and max point W=[0.3 0.4]. Sensitivity

parameter y=4

bj{Xh) = min {min ( [ 1 - / ( * “ . -  wj(, y.) ] ,  [ \ - f ( v j i - xhi, yt) ] ) )
i= l . .N

b=0.2 b=0.1
b=0.3
b=0.4

- b=0.5 
b=0.6 

• b=0.7 ' 
b=0.8\
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0.7

0.6
b=0.'

0.5
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0.3
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0.2 0.3 0.4 0.6 0.7 0.9 0 0
Figure 6-4: The two dimensional example of membership function bj used in the GFMM 
classification/clustering algorithm. The hyperbox is defined by min point V=[0.2 0.2] 

and max point W=[0.3 0.4]. Sensitivity parameter y=A.
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6.4.3. Hyperbox expansion

The constraint regulating the maximum size of the hyperbox is slightly different in our 

algorithm than in original versions.

Not using the sum in the constraint allows us to control the size of the hyperbox for each 

dimension. We know that the difference between max and min value for each dimension 

will not be greater than the user specified value 0 , which cannot be said in case of using 

the original constraint.

Other differences in the expansion constraint result from admitting both labelled and 

unlabelled input patterns.

Assuming that the part of the hyperbox expansion constraint represented by the formula

y ( m a x  (W j . ,  Xuh i)  -  m i n  x [ . ) ) < G has been met we have to consider the following 

possibilities:

1) If the input pattern X h is not labelled (dh = 0 ) then the hyperbox B. can be adjusted 

to include this pattern.

2) If the input pattern is labelled (dh ^  0 ) - belongs to the particular class specified by 

dh - the three additional cases have to be considered:

a) If the hyperbox Bj is not a part of any of the existing classes (class (Bj) = 0 ) then 

adjust the hyperbox i f  to include the input pattern X h and since this input is labelled as 

belonging to the class specified by dh set class (Bj) = dh .

b) If the hyperbox B . is a part of the class specified by index dh of the current input 

pattern X h (class (Bj) = dh) then adjust the hyperbox Bj .

c) If neither a nor b then take another hyperbox and test for possible expansion.

6.4.4. Hyperbox overlap test

Similarly to the hyperbox expansion part of the algorithm the difference between our 

algorithm and the Fuzzy Min-Max Classification NN arises from the admittance of 

labelled and unlabelled input patterns.

As a consequence we have to tackle the problem of overlapping hyperboxes not only 

being part of different classes (like in the Fuzzy Min-Max Classification NN) but also all 

these hyperboxes that are not labelled.
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The resulting scheme could be described as follows.

1) If the hyperbox B ., expanded in the last expansion step, is not labelled then test for 

overlapping with all the other hyperboxes. This ensures that all unlabelled hyperboxes do 

not overlap with any of the other existing ones.

2) If the hyperbox Bj,  expanded in the last expansion step, belongs to one of the 

existing classes then test for the overlap only with the hyperboxes not being part of the 

same class as B j . Notice that this allows the hyperboxes belonging to the same class to 

overlap.

6.4.5. Hyperbox contraction

There have been no changes in this part of algorithm in comparison to the Fuzzy Min- 

Max Classification NN, but few problems have been noticed and partially solved by 

introduction of an adaptive max size of the hyperbox. In other words the user defined 

parameter 0  is changed during the learning process. The problems that have just been 

mentioned will be discussed later during presentation of examples.

6.4.6. An adaptive maximum size of the hyperbox

In the original Fuzzy Min-Max NNs the user defined parameter © controlling the 

maximum size of created hyperboxes is set up at the beginning of learning process and 

stays the same all the time. To find the best value of this parameter the network has to be 

trained for several different ©s and verified by checking the number of misclassifications.

After testing the algorithm for different types of data we can say that setting the 

parameter © at the beginning and not changing it during the training of the network can 

have undesired effects on performance or the number of created hyperboxes. A large 

value of 0  can cause too many misclassifications, especially when there are complex, 

overlapping classes. On the other hand when © is small many unnecessary hyperboxes 

may be created, especially for concentrated, stand-alone groups of data which normally 

would form one class. But of course small 0  helps to resolve overlapping classes.

These problems have been addressed by introducing an adaptive maximum size of the 

hyperbox.

The idea is to start training the network with large 0  and decrease it (if necessary) in 

subsequent presentations of the data. In original versions of the algorithm the training

108



Chapter 6 :  6.5.Implementation o f  the neural network

stops after presenting the data once. Using the adaptive maximum size of the hyperbox 

requires defining the stopping condition - in other words when the training should be 

assumed to be completed.

Let us first consider the simplified case where input patterns are points in n-dimensional 

space. Assuming that there are not two identical points in the data labelled as belonging 

to two different classes we can say that the training is completed when after presentation 

of all input patterns there have been no misclassifications for the training data.

In the case of input patterns being represented by lower and upper bound values for 

each dimension it is a reasonable assumption that two patterns labelled as belonging to 

two different classes can have overlapping regions. Consequently the stopping condition 

has to be augmented in order to ensure the finite training time. This has been achieved by 

specifying the minimum value that the parameter © can take.

After this augmentation the stopping condition is defined as follows.

The training is completed when:

a) after presentation of all training patterns there have been no misclassifications for the 

training data

or

b) the minimum, user specified value of the parameter © has been reached

The equation defining the decreasing process of © after each presentation of the 

training data is

- - .n e w  s ^ o ld
© = 9 © (EQ 6-2)

where: (p -  the coefficient responsible for the speed of decrease of © (0<(p<l)

6.5. Implementation of the neural network

The neural network that implements the GFMM clustering-classification algorithm is 

shown in Figure 6-5. The network grows adaptively to meet the demands of the problem. 

The input layer has 2*n processing elements, two for each of the n dimensions of the input 

pattern X h = [Xlh X uh] . Each second layer node of this three-layer neural network 

represents a hyperbox fuzzy set where the connections of first and second layer are the 

min-max points and the transfer function is the hyperbox membership function. The min
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I

Input Hyperbox Class
Nodes Nodes Nodes

Figure 6-5: The three layer neural network that implements the GFMM clustering-
classification algorithm.

points are stored in the matrix V and the max points are stored in the matrix W. The 

connections are adjusted using the algorithm described in section 6.3. The min points 

matrix V is applied to the first n input nodes representing the vector of lower boundaries 

X lh of the input pattern and the max points matrix W is applied to the other n input nodes 

representing the vector of upper boundaries X uh of the input pattern. A detailed view of 

the j-th second layer node is shown in Figure 6-6. The connections between the second 

and third layer nodes are binary values. They are stored in the matrix U. The equation for 

assigning the values of U is

J 1 if b - is a hyperbox for class c .

* * - t o  Otherwise (EQ 6' 3)

where b- is the j-th second layer node and ck is the k-th third layer node. Each third layer 

node represents a class. The output of the third layer node represents the degree to which 

the input pattern X h fits within the class k. The transfer function for each of the third layer 

nodes is defined as

m
ck = max b.ujk (EQ 6-4)

j= i

for each of the p+1 third layer nodes. Node cQ represents all unlabelled hyperboxes from 

the second layer. There are two main ways that the outputs of the class (third) layer nodes
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can be utilized. If a soft decision is required, the outputs are utilized directly. If a hard 

decision is required, the class layer node with the highest value is located and its node 

value is set to 1 to indicate that it is the closest pattern class, and the remaining third layer 

node values are set to 0. This last operation is commonly referred to as a winner~takes~all 

response.

w,

Figure 6-6: A detailed view of the j-th second layer node. The node with 
its associated membership function and connections in form of vectors 

Vj and Wj represents a hyperbox fuzzy set.
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6.6. Examples

The following examples illustrate different aspects of the classification and clustering 

algorithms presented in previous sections.

6.6.1. Example 1 - Two dimensional clustering

A two dimensional data set consisting of 26 data points was constructed to show how
a) b)
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Figure 6-7: FLC and Min-Max differences between representation and created clusters

the Adaptive Fuzzy Leader Clustering NN and GFMM NN used as a clustering NN 

perform. In Figure 6-7 we can observe the difference between representation of clusters 

in these two algorithms:

a) centroids (represented by **’) and Euclidean distance (circles representing maximum 

range for each cluster)

b) hyperboxes (for a two dimensional case - rectangles) and Hamming distance 

(distance measured from the edges of an ^-dimensional hyperbox).

However designing the pure clustering NN is not our prime objective. Testing of these 

two algorithms for various threshold parameters T in AFLC and various maximum 

hyperbox sizes © in GFMM algorithm showed that:

a) it is very important to have a feel for the appropriate values of these parameters for 

specific data sets and

b) one has to be prepared for possibility of getting different sets of clusters for the same 

set of training data since both algorithms are sensitive to the order of pattern presentation.
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6.6.2. Example 2 - Classification of patterns in form of lower and upper 
boundaries vectors

The data set used in this example was constructed in order to show the performance of 

GFMM algorithm on fuzzy input patterns and at the same time to present the potential 

advantages of the adaptive maximum size of a hyperbox scheme. This data set consists 

of 42 input patterns representing three classes. The first and second class have been con­

structed in such a way that finding the boundaries between them is non-trivial while the 

third class is a set of patterns standing alone and not overlapping with the other two. 

Two slightly different contraction procedures have been used. The difference is reported 

in the table below and regards only Cases 1 and 2 of the contraction part of the algo­

rithm:

Procedure 1 (as presented in 
Table 6-1) Procedure 2

Case 1: vyA <  v kA  <  wj A  <  w kA

o l d  o l d  
y ,  +  W n e w  n e w  k A  j  A

V k A  ~ W j A  ~  2 
Case 2: v kA <  vj A  <  w kA <  w j A

o l d  o l d  
n e w  n e w  v j A  +  W k A  

V,A  =  2

Casel: vj A < v k A < w j A < w kA

n e w  o l d  
V k A  =  w j A

Case 2: v kA <  vJA <  w kA <  w j A

n e w  o l d  
W k A  =  v j A

The training in both cases was performed in 11 passes through the data set and testing 

produced perfect recall. The starting growth parameter was 0=0.1 and the coefficient 

responsible for the decreasing speed of 0  was (p=0.9. The training resulted in the 

formation of 9 hyperboxes for procedure 1 and 8 hyperboxes for procedure 2. The created 

hyperboxes are shown in Figure 6-8. To show the differences between contraction 

procedure 1 and 2 the detailed picture of created hyperboxes for class 1 and 2 are 

presented in Figure 6-9 and Figure 6-10 respectively. The actual difference between these 

two procedures is that (for the cases 1 and 2) in the first (original) one both the 

overlapping hyperboxes Bj and Bk are contracted while in the second one the currently 

expanded hyperbox Bj is allowed to fully include the input pattern and the contraction is 

applied only to the hyperbox Bk. In this example using the second contraction procedure 

resulted in all training patterns having full memberships in appropriate hyperboxes, 

classes.
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Figure 6-8: The result of neural network training for two different contraction procedures:
0.450.25 0.3 • 0.35 0.4 0.50.15 0.2 0.55

a) procedure 1; b) procedure 2
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Figure 6-9: Class 1 and class 2 of the example for the first contraction procedure.The 
small rectangles with ‘o’ inside - input patterns that belong to the class 1, the rectangles 

with **’ inside - input patterns that belong to the class 2
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Figure 6-10: Class 1 and 2 of the example for the second contraction procedure.The
small rectangles with ‘o’ inside - input patterns that belong to the class 1, the rectangles

with ‘** inside - input patterns that belong to the class 2
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To illustrate the superior performance of the algorithm with the adaptive maximum size 

of a hyperbox over the algorithms with parameter 0  preset and kept constant during the 

training, the training of the network for a few different constant 0 s have been carried out. 

The results are shown in Figure 6-11.

In the table the short statistic is shown in a form of a number of hyperboxes created and 

number of misclassifications for values of 0  ranging between 0.08 and 0.033.

To obtain the perfect recall (zero misclassifications) for the training data the growth 

parameter had to be set to 0=0.033 which resulted in the formation of 17 hyperboxes in 

comparison to 9 and 8 formed while using the adaptive maximum size of a hyperbox 

scheme.

Notice that 5 hyperboxes (Figure 6-11) have been formed for class 3 while 1 would be 

sufficient.

0.5

0.4

0.3

0 2

0.1

0.1 0.2 0.40.3 0.5

Q
Number of 
hyperboxes

Misclassifi­
cations

0.08 4 10
0.07 6 6
0.06 7 3
0.05 9 6
0.04 12 2

Figure 6-11: The result of NN training for the 42 input pattern data set (3 classes). Left: 
the hyperboxes created for 0=0.033 - the biggest © for which there have been no 

misclassifications for the training data. Right: the table showing the number of created 
hyperboxes and number of misclassifications for various © (0 was constant during

training).

6.6.3. Example 3 - The example of clustering/classification of labelled and 
unlabelled fuzzy input patterns.

This example was constructed to show the ability of the algorithm to process fuzzy 

labelled and unlabelled input patterns. The data set consists of 26 patterns from which 15 

are labelled as belonging to one of 4 classes and the remaining 11 are unlabelled. The
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starting growth parameter 0=0.1 and (p=0.9. The training has been completed in 3 passes 

through the data set and 4 hyperboxes have been formed. The algorithm performed as 

expected and dealt successfully with both labelled and unlabelled patterns. It allowed 

unlabelled patterns to be included into the labelled hyperboxes while resolved all 

overlappings between hyperboxes from different classes.
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Figure 6-12: The example of clustering-classification of the fuzzy 
labelled and unlabelled patterns. The unlabelled patterns are the 

rectangles with ‘o’ mark inside.

6.6.4. Example 4 - The Fisher iris data

The Fisher iris data set was selected because of the huge number of results available 

from a wide range of classification techniques that can provide a measure of relative 

performance. The iris data consists of 150 four-dimensional feature vectors (patterns) in 

three separate classes, 50 for each class. In a way this example is very similar to example 

2. In example 2 we considered the case of three classes where two of them were 

overlapping and the third easily distinguishable from the others. In the case of iris data 

we have two species of flowers that can be confused (similar features - class 2 and 3) and 

the third one with characteristic features allowing to distinguish it from the other two 

(class 1). Several test data sets have been used to determine the performance of our 

algorithm. The results will be presented for the following test data sets:

1) 25 randomly selected patterns from each class have been used for training and the 

remaining 75 for testing

2) all available data patterns have been used for training and testing
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Since our algorithm evolved from the concept of the fuzzy min-max classification and 

clustering NNs it would be interesting first to compare the performance of these two 

algorithms.

For the test data set as in the point 1 the results presented in (Simpson, 1992) are as 

follows. The growth parameter was 0=0.0175 and the number of hyperboxes built was 

48. Training was performed in a single pass through the data set. The number of 

misclassifications was 2.

In comparison our algorithm produced 5 hyperboxes for starting parameter 0=0.3 and 

9=0.9. Training was completed in 3 passes through the data set. The number of 

misclassifications was 1.

The algorithm has been tested for different starting parameters 0  ranging from 0.7 to 

0.03, two different contraction procedures (presented in example 2), and two test data sets 

(as shown above). Some of the results are shown in Table 6-2.

Test
data
set

Start­
ing 0

Contraction procedure 1 Contraction procedure 2

No of 
hyper­
boxes

Passes
through

data
Final ©

Misclas­
sifica­
tions

No of 
hyper­
boxes

Passes
through

data
Final ©

Misclas­
sifica­
tions

1 0.3 6( 1/2/3) 7 0.1594 1 5( 1/2/2) 3 0.2430 1
1 0.06 29(7/10/

12)
1 0.06 2 29(7/10/

12)
1 0.06 2

1 0.03 49(15/
17/17)

1 0.03 0 49(15/
17/17)

1 0.03 0

2 0.3 10(1/5/
4)

16 0.0618 0 7 (1/3/3) 7 0.1594 0

2 0.06 43(10/
14/19)

1 0.06 0 43(10/
14/19)

1 0.06 0

Table 6-2: The results of classification of the Fisher iris data by the proposed general 
fuzzy classification-clustering neural network 

The numbers in brackets in “No of hyperboxes” column represent the number of hyperboxes 
formed for each of the three classes (classl/class2/class3)

As we can see from the results in Table 6-2 the proposed method produced, in general, 

considerably fewer hyperboxes then the fuzzy min-max classification NN with fewer 

misclassifications.

The comparison of the performance of the proposed algorithm with several other 

neural, fuzzy, and traditional classifiers on the same data set is presented in Table 6-3.
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This comparative performance test demonstrates that the proposed algorithm performed 

better then other listed classifiers.

Technique Misclassifications

Bayes c lassifie r1 2
^-nearest neighbour 1 4
Fuzzy k-NN 2 4
Fisher ratios 1 3
Ho-Kashyap 1 2
Perceptron 3
Fuzzy perceptron 2
Fuzzy min-max NN 1 2
GFMM algorithm 1 1/0
GFMM algorithm 3 0

Table 6-3: A comparison of the classification performance of various traditional, fuzzy,
and neural classifiers

1 Training set comprised 75 points (25 from each class) and test set comprised the remaining data 
points
2 Training data comprised 36 data points (12 from each class) and test set comprised another 36 
points. The results were then scaled up to 150 points for comparison.
3 Training and testing data were the same.
The results in this table have been taken from  (Sim pson, 1992).

6.7. Discussion and conciusions

The need for the interpretation of the results of state estimation and confidence limit 

analysis of water distribution network directed our investigation into clustering and 

classification neural networks. This effort resulted in developing a new, robust fuzzy 

neural algorithm. Similar to the fuzzy min-max NNs this method utilizes min-max 

hyperboxes as fuzzy sets. The advantages of our generalised fuzzy clustering- 

classification neural system over the fuzzy min-max neural networks discussed in 

(Simpson, 1992) and (Simpson, 1993) can be summarised as follows:

1) Input patterns can be fuzzy (hyperboxes in pattern space) or deterministic (points in 

pattern space).

2) The fusion of clustering (unlabelled input patterns) and classification (labelled input 

patterns) resulted in more robust algorithm that can be used as pure clustering, pure 

classification or hybrid clustering-classification. This hybrid system exhibits an 

interesting property of finding decision boundaries between classes while clustering the 

data patterns that cannot be said to belong to any of existing classes. This property can be
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particularly useful for multivariable system applications where it is practically not 

feasible to cover all possible states of the system at the training stage. Therefore, the 

mechanism to deal with new input patterns, that have never been presented to the neural 

network before, has to be provided.

3) Because of the introduction of the adaptive size of a hyperbox our method tends to 

define larger hyperboxes without sacrificing the recognition rate and as it has been shown 

in case of the Fisher iris data, it produced considerably less hyperboxes (5 or 6 in 

comparison to 48 produced by the fuzzy min-max NN) with less misclassifications.

It is also worth mentioning that training of this neural network is very fast and as long 

as there are no identical data belonging to two different classes, a recognition rate for 

training data is 100%. Since all the operations in the algorithm are relegated to simple 

compare, add, and subtract operations, the resulting algorithm is extremely efficient.

Because this method works by covering the pattern space with hyperboxes and in this 

way forming the decision boundaries its performance will deteriorate when the 

characteristics of the training and test data will be very different. Therefore it is important 

to provide as representative training data for the problem as possible.

Having developed the GFMM algorithm the next chapter presents the results of 

applying it to water distribution network.
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Chapter 7

Fault detection and identification - 

neural classification in water 

systems

7.1. Introduction

Two broad categories of faults occurring in water distribution systems are considered 

in this work. The faults due to malfunctioning of transducers and telecommunication 

equipment are referred to as the measurement errors. And the faults due to leakages and 

wrong status of valves, invalidating the system model used in the estimation, are referred 

to as the topological errors.

The crucial difference between these two types of errors is the fact that although both 

are responsible for poor state estimates, the meter malfunctions do not have any bearings 

on the actual state of the system while the leakages or the valve status errors directly 

affect the physical system and can result in service disruptions. It is also the case that the 

measurement errors are uncorrelated and if there is a high enough local measurement 

redundancy it is often possible to reject erroneous data by using a suitable estimation 

procedure as described in Chapter 4. On the other hand, model based errors give rise to 

correlated changes in groups of incoming signals. In such a case the state estimation 

procedure trying to compensate for invalid network model results in a set of errors 

scattered across the network. In general, the rejection scheme used for uncorrelated 

measurement errors does not work very well in this case and some further analysis is 

required in order to diagnose the cause of error.

So, it is evident that the topological errors not only pose a much greater danger to the 

safety of water network operation but also are more difficult to locate and eradicate.
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However, depending on the topology of the distribution network and the state estimator 

used, the aforementioned scatterings of errors form characteristic patterns that can be 

utilised to classify the state of the network.

This chapter presents the application of the GFMM neural network to this classification 

of the states of a water distribution system (Gabrys & Bargiela, 1997b).

The organisation of this chapter is as follows. The review of the previous work on the 

subject of bad data detection and identification is presented in Section 7.2. This is 

followed by Section 7.3 concerning the neural network based fault diagnosis system 

where the aspects of training and testing of the neural network using state estimates and 

residuals with confidence limits are discussed. And finally, the closing section of this 

chapter presents the discussion and conclusions.

7.2. Review of the previous work

Very often the algorithms found in the literature and referred to as bad data analysis are 

concerned with the identification and rejection of erroneous measurements and do not 

attempt to identify the underlying cause of the bad data. A number of methods dealing 

with the bad data detection and identification have been discussed in Section 4.2.1 of 

Chapter 4 while presenting different estimation methods.

This literature review will concentrate on methods of post-estimation stage of 

processing and interpreting the results of state estimation for fault detection purposes. 

Rather than only asking the questions: Are the state estimates accurate? How to construct 

the state estimation procedure in order to reject anomalous data?; one would like to know 

the answers to the questions: What do those state estimates mean? Is the current state a 

normal operating state of the network? Is there a leakage presentthat requires a remedial 

action? etc.

Somewhat surprisingly, while there is a large body of work concerning the robust 

estimation procedures the fault diagnosis algorithms in water distribution systems are not 

that well represented.

Bargiela introduced the idea of bad data analysis in water distribution systems state 

estimation (Bargiela, 1984). In order to distinguish between the measurement and 

topological errors his method checks the magnitude and sign of the weighted
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measurement residuals at each end of a pipe. It was shown that the presence of either a 

leakage or incorrect status of control valves is equivalent to neglecting a part of the actual 

network structure thus producing an imbalance at the network nodes adjacent to the pipe 

in question. The idea therefore was that the topological error can be thought of as a pair 

of erroneous load measurements for which the error terms (residuals representing the 

mass balances at those nodes) are carrying information about a type of topology error. 

Figure 7-1 gives a graphical representation of Bargiela’s method.

Modelled Estimated

qij=q

Cl)—

qij=0

© — c><]— ( 7 )

Figure 7-1: Identification of topological errors as presented 
valve monitored as open; b) opened vaive monitored as

Although these ideas are very useful they rely on the high local measurement 

redundancy ratio so that the erroneous data can be rejected. It is not always the case and 

the effect of topological error occurrence cannot be restricted to the end nodes of affected 

pipe but is spread in the larger area around the leaking pipe.

This fact was recognised by Powell (Powell, 1992) whose method is based on finding 

paths linking groups of high measurement residuals. Once the connecting paths between 

high residuals have been identified, heuristics are applied to determine the location and 

cause of errors. In these heuristics the residuals are sorted by type, direction, magnitude 

and location. For instance if the leakage is present in the network the pressures in an area 

near to the leakage will decrease. On the other hand, if there is a blocked pipe in the

Actual

ri_qipqij rj—qij-qij

by Bargiela: a) closed 
closed; c) leakage.
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network the pressure upstream of this pipe will be high and downstream it will be low. 

Since the changes in pressure are characteristic for different faults one should be able to 

observe those changes in the residuals representing the pressure measurements in 

mathematical model of the network.

Other publications on the subject for water distribution systems concern mainly leakage 

detection studies.

Pudar and Liggett (Pudar & Liggett, 1992) attempted the leak detection task by solving 

an inverse problem. This inverse problem is essentially the state estimation procedure 

with additional state variables being the unknown leaks. The method assumes that the 

leaks occur in the nodes and do not change the topology of the network. Furthermore, the 

locations of suspected leakages are assumed to be known. Unfortunately, both 

assumptions are a gross oversimplification.

Carpentier and Cohen in the paper (Carpentier & Cohen, 1993) tell the story about 10 

years of involvement of their research group in the application of mathematical 

techniques for the management of complex water supply networks. One of the two main 

topics discussed is state estimation and leak detection. The leakage detection in this work 

is based on a comparison of the consumption values estimated on-line, using current, real 

flow measurements, with the pseudomeasurements of the same consumptions considered 

as standard values in the normal situation (without any leakages present). These 

pseudomeasurements are obtained from 24-hour mathematical model of the normal 

network operations. Throughout this work a heavy emphasis is put on the necessity of 

having the well calibrated model of the network. The performance of the method was 

tested on a real subnetwork of the water network of the city of Paris. The leakages were 

introduced to the network by opening fire-plugs in some places. The fact that experiments 

were carried out on the real network give additional weight to the results. The weights in 

the weighted least squares criterion are chosen in such a way that the errors occur in nodal 

mass balance equations and represent increase in nodal consumptions. Occurrence of a 

set of significant errors in some area of the network is treated as a sign of leakage presence 

in this area. No attempts were made to further process these errors in order to find a 

reduced number of the most likely pipe(s).
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7.3. Neural network based fault diagnosis

7.3.1. Two interpretations of confidence limits

In any pattern classifier design problem it is necessary to have a representative set of 

accurate training examples. Since we would like to utilise the information about 

confidence limits in the process of constructing our classification system it is absolutely 

necessary to understand what is the meaning of those confidence limits when calculated 

for different values of state estimates and if and when they can be used in the training 

stage without compromising the performance of the pattern classifier.

The two interpretations of confidence limits referred to in the title of this section can be 

explained by imagining two different experiments.

x i,cross

I,*star

Figure 7-2: Graphical representation of state estimates and confidence limits for 
accurate and inaccurate measurements, x. - estimate for the i-th state

acc

variable calculated for accurate measurements; x\ , x u - the lower and upper
acc l acc

bound for x. ; x. and x. are the two examples of the i-th state variable
acc star cross

estimate calculated for inaccurate measurements.

In the first experiment the estimates are calculated for accurate measurements. If one 

also assumes that the mathematical model of the process used in the estimation procedure 

accurately represents the behaviour of the physical system, a true state estimate of the 

system can be obtained. This is denoted by x- in Figure 7-2 for the i-th state variable.
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However, since the measurements have a finite accuracy it is interesting to know how 

sensitive is the state estimate to the measurement inaccuracies. In this case, the 

confidence limits calculated for the true state represent the boundaries within which all 

estimates of this true state will fall as long as the measurements used are at least as 

accurate as the ones taken to compute the confidence limits themselves. In Figure 7-2 the 

lower and upper bound for the i-th state variable are denoted x. and x u. respectively.
acc acc

In other words, if for the purpose of pattern classification the true state was labelled as 

“the normal operating state” all the estimates falling within its confidence limits could be 

classified as “the normal operating state”.

In the second experiment the estimates are calculated for a set of measurements that are 

measured with some finite error. This is to say that the true state is unknown and for a 

given set of inaccurate measurements one can only compute the best estimates of this true 

state. Two examples of the instantaneous estimates of the true state value x. are denoted
(ICC

by x. and x. in Figure 7-2. Unlike the confidence limits computed for the true state,
star cross

the confidence limits found for any of the instantaneous estimates only indicate that the 

true state value is contained within their range. The confidence limits for x. and x .
star *cross

are depicted in form of dashed vertical lines in Figure 7-2. When in the extreme case the 

estimated values were equal to x.  or x “ using the confidence limits for such estimates
acc acc

during the training of the classification network would mean the introduction of 

additional 50% error to the cumulative error resulting from inaccurate measurements.

It follows from the above that when the true state (or a very good estimate of it) can be 

computed, than the confidence limits found for such an estimate directly give a hyperbox 

(cluster) without the need to use a large number of instantaneous estimates during the 

training (which would arrive at the same cluster).

However, when the sufficiently accurate estimate of the true state cannot be found one 

has to resort to a large number of correctly labelled instantaneous estimates.

7.3.2. Generating the training data

While for the well maintained water distribution systems the normal operating state 

data can be found in abundance the instances of abnormal events are not that readily 

available. In order to observe the effects of abnormal events in the physical system one 

sometimes is forced to resort to deliberate closing of valves or opening of hydrants (to
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fixed-head node 
load node

load or inflow 
parabolic pump 
valve

Figure 7-3: 34 - node water network with numbered pipes. The pipe numbers are at 
the same time the indexes of classes representing leakages at these pipes.

simulate leakages) (Carpentier & Cohen, 1993). Although such experiments can be very 

useful to confirm the agreement between the behaviour of the physical system and the 

mathematical model, it is not feasible to carry out such experiments for all pipes and 

valves in the system during the whole day or days as might be required in order to obtain 

the representative set of labelled data.

It is an accepted practice that, for processes where the physical interference is not 

recommended or even dangerous, mathematical models and computer simulations are 

used to predict the consequences of some emergencies so that one might be prepared for 

quick response. In our case the computer simulations were used to generate data covering 

24 hour period for the water distribution network depicted at Figure 7-3.

The 24 hour profiles of consumptions and inflows that characterise the normal 

operating states throughout the day are shown at Figure 7-4, Figure 7-5 and Figure 7-6.

126



Chapter 7:  7.3.N eural network b ased  fa u lt diagnosis

*1 ©

O .  I

OS

.06

o

o

,08

. 02

O
0.16

O .  1

0*3

.OS

O

Figure 7-4: 24 hour profiles of consumptions at nodes 1, 8, 29, 30 and 31.
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Figure 7-5: 24 hour profiles of inflows at fixed head nodes 27, 28, 32 and booster
pump between nodes 29 and 18
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Tim

T i m o  t *-*3

Figure 7-6: 24 hour profiles of inflows at fixed head nodes 33, 34 and heads at
reservoir nodes 29, 30, 31.
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From the classification system point of view the most interesting values are the state 

estimates, residuals and their confidence limits. Traditionally the confidence limit 

analysis was applied to the state estimates for the reasons explained in Chapter 5, while 

the bad data analysis was conducted using only residuals.

In this work we would like to explore the potential of using both state estimates with 

their confidence limits and residuals with their confidence limits for the fault diagnosis 

purposes.

It was shown in Chapter 5 how confidence limits can be found for state estimates but in 

order to carry out the confidence limit analysis for residuals the augmented matrix 

formulation of the LMS problem can be used.

In this formulation the solution to the LMS problem given by the equation:

A T (AA x - b )  = » (EQ 7-1)

can be rewritten in the following augmented form where the residuals, r  = A A x - b , 

are included directly into the vector of unknowns

- /  A r b
T

A  0 Ax 0

Once the vector of unknowns has been augmented to include residuals the confidence 

limits can be now computed both for state estimates and residuals as described in Chapter 

5.

The process of generating the training data is shown in the form of block diagram at 

Figure 7-7. It consists of three major blocks.

The system simulation is a substitute for the physical water distribution network. It is 

this module where the leakages are simulated by updating the topology information rather 

than opening hydrants. In the second module the estimation process is carried out for 

accurate measurements taken from the simulation module but without a knowledge of 

any anomalous event that might have happened, as would be the case in the real 

distribution network. In the third module the confidence limits are found for state 

estimates and residuals calculated at the estimation stage. Additionally to the state 

estimates with their confidence limits and residuals with their confidence limits the 

system’s status or label of the current pattern is stored.
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System’s status (i.e. normal 
operating state, leakage between 

node i and j, etc.)

Accurate 
input data

Physical
system

simulation

Accurate
measurements

Actual
topology

Estimation

Topology as 
known by the 

system

State 
estimates and 

residuals

State 
estimates and 
residuals with 

confidence 
limits

►
Confidence

limits

Information about 
accuracy of meters 
and variability of 

consumptions

Figure 7-7: Graphical representation of the training patterns generation scheme.

Simulation o f leakages

In the physical system simulator, the leak is modelled as an additional demand lying 

midway between the two end nodes of the pipe. This additional demand is not modelled 

as a pressure dependent variable and thus can be set to any desired value. The reservoirs 

inflows and other network consumptions are adjusted to cover the additional demand 

resulting from leak. The pumping stations are assumed to produce a constant inflow and 

are not affected by leakages. By systematically working through the network, ten levels 

of leaks were introduced, one at a time, in every single pipe for every hour of the 24 hour 

period. This resulted in generating 9840 labelled input patterns for leakages ranging from 

0.002 to 0.029 [m3/s].

Simulation of wrong status of valves

In a similar fashion to the introduction of leakages valves in the network that are 

normally open were simulated as closed and labelled patterns in form of state estimates 

and residuals with confidence limits were stored. Additional 96 patterns have been 

generated in this way.

The whole set of parameters used during the generation of the training set are shown at 

Table 7-1.
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Head measurements 1 ,2 ,4 , 8, 11, 15, 17, 19, 22, 29, 30,31

Fixed head inflow measurements 27, 28, 29, 3 0 ,3 1 ,3 2 ,3 3 ,3 4

Consumptions and pseudomeasurements All nodes

Leak levels 0.002, 0.005, 0.008, 0.011, 0.014, 0.017, 
0.020, 0.023, 0.026,0.029 [m3/s]

Parameters used in confidence limit analysis

Accuracy of head measurements at load 
nodes +- 0.1 [m]

Accuracy of inflow measurements + 1 $

Variability of consumptions +- 10%

Table 7-1: Parameters used during generation of the training data set.

7.3.3. State estimates and classification system design

In the first attempt of constructing the recognition system based on state estimates the 

set of 9864 training patterns representing 42 categories were used. The training data 

spanned across 24 hour period of water network operation. The 42 categories stood for 

normal operating state and leakages in 41 pipes of the network depicted at Figure 7-3. 

The indexes d^ (see GFMM algorithm description Chapter 6, Table 6-1) of classes were 

chosen as follows: dh=l - normal operating state; dh=2 - leakage in pipe between nodes 

3 and 4; dh-3  - leakage in pipe between nodes 4 and 20; and the rest of indexes as shown 

at Figure 7-3.

The training data had to be first scaled in order to be contained in the range (0,1) as 

required by the GFMM algorithm. The effective range of values for the nodes’ head state 

variables was chosen to be between 20 and 60 [mH20], and for inflows between -0.2 and 

0.2 [m3/s]. There were 6 state variables (heads in fixed-head nodes 27,28, 32, 33, 34 and 

inflow at node 32) that did not change during the 24 hour simulation period and since they 

did not introduce any additional information that could be used to distinguish between 

patterns from different classes they were excluded from the training set. Ultimately the 

training set contained of 9864 examples of 36 dimensional input vectors.

The initial max size of hyperboxes was set to a fairly large value 0=0.1 and the 

coefficient cp responsible for the speed of decreasing of 0  was set to cp=0.9. The training 

was completed after two runs through the training data and the final value of 0  was 0.09.
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Although technically there were no misclassifications for the training set after 

examining the membership values it was noticed that a large number of input patterns 

have been classified as fully belonging to more than one class (in GFMM algorithm an 

input pattern can belong fully to two or more different classes only if it lays on the edge 

of two or more hyperboxes representing different classes and being adjacent to each other 

at the same time). Since the max size of hyperboxes was rather large it might have been 

the reason for the behaviour of the recognition system. In an attempt to check what role 

did the size of parameter 0  play in the above experiment another training for the same 

data was carried out but this time parameter © was set to the value of 0.04. This value was 

arrived at by analysing the ranges of variability of heads and inflows for minimum and 

maximum simulated leaks for each pipe at each hour. It guaranteed that a range of leaks 

in any particular pipe at any particular hour could be represented by a single cluster.

The training was completed after a single run through the data and as one could expect 

there were no misclassifications for the training set. Although the number of incidents 

where an input pattern have been classified as fully belonging to more than one class has 

been reduced, the problem of not being able to resolve important overlappings remained.

Further analysis of clusters formed during the training and membership values for the 

training set has revealed few important characteristics of the training data. Firstly, there 

are variables in the input patterns that vary over the 24 hour period but are assumed to be 

constant and are not affected by leakages for any particular hour. These variables are the 

pumping stations’ inflows and heads in fixed-head nodes. One can view them as part of 

the state vector that characterises the pattern of network operations in different parts of 

the day. The other part of the state vector comprises of heads in the load nodes and 

reservoirs’ inflows that do change when a leakage occurs. Consequently, the variables not 

affected by leakages and remaining constant prevented the training algorithm from 

resolving overlappings in the part of the input patterns that were affected by leakages. The 

reason for that was that according to the rules used to decide whether two hyperboxes 

overlap, no overlapping could be detected. A solution to this problem has been proposed 

by splitting the state estimates into two parts. These that are not affected by leakages but 

do carry important information about current state of operation of the network and cannot 

be simply discarded; and these that can be used to detect fault occurrence by the virtue of 

their “susceptibility” to any changes in the network. The way of combining the two parts 

of the input patterns will be described later in this section.
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Apart from the problem described above, the analysis showed that the booster pump 

between nodes 29 and 18 acted as a separator of the upper and lower part of the network 

from Figure 7-3 and since changes in one part of the network had no bearings on the other 

part, only the upper part will be used in further investigations.

Before progressing to describing further experiments let us take a closer look at some 

statistics obtained from analysis of membership values for last trial.

The values in Table 7-2 are the average numbers of classes with significant membership 

values (in this case larger than 0.75) for leakages of magnitude varying from 0.002 [m3/ 

s] to 0.029 [m3/s] occurring in different locations. The first thing to be noticed in this table 

are the results for classes with indexes 34, 35 and 38 (leakages in three pipes connecting 

nodes 1,26 and 29). On one hand, the leakages occurring in any of these three pipes result 

in a similar pattern and even for large leakages it is difficult to pinpoint a single pipe 

where the leakage occurred. On the other hand, because nodes 1, 26, 29, 33 and 34 are 

separated by the booster pump between nodes 29 and 18 from the rest of the network, it 

is possible, even for very small leakages, to restrict the possible leakage area to those 

three pipes.

As for the rest of the network, one could try to identify the areas of the network in which 

leakages are more easily detected, compared to other areas, and to find the physical 

reason for such results. For instance, good results for pipes 10, 39, 23 can be explained 

by the fact that there are three accurate measurements in the vicinity (head measurements 

at nodes 2 and 31 and inflow measurement at node 31). Another positive example are 

pipes 14, 16 and 42 with head measurement at node 15. On the other hand, one could 

expect difficulties in detecting and locating a leakage in the area between nodes 8 and 30.
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Index
of

class

Magnitude of leakage

2 [1/s] 5 [1/s] 8 [1/s] 11 [1/S] 1 4  [1/S] 17 [1/S] 20 [1/s] 23 [ys] 26 [ys] 29 [1/s]

2 29 20 16 15 13 11 9 6 3 2
3 34 22 17 16 14 13 11 9 6 3
4 37 22 18 16 15 14 13 10 7 4
5 36 22 18 16 14 11 10 7 6 5
6 33 31 24 20 18 17 13 7 6 5
7 36 23 18 17 15 14 13 10 8 5
8 37 23 19 16 16 14 12 10 8 6
9 35 21 18 15 13 11 9 6 5 4
10 15 13 9 6 5 3 2 ' 1 1 1
11 35 27 20 18 17 15 14 12 9 4
12 32 21 17 14 12 9 7 5 4 2
13 30 18 13 10 7 5 4 3 3 3
14 27 16 11 8 4 3 3 3 1 1
15 32 20 17 13 10 8 6 4 3 3
16 29 17 12 10 6 4 4 3 3 2
17 31 21 16 14 11 9 6 5 3 2
18 35 25 19 18 15 14 11 9 5 4
19 33 33 26 20 17 16 11 6 5 4
20 32 30 28 24 21 17 10 7 5 3
21 33 31 29 25 21 17 11 8 6 5
22 31 27 26 24 21 16 10 9 7 4
23 27 14 10 8 6 5 4 3 3 2
24 30 27 25 23 19 15 11 10 7 5
25 30 27 25 22 19 16 11 10 7 5
26 30 27 25 22 18 14 10 8 7 4
27 35 27 24 20 17 13 7 4 3 2
28 32 24 17 15 12 10 8 6 5 4
29 32 27 24 20 17 14 11 8 7 5
30 32 30 22 15 11 9 7 5 4 3
31 31 27 23 19 17 16 11 8 7 5
32 31 28 23 20 17 15 11 9 7 5
33 31 28 24 21 18 16 12 9 8 6
34 3 3 3 3 3 3 3 3 3 3
35 3 3 3 3 3 3 3 3 3 3
36 31 26 22 18 16 13 9 7 6 4
37 31 28 24 22 19 16 12 10 8 5
38 3 3 3 3 3 3 3 3 3 2
39 18 16 13 11 9 5 2 1 1 1
40 34 27 24 20 16 13 6 4 3 3
41 33 21 18 15 12 9 8 6 5 3
42 29 19 14 11 9 6 4 3 3 1

Table 7-2: Average number of classes with membership values larger than 0.75.
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Two level recognition system

The existence of multiple classes with full membership for a large number of testing 

patterns, in the examples described above, prompted an investigation into an alternative 

formulation of the recognition system. A two level recognition system, shown in 

Figure 7-8, has been proposed as a means of solving the problem. It has been established 

that it is beneficial to split the input vectors into two parts: Xj representing the pump 

stations’ inflows and heads in the fixed head nodes; and representing load nodes’ 

heads and reservoirs’ inflows. In the first level of the system inputs Xj are processed and 

one of the n second level “experts” is selected for further processing of the second part of 

the input pattern Xn  to produce the water system state classification denoted by C.

First level Second level

Classification

Classification

Figure 7-8: Two level recognition system. First level consists of one neural network 
of the type shown at Figure 6-5 and its purpose is to select one of the n second 

level “experts”. Input to the first level NN, Xj, comprises all the variables not 
affected by occurrence of anomaly. Second level consists of n NNs. They are 

called “experts” since each of them is trained using only a part of training set and 
covers a distinctive part of 24 hour operational period. Input to the second level 

NNs, X||, comprises all the variables sensitive to occurrence of anomaly. The 
output of the second level NNs is the classification of the water network state.

Classification
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In terms of water distribution systems the purpose of the first level of this recognition 

system is to distinguish different typical behaviour of the water system (i.e. night load, 

peak load etc.) while the second level components are responsible for detection of 

anomalies for some characteristic load patterns. The second level can be, therefore, 

viewed as “experts”. From this definition it is easy to see that if there are distinctive 

variations in typical network behaviour for different days of the week or seasons of the 

year they can be accommodated without the need to retrain the existing networks; a new 

expert network is added to the second level and the size of the first level network is 

increased accordingly. It can be now appreciated why such a great emphasis has been put 

on the property of GFMM neural network to be able to grow to meet the demands of the 

problem.

Although the initial reason behind splitting the input vectors into two parts was the need 

to eliminate full membership of input patterns in multiple classes, there are additional 

benefits of this operation. Firstly, the dimensions of the input patterns processed by neural 

networks in the first and second level are reduced in comparison to the full input pattern 

X since X ^ 1, Xjpxl, Xn lxl and k=p+l. Secondly, the fact that only one of the “experts” 

is selected for further processing also means that the other n-1 “experts” are not active. 

In this way another dimensionality reduction is achieved since each of the second level 

networks covers only small part of the day rather than 24 hour period.

The performance of the above two level recognition system has been tested for the 

upper part of the water distribution system shown at Figure 7-3. Input to the first level 

network consisted of inflows to nodes 27,28,32, flow between nodes 29 and 18 and heads 

at the reservoir nodes 30 and 31. Six characteristic inflow patterns could be found for six 

periods during 24 hour water network operation and they are marked by dashed vertical 

lines in Figure 7-5. The training set has been split into six parts and each of the six second 

level “expert” neural networks has been trained separately. First, a number of training 

sessions has been conducted for different values of parameter 0  and for training sets 

constituting the state estimates with and without confidence limits. Before progressing to 

a more detailed analysis of the recognition system performance it has to be highlighted 

that a major goal of avoiding the full membership of testing patterns in multiple classes 

has been achieved. The comparative results of the testing carried out for the training sets 

are presented in Table 7-3.
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The first interesting result is the comparison of the performance of the recognition 

system trained for input patterns with and without confidence limits. It can be seen that 

the inclusion of the confidence limits in the training set has resulted in significantly less 

misclassifications. It is believed that the information carried by the confidence limits 

allowed the training algorithm to resolve overlappings in a more robust way.

The second important result of this testing is concerned with the significance of the 

parameter 0 . Referring to Table 7-3 one can notice a huge difference in the number of 

misclassifications when 0  is too large for the data used. It has been found that since the 

potential variability of different state variables, reflected by the-confidence limits, can 

vary substantially from one state variable to another and from one operational period of 

the day to another, it is beneficial to set parameter 0  separately for each dimension of the 

input patterns and for each of the second level “experts”. The small number of 

misclassifications, as reported in the row “variable” © of Table 7-3, illustrates the point.

Training set Parame­
ter 0

Misclassification rates

Highest
member­

ship

Top 2 
alterna­

tives

Top 3 
alterna­

tives
Top5 alter­

natives

State estimates computed for 
accurate measurements 
without confidence limits

0.02 1 26.97% 15.59% 10.90% 6.93%

0.01 8.17% 4.54% 3.38% 2.14%

State estimates computed for 
accurate measurements 
including confidence limits

0.02 18.67% 11.57% 8.49% 5.34%

0.01 1.03% 0.36% 0.23% 0 .11%

Variable* 0.03% 0 .01% 0% 0%

Table 7-3: Misclassification rates for a test set consisting of 9144 examples of state 
estimates computed for accurate measurements.

* Parameter 0  was determined separately for each dimension of each of the six subsets of the 
training set and was set to the value of the largest input hyperbox for each of these six subsets.

While the above results are very encouraging one needs to remember that testing has 

been carried out for state estimates computed for accurate measurements. In order to truly 

test the performance of the recognition system an independent large testing set has been 

generated.
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7.3.4. Generating the testing data set

In a similar fashion to the training data generation the process of testing data generation 

can be pictured in a form of block diagram shown at Figure 7-9.

The accurate values obtained from water system simulator are fed into the Telemetry 

block where random errors, laying within ranges specified by assumed accuracy of 

meters and variabilities of consumptions, are added to accurate measurements in order to 

simulate the noisy environment of the real water distribution system.

These noisy measurements are sent to Estimation block where the best state estimates, 

according to LS criterion for a given set of measurements, are found. The corresponding 

residuals and system’s status are also saved.

System’s status (i.e. normal 
operating state, leakage between 

node i and j, etc.)

Accurate 
input data

Measurements 
with random 

errors 
introduced at 

Telemetry 
block 

----------------------- In­

state 
estimates and 

residualsAccurate
measurements

Actual
topology

Topology as 
known by the 

system
Information about 
accuracy of meters 
and variability of 

consumptions

Telemetry Estimation
Physical
system

simulation

Figure 7-9: Graphical representation of the testing set generation scheme.

In this way by systematically working through the network, for each of the normal 

situations and for each of the ten levels of leaks introduced, one at a time, in every single 

pipe, for every hour of the 24 hour period, ten estimations have been performed for ten 

random sets of measurement errors. This resulted in generating 91440 test data patterns.

7.3.5. Results for the testing set

The two systems that performed best for the training data (see Table 7-3) have been put 

to the test using the above described testing set comprising of 91440 examples. The
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results of this testing are shown in Table 7-4 and Table 7-5. The percentage of 

misclassified input patterns for the class with the highest membership value, top 2, top3 

and top 5 alternatives have been used as a means of assessing the ability to correctly 

detect and locate leakages. Additionally, the share of patterns representing different levels 

of leakages in the overall misclassification rate is presented.

Mem­
bership
values

Overall
misclassi­
fication

Split of misclassifications according to different levels of leaks

2
El/s]

5
El/s]

8
[1/s]

11
[1/s]

14
[1/s]

17
[1/s]

20
[1/s]

23
[1/s]

26
[1/s]

29
[1/s]

Highest 16.8274% 33.22% 18.33% 11.02% 8.18% 7.12% 6.01% 5.02% 4.41% 3.59% 3.12%

Top2 6.1144% 57.23% 21.41% 8.80% 4.69% 2.77% 2.06% 1.06% 0.88% 0.61% 0.50%

Top3 3.1868% 73.61% 17.64% 5.42% 1.99% 0.75% 0.24% 0.14% 0.10% 0.10% 0%

Top5 1.4129% 86.22% 11.07% 2.09% 0.62% 0% 0% 0% 0% 0% 0%

Table 7-4: Misclassification rates for testing set consisting of 91440 examples. Training 
carried out for accurate state estimates with confidence limits and variable 0 .

Mem­
bership
values

Overall
misclassi­
fication

Split of misclassifications according to different levels of leaks

2
[1/s]

5
[1/s]

8
[1/s]

11
[1/s]

14
[1/s]

17
[1/s]

20
[1/s]

23
[1/s]

26
[1/s]

29
[1/s]

Highest 17.6345% 31.94% 18.43% 11.88% 8.45% 7.31% 6.13% 5.01% 4.38% 3.51% 2.98%

Top2 6.5420% 54.70% 21.90% 10.10% 4.98% 3.04% 2.19% 1.07% 1.09% 0.45% 0.48%

Top3 3.4547% 70.53% 19.21% 6.46% 2.12% 0.76% 0.32% 0.32% 0.19% 0.09% 0%

Top5 1.5092% 85.65% 11.45% 2.32% 0.58% 0% 0% 0% 0% 0% 0%

Table 7-5: Misclassification rates for testing set consisting of 91440 examples. Training 
carried out for accurate state estimates with confidence limits and 0=0.01.

The first row in Table 7-4 illustrates the overall rate of misclassified patterns for the 

class with the highest membership value. This is equivalent to the hard decision 

classifiers that are specifically designed to choose only one class which is closest to the 

input pattern. The rate of almost 17% of misclassified testing patterns leaves some room 

for improvement although over 62% of all those misclassifications were recorded for 

patterns representing leakages of magnitude less or equal to 8 [1/s]. It is interesting to note 

that as much as 56% of all 2 [1/s] leakages from the testing set were misclassified. Let us, 

however, remember that the variation of some consumptions can be as much as 14 [l/s] 

which can easily hide the 2 [1/s] leakage. Nevertheless, it is clear that the hard classifier 

is not the best option in this case. The subsequent rows of the Table 7-4 illustrate the 

flexibility of the recognition system developed in this research. In contrast to the hard
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decision classifiers a number of alternatives can be easily obtained and sorted with 

respect to the membership values. Utilising this property the tests for the top 2, 3 and 5 

alternatives have been carried out and misclassification rates calculated. The overall 

misclassification rate has been dramatically improved by only looking at the top 2 

alternatives and reduced to 6.11%. When the top 5 alternatives have been considered the 

overall misclassification fell to 1.51% and practically there were no misclassifications for 

leakages larger or equal to 11 [1/s].

While the recognition or misclassification rate is a universally accepted indicator of the 

pattern recognition system performance some other statistics can be very useful in an 

attempt to understand and explain these results. One such a statistic is presented in 

Table 7-6 where the average number of classes with membership values larger than 0.75 

for different locations and magnitudes of leakages, represented by patterns from the 

testing set, is presented.

To understand the meaning of the numbers in Table 7-6 let us analyse the first row 

which says that if the pipe 2 has a leakage of 2 [1/s] then the processing of the 

corresponding input pattern by the recognition system will result, on average, in 22 

classes with membership values larger than 0.75. In other words, the input pattern is not 

distinctive enough to be classified, with a reasonable level of confidence, as a leakage in 

pipe 2 since there are 21 other locations (pipes) that can be said to be viable alternatives.

As one would expect, the number of alternatives decreases with the increase of 

magnitude of leakage. However, the speed of this decrease is not uniform throughout the 

network and while for some locations the number of alternatives can be reduced to one 

or two for relatively small leakages (e.g. pipe 10), for others, even for large leakages, 

there are still four or five possibilities (e.g. pipe 24).

To illustrate further the difference in the ability to locate a leakage in different parts of 

the network and to give an example of the type of output from the recognition system the 

results of two extreme cases are shown in Table 7-7 and Table 7-8.

In the first case,Table 7-7, patterns representing leakages in pipe 24 were analysed and 

the membership values for all 39 classes and the whole range of leakage magnitudes were 

found. All the membership values larger than 0.75 are highlighted. It can be seen that the 

number of alternatives with high degree of membership for the smallest leakage is rather 

large and even for the largest leakage the number of possible leaking pipes is reduced
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only to four. On the other hand, the consistency with which the correct area of the network

is picked as the possible region of anomaly occurrence is a very good result in itself.

Pipe
no.

Magnitude of leakage

2 [1/s] 5 [1/s] 8 [1/s] 11 p/s] 14 [1/s] 17 [1/s] 20 [1/s] 23 [1/s] 26 [1/s] 29 [ys]
2 22 5 2 1 1 1 1 1 1 1
3 25 10 6 3 3 2 l 1 l 1
4 ' 28 12 7 5 4 3 3 2 2 2
5 31 14 8 6 4 3 3 2 2 2
6 35 11 5 3 2 2 1 1 1 1
7 27 11 6 5 4 3 3 2 2 2
8 29 13 8 5 4 3 2 - 2 1 1
9 31 14 8 6 4 3 3 3 2 2
10 5 2 2 2 2 1 1 1 1 1
11 34 12 5 2 1 1 1 1 1 1
12 34 13 7 5 3 1 1 1 1 1
13 30 10 5 3 2 2 2 2 2 2
14 25 5 3 2 1 1 1 1 1 1
15 32 13 7 4 3 2 1 1 1 1
16 29 8 4 3 2 2 2 2 2 2
17 34 12 4 2 1 1 1 1 1 1
18 35 13 4 2 1 1 1 1 1 1
19 33 14 6 4 3 2 2 1 2 2
20 30 16 13 10 6 4 3 2 2 2
21 31 16 11 7 4 2 2 1 1 1
22 25 13 11 8 6 5 5 4 4 4
23 21 6 4 2 1 1 1 1 1 1
24 25 13 10 8 6 5 5 5 4 4
25 25 14 11 9 7 6 5 5 5 4
26 24 13 8 6 5 4 4 4 4 4
27 32 15 9 6 3 2 2 2 2 1
28 34 8 3 2 2 2 1 1 1 1
29 31 10 7 5 5 4 3 2 2 1
30 34 15 6 4 3 2 1 1 1 1
31 29 15 11 7 5 4 3 3 2 2
32 28 15 12 10 8 6 4 4 4 3
33 28 13 7 4 3 3 2 2 2 2
36 29 15 12 9 6 5 4 4 3 2
37 27 14 12 10 8 7 6 5 4 3
39 5 2 2 2 1 1 1 1 1 1
40 32 15 8 5 3 2 2 2 2 2
41 31 14 7 6 4 3 2 2 2 2
42 31 10 5 2 1 1 1 1 1 1

Table 7-6: Average number of classes with membership value larger than 0.75 obtained 
for testing set consisting of 91440 examples.
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Class Magnitude of leakage
Index 2 [1/s] 5 [1/s] 8 [1/s] 11 [1/s] 14 [1/s] 17 [1/S] 20 [1/S] 23 [1/s] 26 [1/s] 29 [ys]

1 0.3502 0 0 0 0 0 0 0 0 0
2 0.6749 0.1806 0 0 0 0 0 0 0 0
3 0.7276 0.3098 0 0 0 0 0 0 0 0
4 0.7492 0.3634 0 0 0 0 0 0 0 0
5 0.7666 0.3928 0.0340 0 0 0 0 0 0 0
6 0.8595 0.6499 0.4375 0.2566 0.0971 0 0 0 0 0
7 0.7430 0.3471 0 0 0 0 0 0 0 0
8 0.7579 0.3841 0 0 0 0 0 0 0 0
9 0.7716 0.2399 0.0304 0 0 0 0 0 0 0
10 0.4540 0 0 0 0 0 0 0 0 0
11 0.7988 0.4872 0.1646 0 0 0 0 0 0 0
12 0.7942 0.1626 0 0 0 0 0 0 0 0
13 0.5832 0 0 0 0 0 0 0 0 0
14 0.3736 0 0 0 0 0 0 0 0 0
15 0.7536 0.0132 0 0 0 0 0 0 0 0
16 0.5188 0 0 0 0 0 0 0 0 0
17 0.7362 0.0428 0 0 0 0 0 0 0 0
18 0.8292 0.5668 0.2964 0 0 0 0 0 0 0
19 0.8841 0.7129 0.5387 0.3959 0.2745 0.1222 0.0027 0 0 0
20 0.9491 0.8810 0.8100 0.7698 0.7510 0.7010 0.6839 0.6516 0.6336 0.6554
21 0.9288 0.8216 0.7059 0.6140 0.5370 0.4199 0.3267 0.2203 0.1807 0.0984
22 0.9918 0.9878 0.9757 0.9835 0.9396 0.9238 0.9117 0.9486 0.8725 0.8787
23 0.6340 0.1492 0 0 0 0 0 0 0 0
24 0.9941 0.9937 0.9823 0.9798 0.9417 0.9352 0.9353 0.9682 0.9312 0.9604
25 0.9851 0.9716 0.9483 0.9464 0.9579 0.9268 0.9181 0.8939 0.9344 0.9301
26 0.9939 0.9699 0.9455 0.9086 0.8522 0.8297 0.8152 0.8548 0.7853 0.8027
27 0.9153 0.7680 0.7612 0.3209 0.1726 0.0388 0 0 0 0
28 0.8022 0.5558 0.3314 0.2355 0.0768 0 0 0 0 0
29 0.8900 0.7342 0.6162 0.5006 0.4266 0 0.1864 0 0 0
30 0.8442 0.7422 0.5413 0.3001 0.0633 0 0 0 0 0
31 0.9463 0.8780 0.7827 0.7436 0.7017 0.3273 0.5372 0.3435 0.3405 0
32 0.9564 0.8983 0.8306 0.7845 0.7519 0.6340 0.6244 0.5567 0.5537 0.3976
33 0.9573 0.8921 0.7831 0.7262 0.7501 0.2882 0.6228 0.5346 0.5742 0.0903
36 0.9460 0.8716 0.7875 0.7250 0.6305 0.0194 0.4617 0.1261 0.1556 0
37 0.9713 0.9355 0.8890 0.8632 0.8499 0.7933 0.7581 0.7066 0.7188 0.6850
39 0.4931 0 0 0 0 0 0 0 0 0
40 0.9134 0.8100 0.7117 0.1844 0.0376 0 0 0 0 0
41 0.7744 0.1275 0 0 0 0 0 0 0 0
42 0.5602 0 0 0 0 0 0 0 0 0

Table 7-7: Examples of membership values for testing patterns representing leakages
in pipe 24 ranging from 2 to 29 [I/s].
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Class
index

Magnitude of leakage

2 [1/s] 5 [1/s] 8 [1/s] 11 [1/s] 14 [1/s] 17 [1/s] 20 [1/s] 23 [1/s] 26 [1/s] 29 [1/s]
1 0.4426 0 0 0 0 0 0 0 0 0
2 0.7618 0.4671 0.1374 0 0 0 0 0 0 0
3 0.7092 0.3379 0 0 0 0 0 0 0 0
4 0.6876 0.2842 0 0 0 0 0 0 0 0
5 0.6702 0.2413 0 0 0 0 0 0 0 0
6 0.5774 0 0 0 0 0 0 0 0 0
7 0.6938 0.3005 0 0 0 0 0 0 0 0
8 0.6789 0.2635 0 0 0 0 0 0 0 0
9 0.6652 0.2290 0 0 0 0 0 0 0 0
10 0.9828 0.9853 0.9872 0.9918 0.9548 0.9735 0.9764 0.9467 0.9400 0.9853
11 0.6380 0.1604 0 0 0 0 0 0 0 0
12 0.6426 0 0 0 0 0 0 0 0 0
13 0.6587 0 0 0 0 0 0 0 0 0
14 0.5929 0 0 0 0 0 0 0 0 0
15 0.6618 0.0407 0 0 0 0 0 0 0 0
16 0.6577 0 0 0 0 0 0 0 0 0
17 0.6209 0 0 0 0 0 0 0 0 0
18 0.6076 0.0808 0 0 0 0 0 0 0 0
19 0.5527 0 0 0 0 0 0 0 0 0
20 0.4877 0 0 0 0 0 0 0 0 0
21 0.5080 0 0 0 0 0 0 0 0 0
22 0.4450 0 0 0 0 0 0 0 0 0
23 0.8028 0.4985 0 0 0 0 0 0 0 0
24 0.4427 0 0 0 0 0 0 0 0 0
25 0.4517 0 0 0 0 0 0 0 0 0
26 0.4316 0 0 0 0 0 0 0 0 0
27 0.5216 0 0 0 0 0 0 0 0 0
28 0.6346 0.0710 0 0 0 0 0 0 0 0
29 0.5385 0 0 0 0 0 0 0 0 0
30 0.5926 0 0 0 0 0 0 0 0 0
31 0.4905 0 0 0 0 0 0 0 0 0
32 0.4805 0 0 0 0 0 0 0 0 0
33 0.4795 0 0 0 0 0 0 0 0 0
36 0.4909 0 0 0 0 0 0 0 0 0
37 0.4655 0 0 0 0 0 0 0 0 0
39 0.9436 0.9247 0.8703 0.8858 0.9152 0.8940 0.1054 0 0 0
40 0.5234 0 0 0 0 0 0 0 0 0
41 0.6624 0.1551 0 0 0 0 0 0 0 0
42 0.6364 0 0 0 0 0 0 0 0 0

Table 7-8: Examples of membership values for testing patterns representing leakages
in pipe 10 ranging from 2 to 29 [I/s].
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In the second case, Table 7-8, patterns representing leakages in pipe 10 were 

considered. In contrast to the previous case, here there is no problem in deciding what is 

the location of the leakage since the number of alternatives is reduced to two even for 

small leakages with class 10 (leakage in pipe 10) dominating throughout the whole range 

of leakages.

Inclusion of patterns representing wrong statuses of valves

So far the recognition system has been trained and tested for one type of anomaly: 

leakages. The training data for wrong statuses of valves have been deliberately left aside 

in order to test the recognition system’s ability to expand and include new data without 

the need for retraining the existing system from the beginning.

A set of 96 new input patterns representing wrong statuses of the four control valves 

(Figure 7-3) have been presented to the system consisting of six “experts” trained to 

recognise normal operating state and leakages in 38 pipes for 24 hour period of 

operations. As a result in each of the “expert” networks a number of hyperbox (second 

layer) nodes and four class (output layer) nodes have been added. The hyperbox nodes 

were used to store information about these new input patterns while each of the four new 

class nodes represented the wrong status of one of the four valves.

Not only the extension to the neural networks in order to include new classes was a 

straightforward task but testing has shown that the performance of the recognition system 

have not been compromised at all. A simple explanation to this is the fact that leakages 

and wrong status of a valve have different effect on the network pattern. While a leakage 

can result only in pressure drop, the effect of a closed valve or blocked pipe is the increase 

of pressure on one side of the valve and decrease of pressure on the other side.

7.3.6. Residuals and classification

Residuals have been traditionally preferred in bad data analysis. The reason for this is 

the fact that a residual is a mismatch between the actual measurements and the value of 

the measured quantity as computed by the estimation algorithm (see (EQ4-1) in 

Chapter 4). This mismatch can be viewed as the amount that the measurement model 

cannot account for. If it is assumed that the model represents the system with the expected 

accuracy, then one can think of the residuals as estimates of the measurement errors. 

Since certain assumptions about the measurement errors are made when the model is
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established, it should be expected that, if no anomaly is present, the residuals will tend to 

behave in a manner that confirms these assumptions.

Theoretically, for an accurate model of the network and accurate measurements all the 

residuals should be zero irrespectively of the operating state (e.g. night load, peak load 

etc.). This property makes the use of residuals in bad data analysis very desirable since 

the presence of any anomalies could be detected by monitoring the deviation of the 

residuals from this zero reference point. In theory it should also be possible to locate 

faults by investigating individual residuals or patterns of residuals.

Similarly to the training set consisting of state estimates, the training set comprising 

residuals has been split into the six parts according to the six characteristic inflow patterns 

shown in Figure 7-5. The residuals representing mass balances in network nodes with 

corresponding confidence limits have been used. The training data have been scaled and 

mapped onto the [0,1] range. The training has been completed after one run through the 

training data.

Unfortunately, the testing showed a very poor recognition rate with a high number of 

input patterns representing large leakages being misclassified. We concluded that this 

poor performance was due to the inability of the training algorithm to resolve 

overlappings in a robust way. This, in turn, was caused by the fact that for typical 

variabilities of consumptions and inaccuracies of meters encountered in water 

distribution systems, the ratio of noise (quantified as confidence limits) to the useful 

signal (value of the residual that would result from the occurrence of an anomaly) was 

very high. In terms of the recognition system it means that there is a large number of input 

hyperboxes concentrated around the zero reference point with big overlapping regions. 

This renders an attempt to resolve overlappings impractical since too much information 

is lost in the process.

Examples of the behaviour of residuals for different levels of leakages between nodes 

3 and 4 are shown in Figure 7-10. Figure 7 -10a presents an example of residuals found in 

the course of state estimation carried out for accurate measurements. As one can see, 

there is a steady divergence from the zero reference point (“normal operating state”) with 

the increase of the magnitude of leakage. An example of influence of the typical random 

measurement errors on these “accurate” residuals can be seen at Figure 7-10b. The 

monotonic trend caused by the leakage is severely distorted by the measurement noise. 

Finally, Figure 7-10c shows effective ranges within which one of the residuals can vary.
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Figure 7-10: Examples of residuals for different levels of leakages between nodes 3 
and 4; a) residuals found for accurate measurements: b) residuals affected by typical 
measurement inaccuracies; c) example of confidence limits for residual representing 
mass balance at node 3: accurate values marked with and equivalent noisy ones

represented by solid line.
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Since the loss of information through the attempts to resolve overlappings for the 

training set was such that the recognition rate was unacceptable in the next experiment 

the attempts to resolve any overlappings have been abandoned.

The only controlling parameter restricting clusters from free growing was the 

maximum size of the hyperbox 0 . The multiple full memberships for the testing data 

were the expected consequence of this action. With the multiple full memberships the 

graded output of the recognition system allowing to produce a ranking of most likely 

classes (see Table 7-7 and Table 7-8) had to be to a large extent sacrificed. The fact that 

processing of an input pattern was likely to produce the highest membership value in a 

number of classes meant that all the classes had to be treated as equally feasible 

alternatives.

The average number of alternatives based on examining classes with full membership 

values for the testing set consisting of 91440 examples is shown in Table 7-9.

Although, in general, the results are worse than for the state estimates discussed in the 

previous sections, some interesting features can be noticed. Firstly, there is a strong 

correlation between the ability to restrict the suspected leakage area to a small number of 

pipes and the proximity to accurate meters and an anticorrelation with the proximity to 

the least accurate consumption nodes. So, the leakages in pipes 12, 13, 14, 15, 16, 17, 41 

and 42 that are quite far from the consumption nodes (main source of uncertainty) and in 

the vicinity of few accurate meters, can be detected and located much more easily than 

the leakages in pipes 21, 22, 24, 25, 26, 28, 29, 30, 31, 32, 33, 36 and 37. Looking at the 

results for pipe 10 and 23 the importance of accurate measurements is very evident. 

Although these pipes lay in the region where it is the most difficult to detect and locate a 

leakage the benefit of three accurate measurements (heads at nodes 2 and 31 and inflow 

at node 31) is evident.

The average numbers of alternatives shown in Table 7-9 were calculated for 24 hour 

period and, as such, can be treated as an indicator of how well, on average, the recognition 

system performs. It has been an accepted engineering knowledge that there are periods 

during the day when it is easier to detect leakages than in other times. The fact that 

consumptions during the night are at the lowest level but the leakages stay virtually the 

same has been widely exploited when performing a “corrective maintenance” of a 

distribution system.

148



Chapter 7 :  7.3.Neural network b ased  fa u lt diagnosis

Pipe
no.

Magnitude of leakage

2 [1/s] 5 [1/s] 8 [1/s] 1 1  [1 /S ] 14 [1/s] 1 7  [1 /S ] 20 [1/s] 23 [1/s] 26 [1/s] 29 [1/s]
2 36 34 29 21 15 12 9 7 6 4
3 36 35 30 22 17 13 10 7 7 5
4 37 32 25 17 12 9 8 6 5 4
5 35 24 13 9 7 5 4 3 3 2
6 36 37 35 34 29 25 20 15 12 9
7 36 35 31 24 17 13 10 8 7 6
8 37 31 22 15 11 8 6 5 4 3
9 34 19 12 8 5 4 3 3 3 2
10 34 27 16 7 3 2 2 1 1 1
11 36 36 33 27 22 17 13 9 7 6
12 34 15 6 4 3 2 1 1 1 1
13 28 8 4 3 3 3 3 2 3 2
14 21 4 3 3 3 2 2 1 1 1
15 33 14 8 5 4 2 2 1 1 1
16 26 6 3 3 3 3 3 3 3 2
17 31 10 5 3 2 2 1 1 1 1
18 36 23 12 7 6 5 4 3 2 2
19 36 36 29 18 11 7 5 4 3 2
20 35 35 29 20 14 10 8 6 4 2
21 35 36 36 34 30 26 21 17 12 9
22 35 34 34 30 26 22 16 13 10 8
23 35 27 18 11 4 3 2 2 1 1
24 35 35 33 30 27 23 19 16 13 10
25 35 35 33 31 27 25 20 17 14 12
26 35 35 33 29 27 22 17 14 10 8
27 37 32 25 22 12 7 5 3 2 2
28 35 35 33 30 26 21 18 13 11 8
29 35 35 33 29 26 22 18 14 10 8
30 35 35 34 31 25 19 16 10 7 4
31 35 35 33 30 28 23 20 17 14 11
32 35 35 34 32 28 27 24 -  19 18 16
33 35 35 34 31 29 25 22 19 17 14
36 34 34 33 29 26 22 19 16 12 10
37 35 35 34 32 28 27 22 19 16 14
39 35 30 24 18 13 8 6 4 2 2
40 37 28 19 13 7 4 3 3 2 2
41 33 19 10 7 5 4 3 3 2 1
42 28 9 4 2 2 2 2 2 2 2

Table 7-9: Average number of alternatives based on the number of classes with full
membership value.
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Table 7-10 presents detailed results for an 11 [1/s] leakage in pipe 10 using 9 data sets 

in which random measurement errors are superimposed on the readings for each hour of 

the 24 hour period. Essentially the table illustrates that the recognition system based on 

residuals is strongly susceptible to measurement errors. Rather than try to assess the 

overall performance over the 24 hour period, individual results and average values for the

six characteristic periods of operation are examined.

Hour Number of alternatives for different random sets of 
measurement errors

Average 
no. of 

alterna­
tives for 6 
character­
istic peri­

ods

Overall 
average 
no. of 

alterna­
tives

1 1 3 2 2 1 2 3 2 1
2 2 2 2 2 2 2 3 2 2
3 2 3 3 2 3 2 3 2 3 2
4 4 2 2 3 2 3 2 3 3
5 2 2 2 3 3 2 2 2 1
6 7 12 35 8 5 5 4 33 5
7 3 5 7 36 6 16 6 37 18 12
8 6 2 39 2 2 4 3 5 3
9 4 39 31 5 39 39 5 34 38
10 30 5 29 5 27 6 4 2 4

1411 5 2 5 1 5 1 39 29 5
12 10 5 4 5 38 5 5 5 4

713 3 9 4 5 29 5 2 5 4
14 3 5 4 4 5 3 3 5 29
15 3 9 4 32 3 4 5 27 5 8
16 5 3 5 9 27 5 31 5 4
17 6 3 3 3 4 5 4 5 1
18 3 9 7 36 8 5 8 3 8
19 6 5 7 5 8 8 11 8 5 7
20 6 5 5 11 5 4 6 6 4
21 2 5 3 2 5 7 4 2 4
22 4 2 3 4 4 3 3 4 2 d
23 3 4 3 4 3 4 2 4 3
24 4 6 5 3 4 1 8 5 4

Table 7-10: Examples of number of alternatives produced by the recognition system for 
the input patterns from testing set representing leakage of 11 [I/s] magnitude in pipe 10.

Firstly, looking at average number of alternatives for the six periods one can see the 

stark difference between the performance of the recognition system for the first period
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(hours 1 to 5 - “night load”) where the variations of consumptions are smallest and the 

third period (hours 9 to 12 - “peak load”) where the variations of consumptions are 

largest.

Secondly, looking at the individual results for the “peak load” period one can see a huge 

influence of the measurement errors. On the one hand, they can help to locate the leaking 

pipe when they push the residuals out from the zero reference point but, on the other hand, 

they can also make the detection of even a large leakage impossible when they reduce its 

distinctive “fingerprint” by pulling the residuals towards the zero reference point.

7.3.7. Detection of anomaly based on residuals

The neural network recognition systems discussed in the previous sections have been 

trained for data including examples of both normal and anomalous modes of operation. 

Consequently, the recognition systems combined the ability to detect and identify (locate) 

the anomaly at the same time.

In the literature, however, the problems of detection and identification are very often 

treated separately. One could argue that for some problems, especially those where faults 

occur rarely, it might be beneficial to be able to first detect faults and only if they are 

present to try to identify them.

As it was explained before, residuals analysis is a particularly attractive option in fault 

detection procedures since, irrespectively of the time of the day, if no anomaly is present 

the residuals should always be close to zero. The question: How close? depends on the 

accuracy of the measurements but this can be quantified by the confidence limit analysis.

A neural network fault detection system based on residuals is essentially a simpler 

version of the recognition system discussed in the previous section. Since one is only 

concerned with distinguishing between the presence and absence of faults, the detection 

system consists of just one class representing the normal operating state. Depending on 

the membership value calculated for this class the input pattern is classified as a normal 

operating state or a fault.

The training data set consisted of all the residuals vectors with their confidence limits 

representing normal operating state from the original training data set. The data have been 

scaled and mapped into the [0,1] range with zero points placed in the middle of this range.
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The detection system consisted of six hyperboxes, one for each of the six characteristic 

operation periods during the day.

The normal operating states for “night load“ period and the “peak load” period, pictured 

in form of vertical bars, and examples of the input patterns representing a leakage in pipe 

2, marked by ***, are shown at Figure 7-11. Once again, the tighter confidence limits for 

the “night load” period are the reason for the better performance of the detection system 

during this particular period compared to the rest of the day.

A very practical point is that the graphical representation of the hyperboxes and the 

residuals makes it quite easy to understand the reason for success or failure of fault 

detection. The retrieving of the lower and upper bounds for each residual is a 

straightforward procedure since they are stored in the neural network as the weights for 

minimum and maximum points defining the hyperbox.

The test has been performed for the full set of 91200 examples representing leakages 

taken from the test set described earlier in this chapter. The results for the “night load” 

period are shown in the form of percentages of detected faults for each pipe and 10 levels 

of leakages in Table 7-11.

These results are effectively the confirmation of what has been discovered in the 

previous experiments. For some leakage locations the 100% detection rate was achieved 

for leakages as small as 5 [1/s] while for other locations the 100% detection rate could not 

be accomplished even for leakages of 20 [1/s]. In a large number of locations the detection 

of leakages of magnitude of 5 [1/s] or smaller is practically impossible. For roughly half 

of the network pipes the threshold for which 50% or more of the leakages are detected is 

8 [1/s]. The vast majority of 14 [1/s] leakages could be detected in all possible locations in 

the network.

As one can see not only the identification of faults can cause problems but even their 

detection is not a simple task when one has to deal with high levels of uncertainty so 

common in public utility systems.
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Figure 7-11: The visualisation of boundaries (vertical bars) for normal operating state 
for: a) night and b) peak load. Examples of input patterns representing leakage in pipe 
2 (29 [I/s]) marked by * are used to illustrate the ability to more easily detect leakages 

at night due to tighter confidence limits resulting from lower level of consumption
variations.
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Pipe
no.

Magnitude of leakage

2 [1/s] 5 [1/s] 8 [1/s] 11 [1/s] 14 [1/s] 17 [1/s] 20 [1/s] 23 [1/s] 26 [1/s] 29 [1/s]
2 0 22 76 100 100 100 100 100 100 100
3 0 2 47 98 100 100 100 100 100 100
4 0 24 60 98 100 100 100 100 100 100
5 20 60 98 100 100 100 100 100 100 100
6 0 2 13 31 64 80 98 100 100 100
7 0 2 56 96 100 100 100 100 100 100
8 7 24 82 98 100 100 100 100 100 100
9 24 87 100 100 100 100 100 100 100 100
10 4 69 100 100 100 100 100 100 100 100
11 0 7 38 71 93 100 100 100 100 100
12 24 93 100 100 100 100 100 100 100 100
13 49 100 100 100 100 100 100 100 100 100
14 71 100 100 100 100 100 100 100 100 100
15 33 100 100 100 100 100 100 100 100 100
16 58 100 100 100 100 100 100 100 100 100
17 40 98 100 100 100 100 100 100 100 100
18 11 51 98 100 100 100 100 100 100 100
19 0 4 47 76 98 100 100 100 100 100
20 0 7 49 64 91 100 100 100 100 100
21 0 0 11 33 62 82 98 100 100 100
22 0 2 24 56 82 98 100 100 100 100
23 2 47 100 100 100 100 100 100 100 100
24 0 0 29 64 84 96 100 100 100 100
25 0 2 36 42 71 91 100 100 100 100
26 0 4 31 67 73 98 100 100 100 100
27 16 29 60 87 100 100 100 100 100 100
28 0 0 18 40 71 91 100 100 100 100
29 0 2 22 42 76 100 100 100 100 100
30 0 2 13 36 62 98 100 100 100 100
31 0 4 24 44 69 96 100 100 100 100
32 0 0 18 40 62 78 100 100 100 100
33 0 4 24 40 60 87 100 100 100 100
36 0 7 40 60 62 96 100 100 100 100
37 0 2 27 44 73 84 98 100 100 100
39 2 73 100 100 100 100 100 100 100 100
40 7 47 64 96 100 100 100 100 100 100
41 27 84 100 100 100 100 100 100 100 100
42 64 100 100 100 100 100 100 100 100 100

Table 7-11: Percentage of the fault detection based on examining the "normal operating 
state" class membership values for the “night load” period (hours 1 to 5 am).
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7.4. Discussion and conclusions

An important notion tested in this research was that artificial neural networks have a 

potential to mimic, to a large extent, the high level information processing performed by 

human operators. On the basis of the material included in the last two chapters concerning 

the development and application of a neural recognition system, we can examine how far 

the analogy between human operators and ANNs could be carried.

It can be safely said that any person employed as an operator of the water distribution 

system has to be first trained to be able to perform the expected tasks well. This usually 

involves a stage of getting familiar with the specific features of a particular distribution 

system i.e. the locations of reservoirs, types and characteristic operations of pumping 

stations, locations of control valves, locations of major consumption points etc. There is 

also likely to be a stage of learning what methods and equipment is used to monitor and 

control the network and this could include a familiarisation with the specific estimation 

method and/or other software used. Once the initial training is completed the learning 

continues through the day to day operations.

By analogy, there are also two major modes of operation of ANNs: the network training 

mode and the proper operation mode. The information about the specific distribution 

system (e.g. topology of the network) is included implicitly in the mathematical model. 

The data processing methods (e.g. type of estimation procedure) and the equipment 

characteristics (e.g. accuracies of meters) are reflected in the training data. While some 

ANNs are very inflexible when it comes to learning new patterns while in operation (due 

to a complicated training algorithm or a rigorous specification of the architecture) the 

neural systems developed during this research have the ability to learn on-line and expand 

to include new information and to reinforce the stored knowledge. This is analogous to 

the human operator gaining experience as a result of the long term exposure to everyday 

water system operations.

The analogies between the operation of the neural system and human operators could 

be shown for a number of smaller points but they all stem from the two important features 

of the ANN. Firstly, instead of a sequential, strictly algorithmic analysis the signals are 

processed in groups and looked at as patterns which is much closer to the way humans 

tend to handle large dimensional data. Secondly, the neural system has the ability to grow,
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include new information, gain experience. Whichever name we choose there simply is a 

capacity for building on the top of the existing abstraction of the system.

This research has demonstrated that both state estimates with their confidence limits 

and residuals with their confidence limits can be successfully used to train the neural 

recognition system, although each approach has its own advantages and disadvantages.

A great advantage of processing residuals is the fact that irrespectively of the operating 

state, when there is no anomaly present in the system, all the residuals are zero, or in 

practical terms, they are contained within the confidence limits. This represents a 

universal reference point (hyperbox) that can be labelled as normal operating state. All 

the other patterns representing leakages and other malfunctions could be mapped into the 

space around this zero reference point.

Unfortunately, it has also been found that residuals are very susceptible to typical levels 

of measurement noise present in water systems. A high ratio of noise to useful signal 

seriously hampered the ability of the recognition system based on residuals to detect and 

identify the cause of abnormal operation. In particular, it was only possible to reduce the 

suspected location of some leakages to a certain area of the network rather than one or 

two pipes.

Much better results have been obtained for the system based on state estimates. The 

overlapping regions of different classes could be resolved in much more robust way. This 

was due to the fact that the state estimates can differ significantly from one hour of 

operation to another, resulting in spatially separated input patterns. Also, the ratio of the 

measurement noise to the useful signal was much smaller for state estimates than for 

residuals. However, the very fact that state estimates are different for different operational 

periods, means that there is no universal reference point representing normal operating 

state. Instead there are normal operating states for different load patterns which are 

represented by different hyperboxes. This also means that while the performance of the 

recognition system is very good for a range of typical operating states for which it has 

been trained, the occurrence of a completely new pattern does not result in any 

meaningful classification, though the system can remember this new pattern for 

subsequent labelling. This is similar to a human response to a new object. Although one 

does not know how to classify the new object, one is able to remember its shape and other
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characteristic features for later referencing or subsequent association with other objects 

(naming).

As one can see each of the approaches has its strengths and limitations. In a way, 

however, they complement each other and the use of both of them at the same time should 

result in better overall performance.

One of the benefits of training and testing the recognition systems for the 24 hour period 

of operations was the opportunity to establish the role of accurate measurements in the 

process of detecting and identifying faults. The ability to detect and correctly locate 

smaller leakages in the direct neighbourhood of accurate meter(s) was the recurring 

theme for all the recognition systems.

Another important factor that can play a crucial role in the performance of the 

recognition system is the choice of the estimation procedure. In this work the LS 

estimator was used. As it was explained in Chapter 4 the LS estimator can be very much 

affected by the presence of large errors in the data, but at the same time, it is the most 

robust procedure in a sense of convergence. While it has to be said that the use of some 

other estimation procedure (e.g. LAV) could result in even better recognition rates, 

especially in the regions of the network where local measurement redundancy is high 

enough for erroneous data to be completely rejected, there is a danger that the estimation 

procedure will not converge at all when the local measurement redundancy is not 

available. However, the use of the estimator that would be able to reduce the influence of 

the largest measurement errors and still retain the robust behaviour of the LS procedure 

in terms of convergence would definitely improve the recognition rates.

One last feature of the neural recognition system, that has not yet been mentioned in 

this section, is the fuzzy character of its output. In our opinion the ability to produce a 

graded response is a very powerful tool. A lot of additional information can be extracted 

from the fuzzy classification output. For instance, although the information about the 

level of leakage has not been included in the training set the estimate of the size of the 

leakage could be inferred from the membership values. To illustrate the potential benefits 

of using fuzzy outputs one can imagine a simple two class recognition system with the 

output €= [0! C2]. Let us now examine three examples of the output from the fuzzy, CF, 

and the hard decision, CH, classifiers:

a) Cf =[0.98 0.99] and CH=[0 1];
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b) CF=[0 0.01] and CH=[0 1]; and

c) CF=[0 0.9] and CH=[0 1].

In all three cases the output of the hard classifier based on the principle of choosing one 

class has been the same. On the basis of these results there is no doubt that the input 

pattern belongs to the second class. While in fact, in two out of the above three cases, the 

results from fuzzy classifier indicate that it is not at all such a straightforward answer. 

From the fuzzy classification results one can see that in the first case both classes are 

almost equally feasible alternatives while in the second case, all that can be said is that 

the input pattern is closer to the second class but it can hardly be classified as belonging 

to this class.

This type of analysis turned out to be very useful in the interpretation of the 

classification results for water distribution systems presented in this chapter. As a matter 

of fact many of the conclusions could only be drawn because the graded answers in a 

form of fuzzy membership values were available in the first place.

As a final statement it can be said that a completely new approach to detection and 

identification of faults in the water distribution systems based on the fuzzy classification 

and clustering neural network has been proposed. An assumption that fault diagnosis can 

be based on pattern analysis without a need to employ any heuristics or specialist 

knowledge has been confirmed by the computational results. Since the specific topology 

and measuring equipment information is included in the mathematical models used to 

generate the input patterns a number of useful studies, i.e. the influence of the levels of 

uncertainty on the ability to detect and identify leakages in different areas of the 

distribution network, meter placement or distribution of errors in the network for a given 

set of measurements, can be carried out using the fuzzy classification results.
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Chapter 8

Conclusions and further research

8.1. Conclusions

The aim of this research project was to investigate the applicability of neural networks 

for the implementation of decision support systems in operational control of industrial 

processes. The nonlinear models and large scale of the water distribution systems made 

them both a very challenging problem to be tackled and a very good validation example 

for the prototype decision support system.

There have been two distinctive parts of the project. In the first part, the usage of neural 

networks for the optimization based on mathematical model of the water distribution 

system has been investigated. A particular emphasis has been placed on the application 

of simple feedback neural networks to the problems of state estimation and confidence 

limit analysis.

The main thesis of the second part of the project was that the high level of information 

processing by human operators could be mimicked, to a large extent, by a suitable neural 

based recognition system. A development of the flexible fuzzy neural network for pattern 

recognition and its application to the water system state interpretation/classification task 

have been covered.

Short summaries of the problems uncovered and solutions found in the course of 

investigations as well as the main conclusions of the project are presented below.

8.1.1. Neural networks and water network state estimation

Over the last two decades state estimators gradually became the key utility for the 

implementation of monitoring and control of large scale public systems such as water, gas 

or electric power distribution systems.
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In this work it was shown that relatively simple neural networks for solving systems of 

linear equations can be utilized in the process of the water network state calculations. 

While simulating these neural networks some important issues involved in the state 

estimation process have been addressed.

The first of these problems is bad data rejection properties of different estimators. It was 

shown that by simply changing the parameters of a NN’s sigmoid activation function we 

can switch from LS criterion, trying to satisfy all the equations in the set and therefore 

being strongly affected by gross errors, to LAV criterion having the ability to discard 

anomalous data completely. In the above solution the fact that the sigmoid activation 

function can approximate a linear function (LS criterion) or a signum function (LAV 

criterion) is utilised. In this way the more flexible neural structure was obtained while 

overcoming the problem of discontinuities associated with using signum function in the 

original formulation of the LAV criterion.

In the context of water system state estimation it has been observed that the LAV 

solution can converge prohibitively slowly or not converge at all under some conditions. 

This problem can be solved by using neural networks with inhibition principle. Retaining 

the bad data rejection quality of the LAV criterion the robustness of LS criterion is also 

preserved.

The ill-conditioned problems are the second major issue that has been addressed in 

water system state estimation. While all neural networks presented in this work avoid 

direct inversion of the matrices, which is a major source of estimation errors in a case of 

ill-conditioned problem, for the purpose of improving the convergence properties and the 

accuracy of the desired network the augmented Lagrangian with regularization has been 

used. The resulting neural network is a little more complicated than the previously 

discussed ones but it showed expected qualities in a case of ill-conditioned problems.

The last issue that may not be that crucial in the case of water systems but could be of 

paramount importance in some other real time applications is the ability of neural 

networks to arrive at the solution within predefined period of time. As it was shown here 

this can be accomplished by adaptively changing some weights during the minimization 

process.

While the full potential of the neural networks presented in this work can be realized 

when implemented in hardware, i.e. using VLSI or electro-optical technology, they have
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been simulated here as dynamical systems built from blocks, like adders, multipliers, 

integrators or nonlinear transfer functions, in order to facilitate the transformation from 

simulation models to the hardware implementation. The simulations have been carried 

out assuming realistic parameters for the equivalent physical elements (i.e. integration 

times etc.) and thus it has been found out that the time for the state estimate calculations 

of large water network could be in order of microseconds.

8.1.2. Neural networks and confidence limit analysis

No state estimator can give accurate results from inaccurate data.

This simple statement prompted an investigation (Bargiela & Hainsworth, 1989) into 

the precise nature and level of the measurement uncertainty impact on the accuracy to 

which state estimates can be calculated. It is believed that the safety of the operational 

control can be enhanced when operators are given not only the information about 

estimates of the current operating state but also an indication of how reliable these 

estimates are for a given set of measurements at a particular operating state. In confidence 

limit analysis this information is provided in the form of upper and lower bounds for each 

state estimate variable.

The best known and mathematically the most reliable method of quantifying the state 

uncertainty is the Monte Carlo method. The accuracy of this method derives from its full 

treatment of the network model non-linearity. However, its computational inefficiency 

renders it unsuitable for on-line control applications.

Using extensive simulations, it has been found out that algorithms based on the 

linearised network model produce results that compare well with the Monte Carlo results 

while the computation time is much shorter.

In this work it was shown how the neural networks that have been used to produce state 

estimates can be used to obtain confidence limits. The first method presents the usage of 

neural networks to find the sensitivity matrix being a vital part of the sensitivity matrix 

algorithm. In broader terms the way of finding inverse and pseudoinverse matrices has 

been demonstrated. The second method utilizes the superposition principle where each 

disturbance is analysed separately and the partial results are gradually combined to 

produce overall confidence limits.
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Similarly to the state estimation process the confidence limits could be arrived at very 

quickly once the neural network is implemented in hardware. A dynamical, integrated 

neural based system for state estimation and confidence limit analysis, using simple 

elements, has been constructed in order to analyse dynamical properties of the proposed 

methods.

8.1.3. Neural networks and fault detection

The state estimation is an absolute must in the monitoring and control of modem water 

distribution (utility) systems if only for ensuring that pressures in the network are not too 

low for any service dismptions, but at the same time, not too high to cause an unnecessary 

risk of pipe bursts. While monitoring against the recommended minimum and maximum 

pressures is the most basic activity there is much more useful information contained in 

the state estimate vector. In order to be able to exercise a greater control over the 

distribution network the accurate classification of the situation is needed. Since the safety 

of operation is of paramount importance the quick detection and correct identification of 

abnormal events should be one of the main priorities in any complex system.

In this work the interpretation of the water network state has been attempted by 

employing a fuzzy neural recognition system. A completely new approach to detection 

and identification of faults based on neural pattern analysis has been presented.

First a new general fuzzy neural network for clustering and classification has been 

proposed. A number of requirements imposed by the problem (water network state 

interpretation) was used as a guidance in this neural network development process. 

Among all the features of this neural network there are five that can be regarded as the 

most important:

• it can process both deterministic (point in the n-dimensional pattern space) and fuzzy 

input patterns (described by the lower and upper limits on each input vector variable);

• it combines the supervised and unsupervised learning techniques within a single 

training algorithm which means that the nonlinear decision boundaries between classes 

can be formed at the same time as the clusters are formed for the unlabelled data;

• it can grow to meet the demands of the problem since there is no restriction on the 

number of nodes and new nodes are added to the network when they are needed;
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• it can produce hard (where only one class is chosen) and fuzzy classification (where a

number of possible alternatives is given); and

• it learns on-line.

This neural algorithm has been subsequently used as a main building block in 

development of water distribution network fault diagnosis system.

The emphasis has been put on the task of detection and accurate location of topological 

errors. It has been shown that both the state estimates with their confidence limits and 

residuals with their confidence limits can be successfully used to train the neural 

recognition system. However, it has also been found that, due to the high susceptibility 

of the residuals to the typical measurement noise, the ability to detect and identify faults 

by the recognition system based on residuals can be seriously reduced. On the other hand, 

the recognition system based on state estimates performed better for the data for which it 

has been trained, due to much lower ratio of the noise to the useful signal and larger 

spatial separation of patterns representing different classes.

The importance of the accurate measurements in the process of detecting and 

identifying anomalies has also been evident in the testing results. Smaller leakages could 

be detected and more accurate location of the malfunction could be found in the direct 

vicinity of accurate meters.

The performance of the recognition systems has been tested for a large number of 

topological errors (i.e. 10 different levels of leakages have been simulated for all pipes) 

over the 24 hour period of operations of a realistic water distribution network. This not 

only allowed to confirm the commonly known fact in the water industry that any faults 

can be more easily detected during the night period when the variations of consumptions 

are smallest, but also gave an opportunity to study what impact different operating 

conditions can have on the ability to diagnose faults.

8.2. Further research

As the simulation studies presented in this thesis have shown there is a huge potential 

in applying simple neural networks for solving systems of linear equations to complex 

nonlinear problems. However, since the full potential of these neural networks can only
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be realised when implemented in hardware, the research on suitable electronic or electro- 

optical circuits should be considered a priority.

While the GFMM classification and clustering neural network has performed very well 

for a number of different training and testing examples one drawback has been identified: 

the hyperboxes created in the training stage depend on the order of presentation of the 

training patterns. Consequently the final division of the pattern space can be slightly 

different each time when the order of presentation of the training patterns is changed. 

Further research should explore the optimisation of the GFMM algorithm, so that the final 

partitioning of the pattern space is independent of the order of presentation of the training 

patterns.

Since application of the fuzzy neural recognition systems to the water network state 

identification task has shown to be successful the following topics deserve further 

research effort:

• Study of the recognition system performance in association with different state 

estimation procedures;

• Adaptation of the neural pattern recognition system to the detection of multiple 

malfunctions;

• Combination of the fuzzy outputs of the recognition systems based on state estimates 

and different types of residuals (i.e. representing mass balances and measurements).

Since the pattern recognition is a key element in many engineering solutions, the 

extension of the fuzzy neural algorithm developed here for pattern classification and 

clustering to control and prediction problems is also suggested.
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Appendix A

Evaluation of neural architectures - 

simple examples

A.1. Introduction

Before the neural network algorithms from Chapter 4 were applied to the water system 

state estimation they were tested on a set of simple examples. Using simple examples 

allowed us to identify some problems and confirm some properties of the tested 

algorithms. From the simulation point of view it has been found out that integration 

methods play a very important role in the behaviour of the simulated neural circuits. The 

multi-step integration algorithms had to be used in order to ensure the stable operation of 

the NNs for wide range of parameters. Some of the examples and results for LS and LAV 

problems are presented below.

A.2. Least mean squares problem

Example 1: Let us consider the following simple, square set of equations

1 2 3 *1 1
4 5 6 *2 = 0
1 8 0 *3 0

The theoretical

x= [x1 x 2 x 3 T = [l.7777 1.5555 -0.1 111]

solution

T

(stationary

(EQ A -l)

point):

On the basis of the systems of the differential and difference equations presented in 

Chapter 4 appropriate circuits have been designed and simulated on the computer.
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Appendix A : A .2 .L east m ean squares problem

All circuits (algorithms) converge to the correct solution independently of the initial 

starting point x 2 x3]  = [ l .7777 1.5555 - 0.1 111]  with residuals

[r i r 2 '•3] T = [o 0  o]T.

MATLAB and SIMULINK pseudo continuous time implementations.

The parameters of the simulation:

p = jii = 1 e9 , integration time constant = le -8, k=0.9, (3 = 5, a  = 0.2

ANN architecture
On the basis of 
the system of 

equations
Activation
function

Time of 
simulation [s]

Time of 
convergence 

[its]
Figure 4-2 (4-14) Linear 1.0440 0.25
Figure 4-2 (4-14),(4-25) Sigmoid 1.3991 0.25
Figure 4-2 (4-14),(4-26) Talvar 1.6787 0.25
Figure 4-2 (4-14),(4-27) Huber 1.8517 0.25
Figure 4-4 (4-34),(4-35) - 0.7500 0.075
Figure 4-5 (4-36),(4-37) - 0.4041 0.01

Table A-1: Time of the simulation and approximate time of convergence for different
MATLAB applications

For p = p  = lelO the time of simulation for all algorithms was under 0.5 [s].

(it)C discrete implementations (parameter p  At = 2e - 3 )

ANN architecture
On the basis of 
the system of 

equations
Activation
function

Time of 
simulation [s] 

(user time)
Figure 4-2 (4-21) Linear 0.0
Figure 4-2 (4-21),(4-25) Sigmoid 0.0
Figure 4-4 (4-32),(4-33) - 0.0

Table A-2: Time of the simulation for different C applications

From the results shown in the Table A-1 it can be seen that the neural network of 

Figure 4-4 provides better convergence properties in comparison to the structure of 

Figure 4-2 with any of the activation functions. It was also confirmed that for the neural 

structure of Figure 4-5 the solution can be found in the predetermined time when the 

parameter p  is adapted during the simulation in the way described in Chapter 4, 

Section 4.3.4. The stability problem has been observed in the discrete (C)

implementations of the neural networks. If the integration time constant of the integrators
(k) (k)is too large with large weights p and/or p the algorithm can be unstable. However,
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Appendix A : A .2.Least mean squares problem

for continuous-time algorithms the weights can be arbitrary large without causing 

stability problems.

The examples of the convergence trajectories for the neural structures of Figure 4-4 and 

Figure 4-5 are shown in Figure A-1 and Figure A-2.

Tima x 10"*

JE

a
a

Figure A-1: Computer simulated trajectories of the estimated parameters and the 
residuals for Example 1 (for the circuit structure of Figure 4-4)

2

1

I o*
§
I  0j
-  -0.6
UJ

•1

>1.6

•2
0 1 2 4 6 6 73 4 0

x 10**

J!

a
Sa:

Figure A-2: Computer simulated trajectories of the estimated parameters and the 
residuals for Example 1 (for the circuit structure of Figure 4-5)

Example 2: Let us consider the following least squares value problem

1 1 
1 2 
1 3 
1 4 
1 5

(EQ A-2)

[* ~ ^ *
x\ x t\ ~ [p-2 0.6]
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Appendix A : A .2 .L east mean squares problem

with residuals [rx r2 r3 r4 r 5J = [-0.2 0.4 0 -0 .4  0.2]

All circuits (algorithms) converge to the correct solution independently of the initial 

starting point.

MATLAB and SIMULINK pseudo continuous time implementations.

The parameters of the simulation:

p = |i = \ e 9 , integration time constant = le-8,k=0.9, p = 5 , a  = 0.2

ANN architecture
On the basis of 
the system of 

equations
Activation
function

Time of 
simulation [s]

Time of 
convergence 

[fts]
Figure 4-2 (4-14) Linear 0.2753 -0.08
Figure 4-2 (4-14),(4-25) Sigmoid 0.3509 -0.08
Figure 4-2 (4-14),(4-26) Talvar 0.3771 -0.08
Figure 4-2 (4-14),(4-27) Huber 0.4255 -0.08
Figure 4-4 (4-34),(4-35) - 0.4915 -0.03

Figure 4-5 (for (.1 = 5 e 5 ) (4-36),(4-37) - 0.4041 -0.95

Table A-3: Time of the simulation and approximate time of convergence for different
MATLAB applications

(k)C discrete implementations (parameter p  At -  2 e ~  3)

ANN architecture
On the basis of 
the system of 

equations
Activation
function

Time of simulation 
[s]

(user time)
Figure 4-2 (4-21) Linear 0.0
Figure 4-2 (4-21),(4-25) Sigmoid 0.0
Figure 4-4 (4-32),(4-33) - 0.0

Table A-4: Time of the simulation for different C applications

x 10*

Q

J9

IV
a

0 0.0 O M 1O A 1 .2 .4

Figure A-3: Computer simulated trajectories of the estimated parameters and the 
residuals for Example 2 (for the circuit structure of Figure 4-5)

Special care has to be taken when using the neural structure with the Talvar activation 

function. Since at the first few iterations the residuals, depending on the initial starting
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point, can be artificially large it is possible that when using too small cut-off parameter (3 

the correct solution will not be found. In case of the sigmoid activation function when the 

parameters a  and (3 are given such values that the residuals are processed on the linear 

part of the sigmoid the solution is very close to the standard least squares estimation. The 

example when the sigmoid activation function is used to obtain the solution close to the 

least absolute value estimation is shown in the next section.

Example 3: Let us consider the following least squares value problem

1 0 0 r n 1
1 1 1 Xl 2
1 2 4 X2 = 1
1 3 9 *3 -1

_1 4 16 -10

The theoretical solution (stationary point): x= jxj x2 x3J = [o.6 3.5 -1.5]

All circuits (algorithms) converge to the correct solution independently of the initial 

starting point.

MATLAB and SIMULINK pseudo continuous time implementations.

The parameters of the simulation:

p = [i = 1 e 9 , integration time constant = le-8, k=0.9, (3 = 5 , a  = 0.2

ANN architecture
On the basis of 
the system of 

equations
Activation
function

Time of 
simulation [s]

Time of 
convergence 

Ch s]
Figure 4-2 (4-14) Linear 1.4164 ~3
Figure 4-2 (4-14),(4-25) Sigmoid 1.8923 -3
Figure 4-2 (4-14),(4-26) Talvar 1.7670 ~3
Figure 4-2 (4-14),(4-27) Huber 1.7346 ~3
Figure 4-4 (4-34),(4-35) - 0.9911 ~1

Figure 4-5 (for ji = le5 ) (4-36),(4-37) - 2.4789 ~2

Table A-5: Time of the simulation and approximate time of convergence for different
MATLAB applications

iI
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(£)
Cdiscrete implementations (parameter jl At = 2e - 3 )

ANN architecture
On the basis of 
the system of 

equations
Activation
function

Time of simulation 
[si

(user time)
Figure 4-2 (4-21) Linear 1.0
Figure 4-2 (4-21),(4-25) Sigmoid 1.0
Figure 4-4 (4-32),(4-33) - 0.0

Table A-6: Time of the simulation for different C applications

0.7

0.6

0.1

o

0*o 1 2 2.6 a
Tkn#

*0.5

•1

0 1 2 2.6 a

Figure A-4: Computer simulated trajectories of the estimated parameters and the 
residuals for Example 3 (for the circuit structure of Figure 4-2 with a linear activation

function)

Example 4\ Let us consider the ill-conditioned least squares value problem.

1.1 2 3.1 r "i -2
4 5.1 6 *1 1.1
7 8 8.9 X2 - 4.2

-3.1 -4  -5 x 3 -0.5
5.5 6.9 8.1 _2.1_

The condition number of the matrix A in this case is approximately equal to 200.

The theoretical solution (stationary point):

x=[x, X 2X3]  = [l .6673 1.437 -2.1198]^

All circuits (algorithms) converge to the correct solution independently of the initial 

starting point.

MATLAB and SIMULINK pseudo continuous time implementations.

The parameters of the simulation:
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p = p. = 1^9 , integration time constant = le -8, k=0.9, (3 = 5 , a  = 0.2

ANN architecture
On the basis of 
the system of 

equations
Activation
function

Time of 
simulation [s]

Time of 
convergence

Figure 4-2 (4-14) Linear 0.5615 -0.7
Figure 4-2 (4-14), (4-25) Sigmoid 0.6261 -0.7
Figure 4-2 (4-14),(4-26) Talvar 0.6763 -0.7
Figure 4-2 (4-14),(4-27) Huber 0.6020 -0.7
Figure 4-4 (4-34), (4-35) - 0.6264 -0.3

Figure 4-5 (for \x = l e i ) (4-36),(4-37) - - -1.3

Table A-7: Time of the simulation and approximate time of convergence for different
MATLAB applications

(k)Cdiscrete implementations (parameter jll At = 2 e - 3)

ANN architecture
On the basis of 
the system of 

equations
Activation
function

Time of 
simulation [s] 

(user time)
Figure 4-2 (4-21) Linear 24.0
Figure 4-2 (4-21),(4-25) Sigmoid 57.0
Figure 4-4 (4-32),(4-33) - 14.0

Table A-8: Time of the simulation for different C applications

Nothing new could be said on the basis of the results from Example 3 that has not been 

said in the first two examples but it serves as a very good comparison to the ill- 

conditioned problem at hand. The convergence rate of the continuous-time 

implementations (Table A-7) in this example is longer but still comparable with the 

results for Example 3 (Table A-5). However, it is evident, from the results presented in 

Table A-8 and Table A-6, that a special care has to be taken in a case of the neural 

network discrete implementations when dealing with ill-conditioned problems since the 

convergence time can be prohibitively slow.

tt i o ‘T

Figure A-5: Computer simulated trajectories of the estimated parameters and the 
residuals for Example 4 (for the circuit structure of Figure 4-4)
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A.3. Least absolute value problem

Example 5: Let us consider the least absolute value problem described by the set of 

equations (EQ A-2).

The theoretical solution (stationary point for the least absolute value problem):

MATLAB and SIMULINK pseudo continuous time implementations. 

The parameters of the simulation:

|x = l e 9 , integration time constant = le -8

ANN architecture
On the basis of 
the system of 

equations
Activation
function

Time of 
simulation [s]

Time of 
convergence 

[|LLs]
Figure 4-2 (p = l e 9 ) (4-14) Signum 11.9652 -0.01

Figure 4-2 (p = 1, a = 100) (4-14),(4-25) Sigmoid 0.2658 -0.07
Figure 4-2 (p = 1, a = 2000) (4-14),(4-25) Sigmoid 0.3195 -0.01

Figure 4-6 and Figure 4-7 (p = l e 9 , 
p = l e 5 )

system using the 
inhibit principle - 1.734 -0.11

Table A-9: Time of the simulation and approximate time of convergence for different
MATLAB applications

ANN architecture Found solution
Figure 4-2 (p. = l e 9 ) x=[0.4996 0.5003]

Figure 4-2 (P = 1, a = 100) x=[0.4917 0.5027]
Figure 4-2 (P = 1, a = 2000) x= [0.4979 0.5007]

Figure 4-6 and Figure 4-7 (p = l e 9 , 1 step: x=[0.2 0.6]y —s<oIICl 2 step: x=[0.5 0.5]

Table A-10: Solutions for different MATLAB applications

The presence of discontinuity in the neural network with signum activation function is 

responsible for the long simulation time. Time of convergence strongly depends on the 

integration time constant.

(k)C discrete implementations (parameter \i At -  2e -  3

ANN architecture
On the basis of 
the system of 

equations

Time of simulation 
[s]

(user time)
Found solution

Figure 4-6 and Figure 4-7 (the m-n 
largest residuals are found after 
completing the LS stage)

system using the 
inhibit principle 0.966 1 step: x=[0.2 0.6]

2 step: x=[0.5 0.5]

Table A-11: Time of the simulation for different C applications
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ANN architecture
On the basis of 
the system of 

equations

Time of simulation 
Es]

(user time)
Found solution

Figure 4-6 and Figure 4-7 (contin­
uous tracking of the m-n largest 
residuals)

system using the 
inhibit principle 1.11 1 step: x=[0.2 0.6]

2 step: x=[0.5 0.5]

Figure 4-6 and Figure 4-7 (the m-n 
largest residuals are inhibited one 
at a time in the m-n steps of simu­
lation)

system using the 
inhibit principle 1.22 in 4 steps x=[0.5 0.5]

Figure 4-2 (p = 1, a = 100 ) (4-21),(4-25) 0.332 x=[0.4917 0.5027]

Table A-11: Time of the simulation for different C applications

jj

astc

Tim*

Figure A-6: Computer simulated trajectories of the estimated parameters and the 
residuals for Example 5 ((3 = 1 , a  = 2000 for the circuit structure of Figure 4-2)

Example 6: Let us consider the least absolute value problem described by the set of 

equations (EQ A-3).

The theoretical solution (stationary point): x  = [ ^  x 2 *3]  = [l 2.75 -1.375]

The best results (in a sense of accuracy) have been obtained by using the slightly 

modified network from Figure 4-6 and Figure 4-7. In the first run the network was able

JC
to find the following standard least-squares solution x l  = [o.6 3.5 — 1.5] with the

j

residual vector r (x  1) = [-0.4 0.6 0.6 -1 .4  0.6] .

In this case it is impossible to select two largest, in absolute value, residuals because 

|r i| = |r3| = |r5| = 0.6. In the second run only S4=0 (opened switch) and the network

found then x 2  = [o.9182 2.6409 -1.3409] with the residual vector 

r ( x2)  = [-0.818 0.2182 -0.1636 -2.2273 0.0273]T.
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On the basis of these results the inhibitive control network set S2 to zero (opened 

switch), so in the third run only S 1 = S3 = S5 = 1 (closed switches), and the network

following principle. The circuit selects at first the largest signal (the largest residual) 

which is inhibited, i.e. the corresponding S- is set to zero (opened switch). Next, the 

procedure is {m-n) times repeated for the rest of the signals.

By using the network with signum and sigmoid activation function we have obtained 

the less accurate results although very close to the correct solution.

Example 7: Let us consider the least absolute value problem described by the set of 

equations (EQ A-4).

The theoretical solution (stationary point): x  = [xj x2 x3J = [ 2 1  - 2]

All circuits (algorithms) used for Example 5 were able (in this case) to find solution 

very close to the correct one. The best results (in the sense of accuracy) have been 

obtained by using circuits employing the inhibit principle. These networks found the final

solution x  -  Jxj x 2 x3J = [ 2 1  - 2] .

Although it must be mentioned that the shortest time of simulation for C 

implementations, using simple Euler integration rule, was 24[s] in comparison to 0.7698 

[s] in the case of the NN with sigmoid activation function approximating the signum 

function simulated using more sophisticated integration algorithms (MATLAB 

implementation).

found the stationary point the residual vector

In the above example the inhibition control subnetwork is realized on the basis of the
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