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Hongbo Zhang Abstract

NUMERICAL SIMULATION OF ELECTROHYDRODYNAMIC EFFECT 
ON SINGLE AND TWO-PHASE HEAT TRANSFER

By
Hongbo Zhang

ABSTRACT

The effects of an electric field on single- and two-phase heat transfer have been 
numerically investigated. The aim of this work is to establish analytical and 
mathematical models for the coupled electric, flow and thermal fields in single- and 
two-phase flows and to analyze the EHD effects on natural convection and nucleate 
boiling and provide numerical predictions of temperature, electric and velocity fields 
both in pure liquid and in the vicinity of single bubbles attached to a heat transfer 
surface under the application of electric fields.

Physical and mathematical models to describe the phenomenon of EHD effects on 
natural convection are proposed. A current in a dielectric field is physically modelled as 
a directed motion of electrically charged particles injected into a fluid. The Navier- 
Stokes equations, with an electric body force and the Joule heat are added to the
momentum and energy equations respectively, are coupled with the electric field
equations. The governing equations for the coupled electric, flow and thermal fields are 
discretized using Finite Volume Method (FVM) and solved using the SIMPLE method 
with a non-staggered grid arrangement. A modified momentum interpolation scheme is 
proposed to eliminate the defects of Rhie and Chow’s interpolation scheme. The
algorithm is developed into a FORTRAN code and is validated.

Natural convection enhanced by electric fields is widely investigated. This includes the 
natural convection in rectangular and cylindrical enclosures, enhanced by uniform and 
non-uniform electric fields respectively. The effects of the Rayleigh number and the 
fluid viscosity and electrical conductivity on the obtaining of good heat transfer 
enhancement are numerically investigated.

In order to understand the mechanism of EHD enhancement of heat transfer at the gas- 
liquid interface during nucleate boiling, a simplified physical model for a bubble 
attached to a heated wall is considered. Treatments at the gas-liquid interface and the 
triple-phase point are applied. Based on these, numerical study of EHD effect on heat 
and flows around a single R134a bubble attached to a superheated wall are carried out. 
Analysis is carried out for the flow and heat transfer at the vicinity of the gas-liquid 
interface when different electric voltages are applied. The bubble model is further 
employed to study the EHD effects on the fluids with different charge relaxation time. 
Four refrigerants, R134a, R123, R12 and R113, are studied and compared.

The numerical methods and the models for the coupled electric, flow and thermal fields 
are employed to carry out a preliminary study of the EHD effect on a growing bubble at 
different stages.
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Chapter 1 

Introduction

This chapter gives an introduction to the research work of this thesis. An explanation to 

the background of the project and concise descriptions of the aims and the objectives of 

the research are also presented.

1.1 Nucleate boiling

Nucleate boiling is defined as a process, in which addition heat from a solid surface to a 

liquid in such a way that generation of bubble on the solid surface occurs at low 

superheat. The heat transfer associated with nucleate boiling process makes them highly 

advantageous in traditional refrigeration and power industries from a thermodynamic 

efficiency standpoint. Moreover, the high heat transfer rate has made nucleate boiling 

process even attractive in the thermal control of compact devices that have high heat 

dissipation rates. The applications of this include cooling electronic components in 

computer manufacturing industry and the use of compact evaporators for thermal 

control of aircraft and spacecraft environments. Nucleate boiling is also of critical 

importance to nuclear power plant design, chemical and petroleum.

1
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The considerable economic importance of nucleate boiling process, along with its 

fashionably complex phenomena involved, has attracted the attention of the researchers 

from all relevant disciplines since more than a century ago. This process has all the 

complexity of single phase convective transport, plus additional elements resulting from 

the phase change, the motion of the interface, non-equilibrium effects, and dynamic 

interactions between the phases. Due to the highly complex nature of this process, 

development of methods to accurately predict the associated heat and mass transfer is 

often a formidable task.

1.2 Background

Since the use of an electric field to enhance convective heat transfer was firstly reported 

in the UK over eighty years ago, a number of significant works on 

Electrohydrodynamic (EHD) enhanced heat transfer and mass transport has been 

performed by researchers from all over the world. EHD effect on nucleate boiling have 

particularly drawn researchers’ attention due to the potential applications for renewable 

sources (Yan, Karayiannis, Allen, Collins and Neve, 1996). Attractive experimental 

outcomes on EHD enhancement of nucleate boiling can be identified in a number of 

research papers; and these include the elimination of boiling hysteresis, the initiation of 

bubbles at low superheat and the enhancement of heat transfer at low superheat (Yan, 

1996a; Yan, 1996b), and other compound effects of using EHD and passive methods 

(Neve and Yan 1996). However, the mechanism behind these attractive results has not 

yet been clearly explained. For example, the past theoretical studies of EHD effect on

2
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nucleate boiling, which had mainly focused on derivation and analysis of the EHD body 

force in a dielectric system, show that EHD enhancement of two-phase heat transfer lies 

in additional body forces exerted by the electric field in the Navier-Stokes equations; 

however, the important work of implanting the electric body force to the Navier-Stokes 

equations and establishing the computational model for the EHD enhanced nucleate 

boiling and two-phase flow problems have not yet been done.

Furthermore, from experimental studies (Yan, 1996b), the mechanism of EHD 

enhancement of nucleate boiling on a heating surface was recently assumed to be due to 

EHD forces pressed the newly generated bubbles onto the heat transfer surface, instead 

of breaking away from it. In the meantime, bubbles around the heating surface will 

grow when the superheat is increased and tend to move up by the action of buoyancy. 

The EHD effect and buoyancy forces disintegrate bubbles into many smaller ones. As a 

result, the area of the thin liquid film under the bubbles increases, and the heat transfer 

rate is enhanced. To validate such an EHD mechanism experimentally, the UK 

Engineering and Physical Sciences Research Council (EPSRC) has invested a huge 

amount of money in Oxford during the last seven years. Nevertheless, the researchers at 

Oxford have recognised that, due to the limitation of experimental conditions, it would 

be difficult to explain the complex mechanism without combining with computing 

techniques to carry out numerical analysis (Kenning, 1999).

The research works earned out in this thesis are financially supported by an Overseas 

Research Scholarship (ORS) Award and a Research Enhancement Fund (REF) of The
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Nottingham Trent University. The research will be entirely theoretical and numerical. 

The outcome will be significant for improving related industrial processes, such as 

refrigeration, air conditioning, industrial evaporators/condensers in thermal and power 

systems, and some gas-liquid related chemical reactors. These will also have a direct 

influence on process economics and optimisations.

1.3 Starting Point of This Research

The Heat and Fluid Flow Group at the Nottingham Trent University has been engaged 

in heat transfer enhancement and multi-phase flow for several years and has established 

a good base for the current research. Prior to the current study, two PhD research 

programmes relevant to numerical simulation of gas-liquid two-phase flows have been 

finished in this group. Based on these works, available supports for the current research 

are as follows:

1). Basic software package for development of computational codes. These include the 

Digital Visual FORTRAN software and the post-processing and flow-visualising 

package TECPLOT;

2). The FORTRAN code for generation of body-fitted staggered grids for simply- 

connected geometries (Li, Yan and Hull, 2003);

3). The FORTRAN codes for calculating of heat and fluid flows in rising single bubbles 

(Li and Yan, 2002; Yan, Lai, Gentle and Smith, 2002; Lai, Yan and Gentle, 2003).

With these supports, necessary contributions for the current study are:
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1). Because of the shortcomings of the staggered grid system, to be analysed in chapters 

2 and 4 later, this study will use a non-staggered grid system; FORTRAN codes 

generating such grids for the problems considered in this thesis need be developed;

2). The aforementioned codes for rising bubbles can only be used to calculate heat and 

fluid flows without EHD effect; special mathematical and computational models for 

describing the coupled thermal, flow and electric fields need be established and 

realised in codes;

3). In order to analyse the EHD effect and the relevant mechanism of heat transfer 

enhancement, the using of numerical methods with especially high resolution is a 

basic requirement. The resolution of codes in the research group have been improved 

by using second-order total variation diminishing (TVD) schemes (Yan, Lai, Gentle 

and Smith, 2002; Lai, Yan and Gentle, 2003); but the employment of Rhie and 

Chow’s (1983) momentum interpolation scheme may introduce instability to the 

calculation and smearing to the resolution (Zhang, Yan and Hull, 2001). 

Modification to this scheme and further improvement of the numerical accuracy must 

be carried out in this thesis.

1.4 Aims and Objectives 

Aims:

To complete an analysis of EHD effect on nucleate boiling and provide numerical 

predictions of temperature and velocity fields both in pure liquid and in the vicinity of 

single bubbles attached to a heat transfer surface under the application of electric fields.
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Objectives:

1) To develop analytical and mathematical models for describing the EHD 

enhancement on heat transfer. These models should be formulated and coupled with 

the Navier-Stokes equations;

2) Based on the codes developed in the research group, to further modify and improve 

the numerical methods, and develop FORTRAN codes for the analytical and 

mathematical models so as to simulate EHD effect on single-phase and two-phase 

flows;

3) To numerically study the EHD effect on single phase flows in natural convection;

4) To enhance the numerical algorithm to make it capable of simulating the EHD effect 

on the heat and flows at the vicinity of a single bubble in nucleate boiling; and study 

the mechanism of EHD enhancement of heat transfer.

1.5 Outline of the Work

As stated earlier, this research is entirely theoretical and numerical. The main works are 

organised and presented in seven chapters after the current introductions.

In order to fully understand the work published on electrohydrodynamic enhancement 

on single and two phase heat transfer, chapter 2 gives a review of the literature. In this 

chapter, both the theoretical and experimental studies on EHD effect on heat transfer of 

single and two phase flow are reviewed and summarised. Special attentions have been
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given to review the analytical models and numerical methods for studying natural 

convection and single bubbles because of the tasks of current research.

Physical and mathematical models for the coupled electric, flow and thermal fields are 

presented in chapter 3. The electric field, heat and fluid flows around the bubble are 

physically modelled. Based on the physical model, full Navier-Stokes equations for 

incompressible heat and fluid flows are coupled with the controlling equations for the 

electric field in terms of an electric body force and the Joule heat. The controlling 

equations are normalised and presented in a non-orthogonal body-fitted coordinates 

system.

Chapter 4 presents a complete numerical procedure to solve the coupled controlling 

equations for electric, flow and thermal fields. The transport and electric field equations 

are discreted using Finite Volume Method (FVM). The discretizatioin yields a large 

system of non-linear algebraic equations. The method of solution depends on the 

problem; therefore an appropriate method has to be chosen. In this work, the SIMPLE 

method with non-staggered grid arrangement is selected to solve the discretized 

equations. The algorithm is developed into a FORTRAN code and is validated.

The EHD effect on single phase heat transfer was studied in chapter 5. The EHD effect 

on natural convection in rectangular and cylindrical enclosures was numerically 

investigated. As revealed by experiments, the electrical properties of the working fluid 

have effects on the heat transfer rate once the electric field was applied; chapter 5 also
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carried out a study of the EHD effect on working fluids which have different 

conductivities and viscosities.

It is clear that the heat transfer rate of nucleate boiling is determined by the 

characteristics of the bubbles that depart from the superheated surfaces. In order to 

understand the mechanism of EHD enhancement of heat transfer at the gas-liquid 

interface during nucleate boiling, simulations of EHD effect on heat and flows around a 

single bubble attached to a superheated wall during nucleate boiling of R134a are 

conducted in Chapter 6.

The charge relaxation time of fluids plays an important role in heat transfer 

enhancement by the meanings of an electric field. Four refrigerants, R134a, R123, R12 

and R113 are chosen to study the effects of the charge relaxation time in chapter 7.

Bubble growth is a very importance of the heat transfer rate of nucleate boiling. The 

complex process involving coupling between mass, momentum and heat transfer 

between an expanding bubble and the surrounding fluid; it also involves the coupling of 

electric, flow and thermal fields when electric fields are applied. Chapter 8 simulate the 

EHD effect on a growing bubble at different stages. The studies also checked the 

assumption of the constant contact angle.

Finally, the conclusions of the research and recommendations for further work are given 

in chapter 9.
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Chapter 2 

Literature Review

2 .1  I n t r o d u c t io n

The heat transfer objectives can usually be stated by either

a), removing large rates of energy generated through small surface areas with moderate surface 

extended; or

b). reducing the size of a boiler for a given rating.

The desire to promote high heat fluxes has been the major driving force for the study of boiling 

heat transfer and the development of methods to enhance boiling heat transfer.

Nucleate boiling has long been recognized as a very effective mode of heat transfer. The early 

work of Jacob and Fritz (1931) demonstrated high heat fluxes could be obtained with pool boiling 

of water at low temperature differences, in effect, representing very high heat transfer coefficients. 

Thus it was established more then 70 years ago that nucleate boiling had the promise to satisfy the 

two main objectives noted above. Furthermore, the possibility of enhancing boiling performance 

was strong.

For many years, various techniques for heat transfer enhancement have been applied to practical 

heat exchangers. In general, heat transfer enhancement methods are categorized as “passive” or 

“active” (Bergles, 1987). The first category includes the high heat-treated, rough or extended 

surfaces, displaced enhancement devices, additives, etc. Porous surfaces with re-entrant cavities
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are currently the most effective boiling heat transfer surfaces for commercial heat exchangers. The 

“active” category includes the methods such as mechanical aids, stirring or vibrating the 

fluid by mechanical means or by rotating the surface. Surface “scraping”, which is 

widely used for batch processing of viscous liquids in the chemical process industry, is 

applied to the flow of such diverse fluids as high viscosity plastics and air. Equipment 

with rotating heat exchanger ducts is found in commercial practice. Electric fields are 

applied in many different ways to dielectric fluids. The effects of an electric field (AC 

or DC) on heat transfer are mainly to cause greater bulk mixing or fluid, or disruption of 

flow in the vicinity of the heat transfer surface and also the boiling process, which 

enhances heat transfer. Other active methods are suction or injection by suction or 

injecting the similar fluid through a porous heated surface. Injection is only used in 

single-phase flow.

Among the heat transfer enhancement methods, the application of an electric field is 

very attractive and has been studied extensively over the last 30 years because of its 

advantages:

1). rapid and smart control of enhancement by varying the applied electric field 

strength;

2). non-mechanical and simple in design;

3). suitable for special environments (space);

4). applicable to single and multi-phase flows;

5). minimal power consumption;

6). it is a more efficient technique at low degrees of superheat.
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Furthermore, because of reduced gravity in space, the specific weights of liquid and 

vapour could become equal. In such an environment, the bubbles generated during 

boiling cannot be smoothly moved from the boiling surface, which can cause 

deterioration of heat transfer. Electric forces can be the ideal replacement for gravity in 

the space, which makes EHD more desirable than other techniques.

This chapter gives a brief review of the available research work on EHD enhancement of heat 

transfer, which includes single-phase flow (natural convection) and gas-liquid interfacial flow 

(boiling). The review is organised according to investigating methods applied such as 

experimental and numerical studies. As this study is entirely numerical and theoretical, attention 

will be mainly paid to numerical simulations. Further to these, because good and reliable physical 

and numerical models are the key issues when a computational fluid dynamic (CFD) method is 

used to study the heat transfer phenomena, this chapter will also review the numerical methods on 

natural convection and gas-liquid interfacial flows.

2.2 EHD Enhancement of Convective Heat Transfer

2.2.1 Experimental Study

The application of EHD effect was firstly seen in 1911 with colloidal separation and in 

the late 1920’s with the deposition of insulating materials on metal electrodes. It is well 

known that when an impermeable solid surface interacts with the flow over it, a 

boundary layer will form over the surface; this exerts the main resistance to convective
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heat transfer. The thicker boundary layer the lower the thermal conductivity of the 

working fluid, the lower heat transfer coefficient.

Using an electric field can induce secondary motions (Lacroix, Atten and Hopfinger, 

1975; Worraker and Richardson, 1979; Shu and Lai, 1995; Darabi, Ohadi and 

Desiatoun, 2000) and increase flow velocities; these have been considered the main 

reason for the augmentation on heat transfer rate for single phase flow. Probably the 

earliest demonstration of these phenomena applied to a heat transfer situation was those 

of Senftlenben (1931, 1932, and 1934) and Senftlenbenand & Braun (1936). In their 

studies, the influence of an externally applied radial electrostatic field on free 

convection from heated wire was examined, and increases in heat transport of 50% were 

reported with gases including air and oxygen. Arajs and Legrold (1958) reported large 

improvements with gaseous N2, 0O 2, N H 3 , S 0 2 and CCI3F using a similar radial field 

configuration. Field strengths up to 105 volts/cm were applied resulting in forty-fold 

increases in heat transfer with S 0 2.

Other earlier experiments on convection were reported in 1949 by Kroning and Ahsman 

(1949), when both dc and 40-Hz voltages were employed. With dc voltages, polarity 

dependent effects were observed which they attributed to electrolysis. The alternating 

voltage eliminated the observed electrolytic gas evolution. Kroning and Ahsman (1949) 

extended their work to other liquids and developed a Nusselt correlation.

These initial experiments soon drew more attentions. Weber and Halsey (1953)
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demonstrated experimentally that electric field disrupted laminar thermal boundary and 

produced turbulence. In a brief theoretical treatment, they noted three types of forces 

and pointed out the conservation nature of electrostriction. The work on electric field- 

coupled thermal convection was reported about the same time in Germany by Schmidt 

and Leidenfrost (1953), who used an elaborate arrangement of two concentric electrode 

cylinders and measured the effective thermal conductivity of the liquid in an annular 

region as a function of the voltage. The principal conclusion, based on visual 

observation, was that electro-convection was the cause of the increased heat transfer, 

rather than changes in the thermal conductivity caused by dipole alignment. An 

electrically induced convection experiment was carried out in 1966 (Gross and Porter, 

1966), which showed the convection patterns under non-uniform electric field were 

similar to the familiar “Benard” cells in normal natural convection.

Martin and Richardson (1984) experimentally demonstrated that a dc voltage applied 

across a thermally stabilized plane layer of dielectric field could induce both stationary 

and oscillatory instabilities, and thereby significantly augmented heat transfer. Electro

convection seems an attractive tool for enhancing convective heat transfer, particularly 

in a low Reynolds number flow of a weakly conducting liquid through a narrow space, 

where the application of any conventional passive enhancement methods is neither easy 

nor effective.

Fujino, Yokoyama and Mori (1989) experimentally examined the effect of a uniform 

electric field on laminar force-convective heat transfer, which showed the degree of
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enhancement might be significantly extended by appreciably adjusting the conductivity 

of the liquid.

2.2.2 Numerical Study

A numerical prediction of the EHD effect on laminar mixed convection in a vertical 

channel was reported by Wang, Collins and Allen (1990). The numerical results showed 

that in convective heat transfer, the non-uniformity of the temperature field produces the 

non-uniformity of the dielectric permittivity. The electrically induced secondary flow 

was rather weak.

Another paper about the EHD enhancement on laminar heat transfer was reported by 

Dulikravich and Ahuja (1993), which treated the Coulomb force as the electric body 

force for a single-specie eletrorheological fluid and took the effects of Joule heat into 

account. The numerical investigations showed that EHD was a significant alteration of 

the flow field and consequently it redistributed surface convective heat fluxes. When 

viscosity was treated as a constant, the predicted increase of the convective heat transfer 

rate due to EHD phenomena was between 12% and 64% for the cases studied. The 

importance of accounting for increased viscosity of the electrorheolohical fluid due to 

the chaining effect of the electrically charged particles was been clearly demonstrated.

Numerical simulations of EHD-enhanced heat transfer for laminar natural convection in 

an enclosure with differentially heated vertical walls was also reported by Shu and Lai
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(1995). Attention was also focused on the effect of added electric field on the flow 

stability. The electrical field was generated by positive corona from a wire electrode 

located at the centre of the enclosure and charged with a high dc voltage (10 -17.5 kV). 

The thermal buoyancy effects considered were in the range of Zta = 103 -  106. For a 

given Rayleigh number, the flow and temperature fields changed from a steady state to 

periodic and non-periodic convection as the applied voltage increases. It was found that 

heat transfer enhancement increased with the applied voltage but decreased with the 

Rayleigh number. Due to the existence of secondary flows, there was an improvement 

in heat transfer, which was the most significant for flows at a small Rayleigh number. In 

their work, the charge convection is neglected and the EHD and fluid dynamic 

equations was decoupled.

EHD-enhanced forced convection in a horizontal channel was studied by Huang and Lai 

(2003) using stream-function/vorticity method. The difference of the results obtained 

using one-way and two-way coupling is insignificant, therefore it is concluded that one

way coupling assumption is valid for the convection heat transfer problems. The results 

show heat transfer rate can be as high as 350% and also the existence of oscillatory 

flows, which is considered the main reason for the high heat transfer enhancement.

2.3 EHD effect on Two-Phase Heat Transfer

Nucleate boiling is a vapour-liquid phase changing procedure associated with bubble
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formation. As it is a very efficient mode of heat transfer, the boiling process has been 

studied extensively during the last century.

2.3.1 Experimental Study

In the last 30 years the great potential of EHD in enhancing two-phase heat transfer 

rates has been realised by more and more industrial and academic researchers. The 

research of EHD enhanced nucleate boiling heat transfer appeared in 1960s and 1970s, 

which focused on the influence of electric field on the critical heat flux and on film 

boiling from electro-resistance-heated wires. One of the quantitative studies on EHD 

enhancement of nucleate boiling was carried out by Bochirol et al. (1960), which was

Stainless steel 
electrodesShell 

(at earth 
potential)

High
voltage
connection

Insulated electrode 
mounting ring 
assembly

Figure 2-1 Electrode system applied to an inner tube
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concerned with the dramatic EHD enhancement of the film boiling regime and a 

consequent increase in the critical heat flux. Theoretical analysis was also applied to 

help explaining the phenomena of EHD enhanced heat transfer.

Since 1980s the study of EHD enhanced nucleate boiling has been carried out with more 

emphasis 01 1 the industrial applications (Yabe and Maki, 1988; Ogata and Yabi ,1991, 

1993a, 1993b; Kawahira, Kubo, Yokoyama and Ogata, 1990; Karayiannis et al. 1993; 

Salehi, Ohadi and Dessiatoun, 1997; Darabi, Ohadi and Dessiatoun, 1998; Yan and 

Neve, 1996; 1997; Yan, 2000). Figure 2-1 shows an electrode system designed and used 

to apply an electric field at the inner surface of tubes by Poulter and Allen (1986).

EHD effect on bubble dynamics

Applying an electric field can strongly affect the boiling process. The major effects of 

an electric field on boiling are considered to include the shift of the boiling curve; 

eliminate boiling hysteresis; the delay of ONB (Onset of Nucleate Boiling) and CHF 

(Critical Heat Flux) to a higher heat flux; and more importantly the electric field can 

strongly enhance heat transfer rate by influencing bubble behaviour such as the faster 

bubble frequency, reduced bubble size, bubble deformation, and also by disturbing the 

thermal layer on the heated surface.

Figure 2-2 shows a typical boiling characteristic curve (Seyed-Yagoobi and Bryan,
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1995) in terms of thermal flux per unit area q* , versus superheat ATsat. A-E is the EHD

enhanced boiling curve, the boiling hypsteresis is eliminated; and the CHF is increased 

as well as the onset of nucleation is delayed.

critical heat flux

regime of slugs and columns

EHD enhanced 
boiling curvecr

isolated bubble regime

onset of nucleation

heat flux controlled
hysteresis region

ATsat = Tw - T38, (°C)

Figure 2-2 EHD effect on boiling process

DiMarco and Grassi (1993) gave a good review of the effect of an imposed electric field 

on regime transitions in boiling heat transfer. The major effects of EHD were proven to
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be exerted on CHF and MFB (minimum film boiling); film and transition boiling may 

even disappear.

Cooper (1990) experimentally studied the EHD enhancement of nucleate boiling of 

R114. The results show that boiling hysteresis is completely eliminated through the 

electrical activation of nucleation sites on the heat transfer surface following a brief 

application of a modest electric field; the augmentation of heat transfer coefficients is 

up to an order of magnitude,

Seyed-Yagoobi, Geppert and Gerppert (1996) studied the EHD enhanced heat transfer 

in pool boiling of R 123. They found that the average of convective heat transfer at a 

voltage of lOkV was about 4.6 times higher than without an electric field; and with the 

increase of the applying voltage, the onset of boiling came later; by contrast to all 

references, which implied that the higher voltage, the higher the enhancement of heat 

transfer coefficient, the best results were achieved at 5 to 10 kV range. They suggested 

two reasons. First, below 5kv, the turbulence generated due to the electrostriction force 

in small. Second, at high voltages (above lOkV), the dielectrophoretic forces are large, 

pushing the bubbles away from the electrodes. This effectively results in restricting the 

path available for the bubbles to depart.

Kweon and Kim (2000) gave thorough experimental results on the EHD effect on 

nucleate boiling and bubble dynamic behaviour in saturated pool boiling using a non- 

uniform DC electric field. The results showed the shift of the boiling curve, including
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the increase of critical heat flux, the delay of onset of nucleate boiling, and the 

suppression of the hysteresis phenomenon. Significantly changes of boiling parameters 

(including the nucleation site, bubble frequency, bubble velocity and departure size) in 

the presence of a non-uniform electric field were also observed using a high speed 

camera. It was confirmed that the mechanism of EHD nucleate boiling was closely 

connected with the dynamic behaviour of bubbles. Also at a very high voltage, the 

amount of latent heat transported bubbles nearly corresponds to the total heat flux and 

only a small amount of the heat was transported by convection.

Zagpdoudi and Lallemand (2001) experimentally studied the influence of a DC uniform 

electric field on nucleate boiling heat transfer. They found that for an applied voltage 

below lOkV, the vapour bubbles were not much influenced by the electric field and the 

boiling phenomenon was similar to that observed without the electric field. When the 

voltage exceeds 20kV, the bubbles became smaller, the departure frequency increased 

and the bubbles had a very rectilinear path.

Iacona, Herman and Chang (2002) recorded the bubble detachment with different 

electric field magnitude ranging from OkV to lOkV using high speed camera. They 

found that the bubble is increasingly elongated in the direction parallel to the applied 

field and the bubble axis is vertical. As a result of bubble shape changes, the aspect ratio 

and the contact angle increase by 27% and 32%, respectively; and the bubble volume at 

detachment is also affected by the presence of an electric field and it decreases by 51%.
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The period of bubble formation td (the time between bubble apparition and its 

detachment) decreases 50%.

Electrode geometry and non-uniform electric field effects

Markels and Durfee (1964, 1965) studied enhanced boiling heat transfer in semi- 

insulating liquids with DC and AC voltages up to lOkV. The increments of CHF up to 

five times were measured with applied DC voltages up to 8k.V. DC fields were found 

more effective than AC ones, and the field frequency was reported to have a very low 

effect in the range of 50-5000HZ.

Kweon, Kim, Cho and Kang (1998) examined the nouniformity effects of electric fields 

on bubble deformation and departure by using three types of electrode systems. For a 

DC electric field, as the applied voltage increases the bubble attached to a wall is more 

extended in the direction parallel to the imposed electric field, thus the aspect ratio and 

contact angle also increase. The bubble departure volume in a nonuniform electric field 

decreases continuously, while that in a uniform electric field is nearly constant. Their 

results show that bubble behaviour is significantly affected by the inhomogeneity of the 

electrode configuration. For an AC electric field, that bubble departure occurs near a 

resonant frequency.

Karayiannis and Xu (1998b) focused on the effects of electrode geometry. They 

suggested novel electrode geometry for single tube and tube bundles. The geometry can
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produce a resultant force tangential to the tube surface on most of the bubbles on the 

boiling surface. The tangential force can have sliding boiling effects, which is regarded 

as a dominant mechanism for tube exchangers. They also verified the designed 

geometry using a shell-and-tube heat exchanger of R 123. The EHD enhancement of 

R123 boiling heat transfer was significant.

More recently, Kweon & Kim (2000) focused on the effects of non-uniform electric 

field on nucleate boiling. Their results also showed that the EHD effect are more 

remarkable when the electric field is strong and non-uniform. Due to the increased 

liquid motion, the onset of nucleation is delayed when the EHD forces are applied. The 

increased liquid motion re-supplies the heated surface with cooler surrounding liquid, 

thus condensing bubbles as they are formed and lowering the wall superheat. They also 

found out that at the lower part of the heated wire, as the increase of the electric 

strength, the bubbles are pulled off from the heated wire towards the region of weaker 

electric field. The direction of the electric force acting on bubbles is the electric field 

line.

Zagpdoudi and Lallemand (2001) also found that the tangential component force is the 

Coulomb stress generated by the electric field on the liquid-vapour surface. It induces 

liquid movements around the bubble and vapour movements within the bubble. And it 

is not dependent on the electric field polarity. The factor determining the bubble shape 

is the product of the permittivities and resistivities ratio of the bubble and liquid.
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Relaxation time and Fluid properties effects

In nucleate boiling, the charge relaxation time plays an important role during bubble 

growth and departure in an electric field. When fluid is placed in an electric field, 

electric charge is generated. It takes a certain time for the influence of the electric field 

to take place. This time is called the relaxation time of the electric charge and it is 

related to the electrical properties of the fluid (it is defined as the ratio of electric 

permittivity and electric conductivity of the fluid: T - e / c r ) .

The studies by Ogata and Yabi (1993a, 1993b) and Ohadi (1991) focused on the charge 

relaxation time effects on nucleate boiling by EHD. For pure R11 the charge relaxation 

time is about 1.3s, while the characteristic time of the boiling fluid (the generation 

frequency of boiling bubbles of R11) is about 2 x l0 “2 s, which means that the generated 

bubbles float to the free surface without being effected by the electric field. When 

ethanol is added to the dielectric R ll  (with only several percents of the total weight), 

the relaxation time decreases and it becomes much smaller than the bubble frequency. 

As a result, the enhancement of boiling heat transfer was about 8.5 times higher than the 

case for a pure R11. Figure 2-3 shows the results of augmentation of heat transfer for air 

bubble and R l l .  They also found that if the charge relaxation time is far greater than the 

bubble detachment period, the bubbles are not affected by the electric field.

The influence of fluid properties on EHD enhancement heat transfer behaviour has been 

experimentally investigated by Oh and Kwak (1996) and Paschkewitz and Pratt (2000). 

The experimental results show that for a given Reynolds number forced flow and
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electrical power input the fluid with a larger charge relaxation time will yield greater 

heat transfer enhancement. The experiments also show that decreasing viscosity reduces 

both the electrical and pressure drop penalty for a desired heat transfer enhancement via 

secondary flow. Using a low viscosity, high charge relaxation time working fluid with 

low Reynolds number forced flow gives optimal performance and an early onset of 

significant EHD enhancement.

(a) Air bubble behaviour (b) Boiling behaviour of R11/ethanol mixture

Figure 2-3 Bubble behaviours in an electric field

Zagpdoudi and Lallemand (2001) also studied the influence of fluid properties. R113, 

R123 and n-pentane were chosen as working fluids. The results showed 17% and 23%

10 kV

20  KV

25 kV
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of increase of CHF for n-pentane and R113, respectively. However, for R123 a 

threefold increase was reached. The charge relaxation time for R123 is only about 

1.76x 10~3s, for R l l 3 it is about 2.12s.

As far as EHD bubble dynamics is concerned, only limited papers can be identified, in 

which bubble departure diameter or volume are normally derived and discussed. 

Typically, such analysis is only on the basis of the assumption of one-dimensional 

spherical bubble. Although there are a few recently published papers which deal with 

numerical analysis of electric field distribution around a bubble by solving Laplace’s or 

Poisson’s equations in conjunction with relevant boundary conditions (Ogata and Yabe, 

1993a, b; Yan, 1996b and Karayiannis, 1998), the significant effects of the established 

fields on bubble-liquid interface have not yet been taken into account. In fact, based on 

experimental observations, it has been suggested that the mutual interaction between a 

dielectric liquid and an imposed electric field leads to a change in the bubble dynamics, 

in particular, near or on the heating surface; which is believed to be one of the major 

reasons why nucleate boiling can be significantly enhanced by applying the EHD. All 

these works contribute to possible industrial applications in the future.

2.3.2 Numerical Study

Due to the complicated interactions among the electric, flow and temperature fields, 

studies on two-phase heat transfer enhancement by electric fields are mostly 

accomplished by experiments. Numerical solutions are possible but usually subject to
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some simplifications of the heat transfer phenomena by EHD. So far only a few of 

numerical studies have been published; these studies were focused on the mathematical 

model of calculating the electric field when bubbles appeared in the flow field.

2.3.2.1 Mathematical models and boundary treatment for bubbles

Ogata and Yabe (1991) and (1993a) reported an attempt to simulate a single bubble in 

an originally uniform electric field. They used the Laplacian equation to simulate the 

electric field profile; the bubble surface was defined as a part of the boundary and 

assumed that the electric strength E  in the direction normal to the bubble surface to 

equal zero. Yan et al. (1996) made the same assumption in calculating the electric field 

distribution. The shortcoming of these studies is that the electric field inside the bubble 

is neglected, and the assumption of zero-electric-strength normal to the bubble surface 

is possibly untrue in reality.

The study of electric field with the presence of multiple bubbles was firstly reported by 

Karayiannis and Xu (1998). In their work, the bubbles were included as a part of the 

domain of interest; and the electric field at the bubble surface was decided by the actual 

calculations. And also the domain of interest is inhomogenous, the properties, such as 

the electric conductivity and permittivity, are functions of the temperature. The bubble 

surface is characterised by the significantly different permittivity on both sides. The 

electric force acting on bubbles was evaluated by surface integration of the electric 

stress over the bubble surface. This method was also applied to an EHD shell-and-tube
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heat exchanger to predict the electric field and force field distribution. The effect of 

departed bubbles was also taken into account. The mathematical model established by 

Karayiannis and Xu (1998) is simple and easy to be applied to calculate the EHD effect 

on heat transfer enhancement; and more importantly, a group of bubbles can be 

considered in the same time without assumption on the electric strength at the bubble 

surface. However, the thickness of a bubble surface is physically zero and therefore 

there is a shaip jump of permittivity across the bubble surface; this impose a difficulty 

in numerical calculation when differential operations, such as the Laplacian and 

divergent operators, are applied to calculate the charge density. Moreover, the advection 

of electric charges by the flow is neglected and therefore the interaction between the 

electric and flow fields can not be included in this model; because the flow field will not 

be calculated in this model, the physical coupling of the flow and electric fields which is 

possibly be very strong (Takata, Shirakawa, Tanaka, Kuroki and Ito, 1996), is 

decoupled.

2.3.2.2 Findings of numerical investigations

Cheng and Chaddock (1985) theoretically studied the effects of an electric field on 

bubble growth rate using a heat diffusion controlled growth model, which assumed that 

the temperature field around the bubble was uniform and the bubble grows as a result of 

evaporation at the liquid vapour interface. The analyses showed that by elongating the 

bubbles, an electric field reduced the area of contact between the bubbles and the heated 

surface. This reduced the surface tension force which held the bubble to the heating
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surface, and resulted in smaller bubble departure size. Cheng and Chaddock (1985) 

suggested that the smaller departure size and faster growth rate were two mechanisms 

by which a uniform electric field enhanced the nucleate boiling heat flux of a liquid.

Takata, Shirakawa, Tanaka, Kuroki and Ito (1996) earned out a numerical analysis on 

bubble growth and deformation under an electric field in order to elucidate the 

mechanisms of boiling heat transfer enhancement by EHD means. Transient Navier- 

Stokes and Maxwell's equations were solved simultaneously for liquid and vapour 

phases in a two-dimensional cylindrical co-ordinate system using VOF (Volume of 

Fluid) method. Bubble growth in liquid R113 under atmospheric pressure has been 

simulated. In their study, elongation of a single bubble under uniform electric field was 

simulated and the final shapes of the bubble were found to be in good agreement with 

Garton's analytical and experimental results. Further to this, the bubble deformation 

process under non-uniform electric field was simulated. A bubble initially attached to 

the lower electrode was observed to deform and finally detaches from the lower 

electrode. This study unveiled that the shape of bubbles depends on the intensity of the 

electric field. The behaviour of bubbles, the velocity vectors, and the contours of 

electric field were also shown and compared with experimental data. However, the 

temperature field was not studied in this paper; therefore the effects of temperature and 

Joule heat were not included.

A numerical study using a finite element method on bubbles behaviour and boiling heat 

transfer under the electric field was given by Oh and Kwak (1996). In their study, there
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was no free charge and the electric permittivity of medium was a constant in the domain 

considered. Numerical study in this paper revealed that the bubbles were forced away 

from the heating surface, then toward the electrostatic stagnation point by the 

dielectrophoretic force. Such modified bubble motion turns out to promote the boiling 

heat transfer if an appropriate electrode configuration is used.

Cho, Kang, Kweon and Kim (1996) numerically and experimentally studied the 

behaviour of a bubble attached to a wall in a uniform electric field; they found that the 

bubble was elongated in the direction parallel to the applied electric field, the elongation 

increases with the strength increase of the electric field. The results were obtained by 

employing the finite-difference method in an orthogonal curvilinear coordinate system. 

The steady bubble shape was given under fixed contact radius condition as part of the 

solution of the free boundary problem. The bubble shape was determined by the normal 

stress condition. Since the temperature and flow fields were not given in this paper, it is 

hard to know how the bubble shape was determined in detail.

Karayiannis and Xu (1998a) used their aforementioned mathematical model to account 

for the presence of multiple bubbles, the thermal boundary layer and the generated free 

charges. The electric field distribution, the electric body force and according the 

resultant force acting on the bubbles were calculated for a shell and tube exchanger. The 

effect of different electrode geometries on boiling heat transfer was also presented in 

this paper.
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2.4 Numerical Methods for Natural Convection and Gas-Liquid Interfacial Hows

As mentioned above, the main aim of this investigation is to study the EHD effect on 

single-phase convection (natural convection) and gas-liquid interfacial flows (boiling), 

so the numerical methods for simulation of both natural convection and gas-liquid 

interfacial flows are reviewed here.

2.4.1 Numerical Algorithm for Natural Convection

Natural convection is generally at low speed of fluid flow and is described by the 

coupled Navier-Stokes and energy equations. For the coupled Navier-Stokes equations 

system, the numerical methods can be categorized as “primitive-variable” methods and 

“non-primitive-variable” methods.

The vorticity/ stream-function method and vorticity/ velocity method (which originated 

from the vorticity/ stream-function method) are the most popular methods in the “non

primitive-variable” methods category and they are widely used to solve two- 

dimensional flow heat transfer problems. In a vorticity/ stream-function method, the 

vorticity is the primary variable, and its boundary value is provided by the stream- 

function. The advantage of this method is that the pressure is eliminated by taking cross 

differentiation for the momentum equations in the two coordinate directions and 

subtracting each other; these lead to the transport equation of vorticity. Therefore, the 

issues related to the coupling of pressure and velocity are avoided in the numerical
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calculation. However, the vorticity/ stream-function method has its disadvantage: it 

cannot easily be extended to three-dimensional situations because of the non-existence 

of a three-dimensional stream-function. A possible remedy for this problem is the 

introduction of vectored potential function (Raul, 1990), or the three-dimensional 

stream-like function (Hamed and Abdanah, 1983). These strategies actually cannot 

reduce the complexity because four dependent variables are involved in a three- 

dimensional incompressible flow problem. Thus, the complexity is just the same with 

dealing with the three velocities component and pressure directly. Comparing with the 

vorticity/ stream-function method, a vorticity/ velocity method also does not need to 

calculate the pressure, and no introduction of stream-functions for a three-dimensional 

problem. The disadvantage of this method is that the boundary values for the vorticity 

are difficult to pose.

“Primitive-variable” methods can be classified as the density-based methods and 

pressure-based methods. The representatives for these two categories are the time- 

marching methods and the pressure correction methods (such as the SIMPLE method). 

Density-based methods are very successful in simulation of compressible flows at high 

Mach numbers; but for flows at low Mach value, these methods become incapable 

because the density is weakly coupled with the velocity and temperature at this time. On 

the other hand, because the pressure is decided by the equations of state and continuity, 

the small change of the density in an incompressible flow will result in an inaccurate 

change of the pressure, therefore the pressure field obtained using this method is not 

correct. For incompressible flows, the pressure and density will not be present in the
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continuity equation, and the equations of gas state and the continuity are completely 

decoupled. In the meanwhile it is also difficult to couple the velocity with pressure 

because the continuity is only a constraint for velocity this time. Because of these 

reasons, the density-based methods are seldom used to solve incompressible flows.

In the family of the pressure-based methods, the SIMPLE method, which is the 

abbreviation for Semi-Implicit Method for Pressure-Linked Equations, has become a 

mature and successful method for incompressible flows and heat transfer since it was 

proposed by Patankar and Spalding (1972). Due to the development of the computer 

power, the SIMPLE method has undergone from fully parabolic forms, partially 

parabolic forms to elliptic forms. Nowadays, the computer resources are not restrictive 

and therefore, the SIMPLE method has become a very popular method to simulate 

incompressible heat and fluid flows.

To couple the pressure and velocity is a key issue in the SIMPLE method. Using of 

central differences scheme for discretisation of the pressure gradient in the momentum 

equation will result in a non-physical wavy pressure field (also called checkerboard 

pressure distribution); and once such a wavy pressure is generated, it will never be 

corrected since the pressure at the adjacent grid points are not related to each other 

(Patankar and Spalding, 1972). The staggered grid arrangement was a remedy for the 

wavy pressure field problem. However, the three sets of grids are needed for two- 

dimensional problems; and for a three-dimensional problem, the sets of grids are even 

four. The using of this multi-set of grid mesh is not a welcome issue for CFD coding

32



Hongbo Zhang Literature review

because of the storage and the geometrical interpolation. In the meanwhile, when the 

grids are highly non-orthogonal, the staggered grid arrangement is also possible to result 

in a wavy pressure field (Rhie and Chow, 1983).

The non-staggered grid arrangement with a momentum interpolation technique was 

proposed by Rhie and Chow (1983). Corresponding to its name, the non-staggered grid 

arrangement only use one set of grids in the calculation procedure. Compared with the 

staggered grid, the non-staggered grid method has the following advantages (Peric et al, 

1988):

(i) all variables share the same location; hence, only one set of grids is needed;

(ii) in a discretised equation, the convection contribution to the coefficients is the same 

for all variables;

(iii) for a complex geometry, Cartesian velocity components can be used in conjunction 

with non-orthogonal coordinates, yielding simpler equations than when numerical 

coordinate-oriented velocity components are employed.

The non-staggered method has been widely employed in the past 20 years because of its 

conciseness and is relatively straightforward to implement. But there are also some 

flaws in this method, such as the accuracy of the simulation depends on the relaxation 

factors, which are chosen manually, and the extent of the non-linearity ness of the 

pressure field (Lai, Zhang and Wu, 1996).

2.4.2 Numerical Algorithm for Gas-Liquid Interfacial Flows
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From the view point of CFD, a gas-liquid interface is a moving boundary problem, 

which is one of the most challenging problems to researchers (Shyy, Udaykumar, Rao 

and Smith, 1996). The key to solve a moving boundary problem is that it should be able 

to track the moving-boundary or interface that changes with time. Some methods have 

been developed to solve such a complicated problem. These techniques can be 

classified in two categories:

(i) surface tracking or predominantly Lagrangian methods. This category includes the 

arbitrary Lagrangian-Eulerian (ALE) method (Hirt, Amsden and Cook, 1974), the 

unstructured moving mesh method (Welch, 1995; Welch, 1998) and the Front tracking 

method (Unverdi and Tryggvason, 1992).

(ii) volume tracking or Eulerian methods. The representatives of this category are the 

well known volume of fluid (VOF) method (Hirt and Nichols, 1981), the level-set 

method (Osher and Sethian, 1988; Sussman, Smereka and Osher, 1994) and the Marker- 

and-Cell (MAC) method (Harlow and Welch 1965).

In this thesis, the gas-liquid interface of the bubbles attached to the heated wall will be 

assumed to be spherical caps, so the determination of the bubble shape is not a main 

task. Therefore, only may a brief review for the typical representativemay s for the 

above two categories, the ALE and the VOF methods, respectively is presented.

Arbitrary Lagrangian-Eulerian (ALE) method

Hirt, Amsden and Cook (1974) proposed an algorithm for solving invicid time-
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dependent flows. Ramaswamy (1990) developed this method for modelling unsteady 

viscous flows with free surfaces. According to Ramaswamy (1990), a physical time 

marching cycle, from the (rc)th instant to the (rc+l)th instant with a time increase A t , 

can be divided into four sub-steps. These are Lagrangian calculation, rezoning, 

convective flux calculation, and scalars (temperature for example) calculation. In the 

Lagrangian calculation, the computational grid vertices are advected by a divergence- 

free flow velocity. This velocity is used to update the coordinates of the vertices 

(especially, to update the position of interface). For the rezoning, the interior grids (and 

therefore the whole mapping meshes) are regenerated using Thompson, Warsi and 

Mastin’s (1985) method, to conform the new boundary and eliminate the highly 

contorted deformation of internal grid lines by the Lagrangian advect, and the moving 

velocity of meshes are obtained. Thirdly, convective flux through the cells of updated 

meshes (not Lagrangian meshes any more) are calculated and the velocity field is 

redistributed to the new meshes. Finally, the scalars such as temperature are obtained by 

solving their controlling equations on the moving meshes.

Fujita and Bai (1998) employed the ALE method to study the growth of an isolated 

bubble in nucleate boiling, quantitative description of the fluid and thermal fields 

suiTounding the bubble was achieved. In order to improve the numerical accuracy of 

ALE, Li and Petzold (1997) tried to combine the moving mesh with high-order upwind 

schemes for the convection term, and good results were achieved in their simulation of 

discontinuous interface. Although the rearrangement of grid at every time step is
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needed, and the calculations may experience difficulties when the interface becomes 

multiple-valued (this corresponds to the topological changes of interface), the ALE 

moving mesh methods are still attractive because of their capability of highlighting the 

fields near interface, and the result of physical zero thickness of interface, which are 

always necessary to study the interface-related mechanism.

When the terminal steady state is calculated, the ALE moving mesh method becomes 

the body-fitted coordinates transformation method, proposed by Ryskin and Leal 

(1984a, 1984b). The moving mesh methods employed to track bubble surface and study 

bubble behaviour by Takagi and Matsumoto (1993, 1995) and Lee and Nydahl (1989) 

was the time-dependent form of Ryskin and Leal’s (1984a, 1984b) method; it also 

belong to ALE in fact though implicit time-marching scheme was employed to replace 

the sub-step explicit time-marching.

The principal limitation of Lagrangian methods is that they cannot be used to track an 

interface which is changeable in topology. Even large amplitude surface motions are 

difficult to track without introducing regridding techniques.

Volume of fluid (VOF) method

VOF (Volume of Fluid) method was initially proposed by Hirt and Nichols (1981). In 

VOF, a volume of fluid function with assigned values of 1 for cells contain one phase 

and 0  for those contain the other, is used to identify the location of interface as it is 

obvious that the interface lies in those cells take a function value in between. The VOF
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function F , is a Lagrangian invariant of fluid, and its controlling equation (Hirt and 

Nichols, 1981) is an advection equation as follows

^  + V -(v y )= 0 , (2 .1 )
ul

fl, in liquid side
where F =< is the void fraction. It is noticeable that equation (2.1)

[0 , in gas side

is an advection equation since the volume fraction F  is discontinuous there.

According to equation (2.1), which is based on concepts of continuous functions, the 

VOF function should vary continuously in spatial dimensions. In reality however, F  

changes discretely from 1 to 0  over the interface whose physical thickness in space is 

zero, and therefore in computation, it is expected the calculated thickness of interface is 

as infinitesimal as possible to get valid information of fields in the vicinity of interface. 

Consequently, special methods must be used to solve equation (2.1), which are the right 

tasks for CFD researchers.

Over the past years, more accurate schemes have been developed for equation (2.1) in 

VOF methods. For those calculations with direct differentiations of equation (2.1), 

Rudman (1997) employed a so-called flux-corrected transport (FCT) algorithm and put 

forward the FCT-VOF in which equation (2.1) is differenced using a combination of 

first-order upwind and downwind scheme, a comparison of this new scheme against 

other well-known schemes was undertaken in his work. Garrioch and Baliga (1998)
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developed a skewed subadvection scheme for multidimensional problems. However, the 

majority of VOF methods do not directly difference equation (2.1) but use a two-stage 

process, namely, free surface reconstruction and boundary flux integration. To recover 

the interface shape, piecewise constant schemes (SUFEER by Lafaurie, Nardone, 

Scardovelli, Zaleski and Zanetti, 1994) and piecewise linear schemes (Ashgriz and Poo 

(FLAIR), 1991; Puckett, Almgren, Bell, Marcus and Rider, 1997; Rider and Kothe, 

1998) of high resolutions, have been developed. Sou, Tomiyama, Zun and Yabushita 

(1997) compared the FLAIR with traditional “donor-acceptor” scheme (Hirt and 

Nichols, 1981) and found better accuracy for interface calculation can be achieved with 

FLAIR. To calculate the boundary cell flux accurately, Harvie and Fletcher (2000) 

developed a “Stream Scheme”, and a good review of VOF algorithms is available in 

their paper.

VOF methods have been widely employed in the simulations of gas-liquid bubble 

interface. Tomiyama, Sou, Minagawa and Sakaguchi (1993) analyse a bubble rising in 

stagnant liquid; Takata, Shirakawa, Tanaka, Kuroki and Ito (1996) simulated bubble 

growth under electric field; Krishna and Baten (1999) studied the rise characteristics of 

gas bubbles in a two-dimensional column; Bugg, Mack, and Rezkallah (1998) simulated 

the Taylor bubbles rising in vertical tubes. All of these investigations have employed the 

VOF methods and generally good results have been obtained.

However, the weaknesses of VOF methods are also obvious. Firstly, the stability of 

computation always arises from the varying of bubble volume when VOF is employed
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to simulate the bubble growth (Barkhudarov and Chin, 1994). In the second, a smeared 

interface is inevitable because of the numerical diffusion resulted from the “donor- 

acceptor” (Hirt and Nichols, 1981) or other schemes (for example, the FCT-VOF by 

Rudman, 1997), which are only first-ordered in accuracy. For higher order schemes, 

smearing can come from non-physical oscillations in the vicinithey ty of interface. The 

thickness of interface is of a magnitude of 1.5 times, which is the mesh size. The 

uncertainties about interface shape and location have decided that VOF cannot be used 

for analysing the mechanisms of interface related phenomena. VOF is really not a 

method designed with intention to capture local physics near phase interfaces (Welch, 

1998).

2.5 Summary

The status quo of the research on EHD enhancement of natural convection and gas- 

liquid interfacial heat transfer are reviewed. Because the study in this thesis is entirely 

theoretical and numerical, the review has also paid attention to the numerical methods 

for studying natural convection and heat and fluid flows relevant to a gas-liquid 

interface of a bubble. The aspects of the review are as follows:

1. The EHD is very promising in practical application for enhancing heat transfer in 

engineering applications. In nucleate boiling, experiments have revealed noticeable 

increases in heat transfer coefficient and critical heat flux in the presence of an 

electric field. Under an electric field, the bubble departure size becomes smaller and 

the departure frequency increases.

39



Hongbo Zhang Literature review

2. The enhancement of heat transfer by EHD effect can be influenced by both the 

geometry of the electrodes and the properties of the working fluid. The more 

inhomogeneous the electric field is, the better enhancement. The smaller charge 

relaxation time, the fluid achieves the better augmentation.

3. Due to the complexity, only a few numerical results have been published so far. 

These numerical simulations of EHD enhanced heat transfer are based on a number 

of assumptions such as the zero electric field inside a bubble, decoupling of the flow 

and electric fields or negligible temperature field. Even for single-phase heat transfer 

(natural convection), a proper model for describing the physically coupled thermal, 

flow and electric fields model has not yet been established.

4. In numerical studies, the EHD effect on different working fluid have not yet been 

studied.

5. The SIMPLE method is a mature and widely employed method for numerical study 

of heat transfer and fluid flow. The non-staggered grid arrangement with a 

momentum interpolation technique has many advantages over staggered grid 

arrangement.

6 . For calculation of gas-liquid interfacial flows, the Lagrangian methods use grids 

configured to conform the shape of the interface; the flow and heat transfer in the 

vicinity of a gas-liquid interface can be highlighted and with good fidelities. On the 

other hand, the VOF method employs a fixed Cartesian grid and the interface 

between two phases is not explicitly tracked but is reconstructed from the properties 

of appropriate field variables, such as fluid fractions. The fidelities to flow detail and 

heat transfer phenomena in the vicinity of an interface are poor in the VOF method.
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Chapter 3

Basic Equations for Electric, Flow and Thermal Fields

3.1 Introduction

In order to study an industrial or academic problem using CFD method, the following 

issues are fundamental:

(a), a good understanding of physical phenomenon for the problem;

(b). a proper and accurate mathematical model for describing the given problem;

(c). an efficient numerical procedure to solve the mathematical model.

In this chapter the electric body force, which induces the fluid motion and gives a higher 

heat transfer rate, and the Joule heat are considered. The electric, flow and thermal 

fields are coupled in order to give more accurate resolution. A full mathematical model 

for describing the coupled electric, flow and thermal fields are presented. The governing 

equations are non-dimensionalised and transformed to a body fitted coordinates (BFC) 

system using generalized curvilinear coordinates; which give flexibilities and a wide 

range of applications of the present code for solving many fluid flow and heat transfer 

problems in an arbitrary computational domain with complicated geometry boundaries. 

Well posed boundary conditions and their relevant treatment are presented so as to solve 

the mathematical model numerically.
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3.2 Physical Model

EHD is an interdisciplinary phenomenon dealing with the interaction between the 

electric fields and flow fields in a dielectric medium. This interaction, which causes 

induced fluid motion and interfacial instabilities, can result in electrically induced 

pumping, mixing or enhancement of heat transfer.

Physically, when an electric field is applied to a flow, the factors relevant to the 

problem can be summarised as a current, an electric body force and Joule heat. In order 

to establish an analytical model for the coupled electric, flow and thermal fields, a 

current in a dielectric field is physically modelled as a directed motion of electrically 

charged particles injected into a fluid in this thesis. Based on this modelling, the electric 

field can be coupled with the flow and thermal fields through the electric body force and 

Joule heat, while the flow and thermal fields play their effects on the electric field 

through the transport of the charged particles.

3.3 Equations of Electric Field

To predict the EHD effect on fluid flow and heat transfer requires a simultaneous 

solution of the coupled equations of fluid flow, temperature and electric fields. In order
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to do so, the electric field must be firstly determined from the Maxwell’s relation and 

the Gauss’ law. The combination of them yields:

V ' £ E — q , (3.3.1)

where the electric field strength E  is defined by the negative gradient of electrical field 

potential <p,

E ~ -  V (p , (3.3.2)

and q , the electric charge density, is determined from the conservation of charge:

V -J  + - ^  = 0 , (3.3.3)
ot

where J  represents the electric current density. Experimental studies have 

demonstrated that an electric field applied across a thermally stabilized plane layer of a 

dielectric liquid can induce instability of the layer and thereby significantly augment 

heat transfer (Bergles, 1978; Allen & Karayiannis, 1995). A dominant destabilizing 

force in the experiments is the Coulomb force resulting from the interaction of the 

electric field and free charges. There are two generally accepted versions about the 

origin of the distribution of the net charges: One is a conductivity model (Martin, 1984), 

which considered that a temperature gradient in the liquid is an indispensable condition 

for the convection to occur, and the intensity of the convection is dependent on the 

magnitude of the temperature gradient; the other is a mobility model (Worraker &
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Richardson, 1979), in which the electro-convection is assumed to occur irrespective of 

the presence or absence of a temperature gradient in the liquid.

Experimental results seem to show that the mobility model is more reasonable for a 

free charge origination. According to the mobility model, the electric current density 

can be written as (Worraker & Richardson, 1981; Fujino, Yokoyama and Mori, 1989):

where the terms on the right hand side represent the convection, conduction and the 

diffusion components, respectively; o  is the electrical conductivity; the charge 

diffusivity coefficient D is related by Einstein’s formula (Babski et a l ,  1989).

Equation (3.3.4) was substituted into equation (3.3.3) and developed into a 

dimensionless form according to the method, which will be introduced later, and then 

expanded into a Cartesian coordinates system (x, y)

where variables with top bars are dimensionless. The right hand side of equation

J  = qV + G E - D V q  , (3.3.4)

(3.3.4a)
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(3.3.4a) is the diffusion term of q , and -------- is the diffusion coefficient. De is a
Re De

dimensionless charge diffusivity number defined by De = —— , where
PoDo

jLi0, p 0 and D0 are reference value. As D0 is in 0(10~14) (Babski, et al., 1989), the 

magnitude of De is normally a large number, for example of pure water, 

De = 2 .5 x l0 7. Therefore, taking into account of the effect of diffusion coefficient

— 5—  in equation (3.3.4a), the diffusion term is much smaller than other terms and can 
ReDe

be neglected. Similarly, the diffusion term DVq  in equation (3.3.4) is also much 

smaller than other terms and is negligible as well. In addition, as the temperature 

gradient for a natural convection is not steep, <J and q in the convection term can be 

assumed to have a linear relationship (Kraus, 1992) as:

<J = q b , (3.3.5)

so that the charge density in equation (3.3.4) is simplified as:

J  — qV + q b E , (3.3.4b)

where b is the ironic mobility (Babskii, et al., 1989).

It is commonly accepted that the physical basis of electrically-enhanced heat transfer 

lies in the EHD body forces FE; and the first step to establish the mathematical model 

for the EHD enhanced heat transfer is to model these body force. Generally saying, once 

an electric field is applied, the heat transfer phenomenon becomes complicated because
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of the various interactions among the electric field, flow and temperature field. 

According to Yabe’s (1993) study, these interactions include the body forces, interfacial 

stresses, the variation of physical properties due to temperature distribution, and the 

combined body forces such as the dielectrophoretic force due to the mutual effect of 

temperature and electric fields. Mathematically, the electric body force density acting 

on the molecules of a fluid in the presence of an electric field consists of three terms 

(Landau and Lifshiz, 1963):

where q is free electric charge density, £ is permittivity, T  is temperature and E is the 

electric field strength. The three terms in equation (3.3.6) stand for two primary force

exerted by an electric field upon the free charges; the second term depends on the 

spatial variation of permittivitty £ and the magnitude of E 2. The third term comprises 

the dielectrophoretic and electrostrictive components; it represents the polarization 

forces induced in the fluid.

The importance of the three components of the electric body force in equation (3.3.6) 

varies in practices. All of them can be significant, or one can dominate over the others. 

However, the expression for the body force in equation (3.3.6) and the interactions are 

simpler if the working fluid or electric field is subjected to concrete situations. For 

example, in single-phase heat transfer enhancement using EHD, the Coulomb force

(3.3.6)

densities acting on the fluid. The electrophoretic component qE is the Coulomb force
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could be the dominant electric body force term; the second term in equation (3.3.6) 

which is due to the nonuniform electric field is usually weaker. The second term can 

only dominate when the electric field is imposed on an insulating dielectric liquid. Due 

to the damage caused by Coulomb force in real applications, researchers are trying to 

eliminate the free charge in the system. In two-phase heat transfer enhancement using 

EHD, the second and third electric force term are the dominate ones due to the spatial 

change in permittivity at the liquid-vapour surface, the variation of physical properties 

due to temperature distribution.

There are two examples which show that the electric body force density components 

defined in equation (3.3.6) are responsible for the induced forces on the dielectric field ( 

Seyed-Yagoobi and Bryan, 1995):

• A charged body in a non-uniform or uniform electric field will move along the 

electric field lines and impart momentum to the surrounding fluid. This 

Coulomb force (schematically shown in Figure 3-la) is expressed by the first 

term in Equation (3.3.6). Free charges can either be directly injected from the 

energized electrode or induced with the fluid in the presence of an electric field 

due to non-uniformity in the electrical conductivity of the fluid. The non

uniformity can be caused by a temperature gradient and/ or an inhomogeneous 

fluid.

• If an interface exists, such as a liquid-vapour interface in a non-uniform electric 

field, an attraction force is created, which pushes the fluid of higher permittivity 

(liquid) towards the region of higher electric field strength. This force is called
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dielectrophoretic force (schematically shown in Figure 3-lb) results from the 

application of a non-uniform electric field with the existence of a permittivity 

gradient and is described in the second term in equation (3.3.6).

Energized
electrode

Ground
ElectrodeCharged

body

Energized
electrode

Interface 
e, y  e.

Ground
Electrode

Figure 3-la  Coulomb force Figure 3-lb Dielectrophoretic force

Because we have physically modelled the current in a dielectric field as a directed 

motion of electrically charged particles injected into a fluid, the electric body force is 

therefore in the form of Coulomb force and is calculated as follows:

FE = q E .  (3.3.7)

It must be clarified that the body force in equation (3.3.7) is different from that in 

equation (3.3.6) because of the different physical meanings of q . In equation (3.3.6), as 

we explained earlier, q is the free charge induced by the electric field. On the other 

hand, the q in equation (3.3.7) is the charged particles released from the positive 

electrode to model the current; it is only a modelled (imaginary) carrier for both the
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electric charge and the electric body force. In other words, the body force in equation 

(3.3.7) can be a result of any term or a summation of terms of the right hand of equation

(3.3.6), but we formulate this result in a form of the Coulomb force in our mathematical 

model. It is obvious the expression of body force in equation (3.3.7) will not lose 

generality because all the forces in equation (3.3.6) can be considered if the fluid 

properties under an electric field can be made available. In the case of the second and 

the third terms in equation (3.3.6) are neglected, these two equations become equivalent 

and the q take a same value.

Besides the electric body force, another result of applying an electric field on the 

working liquid is the Joule heat,

Q = J - E . (3.3.8)

3.4 Basic Governing Equations

To take an electric field into account in the transport equations, the electric body force 

Fe is added into momentum equation and the Joule heat is added into the energy 

equation. Based on these, the mathematical model of EHD effect on two-phase flow is 

described as follows; the flow is considered as two-dimensional and incompressible:

Continuity equation:
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d(ru) [ d{ry)=Qm
dr dy

x-momentum equation:

d(ru) d(ruu) d(rvu) _  d f  du ̂
dt

+ +
dy dx

r v rv
du

dy{ dyJ
+ rS(u) ;

y-momentum equation:

0 (rv) diruv) dirvv) d (  dv^ d —:—- + —— - + —-— - = —  r v —  + —  
dt dx dy 3*v dx J dy

rv-dv

dy.
+ rS{v)-,

Energy equation:

3(/T) d(ruT) d(rvT)
— I--------- ---------- 1—

dt dx dy
_3_
dx

f  A d T >
[r XY* .

K pCp dr j a? ^ pep dy;
+ rS(T)

Conservation of charge:

d{rq) , d[r(u + b E x)\ , d[r{u + bE).U N[“ E t+ v E y  + b 1
dt dx dy i[ P C f

Electric field potential equation:

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

; (3.4.5)
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(3.4.6)

Electric field strength equation:

E,
dtp
I k ’

F  -  

E ’ ~ ~ %
(3.4.7)

Equations (3.4.1-3.4.4) can be written in a general form as following:

+ t - M ’H  4 -(H > )= j S r i r l + +r S(<t’)> <3-4 -8)dt dx dy dx \  dx J dy dy J

where for Cartesian coordinates, i.e., r = 1 ,

0  =

0
“ 1 "

X)
u

r  = X)
V

X
T

-PS.

rS

0

1 dp | qE 
p  dx P J

+g /3 (T-T0)+ 
p d y  p

r ^ - [ u E t +uEy +b{El + E ] i

And for axisymmetric system, i.e., r -  x , we have
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<f> =

'0
" 1 "

V
u r  = V
V

X
T

_P c p _

rS

1 d p  q E x v  u  

V p d x  p  r 2

f  1 3* R(rr _ v q E y
' - ~  +  g / 3 { T ~ T 0 ) + —  

p a y  P

r [ u E r + u E y +  b { E ]  + E ) )]!

3.5 Normalisation of Governing Equations

It is advisable to cast the governing equations in a dimensionless form before carrying 

out a numerical solution. This enables the flow variables to be normalized so that their 

values fall between prescribed limits such as 0 and 1. Also, the characteristic parameters 

such as Reynolds number, Prandtl number, etc., can be varied independently. Non- 

dimensionless parameters are obtained by the reference values denoted by a subscript 

“0 ”, they are defined as:

— -  - — — y - tu a _  p  — T — Tn.« = — , V -  —  , x = ~ ,  y = - ,  t = - ± ,  p =  — T = — ^
/ 0 l 0 Iq p u  7j  T0

, (3.6.1)

.  <P~<Po

u V_ ̂ v = f
u 0 Uq

1  = E

4 o ’ E 0
<P

<Pi~<Po

where TJ and T0 are the hot and cold wall’s temperature, (px and (pQ are the potentials 

of electrodes. Therefore, the equation (3.4.8) can be expressed as:
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dir (ft) d /__ \ d /__,\ d(rM^ )+ (rv ^) = 
ot dx dy ox

r r ^ \  + ~  r r ^ _
{ dx )  dy{  d y ;

+ rSiyp) . (3.6.2)

Similar to equation (3.4.8), when r - 1 , equation (3.6.2) is for Cartesian system:

r =

" 0

1

Re
1 , rS {</>) =

Re
1

_RePr_

f  ^
P-  + SEq E x 

dx

dy
+ SEq E  + Gr -

Re'

s ee c u E x + v E y +
RePr,

and when r -  x , it is for axisymmetric system:

r =

~
" 0

1 r

Re V

1 , rS(#) =
f

r
Re \

1

_RePr_ r<
_

o

dx

dp
dy

+ S E q E) 1 u
T e f j

+ SEq E  + Gr

S eE c

Re2

U Ex + V E y +
k 2 + g ,2)'

Re Prv

Equations (3.4.5), (3.4.6) and (3.4.7) are changed into as follows:
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d { r q )  | d 
dt dx V RePre /  _

a
+ 3y

B
v +•

Re PrEJ
0 , (3.6.3)

3x1, dx J I dy
r { - N Eq ) , (3.6.4)

=
dtp

H z ’
F - (3.6.5)

3.6 Governing Equations in Body-Fitted Coordinate (BFC) System

It is frequently convenient to write and solve the governing equations in generalized, 

non-orthogonal curvilinear coordinates, especially when complex geometries are 

involved. Furthermore, in many applications it may be desirable to preferentially 

improve resolution in certain region of the flow. In these regions, the flow or other 

physical phenomena may evolve dynamically and, therefore the local grids may need to 

be adjusted manually during the calculation; a general body fitted coordinates system is 

a commonly used remedy for satisfying this requirement of adjusting local grids.
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The employment of BFC needs a transformation from the physical plane (x, y) to the 

computational plane (£, rj). This one-to-one transformation can be easily earned out for 

simply-connected domain, as shown in figure 3.2. For a doubly-connected domain, one- 

to-one transformation can also be found by using a branch cut; figure 3.3 gives an 

example of such a transformation. In figures 3.2 and 3.3, a bound in the irregular 

physical plane is always transformed to its counterpart with a same name in the 

computational plane. For example, bound AD in figure 3.4a has its counterpart bound 

AD in figure 3.4b.

IN
M.N

A

A
Hi

1,1

|  1,N 

D ~

H N

B A B
1,1 H I

(a)Physical plane (b) Computational plane

Figure 3.4 Mapping an irregular simply-connected region into the computational
domain as a rectangle

The transformation of coordinates systems between the (x, y) and the (5 V ) can be 

expressed as:
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£ = y)> v = 'nix, y)

x = x(g,rj), y = y(g,rj)

(3.6.6)

(3.6.7)

C ( I . J )

O u t e r  b o u n d a r y  

I n n e r  b o u n d a r y

J)

A ( 1 ,1)

Figure 3.3 Mapping of a doubly-connected region in to a simply connected region by
using a branch cut
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The basis of the transformation of the partial differential equations is the availability of 

the relations for the transformation of various differential operators such as the first 

derivative, gradient, Laplacian, etc.

The Jacobian of the transformation J  is given by Courant (1956) as:

J  = J M xe
U >n) xv

x( yv - W s  * o (3.6.8)

where the subscripts denote differentiation with respect to the variable considered i.e.,

dx

9?

dx dy dy
,X" ~ d r ; ’y v ~lfr\’y s ~ d t

(3.6.9)

The transformation relations can be developed by application of the chain rule of 

differentiation or by making a use of the method in differential geometry and tensor

analysis. Consider, for example, the first derivatives and •. With the chain rule of
dx dy

differentiation, and can be written as follows: 
ox dy
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d £ +7l M .
dx ^  d% ,X d7]

3 0 * 3 0  a <!>
(3.6.10)

Interchange x  and £  and y  and 7j, yields

d% * dx * dy
(3.6.11)

? ± = x j £ + y j t
dr] dx dy

~\ji
The solution of equations (3.8.6) for -— and— - with Cramer’s rule gives the

3x 3y

transformation relations for the first derivatives as

30 _  1 f  30 30
3x J

30 _ _ 1  /  
dy J

' " d z  y<dn
(3.6.12)

where the Jacobian of the transformation is defined in equation (3.7.3). A comparison 

of equations (3.7.5) and (3.7.7) gives:
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£ = y yn * Zy J

1 1

(3.6.13)

the above relations are called contravariant metrics.

The generalized form of governing equations for the flow field given in section 3.6 is 

transformed from Cartesian coordinates to non-orthogonal body-fitted coordinates as 

follows:

d_

3 f

r_
J

a — ~ /?—  
K  3*7.

\"
+A ~ r r

/ _ drj
R d(f> d(f)

(3.6.14)

where

r  =

" 0

Re
1 > s{<p)=

Re
1

_RePr. -

o
dp 
dx 
dp_
9y Hr Re ‘

+ Ra

0

a = 4 + y l (3.6.15)
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P - x t X q + y t y„;

r = x ) + y ) \

the curvilinear velocity components, W\ and W2 , are defined as: 

W, =uyrl-v x ,

W2 = vjcf -

Conservation of charge equation (3.6.3) is changed into:

d{Jrq) 9 
dt

W , +— -—
Re Pr,E J

+
/

1 \

RePrE )

where

E, = E xyv - E f y  

E2 = EyXg —Exy§

Electric field potential equation (3.6.4) is changed into:

(3.6.16)

(3.6.17)

(3.6.18) 1

= 0; (3.6.19)

(3.6.20)
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r dtp 
- a - r dtp

- ~ r
'  d +■ r.p?v

d % \ J  d%)  d r j \ J  dr}) d g y  J  d7j) drj

Jr(— N Eq)

y J  H
(3.6.21)

Electric field strength equation (3.6.5) is changed into:

E = d-  1=  - y  ̂ Pt yn - V vyf )dx
(3.6.22)

( W + V ( )

3.7 Summary

The mathematical model for coupled electric, flow and thermal fields are presented. A 

current in a dielectric field is physically modelled as a directed motion of electrically 

charged particles injected into a fluid; the factors for the coupling include the electric 

body force, Joule heat and the transport of the charged particles. Governing equations 

for the coupled fields are normalised and transformed into body-fitted coordinates 

system so as to develop numerical method for solving these equations in the next 

chapter.
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C h a p t e r  4

N u m e r i c a l  M e t h o d s  f o r  S o l v i n g  C o u p l e d  E l e c t r i c ,  F l o w  a n d  

T h e r m a l  F i e l d s

4.1 Introduction

Once the physical and mathematical models are established, the followed steps for 

numerically solving the coupled electric, flow and thermal fields are to discretise the 

mathematical model and establish the calculating methods for these discretised 

equations. For the first step, the discretisation includes two parts, namely, the space 

discretization (grid generation) and the equation discretisation. In this chapter, the grid 

generation is carried out by using a combined algebraic and partial differential equation 

method; the algebraic method is applied to give the initial values of the grid points, and 

then the partial differential equation grid generation method is employed to generate a 

grid system with second order smoothness. While for the discretisation of the governing 

equations, the finite volume method (FVM) is applied, hi order to obtain high numerical 

resolution, the quadratic upwind interpolation for convective kinematics (QUICK) 

scheme (Leonard, 1979) is employed for the discretisation of the convection term.

The discretizatioin of transport and electric field equations yields a large system of non
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linear algebraic equations. The method of solution depends on the problem; therefore an 

appropriate method has to be chosen. In this work, the SIMPLE method with non

staggered grid arrangement is chosen to solve the discretized equations.

4.2 Grid Generation

The numerical grid generation at which the variables are to be calculated is essentially a 

discrete representation of the geometric domain in which the problem is to be solved. 

The generation of a fine grid system is very important for giving an accurate solution. 

There are many approaches to generate a grid system.

4.2.1 Algebraic Method

Using algebraic methods to generate grid can take arbitrarily shaped physical regions 

into a rectangular computational domain. The basics of generating a grid using the 

algebraic method can be explained as follows:

Consider an irregular geometry shown in figure 4.1. The describing function for the 

upper bound is given as

y, = f i x )  (4.2.1)

In figure 4.1, curve de is the upper wall; f g  is the centreline. The grid shown in figure 

4.1(a) exactly fits these boundaries. A computational grid can easily be generated by 

choosing equally spaced increments in the x  direction and using uniform division in the 

y  direction. This may be described as
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£ = * (4.2.2)

Tj = ^~  (4.2.3)
y .

where = f{ x )

(a)
c~<-------- Upper 1

a

o

d c e

b
u ........  ....
a

. /
Centreline

(b)
Figure 4.1 a simple body fitted coordinate system

(a) Physical domain (b) Computational domain
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y .
From the above equations (4.2.2) and (4.2.3) at curvilinear upper wall, jjd = -~±- = 1, so

y Sd

do the 77c and ije . It is clear that all the points along the curved upper boundary in the 

physical domain are transformed along the horizontal line 77 — 1  in the computational 

domain. Once the £ and 77 are given, the values of x  and y  can be easily recovered. The 

mesh generated in the physical domain is shown in figure 4.1(a).

The main advantages of using algebraic methods are that they are direct and the metrics 

of the transformation can be analytically computed. However, the grid will sometimes 

not have second order smoothness, for some certain problems, it can cause chaos during 

the computing. Also for this method, a certain amount of ingenuity is required to 

produce a grid with points properly positioned.

4.2.2 Partial Differential Equations

A more general approach of grid generation is presented by the solution of Possion 

equations:

'd 2% d2%
dx2 + d y 2

(4.2.4)
d 2rj d 2rj
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where P(^,r|) and Q{^,r\) are known as control functions used to control clustering of 

interior grid points and angles at the boundaries. Specification of desired grid points (x, 

y ) on the boundary of the physical domain provides the boundary conditions for the 

solution of (4.2.4). The use of an elliptic partial differential equation to generate the 

interior grid points has some advantages. Firstly, the grid is smoothly varying even if 

the domain boundary has a slope discontinuity. Secondly, an equation like (4.2.4) 

satisfy the maximum principle for reasonable values of P(^,q) and Q(^,r\), implying 

thereby that the maximum and minimum values of £, and rj must occur on the 

boundary. According to Tompson (1982), this normally guarantees the grid is not 

overlapping.

By an appropriate selection of the P(t;, ij) and Q(^, rj) functions, the coordinate lines £ 

and ri can be concentrated toward a specified coordinate line or about a specific grid 

point. In the absence of these functions, for example while P(§,r|) = <2fer|) = 0, the 

equation (4.2.4) become Laplace’s equation, the coordinate lines will tend to be 

generally equally spaced in the regions away from the boundaries regardless of the 

concentration of the grid points along the boundaries.

While Equation (4.2.4) describes the basic coordinate transformation between (x, y) and 

(£, rj) coordinate system, all numerical computations of the governing differential
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equations for a physical problem are to be performed in the computational (<£ rj) space 

since the transformed region has a simple regular geometry. Then, the problem becomes 

one of seeking the (x, y) values of the physical space corresponding to the known (%, rj) 

grid locations of the computational space. For this reason, equation (4.2.4) should be 

transformed to the computational domain by interchanging the roles of the dependent 

and the independent variables.

The actual solution is carried out in the computational domain (£ , ij).  In this domain

(4.2.4) transform to

a- d2x
2/3 d2x d2x

+ r - ^ r + J 'dgdrj drj
dx dx

P (g .n h z+ Q fg M td% dtj
o

(4.2.5)

where the convariant metrics a, (3, y  and the Jacobian have been defined in equations 

(3.8.10-3.8.11) and equations (3.8.3) respectively.

The determination of the grid control function P (§  rj) and Q(%, V) is very useful to 

concentrate the interior grid lines in regions, where large gradients occur. For example, 

in problems of natural convection large gradients occur near the walls, hence grid points 

need to be concentrated in such locations. Thomas and Middlecoff (1980) proposed a
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method to determine P{%, rj) and <2(£ rj). This method is employed in the present 

research because it is easy to control the grid concentration as pre-specified by the user 

and to achieve the orthogonal coordinate lines to the boundary lines. The function of 

P (£  rj) and <2(£ rj) are constructed as follows:

P($,ti) = </>(%,r f g l  + £*)

(4.2.6)

+nl )

where <)>(£,rt) and are unknown functions. With this convention, the Possion’s

equation may be written

«(■*{{ + faf)-  2 /2 t{,  + r(*,„ + ) = 0
(4.2.7)

a (y f s +<fy( )-2 P y fn + ^ (y „  + (iy ,)= 0

(j)( ,̂ri) and \|/(^, rj) can be determined by setting the quantities in parentheses equal to 

zero. For example, at the boundaries of £=0 and £ =£max-

xm +w(?,’l)xv = 0
(4.2.8)

ym +v{$.n)yv =o
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Similarly, at the boundaries of 77 =0 and 77 = 7]max may be determined by:

'x# +(/>(§,il)x^ = 0

(4.2.9)

y& + H £ '7?)yf = o

Since x andy are known at all boundary points, the function (j>(4,r|) and i|/(^ri) can be 

obtained by using central differences for the required derivatives. The function (])($,, q) 

and y fe h )  on the interior are obtained by interpolation from boundary values. This 

method provides a means of control for the interior point’s distribution based upon the 

requirement at the boundary.

In this thesis, an algebraic method was used to generate the initial grid system, then a 

grid system with second order smoothness was obtained by applying the partial 

differential equations method. This combination of the grid generation methods gives 

second order smoothness to the mesh for calculation.

4.3 Discretization of Governing Equations

The finite volume method (FVM) was first introduced by McDonald (1971) and 

MacCormack and Paullay (1972) for the solution of two-dimensional Euler equations 

and extended by Rizzia and Inouye (1973) into three-dimensional flows. This method is 

using the technique by which the integral formulation of the conservation laws is
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discretized directly in the physical space. Thus, this approach employs numerical 

balances of a conserved variable over small control volumes, thereby ensuring that the 

basic quantities like mass, momentum and energy remain conserved at the discrete 

level. This is the fundamental advantage of the FVM methods.

The finite form of the conservation laws may be obtained by integrating equations

(3.6.2)~ (3.6.4) over appropriately non-staggered control volumes leading to a five point 

differential stencil centred around the point P  with neighbouring node points N, S, E  and 

W; the letters e, s , w, and n denotes the interfaces with neighbouring control volumes 

shown in figure 4.2, the values of the variables at the interfaces are obtained by 

interpolation from the node points; the interfaces are halfway from the node points.

NWsw

>

Figure 4.2 The discretized geometry
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4.3.1 Discretization of Transport Equations

The integration of the generalized form of governing equation (3.6.14) over the control 

volume shadowed in figure 4.2 can be achieved as follow:

Jd£
Aij + r r  d({>

j  d ti) a #

(4.3.1)

where

a 'W r Z -(~ P )y -A t]J  drj
+ (4.3.2)

For simplicity, the symbols F. ( i-n ,s ,e ,w )  ,D. (i -  n,s,e,w), and (i = n,s,e, w) 

are defined as:

F„ = )„ A77 n  I r  '  D„ = | — a
J

Ar/

f  -r \
■ar

JS Sp “  Ss

Arj
^  = ^ 4 > ,~ D S(A<(,)S;
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Pe =(W2)e A£, (r
-~T A^

J n  V e  ~ VI p
~ Fe^e ~ De(^)e>

A » = f y r )
w Vp 77w

equation (4.3.1) becomes

(4.3.3)

For the case of</> -  1,1^ = 0,S(<f>) = 0 , the equation (4.3.3) can be written as:

FH- F ,+ F e - F w =0 (4.3.4)

Multiply equation (4.3.4) with (f)p and subtract equation (4.3.3) gives:

G*.- F A r ) ~ { j ,  - F A p)+ (J s -F A 'p ) - ¥ » - F J p h S ®  (4-3.5)

According to Patankar’s (1980) derivation,

*̂n -Fntp ~ ahl($P ~ $N )

- F s f i p  ~  a s { (i)s  ~ (i)p )

(4.3.6)

*̂ e ~ Fefip — aE ($P ~$e )

/ w  ~  Fyjfyp — a w {<f)w ~ ( j ) p )
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the discretization form of the governing equation (3.6.14) is :

a,p(j)p — aN(f)N + cis(f)s + aE<f)E + ciw(j)w + (4.3.7)

where the convection and diffusion coefficients, a^, as, ag , aw and ap , are calculated 

using discretization schemes. For example, the well known upwind scheme,

aN = Dn + max(- Fn ,0) 

as - D s + max(Fs,0)

< aE = D e + max(~Fe,0) ; (4.3.8)

aw = D w + max(Fw, 0)

Clp ~ ip-N **“ aS ^  aE aW )

Using the under relaxation technique, which is essential for an iterative process and a 

classical method for solving the above elliptic problems, yields:

Qpfip ~ txp  ^~as^s + &w$w + <s(^)]+ (l “ a p]ap(/>p , (4.3.9)

where <f>*p is the value of last iteration; a P is the under relaxation factor. 

Introducinga'P ~ ap/ a p , the above equation (4.3.9) becomes:

73



Hongbo Zhang Numerical Methods fo r Solving Coupled Electric, Flow and Thermal Fields

cip(j)p — ctN<j>N +as(j)s +aE(j)E + aw(f)w + $($) + (l ^^^p ^p  (4.3.10)

For simplicity, writing a'P as ap,

Clp(f)p — ClN (f>N  +  &s</>s ■*" a E ^ E  Q -w fiw (4.3.11)

where

a p  = ( < * n  + a s  + a E + a w ) / a 4 (4.3.12)

the source term is given by:

W )  = W ) + b - a P)at<j>p (4.3.13)

Equation (4.3.11) is the final form of discretized equations solved by computer code 

using FORTRAN language.

4.3.2 Discretization of conservation of charge equation

To integrate the generalized conservation of charge equation (3.6.19) over the control 

volume shadowed in figure 4.2

W  ! + ■RePr£ j RePr
v i  c = o (4.3.14)

E J

74



Hongbo Zhang Numerical Methods for Solving Coupled Electric, Flow and Thermal Fields

Similarly to the procedure of discretization of the transport equations:

Fn = r \W ,+
RePr,

Ar]
E J n

F  = rs s

F  — re e

w ; +
RePrE /

V , +-
V R e P r E J

At]

F  -  rw 'w w,+
RePr, AS

E J

(4.3.15)

then:

E .q. -  F,q, + Fe 0 (4.3.16)

Since the equation (3.6.19) is a pure convective transport equation, no diffusion terms 

are involved, the up-wind discretization scheme can be applied:

'f *Q« = 4p max(Fn,0 ) - q N max(- Fn,0)

Fsqs =<ls max(Fs,0 ) - q p max(~Fs,0)
(4.3.17)

Feqe =qP mcvc(Fe,0 )~ q E m ax(-Fe,0)

Fwqw = qw max(Fw,0 )~ q p m ax(-Fw>0)
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equation (4.3.16) then becomes:

aP^P ~ aN$N aS(ls aE^E aW(lw ’ (4.3.18)

where

aN = max

as — max

aE = max\{ - w )
(4.3.19)

aw -  max(Fw>0)

ap -  max(Fn ,0)-fmax(- Fs ,0) + max(Fe ,0) + max 

_ = aN + as +aE +aw +(Fn - F s +Fe ~ F w)

The coefficient ap in equation (4.3.19) can be further changed into the following (see 

the appendix for derivation),

Jr
N EqA%Ari (4.3.20)ap — aN + a s + aE + aw +

RePrE

Using under relaxation technique gives:

a P (l p  ~  a N ^ N  J r a S (l s  ^~a E ^ E  a W(l w  Mft^Qp (4.3.21)
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where

Jr
RePr.

N BqAEfiT] (4.3.22)

4.3.3 Discretization of Electric Potential Equation

Similar to the procedure for the discretization of transport equations, the generalized 

electric potential equation (3.6.21) is integrated over the control volume shadowed in 

figure 4.2 with the centre point P  as follows:

r a  dtp
T  a ?

zl77
n ry  d(p 

+ -4^— A£ 
s J  drj w

+ S' (tp)+ Jr(N Eq)A%Arj = 0, (4.3.23)

where

S'(p) =f  - r p  dcp^ 
J  drj

A tj +
- rp  d(p
y y AS (4.3.24)

The centre difference scheme is used to approximate—  and —  as follows:
d% drj

r a
T Jn

Arj— — —
Z n - Z p W  J s Z p - % s

+

*S
<Pe - < P p

Ve - V p
!Z )  V>w+S(<p)

\  J  Jw ^P ~
(4.3.25)
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The above equation (4.3.25) can be written as:

ctptpp — aN<pN + as(ps + aEcpE + &w(pw + S{*p) >

where

l N

a F =

ra
T

Arj
J n  %P

ra  \ . 1Arj
J  Js  S p S s

1

Ve - V p

a w ~ AS'
1

Vp - V w

Clp — ( Cl ̂  "4* & E "H Cl E  4" d j y  ^

the source term is given by:

S(<p) = Jr(N s q)AZAV + -r fid g S  
J  drj_

Arj
n

+
-rp  dtp
T a g .

Again, using the under relaxation scheme:

aPtpp = aNtpN +astps +aEtpE +awtpw +5,(^ )+ a p( l - ^ }

(4.3.26)

(4.3.27)

(4.3.28)

(4.3.29)

;5?k
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where

a p  = z [a N + a s  + a E + a w ] / a t  ’ (4.3.30)

a^<  1 is the under relaxation factor.

4.3.4 QUICK scheme and Deferred Correction

To apply the control-volume method, the value of (j) and its normal derivative at the 

interfaces are often required. There are many approximation approaches for this 

purpose, such as upwind difference scheme (UDS) which has been used in above, linear 

interpolation scheme or central difference scheme (CDS), quadratic upwind 

interpolation for convective kinematics (QUICK) scheme (Leonard, 1979) and other 

higher-order schemes such as those introduced by Ferziger and Peric (1996).

The upwind scheme UDS is first-order in accuracy, which is numerically stable but 

highly diffusive in situations such as when the flow field is oblique to the grid lines in 

combination with a non-zero gradient of the dependent variable in the direction normal 

to the flow. Therefore it often leads to inaccuracy in the results and causes smearing of 

sharp gradients (Darwish and Moukalled, 1994). To increase the accuracy, higher order
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schemes should be used. In this thesis, the QUICK scheme is used, which has third- 

order accuracy to discretise the convection term.

QUICK scheme

The QUICK scheme is to approximate the variable profile ^betw een P  and E  shown in

figure 4.2 by a parabola instead of a straight line such as in the UDS scheme. A third 

point is needed to construct a parabola. By nature, the upstream point W is chosen, if the 

flow is from P  to E. Approximating (j)e is obtained by following:

$ e ~ ~ a \ $ E  a 2 (f>W  a \ J r a " l ) $ p  > (4.3.31)

where the coefficients ax, a2 are defined by the interpolation factors as:

, _ (2 ~ f  
a\ ~

(4.3.32)

the interpolation factors take the form :

> f e , W  ~
e  X W (4.3.33)
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Similarly, the values of </> at other control-volume cell surfaces can be obtained. The 

values obtained by the QUICK scheme were denoted with a superscript H\ so the 

control-volume cell surface <f) values calculated by the QUICK scheme are (f)f , <j>^,

Deferred Correction

Using a higher-order interpolation scheme or quadrate approximation scheme often 

leads to a large computational requirement; and the higher-order schemes also have 

unavoidable instability, which are harmful to numerical calculations. The deferred 

correction method proposed by Khosla and Rubin (1974) is a remedy for these 

problems; and the method is introduced as following:

In equations (4.3.3), the value o f (j>f  ( f -  n, s, e, w) is calculated using the first-

order upwind scheme and obtained the discretised equation (4.3.11). For the 

convenience of description, the cell-face values of ^ calculated by the first order

upwind scheme are denoted as <f>uf  . Therefore, the cell-face convective fluxes in

equation (4.3.3) can be replaced by their equivalent fluxes:

and

(4.3.34)

equation (4.3.3) is transformed to follows:

81



Hongbo Zhang Numerical Methods for Solving Coupled Electric, Flow and Thermal Fields

+ F. fn) -  [ F  + F r f )+ { j?  + F&) -  ̂  +
(4.3.35)

= W ) + s DC

where SDC is the contribution due to the adopted deferred correction procedure,

SDC=FH{ t f - t ? ) - F M (4-3.36)

The final discretised governing equations take a general form as follows:

ap$p = aN$N r̂aE$E (4.3.37)

where the discretisation coefficients, aP, aN, as , aE, aw and the source term S{(f) are 

the same as those in equation (4.3.11).

By now, the discretised equations for the governing equations are obtained. At a random 

grid point P  in the computational domain, the dependent variables for solution are up , 

vp, Tp> qP, (pp , ExP and EyP; and equations (4.3.37) (four equations when (f>p varies 

in 1, uP, vp, TP ), (4.3.21) and (4.3.29) are discretised. For the governing equation

(3.6.5), it can be simply discretised by using central difference equation, results in two 

discretised equations for ExP and EyP respectively. Therefore, the number of
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discretised equations equal to that of dependent variables; unique numerical solutions 

can be obtained if the boundary conditions are well-posed.

4.4 Pressure Correction Technique

In the discretized equations for flow fields, i.e., in equation (4.3.37), there is no 

independent equation for the pressure variable. This has made the solution of Navier- 

Stokes equations very complicated. Furthermore, the continuity equation does not 

contain the pressure. How to couple the pressure with velocity so as to satisfy the 

continuity equations has been the main task to solve the Navier-Stokes equations.

The pressure correction technique was developed by Patankar and Spalding (1972) and 

embodied in an algorithm called SIMPLE (Semi-Implicit Method for Pressure-Linked 

Equations), which has found widespread applications over the past thirty years for both 

compressible and incompressible flows. In this work, the focus is only given to the 

incompressible viscous flow.

4.4.1 Non-Staggered Grid Arrangement

Using central differences scheme for the incompressible continuity equation will result 

in the checkerboard velocity distribution, as well as for the pressure gradients illustrated 

in figure 4.3.
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Fig 4.3 Discrete checkerboard pressure distribution

Clearly, the pressure field discretized in figure 4.3 gives zero pressure gradients in the x 

and y  directions, respectively. For maintaining the central differencing scheme, the 

staggered grid arrangement (Patankar and Spalding, 1972) and the non-staggered grid 

arrangement with a momentum interpolation technique (Rhie and Chow, 1983) are two 

methodologies to solve this problem.

The non-staggered grid arrangement in which all the variables are stored at the same set 

of grid points is adopted for this work because of the significant advantages of this 

method over the staggered grid arrangement:

(i) all variables share the same location; hence, only one set of control volume is
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needed;

(ii) in a discretized equation, the convection contribution to the coefficients is same for 

all variables;

(iii) for a complex geometry, Cartesian velocity components can be used in conjunction 

with non-orthogonal coordinates, yielding simpler equations than when numerical 

coordinate-oriented velocity components are employed (Peric, Kessler and 

Scheuerer,1988).

4.4.2 Pressure Correction Equation and Momentum Interpolation Scheme

In order to sort the checkerboard pressure distribution problem out, the coupling of 

pressuxe-velocity must be introduced. The coupling of pressure-velocity consists of two 

steps; one is momentum inteipolation and the other is pressure correction.

4.4.2.1 Pressure Correction Equation

Setting (j)=u and (f>-v inequation(4.3.7), respectively, gives:

(4.4.1)
dp
drj
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where

B..
f  ryvA^Arj^

ry^A^Arf

V u p  J p

B„
rxnA^Ati

V U P J p

C =
r rx^A%Arj\

ap Jj

_  ^  a NBU NB $  i U )

^ nbK b + S7̂ )
(4.4.2)

S'(u) and S'(v) are the rest terms of S(f) in equation (4.3.7) after the pressure 

gradients are taken out, for (j) = u and ^ = v , respectively, p* is an initial pressure, u 

and v* are the values obtained using the initial pressure p * .

In the iteration procedures, the flow fields of u \  v* and p* (the superscript asterisk 

denotes an intermediate iteration value) cannot satisfy conservation of both continuity 

and momentum, therefore the corrections should be applied as

86



Hongbo Zhang Numerical Methods for Solving Coupled Electric, Flow and Thermal Fields

* dp' dp’
u — u +  B  1- C  —

" d% u dr]

* dp’ dp’ 
v — v  +  B„  H

d% v dr]

* . fp  = p  + p

wl=w;+w;

w2 =W2*+W’

(4.4.3)

where u’, v ', W[ and W2 are the corrections of velocity, and p ’ is the pressure 

correction.

The correction of curvilinear velocities Wx and W2 given:

w2 = w; + ip.yn -  B,XV f  + (c, -  c„y, ) J-j-

FT, = w; + (cvx, -  c .*  )^f +
dr]

(4.4.4)

Define the symbols:

Bi =B.yv ~B,xn rA^Ar]

\  ap )
a (4.4.5a)
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B2 = Bvx ^ - B uy 4 =

Cuyn c vxn

C2 — Cvx , Cuy^ —

^ rAt;Arj^ 

\  a p  J
P

'  rAt;Arj^ 

k  a p  J

r

p

rA^Arj

V a p  J
r

(4.4.5b)

(4.4.5c)

(4.4.5d)

when the grid is not severely non-orthogonal, equation of (4.4.4) can be reduced as: 

dp'

(4.4.6)

drj
w2 = w ; + c 2

d£

dp'

Combine equations (4.4.6) with equation (4.3.4), the continuity equation gives:

+ k ] - ? M k  + k }+

r M K + w A - r ^ [ w ; „ + w ; w] (4.4.7)

=  0

applying the central differences scheme for the correction pressure gradient:

W! = B
l / i  In

p y
K  = B1S P p - P s

(4.4.8a)

(4.4.8b)
s y
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W ’ - C2e 2e
(  1 r \  

P e - P p

\ P e  ~ 71p  )

f
W' - C2w 2w Pp Pw 

\  Vp ~~7lw >

(4.4.8c)

(4.4.8d)

The relations between the corrections of velocity and pressure are obtained as 

following:

A £A nY
- — -  y n - z r - y ( - f -“ p  A  5 #  d r ]  J

°p A  " f 8ti .

(4.4.9)

Rearranging equation (4.4.7), we have the pressure correction equation:

CpPp — ^ j^ nbPnb Jr™p'> (4.4.10)
NB

where NB — N ,  S,  E,  W ,

c n =  ( - n A  A v W t ,  - £ (4.4.11a)

Cs = ( - r ,B „ A r j ) / { 4 f - £ s ) , (4.4.11b)

Op ~ (— re 0 leA^)l{r]E —rjp), (4.4.11c)

Ojy = (— rw -̂’2wA^)j{r]p — TJxy ) , (4.4.1 Id)

Cp — CN + Cs + CE + Cjy , (4.4.1 le)

and
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rhp = f a r .  -  W 'r. -  W^r. )a£ . (4.4.1 If)

4.4.2.2 Modified Momentum Interpolation Scheme

The momentum interpolation scheme by Rhie and Chow (1983) can cause numerical 

results dependent on the relaxing factor (Majumdar, 1988) and the linearity of the 

pressure field (Zhang, Yan and Hull, 2001). In this work, a modification to the 

momentum interpolation scheme for calculating cell-face curvilinear velocities is 

proposed,

Rhie and Chow’s Momentum Interpolation Scheme

The coupling of velocity and pressure variables stored in non-staggered grids needs a 

special strategy. To supply this strategy, Rhie and Chow’s momentum interpolation 

scheme uses the pressure gradient to evaluate the cell-face velocity and to ehminate 

‘checkerboard’ fields. This mechanism can be explained by the derivations of the 

momentum interpolation scheme. For convenience of description, only the interpolation 

in f  direction is shown here, as that for rj is similar. As stated in section 4.4.2.1:

W, = H ,+ B, (4.4.12)

where Bx is calculated according to equation (4.4.5 a); H 1 is the difference between Wx 

and the pressure gradient term. The momentum interpolation scheme is a formula to
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calculate the cell-face velocities. For example, in order to calculate W\ at cell-face n, 

equation (4.4.12) is first applied to grid nodes P  and N  as

Wlp — H IP + BlP

WlN — H lN + BlN dp_

PS J N

(4.4.13)

then the cell-face velocity W\n is expected to take the form of

Wln= H Ut+Bln
kP S j ,

(4.4.14)

An interpolation between WlP and W1N is obtained as

(
W  = W  + BIn In In P n - P p

Zn - S p

dp (4.4.15a)

where the terms with top bars are the linear interpolation between the corresponding 

parts of Wlp and W1N. Similarly,

W 2e ~  W 2e +  C 2e
(

P e -- P p (Op )
\

~ V p [ d i j j eJ
(4.4.15b)

The term in the square bracket has fourth-order accuracy and is designed to recognise 

the Pressure-velocity in a numerical calculation. The formula for Wls and W2wcm  be
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obtained in a similar manner and have been omitted here. Denote two iteration steps 

with superscripts K  and 7T+1, the value of <j) obtained from Equation (4.3.7) for a new

iteration but without relaxation is taken as <f>nesv, then:

iK+l  _  _ 
Y ~

^ h aNB(f)NB ^  ̂ {(f)
+(i ~ a >̂; (4.4.16)

and the cell-face velocity,

K n*= < xAW Xn+Bu

+ C2e

dp
5 ?

r d £ '

\ dC
'd p }

(l+  l - a .

(4.4.17)

+ (i - o c . y

where is the under relaxation factor. Equation (4.4.17) are Rhie and Cow’s 

momentum interpolation scheme to solve basic equations with under relaxed iteration.

Defects of Rhie and Chow’s Scheme

Two defects of Rhie’s scheme of momentum interpolation may be identified.

Defect 1: Relaxing Factor Dependency

As argued by Majumdar (1988), the momentum interpolation scheme, Equations 

(4.4.18a, b), can result in a relaxing-factor dependent numerical solution. This relaxing-
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factor dependency can be easily explained. In Equations (4.4.17a, b), the cell-face 

velocity Wj„, is a compound of two parts. The first part is the “momentum 

interpolation” based on the values without relaxation, denoted as MI; and the second 

part is the “linear interpolation” based on the K ’s iteration, denoted as LI. Therefore, 

Equation (4.4.17) means:

However, the “momentum interpolation” and “linear interpolation” are two different 

interpolation methods, which mean M fe  LI. This is to say, for a physical problem, 

different numerical results can be obtained only because a different value of the relaxing 

factor is used.

Defect 2: Dependency on Linearity ofPressure

In pervious work (Zhang, Yan and Hull, 2001), it was also observed that Rhie and 

Chow’s momentum interpolation scheme equations (4.4.17) give a numerical solution 

dependent on the linearity of pressure. It was noticed that, for calculating the fully 

developed viscous flow in a curved and extending duct, the flow rates (this also means 

the main stream velocity) through different cross sections where mesh is non-uniform in 

streamwise direction, can vary considerably, although the numerical mesh is fine 

enough. This observation can be explained by the pressure-linearity dependency of the 

results by using Rhie and Chow’s momentum interpolation scheme. For the 

convenience of explaining, the interpolation scheme without relaxation, equation

(4.4.18)

93



Hongbo Zhang Numerical Methods for Solving Coupled Electric, Flow atid Thermal Fields

(4.4.15), is used for description.

In order to calculate the unknown terms in the right hand of equations (4.4.15), linear 

interpolation is used for both I i\n and B\n, that is:

(4.4.19)

where f i  is the geometrical interpolation factor. It is reasonable to take H ln = H ln as H\ 

is only decided by the variable <f), which can be regarded as a continuous field. For the 

parameter B\n, however, it is related to the numerical mesh because it contains mesh- 

dependent variables a , (3 or y  (see equation (4.4.5)). As the numerical mesh is

possibly non-uniform, there is no reason to takei?lM =Bhl. This non-equivalence is 

neglected in equation (4.4.15). In the calculations using equation (4.4.15), if W\n is 

expected to converge at Wln, the term in the square bracket should be zero. This 

requirement can only be satisfied by regarding the pressure distribution as linear in the 

£- direction. Otherwise, the numerical results are inevitably pressure-linearity 

dependent.

Modified Momentum Interpolation Scheme
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Based on the last section (4.4.2.2), the two defects of Rhie’s momentum interpolation 

scheme can be eliminated with the modified approach being used in the present study.

superscript new, should be obtained by equation (4.3.7) before relaxation is carried out. 

In the meanwhile, these new values need memories except those for levels K  and K+1. 

All these are originally not good for an efficient algorithm and should be eliminated 

first. This can be done by carrying out the relaxation during iteration; that is, replacing 

equation (4.3.7) with equation (4.3.11), as has already been done. In this case, the 

iteration and relaxation are carried out in only one step, and the memory for the 

intermediate value without relaxation is saved.

The following is straightforward to eliminate the two defects by the relaxation in 

equation (4.4.17) and taking Bln * Bht into account. Similarly, setting (jj=u and <fr=v in 

equation (4.3.11) respectively, and then substituting them into equation (3.7.13), gives:

Again, we apply W*+1 to nodes P and N, then interpolate to get W^ +l, our modified 

momentum interpolation scheme is obtained as following:

As the first defect is strongly related to the relaxation factor, which is inevitably to be

used, the present modification should also start from this.

Consider equation (4.4.16) the iteration values without relaxation, denoted by the

(4.4.20)
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w,K+1
lrt w.:JsT+1

i» + *B In
( % )
? e ) .

Bx

K+l

+ (i (4.4.21)

Contrast to equation (4.4.17), Bht & Bhl has been taken into account in equation (4.4.21) 

therefore, the pressure-linearity dependency of the result is eliminated; In the mean 

time, the relaxation dependency of the numerical results has also been eliminated by 

equation (4.4.21), this can be demonstrated as follows.

When the calculation is converged, W ^+1 = W£ and W ^+1 = W£ , therefore, equation

(4.4.21) can be reduced to:

W \n =: K , + < a
paps
A^Arj ) ( dp A^Arj V

a
y papa*

dp (4.4.22)

According to equation (4.3.12)

(4.4.23)

Therefore, W\n is independent of the relaxation factor and the a , dependency of the

numerical result is successfully eliminated.
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4.4.3 SIMPLE method

The solution procedure is summarised as:

1) With approximate pressure and velocity fields obtained by a previous iteration or an 

initial guess, momentum equations (equation (4.3.11) with^ = w and <f) = v \  or

equation (4.3.37) when the QUICK scheme is used) are solved to obtain u and v*;

2 ) A momentum interpolation is carried out according to the modified momentum 

equations, so that the curvilinear velocity components at control volume cell faces, 

W*n9 JTj*, Ŵ e and W2*w are obtained. These values are used to calculate the 

coefficients of the pressure equation;

3) Solving the pressure correction equation, i.e., equation (4.4.10), to obtain p ' ;

4) Correcting the pressure and the velocity according to equation (4.4.9);

5) Calculating the temperature field by solving energy equation (4.3.11) (or equation 

(4.3.37) if  using the QUICK scheme) with <f> = T ;

6 ) Returning to step 1 if  the convergent criteria are not satisfied. In this study, the 

convergence criteria are the dimensionless maximum mass residual,

max(jmP |)< 1 x  10~ 6 and the heat balance error, |Nu |c -Nu \H | < 1 x  10-3, where Nu \c 

and N u \h  are averaged Nusselt numbers on cold and hot walls, respectively.
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4.5 Code Validation

The numerical methods presented in this chapter are developed into FORTRAN codes. 

A full list of the codes with necessary explanation of variables and subroutine functions 

are given in the appendix B. Validations are carried out for calculating heat and flow 

problems before studying the coupled electric, flow and thermal fields.

4.5.X Roache Channel Flow

The Roache’s (1981) channel flow problem is a well-known configuration designed for 

testing computer codes dealing with laminar flow in complex geometry. Napolitano 

and Orlandi (1985) presented a group of results presented in a modelling contest hosted 

by IHAR and pointed out the benchmark solution for this problem. The flow 

configuration is shown in figure 4.4.

Symmetry plane y„(x)=l
(0. 1)

Inlet

Outlet(0,0)

Wall
yl(x)=[tanh(2-30jt/Rc)-tanh(2)]/2

Figure 4.4 Geometry of the Roache channel
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In this work, the calculations are carried out at Re=100. Figures 4.5 and 4.6 show the 

pressure and vorticity distributions along the wall. A grid-independent numerical result 

can be obtained using a mesh of2 1 x 2 1 ; the error of imbalance mass source is 1 0 ~9; and 

the minimum iteration steps to obtain its convergent results are 80. The results indicate 

that the present calculation is in good agreement with the benchmark solution.

0.1

0.05

g  -0.05

ra
23
V)
(A
2

Present work 
Benchmark

-0.15Q.
- 0.2

-0.25

-0.3 0.25 0.5 
X IX  out

0.75

Figure 4.5 Pressure distribution at wall (Re=100)
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3.5

2.5
Present work 
Benchmark

0.5

-0.5 0.25 0.75
X I X  out

Figure 4.6 Vorticity distribution at wall (Re=100)

4.5.2 Natural convection in Annulus

Natural convection (or buoyancy-driven fluid flow) in an enclosure with differentially 

heated walls is an important model in heat transfer. Such a heat transfer model is 

closely related to the performance of many industrial processes and engineering devices. 

These devices or systems may include air conditioning in a vehicle, reactor insulations, 

cooling of radioactive waster contained, ventilation of rooms, fire prevention, solar 

energy collection and crystal growth in liquid. In the last twenty years, many 

experimental and numerical investigations have been carried out on this subject; Well- 

documented experimental data are available for natural convection in closed spaces and
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this thesis use the annulus experimentally studied by Kuehn and Goldstein (1976) for 

validation of the codes.

u -  0

u = 0

6 9  6 9

Figure 4.7. Computational domain and boundary conditions for annulus

The annulus has a value of ratio of gap width to inner diameter = 0 .8 , the

Rayleigh number Ra = 1/1 Pr = 4.7 x 104, and the Prandtl number Pr -  0.7 .
v

The temperatures of both cylinders are circumferentially uniform. The inner cylinder is 

heated 1) and the outer cylinder is cooled (T  =0). The velocity boundary conditions 

at the wall of inner and outer cylinders are imposed as zero. Because of the symmetry of 

the geometry, we separate the annulus along its vertical symmetric axis and take a half
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as the computational domain, which is shown together with the boundary conditions in

figure 4.7. The grid points of the mesh are 182x60 (in the 6 and R directions, see

figure 4.7). The comparisons of data of equivalent thermal conductivity

R log(Rnut /R. ) dT  , ,
K „ „  = ------------ l l h l — 'jl l—  5 the temperature and angular velocity profiles are shown in•e<7 T. - Tin out dR

figures 4.8, 4.9 and 4.10, respectively. Good agreements between calculation and 

experiment are obtained. The contours of temperature and the distribution of 

streamlines of the present calculation are shown in figure 4.11.

—  inner, Present Cal. 
outer, Present Cal.
Inner, Kuehn & Goldstein's Exp. 
outer, Kuehn & Goldstein's Exp.

Cr<

O

120

Figure 4.8 Comparison of Keq on annulus walls
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180°; Present Cal.
0 °

30°
90°

180°; Kuehn & Goldstein (1976)0.9

t V
0.3

XYr....TLT^-T.
0.80.2 0.4 0.6

Figure 4.9 Comparison o f temperature

1 2 0
-  90'100 150°; Present Cal.

* ■150°; Kuehn & Goldstein (1976)

-20

-40

-60

-80

- 100, 0.40.2 0.6 0.8

Figure 4.10 Comparison of circumferential velocity
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o

Figure 4.11 Temperature contour and streamlines in the annulus 

4.5.3 Natural convection in inclined cavity

The inclined cavity natural convection problem is another benchmark testing case for 

validation o f calculating heat-flow coupling of the code. The data select in this thesis 

are the benchmark numerical solution for the inclined angle of cp -  90° by De.Vahl.D 

and Jones (1981) and the Laser Doppler Velocimeter (LDV) measurements of velocity 

at (p -  30° and (p = 70° by Linthorst et al. (1981).
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The physical model

The geometry of a two-dimensional cavity is shown in figure 4.12. The flow of air with 

Prandtl number Pr = 0.71 in the square is assumed to be incompressible. The wall at 

x  = 0 and x = H  are differentially heated with the hot surface at x -  0. The surface at 

y  -  0 and y  = H  are insulated. The inclination angle is defined by the angle between 

the hot and horizontal walls.

Figure 4.12 Geometry of inclined cavity

The local Nusselt number at a wall is calculated by:

H  f 1dT)  . (4.5.1)
a  r { d x j x ’

and the averaged Nusselt number:

1 Hr (4.5.2)
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Natural convection at (p = 90°

A t^  = 90°, the natural convection at Ra = 103 ~ 106 has been calculated. A 

comparison of the present results with the benchmark solution in (De.Vahl.D. and 

Jones, 1981) is presented in Table 4.1. Figs. 4.13 and 4.14 show isothermal and 

streamline distributions at different Rayleigh numbers. Figure4.15 gives the local 

Nusselt number along the hot wall. It can be seen from figure 4.14 (a) that, at Ra = 103, 

the streamline distribution only shows one vortex, its centre is in the cavity centre. 

While, figure 4.13 (a) shows that the corresponding isotherms are in parallel with the 

heated walls, indicating that most of the heat transferred is in heat conduction; this can 

also be seen in table 4.1, in which the mean Nusselt number is about 1.118. As 

Rayleigh number increases to as high as Ra=104, central streamlines are distorted into 

an elliptic shape (see Figure 4.14 (b)), the isotherms near the vertical walls become 

thicker. At Ra=105, the central streamline is further elongated and two secondary 

vortices appear inside the cavity. As the heat transfer in convection is much stronger 

than that in conduction, the temperature gradients in the centre of the streams are close 

to zero, or even negative, thus a negative vorticity is promoted. Indeed, this results in a 

development of the secondary vortex in the core area; the thermal contours near the 

vertical walls become even steeper. As the Rayleigh number increases to 106 as shown 

in Figure 4.14 (d), the secondary vortex moves close to the vertical walls and a third 

vortex appears in the core; the boundary layers adjacent to the vertical walls become 

thin. Furthermore, as the Raleigh number increases, a peak value of the Nusselt number 

appears near the bottom of the hot wall; this is as show in Figure 4.15.
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Table 4.1 Comparison with benchmark solutions

Ra= 1 0 3 Ra=- w Ra== 1 0 5 Ra:= 1 0 6

a b a b a b a b
Nu 1.118 1.118 2.238 2.245 4.505 4.526 8.903 8.917

NUmax 1.506 1.506 3.527 3.534 7.717 7.745 18.562 18.266

NU*in 0.691 0.693 0.586 0.601 0.729 0.732 1 . 0 0 2 1.018

1A> max 3.657 3.632 16.178 16.164 34.77 34.984 64.94 66.483
T max

3.702 3.697 19.643 19.536 68.25 68.428 221.29 221.034
a: benchmark solution r. presenl work

.625-

Th Tc

(b)

Th

(a)

-0.75-

‘0.625-
Th Tc

-0.5-

-0.375-

-0.25-

(C)

-0.75-

0.625-
Th Tc

-0.5-

-0.375-

(d)

Figure 4.13 Temperature Isothermal at different Ra numbers 

(a) Ra=103 (b) Ra=104  (c) Ra=105  (d)Ra=106
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Th Tc

(a)

Th Tc

(b)

Th Tc

(c)

Th

(d)

Figure 4.14 Streamlines at different Ra numbers 

(a) Ra=103 (b)Ra=104  (c)Ra=105 (d)Ra=106
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Figure 4.15 Local Nussult Number along the hot wall at different Rayleigh number

Natural convection at different inclined angles

Linthorst et al. (1981) measured the flow structure and velocity distribution using LDV 

with natural convection in inclined air-filled enclosures. The cases selected for 

validation of the codes are at Ra = 1.3xl05, (p = 30° and (p = 70° respectively; and the 

value of the height to width aspect ration Ax= 1 (square cavity).

The convergent path of the calculation for the case of (p -  30° is recorded and shown in
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figure 4.16, where E1 and E3 are defined as follows:

E* = Z  ' '

k=\,My
m,

f \
E3 = max TYlp

\ )

(4.5.3)

(4.5.4)

mp is given by equation (4.4.11). A good and smooth convergent path demonstrates the 

robustness of the code. The calculated u-velocity profiles (velocity component parallel 

to the isothermal walls) are compared with their measured values in figure 4.17. Very 

good agreement is achieved.

10’

E2

E3

1000 2000 3 0 0 0
Iterations

Figure 4.16 Convergent path of the inclined cavity at <£=30°
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0.06
Ra = 1 .3 x 1 0 *  
A x = 1

0.05 30°, P resent Cal.
30°, Linthorst’s  Exp. (LDV) 
70°, P resent Cal.
70°, Linthorst's Exp. (LDV)

0.04

£  0.03

0.02

0.01

0.6 0 .7 0.8 0 .9
y/D

Figure 4.17 Comparison of w-velocity distribution at X/D=0.5

Based on the validation of the codes, natural convection in the inclined enclosure at Ra 

= 106  with different inclination angles, ranging from 19° to 180°, was further calculated. 

Figure 4.18 shows the associated temperature distributions. Figure 4.19 shows the 

streamlines of flow where the structures of vortex can be identified. In Figure 4.20 the 

local Nusselt number distribution along the hot wall for different inclination angles is 

presented. According to a combined experimental and numerical study (Hamady and 

Lloyd (1989), the flow in a square cavity at Ra=106 is two-dimensional and laminar for 

(p > 2 0 °; the present study shows steady numerical results for the flow can be obtained 

at (p = 19°.
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For heat conduction dominated the heat transfer, in which (p - 180° and the fluid is 

heated from above, the fluid theoretically stands still and the Nusselt number is purely 

determined by conduction. As (p < 180°, the air in the cavity starts to move, the 

velocities along the hot and cold wall increase under rotation; the temperature gradient 

in the centre of the cavity is even steeper, and therefore, the mean Nusselt number 

grows rapidly.

At (p = 90°, the fluid being heated from the side, the flow is thoroughly dominated by 

the boundary layer flow along the hot and cold walls. A further rotation will increase 

the velocities because of the increasingly unstable situation of the cavity by heating 

from below.

It is important to note that the flow structure starts to show unsteady at ^=19° as two 

small vortices appear at the comers of boundary layers of the hot and cold walls. As for 

<P~Q°, the flow is three-dimensional and cannot be described by a two-dimensional 

numerical program.
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a) (k)

Figure 4.18 Thermal Contour distribution at different angles for Ra=106  

(a) 0=19°,(b) 0=20°, (c) 0=30°,(d) 0=40°,(e) 0=60°,(f) 0=80°,(g) 0=90°,(h) 0=120'

(i) 0=140°,© 0=160°,(k) 0=180°

(a) (b) (c)

114



Hongbo Zhang Numerical Methods for Solving Coupled Electric, Flow and Thermal Fields

Tc

0) (k)

Figure 4.19 Streamlines distribution at different angles for Ra=106 (a) 0= 19°,(b) <£=20°, 

(c) 0=30°,(d) <£=40°,(e) 0=60°,(f) <£=80°,(g) <£=90°,(h) <£=120°,(i) <£=140°,(j)

<£=160°, (k) 0=180°
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Angle=19
Angle=30
Angle=60
A ngled  60
Angle=180
Angle=120
Angle=90
Angle=80

Figure 4.20 Local Nusselt number at some angles of inclination for Ra=106

4.5.4 Natural Convection in a Squeezed cavity

The application is the natural convection 

in a squeezed cavity as shown in figure 

4.21, in which the inclined walls are kept 

at constant temperatures T h and Tc-> 

respectively, while the horizontal is

Th /  Tc 

a * : .

> x

Figure 4.21 A squeezed cavity
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assumed to be adiabatic. The inclination angle was chosen to be ft -  4 5 0.

A benchmark solution for this natural convection problem has been reported by 

Demirdzic, Lilek and Peric. (1992) employing a multi-grid finite volume program. 

Using the same physical and geometric conditions, such as L=l, density p  = l, gravity 

constant g=l, expansion coefficient /? = 0.1, specific heat cp = 1 , TH =1 and Tc = 0 .

The natural flow at Ra=106 is studied at Pr=0.1 and 10, respectively. A fine mesh with 

224x192 grids was used for the calculation (figure 4.22). The results are shown in 

figure 4.23 and 4.24. The comparison of streamlines between the benchmark and the 

present solutions shows that the results are in good agreement with the benchmark 

solution.

WMMM. Wmm

Figure 4.22 a mesh of the squeezed cavity (shown every other four points)
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(a) (b)

Figure 4.23-1 streamlines comparison with benchmark solution 

(a: benchmark, b: the present)

10 0.949
9 0.849
8 0.749
7 0.649
6 0.55
5 0.449
4 0.349
3 0.249
2 0.15
1 0.05

(a) (b)

Figure 4.23-2 Predicted isotherms with benchmark solution 

(a: benchmark, b: the present) Pr=0.1
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(a) (b)

Figure 4.24-1 Predicted streamline at Pr=10 

(a) Benchmark (Demirdzic,1992), (b) present work

10 0.949
9 0.849
8 0.749
7 0.649
6 0.55
5 0.449
4 0.349
3 0.249
2 0.15
1 0.05

(a) (b)

Figure 4.24-2 Predicted isotherms at Pr=10 

(a) Benchmark (b) present work
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4.5.5 Laminar Flow through a Circular Pipe with Constriction

The laminar flow through a circular pipe with a sinusoidal constriction, experimentally 

studied by Young and Tsai (1973) and numerically studied by Rastogi (1984) and Karki 

and Patankar (1988) is selected to validate the code using body-fitted grids in 

axisymmetric coordinates system. The geometry is shown schematically in figure 4.25. 

Both the tube and the constriction are axisymmetric. The radius of the stenosis was 

specified as a cosine curve:

f  \
TCX1 +  COS  — - X 0 < x < X 0 . (4.5.5)

The number of grid is taken as 102x50 in the x - r  coordinates. The density of grid 

points was higher near the wall and the grid was stretched in the axial direction with 

more grid points in the constricted region.

Table 4. 2 Model Geometries

Model no. Ro (in.) d/R0 X o/Rq % reduction in area

M-2 0.372 2/3 4 89

M-3 0.372 2/3 2 89
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Reattachment 
S  point

Separation point>—■
Flow

Figure 4.25 Geometric configuration of the pipe with a constriction

Results have been obtained for two geometries corresponding to models M-2 and M-3 

of Young and Tsai (1973). The geometric characteristics of these stenoses are given in 

table 4.2. Computations were done at Re=50 and 100 for model M-2 and at Re=40 for 

model M-3.

Figure 4.26 Flow pattern for Model M-3 at Re=40
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Table 4 .3  Comparison of the present results with experiments

Re Mod 

el no.

Separation point (Xs/Xq) Reattachment point (XfXo)

Experiment Present Experiment Present

50 M-2 0.37 0.37 2.2 2.1

100 M-2 0.37 0.37 4.1 4.1

40 M-3 0.37 0.37 2.9 3.1

The flow pattern for model M-3 for Re=40 is plotted in figure 4.26. Table 4.3 gives a 

comparison between the present results and the experimental results of Young and Tasi 

(1973). The agreement between the two sets of results is good. The error of X,/X0 is 

acceptable considering the experimental error at low Reynolds numbers.

4.6 Summary

In this chapter, the computational domain and Navier-Stokes equations coupled with 

electric field equations are discretezed firstly; and then the SIMPLE procedure is 

applied for coupling the velocity and pressure. A modified momentum interpolation 

scheme is proposed.
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An algebraic method is used to give an initial mesh; the Partial Equations to obtain the 

grid with second-order smoothness are used. The Control Volume method is used to 

discrete the governing equations. The QUICK scheme and deferred correction are 

employed for the convection term discretization.

Following the introduction of numerical methods, the algorithm and the developed 

FORTRAN codes are validated by cases with benchmark results or experimental data. 

These cases include the flow in a Roach Channel, natural convection in an annulus and 

in a square cavity, natural convection in a squeezed cavity and Laminar flow through a 

circular pipe with constriction. The validations show that the numerical method and the 

computer codes used in this work are reliable and robust.
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Chapter 5

Numerical Study of EHD Effect on Natural Convection Heat Transfer

5.1 Introduction

Natural convection (or buoyancy-driven fluid flow) in enclosures with differentially 

heated walls is an important model of heat transfer in many industrial processes and 

engineering devices such as air conditioning system in a vehicle, reactor insulation, 

cooling of radioactive waste containers, ventilation of rooms, fire prevention, solar 

energy collection and crystal growth in a liquid.

When an external electric field is applied across a plane layer of a dielectric media, 

secondary flows in a flow field can be induced and heat transfer enhancement can be 

further obtained; this is an example of the EHD effect. This EHD enhancement is 

particularly attractive for enhancing the convective heat transfer of weakly conducting 

liquid through a narrow space at low Reynolds number, where the application of any 

conventional passively enhancement methods is neither easy nor effective (Bergles, 

1978). As reviewed in chapter 2, many experimental studies on EHD enhancement of 

heat transfer have been carried out in the past three decades with most of the studies 

being experimental measurements and visualisations (Gross and Porter, 1966; Fujino, 

Yokoyama and Mori, 1989); numerical simulations of the EHD enhancement of natural
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convection are very rare in literatures because the lacking of proper mathematical 

descriptions of the coupled electric, flow and thermal fields.

The status quo of the modelling the EHD effect and numerical simulation is not well 

connected. On one hand, some publications reported the modelling of the EHD effect on 

laminar flows but without numerical simulation, such as Worraker & Richardson 

(1981), Martin & Richardson (1984) and Dulikravich and Lynn (1995); and on the other 

hand, some numerical simulations are reported, such as those by Lee, Dulikeravich and 

Ahuja (1993) and Shu and Lai (1995), but in the mathematical models for these 

simulations, the electric field is decoupled with the flow and thermal fields.

In this chapter, numerical simulations of EHD effect on natural convection in a 

rectangular enclosure and a cylindrical enclosure are carried out; also the EHD effect on 

natural convection in different working fluid is simulated.

5.2 EHD effect on Natural Convection in Rectangular Enclosures

The configuration considered here is a two-dimensional horizontal rectangular chamber 

where the length is three times of the height, as shown in figure 5.1. The top (cool) and 

bottom (hot) walls are differentially heated.
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Cool wall (t] -  1)

AdiabaticN Adiabatic

Hot wall (r) = 0)

Figure 5.1 The horizontal rectangular chamber (where a/b=3)

5.2.1 The EHD Effect at Different Rayleigh Number

The following non-dimensional parameters are chosen in the calculations o f the EHD 

effect on natural convection calculated for different Rayleigh numbers: Pr = l, 

Ec = 1 x 10~4, SE ~ 1, N e = 1, De - 1, Re = Gr1/2 and Pr£ = 1. A mesh size of 120x60 

is chosen for the calculation based on a grid independency as tested using the mesh 

sizes of 60x30, 120x60 and 240x120. The mean Nusselt number Nuav calculated by

three meshes are compared and tabulated in table 5.1. As can be seen, the relative error 

between the results of mesh 60x30 and mesh 120x60 is nearly 5% while that between 

mesh 120x60 and mesh 240x120 is less than 1%; therefore mesh 120x60 can be 

regarded as fine enough to produce grid-independent results and can be employed in the 

current simulation.
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Table 5.1 Grid independent test

Mesh size Nuav Relative error

120x60 1.893 -

60x30 1.989 5.071%

240x120 1.911 0.951%

Table 5.2: the comparison of mean Nusselt number at different Rayleigh number

Ra Nuav (without EHD effect) Nuav (with EHD effect) Increase

3000 1.006 1.371 36.29%

3500 1.464 1.535 4.86%

4000 1.619 1.684 3.98%

4500 1.757 1.797 2.27%

5000 1.866 1.893 1.49%

The results at Ra = 3000, 4000 and 5000 are shown in figures 5.2.1 ~ 5.4.3. The mean 

Nusselt number and local Nusselt number along the hot wall is presented in table 5.2.

Figures 5.2.1-5.2.3 show the results of calculation at Ra =3000. The temperature 

distributions (figure 5.2.1) for without and with EHD effect exhibit a significant 

difference, it is clear that without an EHD effect, the system almost has a uniform 

temperature field; but when the effect are applied, the temperature distribution is rather 

non-uniform and should result in a significant heat transfer enhancement. Figure 5.2.2
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shows the streamline, the visual differences between those with and without EHD effect 

are not very obvious; this means applying an electric field does not produce a 

topological change in the streamlines this time. However, corresponding to the 

temperature fields in figure 5.2.1, the distribution of local Nusselt number shown in 

figure 5.2.3 demonstrates the heat transfer enhancement by applying the EHD; as large 

as 140% maximum increase in local Nusselt number can be seen in the middle of the 

bottom wall.

(a) the temperature distribution without EHD effect

-0.125'
•0.5. -0.5-

.0.625.-0.625.

■0.7i 1.75-
1.375-

-0.875. .0.875.

(b) the temperature distribution with EHD effect

Figure 5.2.1 The temperature distribution at Ra = 3000
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(a) without EHD effect

(b) with EHD effect

Figure 5.2.2 The streamlines at Ra = 3000

2.4
 with EHD effect
  without EHD effect22

1.8

1.6

1.4

1.2

0.8

0.6
X/L

Figure 5.2.3 The local Nusselt number along the hot wall at Ra =3000
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Figures 5.3.1- 5.3.3 presents the results o f the case R a- 4000; the contours of 

dimensionless temperature, streamline structure, and local Nusselt number are shown in 

figures 5.3.1, 5.3.2 and 5.3.3 respectively. The differences in the flow fields and local 

Nusselt number distributions for with or without EHD are smaller than that at Ra~3000. 

This becomes clearer when the Rayleigh number increases to 5000. As shown in figure

5.4.1 and 5.4.2, both the temperature and streamline distributions for with or without 

EHD are similar. As a result, the difference in the Nusselt number distributions for with 

or without EHD, as shown in figure 5.4.3, is smaller than that in figure 5.2.3 (Ra=3000).

-0.12t

'0,375'

(a) without EHD effect

'0.125'

-0.62i

,0.75„

-0.375- 

—0.5~
).875.

(b) with EHD effect

Figure 5.3.1 The temperature field at Ra -  4000
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(a) without EHD effect

(b) with EHD effect

Figure 5.3.2 The streamline at Ra -  4000

2.8

2.6  with EHD effect
  without EHD effect

2.4

2.2

1.8
1

1.6

1.4

1.2

0.8

Figure 5.3.3 The local Nusselt number along the hot wall at Ra -  4000
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.0.625-

(a) without EHD effect

'0.125-

.0.625.

>,375-

>.875.

(b) with EHD effect 

Figure 5.4.1 Temperature distribution at Rayleigh number of 5000

(a) without EHD effect

(b) with EHD effect

Figure 5.4.2 The streamline at Rayleigh number of 5000
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3.2

-  with EHD effect
— without EHD effect2.8

2.6

2.4

2.2

1.8

1.6

1.4

0.8
X/L

Figure 5.4.3 The local Nusselt number along the hot wall at Ra-50Q0

EHD force buoyancy force
Layer resistance force

Figure 5.5 Force analysis (Gravity isn’t shown in this figure)
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Compare the distributions of local Nusselt number in figures 5.2.3, 5.3.3 and 5.4.3, 

there is a similarity between them; that is, by applying an electric field, the local heat 

transfer is enhanced near the side walls; but in the centre of the cavity, local heat 

transfer is enhanced at R a -  3000 but is reduced at R a-  4000 and Ra= 5000. This 

phenomenon can be partially explained by the force-analysis in figure 5.5. Due to the 

boundary layer resistance force, cold fluid is transported downward along the side 

walls; this results in a steeper vertical temperature gradient near the side walls. In the 

centre of the cavity, the direction of electric body force is opposite to the vortex motion 

and therefore the heat transfer is reduced locally.

The above calculations of the natural convection in two dimensional rectangular cavity 

demonstrate that the EHD enhancement of natural convection is limited; at Ra =3000, 

the enhancement is significant, but as the Rayleigh number increases, the enhancement 

will get less significant. This is consistent with the experimental results reported by 

Salehi, Ohadi and Dessiatioun(1997), and Shu and Lai, (1995). At a low Rayleigh 

number, the buoyancy force is much smaller than the EHD force, so that the EHD effect 

is significant; for example, with the EHD effect, the mean heat transfer coefficient at Ra 

=3000, as shown in table 5.2, can be increased by as much as 36%. The comparison of 

mean Nusselt number for with and without EHD cases is shown in figure 5.6. This 

phenomenon of the electric field cannot effectively enhance the natural convection at 

higher Rayleigh number maybe because of the assumption that the cavity size in the 

spanwise direction (normal to the x-y plane) is infinite. Because of this assumption, the 

vortices are straightened in the spanwise direction and the flow fields are therefore
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stabilised artificially. In order to reveal the EHD effect on natural convection is 

rectangular cavities, fully three-dimensional calculations with the spanwise walls may 

be necessary; and this will be a further work.

 A   Without EHD effect
-  - O -  -  Witht EHD effect

1.8 or

1 .7

1.6

1 .4

3 0 0 0 3 5 0 0 4 0 0 0 4 5 0 0 5 0 0 0
Ra

Figure 5.6 Comparison of mean Nusselt number for with and without EHD effect

5.2.2 The EHD Effect at Uniform or Non-Uniform Electric Fields

As reported by some recent researches (Yang and Lai, 1997; Ngo and Lai, 2001;Tan 

and Lai, 2001), the non-uniform electric fields are more effective to enhance convective 

heat transfer. A non-uniform electric field can be produced by wire electrodes or needle
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electrodes. In this study, as the main purpose is to establish the computational model, 

the non-uniformity introduced by the injection of electric charge density from the 

electrodes is considered. By employing the same geometry as shown in figure 5.1, the 

effect of EHD on natural convection for different distributions of electric charge density 

is studied. The properties of the working fluid are:/i0 =1.002 x 10~3 kgm~ls~l ,

aQ=0.5682Wm-1K -l ,j3Q = 1 .9 6 x 1 0 K ~ \  Pr = 7.396, p 0 = m 0kgm ~ 3. Non- 

dimensional parameters employed in the calculations are chosen as: Re = 30, Gr = 900, 

Pr = 7.396, Ra = 6656.4, SE =0.852, =1.261, Pr£ = 3.6xl(T3, E c = 1.28xl0~9.

For a uniform electric field, the electric density is injected uniformly from the bottom 

wall with q = 1; for a non-uniform electric effect, sine wave distribution of q injected 

from the lower electrode is considered with the amplitude of the sine wave being 1. The 

calculated temperature field and velocity are and presented in figures 5.7.1 and 5.7.2 

respectively. It is seen that both the temperature and streamline distributions are much 

different when uniform and non-uniform electric density q are injected from the bottom 

electrode (positive potential). The application of an uniform electric field has some 

effect on the flow and thermal fields, but it does not change the topology of flow 

structure; the vortices in figure 5.7.2(b) are similar to that in figure 5.7.2(a) although 

their size and distribution vary. On the other hand, when a non-uniform electric field is 

applied, the structure of streamlines and the topology of temperature contours are 

changed; the merge of vortices results in stronger rotational motion, and therefore, 

provides possibility of heat transfer enhancement.
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The difference of the EHD effect with different electric density injections is also 

indicated in figures 5.7.3 and 5.7.4. The former shows the local Nusselt number 

distribution along the bottom wall; and the latter shows the distribution of electric 

density injected by the bottom electrode.

The comparisons of the mean Nusselt number for different electric density q injection 

are given in table 5.3. It is noted that with a non-uniform electric field, the mean heat 

transfer coefficient can be enhanced by more than 12%, but with a uniform field, only 

less than 0.5% of the enhancement can be achieved.

Table 5.3 The mean Nusselt number

Nuav Increase

without an electric field 2.129 -

uniform electric density 2.139 0.47%

non-uniform electric density 2.396 12.5%
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J.825-

(a) without EHD effect

.0.B75.

(b) with EHD effect at uniform electric density injection

(c) with EHD effect at non-uniform electric density injection 

Figure 5.7.1 The temperature distribution



Hongbo Zhang Numerical Study o f EHD Effect on Natural Convection heat ti'ansfer

(a) without EHD effect

(b) with EHD effect at uniform electric density injection

(c) with EHD effect at non-uniform electric density injection

Figure 5.7.2 The comparison of streamline
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without EHD effect
 with uniform q distribution along the bottom wall
  with non-uniform q distribution along the bottom wall

3.5

1.5

0.5,

x/L

Figure 5.7.3 The comparison of local Nu along the bottom wall

0.5

------------------------------------------------------------------------------- 1

(a) uniform electric density injection

-0 .6-

-0 .7-

- 0 .8 -
- 0 .9-

(b) non-uniform electric density injection

Figure 5.7.4 Distribution of the electric density q
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5.3 EHD effect on Natural Convection in Cylindrical Enclosures

The horizontal cylindrical enclosure studied here is shown in figure 5.8. Without losing 

generality, the length is three times the height. The top (cool) and bottom (hot) walls 

are differentially heated. The following dimensionless parameters in the calculations 

are chosen as: Pr = l ,  E c ~ lx lO -4, SE = 1, N E - 1, De = 1, R e - G r l/2 and P r^ = l.

On this basis, the EHD effect on natural convection for different Rayleigh numbers is 

calculated; the results for ita=3000, 4000, 6000 and 10000 are shown in figures 

5.9-5.12.

cool wall (negative electrode)

Adiabatic
Adiabatic

hot wall (positive electrode)

Figure 5.8 The geometry of the cylindrical enclosure (b=3a)
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-0.8125-

WithoutEHD effect

-0 .0 6 2 5 i

.4375-

-0.825-
>.8125- ■8125--0.9375-

With EHD effect

Figure 5.9a temperature distribution

With EHD effect

Without EHD effect

Figure 5.9b streamlines

Figure 5.9 Natural convection in a cylindrical enclosure at Ra=3Q00
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Without EHD effect

.4375-

-0.625-
-0.8125- -0.8125--0.9375-

WithEHD effect

Figure 5.10a temperature distribution

Without EHD effect

With EHD effect

Figure 5.10b streamlines

Figure 5.10 Natural convection in a cylindrical enclosure at ita=4000
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;0.062S:

-0.43

Without EHD effect

,0.81

With EHD effect

Figure 5.11a Isothermals

Without EHD effect

With EHD effect

Figure 5.11b Streamlines

Figure 5.11 Natural convection in a cylindrical enclosure at ito=6000
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Generally, significant differences are demonstrated for with and without EHD for each 

individual case. For example, for the results for ifo=4000, shown in figure 5.10, the 

isothermals along the hot wall become thicker when EHD is applied (figure 5.10a) 

while the streamlines show a secondary vortex has been induced by the electric field. 

This secondary vortex has destabilizing effect on the thermal boundary and results in a 

significant increase in heat transfer rate.

As the Rayleigh number increases to ito=6000, as showed in figure 5.11, the electrically 

induced secondary vortices are getting bigger in size and the heat transfer rate is 

increasing.

•0.0625= 
^ 025:

1.0625:

Without EHD effect

JZS,
rst2s;

With EHD effect

Figure 5.12a Isothermals at Ra=10000
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Without EHD effect

With EHD effect

Figure 5.12b Streamlines at Ra=10000 

Figure 5.12 Natural convection in a cylindrical enclosure at Ra=10000

Table.5.4 Mean Nusselt number along the hot wall

Ra 4000 6000 10000

Nuav without EHD effect. 1.245 1.474 1.740

Num, with EHD effect 1.730 2.087 2.527

Increase 38.96% 41.59% 45.23%

146



Hongbo Zhang Numerical Study o f EHD Effect on Natural Convection heat transfer

At Ra=10000, the isothermals near the bottom wall become further thick and distorted; 

the mean Nusselt number Nuav has is increased 45% by the EHD effect while that at

Ra=4000 the increase rate is 39%, as shown in Table 5.4; the main vortices shown in 

Figure 5.12b are squeezed onto the central axis and the secondary flow dominates the 

flow field.

It is noticeable that the calculations of the cylindrical enclosure in this section show 

different tendency of the EHD effect with those in two-dimensional rectangular 

enclosures calculated in section 5.2 even when only uniform electric fields are applied. 

In the cylindrical enclosure, the EHD enhancement is very efficient and becomes more 

effective when the Rayleigh number increases; for two-dimensional rectangular 

enclosure, it has been noticed that the flows are much more stable and the heat transfer 

enhancements by the EHD effect are not significant. As analysed in section 5.2, the 

infinite spanwise size assumption of two-dimensional rectangular may stabilise the 

flows because the vortices in the spanwise are straightened. For a cylindrical enclosure, 

the size of normal to the x-y plane is limited; and the vortices in the enclosure are in a 

form of ring vortex, which possibly produce a self-sustaining vortex motion with higher 

instability of flows. These are possible reasons for the different tendency of EHD effect 

in the two kinds of enclosures. In order to thoroughly analyse and reveal the mechanism 

of EHD effect, fully three-dimensional and time-accurate simulations are necessary.
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5.4 EHD Effect on Different Working Fluids

As the EHD heat transfer augmentation can largely reduce the size of heat exchanger, 

which uses the single-phase cooling oil with usually poor heat transfer characteristic in 

aircraft, and the EHD induced pump with no movable part in it, with all of these 

advantages, the EHD enhancement technique has become very attractive, but the lack of 

the understanding to some of the key problems makes EHD still unavailable. One of the 

key problems is to choose the right working fluid. There are only few papers published 

which concern the choice of a working fluid for EHD pumping and heat exchanger in 

aircraft. Crowley, Wright and Chato (1990) gave a fundamental analysis of the working 

fluid effect on the flow rate of an EHD pump. Paschkewitz and Pratt (2000) 

experimentally investigated the influence of fluid properties on EHD heat transfer 

enhancement. Because of the complexity of this phenomenon, so far no numerical 

investigation has been presented in publication.

Three working fluids having widely varying properties are numerically studied. The 

properties of the fluids are given in table 5.5. Polyalphaolefin (PAO) is a widely used 

aircraft avionics coolant used in aircraft heat exchangers that would benefit from EHD 

enhancement; ECO-C is biodegradable transformer oil; and Beta fluid is designed for 

the use as electrical cable oil, but has similar properties to those of aviation hydraulic 

oil. The fluid properties for PAO were obtained experimentally by Paschkewitz(1998). 

The properties for ECO-C and Beta were obtained from the manufacturer (DSI, Tyler,
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TX). The ion mobility for all the fluids were given by using .Walden’s rule, which 

relates fluid viscosity to ion mobility (Crowley, Wright and Chato, 1990).

Table.5.5 Working fluid properties

Working fluid PAO ECO-C Beta

Density at 20°C (kg/m3) 790 850 860

Viscosity at 40°C(kg/m s) 5.214xl0~3 2.975 xl0~3 9.288 xlO"2

Electric conductivity (S/m) 2.7xlO~10 4.76xl0~13 6.25 xlO"13

Thermal conductivity (W/m°C ) 0.147 0.134 0.125

Dielectric constant 2.1 2.2 2.3

Ion mobility (m2/Vs) 3.33 xlO"9 6.72 xlO"9 2.15xlO '10

Heat capacity (J/kg°C) 2050 547 670

Charge relaxation time 6.9 4090 3256

For convenience, the two-dimensional rectangular chamber shown in figure 5.1 is 

considered. In order to capture the flow and heat transfer details in the vicinity of the 

boundary, a specific mesh is generated shown in figure 5.13. A mesh size of 120x60 is 

chosen for the calculations. The non-dimensional parameters are shown in table 5.6. 

The results show in figures 5.14- 5.16. The comparison of mean Nusselt number is 

given in table 5.7.
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Figure 5.13 Computer generated mesh

Table 5.6 .Non-dimensional parameters

Fluid Re Pr Se PrE Ne Ec

Beta 30 830 0.4070 10.0465 0.8170E-2 0.1171E-4

ECO-C 30 12.1 0.4434 0.1042 0.8545E-2 0.1334E-6

PAO 30 72 0.1314 0.3964 0.3255E-2 0.1060E-7
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without EHD effect
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with uniform EHD effect
0 .1-

-0 .6-

-o.s-0 .5 -

with non-uniform EHD effect

Figure 5.14a Comparison of thermal contours of Fluid Beta at <£=5000v
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without EHD effect

with uniform EHD effect

with non-uniform EHD effect

Figure 5.14b Comparison of streamlines of Fluid Beta at </f=5000v
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Figures 5.14a, b and c give the comparison of the thermal contours, streamlines and 

local Nusselt number distribution of fluid Beta at with and without EHD effect, 

respectively. Those figures show that there are not much significant difference between 

the thermal and flow fields before and after the application of the electric fields; this 

situation also happens to the application of a non-uniform electric field. The results

5.14c Comparison of local Nusselt number along the hot wall o f Fluid Beta at

<£=5000v

------------  without EHD effect
------------ with uniform EHD effect
------------ W'rth non-uniform EHD effect
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prove that the flow and thermal fields are very stable and the EHD effect are not strong 

enough to disturb the flow field and enhance the heat transfer in this case.

-CL1- 7
0 .2-

,0.7

-0.8-0 .8, -0.4-

0.9-

without EHD effect

-0.1

-0.8-0.4-
0.9-

with unifrom EHD effect

-QJ
0.6

with non-unifrom EHD effect

Figure 5.15a Comparison of theimal contours of fluid ECO-C at cjy=5000v
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without EHD effect

with unrfrom EHD effect

o
with non-unifrom EHD effect

Figure 5.15b Comparison of streamlines of fluid ECO-C at (jy=5000v
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Figure 5.15c the comparison of local Nusselt number along the hot wall of fluid ECO-C

Figure 5.15a, b and c give comparisons of the thermal contours, streamlines and local 

Nusselt number distribution of fluid ECO-C with and without EHD effect, respectively. 

It can be seen that there is a big difference in the thermal contour distribution between 

no EHD effect and non-uniform EHD effect. The temperature gradient is steeper at the 

centre of the hot wall. In figure 5.15c, there are two bigger vortices apparent instead of 

four similar sized vortices. The local Nusselt number distribution shows that with the 

non-uniform electric field applied, the maximum of the local Nusselt number is much
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higher than the case with uniform electric field. However, when the electric field 

applied is uniform, the effect of EHD on thermal and flow fields are not very effective 

and the enhancement of heat transfer by the EHD effect becomes very limited.

-0.1 0.1
-0 .6-

o

l0.4-

without EHD effect

" 0.1

'off 076-

,0.0
-0.9-.0.9.

with unifrom EHD effect

0.6

•0.5,

:C _ J
with non-unifrom EHD effect

Figure 5.16a Comparison of thermal contours of fluid PAO at <£=5000v
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without EHD effect

with unifrom EHD effect

o
with non-unifrom EHD effect

Figure 5.16b Comparison of streamlines of fluid PAO at <£=5OOOv
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Figure 5.16c Comparison of local Nusselt Number along the hot wall at <jy=5OOOv

(fluid PAO)

Figures 5.16a, b and c give the comparison of the thermal contours, streamlines and 

local Nusselt number distribution of the fluid PAO with and without EHD effect, 

respectively. Similar to the fluid ECO-C, there is a big difference in the thermal contour 

distribution between without EHD effect and with non-uniform EHD effect. The 

temperature gradient is steeper at the centre of the hot wall. In Figure 5.16b, there are 

two bigger vortices apparent instead o f four similar sized vortices. The local Nusselt
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number distribution shows that with the non-uniform electric field applied, the 

maximum of the local Nusselt number is greatly increased. Different to the fluid ECO- 

C, the application of a uniform electric field also has some visual effect on the flow and 

thermal fields. Figure 5.16b shows that there are two vortices near the side walls 

become smaller compared with the no EHD case. In Figure 5.16c, it can be seen there is 

a shift of the local Nusselt number curve; the maximum of local Nusselt number is 

slightly higher than the case of no EHD effect.

Table 5.7 Comparison of the Nusselt Number of the three fluids at voltage of 5000v

Num Beta ECO-C Pao

Without EHD 4.1209 2.5204 3.9510

With non-uniform EHD 4.2567 4.7536 5.3690

The increase of Nu 3.295% 89.26% 35.89%

Table 5.8 Properties of the three fluids (2)

Beta ECO-C Pao

Viscosity at 40°C (mm2/s  ) 6.6 3.5 108

Electrical conductivity, S/m 2 .7x l0 ‘lu 4.76x10'° 6.25x10'°
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Table 5.7 gives the comparison of the mean Nusselt number of the three different 

working fluids at the voltage of 5 OOOv. The peak increase occurs for the Fluid ECO-C, 

with non-uniform electric field applied, there is an 89.26% increase of the mean Nusselt 

number.

Table 5.8 lists the properties which are quite different between the three fluids; it can be 

seen the fluid ECO-C has the lowest viscosity and Electrical conductivity compared to 

the other two fluids. The low viscosity is the dominant factor to distinguish the fluids. 

For the fluids Beta and ECO-C, which have similar magnitude of viscosity, the one with 

lower electric conductivity gives a higher heat transfer rate with non-electric field 

effect. Similarly, comparing fluid ECO-C with PAO, both have the same magnitude of 

electric conductivity, the one with lower viscosity gives a much higher heat transfer 

rate. These results are consistent in Paschkewitz and Pratt’s work (2000), which found 

that the fluid with lower viscosity electrical conductivity gives a greater heat transfer 

enhancement for a given electrical power input.

5.5 Summary

In this chapter, the EHD effect on natural convection in rectangular and cylindrical 

enclosures are numerically studied. The results include: a) comparison of natural 

convection in a rectangular enclosure between with and without an uniform electric
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field and at different Raleigh number; b) natural convection in a rectangular under 

uniform and non-uniform electric fields; c) natural convections in a cylindrical 

enclosure with and without applying an uniform electric field and at different Raleigh 

number; d) natural convection of three fluids in a rectangular enclosure with and 

without EHD effect and with non-uniform EHD effect. The main conclusions are:

(1). in a rectangular enclosure, the EHD enhancement is related to the Rayleigh number; 

an uniform electric field is more effective to enhance the heat transfer at lower 

Raleigh number case; as the Raleigh number increases, less enhancements are 

obtained;

(2). a non-uniform electric field is more effective than a uniform one to enhance the 

natural convection in a rectangular enclosure;

(3). in a cylindrical enclosure, a uniform electric field is more effective to enhance the 

heat transfer at higher Raleigh number; as the Raleigh number increases, more 

enhancements of heat transfer can be obtained;

(4). in a rectangular enclosure, the fluids with lower viscosity and lower electrical 

conductivity give greater heat transfer enhancements for a given electrical power 

input; between the viscosity and electrical conductivity, the viscosity is the 

dominant factor for obtaining good EHD effect. This conclusion agrees well with 

the experimental observations by the Paschkewitz and Pratt’s (2000).
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Chapter 6 

EHD effect on Heat and Flow around R134a Bubble during 

Nucleate Boiling

6.1. Introduction

Nucleate boiling is an effective mode of heat transfer and it is very important for 

industries because of relatively small temperature differences result in high heat transfer 

rates. Due to the benefits of high heat transfer rates and the demand of removal of large 

amounts of heat from extended small heated surfaces, which often occurs in the fast 

growing microchips industries, gas-liquid two-phase heat transfer enhancement has 

been particularly paid attention by researchers; and a lot of effective techniques have 

been developed. The EHD method is an active technique for enhancing gas-liquid two- 

phase heat transfer in nucleate boiling and has demonstrated a great promise.

In order to understand the mechanism of EHD enhancement of nucleate boiling, 

numerous theoretical and experimental analyses have been conducted in the last few 

decades to investigate the effects o f an electric field on bubble dynamics (Cheng and 

Chaddock, 1985; Feng and Beard, 1991; Karayiannis & Allen, 1991; Ogata and Yabe, 

1993a, b; Yan, Neve, Karayiannis, Collins and Allen, 1996; He and Chang, 1995; Cho, 

Kang, Kweon and Kim, 1996; Seyed-Yagoobi, Geppert and Geppert, 1996; Karayiannis
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and Xu, 1998a,b; Kweon and Kim, 2000; Zaghdoudi and Lallemand, 2001; Iacona, 

Herman and Chang, 2002; Madadnia and Koosha, 2003). Allen and Karayiannis (1995) 

gave a detailed review about the research on EHD enhancement on both single and two- 

phase flows. In general, the experiments have revealed that in nucleate boiling, an 

electric field can increase bubble frequency, reduce the departure size of bubbles, and 

increase the maximum value of heat flux. However, the mechanism of heat transfer 

enhancement by EHD, for example how the flow and temperature fields are altered by 

the electric force, keeps unveiled in the experimental studies. And it is obvious that 

using experimental methods such as nowadays particle image velocimetry (PIV) 

technology to study the details such as structure of vortices around a bubble surface is 

still expensive and with high cost. In this situation, numerical simulation becomes an 

efficient tool for analysing the heat and flow detail and their variation when an electric 

field is applied.

The establishment of the mathematical model is the first step of simulating the 

flow detail relevant to a gas-liquid interface of bubble under an electric field. Because 

of the nonlinearity of the problem, all the equations of the fields of electric current, heat 

and fluid flows must be coupled with each other to form a well-posed governing 

equation system; and the effects of nonlinear interaction between the fields, such as the 

electric body force and Joule heat, must be considered. Takata, Shirakawa, Tanaka, 

Kuroki and Ito (1996) tried to analyse the effects of electric body force on the interfacial 

flow, however, the temperature field was neglected in their study, and therefore, their 

mathematical model cannot be used to analyse the EHD enhancement of heat transfer.
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Cho, Kang, Kweon and Kim (1996) also presented a mathematical model for analysing 

the effects of a uniform electric field on a bubble attached to a wall, and again, the 

temperature field was not considered in their governing equations; moreover, in their 

method, the pressure difference for determining the bubble shape was not available 

because they did not present any information of how the flow field was calculated. The 

calculation model of electric field proposed by Karayiannis and Xu (1998a), as we 

mentioned it in the chapter 2, is a novel attempt to analyse the EHD effect on bubbles 

because several bubbles can be considered, and only the electric field need to be 

calculated. However, as we reviewed, the flow field is decoupled with the electric and 

temperature fields in their model; and the sharp jump of permittivity across the bubble 

surface may induce difficulty for the differential operations in numerical calculation.

The second challenging task of simulating a gas-liquid interfacial flow of a bubble 

under an electric field is to highlight the flow fields at the vicinity of the gas-liquid 

interface. There is a large family of bubble shape determining strategies, such as the 

volume of fluids (VOF) methods, the level-set methods and the front-tracking methods. 

A good review of these methods has been provided by Shyy, Udaykumar, Rao and 

Smith (1996). Generally speaking, the volume-tracking methods (VOF and level-set) 

are robust in tracking the bubble deformation but poor in highlighting the flow details at 

the vicinity of gas-liquid interface; the front-tracking methods, such as the body-fitted 

coordinates transformation method by Ryskin and Leal (1984), are promising in 

revealing the interfacial flow details but weak in predicting highly deformable bubbles.
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In this chapter, EHD effect on the heat and mass transfer around a bubble in 

nucleate boiling is numerically studied. A physically simplified model of a single R134a 

bubble during nucleate boiling will be presented. The mathematical model for coupled 

electric, flow and thermal fields established in chapter 3 is employed to study the EHD 

effect on a spherical bubble cap attached on the heated wall of a boiler, with an electric 

field applied. A numerically generated non-orthogonal curvilinear cylindrical body 

fitted mesh system is employed to map the bubble profile so that the flow details at the 

vicinity of the gas-liquid interface can be highlighted. Well-posed boundary conditions 

and a gas-liquid interfacial treatment are presented. Numerical simulation of the EHD 

enhancement of heat transfer around a bubble during nucleate boiling of R134a is 

carried out. The results are analysed.

6.2. Problem statement and assumptions

Early efforts to solve the flow field around a bubble were focused on a fixed shape 

such as spherical and spherical bubbles and this can be identified from work of 

Hadamard (1991), Rybczynski (1991), Levich (1947), Hamielec et a l (1967) and 

Brabston and Keller (1975). In order to study the mechanism of EHD enhancement of 

heat transfer, a gas bubble attached to the centre of a heated wall of an electrode is 

considered; the geometry is shown in figure 6.1. The electrodes are a pair of parallel 

round discs, with a voltage applied between them; the upper disk is connected to the
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ground while the lower wall is superheated during nucleate boiling. The gap size 

between the electrodes is L\ the diameter of the electrodes is denoted by W. In the 

figure, y  and r are the axis of symmetry and the radial coordinate of the cylindrical 

system, respectively.

Heated wall
Vapour

Liquid
Solid

Micro-1 Macro- 
region region

Fig 6. 1 A vapour bubble attached to a heated wall

During nucleate boiling, the heat transfer between the gaseous and liquid phases 

include two parts, i.e., heat transfer through the bubble cap and heat transfer through a 

microlayer underneath the bubble. The mechanism of nucleate boiling considering the 

vaporization of a microlayer was first suggested by Moore and Mesler (1961). They 

found the wall surface temperature occasionally dropped 20-30°F in about 2 

milliseconds and suggested the rapid heat removal was possibly caused by vaporization
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of the this water layer underneath a bubble. Later, Sharp (1964), Cooper and Lloyd 

(1966, 1969) and Jawurek(1969) experimentally demonstrated the vaporization of the 

microlayer at the base of bubbles during nucleate boiling. The existence of the 

microlayer is an undisputed fact, but its contribution to heat transfer in nucleate boiling 

is still not well defined. Depending on the boiling conditions, the estimate of its 

contribution to the energy required for bubble growth varies from less than 20 percent 

to nearly 100 percent (Voutsinos and Judd, 1975; Van Stralen et al, 1975; Judd and 

Hwang, 1976; Fath and Judd, 1978; Koffrnan and Plesset, 1983). hi this study, our 

purpose is to qualitatively reveal the EHD effect on the heat transfer enhancement, 

vaporization of the micro-layer is temporarily not considered so as to eliminate the 

difficulties of calculating both the micro- and macro regions. In the meanwhile, the 

change of physical properties with the temperature distribution is also neglected so as to 

focus our attention on studying the EHD effect on the flow and temperature fields in the 

vicinity of liquid-vapour interface. In the boiling of low super heat, the variation of 

temperature in the whole flow field is weak and the neglecting of this change of fluid 

properties should be acceptable. And the pressure and temperature inside the bubble are 

considered as uniform (at saturation point); the electric field inside the bubble is also 

regarded as uniform. A full model taking into account of all factors such as the 

microlayer and the non-uniformity of fluid properties may be considered in our further 

work.

Summarily, considering the extreme complexities, the following assumptions are made 

to address the problem:
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• The evaporation of the micro-layer is not considered in this study;

• The shape of the bubble is spherical or a truncated sphere;

• The contact angle 6C is constant;

• The surrounding flow is laminar and incompressible, the properties of the fluid 

are constants;

• The pressure and temperature inside the bubble are uniform and at their

saturation points; the electric field is also assumed to be uniform, i.e., the

distribution of electric potential cp is assumed to be linear, and the electric field

strength E  is uniform;

• Because of the large time scale for bubble growth (compared with bubble

departure), the heat and fluid flows are treated as steady problems.

• The electric field between the electrodes is uniform; an electric current in a

dielectric liquid can be modelled as a direct motion of electrically charged 

particles injected in to a neutral fluid.

The assumptions and simplifications above are possibly not good agreement with the 

physical reality, for example, the spherical bubble shape and the constant contact 

angle Qc. However, the purpose of making such assumptions is to reduce the physical 

complexity so as to highlight and analyse the effects of EHD on the heat and fluid flows 

around the gas-liquid interface of the bubble, and to further analyse the mechanism of 

heat transfer enhancement. This purpose is exactly the basic aim of the current research.
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There is a section of checking the effects of the constant contact angle in chapter 8, 

where the acceptability of this assumption will be shown.

Table 6.1 Physical properties of R134a at 20°C

p  (density) 1225.3 kg m'3

v (viscosity) 2.107xl0'5 kg mf1 s"1

k (thermal Conductivity) 8.33xl0’2Wm1K-1

a ST (surface tension coefficient) 8.76xl0’3 Nm'1

cp (specific heat transfer) 1.405 kJ kg1 K'1

s  (permittivitty) 8.416xl0'u Fm"1

The dielectric liquid of R134a is selected as the working fluid for its environmentally 

friendly character. The physical properties of R134a are shown in table 6.1.

According to the correlation observed by Fritz (1935):

Rj = 0.0103 x 0c x (°^ŝ /p g ]j 5 (6-1)

where R<i is the bubble departure radius, a ST is the coefficient of surface tension, Ocis 

the contact angle, p and g are the density of liquid and the gravity respectively. In this 

chapter, 0C=15° is selected and the departure diameter Rd =1.57xl0"4m. In the

configuration shown in figure 6.1, the gas size of electrodes L = lx l0 '3 m; the diameter |
I

of the electrodes is W= 3x1 O'3 m. The ratio of the electrodes gap and the diameter of the
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electrode is L/W=0.333 in the present study; therefore, the electric field can be assumed 

uniform becauseL/W  < 0.375 (Takuma, Kawamoto and Sunaga, 1985). The 

characteristic parameter /0 for normalisation in equation (3.6.1) is the bubble diameter 

at departure point, /0 = 2Rd = 3.14 x 10"4 m.

The electric mobility is obtained by Walden’s rule. The relation is given by 

Adameczewski (1969) as:

,  2xKTn
b0 = --------------  , (6.2)

Ho

where jUo *s the reference dynamics viscosity, k g -s /m 2.

6.3. Mesh, Boundary Condition and Treatments

6.3.1 Non-orthogonal body-fitted mesh

In order to highlight the flow details in the vicinity of the gas-liquid interface of the 

bubble, a non-orthogonal body-fitted mesh system is employed to map the bubble 

profile. A typical mesh for the current numerical study is shown in figure 6-2a. This 

mesh is generated by the two-step method presented in chapter 4. The mesh size for the 

present calculation is 200x200, which was shown to be fine enough for eliminate the 

grid-independency of the results in our preliminary calculation.
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Figure 6.2a Body-fitted mesh for calculation

6.3.2 Boundary conditions

Considering the mentioned possible difficulty for differential operations in 

numerical calculation using Karayiannis and Xu’s (1998a) model in which there is a 

sharp jump of permittivity across the bubble, we use a method of defining the bubble 

profile as a part of the computational domain; this is similar to the treatments of bubble 

surface by Ogata and Yabe (1991) and (1993a) and Yan et al. (1996). However, we will 

not employ the zero-electric-strength assumption in our model. Rather than that, we 

only assume the uniform distribution of fields inside the bubble. Based on this 

assumption, the mathematical descriptions for the boundary condition at the bubble 

surface become the zero second derivatives for the electric field (linear or uniform 

distributions) and saturation points for pressure and temperature.

Figure 6.2b illustrates the boundary conditions. Based on the mentioned assumptions in 

above, the following boundary conditions are imposed:
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r(x)

Figure 6.2b Illustration of mesh and boundaries

At the bubble surface ( 7 7  = rj0):

d n dn d n
(6.3)

(6.4)

where n and t are the unit normal and tangential vectors of the bubble surface; t ? 

is the tangential stress and V- is the normal velocity.

• At bottom wall (£  = ^ ):

« = 0, v = 0, | ^  = 0, T = Tm +AT, <p = 1, q = 1 ; (6.5)
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At axis of symmetry ( £ = £0):

dv dp dT d(p dqu — 0, —  = 0 , —  = 0 , —  = 0 , —-  = 0 , —  -  0 ; (6 .6 )
dr dr dr dr dr ’

At top wall ( 7 7  = 77^ ) :

0 t  = T0 = 0 ^ S . -
dy2 ’ " , ,P  ’ d2y

« = 0, v = 0, - ^ = 0 ,  r  = Tsa,,<p = o , ^ -  = o (6.7)

At right boundary ( 7 7  = 7/niax_2):

~ i  = 0, f  = | £  = 0, ^  = 0, | ^  = 0, J  = 0. (6.8)
dr dr d r  d r  d r  d r

6.3.3 Interfacial treatment

The slip and no penetration conditions at the bubble surface, namely, = 0 and VR = 0 

in equation (6.4) need a special treatment because they cannot explicitly decide the 

boundary values of Cartesian velocity components u and v . Therefore, the tangential 

stress in the £,- r |  coordinates system is expanded as,

Tl = + ~ ’ (6'9) 

where a ,  (3, y and J  are geometrical metrics of the 5,- r j  coordinates system and
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calculated according to equations (3.6.15), (3.6.16), (3.6.17) and (3.6.18) respectively. 

Then r t = 0 becomes:

. du _ dv _
A —  + B —  = C ; (6.10) 

dr] drj

Combining equation (6.10) with PC = 0,

u -  V‘X^/y^;  (6.11)

Denote the grid point at the bubble surface and the first nearest node with subscripts “1” 

and “2” respectively, equations (6.10) and (6.11) are discretised as:

7  2 - * 7i Vi - V i

(6.12)

=vi{xf/yA

In order to avoid the “divided by zero” situation, the boundary velocity is calculated as 

follows:
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u'= ~ W s hl)
. (6.13)

2J ^ ,  Ul =v1-(xf / y f \  (if l ^ l ^ l )

6.3.4 Temperature Singularity at Triple Point

It is noticeable that the assumption of neglecting the micro-layer induces a singularity 

for the temperature at the triple point. This can be seen that equation (6.3) gives T  = TSat

to the triple point, however, equation (6.5) give another value, T  = Tsat + A T . In order to 

remove this singularity, a treatment is carried out on the grids near the triple point.

Figure 6.2c Grid treatments at triple point

As shown in figure 6.2c, the grid node A (coincide with the triple point) was replaced by

A u 2 +  B v 2 c(n
+
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points Ai and A 2 , respectively, in two directions of the grid lines. Point A\ and A 2 are at a 

distance of r to its original position A. The smaller distance r is closer to the original 

position. For the convenience of generating the mesh, r is set to be 

r  = 0.1 x min(|^LB|, \AD\) in this thesis. Obviously, the temperature values at points A\

and A 2 are T  = TSat and T  = Tsat + A T , respectively. Therefore, the treatment on the 

mesh has removed the temperature singularity; but it also has side effects on the 

accuracy of numerical result because the Jacobian value for the control volume ABCD 

has been changed. However, these side effects are confined in the first control volume 

A\BCDAi and therefore the general accuracy of the numerical results should be 

accepted.

6.4. Results and analysis

The electric potentials applied are Ov, 2000v, 4000v, 5000v, 8000v and lOOOOv, 

respectively. The dimensionless numbers are chosen as follows: Gr -  6.625, 

Re = 2.574, the rest of dimensionless numbers are shown in table 6.2. Convergence 

paths in terms of the mass residuals for the calculation are shown in figure 6.3, where 

E2 and E3 have been defined in equations (4.5.3) and (4.5.4). The figure shows that

the convergence o f the calculation is smooth. Based on this, the numerical results are 

shown in figures 6.4 ~ 6.9.
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E2
E3

coLU
csT1U

10c
Iterations

Fig 6.3 convergence paths

Table 6.2 dimensionless numbers

Voltages 2000v 4000v 5000v 8000v lOOOOv

SE 3.9980 7.9960 9.9950 15.9920 19.9899

Ne 0.003713 0.001857 0.001485 0.0009285 0.0008426

PrE 0.01720 0.008600 0.006880 0.004300 0.003840

Figure 6.4 shows the change in the streamlines of the flow field has the electric 

potential varies from OV, 2000V, 4000V, 5000V, 8000V to 10000V. Although the 

streamline topology does not change with the increase in voltage, the core of the ring 

vortex around the bubble moves in the direction of the heated wall and the diameter of 

the vortex becomes smaller and smaller. This changing of the ring vortex induces a
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thinner shear-flow layer at the vicinity of the bubble surface and therefore, a steeper 

temperature gradient normal to the gas-liquid interface can be expected when the 

voltage is increased. This analyse is confirmed in figure 6.5, where the contours of 

temperature are presented. As shown in figure 6.5, again, a change of the contour line 

topology can not be identified; however, it is very clear that the contours are getting 

denser at the vicinity of the bubble surface when the voltage is increased step by step. 

As a result, the averaged value (along the bubble surface) defined as following:

increases with the voltage; these parameters are shown in figures 6.6 and 6.7, 

respectively. As mentioned above, the grid point at the triple point has been treated so 

as to remove the temperature singularity; the treatment has side effects on the numerical 

accuracy in the first control volume. In order to carry out a sensible comparison 

between calculations of with different voltages, the integration bound in equation (6.14) 

takes the value of the second grid point, i.e., = <̂B (see point B  in figure 6.3c).

Figures 6.8 and 6.9 are the distribution of electric potential and the charge density in the 

fields. Because the general gradient of dimensionless variable (p m y  direction is not 

changed at different voltage, the difference of (p contours in figure 6.8 is not apparent; 

however, the contours o f q at 2000V and 10000V (figure 6.9) show the higher voltage 

can obtain a higher level of q at the negative electrode; this means q has the

Nu (6.14)
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characteristics of a transport variable. According to equation (3.3.7), the stronger 

transport of q results in a stronger electric body force which adds fuel to the motion of 

ring vortex and therefore enhances the heat transfer at the gas-liquid interface.

(a)

(b)

( c )
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(d)

(f)

Figure 6.4 Streamlines around the bubble (a) 9  = 0 (b) 9  =2000v; (c) (p =4000v; (d) 

9=5000v; (e) 9=8000v; (f) 9 = 1 0 0 0 0 v;
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■0 .2-
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.0.8-
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(d)

(e)

(f)

Figure 6 . 5 Contours o f temperature around the bubble (a) cp = 0 (b) 9  =2000v; (c) 

9 = 4000v; (d) 9=5000v; (e) 9=8000v; (f) 9 = 1 0 0 0 0 v;
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Figure 6.7 Local Nusselt number around the bubble
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Figure 6.8 Distribution of electric potential (a) 2000V (b) 10000V
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Figure 6.9 Distribution of charge density (a) 2000V (b) 10000V

6.5 Summary

This chapter used the mathematical model for the coupled electric, flow and thermal 

fields established in chapter 3 to analyse the EHD enhanced heat and fluid flow around 

a single bubble attached to a horizontal superheated wall of nucleate boiling. In order to
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highlight the interfacial heat transfer phenomenon and its enhancement at the vicinity of 

a gas-liquid interface, assumptions such as spherical shape, constant contact angle, and 

negligible micro-layer are employed. Interfacial treatments are proposed and applied to 

calculate the velocity boundary value at the gas-liquid interface.

Numerical study of heat and flows around a bubble during nucleate boiling of R134a 

with different electric voltage applied between the electrodes is carried out. The 

calculation reveals that applying an electric field to nucleate boiling can enhance the 

motion of the vortex around the bubble by the electric body force; and reduce the 

thickness of shear flow layer. As a result, the heat transfer at the gas-liquid interface is 

enhanced.
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Chapter 7 

EHD Effect on Refrigerants with Different Relaxation Time

7.1 Introduction

In nucleate boiling, the charge relaxation time of the working fluid also plays an 

important role during bubble growth and departure in an electric field. When fluid is 

placed in an electric field, electric charge is generated. It takes a certain time for the 

influence of the electric field to take place. This time is called the relaxation time. The 

studies by Ogata and Yabi (1991, 1992, 1993a, 1993b) found that if  the charge 

relaxation time is far greater than the bubble detachment period, the bubbles are not 

affected by the electric field. In this chapter the EHD effect on refrigerants with 

different charge relaxation time will be studied.

7.2 Relaxation Time

Consider a homogeneous fluid with electric conductivity <j and permittivity s. Applying

a current density /, the density of free charges is q and the electric displacementD , 

gives
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D - s E (7.2.1)

In equation (3.3.4), if  only the dominant term of J  is considered, the equation is often 

reduced to

J  = aE , (7.2.2)

Combine equations (6.19) and (3.3.3), then: 

V • (<jE) = V
r <jD^ dq_

dt
(7.2.3)

If  cr and s  are constants, 

s  dqV-Z> = —
cr dt

(7.2.4)

Now using Maxwell’s first equation,

s  dqdivD = q = V • D = -
cr dt

(7.2.5)

this gives a differential equation for q in which the variables can be separated

dq _ _ g  

q £
dt (7.2.6)

whose general solution is
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Inq = —— t + C ; (7.2.7)
£

where C is a constant of integration. Re-arranging equation (7.2.7),

q  = exp(~—* + C) , (7.2.8)
s

and choosing q = q0 at t=0, and then gives

q ~ q <3 exp(-—0  = qQ exp(™—) . (7.2.9)
£  T

Equation (7.2.9) shows that there is a decay of charge density q  which is exponential 

with time. The time constant

r  = £ /c r, (7.2.10)

is called the relaxation time, t  is a property of the media. For example, copper has the 

conductivity cr = 5.8x 1 0 1 sm ~ l , £  «1x8.85 x 10“12, so the relaxation time for copper is 

t  = 1.53 x 10”19 s ; quartz has conductivity cr »1 x 10'17 sm ~ l and £ « 4 x 8.85 x 10~12, its 

relaxation time r  = 3 .5x l065.

The charge relaxation time represents the time needed by a free charge to relax from the 

fluid to the liquid interface. By comparing the relaxation time to the characteristic 

dynamical time tc, which can be the period of the imposed electric field, the period of
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the mechanical oscillations of a liquid-vapour interface, or the detachment period of 

bubbles, we can determine if  the liquid behaves like an insulating fluid or not. Then if 

tc « t ,  the fluid is highly insulating and the electric field is distributed within both

liquid and vapour, without free electric charges. On the contrary, if  tc »  z , the electric

field is totally excluded from the liquid, which behaves as a conducting fluid, and the 

entire voltage drop occurs at the liquid-vapour interface where electrical free charges 

appear.

The charge relaxation time is a critical but often neglected parameter in the formulation 

of models for EHD coupled heat transfer. It often determines the predominated terms in 

the electric body force (Jones, 1978). If the electric field is alternating at frequency of / ,  

then for /  » \jz  = a / s , no free electric charge can build up at interfaces or in the 

bulk liquid, then the Columb force can be neglected. The studies by Ogata and Yabi 

(1991, 1992, 1993a, 1993b) found out that if the charge relaxation time is far greater 

than the bubble detachment period, the bubbles are not affected by the electric field.

According to equation (7.2.10), the differences in the relaxation time of the working 

fluids correspond to differences of conductivity and permittivity. This chapter compares 

the EHD effect on the working fluids with different relaxation time.

7.3 Numerical Results
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In order to study the charge relaxation effect, EHD effect on heat and fluid flows around 

single bubbles of R134a, R123, R113 and R12 are calculated. The simplified bubble 

model established in chapter 6 is employed again so as to highlight the EHD effect on 

the heat and flow. The simulation is carried out at voltages of 2000V, 4000V, 5000V, 

8000V and 10000V respectively, the contact angle is 15° and superheat is 4K. The mesh 

size is 200x200 .The electrical properties of those fluids are shown in table 7.1 

provided by (ASHRAE handbook, 1997). It is noticeable that the charge relaxation 

times of R134a and R123 have the same magnitude. Table 7.2 gives the heat and flow 

related dimensionless parameters for the calculations. The electric field related 

parameters are dependent to the voltage applied; table 7.3 gives the electric field related 

parameters at 5000V. The local Nusselt Number at voltage of 5000V and the increase of 

average Nusselt Number of R134a, R123, R113 and R12 are shown in figures 7.1 and

7.2 respectively. The comparisons of flow and thermal fields between with and without 

electric fields are shown at voltage of 5000V in figure 7.3 and 7.4, respectively.

Table 7.1 Electrical properties of refrigerants

Refrigerants Relaxation time(s) Permittivity fx lO 12 (kg m s'2 V'2)

R134a 3.56 xlO-3 84.1635

R123 1.76 xlO"3 39.825

R12 0.104 18.054

R113 2.12 19.2045
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Table 7.2 Dimensionless parameters for flow and thermal fields

Refrigerants Re Gr Pr

R134a 2.574 6.625 3.55

R123 4.096 16.780 5.769

R113 3.298 10.874 8.6

R12 8.426 71.003 3.5

Table 7.3 Dimensionless parameters for electric field at cp = 5000F

Refrigerant SE Pr£ n e Ec

R134a 9.995 1.488xl0~3 6.881xl0~3 8.388 xlO-7

R123 5.358 1.122xl0~3 4.732 x l0 “5 1.558 xlO"5

R113 5.158 5.432x1 O'3 9.284xl0~3 5.550 xlO-5

R12 1.216 1.197xl0“2 9.960 xl0~5 8.005 xlO’7
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Figure 7.1 Local Nusselt number along the bubble surface at cp- 5000V

Figure 7.1 shows the Nusselt Number along the bubble surface. The Nu values of R134a 

and R123 are very closed to each other and higher than those of R12 and R113. Figure

7.2 shows clearly that with the increase of an applied electric field, the average value of 

Nu increases. R134a has the highest increase, then R123, R113. R12 has the lowest 

increase as compared to others. The difference is getting larger with the increase of the 

voltage applied.
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Figure 7.2 Increase of average Nusselt Number at different voltages

Figures 7.3 compares the distributions of thermal contours around the bubble of R134a, 

R123, R113 and R12 at voltages of 0V and 5000V; figure 7.4 compares the results of 

streamlines. For R134a, the thermal contours are noticeably different when the two 

different voltages are applied. R123 has a same situation with the R134a. For R113 and 

R12, the change of the electric voltage does not result in visual difference in the thermal 

contours. The same differences for the four fluids are also demonstrated by the 

streamlines shown in figure 7.4. These different responses to an electric field of the 

fluids can also be explained that the shorter relaxation time of the fluid is, the easier to 

enhance the heat transfer by applying an electric field.
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R113 with EHD

R113 without EHD

(c) The comparison of thermal contours of R113

— 0.9,,

R12 with EHD

R12 without EHD 

(d) The comparison of thermal contours of R12 

Figure 7.3 The Comparisons of thermal contours (a) R134a (b) R123 (c) R113 (d) R12
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R134a with EHD

R134a without EHD

(a) The comparison of streamlines of R134a

R123 with EHD

R123 without EHD

(b) The comparison of streamlines of R123
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R113 with EHD

R113 without EHD

(c) The comparison of streamlines of R113

R12 with EHD

R12 without EHD

(d) The comparison of streamlines of R12 

Figure 7.14 the comparisons of streamlines (a) R134a (b) R123 (c) R113 (d) R12
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1A Summary

The effects of charge relaxation time on heat transfer enhancement by means of an 

electric field for refrigerants R134a, R123,R113 and R12 are numerically studied. The 

studies found that the smaller the charge relaxation time the refrigerant has, the easier to 

enhance the heat transfer by applying an electric field.
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Chapter 8 

EHD effect on Bubble Growth

8.1 Introduction

In nucleate boiling, the heat transfer rate could be attributed to vapour-liquid exchange 

during the growth and movement of bubbles (Forster and Grief, 1959 (tong’s book)), 

and to the vaporization of (Moore and Mesler, 1961) or transient conduction to the 

microlayer and liquid-vapour interface (Han and Griffith, 1965b) before the bubble’s 

departure.

Early models for the growth of a nucleate boiling bubble (Hsu and Graham, 1961; Van 

Stralen, 1967; Mikic etc, 1970) neglected the microlayer and modelled the bubble cap 

heat transfer by assuming a thin, typically uniform, thermal boundary layer along the 

bubble surface. The model of Van Stralen et al (1975) included several fitting 

parameters such as the microlayer thickness and the size of the area influenced by a 

growing bubble; their results were only applicable to the conditions where the 

parameters were specified.

Later than those, calculations o f growing bubbles have been carried out by Lee and 

Nydahl (1989), Mei et al (1995), Hammer and Stephan (1996) and Fujita and Bai
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(1998). In these studies, the model of the bubble was improved by reducing the 

assumptions. However, because of the extreme complexity, the assumptions such as the 

truncated sphere in shape and the constant contact angle were still commonly used. For 

example, in Fujita and Bai’s (2000) calculations, they made no assumption about the 

bubble shape. The bubble shape was decided completely according to the balance of 

forces and calculated by solving the full Navier-Stokes equations; however, the 

assumption of constant contact angle are still employed in their calculation to reduce the 

complexity.

In this chapter, the EHD effect on different stages of a growing bubble attached to a 

horizontal wall are studied. Due to the complexity of the problem concerned in this 

work, only the steady heat and fluid flows around a truncated spherical bubble are 

considered. The assumption of constant contact angle is checked. Based on these, the 

coupled electric, flow and thermal fields around a growing R113 bubble at its 50%, 

60%, 75% and 100% of departure radii are calculated.

8.2 Assumption of Constant Angle

The EHD effect on the heat and flow fields around a bubble at different angles is carried 

out. The refrigerant is R12, and the voltage applied is (p -  5000F; the relevant fluid
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properties and dimensionless parameters have been presented in tables 7.1~ 7.3 in the 

last chapter. The results are shown in figures 8.1- 8.3 and table 8.1.

(a) 6C =15°

(b) 0e = 30°

(c) 0C = 60°

Figure 8.1 Thermal contours at different contact angles
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The comparison of the thermal isothermals in figure 8.1 for three different contact 

angles and the comparison of the streamlines in figure 8.2 show that for a certain fluid, 

and at a certain voltage value, the variation of the contact angle has little effect on the 

thermal and flow fields, such as the ring vortex size. These effects can also be identified 

from the averaged Nusselt number shown in table 8.1 and figure 8.3. In table 8.1, the 

Nuav values for the three angles are obviously different no matter whether an electric

field is applied. However, the percentages of the increases o f Nuav for three contact

angles are on the same level and very close. This fact proves that it is proper to use the 

constant contact angle assumption to analyse the effects of EHD on heat transfer in 

quality.

Table 8.1 Nuav increase at different contact angles

Contact angle Nuav (without EHD) Nuav (with EHD) Increase

15° 12.1881 12.4805 2.40%

30° 8.2920 8.5161 2.70%

oOCO 6.3331 6.4951 2.56%
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(a) ec =15°

(b) 0e =30°

(c) @c ~  60°

Figure 8.2 Streamlines at different contact angles
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4.00%

3.50%

3.00%

2.50%

2 .00%

1.50%

1.00%
6015 30

Contact angle

Figure 8.3 Nuav increase at different contact angles 

8.3 EHD effect on a Growing Bubble

The calculations for R113 at the contact angle of 15°, superheat of 4K and the bubble 

radii at 0.5Rd , 0 .6i^, Q.75Rd and 1 x R d are carried out. The electric voltage is 

(p = 5000F . The dimensionless parameters for calculation have already been presented 

in the last chapter in tables 7.2 ~ 7.3. The numerical results are shown in figures 8.4- 

8.9.

Figures 8.4 and 8.5 show the temperature and flow fields around the bubble at different 

stages of the bubble growth. With the increase o f the bubble radius, the vortex around 

the bubble also increases in size. It is interesting that a secondary ring vortex appear at
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T

(a)

T
0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

(b)

T

(d)

Figure 8.4 Temperature distributions at different bubble growing stages 

(a) R = 0.5Rd , (b) R = 0.6Rd , (c) R = 0.15Rd , (d) R = Rd
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(a)

(b)

(c)

Figure 8.5 Streamlines at different bubble growing stages 

(a) R = 0.5Rd , (b) R = 0.6Rd , (c) R = 0 .75 i^ , (d) R = Rd
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Figure 8.6 Contours of the dimensionless electric potential 

(a) R = 0.5Rd , (b) R = 0.6Rd, (c) R = 0.75Rd ,(&) R = Rd
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Figure 8.7 Charge distributions

(a) R = 0.5Rd , (b) R = 0.6Rd, (c) R = 0.75^rf, (d) R = Rd
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Figure 8.8 Local Nusselt Number at the bubble surface
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Figure 8.9 Increase o f Nuav at different bubble growth stages at (p — 5000F
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about R = 0.15Rd above the bubble near the negative electrode. As shown in figure 8.5, 

at R = Rd , this vortex has merged with the main ring vortex and formed a large 

circulation in the whole space in the vertical direction above the bubble. Corresponding 

to the topological change of the streamlines, the isothermals surrounding the bubble also 

change; the isothermal layers around the bubble become thinner with the increase of 

bubble radius. Because of this, the local Nusselt number along the bubble profile also 

increases with the bubble radius, as shown in figure 8.8. The increases of the averaged 

Nusselt number are shown in figure 8.9; the later stages have obtained more heat 

transfer enhancements than the earlier stages.

The results of electric fields are shown in figures 8.6 and 8.6, for the dimensionless 

potential and density of free change respectively. The distribution of dimensionless 

electric potential does not change significantly with the increase of bubble radius; 

however, the charge density shows property of transport variables, the value of q at the 

negative electrode becomes large with the increase of bubble radius, which produces 

stronger vortex motion observed in figure 8.5. Because the circulation of vortex 

transport fluids with lower q value to the top of the bubble, a trough of q is formed and 

can be observed on the top of the bubble, as shown in figure 8.6.
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8.4 Summary

In this chapter, the EHD effect on the flow, temperature and electric fields at different 

bubble growth stages are numerically studied. In order to highlight the EHD effect on 

the different stages of the bubble growth, the heat and fluid flows are presumed to be 

steady while the bubble is supposed to be a truncated sphere and has constant contact 

angle. The constant-contact-angle assumption is checked by comparing between 

calculations with 6C = 15°, 30° and 60°. Based on the comparison, the coupled electric, 

flow and thermal fields around a growing bubble at R - 0 .5 R d , 0.6Rd , 0.15Rd and 

are numerically studied. The main conclusions are as follows:

(a). The constant-contact-angle assumption has influence on the results of the calculated 

heat transfer rate, but the heat transfer enhancements by EHD at different contact angle 

are on the same level and very close; so the assumption is valid for analysing the effects 

of EHD in quality;

(b). During the growth of the bubble, a second ring vortex, counter rotating with main 

vortex, forms near the negative electrode above the bubble. This vortex merges with the 

main one and forms a strong rotational motion which induces the change of isothermal 

and results in stronger heat transfer in the lateral stages of the bubble growth;

(c). The dimensionless potential field does not significantly change with the bubble 

radius;

(d). The density of free charges is a transport variable; because of the transport of vortex 

motion, a trough forms above the bubble with the increase of bubble radius.
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Chapter 9 

Conclusions and Recommendations for Further Work

The aim of this research is to understand the Electrohydrodynamic effects on single and 

two-phase heat transfer. To achieve this aim, a series of investigations have been 

carried out. They are: (1) the establishment of mathematical model for fully coupled 

electric, flow and thermal fields; (2) numerically study the EHD effect on heat transfer 

enhancement in natural convection in rectangular and cylindrical enclosures; (3) study 

the effects of fluid properties on natural convection enhanced by EHD; (4) EHD effect 

on the heat and flow fields around a single bubble during nucleate boiling; (5) study of 

the coupled electric, flow and thermal fields at different growing stages of the bubble.

To carry out such investigations, it is important to observe and understand the natural 

phenomenon by reviewing the works have been done by others on EHD effect on single 

and two-phase flows. On the basis of the analysis of these works, a mathematical model 

to describe the phenomenon of fully coupled electric, flow and thermal fields is 

established in chapter 3. The numerical methods and strategies for this mathematical 

model are introduced in chapter 4. These numerical methods are developed into 

FORTRAN codes, which are further widely validated by a series of benchmark testing 

cases such as the flow in the Roach Channel, natural convection in square cavities, 

natural convection in squeezed cavities and laminar flows through a circular pipe with
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constriction. Based on these validations, the codes are employed to study the EHD 

effect on single phase heat transfer chapter 5, where the EHD effect on natural 

convection in rectangular and cylindrical enclosures are numerically investigated, and 

the EHD effect on fluids with different electrical properties are numerically simulated. 

Further to the simulations of single phase flows, an analytical model for the coupled 

electric, flow and thermal fields around a single bubble attached to a horizontal wall is 

established in chapter 6 and the results of numerical simulations are presented in 

chapters 6, 7 and 8, for refrigerants with different charge relaxation time and growing 

bubbles at different stages respectively. The conclusions of the research are summarised 

following the basic steps of the work.

9.1 Establishment of Physical and Mathematical models

9.1.1 Physical Aspects of the Coupled Electric, Flow and Thermal fields

The effects of applying an electric field on a flow include the electric body force and the 

Joule heat. In order to establish the mathematical model, a current in a dielectric field is 

physically modelled as a directed motion of electrically charged particles injected into a 

neutral fluid in this thesis. Based on this modelling, the electric field can be coupled 

with the flow and thermal fields in the form of the electric body force and Joule heat, 

while the flow and thermal fields play their effects on the electric field through the 

transport of the charged particles.
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9.1.2 Mathematical Descriptions of the Coupled Electric, Flow and Thermal fields

The physical phenomenon of the coupled electric, flow and thermal fields are 

mathematically descried by combining the Maxwell’s relation and the Gauss’ law with 

the Navier-Stokes equations. Controlling equations of the free electric charges, electric 

potential are developed and coupled with those equations for heat and flows, by adding 

the electric body force into the momentum equation and adding the Joule heat to the 

energy equation. With these modelling, a mathematical model for fully coupled electric, 

flow and thermal fields are established.

The governing equations are non-dimensionlised and written in a generalized form and 

further transformed from the Cartesian coordinates system (x, y) to a general non- 

orthogonal body fitted coordinates (BFC) system (£ ,rj). The advantage of the BFC 

form is that complex geometries can be fitted by body-conforming grids, whereby 

boundary conditions can be applied easily and the grid can be distributed preferentially 

in desired regions so as to obtain better resolution.

9.1.3 Analytical Models for Heat and Flows in the Vicinity of the Gas-Liquid 

Interface around a Single Bubble

In order to analyse the EHD effect on the heat transfer and fluid flow around the gas- 

liquid interface of a single bubble attached to a heated wall of nucleate boiling, a
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simplified bubble model is proposed for consideration in order to highlight the 

interfacial heat transfer phenomenon and its enhancement in the vicinity of a gas-liquid 

interface, assumptions such as spherical shape bubble, constant contact angle, and 

negligible micro-layer are employed. Interfacial treatments are proposed and applied to 

calculate the velocity boundary value at the gas-liquid interface.

9.2 Numerical Methods and CFD codes

9.2.1 Finite Volume Method (FVM) with QUICK schemes

In this work, a calculating procedure for solving the coupled Navier-Stokes, energy and 

electric field equations based on a non-orthogonal BFC is proposed. The procedure 

generates the computational grids using a two-step strategy, namely, generating the 

initial grids by algebraic method and then smooths the mesh by solving the differential 

equations. Finite volume method is employed to discretise the governing equations. In 

order to obtain high numerical accuracy, the QUICK scheme is employed for 

discretisation. The coupling of pressure-velocity is carried out by a pressure correction 

procedure on non-staggered grids, where the defects of Rhie and Chow’s momentum 

equation are analysed and eliminated. The algebraic equations are solved by the 

SIMPLE method.

9.2.2 Development of FORTRAN Codes
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A FORTRAN code based on the numerical methods and strategies has been developed. 

The code generates the non-orthogonal BFC grids and solves the coupled controlling 

equations. Validations show that the code is an effective, reliable and robust tool for 

numerically simulating heat and fluid flows.

9.3 Numerical Results

Using these methods and the codes developed in this study, investigations on EHD 

effect on single and two phase flows have been carried out. The contributions of this 

thesis are:

(1) A detailed analysis of EHD effect on natural convections in rectangular and 

cylindrical enclosures;

(2) Studies of heat transfer enhancement using a non-uniform electric field and 

using different working fluids;

(3) Understanding of the EHD enhancement of heat and fluid flows around single 

bubbles of R134a and other fluids with different charge relaxation time during 

nucleate boiling;

(4) Investigation of EHD effect on different stages of bubble growth.

9.3.1 EHD effect on Natural Convection
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The EHD effect on natural convection in rectangular and cylindrical enclosures is 

numerically studied. The results include: a) comparison of natural convection in a 

rectangular enclosure between with and without an uniform electric field and at 

different Raleigh number; b) natural convection in a rectangular under uniform and non- 

uniform electric fields; c) natural convections in a cylindrical enclosure with and 

without applying an uniform electric field and at different Raleigh number; d) natural 

convection of three fluids in a rectangular enclosure with and without EHD effect and 

with non-uniform EHD effect. The main conclusions are:

(1). in a rectangular enclosure, the EHD enhancement is related to the Rayleigh number; 

an uniform electric field is more effective to enhance the heat transfer at lower 

Raleigh number case; as the Raleigh number increases, less enhancements are 

obtained;

(2). a non-uniform electric field is more effective than a uniform one to enhance the 

natural convection in a rectangular enclosure;

(3). in a cylindrical enclosure, a uniform electric field is more effective to enhance the 

heat transfer at higher Rayleigh number; as the Raleigh number increases, more 

enhancements of heat transfer can be obtained;

(4). in a rectangular enclosure, the fluids with lower viscosity and lower electrical 

conductivity give greater heat transfer enhancements for a given electrical power 

input; between the viscosity and electrical conductivity, the viscosity is the 

dominant factor for obtaining better EHD enhancement. This conclusion agrees 

well with the available experimental observations.
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9.3.2 EHD Enhancement of Heat Transfer around a Single R134a Bubble

EHD effect on an isolated R134a bubble attached to a horizontal surface in nucleate 

boiling are numerically studied. A simple physical model is employed to highlight the 

EHD effect on heat and fluid flows in the vicinity of the gas-liquid interface of a bubble. 

Coupled electric, flow and thermal fields are calculated and analysed when the electric 

voltage varies among OV, 2000V, 4000V, 5000V, 8000V and 10000V. The analysis 

reveals that applying an electric field to nucleate boiling can enhance the motion of the 

vortex around the bubble by the electric body force; and reduce the thickness of shear 

flow layer. As a result, the heat transfer at the gas-liquid interface is enhanced.

9.3.3 EHD effect on Refrigerants with Different Charge Relaxation Time

In nucleate boiling, the charge relaxation time of refrigerants plays an important role 

during bubble growth and departure in an electric field. In order to study the charge 

relaxation time effects, EHD effect on heat and flow around single bubbles of R134a, 

R12, R123 and R113 have been calculated. The simulations are earned out at voltage of 

5000V, contact angle of 15° and superheat of 4K. The studies found that the smaller the 

charge relaxation time the refrigerant has, the easier to enhance the heat transfer by 

applying an electric field

9.3.4 EHD effect on Different Stages of Bubble Growth
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The EHD effect on the flow, temperature and electric fields at different bubble growth 

stages are numerically studied, with the assumptions of steady flow, truncated spherical 

bubble shape and constant-contact-angle. The constant contact angle is checked by 

comparing between the calculations at/9c = 15°, 30° and 60°. The coupled electric, flow 

and thermal fields around a growing bubble at/? = 0.5Rd , 0.6Rd , 0.75Rd and 1.0Rd are 

numerically studied. The main conclusions are as follows:

(1). the constant-contact-angle assumption has influence on the results of the calculated 

heat transfer rate, but the heat transfer enhancements by EHD at different contact angle 

are on the same level and very close; so the assumption is valid for analysing the effects 

of EHD in quality;

(2). during the growth of the bubble, a second ring vortex, counter rotating with main 

vortex, forms near the negative electrode above the bubble. This vortex merges with the 

main one and forms a strong rotational motion which induces the change of isothermal 

and results in stronger heat transfer in the lateral stages of the bubble growth;

(3). the dimensionless potential field does not significantly change with the bubble 

radial;

(4). the density of free charges is a transport variable; because of the transport of vortex 

motion, a trough forms above the bubble with the increase of bubble radial.

9.4 Recommendation for the further work

Numerical simulation of heat transfer enhancement in single and two phase flows by
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applying an electric field is a relatively new area of research and much work still needs 

to be bone to contribute a better understanding of the basic mechanism behind the 

physical phenomenon.

Firstly, for single phase flows such as natural convection in enclosures, our calculation 

reveals the application of an electric field has different heat transfer enhancing effects 

on the flows inside rectangular and cylindrical enclosures. When a uniform electric field 

is applied, better EHD enhancement effects are observed at lower Raleigh numbers for a 

rectangular enclosure, while it is at higher Raleigh number for a cylindrical enclosure. 

For this difference, we explained by the stabilisation effects on the flows of the 

spanwise infinite size in the rectangular enclosure. However, in order to check the 

validity of our explanation or find the real reason for this difference, fully three- 

dimensional simulation on heat and fluid flows are necessary. This could be a further 

work based on the current research.

Secondly, the current study on bubbles has several assumptions such as negligible 

micro-layer, steady flows, truncated spherical bubble shape and constant contact angle. 

Some of these assumptions are maybe not reasonable while we just use them to 

highlight the effects of EHD on the heat and flows around the bubble and to reduce the 

extreme complexity of the physical problem. For example, the bubble shape and contact 

angle change in the real world during bubble growth and the heat transfer through the 

micro-layer could be up to 80% of the total amount of heat for bubble growth. In order 

to study the mechanism of EHD enhancement on nucleate boiling, the interface and
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bubble deformation, the micro-layer, and the unsteadiness of the flows should be 

considered in the further work.

Thirdly, the fluid properties are assumed to be constant in the current study. However, 

experimental studies have already proved that permittivity e  is variable at the 

vapour/liquid interface, the second and third term of the electric body force could be 

very strong when the surrounding liquid is not homogeneous, therefore the variety of 

permittivity should be taken into account in the future study.

Regarding to the present physical model, it is also assumed that all the properties inside 

the bubble are much smaller than those of the surrounding liquid. This assumption 

would not have a significant influence on external flow fields, but it could affect the 

temperature fields. Therefore, further simulation should pay attention to the double 

domain iteration method in order to understand the temperature fields in the vicinity of 

a vapour bubble and the effects of these fields on bubble deformation and growth or 

collapse.
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D e v i a t i o n  o f  E q u a t i o n  ( 4 . 3 . 2 0 )

In equation (4.3.19)

aP = ap + as + aE + aw + (Fn ~ F S+Fe - F w) 

In an electric field:

F - F + F - F „

= r w; +
RePr

Arj
E

+ r W2 +

Et

Re Pr
A<f

E J

rWjA^I" + rW2 A£|* + r ---- l—  A t]

J d(ru) 3(rv) I-------
dx dy

Re Pr 

A<fA?7 +

+ r-
RePr, ■A#

RePr^
"a K ) d K )

dx
,rl ....

dy

Since

d(ru) d(rv) 
dy

= rdiviy)

=  0

3 ^ )  4 ^ )
dx dy 

= rdiv[E ]

A^Ar/
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Therefore:

J
d(ru) 0(rv) 

dx dy

J

A £ A  77 +
Re Pr,

"d K ] d K ) "
dx

■f
dy AfA T]

RePr,
N  EqA^Aq

Then the Equation (4.3.19) can be changed to Equation (4.3.20):

J
ap — ap + as + d E +dw '*” j^epr eN EqA<!;A7j
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L i s t  o f  F O R T R A N  C o d e s

The FORTRAN codes consist of four files with respective functions as follows: 

INTGRID.F: generating the numerical grids; this file should be compiled and

run independently before run the main code;

NS_Solver.F: the main code; this code should be compiled together with the

files COMMONBLOCK.F and PARAMETERS.F. The function 

of NSJSolver.F is to solve the coupled flow, thermal and electric 

fields use the numerical methods presented in chapter 4; 

PARAMETERS.F: setting up parameters for the case to be calculated;

COMMONBLOCK.F : definition of most of the arrays used in NS_Solver.F.

Because the main variables and arrays are explained in the codes when they appear 

at the first time, the lists of the above codes are directly given as follows (the case in the 

code as an example is the natural convection with EHD effects in a cylindrical 

enclosure):

IN TG R ID .F

PARAMETERS 1 =60,M2=40)
DIMENSION X(M 1 ,M2),Y(M1 ,M2),DEIT(M 1 ),EITA(M1),DCET(M2),

& CETA(M2)

c X and Y are the physical coordinates
c EITA and are CETA are the transformed coordinates

Q=1.02 
NN=(Ml-2)/2 
BIANCHANG= 1.5

241



    —     -------
$
I

H ongbo Zhang A ppendix B

DEIT(2)=BI ANCH ANG*0.5 *( 1 .-Q)/(1 ,-Q**NN)
DO 100 K=3,(Ml-2)/2+l 
DEIT(K)=DEIT(K-1 )*Q 

100 CONTINUE
DO 105 K=(Ml-2)/2+2,Ml-l 
DEIT(K)=DEIT(M 1+1 -K)

105 CONTINUE
EITA(1)=0.
DO 110 K=2,M1
EITA(K)=EITA(K-1 )+0.5*(DEIT(K-1 )+DEIT(K))

110 CONTINUE !
Q=1.05 
NN=(M2-2)/2 
BIANCHANG=1
DCET(2)=BIANCHANG*0.5*(l.-Q)/( 1 .-Q**NN)
DO 200 I=3,(M2-2)/2+l 
DCET(I)=DCET(I-1)*Q 

200 CONTINUE
DO 205 I=(M2-2)/2+2,M2-l 
DCET(I)=DCET(M2+1 -I)

205 CONTINUE
CETA(1)=0.
DO 2101=2,M2
CETA(I)=CETA(I-1 )+0.5 *(DCET(I-1 )+DCET(I))

210 CONTINUE
DO 350 K=1,M1 
DO 360 1=1 ,M2 
X(K,I)=EITA(K)
Y(K, I)=CET A(I)

360 CONTINUE
350 CONTINUE

OPEN(2,FILE='INTGRID-1 .DAT’)
WRITE(2,600)((X(K,I),Y(K)I),I=1,M2),K=1,M1)
CLOSE(2)
OPEN(3 ,FILE=,DX 1 -DX2.DAT')
WRITE(3,610)(DEIT(K), K= 1 ,M 1)
WRITE(3,610) (DCET (I) ,1= 1 ,M2)
CLOSE(3)

600 F0RMAT(1X,2F16.8)
610 F0RMAT(1X,F16.8)

STOP 
END

PARAM ETERS.F

PARAMETER(M 1=60,M2=40)
C 1. For natural convection in closed space, Reynolds often defined as:

Reynolds=SQRT(GRASHOF)
C 2. TIME0=XEL0/VELOCITY0
C 3. All variables, these are: Time, velocity, pressure, temprature, are dimensionless in
C the program. If you want to recover the units, you can do this in subroutine OUTPUT.

COMMON/REF_MUST/XEL0,REYNOLDS,GRASHOF,PRANDTL.SE.DE,

■!

:\
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& NE,PRE,EC
COMMON /REF_MAYBE/DESITYO,VELOCITYO,TEMPO,DELTAT0,TIME0, 

& CBEITAO.GRAVITYO
COMMON/COORDIN/KOODIN

DATA XEL0 /I./
DATA REYNOLDS /54.77226/
DATA GRASHOF /3000./
DATA PRANDTL /I./
DATA SB /l./
DATA ADE/1./
DATA ANE/1./
DATA PRE/1./
DATA EC/0.00001171/

C KOORDIN=l: Cartesian coordinates; KOORDIN=2: cylindrical coordiantes
DATA KOODIN/2/
DATA DESITYO /860./

C relaxation factors for variables of solution
DATA ALFA,ALFAP,ALFAQU,ALFAFAI/0.6,0.4,0.3,0.1/

COMMONBLOCK.F

COMMON /FLOWRT/Q
COMMON/RELAXF/ALFA,ALFAP,ALFAQU,ALFAFAI 
COMMON /CONVEG/CONVEG,El ,E2,E3,E4 
COMMON /ERSP0T/KE1,KE2,KE3,IE3
COMMON /COMFUN/X1 (10 0 0 ) ,  FX1 (10 0 0 ) ,  AXM1 (10 0 0 ) , ADM1 (10 0 0 ) ,

& X2(10 0 0 )  ,FX2( 10 0 0 ) ,  AXM2(10 0 0 ) , ADM2( 10 0 0 )
COMMON /PHGRID/X(M 1 ,M2), Y (M1 ,M2),

& Xs(M 1 ,M2),Ys(M 1 ,M2),Xw(M 1 ,M2), Yw(M 1 ,M2),
& RRP(M 1 ,M2),RRs(M 1 ,M2),RRw(Ml ,M2)

COMMON /VOLSP A/DEITA(M 1 ),DCETA(M2),EITA(M 1 ),CETA(M2)
COMMON /ARZIYA/

& XEITAP(M 1 ,M2),XCETAP(M 1 ,M2),YEITAP(M 1 ,M2),YCETAP(M1,M2),
& XEITAs(Ml ,M2),YEITAs(Ml ,M2),XCETAs(Ml ,M2),YCETAs(Ml ,M2),
& XEITAw(Ml ,M2), YEITAw(Ml ,M2),XCETAw(Ml ,M2),YCETAw(M 1 ,M2)

COMMON /DULANG/AFAP(M 1 ,M2),BETP(M 1 ,M2),GAMP(M 1 ,M2),
& AFAs(M 1 ,M2),BETs(M 1 ,M2),GAMs(M 1 ,M2),
& AFAw(M 1 ,M2),BETw(M 1 ,M2),GAMw(M 1 ,M2)

COMMON /Y ACOBI/GHGP(M 1 ,M2),GHGs(M 1 ,M2),GHG w(M 1 ,M2)
COMMON /CHAZHI/F1(M1),F2(M2)
COMMON /FFIELD/U(M 1 ,M2), V(M 1 ,M2),P(M 1 ,M2),T(M1 ,M2),

& W1 P(M 1 ,M2), W2P(M 1 ,M2),
& W1 s(M 1 ,M2), W2w(M 1 ,M2)

COMMON /COEFP 1/CS(M 1 ,M2),CN(M 1 ,M2),CW(M 1 ,M2),CE(M 1 ,M2),
& CP(M 1 ,M2),P 1 (M1 ,M2),SM(M 1 ,M2)

COMMON /CSMO VE/SU(M 1 ,M2) ,S V(M 1 ,M2),
& AS (M1 ,M2),AN(M 1 ,M2), AW(M 1 ,M2),AE(M 1 ,M2), AP(M 1 ,M2)

COMMON /TSOURC/ST(Ml,M2)
COMMON /QU S OURC/S QU (M1 ,M2)
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COMMON /FAISOURC/SFAI(M 1 ,M2)
COMMON /BCDBCD/B1 P(M 1 ,M2),C2P(M 1 ,M2),B 1 s(M 1 ,M2),C2w(M 1 ,M2) 
COMMON /P ARTLP/DPDX1 (M1 ,M2),DPDX2(M1,M2)
COMMON /PARTLFAI/DFAIDX1 w(M 1 ,M2),DFAIDX2s(M 1 ,M2),

& DFAIDX1 (M1 ,M2),DFAIDX2(M 1 ,M2)
COMMON /QIUBIANWEFEN/

& DUDX1 (Ml ,M2),DUDX2(M1 ,M2),DVDX1 (Ml ,M2),DVDX2(M1 ,M2),
& DTDX1 (M1 ,M2),DTDX2(M 1 ,M2),DQUDX(M 1 ,M2),DQUDY(M 1 ,M2),
& DEXDX(M 1 ,M2),DE YD Y (M1 ,M2),DEXD Y (M1 ,M2),DEYDX(M1 ,M2),
& DQUDX1 (M1 ,M2),DQUDX2(M 1 ,M2),
& DEXDX1 (M1 ,M2),DEXDX2(M 1 ,M2),
& DEYDX1 (M1 ,M2),DEYDX2(M 1 ,M2)

COMMON /MOINTN/H1 P(M 1 ,M2),H2P(M 1 ,M2)
COMMON /EHD/FAI(M 1 ,M2),QU(M 1 ,M2),EX(M1 ,M2),EY(M 1 ,M2),

& EEITAP(M 1 ,M2),ECETAP(M 1 ,M2),EEITAw(M 1 ,M2),
& EEITAs(M 1 ,M2),ECETAs(M 1 ,M2),ECETAw(M 1 ,M2)

NS_Solver.F

c *
C N-S solver for 2D Heat and Fluid Flows Under Electric Field *
C *
C This code is developed by Hongbo Zhang. Last change: 26/12/2003 *
C *

INCLUDE 'PARAMETERS.F'
INCLUDE 'COMMONBLOCK.F'
CALL GRIDPA 
CALL ASUME 
M=0

10 M=M+1
CALL BLACK(M)
IF(CONVEG.EQ.l) THEN
GOTO 100
ELSE
GOTO 10
END IF

100 CALL OUTPUT
STOP 
END

C
C TO CALCULATE THE PARAMETERS ABOUT GRIDS
C

SUBROUTINE GRIDPA 
INCLUDE 'PARAMETERS.F'
INCLUDE 'COMMONBLOCK.F'

OPEN(UNIT=2,FILE='INTGRID-1 .DAT')
READ(2, *)((X(K,I), Y (K,I),I=1 ,M2),K= 1 ,M 1)
CLOSE(2)
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5

8

7

9

302

304

306

308
300

312

314

316

318
310

OPEN(UNIT=4,FILE-DX1-DX2.DAT')
RE AD(4, *)(DEITA(K),k= 1 ,M 1) 
READ(4,*)(DCETA(I),I=1,M2)
CLOSE(4)
EITA(1)=0.
CETA(1)=0.
DO 5 K=2,M1
EITA(K)=EIT A(K-1 )+0.5 *(DEITA(K-1 )+DEITA(K))
CONTINUE
DO 8 1=2,M2
CET A(I)=CET A(I-1)+0.5 *(DCET A(I-1 )+DCET A(I))
CONTINUE
DO 7 K=1,M1
X1(K)=EITA(K)
CONTINUE 
DO 9 1=1 ,M2 
X2(I)=CETA(I)
CONTINUE

DO 3001=1,M2 
DO 302 K=1,M1 
FX1(K)=X(K,I)
CONTINUE
CALL SPLINE(X 1 ,FX 1, AXM1, ADM 1 ,M 1)
DO 304 K=1,M1 
XEITAP(K,I)=AXM 1 (K)
CONTINUE 
DO 306 K=1,M1 
FX1(K)=Y(K,I)
CONTINUE
CALL SPLINE(X 1 ,FX 1,AXM 1,ADM 1 ,M 1)
DO 308 K=1,M1 
YEITAP(K,I)=AXM 1 (K)
CONTINUE
CONTINUE

DO 310 K=1,M1 
DO 3121=1,M2 
FX2(I)=X(K,I)
CONTINUE
CALL SPLINE(X2,FX2,AXM2,ADM2,M2)
DO 314 1=1,M2 
XCETAP(K,I)=AXM2(I)
CONTINUE 
DO 316 1=1,M2 
FX2(I)=Y(K,I)
CONTINUE
CALL SPLINE(X2,FX2,AXM2,ADM2,M2)
DO 318 1=1,M2 
Y CET AP(K,I)=AXM2(I)
CONTINUE
CONTINUE

DO 320 K=1,M1

Appendix B
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325
320

20

905

900

915

910

955
950

410

400

DO 325 1=1 ,M2
AFAP(K,I)=XCETAP(K,I)**2+YCETAP(K,I)**2
BETP(K,I)=XEITAP(K,I)*XCETAP(K,I)+YEITAP(K,I)*YCETAP(K,I)
G AMP(K,I)=XEITAP(K,I) * *2+YEIT AP(K,I) * *2
GHGP(K,I)=XEITAP(K,I)*YCETAP(K,I)-XCETAP(K,I)*YErrAP(K,I)
CONTINUE
CONTINUE

CALL INFACTOR

DO 9001=1,M2 
DO 905 K=2,M1
XEITAs(K,I)=Fl (K- 1)*XEITAP(K,I)+(1 .-FI (K-1 ))*XEITAP(K-1,1) 
YEITAs(K,I)=Fl (K-l )*YEITAP(K,I)+(1 .-F1(K-1))*YEITAP(K-1,1) 
XCETAs(K,I)=Fl (K-1 )*XCETAP(K,I)+( 1 .-FI (K-1 ))*XCETAP(K-1,1) 
YCETAs(K,I)=Fl (K-1) *YCETAP(K,I)+(1 ,-Fl (K-1 ))*YCETAP(K-1 J) 
CONTINUE
XEITAs( 1,1)=XEITAP( 1,1)
YEITAs( 1,1)=YEITAP( 1,1)
XCETAs( 1,1)=XCETAP( 1,1)
YCETAs(l,I)=YCETAP(l,I)
CONTINUE 
DO 910 K=1,M1 
DO 915 1=2,M2
XEITAw(K,I)=F2(I-l)*XEITAP(K,IMl.-F2(I-l))*XEITAP(K,I-l)
YEIT Aw(K,I)=F2(I-1 )* YEITAP(K,I)+( 1 .-F2(I-1 ))* YEITAP(K,I-1)
XCET A w(K,I)=F2(I-1) *XCETAP(K,I)+( 1 ,-F2(I-1)) *XCET AP(K,I-1) 
YCETAw(K,I)=F2(I-1 )*'YCETAP(K,I)+( 1 .-F2(I-1 ))*YCETAP(K,I-1) 
CONTINUE
XEITA w(K, 1 )=XEITAP(K, 1)
YEITAw(K,l)=YEITAP(K,l)
XCETA w(K, 1 )=XCETAP(K, 1)
YCETAw(K,l)=YCETAP(K, 1)
CONTINUE 
DO 950 K=1,M1 
DO 955 1=1,M2
AFAs(K,I)=XCETAs(K,I)**2+YCETAs(K,I)**2
BETs(K,I)=XEITAs(K,I)*XCETAs(K,I)+YEITAs(K,I)*YCETAs(K,I)
GAMs(K,I)=XEITAs(K,I)**2+YEITAs(K,I)**2
GHGs(K,I)=XEITAs(K,I)*YCETAs(K,I)-XCETAs(K,I)*YEITAs(K,I)
AFAw(K,I)=XCETAw(K,I)**2+YCETAw(K,I)**2
BETw(K,I)=XEITAw(K,I)*XCETAw(K,I)+YEITAw(K,I)*YCETAw(K,I)
GAM w(K,I)=XEITAw(K,I)**2+YEIT Aw(K,I)**2
GHGw(K,I)=XEITAw(K,I)*YCETAw(K,I)-XCETAw(K,I)*YEITAw(K,I)
CONTINUE
CONTINUE
DO 400 1=1,M2
DO 410 K=2,M1
Xs(K,I)-Fl (K-1 )*X(K,I)+( 1 .-FI (K-1 ))*X(K-1,1)
Ys(K,I)=Fl (K-1 )*Y(K,I)+( 1 ,-Fl (K-1 ))*Y(K-1,1)
CONTINUE
Xs(l,I)=X(l,I)
Ys(l,I)=Y(l,I)
CONTINUE
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DO 420 K=1,M1 
DO 430 1=2,M2
Xw(K,I)=F2(I-1) *X(K,I)+( 1 .-F2(I-1 ))*X(K,I-1) 
Y w(K,I)=F2(I-1) * Y (K,I)+( 1 .-F2(I-1)) * Y (K,I-1) 

430 CONTINUE
Xw(K,l)=X(K,l)
Yw(K,l)=Y(K,l)

420 CONTINUE

DO 500 K=1,M1 
DO 5101=1,M2 
IF(KOODIN.EQ.l) THEN 
RRP(K,I)=1.
RRs(K,I)=l.
RRw(K,I)=l.
ENDIF
IF(KOODIN.EQ.2) THEN 
RRP(K,I)=X(K,I)
RRs(K,I)=Xs(K,I)
RRw(K,I)=Xw(K,I)
ENDIF

510 CONTINUE
500 CONTINUE

RETURN
END

C====================================================================
c
C This sub calculate derivatives using cubic spline fitting
C ADM = M: second derivative; AXM = m: first derivative
C

SUBROUTINE SPLINE(XX,YY,AXM,ADM,NN)
DIMENSION XX(1000), Y Y( 1000), ADM( 1000), AXM( 1000),

& AU(1000),AH(1000),AR(1000),D(1000),F(1000), BETA(1000),GAMA(1000)

DO 100 N=1,NN-1 
AH(N)=XX(N+1 )-XX(N)
F(N)=(YY(N+1 )-YY(N))/AH(N)

100 CONTINUE
DO 110 N=2,NN-1 
AU(N)=AH(N-1 )/(AH(N-1 )+AH(N))
AR(N)=AH(N)/(AH(N-1)+AH(N))
D(N)=6 .*(F(N)-F(N-1 ))/(AH(N~1 )+AH(N))

110 CONTINUE

C solve ADM (N=2,NN-1)
ADM(1)=0.
ADM(NN)=0.
BETA(2)=AR(2)/2.
GAMA(2)=D(2)/2.
DO 200 N=3,NN-2
BETA(N)=AR(N)/(2.-AU(N)*BETA(N-l))

200 CONTINUE
DO 220 N=3,NN-1
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GAMA(N)=(D(N)-AU(N)*GAMA(N-l))/(2.-AU(N)*BETA(N-l))
220 CONTINUE

ADM(NN-1 )=G AM A(NN-1)
DO 250 N=NN-2,2,-l
ADM(N)=G AM A(N)-BETA(N) * ADM (N+1)

250 CONTINUE

C solve AXM
DO 300 N=1,NN-1
AXM(N)=-ADM(N)*(XX(N+1)-XX(N))**2/(2.*AH(N))+

& ADM(N+1 )*(XX(N)-XX(N)) * *2/(2. * AH(N))+
& (Y Y (N+1 )-YY (N))/AH(N)-
& (ADM(N+1)-ADM(N))/6.*AH(N)

300 CONTINUE
AXM(NN)=AH(NN-1 )/6 .*ADM(NN-1 )+AH(NN-1 )/3. *ADM(NN)+F(NN-1)
RETURN 
END

C=============================================:
c
C calculate geometrical interpolation factors
C

SUBROUTINE INFACTOR 
INCLUDE ’PARAMETERS.F’
INCLUDE 'COMMONBLOCK.F'

DO 100 K=1,M1-1
F1 (K)=DEIT A(K)/(DEITA(K)+DEIT A(K+1)) 

100 CONTINUE
DO 200 I=1,M2-1
F2(I)=DCETA(I)/(DCETA(I)+DCETA(I+1)) 

200 CONTINUE
F1(M1)=0.
F2(M2)=0.

RETURN
END

C
C calculate derivatives of resolved functions
C

SUBROUTINE QIUBIANDAO(FU,FX,FY,L)
INCLUDE 'PARAMETERS.F'
INCLUDE 'COMMONBLOCK.F
DIMENSION FU(M 1 ,M2),DFUDX 1 (M1 ,M2),DFUDX2(M 1 ,M2),FX(M 1 ,M2), 

& FY(M1,M2)

DO 500 1=1,M2 
DO 510 K=1,M1 
FX1(K)=FU(K,I)

510 CONTINUE
CALL S PLINE(X 1 ,FX 1, AXM 1, ADM 1 ,M 1)
DO 520 K=1,M1 
DFUDX1 (K,I)=AXM 1 (K)

520 CONTINUE
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500 CONTINUE
DO 550 K=1 ,M1 

DO 560 1=1 ,M2 
FX2(I)=FU(K,I)

560 CONTINUE
CALL SPLINE(X2,FX2,AXM2,ADM2,M2)
DO 570 1=1,M2 t
DFUDX2(K,I)=AXM2(I)

570 CONTINUE \
550 CONTINUE

IF(L.EQ.l) THEN 
DO 600 K=1,M1 
DO 610 1=1,M2
FX(K,I)=-1 ./GHGP(K,I)*( DFUDX1 (K,I)*YCETAP(K,I)- 

& DFUDX2(K,I)*YEITAP(K,I))
FY(K,I)=-1./GHGP(K,I)*(-DFUDX1(K,I)*XCETAP(K,I)+

& DFUDX2(K,I)*XEITAP(K,I))
610 CONTINUE
600 CONTINUE

ENDIF
IF(L.EQ,2) THEN 
DO 700 K=1,M1 
DO 710 1=1,M2
FX(K,I)=1 ./GHGP(K,I)*( DFUDX1 (K,I)*YCETAP(K,I)- 

& DFUDX2(K,I)*YEITAP(K,I))
FY(K,I)=1 ./GHGP(K,I)*(-DFUDX1 (K,I)!l:XCETAP(K,I)+

& DFUDX2(K,I)*XEITAP(K,I))
710 CONTINUE
700 CONTINUE

ENDIF

RETURN 
END

C
C assume the intial values for solving the fields by iteration
C

SUBROUTINE ASUME 
INCLUDE 'PARAMETERS.F'
INCLUDE 'COMMONBLOCK.F'

DO 200 K=1,M1 
DO 2101=1,M2 
U(K,I)=0.
V(R,I)=0.

210 CONTINUE
200 CONTINUE

TB=1.
TT=0.
FAIB=1.
FAIT=0.
QUB=1.
QUT=0.
DO 400 K=1,M1
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T(K,1)=TB
T(K,M2)=TT
QU(K,1)=QUB

C QU(K, 1 )=QUB *SIN(3.141592654/3. *X(K, 1))
QU(K,M2)=QUT 
FAI(K,1)=FAIB 
FAI(K,M2)=FAIT 
DO 4101=2,M2-1
T(K,I)=T (K, 1 )+(TT-TB )/CETA(M2) *CETA(I)
QU(K,I)=QU(K, 1 )+(QU(K,M2)-QU(K, 1 ))/CETA(M2)!i!CETA(I) 
FAI(K,I)=FAI(K,1)+(FAIT-FAIB)/CETA(M2)*CETA(I)

410 CONTINUE
400 CONTINUE

DO 205 K=1,M1 
DO 208 1=1,M2
W1 P(K,I)=U(K,I) * Y CETAP(K,I)-V(K,I) *XCET AP(K,I) 
W2P(K,I)=V(K,I)*XEITAP(K,I)-U(K,I)*YEITAP(K,I)

208 CONTINUE
205 CONTINUE

DO 225 1=1,M2 
DO 220 K=2,M1
W1 s(K,I)=F 1 (K-1 )*W 1 P(K,I)+( 1 .-F1 (K-1 ))* W1 P(K-1,1)

220 CONTINUE
W1 s( 1,1)=W 1 P( 1,1)

225 CONTINUE
DO 230 K=1,M1 
DO 235 1=2,M2
W2w(K,I)=F2(I-l)*W2P(K,I)+(l.-F2(I~l))*W2P(K,I-l)

235 CONTINUE
W2 w(K, 1 )=W2P(K, 1)

230 CONTINUE
Q=0.
DO 3001=1,M2
Q=Q+( W1 s (2,1)) *D CETA(I)

300 CONTINUE
RETURN 
END

C===========================================================
c
C This is the main work in every iteration step
C

SUBROUTINE BLACK(M)
INCLUDE 'PARAMETERS.F'
INCLUDE 'COMMONBLOCK.F'
DIMENSION PP1PX1(M1, M2), PP1PX2(M1, M2)

C calculate the coefficients of the momentum equation
CALL COEFMO(l)

C solve the momentume equation
CALL SOLVE(AS,AN,AW,AE,AP,U,SU, 1)
CALL SOLVE(AS,AN,AW,AE,AP,V,SV,l)
CALL B OUND ARY (V,X 1 ,M 1,1)
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C momentum interpolation
DO 460 K=2,M1-1
DO 465 1=2,M2-1 I
BCDXSH=- l.*DEITA(K)*DCETA(I)*RRP(K,I)/AP(K,I) j'
B 1P(K,I)=BCDXSH*AFAP(K,I) *
C2P(K,I)=BCDXSH*GAMP(K,I)

465 CONTINUE i
460 CONTINUE |

DO 470 K=2,M1-1 i
DO 480 I=2,M2-1 '•
H1P(K,I)=U(K,I)*YCETAP(K,I)-V(K,I)*XCETAP(K,I) -1

& -B1 P(K,I) *DPDX 1 (K,I)
H2P(K,I)=V(K,I)*XEITAP(K,I)-U(K,I)*YEITAP(K,I)

& -C2P(K,I)*DPDX2(K,I)
480 CONTINUE
470 CONTINUE

C interplation to get Wls and W2w
DO 510 1=2,M2-1 
DO 505 K=3,M1-1
Bls(K,I)=AFAs(K,I)*(-l.*DCETA(I)nEITA(K)-EITA(K-l))

& *RRs(K,I))*( FI (K-1 )/AP(K,I)+( 1 ,-F 1 (K-1 ))/AP(K-1,1» "
W1 s(K,I)=F 1 (K-1) *H 1 P(K,I)+( 1.-F1 (K-1)) *H 1 P(K-1,1)+

& B ls(K,I)*(P(K,I)-P(K-l ,I))/(EITA(K)-EITA(K-1))
505 CONTINUE

W1 s(M 1,1)=U(M 1,I)*YCETAP(M 1,1)-V(M 1 .^♦XCETAPCM1 J)
W1 s(2,I)=U (1,1)* Y CETAP( 1,1)-V (1,1) *XCETAP( 1,1)

510 CONTINUE
DO 500 K=2,M1-1 
DO 5201=3,M2-1
C2w(K,I)=GAMw(K,I)*(-l.*DEITA(K)*(CETA(I)-CETA(I-l))

& *RRw(K,I))*( F2(I-1 )/AP(K,I)+( 1 ,-F2(I-1 ))/AP(K,I-1))
W2w(K,I)=F2(I-l )*H2P(K,I)+( 1 .-F2(I-1 ))*H2P(K,I-1 )+

& C2 w(K,I) *(P(K,I)-P(K,I-1 ))/(CET A(I)-CET A(I-1))
520 CONTINUE

W2w(K,2)=V (K, 1 )*XEITAP(K, 1 )-U(K, 1)*YEITAP(K, 1) 
W2w(K,M2)=V(K,M2)*XEITAP(K,M2)-U(K,M2)*YEITAP(K,M2)

500 CONTINUE

C Check the convergency of computation-----------
DO 610 K=2,M1-1 
DO 615 1=2,M2-1
SM(K,I)=(W 1 s(K,I) *RRs(K,I)-W 1 s(K+1,1)*RRs(K+1,1)) *DCETA(I)+

& (W2w(K,I)*RRw(K,I)-W2w(K)I+l)*RRw(K,I+l))!t:DEITA(K)
615 CONTINUE
610 CONTINUE

Q2=0.
Q3=0.
DO 450 K=2,M1-1 
Q22=0.
Q33=0.
DO 454 1=2 ,M2 -1  

Q22=Q22+abs(SM(K,I))
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454

450

10
11

C

625
620

C

635

Q33=ABS(SM(K,I))
IF(Q33.GT.Q3) THEN
Q3=Q33
KE3=K
IE3=I
END IF
CONTINUE
IF( AB S(Q22). GE.Q2) THEN 
Q2=ABS(Q22)
KE2=K 
END IF 
CONTINUE 
E2=Q2 
E3=Q3
IF(MOD(M,5).EQ.O) THEN
WRITE(*,*)' PHYSICAL TIME STEP NO.',NT
write(*,10)M,E2,E3
write(*,ll)KE2,KE3,IE3
END IF
format(lx,' i t r ^ , '  E2=',fl0.6,' E3=',fll.7) 
format(lx,1 KE2=\i4,' KE3=',i4,' IE3=',i4)

Pressure correct procedure 
DO 620 K=2,M1-1 
DO 625 1=2,M2-1
IF( AB S (RE AL(K-2)) .LT.0.1) THEN 
CS(K,I)=0.
ELSE
CS(K,I)=(-L*Bls(K,I)mRs(K,I)*DCETA(I))/(EITA(K)-EITA(K-l))
END IF
IF(ABS(REAL(K-M1+1)).LT.0.1) THEN 
CN(K,I)=0.
ELSE
CN(K,I)=(-1. *B 1 s(K+1,1)*RRs(K+1,1)*DCETA(I))/ (EITA(K+1 )-EITA(K)) 
END IF
IF(ABS(REAL(I-2)).LT.0.1) THEN 
CW(K,I)=0.
ELSE
C W (K,I)=(-1. *C2 w(K,I) *RR w(K,I) *DEIT A(K))/ (CETA(I)-CETA(I-l))
END IF
IF( AB S(REAL(I-M2+1 )).LT.0.1) THEN 
CE(K,I)=0.
ELSE
CE(K,I)=(-1, *C2 w(K,I+1) *RRw(K,I+1 )*DEITA(K))/ (CETA(I-t-l)-CETA(I)) 
END IF
CP(K,I)=CS(K,I)+CN(K,I)+CW(K,I)+CE(K,I)
CONTINUE
CONTINUE

solve pressure correction equation 
DO 630 K=1,M1 
DO 635 1=1,M2 
P1(K,I)=0.
CONTINUE
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630 CONTINUE
CALL SOLVE(CS,CN,CW,CE,CP,P 1 ,SM,-1)
CALL BOUNDARY(P1,XI,Ml,l)
CALL BOUNDARY(P1,XI,Ml,2)
CALL BOUNDARY(P1,X2,M2,3)
CALL B OUND AR Y (P1 ,X2,M2,4)

C c o i T e c t i o n  of v e l o c i t y

DO 660 1=1,M2 
DO 662 K=1,M1 
FX1(K)=P1(K,I)

662 CONTINUE
CALL SPLINE(X1 ,FX1,AXM1,ADM 1 ,M 1)
DO 664 K=1,M1
PP1PX1 (K,I)=AXM 1 (K)

664 CONTINUE
660 CONTINUE

DO 665 K=1,M1 
DO 667 1=1,M2 
FX2(I)=P1(K,I)

667 CONTINUE
CALL SPLINE(X2,FX2,AXM2,ADM2,M2)
DO 669 1=1,M2 
PP 1 PX2(K,I)=AXM2(I)

669 CONTINUE
665 CONTINUE

C as B ls(2,i)=C2w(k,2)=0, no correction can be made for Wls(2,I) and W2w(k,2)
C in the following loop, so don't care maybe P1(K,1).NE.P1(K,2)

DO 640 K=2,M1-1 
DO 645 1=2,M2-1
BCDXSH=-1. *DEITA(K) *DCETA(I) *RRP(K,I)/AP(K,I) 
U(K,I)=U(K,I)+BCDXSH*( YCETAP(K,I)*PP1PX1(K,I)- 

& YEITAP(K,I)*PP1PX2(K,I))
V (K,I)=V (K,I)+B CDXSH*(-XCET AP(K,I)*PP 1 PX 1 (K,I)+

& XEITAP(K,I) *PP 1 PX2(K,I))
Wls(K,I) = W1 s(K,I)+B 1 s(K,I)*

& (P1 (K,I)-P 1 (K-1,1))/(EITA(K)-EITA(K-1))
W2w(K,I)=W2w(K,I)+C2w(K,I)*

& (P1 (K,I)-P 1 (K,I-1 ))/(CETA(I)-CETA(I-1))
645 CONTINUE
640 CONTINUE

CALL BOUNDARY(V,X 1 ,M 1,1)
DO 650 1=1,M2
W1 s(M 1,1)=U (M1,1) * Y CET AP(M 1,1)-V(M 1,I)*XCETAP(M 1,1)
W1 s(2,I)=U( 1,1)*YCETAP( 1,I)-V(1,1)*XCETAP(1,1)

650 CONTINUE
DO 690 K=1,M1
W2w(K,2)=V(K, 1 )*XEITAP(K,1)-U(K, 1 )*YEITAP(K, 1) 
W2w(K,M2)=V(K,M2)*XEITAP(K,M2)-U(K,M2)*YEITAP(K,M2)

690 CONTINUE

C correct the pressure field
DO 700 K=2,M1-1
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DO 710 1=2, M2-1 
P(K,I)=P(K, I)+ALFAP *P 1 (K,I)

710 CONTINUE
700 CONTINUE

CALL B OUND AR Y (P,X 1 ,M 1,1)
CALL B0UNDARY(P,X1,M1,2)
CALL BOUNDARY(P,X2,M2,3)
CALL BOUNDARY(P,X2,M2,4)
PREF=P(M 1 ,M2)
DO 750 K=1,M1 
DO 7801=1 ,M2 
P(K,I)=P(K,I)-PREF 

780 CONTINUE
750 CONTINUE

C solve T equation
CALL COEFMO(2)
CALL SOLVE(AS,AN, AW,AE,AP,T,ST, 1)
CALL BOUNDARY(T,X1,M1,1)
CALL B OUND ARY (T,X 1 ,M1,2)

C solve Q equation
CALL COEFMO(3)
CALL SOLVE(AS,AN,AW,AE,AP,QU,SQU,-l)
CALL BOUNDARY(QU,XI,Ml,l)
CALL B OUND ARY (QU,X2,M2,4)
CALL B OUND ARY (QU,X1,M1,8)

C solve FAI equation
CALL COEFMO(4)
CALL SOLVE(AS, AN, AW, AE, AP,FAI,SFAI,-1)
CALL B OUND ARY (FAI,X 1 ,M 1,2)
CALL B OUND ARY (F AI,X 1 ,M 1,1)

IF(E2.LT. 1 .e-6.andE3.LT.l.e-7.andEKEQU.LT.0.1) THEN 
CONVEG=l.
ELSE
CONVEG=0.
END IF

RETURN
END

C THIS SUB TO CALCULATE THE COEFECIENTS OF MOMENTUEM EQ.
C.

SUBROUTINE COEFMO(L)
INCLUDE 'PARAMETERS.F*
INCLUDE 'COMMONBLOCK.F'

C
FUN 1 (X1 ,X2)=AM AX 1 (0.,X2-0.5 * AB S(X 1))+ AM AX 1 (-1. *X 1,0.) 
FUN2(X1,X2)=AMAX1(0.,X2-0.5*ABS(X1))+ AMAX1(0.,X1)
FUN3(X1) =AMAX1(X1,0.)
FUN4(X1) =AMAX1(-1.*X1,0.)
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&

&

&

100
99

210

220
200

260

270
250

310

IF(L.EQ.l) DIFF-1./REYNOLDS 
IF(L.EQ.2) DIFF=1 ,/REYNOLDS/PRANDTL 
IF(L.EQ.3) GOTO 999 
IF(L.EQ.4) GOTO 799

DO 99 K=2,M1-1 
DO 1001=2,M2-1
FS=W 1 s(K,I) *RRs(K,I) *DCET A(I)
DS=DIFF*AFAs(K,I)*RRs(K,I)/GHGs(K,I)*DCETA(I)/(EITA(K)-EITA(K-l)) 
FN=Wls(K+1,I)*RRs(K+1,I)*DCETA(I)
DN=DIFF*AFAs(K+l,I)*RRS(K+l ,I)/GHGs(K+l ,I)*DCETA(I)

/(EITA(K+1 )-EITA(K))
FW=W2w(K,I)*RRw(K,I)*DEITA(K) 
DW=DIFF*GAMw(K,I)*RRw(K,I)/GHGw(K,I)*DEITA(K) 

/(CETA(I)-CETA(I-1))
FE=W2w(K,I+1) *RRw(K,I+1 )*DEITA(K) 
DE=DIFF*GAMw(K,I+l)*RRw(K,I+l)/GHGw(K,I+l)*DEITA(K)

/(CET A(I+1 )-CET A(I))
AS(K,I)=FUN2(FS,DS)
AN(K,I)=FUN1 (FN,DN)
AW(K,I)=FUN2(FW,DW)
AE(K,I)=FUN 1 (FE,DE)
AP(K,I)=( AS(K,I)+AN(K,I)+AW(K,I)+AE(K,I) )/ALFA
CONTINUE
CONTINUE

CALL QIUBIANDAO(FAI,EX,EY, 1)

IF(L.EQ.l) THEN 
DO 2001=1 ,M2 
DO 210 K=1,M1 
FX1(K)=P(K,I)
CONTINUE
CALL SPLINE(X 1 ,FX 1, AXM 1, ADM 1 ,M 1)
DO 220 K=1,M1 
DPDX1 (K,I)=AXM 1 (K)
CONTINUE 
CONTINUE 
DO 250 K=1,M1 
DO 260 1=1,M2 
FX2(I)=P(K,I)
CONTINUE
CALL SPLINE(X2,FX2,AXM2,ADM2,M2)
DO 270 1=1,M2 
DPDX2(K,I)=AXM2(I)
CONTINUE 
CONTINUE 
DO 3001=1,M2 
DO 310 K=1,M1 
FX1(K)=U(K,I)
CONTINUE
CALL SPLINE(X 1 ,FX 1, AXM 1, ADM 1 ,M 1)
DO 320 K=1,M1 
DUDX1 (K,I)=AXM 1 (K)
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320 CONTINUE
300 CONTINUE

DO 350 K=1,M1 
DO 3601=1,M2 
FX2(I)=U(K,I)

360 CONTINUE
CALL SPLINE(X2,FX2,AXM2, ADM2.M2) 
DO 370 1=1,M2 
DUDX2(K,I)=AXM2(I)

370 CONTINUE
350 CONTINUE

DO 400 1=1,M2  

DO 410 K=1,M1 
FX1(K)=V(K,I)

410 CONTINUE
CALL SPLINE(X1,FX1,AXM1,ADM1,M1) 
DO 420 K=1,M1 
D VDX1 (K,I)=AXM 1 (K)

420 CONTINUE
400 CONTINUE

DO 450 K=1,M1 
DO 460 1=1,M2 
FX2(I)=V(K,I)

460 CONTINUE
CALL SPLINE(X2,FX2,AXM2,ADM2,M2) 
DO 4701=1,M2 
DVDX2(K,I)=AXM2(I)

470 CONTINUE
450 CONTINUE

DO 500 K=2,M1-1 
DO 550 1=2,M2-1
SU1=(-1.)*DEITA(K)*DCETA(I)*RRP(K,I)*

& ( YCETAP(K,I)*DPDX1(K,I)-YEITAP(K,I)*DPDX2(K,I))
SU2=DIFF/GHGs(K+l ,I)*(-1 .*BETs(K+l ,I)*RRs(K+l ,I))*DCETA(I)

& *( FI (K)*DUDX2(K+1,1)+(1 .-F1(K))*DUDX2(K,I))
& - DIFF/GHGs(K,I)*(-L*BETs(K,I)*RRs(K,I))*DCETA(I)
8c *( F1 (K-1 )*DUDX2(K,I)+( 1 .-FI (K-1 ))*DUDX2(K-1,1))
& +DIFF/GHG w(K,I+1) *(- l.*BETw(K,I+l )*RRw(K,I+l))*DEITA(K)
& *( F2(I)*DUDX1 (K,I+1)+(1.-F2(I))*DUDX 1 (K,I))
& - DIFF/GHGw(K,I)*(-l.*BETw(K,I)*RRw(K,I))*DEITA(K)
& *( F2(I-1 )*DUDX 1 (K,I)+( 1 .-F2(I-1 ))*DUDX1 (K,I-1))

SU3=AP(K,I)*U(K,I)*(1 .-ALFA)
SU6 =SE*QU(K,I)*EX(K,I)*GHGP(K,I)*DEITA(K)*DCETA(I)*RRP(K,I)
IF(KOODIN.EQ.2) THEN
SU7=(-1. )/REYNOLDS *U(K,I)/RRP(K,I) *DEITA(K) *DCET A(I) *GHGP(K,I)
ELSE
SU7=0.
ENDIF
SV1=(-1.)*DEITA(K)*DCETA(I)*RRP(K,I)*

& ( XEITAP(K,I)*DPDX2(K,I)-XCETAP(K,I)*DPDX1(K,I))
SV2=DIFF/GHGs(K+l,I)*(-l.*BETs(K+l,I)*RRs(K+l,I))*DCETA(I) 

& *( F1(K)*DVDX2(K+1,I)+(1.-F1(K))*DVDX2(K,I))
& - DIFF/GHGs(K,!)*(-!.*BETs(K,I)*RRs(K,I))*DCETA(I)
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&
&
&
&

&

550
500

600

610

620
601

660

670
650

&
&
&
&
&
&
&

&
&

685
680

Appendix B

*( FI (K-1 )*D VDX2(K,I)+( 1 .-FI (K-1 ))*DVDX2(K-1,1))
+ DIFF/GHGw(K,I+1 )*(-1. *BETw(K,I+1 )*RRw(K,I+1 ))*DEITA(K) 
*( F2(I)*DVDX1 (K,I+1 )+(l .-F2(I))*DVDX1(K,I))
- DIFF/GHGw(K,I)*(-1 .*BETw(K,I)*RRw(K,I))*DEITA(K)
*( F2(I-1 )*DVDX1 (K,I)+( 1 .-F2(I-1 ))*DVDX1 (K,I-1))

SV3=AP(K,I)*V(K,I)*(1.-ALFA)
SV4=GRASHOF/REYNOLDS**2*T(K,I)

*GHGP(K1I)*DEITA(K)!fiDCETA(I)*RRP(K,I) 
SV6 =SE*QU(K,I)*EY(K,I)*GHGP(K,I)*DEITA(K)*DCETA(I)*RRP(K,I) 
SU(K,I)=SU1+SU2+SU3+SU4+SU5+SU6+SU7 
S V(K,I)=S V1+S V2+S V3+S V4+S V5+S V6  
CONTINUE 
CONTINUE 
ENDIF

IF(L.EQ.2) THEN 
DO 601 1=1,M2 
DO 610 K=1,M1 
FX1(K)=T(K,I)
CONTINUE
CALL SPLINE(X 1 ,FX 1,AXM 1,ADM 1 ,M 1)
DO 620 K=1,M1 
DTDX1 (K,I)=AXM 1 (K)
CONTINUE 
CONTINUE 
DO 650 K=1,M1 
DO 660 1=1,M2 
FX2(I)=T(K,I)
CONTINUE
CALL SPLINE(X2,FX2,AXM2,ADM2,M2)
DO 6701=1,M2 
DTDX2(K,I)=AXM2(I)
CONTINUE 
CONTINUE 
DO 680 K=2,M1-1 
DO 685 1=2,M2-1
ST2=DIFF/GHGs(K+1,1)*(-1. *BETs(K+1,I)*RRs(K+1,I))*DCETA(I)

*( FI (K)*DTDX2(K+1,!)+(1 ,-Fl (K))*DTDX2(K,I))
- DIFF/GHGs(K,I)*(-l.*BETs(K,I)*RRs(K,I))*DCETA(I)
*( FI (K-1)*DTDX2(K,I)+( 1 .-FI (K-1 ))*DTDX2(K-1,1) )
+ DIFF/GHG w(K,I+1)*(-1. *BETw(K,I+1 )*RRw(K,I+1 ))*DEITA(K) 
*( F2(I)*DTDX1(K,I+1)+(1.-F2(I))*DTDX1(K,I))
- DIFF/GHGw(K,I)*(-l.*BETw(K,I)*RRw(K,I))*DEITA(K)
*( F2(I-1) *DTDX 1 (K,I)+( 1 .-F2(I-1 ))*DTDX 1 (K,I-1))

ST3=AP(K,I) *T(K,I)*( 1 .-ALFA) 
ST6 =SE*EC*QU(K,I)*(U(K,I)*EX(K,I)+V(K,I)*EY(K,I)+

(EX(K, I) * *2+E Y(K,I) * * 2)/(RE YNOLD S *PRE))
*GHGP(K,I) *DEIT A(K) *DCETA(I) *RRP(K,I) 

ST(K,I)=ST2+ST3+ST5+ST6 
CONTINUE 
CONTINUE 
ENDIF 
RETURN
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C
999

2208
2205

2905

2900

2915

2910

&

2100
2099

785
780

C
799

&

&

calculate the coefficients of QU equation 
DO 2205 K=1,M1 
DO 2208 1=1,M2
EEITAP(K,I)=EX(K,I)*YCETAP(K,I)-EY(K,I)*XCETAP(K,I)
ECETAP(K,I)=EY(K,I)*XEITAP(K,I)-EX(K,I)*YEITAP(K,I)
CONTINUE 
CONTINUE 
DO 29001=1,M2 
DO 2905 K=2,M1
EEITAs(K,I)=Fl (K-1 )*EEITAP(K,I)+( 1 .-FI (K-1 ))*EEITAP(K-1,1)
CONTINUE
EEIT As( 1,1)=EEITAP( 1,1)
CONTINUE 
DO 2910 K=1,M1 
DO 2915 1=2,M2
ECETAw(K,I)=F2(I-l)*ECETAP(K,I)+(l.-F2(I-l))*ECETAP(K,I-l)
CONTINUE
ECETAw(K, 1 )=ECETAP(K, 1)
CONTINUE 
DO 2099 K=2,M1-1 
DO 21001=2,M2-1
FS=RRs(K,I)*(Wls(K,I)+l./(REYNOLDS*PRE)*EEITAs(K,I))*DCETA(I) 
FN=RRs(K+1,I)*(W1 s(K+l ,I)+1 ./(REYNOLDS *PRE)*EEITAs(K+1,1)) *DCETA(I) 
FW=RRw(K,I)*(W2w(K,I)+l./(REYNOLDS*PRE)*ECETAw(K,I))*DEITA(K) 
FE=RRw(K,I+l)*(W2w(K,I+l)+l./(REYNOLDS*PRE)*ECETAw(K,I+l)) 

*DEITA(K)
AS(K,I)=FUN3(FS)
AN(K,I)=FUN4(FN)
AW(K,I)=FUN3(FW)
AE(K,I)=FUN4(FE)
IF(K.EQ.2) AS(K,I)=0,
IF(K.EQ.(M1-1)) AN(K,I)=0.
IF(I.EQ.(M2-1)) AE(K,I)=0.
AP(K,I)=( AS(K,I)+AN(K,I)+AW(K,I)+AE(K,I)+(FN-FS+FE-FW))/ALFAQU
CONTINUE
CONTINUE
DO 780 K=2,M1-1
DO 785 1=2,M2-1
SQU3=AP(K,I)*QU(K,I)*(1.-ALFAQU)
SQU(K,I)=SQU3
CONTINUE
CONTINUE
RETURN

coefficients of FAI equation 
DO 899 K=2,M1-1 
DO 900 1=2,M2-1
AS(K,I)=RRs(K,I)*AFAs(K,I)/GHGs(K,I)*DCETA(I)/(EITA(K)-EITA(K-l))
AN(K,I)=RRs(K+l,I)*AFAs(K+l,I)/GHGs(K+l,I)*DCETA(I)

/ (EIT A(K+1 )-EITA(K)) 
AW(K,I)=RRw(K,I)*GAMw(K,I)/GHGw(K,I)*DEITA(K)/ (CETA(I)-CETA(I-l)) 
AE(K,I)=RRw(K,I+l)*GAMw(K,I+l)/GHGw(K,I+l)*DEITA(K)

/ (CETA(I+1 )-CET A(I))
AP(K,I)=( AS(K,I)+AN(K,I)+AW(K,I)+AE(K,I) )/ALFAFAI
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900
899

1510

1520
1500

1560

1570
1550

1905

1900

1915

1910

&
&
&
&

1785
1780

C

C======:
c
c
c

CONTINUE 
CONTINUE 
DO 1500 1=1, M2 
DO 1510 K=1,M1 
FX1(K)=FAI(K,I)
CONTINUE
CALL SPLINE(X1,FX1,AXM1,ADM1,M1)
DO 1520 K=1,M1 
DFAIDX1 (K,I)=AXM1 (K)
CONTINUE 
CONTINUE 
DO 1550 K=1,M1 
DO 1560 1=1 ,M2 
FX2(I)=FAI(K,I)
CONTINUE
CALL SPLINE(X2,FX2,AXM2,ADM2,M2)
DO 15701=1,M2 
DFAIDX2(K,I)=AXM2(I)
CONTINUE 
CONTINUE 
DO 19001=1,M2 
DO 1905 K=2,M 1
DFAIDX2s(K,I)=Fl (K-1) *DFAIDX2(K,I)+( 1 .-FI (K-1 ))*DFAIDX2(K-1,1) 
CONTINUE
DFAIDX2s(l ,I)=DFAIDX2(1,I)
CONTINUE 
DO 1910 K=1,M1 
DO 1915 1=2,M2
DFAIDX 1 w(K,I)=F2(I-1 )*DFAIDX 1 (K,I)+( 1 .-F2(I-1 ))*DFAIDX 1 (K,I-1) 
CONTINUE
DFAIDX 1 w(K, 1 )=DFAIDX 1 (K, 1)
CONTINUE 
DO 1780 K=2,M1-1 
DO 1785 1=2,M2-1
SFAI2= ANE*QU(K,I)*GHGP(K,I)*RRP(K,I)*DEITA(K)*DCETA(I) 
SFAI3=-BETs(K+l,I)*RRs(K+l,I)/GHGs(K+l,I)*DCETA(I)* 

DFAIDX2s(K+1,1)+ BETs(K,I)*RRs(K,I)/GHGs(K,I)* 
DCETA(I)*DFAIDX2s(K,I)-BETw(K,I+l)*RRw(K,I+l)/ 
GHGw(K,I+1) *DEIT A(K) * DFAIDX 1 w(K,I+1)+ BETw(K,I)*
RR w(K,I)/GHG w(K,I) *DEIT A(K) *DF AIDX1 w(K,I) 

SFAI4=AP(K,I)st:FAI(K,I)*(l.-ALFAFAI) 
SFAI(K,I)=SFAI2+SFAI3+SFAI4 
CONTINUE 
CONTINUE 
WRITE( *, *) 'HELLO'
RETURN
END

This subroutine solve algebraic equations by using ADI method

SUBROUTINE SOLVE(CS,CN,CW,CE,CP,FY,SFY,L)
INCLUDE ’PARAMETERS .F'
DIMENSION CS(M1,M2),CN(M1,M2),CW(M1,M2),CE(M1,M2),CP(M1,M2),
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FY(M 1 ,M2),SFY(M 1 ,M2),FYl (M1 ,M2),
A( 1000),B(1000),C( 1 0 0 0 ),D(1000),PP( 1000),Q( 1000)

NN=5
IF(ABS(REAL(L+1)).LT.0.1) NN=10 
DO 50 K=1,M1 
DO 55 1=1,M2 
FY1 (K,I)=FY (K,I)
CONTINUE 
CONTINUE 
DO 1000 N=1,NN 
DO 100 I=2,M2-1 
DO 110 K=2,M1-1 
A(K)=CP(K,I)
B(K)=CN(K,I)
C(K)=CS(K,I)
D(K)=CE(K,I) *FY (K,I+1 )+CW (K,I) *FY (K,I-1 )+SF Y (K,I) 
CONTINUE
D(2)=D(2)+C(2)*FY (2-1,1)
PP(2)=B(2)/A(2)
Q(2)=D(2)/A(2)
DO 120 K=2+1,M1-1
PP(K)=B (K)/(A(K)-C(K) *PP(K-1))
Q(K)=(D(K)+C(K)*Q(K-1 ))/(A(K)-C(It)*PP(K-1))
CONTINUE
DO 130 K=M 1-1,2,-1
FY 1 (K,I)=PP(K)*FY 1 (K+1,1)+Q(K)
CONTINUE 
CONTINUE 
DO 200 K=2,M1-1 
DO 210 1=2,M2-1 
A(I)=CP(K,I)
B(I)=CE(K,I)
C(I)=CW(IC,I)
D(I)=CS (K,I) *FY 1 (K-1,1)+CN(K,I)*FY 1 (K+1 J)+SFY (K,I) 
CONTINUE
D(2)=D(2)+C(2)*FY1(K,1)
PP(2)=B(2)/A(2)
Q(2)=D(2)/A(2)
DO 2201=3,M2-1
PP(I)=B (I)/( A(I)-C(I) *PP(I-1))
Q(I)=(D(I)+C(I)*Q(I-1))/(A(I)-C(I)*PP(I-1))
CONTINUE
DO 230 I=M2-1,2,-1
FY(K,I)=PP(I)!1:FY(K,I+1)h-Q(I)
CONTINUE
CONTINUE
CONTINUE
RETURN
END

this sub treat the boundary conditions
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SUBROUTINE BOUNDARY(FY,XX,NN,L)
INCLUDE 'PARAMETERS.P 
DIMENSION FY(M1 ,M2),XX(1000)

C expolation boundary 1
IF(L.EQ.l) THEN 
DO 100 1=1,M2
FY(1,I)=FY(3,I)-(FY(3,I)-FY(2,I))/(XX(3)-XX(2))*(XX(3)-XX(1))

100 CONTINUE
END IF

C expolation boundary 2
IF(L.EQ.2) THEN 
DO 200 1=1,M2
FY(M 1,1)=FY(M 1 -2,I)+(FY(M 1 -1,1)-FY(M 1 -2 ,1))

& /(XX(M 1 -1 )-XX(M 1 -2)) *(XX(M 1 )-XX(M 1 -2))
FY(M1,I)=FY(M1-1,I) 1

200 CONTINUE
ENDIF

C expolation boundary 3
IF(L.EQ.3) THEN 
DO 300 K=1,M1
FY(K,1)=FY(K,3)-(FY(K,3)-FY(K,2))/ (XX(3)-XX(2))*(XX(3)-XX(1))

300 CONTINUE
ENDIF

C expolation boundary 1
IF(L.EQ.4) THEN 
DO 400 IC=1,M1
FY (K,M2)=FY (K,M2-2)+(FY (K,M2-1 )-FY(K,M2-2))

& /(XX(M2-1 )-XX(M2-2))*(XX(M2)-XX(M2-2))
400 CONTINUE

END IF

C in case of 1 and 2 are adiabatic
IF(L.EQ.6 ) THEN 
DO 600 1=1 ,M2 
FY(1,I)=FY(2,I)
FY (M1,1)=FY (M1-1,1)

600 CONTINUE
ENDIF

C expolation boundary 4
IF(L.EQ.7) THEN 
DO 700 K=1,M1
FY (K,M2)=FY (K,M2-2)+(FY (K,M2-1 )-FY(K,M2-2))

& /(XX(M2-1 )-XX(M2-2)) *(XX(M2)-XX(M2-2))
700 CONTINUE

ENDIF

IF(L.EQ.8 ) THEN 
DO 800 1=1 ,M2 
FY(1,I)=FY(2,I)
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FY (M1,1)=FY (M1 -1,1) 
800 CONTINUE

END IF

RETURN
END

C
C This sub writes out the output results
C

SUBROUTINE OUTPUT 
INCLUDE 'PARAMETERS .F1 
INCLUDE 'COMMONBLOCK.F'

C IF YOU WANT TO RECOVER THE DIMENSIONS OF VARIABLES, YOU CAN
C DO IT HERE YOU CAN ALSO DO IT LATER IF YOU HAVE NOT THE
C "REF.MAYBE" VALUES IN THE ’PARAMETERS.F', THEN YOU SHOULD
C MAKE THE FOLLOWING"DO 100 — CONTINUE" AS COMMENTS
C

OPBN(UNIT=2,FILE-RESULTS .PLT')
WRITE(2,*)'TITLE=" 1
WRITE(2,*)’VARIABLES="X","Y")"U","V","P","T","QU","FAr',"EX","EY'" 
WRITE(2,*)’Zone T=,T ,,I=,IM2,\ J=',M1 
WRITE(2,15)((X(K,I),Y(K,I),U(K,I),V(K,I),P(K,I),T(KII),

& QU(K,I),FAI(K,I)JEX(K,I),EY(K,I),I=1,M2),K= 1 ,M 1)
CLOSE(2)

10 F0RMAT(1X,8E16,8)
15 FORMAT(lX,10el6.8)

RETURN
END
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