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Abstract

Knowledge Extraction (KE) is the automated extraction of facts from machine-readable text. KE is a
branch of Natural Language Processing (NLP). Within NLP, processing techniques may be deep or
shallow. Deep techniques are the traditional methods of NLP and computational linguistics, and are
aimed at language understanding. They are mostly domain independent techniques. Shallow techniques
are currently a focus of interest and may be defined as methods which achieve NLP goals without

recourse to attempts to understand fully the input text. These are mostly domain specific techniques.

Deep processing approaches are considered with respect to the problems they entail. These problems can
be both theoretical and practical. These and other difficulties are used to justify shallow attempts at NLP
tasks. After a review of several existing KE and similar systems this work describes the knowledge
extraction program developed by the author (KEP). KEP aims to be shallow and non domain specific,
and extracts factual knowledge from explanatory texts. A pattern-matching approach is used which cuts
fact-bearing sentences into fragments so that concepts and the facts relating to them can be extracted.
Various conceptual relations are searched for, including at present definitions (definitions of concepts),
hypernyms (parent classes of concepts), exemplifications (examples of concepts) and partitions (lists of

the component parts of a concept).

One of the motivating factors for doing this research was the desire to answer the question: how useful
can a specific set of shallow techniques be in a non domain specific NLP application? This is an
important question at a time when shallow techniques are viewed favourably by the NLP community. To
this end, the performance of KEP has been evaluated using the recall and precision measures. As a final
demonstration of the program’s abilities, KEP has also been run on a large part ofthe text from this work
to produce a first-cut glossary for that text. This glossary successfully captures the main concepts from

the text and provides useful explanations ofthem in many cases.

It is concluded that KEP is a working program which demonstrates the usefulness of shallow, non
domain specific methods, and which has opened up the possibilities of several new research directions,
including automatic index creation, student assignment marking, and information retrieval from the

Internet for the automatic construction of semantic-net knowledge bases.
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1. Introduction

1.1 Natural Language Processing and Knowledge Extraction

1.1.1 What is Knowledge Extraction?

Knowledge Extraction (KE) is the process of obtaining knowledge from text. Human readers are able to
perform KE almost effortlessly, but the term KE is used in this thesis to refer to KE by computer
program. This thesis discusses a novel KE approach, which has been realised as a computer program. In
general there are two basic approaches to the KE task: shallow and deep. Deep processing involves the
use of'the full range of techniques and resources available to the traditional natural language processing
(NLP) researcher, such as full parsing. Deep techniques intend to understand the input text. Shallow
processing on the other hand aims to achieve its goals in a faster, simpler manner, without the need for
the whole panoply of traditional techniques. Shallow approaches rarely attempt to understand the input
texts. These themes will be expanded upon shortly. For now, it is enough to state that the KE program
introduced in this thesis aims to be a shallow system. Furthermore, this system, which is called KEP (for
Knowledge Extraction Program), aims to be independent of the subject domain of the input text, i.e. it is

anon domain specific (NDS) system.

The research reported upon here explores the limits of a shallow non domain specific system. In
particular it is argued that the deep approach to NLP in general, and KE in particular, involves many
difficulties which make it worthwhile to try shallow approaches instead. One of the major goals of this
research is to see how far a specific set of shallow techniques can go for NDS knowledge extraction.
This entails building an actual computer program to test the proposed techniques. A second goal of the
research is to create a practical new program which could be incorporated into existing software tools
(such as word processors, WP) to perform KE in a useful way. For example, a completely automatic
glossary maker would be a useful WP feature. Such a feature does not currently form part of any
commercial WP package. The KEP system described in this thesis makes good progress on both of these

goals.

Knowledge extraction is an exciting and challenging new discipline. It is challenging because at first
sight it would seem that only deep methods could work, since it appears reasonable to assume that a KE
program must understand the text from which knowledge is to be extracted. Deep methods are difficult
and time consuming to develop, and so it would seem that KE must also be a difficult goal. (It is a theme
of this thesis that this is not necessarily the case.) KE is also exciting because, if successful KE programs
could indeed be developed, a whole range of genuinely useful new applications and features would arise.

For example, in the domain of word processing, such features include the completely automatic creation

10



of document indexes, glossaries and summaries. In an age when people are swamped with vast amounts
of text, much of which may be irrelevant to the reader’s needs or interests, programs which could cut
down this textual mountain to a readable hillock would be invaluable. This is particularly apposite in
these days of the Internet. Searches on the World Wide Web (WWW) often return thousands of
document titles, and although the search engines attempt to order these by relevance, such ordering is
based solely upon keyword matching at present. How much better it would be if the search engine could
return “more of the same” documents based upon the topic of the text, as indicated by the knowledge it

contains.

But KE possibilities are not limited merely to the domain of text processing. Many anticipated computer
systems require a knowledge of “what the master wants”. Thus video cassette recorders might tape those
programs which interest their owners, houses set die environmental conditions to suit the inhabitants,
cars adjust automatic-gearbox change-up points to suit the driving style of a particular driver etc. Where
the knowledge involved is written, a KE program may compare the user’s choices with the written
descriptions. Thus for example the VCR might compare TV programmes actually watched by its owner
with the descriptions attached to programmes in the electronic TV listings guide, and hence determine
which forthcoming programmes will probably be of interest to its owner, so that it may tape them

without being specifically instructed to do so.

The list of potential KE applications is huge and varied, and new ideas are added continuously. For
example, companies swamped with CVs in response to job advertisements need to pre-process them
automatically, specialised news agencies want to automatically prepare articles from newswire feeds,
administrators of databases of scientific papers require consistent abstracts from all of them, overloaded
university lecturers want systems to pre-mark hundreds of student essays, company executives want
accurate summaries of thick reports, historical researchers want systems to find articles on specific
incidents or themes, booksellers want to tell then customers about books which might interest them, and
direct-marketing organisations want to better target their mailshots in order to reduce waste and
minimise public hostility. KE systems may eventually provide solutions to all of these needs, and indeed

to many scenarios not yet envisaged. This is why they are exciting systems worth attempting.

1.1.2 Artificial Intelligence, Natural Language Processing and Knowledge
Extraction

Artificial Intelligence (Al) is an interdisciplinary subject which aims to build computer systems having
the appearance of intelligence. Al systems may be genuinely intelligent, or may merely appear to be
intelligent; either way, they display characteristics of an intelligent entity to some degree. Intelligence is
extremely difficult to define, but it is relatively easy to identify a system which is apparently intelligent
within its application domain. Intelligence is a property possessed by humans, and so Rich and Knight

(1991) have defined Al as “the study of how to make computers do things which, at the moment, people

1I



do better”. Rich and Knight admit that this definition is a deliberate attempt to sidestep die issue of
defining intelligence or artificial, and recognise that their definition is ephemeral (for it contains the
deictic phrase at the moment), but suggest that it “provides a good outline of what constitutes artificial
intelligence”. With a touch of humour, Rich and Knight point out that unlike other new fields such as
physics (which broke away from philosophy and grew as a separate area of endeavour) the field of AI as
defined above may one day, if it progresses well enough, reduce itself to the empty set. It is a strange
idea to have a field which shrinks as it progresses, so perhaps the definition given in the first sentence of
this paragraph is the better one, i.e. Al aims to build apparently intelligent systems. This definition
places its emphasis on the simulation of intelligent behaviour, rather than on questions of whether the Al

program is “really” intelligent or not.

Several traditionally separate academic fields are interested in intelligence, both human and otherwise,
and so Al practitioners have come to include linguists, psychologists and computer scientists, amongst
others. Linguists are involved because the use of human language is inseparably bound up with the
property of intelligence - it seems that in order to use language one needs to be intelligent, and yet
conversely it would appear that in order to be intelligent (at the human level) one needs to be able to use
some kind of language. Psychologists are interested in human behaviour, which is likewise inextricably
linked with the attribute of intelligence. Finally, computer scientists, engineers and ergonomists have
recently (within the last few decades) become interested in the idea of simulating human intelligence, for
both theoretical and practical reasons. The relatively new interdisciplinary field known as cognitive
science attracts all such interested parties. More recent joiners also include neuroscientists, who are
interested in how the human brain actually does what it does, and whether Al can help in the

understanding of this vastly complex organ.

It is a matter of great debate as to whether a computer simulation of some aspect of intelligence can say
anything about real human intelligence, but this is not a relevant topic for this thesis. Instead, this thesis
is concerned more with the possibility of simulating a specific intelligence-requiring task rather than in
debating whether such a simulation says anything about how a human thinks. The interest here lies with
one of the major sub-fields of'the Al discipline: language use. Natural Language Processing (NLP) is the
branch of AI which concerns itself with the processing of human languages (as opposed to computer
programming languages, which are un-natural in the sense that they were invented for a specific purpose,
that of communicating to (but not from) computers). Knowledge Extraction (KE), the major topic of this
thesis, is itself a branch of NLP, since it involves the extraction of facts from texts written in natural
languages. The field of NLP also includes endeavours such as natural language interfaces to computers

(NLI), and machine translation from one natural language to another (MT), both of which are motivated



not only by theoretical interest but also by the potentially huge practical benefits to be gained from

successful simulation of intelligent human behaviourl

NLP has always been one of the driving forces within Al but it has also captured public imagination to
an unusual degree. Beloved of science fiction writers, the ability of computers to understand English was
for a time regarded as something inevitable; in “the future” (it was thought) we will all be able to
converse freely with computers, freeing us all from the need to learn complex programming languages
and keyboarding skills. Alas, progress has not been anywhere near as straightforward as the enthusiasts
of'the fifties and sixties expected. The history ofthe discipline of Al in general is one of enormous initial
excitement and optimism followed by a growing realisation of the difficulties involved (together with a
corresponding rise in pessimism and a fall in funding), but leading eventually to a new pragmatism
concerning what is or may be achievable. A new sense of cautious optimism today pervades the
discipline. This story has been told admirably by various exponents of the field and by interested
journalists (see e.g. Crevier (1993), Rich and Knight (1991)) and will not therefore be expanded upon

here.

For the purposes ofthe research reported upon here, the NL” in NLP is the English language. However,
some of the earliest NLP programs were motivated by the desire to translate from one natural language
to another. The early experimenters in the MT field quickly came to realise that the problem was much
more difficult than most had envisaged. A significant subset of the problems which arose in MT also
exists for KE, and indeed for all NLP fields. Many of these problems arose because a deep processing
approach had been taken, either through necessity or choice. In a later section of this chapter some of
these problems will be discussed, with the aim of demonstrating that a deep approach should not be

taken if'there is the possibility ofusing a shallow method.

1.1.3 Concerning the Nature of Knowledge

1.1.3.1 Introduction to Knowledge Categorisation

What is this knowledge which KE aims to extract? Many Al practitioners deal with this question simply
by listing rhetorical questions such as “what do people have inside their heads when they know
something?”, rarely attempting to actually answer these questions (see e.g. Sowa (1984)). In the
following sections an attempt is made to discuss what knowledge might be, and to introduce different
ways of categorising knowledge. This is a difficult task. Although knowledge may come in different

types, detecting and categorising a particular piece of knowledge is not simple.

1The importance of simulation in Al is reflected in the title of an Al society, the SSAISB (Society for the Study of
Artificial Intelligence and the Simulation of Behaviour).



One valid starting point is to regard knowledge as being made up offacts, and this is the approach taken
below. Since this thesis is concerned with knowledge as it is held in texts, rather than with knowledge as
it might exist within a person’s head, the following discussions are biassed towards the former. This is a
reduced view of knowledge because there are undoubtedly many types of knowledge which cannot be
represented in textual form, such as the learned behaviour knowledge which allows a person to drive a
car without having to think consciously about every single movement of their limbs as they do so. This
thesis is not about such types of knowledge. It is about the type of knowledge which one human wishes
to convey to other humans via text. Thus facts, which are usually easily expressed in natural language,

are of prime interest.

What is afact? Philosophers distinguish facts from values, i.e. what is from what ought to be (Collins
Dictionary of Philosophy, Harper Collins (1990)). Thus philosophers view facts in a similar maimer to
the commonly held perception. For our purposes, a fact may be defined simply as a true statement about
the universe or its contents. (Rich and Knight (1991) use the phrase “truths in some relevant world”.) Al
is largely concerned with how facts can be represented (the issue of knowledge representation, or ICR).
Thus systems such as prepositional logic play a part in many Al systems; indeed, much of Al is
concerned with translation from one KR (e.g. natural language) to another (e.g. logical statements).
However, the medium of KR is fixed for the research reported upon in this thesis - it is English text.
Thus we require/a definition offact for the textual medium. The problem with the simple definition
given above is that it does not allow for statements which are believed to be true by an author and yet are
false in reality. Therefore, a better definition for a fact in text would be: a statement asserted to be true
by the author of'the text. The assertion need not be explicit (e.g. “I assert that the election is a lepton”)
but may exist implicitly within the statement (e.g. “Electrons are leptons.”). It is also not necessary for

the author to believe the statement to be true - merely to assert it.

This definition of a fact as found in text also allows us to bypass philosophical doubts concerning the
very existence of facts. Harre (1972) points out that the inductivist school's principle that science grows
as an accumulation of facts simply will not do, because "facts" are no such thing in reality: "a change in
theory can change seeming facts into falsehoods". A Kuhnian paradigm shift (Kuhn (1970)) may well
force us to re-interpret a "fact" from the superseded theory, even if the experimental evidence which
gave rise to that fact remains unchanged. Furthermore, if we accept the Popperian view that we can
never be one hundred percent certain that a theory is correct (as does the author of this thesis), then it
follows that there is always scope for "facts" to change (see Popper (1972)). But such problems do not
concern us here; as far as this work is concerned, a fact is something asserted to be true in a text.
Furthermore, we shall not become diverted at this point as to the various meanings attached to the word
"knowledge" by philosophers. (Interested readers are directed to a concise summary of the meanings of
this term in Collins Dictionary of Philosophy (1990)). We shall stick to our definition of knowledge as a

collection of facts.
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1.1.3.2 Knowledge vs. Information

If we start with the assumption that knowledge is an aggregate of facts as defined above, then it is useful
to ask whether all facts may be used. Not all types of fact may be useful, so we must ask what sorts of
fact are knowledge-like. There is an intuitive feeling that knowledge tends to be about “important”
issues, and also that it tends to be about “how things are”. Thus the types of fact involved in knowledge
should reflect these ideas. One way of allowing this is to consider only those facts which describe
longstanding situations. Such situations tend to reflect “how things are” because they exist over extended
timespans and so always return the same answer to the question “how are things?”. They also tend to
describe important issues, because situations which are stable over long periods oftime (e.g. comparable
with a human lifespan) must be taken into account in human affairs, i.e. they must be built into the

human world-view.

To this end, knowledge may be defined as a collection of facts which are true for extended timespans.
By this definition, the phrase atomic nuclei are composed ofprotons and neutrons contains knowledge.
As far as we know, this situation has always been true and it will always remain so. Similarly, PASCAL
is a high-level language is true, and has always been so since PASCAL was invented. By appending the
phrase ‘for extended timespans’ to ‘facts’ we rule outfleeting facts. In the sentence this package contains
three separate manuals there is a fact, but this would not generally be regarded as knowledge. The fact
given in this sentence is fleeting. What constitutes “fleeting” is of course subjective, but the above

statement does not seem to be something which could be regarded as true “for all time”.

This problem is linked to the issue of whether historical facts should be included in the definition. Most
people would argue that historical facts en masse constitute knowledge, even though they describe
fleeting events. However, even historical facts are true for extended timescales. The statement King
Harold died when hit in the eye by an arrow may describe a fleeting event, but it is nevertheless true for

all time in the sense that it will always be a true statement.

As mentioned above, there is also the underlying implication of some sense of importance relating to
those facts which are part of knowledge, and the ‘package’ sentence does not have this (unlike atomic
nuclei are composed o fprotons and neutrons). The fact held within this package contains three separate
manuals is really information rather than knowledge. Information is distinguished from knowledge in
that it is intended to be used within a short time after its reception. Information is conveyed for a specific
purpose. It can become out of date. It is not a tme-for-all-time fact which is worthy of inclusion in an

encyclopaedia. Information may arrive in textual form, or it may be numerical (“data”).

It is interesting to note that those practitioners who are attempting to build computer systems capable of

extracting facts from newswire streams and the like also use the word ‘information’ in this sense. Their



research area is usually known as IE, for information extraction. The facts they attempt to extract (with
some fair degree of success) relate to pieces of information such as “Henry Smith has just been
appointed the new chairman of company A” or “company A has just taken over company B”. Such
historical facts may be true for all time in the sense that once an event has happened it cannot un-happen,
but they are still fleeting in the sense that the information has a shelf-life (a period during which it is
useful information, i.e. a period during which the puipose of conveying the information is actionable by
the recipient). Thus, although the information may be very important to a particular group of people, it
generally does not convey those properties which would allow it to be classified as “part of all human

knowledge”.

Knowledge as defined above may be extremely specialised. Tins can sometimes make it seem more like
information than knowledge. In these cases, a reader may have difficulty in deciding whether a piece of
text contains information or whether it contains knowledge. For example, consider a computer program
which attempts KE in a restricted domain such as that of computer printers (e.g. Reimer (1989)). Such a
program might regard some statement about a specific printer as knowledge to be extracted and placed in
a knowledge base. (In one sense, anything placed in a knowledge base is by definition knowledge, but
this is merely a linguistic trick arising from the decision to call the fact-repository a ‘knowledge base’, so
we may ignore this argument.) In this domain, one might regard a statement such as the DMP-55 printer
allows full-colour A3 printing as information rather than as knowledge. Perhaps this feeling arises
because the printer itself has a finite product life, or perhaps it arises because computer printers are not
seen as fundamental to the way the world works. For whatever reason, it is not easy for a human to state

with certainty whether the ‘printer’ statement above contains knowledge or information.

In summary then, knowledge may be regarded as a collection of true-for-all-time facts, whereas
information comprises immediately useful facts or data which may becomefalse in the nearfuture. The
distinction between knowledge and information is not always clear cut even for a human reader, and so it
would not be surprising if a KE program had difficulty in distinguishing the two. Whether it is important
for a KE program to be able to distinguish knowledge from information will largely depend upon the
application. It is likely to be less of a critical issue for an automatic glossary maker, for example, than for

an automatic encyclopaedia constructor.

1.1.3.3 Episodic Knowledge

NLP research distinguishes a class of knowledge called episodic knowledge (see e.g. Burkert (1995)).
The term is actually used in two different ways as follows. Firstly, specific instances of concepts are
episodic. The phrase Fido is a dog demonstrates episodic knowledge, but dogs are mammals does not. In

other words, specific instances ofthings (such as dogs) are episodes rather than all-time facts.
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This type of episodic knowledge is not of use to all KE systems, such as those interested only in classes
of objects. For other KE systems, this kind of episodic knowledge is perfectly acceptable. For the latter,
a statement such as An example of a tall building is the Empire State Building would certainly be
regarded as a fact worth extracting, despite the point that this statement describes a specific instance of
the tail-building concept. KEP does attempt to extract such facts, since examples of classes are regarded

as useful facts.

More problematical, however, is the second mode of usage of the term episodic knowledge. This is
where the knowledge occurs as historicalfacts, i.e. facts describing past episodes. Such facts are often
the target of IE programs. Newswire reportage is not the only type of reporting, however. For example,
Bross, Shapiro and Anderson (1972) describe the scientific sublanguage used by surgeons to report upon
operations they have performed. These reports are essentially lists of descriptions of episodes, couched
in a concise and unambiguous (to surgeons) sublanguage. This sublanguage utilises a constrained
vocabulary, standard phrases used by all surgeons (e.g. many reports end with the standard phrase ‘the
patient left the operating theatre in good condition’) and certain standard syntactical features such as the
use of the passive voice. Specific syntaxes are also used to indicate causation and the order in which
events occurred, such as with the temporally-follows relation, which often uses the pattern with the
<nominalisation>, e.g. as in 'with the excision of the tumour...". The point here is that such texts do not
contain knowledge-type facts as defined above. Such texts are not explanatory; they are historical
narratives. By their very nature they will not contain many definitions, part-whole descriptions etc, since
experienced surgeons do not need to tell each other what a myocardial infarction is, or what the major
parts of the heart are. Such facts are already part of the surgeons’ knowledge. Swales (1981) has also
pointed out that texts such as these, which are “high brow” i.e. between experts, are less likely to contain
definitions than middle- or low-brow texts designed by experts for lower-status readers, and this
viewpoint is also supported by Darian (1981), who presents five levels of material based upon writer-

reader degrees of specialism.

Although such historical reports may be legitimate source texts for domain specific KE systems aiming
to summarise their contents, e.g. by constructing a standard abstract where textual gaps are filled from
sets of allowed role fillers (see e.g. Oakes and Paice (1998)), they are not generally useful for fact
extraction KE programs. Since the purpose of the research reported in this thesis is primarily to
investigate the possibility of creating an NDS fact extraction system, historical texts of the surgeons’

report type will not be used as input.

1.1.3.4 Generic vs. Specific Knowledge

The discussion above has already touched upon the distinction between individual objects and classes of
objects, i.e. between generic and specific items. It is usually the case that generic facts are more

knowledge-like than facts about specific single objects. For example, facts about cars in general are
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knowledge-like, as are facts about a specific type of car (such as the Ford Mondeo). One could imagine
such facts appearing in the glossary section of some document. On the other hand, facts about Mr.
Smith’s car, a specific instance of a car, are not likely to be useful in a glossary. Clearly the degree of
importance ascribed to an object matters; in a text about the SALT talks a specific (critical) meeting

between Russians and Americans might well be detailed in a glossary.

This issue is tied closely to that of information vs. knowledge, for specific-object facts tend to look more
like information and generic facts more like knowledge, as defined above. Thus although an IE system

might wish to extract specific-object related facts, KE systems in general will not.

1.1.3.5 Declarative vs. Procedural Knowledge

A further division in types of knowledge has been given by Skuce et al. (1985). Here the distinction is
made between declarative and procedural knowledge. The former is equivalent to factual knowledge,
but the latter concerns knowledge of procedures. Thus the bracket is held on by a nut is declarative, but

to remove the nut, perform steps 1- 3 asfollows: 1) ... is procedural.

Procedural knowledge is less likely to be present within a single sentence. It is not the target of the
current research, since the inclusion of procedural KE would broaden the attempted KE task
unacceptably. Procedural BCE is however an established research field; e.g. automatic construction and
understanding of instruction manuals are established areas of research (see e.g. Vander Linden and

Martin (1995), Sutcliffe et al. (1995), Skuce et al. (1995)).

1.1.3.6 General Knowledge and World Knowledge

However knowledge is defined and categorised, it is certainly true that all human beings hold large
amounts of it in their heads. Much of this knowledge is applicable only to certain tasks or domains
(‘specialist knowledge’, or domain-specific knowledge), and much is regarded as ‘general knowledge’.
In human terms, ‘general knowledge’ usually means “facts which most reasonably educated people have
at their disposal”, such as the names of capital cities, the names of famous people, historical facts, names

oftypes of animals etc.

In NLP terminology, knowledge about the world in general is termed World Knowledge (WK). WK is
deemed to be essential for good NLP programs, and this is considered in the following section. It is
worth noting, however, that WK as used in NLP programs is not quite the same thing as traditional
human general knowledge. WK includes facts about the world which are so obvious that a human would
not even bother to classify them as general knowledge. Such facts are often about physical laws, as

evidenced in our four-dimensional environment. Some examples of such facts will be presented shortly.
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In the discussions which follow, the term WK will be used to refer to both knowledge about the world

required by a program, and knowledge about the world, of any sort, held by a human.

1.1.3.7 Knowledge and KE Programs

It is paramount that a developer of a KE program has a clear idea of the type(s) of knowledge which that
program will extract. Since knowledge as defined earlier is composed of facts, then it is likely that KE
programs will attempt to extract individual facts from the input texts. As has been discussed above, the
types of fact to be extracted are likely to depend upon the KE application. This thesis concerns a specific
KE application (chosen for its interest, challenge, potential usefulness and well-defined boundaries) and
so the discussion will now be confined to that approach. Since the major application chosen in the
research reported here is the automatic construction of a glossary, then facts which might appear in a

glossary are the target facts. What sort of facts might these be?

Chambers English Dictionay (1988 edition, W. R. Chambers Ltd. and Cambridge University Press)
defines a glossary as “a collection of glosses: a partial dictionary for a special purpose.” A gloss is
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defined as “...an explanation... a collection of explanations of words” (author’s italics). The words
which are to be explained clearly require explanation, e.g. because they are specialist or technical words
within the domain covered by the glossary. Thus they are ferms. Therefore glossaries comprise lists of
terms present in the text, together with explanations of those terms. Thus a fact in a glossary is a term-
explanation pair. In this thesis the word elucidation is preferred to ‘explanation’, since it is broader in
scope (an explanation tends to say “what something is”, whereas an elucidation may additionally give
facts relating to the term or characteristic of it). Examination of glossaries from a variety of documents
show that elucidations include definitions of the term, examples of the concept represented by the term,
class-inclusion information (e.g. that the term is a type of something), parts-and-pieces information,
characteristics of the concept represented by the teim, alternative names for it, what it is usedfor, what
causes it, what it is made from, and so forth. Thus these pieces of knowledge relating to the term are the

ones which a glossary maker needs to extract.

Note that the terms given in a glossary represent concepts (tangible and intangible things) in the text.
More than one term may represent the same concept (since there may be alternative names for it). Thus
the elucidations in a glossary are actually for the underlying concept, or “abstraction”, which the term
represents. The different types of elucidation are usually called relations, and so the glossary comprises
instances of conceptual relations. These conceptual relations will be introduced and discussed in a

forthcoming chapter.

It is clear that the extraction of a term-elucidation pair must involve two steps: firstly, terms must be

identified from the text, and secondly the relation between that term and its elucidation must be detected.



The former is an emerging research field (terminology extraction), but the latter appears to be largely
confined to linguistic discussions in books and papers. In Chapter 4 of this thesis a detailed description is

given ofhow KEP approaches these tasks.

Having introduced the types of knowledge that KE programs may need to extract, and more specifically
the types extracted by a glossary maker, it is now necessary to return to a more general discussion in

order to consider how this might be done.

1.1.4 Text Understanding and World Knowledge

The process of interpreting a printed text in the light of the reader’s World Knowledge (WK), i.e. the
process of extracting meaning from an utterance or text, is called understanding and has been discussed
by NLP researchers such as Schank, Wilks and others (see e.g. Schank and Abelson (1977), Wilks
(1975)). It is understanding which distinguishes deep approaches. The understanding process involves
both semantic and pragmatic aspects. The former deals with the possible meanings of an utterance, and
the latter feeds WK into this process and thus aids in the selection of the correct meaning. This process
can be illustrated with an example. In a sentence such as A/l the bananas are blue! the semantic content
is in contradiction to the pragmatic knowledge that (unless you have painted them etc) no bananas are
this colour. The conflict with reader-WK created by the above sentence would cause a human reader to
search the text (or the burgeoning knowledge-construct already built in the mind of the reader at this
point - see e.g. Kieras (1982)) for other information which might explain the semantic content of the
unexpected sentence, i.e. for other information to aid understanding. This illustrates the need for WK in

the understanding process.

The traditional route to text understanding within the field of computational linguistics has been one
involving a linear progression from lexical aspects of the text, through to syntax, to semantics, and
thence to pragmatics. Grishman has provided an excellent introduction to these separate aspects from the
viewpoint of a computational linguist (Grishman (1986)), and Allen discusses them from the NLP
practitioner’s perspective (Allen (1995)). We shall see, however, that a strict linear succession of
processing stages as listed above is not sufficient for full text understanding. As has been hinted at
above, it is highly unlikely that a human reader performs grammatical processing, then semantic
processing, and then pragmatic processing in a sequential manner. It is more likely that all three levels
are performed simultaneously, in the presence of a mental representation of “the story so far” constructed
as a text is read. This theme is returned to shortly, when the difficulties of simulating simultaneity in a
computer program are considered. This is just one of the difficulties of doing deep NLP. This and other

obstacles are considered next.
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1.2 Problems with the Deep Approach

1.21 Introduction

The purpose of'this section is to introduce important issues involved in deep approaches to NLP, and by
inference to deep KE. This will by necessity involve some description of deep techniques, such as that of
automatic parsing. The difficulties encountered in such techniques will be examined. The purpose of this
exercise is to demonstrate that the deep approach in general is afflicted with serious practical and
theoretical problems not yet completely solved. The implication is that shallow techniques should be

used wherever feasible.

1.2.2 The Problem of Message Information Content

Utterances, either spoken or written, do not contain all the information that they convey. This truth was
recognised by early workers such as Shannon and Hartley (Shannon (1948), Hartley (1928)), working in
the domain of information theory (sometimes called communication theory). Most NLP researchers re-
discover this fact for themselves when they first attempt KE or MU. Human communication relies upon
the vast reserves of WK that all adult people have access to, and this WK is used to extract the intended
meaning from an utterance. Spoken or written messages contain omissions, because this makes them
much shorter than they would be if all the relevant factors were described in detail. The recipient’s WK
is compared with or added to the message content, so that the gaps present in the message may be

plugged (McDonald (1992)).

Furthermore, in the case of dialogues, utterances must be interpreted in the light of previous speech acts
made since the start of the conversation, so knowledge of discourse conventions is needed. (Grammatical
(syntactical) and lexical (vocabulary) knowledge are of course also required, being those parts of human
knowledge traditionally regarded as language skills.) Discourse analysis is an important field because the
meaning of an utterance depends upon its place in the discourse. However, it is not possible to go into it

here (for an introduction see e.g. Brown and Yule (1983)).

A deep NLP system must be able to spot points where WK is required to complete the information
content of the message, and then it must actually provide that extra knowledge and perform the addition
to create die effect desired by the sender of the message. Thus a deep NLP system must include a reserve
of WK, as well as a mechanism for applying it. However, this mechanism cannot be something as simple
as a call to a function such as “get missing knowledge”, because it would be impossible to know when to
call that function. In a sense the mechanism must be active all the time, because it is needed to spot the
gaps as well as to fill them. This “priming” function is difficult to simulate in a computer program,
although some ideas have been put forward (see e.g. Hapeshi (1994), although this paper is concerned

more with lexical priming than with semantic priming).



The need for WK and ways of using it are thus critical for deep NLP systems. However, even if such
problems were to be solved, there would still remain another major problem related to WK use,

described in the next section.

1.2.3 The Problem of KB Size

As has been argued above, no general-purpose NLP system which attempts to extract meaning from an
utterance can be effective without some way of holding the necessary WK. The entity used to hold
knowledge is usually referred to as a Knowledge Base (KB). We may ignore for now the various ways in
which KBs can be structured, because these are irrelevant to the problem under consideration. The
problem is that the KB needs to be huge. For example, Lenat’s CYC project (Lenat (1995a), Lenat
(1995b), Lenat and Guha (1990)) is an attempt to produce a useful KB for NLP applications. It has been
running for over a decade and still has yet to reach the point at which it might be said to contain a useful
amount of WK (for general purpose NLP). Much of the problem is caused by the need to encode
“obvious” facts, such as the fact that we cannot remember things that have not yet occurred, or that once
a person dies he stays dead, or that things fall downwards etc. It is remarkably easy for an NLP
developer to overlook such WK, since humans take such knowledge for granted. (Recall the comments
made previously concerning knowledge which is too obvious even to be classed as ‘general

knowledge’.)

It is hardly surprising that many years of work have been needed to build the CYC knowledge base;
infants require many years of intense interaction with knowledgeable adults and their environment in
order to reach similar levels of WK, much of this time being spent in deliberate attempts by mature
humans to build up the new person’s KB (i.e. in school and at college), but most of it spent in self-
learning from the external world and objects in it. Young humans clearly maintain an intense energy to
build up then knowledge bases - as evidenced for example by exchanges between the young child and
the adult which start with a ‘Why...?” question and continue with a string of secondary “Why?” questions.
This phase is possible only after the language learning phase has reached a certain maturity, but it is
difficult and possibly erroneous to separate these two types of knowledge acquisition. They are both
large and fascinating subjects in their own right, although it is not possible to go into them here.
(Interested readers should consult e.g. Pinker (1994) for a populist account of language acquisition, and

Karmiloff-Smith (1992) for an account of mental development in the child.)

In conclusion, the provision of adequate WK represents an enormous practical problem for all NLP
researchers who are not taking a shallow approach to their tasks. It may be, of course, that this problem
essentially only needs to be solved once. If this is the case, then the CYC project and others like it may
one day be regarded as worth the huge investment in time, effort and money. It remains to be seen,

however, how long this “one-off’ solution will take to create.



1.2.4 Problems of Parsing

A non-trivial obstacle to the provision of deep NLP concerns the grammatical function (syntactical
processing) required. NLP uses parsers because the meaning of a sentence is dependent not only upon
the actual words used but also upon the way in which they are ordered and grouped together. Traditional
grammar books exist, as constructed by linguists and grammarians (for example Quirk et al. (1985)).
However, it is difficult to translate such knowledge into a form suitable for a parsing program. The
difficulties relate both to theoretical and practical matters. On the theoretical side, the grammars
described may not be complete, in the sense that they omit certain constructions or combinations of
features. Practically, it requires much effort to extract the rules given in a grammar book, convert them

into a usable form, and insert them into a computer program.

In order to better understand these problems of parsing, it is necessary to describe a parsing technique.
The description which follows will be kept as short and as simple as possible whilst still allowing the

essential points to be made.

Many parsers, notably those referred to as rule-based parsers, use a set of production rules to analyse
sentences. These rules define the set of allowed sentence forms for a particular language by permitting
repeated replacement of sentence elements. The application of a production rule is called a production.
For example, if we use the symbol S for sentence, NP for noun phrase, VP for verb phrase, N for noun,
V for verb, ADIJ for adjective, and ADV for adverb, then a grammar for a language might be specified
as:

S > NP VP

NP >N

NP > ADJN

VP >V

VP >V ADV
In the above, the pattern on the left of the re-write rule may be replaced by that to the right of the arrow.
Then given a list of terminal symbols (instances of nouns, verbs, etc, such as dogs, attack etc) sentences
such as Fierce dogs attackferociously may be constructed. Figure 1 shows a parse tree for this sentence,
which may be regarded as a diagram showing the grammatical structure of the sentence, or alternatively
as a pictorial way of showing how the production rules have been applied (S in the top row is replaced
by NP and VP in the second row, then NP in the second row is replaced by ADJ and N in the third row,
and then VP in the second row is replaced by V and ADV in the third row).
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NP VP
/
ADJ N \% ADV
Fierce dogs attack  ferociously

Figure 1. A simple parse tree

Grammars utilising production rules are known as generative grammars because the rules show how to
generate all the legal (grammatical) sentences of the language. However, in many NLP applications the
task is not to generate sentences, because they are already there. The task is to check that the presented
sentences are indeed legal, i.e. to parse them. This involves finding a parse tree for the sentence allowed
by the set of productions. One of the most successful algorithms for doing this is embodied in the chart
parser, a parser which finds a path to any correct parse (and there may be several for a single sentence)
in an efficient manner which re-uses partial parses made along paths ultimately found to lead nowhere
(e.g. Winograd (1983)). It is not necessary for the purposes of this discussion to detail this further;
interested readers may consult Allen (1995) for a full description of the general principles of the chart

parser.

However, the problem for NLP is that it is very difficult to construct a complete set of production rules.
Sets of production rules do allow infinite grammars (grammars in which the number of possible
sentences is infinite) via recursion, but in practice it is difficult to write down all the rules needed to
parse real texts. This problem grows more acute as the number of non-terminal symbols (N, NP, V, VP
etc) increases. The example given above defines a very small (finite) grammar based on only a handful
of tokens. For a real natural language such as English, any meaningful parse will require much finer
subdivisions (e.g. to distinguish between plural nouns and singular nouns, or common nouns and proper
nouns, or count nouns and mass nouns etc) and large numbers of production rules (usually thousands)
utilising these symbols. Clearly, the number of rules is dependent upon the number of different symbols
employed, because if a category such as ‘noun’ is further sub-divided into ‘count noun’ and ‘mass noun’,
the number ofrules will approximately double. In addition, the lexicon which holds the terminal symbols
must categorise them using the enlarged symbol set, so that many terminals will have multiple senses.
There is therefore a combinatorial explosion in the number of possible parses of a sentence which have
to be tested. Due to the need for a very long list ofrules, it is not uncommon for parsers to be unable to
construct valid parses for a large percentage of the input sentences; many sentences are unparsable not
because they are ungrammatical, but simply because the relevant production rules and/or non-terminal
symbols have not been provided. Furthermore, many parses fail due to an inadequate lexicon,

neologisms (recently coined words) being a particular problem.
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The above describes failures to provide any parses for a sentence, but the opposite problem often occurs:
too many parses for those sentences which do get parsed. Even where the parser succeeds in creating
parses for a sentence, the output may not in practice be useful, due to very large numbers of possible
parses (e.g. hundreds) caused by multiple word senses multiplying up. This is an inevitable consequence
where a language containing a high percentage of polysemous words (in the same part of speech
category) is processed by a purely syntactic parser as described above. For example, in the sentence We
went to the bank to get some cash a purely syntactic parser would provide two parses identical save for
the different senses of the word bank (financial institution, side of a river). Furthermore, in addition to
the problem of multiple word senses, some whole sentences may be inherently structurally ambiguous,
and this also multiplies up the total number of possible parses. Sentences such as Put the block on the
box on the table illustrate this (see Church and Patil (1982) for a discussion on this problem.) In both
such types of ambiguity, extra semantic processing is required in order to obtain the single correct parse,
possibly including knowledge of the discourse preceding the sentence being parsed, or even of some

extralinguistic situation described by the text.

Grammar Type Name

0 Unrestricted Phrase Structure
1 Context Sensitive

2 Context Free

3 Regular (Finite State)

Table 1. The Chomsky Hierarchy

Grammatical formalisms have been categorised by linguists and computer theorists. The Chomsky
Hierarchy categorises grammars as being of four types, as listed in Table 1. In the Chomsky hierarchy,
natural languages correspond to Type 0 grammars. The context free grammar (CFG) is perhaps the
grammar type which has most often been used to underpin parsers. Clearly, then, there is also a
theoretical mismatch between the abilities of most parsers and real human language. This was recognised
as long ago as 1979, when Gross launched a swingeing attack on the generative approach (Gross
(1979)). Gross described the failure of an attempt to construct a generative grammar of French with a
coverage comparable to traditional grammars, and as a result questioned the validity of the whole

generative grammar approach.

The KEP system as described in Chapter 4 does not in fact employ full parsing of the kind described
above, and for this reason this topic will not be further detailed. However, deep processing systems do
usually parse text and so readers interested in delving further into this topic should consult introductory
texts such as Grishman (1986) (which introduces the Chomsky hierarchy from the viewpoint of the
computational linguist) or Cohen (1986) (which introduces the Chomsky hierarchy from the viewpoint

of computer science).



1.2.5 The Need for Integration

The problems described above cannot be tackled in isolation from each other if full text understanding is
to be achieved. Communication of information must be employed between all levels (lexical, syntactic,
semantic, pragmatic) to ensure correct understanding. For example, in the sentence I went to the bank to
get some cash the word bank is used. In isolation, this word has at least two possible meanings (financial
institution or the side of a river) and so at the lexical level the sentence is ambiguous. In fact, the
sentence is still ambiguous at the semantic level, since it is conceivable that a large pile of money has
been stored on a river bank for some reason. To disambiguate the sentence, pragmatic-level knowledge
is required (financial institutions usually have cash, but river banks rarely do). This knowledge is
communicated to the earlier levels so that the correct sense of bank is selected in the parse. Note also that
it may be that at an even higher level, that of the discourse, information may need to be extracted. If the
sentence was part of a text describing a shipwreck in which banknotes were spread out on the river bank

to dry off, then clearly this would override the usual pragmatic interpretation.

Thus a strict linear progression of processing from the lexical through to the discourse level will not
work for successful NL understanding. Sparck Jones (1983) has illustrated this point in a discussion on
the problems of parsing compound nouns, such as park border plants, where there are issues such as
bracketing (is it park (border plants) or (park border) plants ?7), lexical disambiguation (what sense of
border ?) and meaning characterisation (is a border plant one that is actually in a border, or one that is
for a border?). After an examination of the processing and information required at each level, Sparck
Jones concludes that “there are problems about the conventional natural language program in which the
contents of clearly demarcated information boxes labelled syntax, semantics, and pragmatics are applied
in successive processing steps”. In fact, Sparck Jones goes further and suggests that even a staged
processor which passes on all possibilities from one stage to the next may not work on practical grounds,
because “in the limit (it may be) so inconvenient as to undermine the idea of effective processing on

which the staged processing is based” (italicised text is the author’s addition).

The need for communication of information between levels is greater for some applications than others,
for example in systems where there are actually more levels. Thus in MT and in handwriting recognition
the backwards communication must be extended even further backwards to allow word boundaries to be
detected correctly and individual words to be correctly identified. For example, Rose and Evett (1992)
have shown how semantic knowledge may be used in handwritten word recognition. However, the KE
practitioner is at least fortunate in that his starting point (see next section) is often the end result of
another discipline’s work, such as that of handwriting recognition, where the desired output would be a

machine-readable text.
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Sparck Jones (1983) describes a system in which all syntactic processing is finished before semantic
processing starts, and all semantic processing is finished before pragmatic processing starts. An
alternative method would be to allow syntactic processing to be paused until information had been
passed back to it from the semantic and higher levels, and so on. Allowing all information from all levels
to be available at any level is in effect simultaneous processing of all levels. But even this will present
problems for the coder, since in any sequential program it will be difficult to decide upon the correct
order ofprocessing. The conclusion arrived at by Sparck Jones is that “concentrating on sentence parsing

in its own right is of limited utility”.

1.3 The Starting Point for Textual Knowledge Extraction

For the KE task discussed here, the input resource is text in machine readable form. Secondly, by choice
this text is explanatory in nature, and may be regarded as the written equivalent of a single speaker
lecturing upon some topic. Thus certain difficulties inherent in speech recognition and dialogue do not
arise. The input text is also assumed to be free from spelling mistakes and grammatically correct. In
addition it is assumed to be coherent; in other words, it is assumed to be a fext, and not merely a jumble
of unconnected sentences (see Halliday and Hasan (1976) for an extended discussion on what makes a
text a text). Despite this advanced starting point, the issues discussed above must be resolved if deep text
KE is to be performed. A lexicon will be required. The difficulties of providing reliable parses for all the
sentences as described above exist. For full text understanding, WK in its widest sense is required. Also,
anaphoric devices within text must be detected and resolved. Even with all these items in place,

decisions will have to be made regarding what to extract.

Note that the termful/ understanding has been used above; as has already been suggested, it may well be
that a deep understanding of the text is not in fact necessary for the intended application of the output
knowledge. A shallow processing approach might prove feasible, in which some or all of the processes
described in the preceding sections may be avoided or omitted. These choices will be discussed in the
following chapter. It is safe to say that all current successful IE/KE systems rely upon aspects peculiar to
their applications in order to reduce the amount of processing required. KE from text is hard. It is not
easy to say just how difficult it is, but Ristad (1993) has argued that the NLP task in its deepest sense is
NP-complete (nondeterministic polynomial complete)2 i.e. is not solvable in a time which grows only
polynomially with the problem size (but which almost certainly requires a time which grows
exponentially with problem size - see Aho, Hopcroft and Ullman (1974)). Therefore any ways of

making the problem easier are welcome.

2 Ristad’s argument is vague, and it is not clear exactly what he meant by this assertion; it is repeated here merely as
supporting evidence for the hypothesis that doing deep NLP is difficult. However, the author ofthis thesis found
Ristad’s book to be unsatisfying.
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1.4 Motivation for Reported Work

141 The Intelligent Recognition Systems Group

The Intelligent Recognition Systems group (IRSG) is a research group within the Department of
Computing at Nottingham Trent University. Members of this group are interested in NLP systems
capable of recognising and processing text at various levels. These range from handwriting recognition
to fact recognition (the subject of this research). In addition the group contains researchers interested in
computer aided learning (CAL) from the viewpoints of both the students and the teachers. Thus a wide
range of pedagogical applications are also investigated. The research reported upon here was initially
motivated by the desire to automate certain aspects of examination marking, but recent developments
have increased the interest in providing knowledge for tutoring systems, and in extracting knowledge for

automatic creation of glossaries.

1.4.2 Motivation for doing Knowledge Extraction

It is useful to ask the question: why is KE worth doing? It has already been argued that the KE task is
both challenging and exciting (section 1.1.1), and some practical benefits arising from successful KE
have been suggested. However, in addition to purely practical benefits, KE systems are also of
theoretical interest to linguists and epistemologists, who are interested in the ways in which knowledge is
expressed in language and the nature of that knowledge respectively. Therefore the interest in KE

systems is not restricted to potential applications.

KE systems are also of interest to the NLP practitioner, because successful knowledge extraction from
text involves most of the major difficulties of doing NLP. KE thus forms an ideal sub-domain of NLP in
which various techniques and approaches can be tried out. It also has the advantage ofbeing a domain in
which results can be compared with human performances in a relatively simple manner, so that the
degree of success of KE systems may be measured. In Chapter 5 the performance of the KEP program

(developed to test a novel pattern-matching approach) is evaluated in this maimer.

In the following paragraphs, some of the applications for KE mentioned earlier are considered in more
detail. One of these, automatic glossary construction, is the KE task chosen for the research reported in

this thesis. The motivation for choosing this particular application is discussed in section 1.4.5.

1.4.3 Automatic Marking Systems

There have been several attempts to automate the marking of student assignments (such as essays and
collections of short paragraphs of text or single-sentence answers). For example, Lou and Foxley (1994)
have developed the STAMS system, which aims to assess the semantic content of students’ NL

responses by comparing teacher and student answers in a fuzzy manner based upon online thesaural
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entries. This is an area of increasing interest, particularly in the UK following the recent expansion of the
higher education sector, which has resulted in a tendency towards higher student-staffratios and hence

increasing academic staff workloads.

One prototype examination marking system is that of Allott, Fazackerley and Halstead (1994), which
uses an activation-passing network to mark single-sentence examination/test answers as correct or
incorrect. The approach taken ignores syntactical information in the answers, which at first may sound
surprising, but which due to tire highly-constrained nature of the subject domain (Computer Science,
CS), turns out to be feasible. The method is to look for combinations of key words to trigger nodes in a
hierarchical structure called an activation passing network (APN). A node at a given point in the network
is activated if the sum ofits inputs exceeds a preset activation potential, whereupon it produces output(s)
which are input(s) to higher-level nodes. For example, an evidential node might be triggered by the
presence of a particular word or one of its synonyms. The correctness of the whole student response is
determined by whether the single top-level node is activated or not. The APN used to mark student
responses to a given question acts as the knowledge base for that question; each question has its own
distinct APN. These APNs are presently designed and input by the human examiner. The question

therefore arises as to how far the production of APNs could be automated, using KE techniques.

Although the research direction taken by the author does not directly answer the above question, it may
ultimately aid in the automatic marking process. For example, where students are asked to give examples
of concepts, the list of “correct” examples may be collected automatically from text using a KE program.

This list might then be used to construct the APN used to mark student responses.

1.4.4 Automatic Teaching and Learning Systems

CAL systems have a long and distinguished history, extending back almost as far as the computer itself.
However it is only recently that the very large storage capacities required for effective multimedia
teaching systems have become a reality. In addition, research into the ways in which people learn and
how these apply to computerised systems is now mature. Thus the stage is at last set for really effective

teaching systems which are technically feasible, affordable, effective, and above all user-friendly.

Developed within the IRSG, the HypeLab/HyperTutor system (Edwards, Powell and Palmer-Brown
(1995)) utilises a hypertext knowledge base and a windowed front end with a semi-NL interface (Long,
Powell and Palmer-Brown (1995)) to provide a complete CAL system for any subject domain. This
product is discussed further in section 6.3.5, but the motivating factor here is the use ofa semantic net as
a KB within HypeLab/HyperTutor. Within this semantic net, nodes hold concepts, which are joined by

various link types indicating specific conceptual relations, such as the partition relation (has part link
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type). Since KEP aims to extract this sort of conceptual knowledge, the possibility of automatically

populating HyperTutor’s KB arises. This subject is further discussed in a Chapter 6.

1.4.5 Automatic Glossary Creation

The word processor (WP) is today an essential part of office life. Leading WP packages such as
Microsoft Word and Corel WordPerfect have attempted to provide a comprehensive list of features so
that the user may produce documents in a variety of styles with a minimum of effort. Unfortunately, the
plethora of features available may result in incomplete understanding of the product by the user. The WP
manufacturers have recognised this problem and traditionally have provided ‘help’ functions within the
software. More recently, intelligent software agents have been enlisted in order to second-guess the

intentions of the user who finds himselfin difficulty, and intervene when appropriate.

In addition, many WP features have been automated to a certain degree; for example, spelling may be
checked continuously in the latest versions of the leading packages. Thus the user need not perform a
distinct spell-check operation at the end of typing. Other features are less well advanced. For example,
index creation relies upon the user indicating in some way which phrases are to be placed in the index
(which is then created automatically, involving the page numbers on which the selected phrases appear).
However, the user is still required to mark phrases for index inclusion, a time-consuming task. Similar
comments apply for glossary and bibliography creation. It would be much easier for the user if there
were a button/icon for completely automatic index/glossary creation. Clicking this button would create
an entire index or glossary for the current document, without the need for the user to specify which
phrases were to be included. Clearly this goal is not achievable unless the WP software is capable of

producing a list of index terms or glossary terms without human intervention.

Automatic glossary creation was chosen for the subject of the research reported here. As mentioned
earlier, it is a challenging area offering great practical rewards whilst allowing for the possibility of
interesting insights into how one should do NLP. It is a relatively self-contained task that might be
achieved through either deep or shallow methods. Attempting to do it in a shallow way might reveal
important results in a field which in many ways is a microcosm of NLP in general. For example, it might
allow one to answer the question Isfull text understanding necessary! Questions might also be answered

concerning how easy it is to make non domain specific systems.

Automatic glossary creation is not a trivial task. It is sufficiently difficult to present a real challenge in a
way which, say, automatic index creation does not. Both glossary making and index compilation require
the collection of technical or specialist terms from the text, but a glossary has the extra dimension of
requiring explanations and elucidations of such terms. Intuitively, this is the more difficult part. These

elucidations were introduced earlier, and include such things as definitions and hypernyms. ldentifying a

30



concept in a text and a definition of it sounds like ajob for a deep system. The challenge ofthis research
was to do it using a shallow system. Furthermore, this challenge was amplified by the attempt to create a
domain-independent system. As will be described in Chapter 4, the challenge was met using a shallow
pattern-matching approach which uses no external knowledge resources. The reasons for choosing a

pattern-matching approach are developed in that chapter.

Automatic acquisition of ftechnical terms (TT) is an established field (usually called ferminology
extraction) which has been driven in part by the desire to automatically extract index terms. A brief
survey based on some recent papers is given later (in Chapter 5). The KEP program contains a TT
acquisition function based upon the scheme of Justeson and Katz (1995), modified to use part-of-speech
tagging information, and with extra design features intended to detect single-word terms. (This is
described in detail in Chapter 4). The TT acquisition function in KEP is combined with a novel acronym
extractor, with KEP’s pattern-matching conceptual relation extractors, and with linking, cross-
referencing and ordering code, to produce a glossary output. The process of creating the glossary is
indeed completely automatic, but, as will be seen later, the glossary so produced requires manual post-
editing. However, even though post-editing is required in order to produce a complete and error-free
glossary, the effort required is still lower than that needed for systems requiring manual TT

identification.

1.5 NLP and Linguistics

Natural Language Processing is a branch of AL, and that means computers and computer programs.
However, the discipline of linguistics has been around for many centuries in one form or another, and
obviously predates the computer. It is worth making some comments regarding the relationship between
NLP and linguistics, not least because the empirical discipline of corpus linguistics is of direct relevance

to the reported research.

1.5.1 Traditional Linguistics

The discipline of linguistics has a long and distinguished past, stretching back to the ancient Greek
philosophers, such as Plato (who in his Theory ofForms was interested in the connection between words
and the concepts they represent). However, it is not the intention of this section to relate a histoiy of this
subject, for it is modern linguistics which is of relevance here. Thus we shall skip over almost the entire
history of this subject and emerge into the mid twentieth century. The most important event to be aware
of for the purposes of the following discussions is the publication in 1957 of Noam Chomsky’s book
Syntactic Structures (Chomsky (1957)), which marked a watershed in the relationship between
linguistics and other disciplines such as psychology and philosophy. Chomsky’s ideas have been
constantly developing since this time, but his influence has resulted in a new flowering of linguistic

studies.
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The central idea in Chomsky’s work has been that of innateness, the ability of humans to learn certain
types of language. The idea that humans learn only a small subset of all the imaginable language types is
a powerful one. The suggestion is that we do in fact all speak the same basic language, with grammatical
differences merely being switch settings set at an early age, and of course with vocabulary differences.
For example, one switch might be the function-order switch which determines the basic pattern of
subject, object and verb in a sentence (in English this is set to SVO, but for example in Welsh it is VSO).
This suggestion leads to the ideas of deep structures and surface structures, in which the latter are
alternative ways of expressing the former. Surface structures correspond to different parse trees for
utterances with the same meanings, such as the transformation from active to passive voice. It is
impossible to encompass this huge subject here, and interested readers should consult one of the many

introductory books on modem linguistics (e.g. Smith and Wilson (1990), Pinker (1994)).

Within modern linguistics various sub-fields have arisen, all of them influenced to a greater or lesser
degree by the ideas of the Chomskyan revolution. These sub-disciplines include the study of language
acquisition, language variation (geographical), language change (historical), semantics, pragmatics, and
sociolinguistics. Linguists even study traditional schoolbook grammar. It is the latter which provides the
first link to computer science and NLP. The early computer programming languages required formal
definitions of allowed syntax, and hence methods of expressing grammars. Notations such as Backus-
Naur Form (BNF) were developed since these could represent the transition networks capable of
describing the simple syntaxes of the early programming languages. Naturally, the thoughts of some
individuals turned to the use of transition networks, especially augmented transition networks (ATN), for
the representation of natural languages. ATN approaches have largely fallen out of favour by the NLP
community today, but in the early days they showed some promise and provided limited practical
success (see e.g. Noble (1988) for an ATN-based NLP study). As the theoretical and practical limitations
of ATN approaches became apparent, those computer scientists interested in processing human language
moved on to other formalisms, and the discipline of NLP became truly established. It would be fair to
say then that the field of NLP arose mostly through the practical efforts of early computer scientists,

rather than through interest from traditional linguists.

It is only recently that linguists have taken to the computer en masse. The reasons include purely
practical factors to do with the processing power and storage capacity of modem computer systems. In
addition, a certain change in attitude towards experimentation has arisen in the linguistic community.

This alteration of viewpoint is better discussed in the section which follows this one.

Finally, it should be mentioned that the term computational linguistics is often encountered. To a certain
extent this overlaps NLP. However, the computational linguist has historically tended to concentrate on

the building of parsers (see e.g. Sparck Jones and Wilks (1985)), and to a lesser extent on semantic
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analysers. The typical computational linguist hails from the linguists’ camp rather than from the Al field.

Grishman (1986) gives an excellent idea of the flavour of'this subject.

1.5.2 Corpus Linguistics

It is no exaggeration to say that the field of corpus linguistics has largely been made feasible by the
computer. Empirical studies involving large bodies of text are only possible if they can be achieved
within reasonable timescales and budgets. Prior to the invention of the computer, all such studies had to
be performed manually, from paper resources. Naturally, this prevented many experiments from being

carried out; in fact, it prevented them from even being conceived.

The history of corpus linguistics has been outlined in McEnery and Wilson (1996). It is one of initial
enthusiasm followed by a period of disfavour (on theoretical grounds), followed by a new period of
interest (the period we find ourselves in today). In some sense, then, this history echoes that of Al itself.
However, the period of disinterest within corpus linguistics arose not through lack of success or
stagnation, but because of theoretical objections raised notably by Chomsky. The thrust of Chomsky’s
argument was that no coipus could ever be representative of a particular language because of the infinite
nature of language. On the other hand, introspection by a linguist could indeed generate all aspects of a
language, and so this was a preferable route towards linguistic truth. In linguistic terminology, Chomsky

argued that linguists should examine competence rather than performance.

It is now recognised that although no coipus could be representative of a language as a whole, it does
indeed contain examples of a language as actually used, and so may implicitly contain valid and
interesting linguistic data. This realisation has grown with the increasing practicality of actually doing
the envisaged experiments. It is now easy to obtain large corpora, and relatively cheap in computing
terms. For example, the British National Coipus (BNC), a recently released corpus of about one hundred
million words of general English (spoken and written), is available on only three compact disks and
comes complete with sophisticated accessing and processing software (Bumard (1995)). The BNC is
fully part-of-speech tagged, an extremely useful property which will be referred to in some detail later
(see Chapter 4 for details of the tagger, CLAWS4). Other easily available corpora include the Lancaster
Oslo/Bergen corpus (LOB) (Johansson et al. (1986)), and the Longman-Lancaster corpus (Summers
(1991)).

Although new technology has recently fostered corpus linguistics, linguists were in any case moving
away from Chomsky’s position of competence over perfoimance. The availability of corpora merely
accelerated this process. For example, Sampson (1987) argues that there is good corpus-derived evidence
against the grammatical/ungrammatical distinction for individual sentences, to such an extent that “the

enterprise of formulating watertight generative grammars appears doomed to failure”. The evidence was
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gathered from about 40,000 words of the parsed LOB corpus, whose manual parsing preceded any
thoughts of carrying out such a study (and thus could not be accused of being biased towards or against
the grammatical/ungrammatical evidence thesis). Noun phrases not occurring in coordinate structures
were selected, giving 8328 instances. These were each categorised as a pattern of constituents from a 47-
member set of constituents, e.g. DT* *S | F meaning determiner + plural noun + comma +finite clause.
This categorisation revealed that the 8328 noun phrases fell into 747 different categories (patterns), but
that one pattern (determiner + singular noun) accounted for 1135 (about 14%) of the 8328, and that
there were 468 patterns represented by only one NP instance. Sampson makes the point that it is
extremely difficult to determine the boundary between “grammatical” (generatable) and
“ungrammatical” (not able to be generated) phrases if a high proportion of the grammatical phrases are
very rare. The implication is that if the latter were true, then it would be practically impossible to build a
rule-based generator of only grammatical phrases. Sampson goes on to support the thesis that it is indeed
true that a high proportion of grammatical phrases are very rare, by plotting a graph of the logarithm of
constituent-type frequency expressed as a proportion of frequency of commonest constituent-type (x-
axis) against the logarithm of the proportion of constituent-tokens in samples belonging to types of
frequency <= x (y-axis). This turns out to be a straight line approximating to y = 0.4x, and shows no sign
ofincreasing in gradient at the right-hand end. Sampson argues that such an increase would be expected
to occur in an abrupt manner if there were a distinct grammatical/ungrammatical boundary. Sampson
also discusses possible extrapolations of the graph for larger text samples and argues that grammatical

constructions can indeed be extremely rare statistically.

Sampson’s arguments have not been left unchallenged, however. Taylor, Grover and Briscoe (1989)
have disputed the hypothesis that there are many singletons which a generative grammar cannot handle.
Using the ANLT (Alvey Natural Language Tools) they re-process Sampson’s data, and come to the
conclusion that there simply are not as many singleton types as he claimed, and what is more, the
singletons that do occur are not odd in any way. (Where ANLT fails to parse them, it is usually due to an
obvious oversight in the design of the ANLT parser). They say that “Sampson’s result is suggested by
his analysis of this data, not die data itself’. The author of diis thesis also believes that the presence of a
very large hapax legomenon does not indicate that there is no clear grammatical / ungrammatical divide.
Clearly a human is capable through introspection of stating whether a sentence is grammatical or not, or
is in some way “odd”, even if he cannot state exactly why this feeling arises. In the vast majority of cases
he will be able to make a boolean decision. The test text used by Sampson contained (by definition) only
grammatical sentences; how then could it say anything about wngrammatical sentences, or about the
grammatical / ungrammatical divide? It is probable that the Sampson argument says more about the
practical difficulties of creating a good parser than about the theoretical existence or otherwise ofa sharp

grammatical / ungrammatical boundary.
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The Sampson paper is an example of the use of corpora to assist in the competence/performance
discussion, and shows how performance data can give rise to practical NLP implications. It is important
to note that corpora are being used today by linguists and NLP practitioners largely to provide linguistic
information, that is to say information regarding lexis, syntax, semantics etc. Even the most recent
attempts to use corpora for automatic learning systems (see review articles Ng and Zelle (1997), Cardie
(1997)) derive essentially linguistic knowledge, even if that is at the semantic level. But there is another
sort of information that corpora contain - the actualfactual information, i.e. the knowledge, that the texts
contain. This latter aspect has not been exploited to any great degree yet, largely because corpora are not
usually created with such an aspect in mind (unlike online encyclopaedias etc). Furthermore, until
recently there have simply not been enough corpora to support such applications. This situation is now
changing. Corpora exist in many specific domains, such as: computer science undergraduate textbooks
(HKUST corpus, available from the Language Centre, Hong Kong University of Science and
Technology), telecommunications (ITU corpus, available from the Department of Linguistics and
Modern English Language, Lancaster University), agricultural research theses (Reading Academic Text
corpus, RAT), (Came, Fumeaux and White (1996)), and contract law (Aarhus corpus, available from the

Aarhus School of Business, Aarhus, Denmark).

The development of the KEP program described in this thesis utilised corpora in both of the aspects
described above. Linguistic knowledge aids in the extraction of factual knowledge, and corpora
themselves contain texts holding factual knowledge. About 75% ofthe 3209 written texts in version 1.0
ofthe BNC are classed as ‘informative’, these texts being classified into eight categories covering topics
as diverse as Arts, Commerce and Pure and Applied Science. Many of these ‘informative’ texts contain
or comprise exceipts from textbooks and explanatory texts, so that they are likely to contain definitions,
examples, explanations etc. Since KEP is designed to be non domain specific, this variety of explanatory
and introductory texts from diverse subject areas acts as a good test of KEP’s NDS claimed credentials.
Therefore the BNC was chosen to provide both training and evaluation texts for the development of
KEP. In addition, the CLAWS tagger used to provide the part of speech tags for the BNC texts is
available as a separate product, so that any text may be tagged in a similar manner to that of BNC texts.
Thus the choice ofthe BNC/CLAWS combination has allowed KEP to access pre-prepared texts as well
as any other text which is available in machine-readable form (and hence which may be tagged in a

manner identical to that of BNC texts prior to KEP processing).

1.6 Chapter Summary

In this chapter the nature of Knowledge Extraction from text (KE) and how it relates to the wider field of
natural language processing (NLP) have been discussed. The motivation for doing KE has been
examined, and the choice of automatic glossary creation as the subject of the research has been justified.

Difficulties inherent in deep NLP and by implication deep KE have been considered. These problems
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include that of incomplete message content, the need for large knowledge bases, the difficulty of creating
good parsers, and the need to integrate techniques at all levels (lexical, syntactic, semantic, pragmatic,

and discourse).

The Chomskyan debate regarding competence vs. performance has been introduced, and the rise of
modem corpus linguistics has been discussed within this framework. In the course of these discussions
questions have been raised regarding the degree ofpractical effectiveness of traditional syntactic parsers,
and indeed regarding the theoretical basis upon which they are founded (i.e. the notion of there being a
definite boundary between grammatical and non-grammatical sentence types). The use of corpora to aid
in KE has been suggested, and the important idea put forward that full text understanding i.e. deep
processing may not actually be necessary for successful KE, so that some or all of the obstacles

described above may be avoided.
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2. Some Existing Extraction Approaches

2.1 Introduction

In the previous chapter the field of knowledge extraction (KE) was introduced and its place w