
The Nottingham Trent University
Library & Information Services

SHORT LOAN COLLECTION

Time

m b

Date pT
x x x x x x

mm
\ i» DEC 20(H

ime

P lease return this item to the Issuing Library.
Fines are payable for late return.

THIS ITEM MAY NOT BE RENEWED
Short Loan Co# May 1996

B B ^

40 0686890 6

ProQuest Number: 10183048

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10183048

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

AUTOMATED KNOWLEDGE EXTRACTION FROM TEXT

Paul Richard Bowden

A thesis submitted in partial fulfilment of the requirements of The Nottingham Trent
University for the degree of Doctor of Philosophy

March 1999

Acknowledgements

I would like to thank my supervisors Peter Halstead and Lindsay Evett, and my fellow researchers Mark

Edwards and Gavin Long, for their guidance, support and encouragement during the research reported

here. I would also like to thank my wife Linda for her support during the four years this research took to

complete.

Abstract

Knowledge Extraction (KE) is the automated extraction of facts from machine-readable text. KE is a

branch of Natural Language Processing (NLP). Within NLP, processing techniques may be deep or

shallow. Deep techniques are the traditional methods of NLP and computational linguistics, and are

aimed at language understanding. They are mostly domain independent techniques. Shallow techniques

are currently a focus of interest and may be defined as methods which achieve NLP goals without

recourse to attempts to understand fully the input text. These are mostly domain specific techniques.

Deep processing approaches are considered with respect to the problems they entail. These problems can

be both theoretical and practical. These and other difficulties are used to justify shallow attempts at NLP

tasks. After a review of several existing KE and similar systems this work describes the knowledge

extraction program developed by the author (KEP). KEP aims to be shallow and non domain specific,

and extracts factual knowledge from explanatory texts. A pattern-matching approach is used which cuts

fact-bearing sentences into fragments so that concepts and the facts relating to them can be extracted.

Various conceptual relations are searched for, including at present definitions (definitions of concepts),

hypernyms (parent classes of concepts), exemplifications (examples of concepts) and partitions (lists of

the component parts of a concept).

One of the motivating factors for doing this research was the desire to answer the question: how useful

can a specific set o f shallow techniques be in a non domain specific NLP application? This is an

important question at a time when shallow techniques are viewed favourably by the NLP community. To

this end, the performance of KEP has been evaluated using the recall and precision measures. As a final

demonstration of the program’s abilities, KEP has also been run on a large part of the text from this work

to produce a first-cut glossary for that text. This glossary successfully captures the main concepts from

the text and provides useful explanations of them in many cases.

It is concluded that KEP is a working program which demonstrates the usefulness of shallow, non

domain specific methods, and which has opened up the possibilities of several new research directions,

including automatic index creation, student assignment marking, and information retrieval from the

Internet for the automatic construction of semantic-net knowledge bases.

3

CONTENTS

1. INTRODUCTION 10

1.1 Natural Language Processing and Knowledge Extraction 10
1.1.1 What is Knowledge Extraction? 10
1.1.2 Artificial Intelligence, Natural Language Processing and Knowledge Extraction 11
1.1.3 Concerning the Nature of Knowledge 13

1.1.3.1 Introduction to Knowledge Categorisation 13
1.1.3.2 Knowledge vs. Information 15
1.1.3.3 Epis o die Knowledge 16
1.1.3.4 Generic vs. Specific Knowledge 17
1.1.3.5 Declarative vs. Procedural Knowledge 18
1.1.3.6 General Knowledge and World Knowledge 18
1.1.3.7 Knowledge and KE Programs 19

1.1.4 Text Understanding and World Knowledge 20

1.2 Problems with the Deep Approach 21
1.2.1 Introduction 21
1.2.2 The Problem of Message Information Content 21
1.2.3 The Problem of KB Size 22
1.2.4 Problems of Parsing 23
1.2.5 The Need for Integration 26

1.3 The Starting Point for Textual Knowledge Extraction 27

1.4 Motivation for Reported Work 28
1.4.1 The Intelligent Recognition Systems Group 28
1.4.2 Motivation for doing Knowledge Extraction 28
1.4.3 Automatic Marking Systems 28
1.4.4 Automatic Teaching and Learning Systems 29
1.4.5 Automatic Glossary Creation 30

1.5 NLP and Linguistics 31
1.5.1 Traditional Linguistics 31
1.5.2 Coipus Linguistics 33

1.6 Chapter Summary 35

2. SOME EXISTING EXTRACTION APPROACHES 37

2.1 Introduction 37

2.2 A Two-dimensional Categorisation of Extraction Systems 37
2.2.1 Domain Specificity 37
2.2.2 Processing Depth 39

2.3 Non Domain Specific Systems 41
2.3.1 Deep Processing NDS Systems 41

2.3.1.1 Conceptual Dependency 41
2.3.1.2 Preference Semantics 45

2.3.2 Shallow Processing NDS Systems 46
2.3.2.1 The COMMIX system 47
2.3.2.2 Alshawi’s Definition Analyser 49

2.4 Domain Specific Systems 51

4

2.4.1 Deep Processing DS Systems 51
2.4.1.1 The MEDLEE System 51
2.4.1.2 The ATRANS System 53
2.4.1.3 The SCISOR System 55

2.4.2 Shallow Processing DS Systems 57
2.4.2.1 The JASPER System 57
2.4.2.2 The FASTUS system 61
2.4.2.3 The ‘wit’ system 63

2.5 A Note on Evaluation 66

2.6 Concluding Remarks 66

3. LINGUISTIC ISSUES RELEVANT TO KE 68

3.1 Introduction 68

3.2 Types of Text 68
3.2.1 Fictional vs. Non-Fictional Texts 68
3.2.2 Explanatory vs. Historical Texts 69
3.2.3 Informational vs. Presentational Sections of Text 69
3.2.4 Generic vs. Specific Sections of Text 70
3.2.5 Fact-Rich vs. Fact-Poor Texts 70
3.2.6 Declarative vs. Procedural Texts 70
3.2.7 Complex vs. Simple Texts 71
3.2.8 Technical Text vs. General Text 71

3.3 Conceptual Relations 72

4. THE KNOWLEDGE EXTRACTION PROGRAM (KEP) 81

4.1 Introduction 81

4.2 Avoiding Deep Processing 81
4.2.1 Motivation for a Shallow Processing Approach 81
4.2.2 Pattern Matching for a Shallow Approach 81

4.3 Avoiding Domain Specificity 82
4.3.1 Motivation for NDS system 82

4.4 Output formats 83

4.5 KE Strategy: An Overview 86

4.6 KEP Processing 88
4.6.1 Pre-KEP Text Processing 8 8

4.6.1.1 Part of Speech Tagging 88
4.6.1.2 Pre-processing Programs 90

4.6.2 Initial Processing 91
4.6.2.1 Starting the Program 91
4.6.2.2 External Storage 94
4.6.2.3 Internal Storage 94
4.6.2.4 Obtaining Sentence Structure 96

4.6.3 Heading Identification 99
4.6.4 Technical Term Acquisition 99
4.6.5 Acronym Acquisition 104

5

4.6.6 Term Summaries 107
4.6.7 Relation Detection and Triggering 108
4.6.8 Apposition Triggers 110
4.6.9 Filtering of Presentational Sentences 111
4.6.10 Pattern Matching 111

4.6.10.1 S entence T okenis ation 112
4.6.10.2 Template Pattern Matching 116

4.6.11 Fragment V alidation 118
4.6.11.1 Validation as Technical Terms 118
4.6.11.2 Tag Pattern Methods 119

4.6.12 Candidate Extraction Amalgamation 119
4.6.13 Noun Number Resolution 120
4.6.14 Dealing with Anaphora 123
4.6.15 Merging of Extractions by Concept 123
4.6.16 Construction of Output Files 124
4.6.17 Evaluation Considerations 125

4.7 Concluding Remarks 125

5. EVALUATION 127

5.1 Introduction 127

5.2 Precision and Recall 127

5.3 KEP Function Evaluations 129
5.3.1 S entence D elimitation 129
5.3.2 Technical Term Acquisition 131

5.3.2.1 TT Acquisition Performance 131
5.3.2.2 TT False Positives 134
5.3.2.3 Other Term Acquisition Approaches 136

5.3.3 Acronym Extraction 140
5.3.4 Triggering 145

5.3.4.1 Triggering Evaluation 145
5.3.4.2 Trigger and Template Collection 148

5.3.5 Detection of Presentational Sentences 151
5.3.6 Conceptual Relation Extraction 153

5.3.6.1 Introduction - How to Detect a Relation Instance 153
5.3.6.2 Evaluation of Precision and Recall 155
5.3.6.3 Failures to Extract Definitions 161
5.3.6.4 Concept Non-Recognition 165
5.3.6.5 Amalgamator Failure Rate 166
5.3.6.6 77zA-anaphora counts 167
5.3.6.7 Effect of Ellipted Material 168
5.3.6.8 Effect of Fronting, Cleft Sentences and Embedded Phrases 168
5.3.6.9 Missing Tokens and Templates 168
5.3.6.10 Apposition False Triggerings 169
5.3.6.11 The Sparse Nature of the Glossary 170
5.3.6.12 Concluding Remarks on ‘ B 1G ’ Evaluation 171

5.3.7 Plural Noun Singulariser 172

5.4 Processing This Thesis using KEP 175
5.4.1 Introduction to the Thesis Test 175
5.4.2 Thesis Test Results 175

5.4.2.1 Acronyms (First Column) 176
5.4.2.2 Technical Terms (Middle Column) 177
5.4.2.3 Explanations (Third Column) 178

6

5.4.2.4 Cross References (Third Column)
5.4.3 Concluding Remarks on the Thesis Test

179
180

5.5 Summary of Evaluation Results 181

6. DISCUSSION AND FUTURE DIRECTIONS 183

6.1 Introduction 183

6.2 Further Discussions and Future Enhancements 183
6.2.1 Categorisation of Relation Syntaxes 183
6.2.2 Resolution of the “is a” Problem 187
6.2.3 Dealing with Episodes 187
6.2.4 Possible Effects of Text Type on Performance 188
6.2.5 Multi-Sentence Relation Instances 190
6.2.6 Following Simple Anaphoric Links 190
6.2.7 Subdivision of Relation Types 191
6.2.8 Allowing Terms in Pattern Matching 192
6.2.9 Parsing of Elucidation Fragments 192
6.2.10 Re-wording of Elucidations 194
6.2.11 Additional Conceptual Relations 194
6.2.12 Use of MRD for Third Column Entries 196

6.3 Future Applications 198
6.3.1 Text Summarisation 199
6.3.2 Automatic Index Creation 200
6.3.3 Student Assigmnent Marking 201
6.3.4 Engineering Project Estimation 202
6.3.5 Building a Permanent KB 203

6.4 Concluding Discussions 207

REFERENCES 211

APPENDIX A - NOMENCLATURE OF KE-RELATED FIELDS 223

APPENDIX B - TERM SUMMARIES OUTPUT SAMPLE 225

APPENDIX C - DEFINITION TEMPLATES, TOKENS AND TRIGGERS 235

APPENDIX D - EXAMPLE KEP LONG OUTPUT 239

APPENDIX E - KEP-MADE GLOSSARY FOR CHAPTERS 1 TO 4 OF THIS
THESIS 261

7

List of Figures

Figure 1. A simple parse tree..24

Figure 2. Conceptual dependencies and examples (from Schank and Abelson (1977))...................................42

Figure 3. Sample input text for COMMIX (from Norris (1996)).. 47

Figure 4. Example SCISOR input and dialogue (from Rau and Jacobs (1988))..55

Figure 5. Example TRUMP output (from Rau and Jacobs (1988))...56

Figure 6. Theme-rhemepatterns in “wit”parser sample input (from Reimer (1989))..................................... 65

Figure 7. “wit” parser output for text in Figure 6 (from Reimer (1989)).. 65

Figure 8. Example o f text containing 4 conceptual relations..83

Figure 9. Example short KEP output..84

Figure 10. Example KEN output..84

Figure 11. Example Glossary output... 85

Figure 12. Example Term Summaries output..85

Figure 13. KEP System Architecture..87

Figure 14. Example o f CLAWS-tagged input text, after ‘conclaws’pre-processing with C5 tagset

mapping.. 96

Figure 15. Term patterns from Justeson and Katz (1995).. 101

Figure 16. Hyponymic relations from technical terms... 104

Figure 17. singO exception list 002..121

Figure 18. Some 'duff terms from text B IG .. 135

Figure 19. Sample ofpresentational filter phrases for each relation type.. 151

Figure 20. Part o f the Glossary Output for BNC text ‘BIG ’ after full evaluation run................................... 171

Figure 21. Explicit unambiguous causation markers, after Xuelan and Kennedy..196

Figure 22. Example o f a KEP-generated Curriculum Graph..206

8

List of Tables

Table 1. The Chomsky Hierarchy..25

Table 2. Some KE/MU systems categorised... 41

Table 3. CD Primitive Acts.. 42

Table 4. KEP preprocessor programs...91

Table 5. KEP user queries..94

Table 6. Files associated with KEP...95

Table 7. Some sentence boundary exception phrases.. 98

Table 8. Sample list o f exemplification tokens...113

Table 9. Numbers o f tokenisations needed for p tokens present in sentence..115

Table 10. Some exemplification templates... 116

Table 11. Example o f a KEP tokenisation.. 117

Table 12. Exception lists in the singQ function .. 122

Table 13. BNC/KEP sentence count comparisons..130

Table 14. KEP TT extraction performance metrics for BNC text BIG ..132

Table 15. Acronym extraction results..143

Table 16. Triggering evaluation results for BNC text 'B IG '..146

Table 17. Detection o f presentational sentences..152

Table 18 Recall and Precision for each o f 4 relation types for BNC text ‘B IG ’ .. 156

Table 19. Manually-found definitions from ‘B IG ’ with KEP extraction results and explanations................ 163

Table 20. Lexical Patterns found in text ‘BIG ’ arranged by Class and Relation..185

Table 21. Link Types in HypeLab/HyperTutor (from Bowden and Edwards (1996)).....................................205

9

1. Introduction

1.1 Natural Language Processing and Knowledge Extraction

1.1.1 W hat is Knowledge Extraction?

Knowledge Extraction (KE) is the process of obtaining knowledge from text. Human readers are able to

perform KE almost effortlessly, but the term KE is used in this thesis to refer to KE by computer

program. This thesis discusses a novel KE approach, which has been realised as a computer program. In

general there are two basic approaches to the KE task: shallow and deep. Deep processing involves the

use of the full range of techniques and resources available to the traditional natural language processing

(NLP) researcher, such as full parsing. Deep techniques intend to understand the input text. Shallow

processing on the other hand aims to achieve its goals in a faster, simpler manner, without the need for

the whole panoply of traditional techniques. Shallow approaches rarely attempt to understand the input

texts. These themes will be expanded upon shortly. For now, it is enough to state that the KE program

introduced in this thesis aims to be a shallow system. Furthermore, this system, which is called KEP (for

Knowledge Extraction Program), aims to be independent of the subject domain of the input text, i.e. it is

a non domain specific (NDS) system.

The research reported upon here explores the limits of a shallow non domain specific system. In

particular it is argued that the deep approach to NLP in general, and KE in particular, involves many

difficulties which make it worthwhile to try shallow approaches instead. One of the major goals of this

research is to see how far a specific set of shallow techniques can go for NDS knowledge extraction.

This entails building an actual computer program to test the proposed techniques. A second goal of the

research is to create a practical new program which could be incorporated into existing software tools

(such as word processors, WP) to perform KE in a useful way. For example, a completely automatic

glossary maker would be a useful WP feature. Such a feature does not currently form part of any

commercial WP package. The KEP system described in this thesis makes good progress on both of these

goals.

Knowledge extraction is an exciting and challenging new discipline. It is challenging because at first

sight it would seem that only deep methods could work, since it appears reasonable to assume that a KE

program must understand the text from which knowledge is to be extracted. Deep methods are difficult

and time consuming to develop, and so it would seem that KE must also be a difficult goal. (It is a theme

of this thesis that this is not necessarily the case.) KE is also exciting because, if successful KE programs

could indeed be developed, a whole range of genuinely useful new applications and features would arise.

For example, in the domain of word processing, such features include the completely automatic creation

10

of document indexes, glossaries and summaries. In an age when people are swamped with vast amounts

of text, much of which may be irrelevant to the reader’s needs or interests, programs which could cut

down this textual mountain to a readable hillock would be invaluable. This is particularly apposite in

these days of the Internet. Searches on the World Wide Web (WWW) often return thousands of

document titles, and although the search engines attempt to order these by relevance, such ordering is

based solely upon keyword matching at present. How much better it would be if the search engine could

return “more of the same” documents based upon the topic of the text, as indicated by the knowledge it

contains.

But KE possibilities are not limited merely to the domain of text processing. Many anticipated computer

systems require a knowledge of “what the master wants”. Thus video cassette recorders might tape those

programs which interest their owners, houses set die environmental conditions to suit the inhabitants,

cars adjust automatic-gearbox change-up points to suit the driving style of a particular driver etc. Where

the knowledge involved is written, a KE program may compare the user’s choices with the written

descriptions. Thus for example the VCR might compare TV programmes actually watched by its owner

with the descriptions attached to programmes in the electronic TV listings guide, and hence determine

which forthcoming programmes will probably be of interest to its owner, so that it may tape them

without being specifically instructed to do so.

The list of potential KE applications is huge and varied, and new ideas are added continuously. For

example, companies swamped with CVs in response to job advertisements need to pre-process them

automatically, specialised news agencies want to automatically prepare articles from newswire feeds,

administrators of databases of scientific papers require consistent abstracts from all of them, overloaded

university lecturers want systems to pre-mark hundreds of student essays, company executives want

accurate summaries of thick reports, historical researchers want systems to find articles on specific

incidents or themes, booksellers want to tell then customers about books which might interest them, and

direct-marketing organisations want to better target their mailshots in order to reduce waste and

minimise public hostility. KE systems may eventually provide solutions to all of these needs, and indeed

to many scenarios not yet envisaged. This is why they are exciting systems worth attempting.

1.1.2 Artificial Intelligence, Natural Language Processing and Knowledge
Extraction

Artificial Intelligence (AI) is an interdisciplinary subject which aims to build computer systems having

the appearance of intelligence. AI systems may be genuinely intelligent, or may merely appear to be

intelligent; either way, they display characteristics of an intelligent entity to some degree. Intelligence is

extremely difficult to define, but it is relatively easy to identify a system which is apparently intelligent

within its application domain. Intelligence is a property possessed by humans, and so Rich and Knight

(1991) have defined AI as “the study of how to make computers do things which, at the moment, people

II

do better”. Rich and Knight admit that this definition is a deliberate attempt to sidestep die issue of

defining intelligence or artificial, and recognise that their definition is ephemeral (for it contains the

deictic phrase at the moment), but suggest that it “provides a good outline of what constitutes artificial

intelligence”. With a touch of humour, Rich and Knight point out that unlike other new fields such as

physics (which broke away from philosophy and grew as a separate area of endeavour) the field of AI as

defined above may one day, if it progresses well enough, reduce itself to the empty set. It is a strange

idea to have a field which shrinks as it progresses, so perhaps the definition given in the first sentence of

this paragraph is the better one, i.e. AI aims to build apparently intelligent systems. This definition

places its emphasis on the simulation of intelligent behaviour, rather than on questions of whether the AI

program is “really” intelligent or not.

Several traditionally separate academic fields are interested in intelligence, both human and otherwise,

and so AI practitioners have come to include linguists, psychologists and computer scientists, amongst

others. Linguists are involved because the use of human language is inseparably bound up with the

property of intelligence - it seems that in order to use language one needs to be intelligent, and yet

conversely it would appear that in order to be intelligent (at the human level) one needs to be able to use

some kind of language. Psychologists are interested in human behaviour, which is likewise inextricably

linked with the attribute of intelligence. Finally, computer scientists, engineers and ergonomists have

recently (within the last few decades) become interested in the idea of simulating human intelligence, for

both theoretical and practical reasons. The relatively new interdisciplinary field known as cognitive

science attracts all such interested parties. More recent joiners also include neuroscientists, who are

interested in how the human brain actually does what it does, and whether AI can help in the

understanding of this vastly complex organ.

It is a matter of great debate as to whether a computer simulation of some aspect of intelligence can say

anything about real human intelligence, but this is not a relevant topic for this thesis. Instead, this thesis

is concerned more with the possibility of simulating a specific intelligence-requiring task rather than in

debating whether such a simulation says anything about how a human thinks. The interest here lies with

one of the major sub-fields of the AI discipline: language use. Natural Language Processing (NLP) is the

branch of AI which concerns itself with the processing of human languages (as opposed to computer

programming languages, which are un-natural in the sense that they were invented for a specific purpose,

that of communicating to (but not from) computers). Knowledge Extraction (KE), the major topic of this

thesis, is itself a branch of NLP, since it involves the extraction of facts from texts written in natural

languages. The field of NLP also includes endeavours such as natural language interfaces to computers

(NLI), and machine translation from one natural language to another (MT), both of which are motivated

,.v
-,„fr

—■
1—

-..........

"

_
" —-

" ”
*

'

not only by theoretical interest but also by the potentially huge practical benefits to be gained from

successful simulation of intelligent human behaviour1.

NLP has always been one of the driving forces within AI, but it has also captured public imagination to

an unusual degree. Beloved of science fiction writers, the ability of computers to understand English was

for a time regarded as something inevitable; in “the future” (it was thought) we will all be able to

converse freely with computers, freeing us all from the need to learn complex programming languages

and keyboarding skills. Alas, progress has not been anywhere near as straightforward as the enthusiasts

of the fifties and sixties expected. The history of the discipline of AI in general is one of enormous initial

excitement and optimism followed by a growing realisation of the difficulties involved (together with a

corresponding rise in pessimism and a fall in funding), but leading eventually to a new pragmatism

concerning what is or may be achievable. A new sense of cautious optimism today pervades the

discipline. This story has been told admirably by various exponents of the field and by interested

journalists (see e.g. Crevier (1993), Rich and Knight (1991)) and will not therefore be expanded upon

here.

For the purposes of the research reported upon here, the ‘NL’ in NLP is the English language. However,

some of the earliest NLP programs were motivated by the desire to translate from one natural language

to another. The early experimenters in the MT field quickly came to realise that the problem was much

more difficult than most had envisaged. A significant subset of the problems which arose in MT also

exists for KE, and indeed for all NLP fields. Many of these problems arose because a deep processing

approach had been taken, either through necessity or choice. In a later section of this chapter some of

these problems will be discussed, with the aim of demonstrating that a deep approach should not be

taken if there is the possibility of using a shallow method.

1.1.3 Concerning the Nature of Knowledge

1.1.3.1 Introduction to Knowledge Categorisation

What is this knowledge which KE aims to extract? Many AI practitioners deal with this question simply

by listing rhetorical questions such as “what do people have inside their heads when they know

something?”, rarely attempting to actually answer these questions (see e.g. Sowa (1984)). In the

following sections an attempt is made to discuss what knowledge might be, and to introduce different

ways of categorising knowledge. This is a difficult task. Although knowledge may come in different

types, detecting and categorising a particular piece of knowledge is not simple.

1 The importance of simulation in AI is reflected in the title of an AI society, the SSAISB (Society for the Study of
Artificial Intelligence and the Simulation of Behaviour).

—

One valid starting point is to regard knowledge as being made up offacts, and this is the approach taken

below. Since this thesis is concerned with knowledge as it is held in texts, rather than with knowledge as

it might exist within a person’s head, the following discussions are biassed towards the former. This is a

reduced view of knowledge because there are undoubtedly many types of knowledge which cannot be

represented in textual form, such as the learned behaviour knowledge which allows a person to drive a

car without having to think consciously about every single movement of their limbs as they do so. This

thesis is not about such types of knowledge. It is about the type of knowledge which one human wishes

to convey to other humans via text. Thus facts, which are usually easily expressed in natural language,

are of prime interest.

What is a fact? Philosophers distinguish facts from values, i.e. what is from what ought to be (Collins

Dictionary of Philosophy, Harper Collins (1990)). Thus philosophers view facts in a similar maimer to

the commonly held perception. For our purposes, a fact may be defined simply as a true statement about

the universe or its contents. (Rich and Knight (1991) use the phrase “truths in some relevant world”.) AI

is largely concerned with how facts can be represented (the issue of knowledge representation, or ICR).

Thus systems such as prepositional logic play a part in many AI systems; indeed, much of AI is

concerned with translation from one KR (e.g. natural language) to another (e.g. logical statements).

However, the medium of KR is fixed for the research reported upon in this thesis - it is English text.

Thus we require/a definition of fact for the textual medium. The problem with the simple definition

given above is that it does not allow for statements which are believed to be true by an author and yet are

false in reality. Therefore, a better definition for a fact in text would be: a statement asserted to be true

by the author o f the text. The assertion need not be explicit (e.g. “I assert that the electi on is a lepton”)

but may exist implicitly within the statement (e.g. “Electrons are leptons.”). It is also not necessary for

the author to believe the statement to be true - merely to assert it.

This definition of a fact as found in text also allows us to bypass philosophical doubts concerning the

very existence of facts. Harre (1972) points out that the inductivist school's principle that science grows

as an accumulation of facts simply will not do, because "facts" are no such thing in reality: "a change in

theory can change seeming facts into falsehoods". A Kuhnian paradigm shift (Kuhn (1970)) may well

force us to re-interpret a "fact" from the superseded theory, even if the experimental evidence which

gave rise to that fact remains unchanged. Furthermore, if we accept the Popperian view that we can

never be one hundred percent certain that a theory is correct (as does the author of this thesis), then it

follows that there is always scope for "facts" to change (see Popper (1972)). But such problems do not

concern us here; as far as this work is concerned, a fact is something asserted to be true in a text.

Furthermore, we shall not become diverted at this point as to the various meanings attached to the word

"knowledge" by philosophers. (Interested readers are directed to a concise summary of the meanings of

this term in Collins Dictionary of Philosophy (1990)). We shall stick to our definition of knowledge as a

collection of facts.

14 4

1.1.3.2 Knowledge vs. Information

If we start with the assumption that knowledge is an aggregate of facts as defined above, then it is useful

to ask whether all facts may be used. Not all types of fact may be useful, so we must ask what sorts of

fact are knowledge-like. There is an intuitive feeling that knowledge tends to be about “important”

issues, and also that it tends to be about “how things are”. Thus the types of fact involved in knowledge

should reflect these ideas. One way of allowing this is to consider only those facts which describe

longstanding situations. Such situations tend to reflect “how things are” because they exist over extended

timespans and so always return the same answer to the question “how are things?”. They also tend to

describe important issues, because situations which are stable over long periods of time (e.g. comparable

with a human lifespan) must be taken into account in human affairs, i.e. they must be built into the

human world-view.

To this end, knowledge may be defined as a collection of facts which are true for extended timespans.

By this definition, the phrase atomic nuclei are composed o f protons and neutrons contains knowledge.

As far as we know, this situation has always been true and it will always remain so. Similarly, PASCAL

is a high-level language is true, and has always been so since PASCAL was invented. By appending the

phrase ‘for extended timespans’ to ‘facts’ we rule out fleeting facts. In the sentence this package contains

three separate manuals there is a fact, but this would not generally be regarded as knowledge. The fact

given in this sentence is fleeting. What constitutes “fleeting” is of course subjective, but the above

statement does not seem to be something which could be regarded as true “for all time”.

This problem is linked to the issue of whether historical facts should be included in the definition. Most

people would argue that historical facts en masse constitute knowledge, even though they describe

fleeting events. However, even historical facts are true for extended timescales. The statement King

Harold died when hit in the eye by an arrow may describe a fleeting event, but it is nevertheless true for

all time in the sense that it will always be a true statement.

As mentioned above, there is also the underlying implication of some sense of importance relating to

those facts which are part of knowledge, and the ‘package’ sentence does not have this (unlike atomic

nuclei are composed o f protons and neutrons). The fact held within this package contains three separate

manuals is really information rather than knowledge. Information is distinguished from knowledge in

that it is intended to be used within a short time after its reception. Information is conveyed for a specific

purpose. It can become out of date. It is not a tme-for-all-time fact which is worthy of inclusion in an

encyclopaedia. Information may arrive in textual form, or it may be numerical (“data”).

It is interesting to note that those practitioners who are attempting to build computer systems capable of

extracting facts from newswire streams and the like also use the word ‘information’ in this sense. Their

research area is usually known as IE, for information extraction. The facts they attempt to extract (with

some fair degree of success) relate to pieces of information such as “Henry Smith has just been

appointed the new chairman of company A” or “company A has just taken over company B”. Such

historical facts may be true for all time in the sense that once an event has happened it cannot un-happen,

but they are still fleeting in the sense that the information has a shelf-life (a period during which it is

useful information, i.e. a period during which the puipose of conveying the information is actionable by

the recipient). Thus, although the information may be very important to a particular group of people, it

generally does not convey those properties which would allow it to be classified as “part of all human

knowledge”.

Knowledge as defined above may be extremely specialised. Tins can sometimes make it seem more like

information than knowledge. In these cases, a reader may have difficulty in deciding whether a piece of

text contains information or whether it contains knowledge. For example, consider a computer program

which attempts KE in a restricted domain such as that of computer printers (e.g. Reimer (1989)). Such a

program might regard some statement about a specific printer as knowledge to be extracted and placed in

a knowledge base. (In one sense, anything placed in a knowledge base is by definition knowledge, but

this is merely a linguistic trick arising from the decision to call the fact-repository a ‘knowledge base’, so

we may ignore this argument.) In this domain, one might regard a statement such as the DMP-55 printer

allows full-colour A3 printing as information rather than as knowledge. Perhaps this feeling arises

because the printer itself has a finite product life, or perhaps it arises because computer printers are not

seen as fundamental to the way the world works. For whatever reason, it is not easy for a human to state

with certainty whether the ‘printer’ statement above contains knowledge or information.

In summary then, knowledge may be regarded as a collection o f true-for-all-time facts, whereas

information comprises immediately useful facts or data which may become false in the near future. The

distinction between knowledge and information is not always clear cut even for a human reader, and so it

would not be surprising if a KE program had difficulty in distinguishing the two. Whether it is important

for a KE program to be able to distinguish knowledge from information will largely depend upon the

application. It is likely to be less of a critical issue for an automatic glossary maker, for example, than for

an automatic encyclopaedia constructor.

1.1.3.3 Episodic Knowledge

NLP research distinguishes a class of knowledge called episodic knowledge (see e.g. Burkert (1995)).

The term is actually used in two different ways as follows. Firstly, specific instances of concepts are

episodic. The phrase Fido is a dog demonstrates episodic knowledge, but dogs are mammals does not. In

other words, specific instances of things (such as dogs) are episodes rather than all-time facts.

16

This type of episodic knowledge is not of use to all KE systems, such as those interested only in classes

of objects. For other KE systems, this kind of episodic knowledge is perfectly acceptable. For the latter,

a statement such as An example o f a tall building is the Empire State Building would certainly be

regarded as a fact worth extracting, despite the point that this statement describes a specific instance of

the tail-building concept. KEP does attempt to extract such facts, since examples of classes are regarded

as useful facts.

More problematical, however, is the second mode of usage of the term episodic knowledge. This is

where the knowledge occurs as historical facts, i.e. facts describing past episodes. Such facts are often

the target of IE programs. Newswire reportage is not the only type of reporting, however. For example,

Bross, Shapiro and Anderson (1972) describe the scientific sublanguage used by surgeons to report upon

operations they have performed. These reports are essentially lists of descriptions of episodes, couched

in a concise and unambiguous (to surgeons) sublanguage. This sublanguage utilises a constrained

vocabulary, standard phrases used by all surgeons (e.g. many reports end with the standard phrase ‘the

patient left the operating theatre in good condition’) and certain standard syntactical features such as the

use of the passive voice. Specific syntaxes are also used to indicate causation and the order in which

events occurred, such as with the temporally-follows relation, which often uses the pattern with the

<nominalisation>, e.g. as in 'with the excision of the tumour...’. The point here is that such texts do not

contain knowledge-type facts as defined above. Such texts are not explanatory; they are historical

narratives. By their very nature they will not contain many definitions, part-whole descriptions etc, since

experienced surgeons do not need to tell each other what a myocardial infarction is, or what the major

parts of the heart are. Such facts are already part of the surgeons’ knowledge. Swales (1981) has also

pointed out that texts such as these, which are “high brow” i.e. between experts, are less likely to contain

definitions than middle- or low-brow texts designed by experts for lower-status readers, and this

viewpoint is also supported by Darian (1981), who presents five levels of material based upon writer-

reader degrees of specialism.

Although such historical reports may be legitimate source texts for domain specific KE systems aiming

to summarise their contents, e.g. by constructing a standard abstract where textual gaps are filled from

sets of allowed role fillers (see e.g. Oakes and Paice (1998)), they are not generally useful for fact

extraction KE programs. Since the purpose of the research reported in this thesis is primarily to

investigate the possibility of creating an NDS fact extraction system, historical texts of the surgeons’

report type will not be used as input.

1.1.3.4 Generic vs. Specific Knowledge

The discussion above has already touched upon the distinction between individual objects and classes of

objects, i.e. between generic and specific items. It is usually the case that generic facts are more

knowledge-like than facts about specific single objects. For example, facts about cars in general are

17

knowledge-like, as are facts about a specific type of car (such as the Ford Mondeo). One could imagine

such facts appearing in the glossary section of some document. On the other hand, facts about Mr.

Smith’s car, a specific instance of a car, are not likely to be useful in a glossary. Clearly the degree of

importance ascribed to an object matters; in a text about the SALT talks a specific (critical) meeting

between Russians and Americans might well be detailed in a glossary.

This issue is tied closely to that of information vs. knowledge, for specific-object facts tend to look more

like information and generic facts more like knowledge, as defined above. Thus although an IE system

might wish to extract specific-object related facts, KE systems in general will not.

1.1.3.5 Declarative vs. Procedural Knowledge

A further division in types of knowledge has been given by Skuce et al. (1985). Here the distinction is

made between declarative and procedural knowledge. The former is equivalent to factual knowledge,

but the latter concerns knowledge of procedures. Thus the bracket is held on by a nut is declarative, but

to remove the nut, perform steps 1 - 3 as follows: 1) ... is procedural.

Procedural knowledge is less likely to be present within a single sentence. It is not the target of the

current research, since the inclusion of procedural KE would broaden the attempted KE task

unacceptably. Procedural BCE is however an established research field; e.g. automatic construction and

understanding of instruction manuals are established areas of research (see e.g. Vander Linden and

Martin (1995), Sutcliffe et al. (1995), Skuce et al. (1995)).

1.1.3.6 General Knowledge and World Knowledge

However knowledge is defined and categorised, it is certainly true that all human beings hold large

amounts of it in their heads. Much of this knowledge is applicable only to certain tasks or domains

(‘specialist knowledge’, or domain-specific knowledge), and much is regarded as ‘general knowledge’.

In human terms, ‘general knowledge’ usually means “facts which most reasonably educated people have

at their disposal”, such as the names of capital cities, the names of famous people, historical facts, names

of types of animals etc.

In NLP terminology, knowledge about the world in general is termed World Knowledge (WK). WK is

deemed to be essential for good NLP programs, and this is considered in the following section. It is

worth noting, however, that WK as used in NLP programs is not quite the same thing as traditional

human general knowledge. WK includes facts about the world which are so obvious that a human would

not even bother to classify them as general knowledge. Such facts are often about physical laws, as

evidenced in our four-dimensional environment. Some examples of such facts will be presented shortly.

18

In the discussions which follow, the term WK will be used to refer to both knowledge about the world

required by a program, and knowledge about the world, of any sort, held by a human.

1.1.3.7 Knowledge and KE Programs

It is paramount that a developer of a KE program has a clear idea of the type(s) of knowledge which that

program will extract. Since knowledge as defined earlier is composed of facts, then it is likely that KE

programs will attempt to extract individual facts from the input texts. As has been discussed above, the

types of fact to be extracted are likely to depend upon the KE application. This thesis concerns a specific

KE application (chosen for its interest, challenge, potential usefulness and well-defined boundaries) and

so the discussion will now be confined to that approach. Since the major application chosen in the

research reported here is the automatic construction of a glossary, then facts which might appear in a

glossary are the target facts. What sort of facts might these be?

Chambers English Dictionay (1988 edition, W. R. Chambers Ltd. and Cambridge University Press)

defines a glossary as “a collection of glosses: a partial dictionary for a special purpose.” A gloss is

defined as “...an explanation... a collection of explanations of words” (author’s italics). The words

which are to be explained clearly require explanation, e.g. because they are specialist or technical words

within the domain covered by the glossary. Thus they are terms. Therefore glossaries comprise lists of

terms present in the text, together with explanations of those terms. Thus a fact in a glossary is a term-

explanation pair. In this thesis the word elucidation is preferred to ‘explanation’, since it is broader in

scope (an explanation tends to say “what something is”, whereas an elucidation may additionally give

facts relating to the term or characteristic of it). Examination of glossaries from a variety of documents

show that elucidations include definitions of the term, examples of the concept represented by the term,

class-inclusion information (e.g. that the term is a type o f something), parts-and-pieces information,

characteristics of the concept represented by the teim, alternative names for it, what it is used for, what

causes it, what it is made from, and so forth. Thus these pieces of knowledge relating to the term are the

ones which a glossary maker needs to extract.

Note that the terms given in a glossary represent concepts (tangible and intangible things) in the text.

More than one term may represent the same concept (since there may be alternative names for it). Thus

the elucidations in a glossary are actually for the underlying concept, or “abstraction”, which the term

represents. The different types of elucidation are usually called relations, and so the glossary comprises

instances of conceptual relations. These conceptual relations will be introduced and discussed in a

forthcoming chapter.

It is clear that the extraction of a term-elucidation pair must involve two steps: firstly, terms must be

identified from the text, and secondly the relation between that term and its elucidation must be detected.

The former is an emerging research field (terminology extraction), but the latter appears to be largely

confined to linguistic discussions in books and papers. In Chapter 4 of this thesis a detailed description is

given of how KEP approaches these tasks.

Having introduced the types of knowledge that KE programs may need to extract, and more specifically

the types extracted by a glossary maker, it is now necessary to return to a more general discussion in

order to consider how this might be done.

1.1.4 Text Understanding and World Knowledge

The process of interpreting a printed text in the light of the reader’s World Knowledge (WK), i.e. the

process of extracting meaning from an utterance or text, is called understanding and has been discussed

by NLP researchers such as Schank, Wilks and others (see e.g. Schank and Abelson (1977), Wilks

(1975)). It is understanding which distinguishes deep approaches. The understanding process involves

both semantic and pragmatic aspects. The former deals with the possible meanings of an utterance, and

the latter feeds WK into this process and thus aids in the selection of the correct meaning. This process

can be illustrated with an example. In a sentence such as All the bananas are blue! the semantic content

is in contradiction to the pragmatic knowledge that (unless you have painted them etc) no bananas are

this colour. The conflict with reader-WK created by the above sentence would cause a human reader to

search the text (or the burgeoning knowledge-construct already built in the mind of the reader at this

point - see e.g. Kieras (1982)) for other information which might explain the semantic content of the

unexpected sentence, i.e. for other information to aid understanding. This illustrates the need for WK in

the understanding process.

The traditional route to text understanding within the field of computational linguistics has been one

involving a linear progression from lexical aspects of the text, through to syntax, to semantics, and

thence to pragmatics. Grishman has provided an excellent introduction to these separate aspects from the

viewpoint of a computational linguist (Grishman (1986)), and Allen discusses them from the NLP

practitioner’s perspective (Allen (1995)). We shall see, however, that a strict linear succession of

processing stages as listed above is not sufficient for full text understanding. As has been hinted at

above, it is highly unlikely that a human reader performs grammatical processing, then semantic

processing, and then pragmatic processing in a sequential manner. It is more likely that all three levels

are performed simultaneously, in the presence of a mental representation of “the story so far” constructed

as a text is read. This theme is returned to shortly, when the difficulties of simulating simultaneity in a

computer program are considered. This is just one of the difficulties of doing deep NLP. This and other

obstacles are considered next.

20

1.2 Problems with the Deep Approach

1.2.1 Introduction

The purpose of this section is to introduce important issues involved in deep approaches to NLP, and by

inference to deep KE. This will by necessity involve some description of deep techniques, such as that of

automatic parsing. The difficulties encountered in such techniques will be examined. The purpose of this

exercise is to demonstrate that the deep approach in general is afflicted with serious practical and

theoretical problems not yet completely solved. The implication is that shallow techniques should be

used wherever feasible.

1.2.2 The Problem of Message Information Content

Utterances, either spoken or written, do not contain all the information that they convey. This truth was

recognised by early workers such as Shannon and Hartley (Shannon (1948), Hartley (1928)), working in

the domain of information theory (sometimes called communication theory). Most NLP researchers re

discover this fact for themselves when they first attempt KE or MU. Human communication relies upon

the vast reserves of WK that all adult people have access to, and this WK is used to extract the intended

meaning from an utterance. Spoken or written messages contain omissions, because this makes them

much shorter than they would be if all the relevant factors were described in detail. The recipient’s WK

is compared with or added to the message content, so that the gaps present in the message may be

plugged (McDonald (1992)).

Furthermore, in the case of dialogues, utterances must be interpreted in the light of previous speech acts

made since the start of the conversation, so knowledge of discourse conventions is needed. (Grammatical

(syntactical) and lexical (vocabulary) knowledge are of course also required, being those parts of human

knowledge traditionally regarded as language skills.) Discourse analysis is an important field because the

meaning of an utterance depends upon its place in the discourse. However, it is not possible to go into it

here (for an introduction see e.g. Brown and Yule (1983)).

A deep NLP system must be able to spot points where WK is required to complete the information

content of the message, and then it must actually provide that extra knowledge and perform the addition

to create die effect desired by the sender of the message. Thus a deep NLP system must include a reserve

of WK, as well as a mechanism for applying it. However, this mechanism cannot be something as simple

as a call to a function such as “get missing knowledge”, because it would be impossible to know when to

call that function. In a sense the mechanism must be active all the time, because it is needed to spot the

gaps as well as to fill them. This “priming” function is difficult to simulate in a computer program,

although some ideas have been put forward (see e.g. Hapeshi (1994), although this paper is concerned

more with lexical priming than with semantic priming).

The need for WK and ways of using it are thus critical for deep NLP systems. However, even if such

problems were to be solved, there would still remain another major problem related to WK use,

described in the next section.

1.2.3 The Problem of KB Size

As has been argued above, no general-purpose NLP system which attempts to extract meaning from an

utterance can be effective without some way of holding the necessary WK. The entity used to hold

knowledge is usually referred to as a Knowledge Base (KB). We may ignore for now the various ways in

which KBs can be structured, because these are irrelevant to the problem under consideration. The

problem is that the KB needs to be huge. For example, Lenat’s CYC project (Lenat (1995a), Lenat

(1995b), Lenat and Guha (1990)) is an attempt to produce a useful KB for NLP applications. It has been

running for over a decade and still has yet to reach the point at which it might be said to contain a useful

amount of WK (for general purpose NLP). Much of the problem is caused by the need to encode

“obvious” facts, such as the fact that we cannot remember things that have not yet occurred, or that once

a person dies he stays dead, or that things fall downwards etc. It is remarkably easy for an NLP

developer to overlook such WK, since humans take such knowledge for granted. (Recall the comments

made previously concerning knowledge which is too obvious even to be classed as ‘general

knowledge’.)

It is hardly surprising that many years of work have been needed to build the CYC knowledge base;

infants require many years of intense interaction with knowledgeable adults and their environment in

order to reach similar levels of WK, much of this time being spent in deliberate attempts by mature

humans to build up the new person’s KB (i.e. in school and at college), but most of it spent in self

learning from the external world and objects in it. Young humans clearly maintain an intense energy to

build up then knowledge bases - as evidenced for example by exchanges between the young child and

the adult which start with a ‘Why...?’ question and continue with a string of secondary ‘Why?’ questions.

This phase is possible only after the language learning phase has reached a certain maturity, but it is

difficult and possibly erroneous to separate these two types of knowledge acquisition. They are both

large and fascinating subjects in their own right, although it is not possible to go into them here.

(Interested readers should consult e.g. Pinker (1994) for a populist account of language acquisition, and

Karmiloff-Smith (1992) for an account of mental development in the child.)

In conclusion, the provision of adequate WK represents an enormous practical problem for all NLP

researchers who are not taking a shallow approach to their tasks. It may be, of course, that this problem

essentially only needs to be solved once. If this is the case, then the CYC project and others like it may

one day be regarded as worth the huge investment in time, effort and money. It remains to be seen,

however, how long this “one-off’ solution will take to create.

1.2.4 Problems of Parsing

A non-trivial obstacle to the provision of deep NLP concerns the grammatical function (syntactical

processing) required. NLP uses parsers because the meaning of a sentence is dependent not only upon

the actual words used but also upon the way in which they are ordered and grouped together. Traditional

grammar books exist, as constructed by linguists and grammarians (for example Quirk et al. (1985)).

However, it is difficult to translate such knowledge into a form suitable for a parsing program. The

difficulties relate both to theoretical and practical matters. On the theoretical side, the grammars

described may not be complete, in the sense that they omit certain constructions or combinations of

features. Practically, it requires much effort to extract the rules given in a grammar book, convert them

into a usable form, and insert them into a computer program.

In order to better understand these problems of parsing, it is necessary to describe a parsing technique.

The description which follows will be kept as short and as simple as possible whilst still allowing the

essential points to be made.

Many parsers, notably those referred to as rule-based parsers, use a set of production rules to analyse

sentences. These rules define the set of allowed sentence forms for a particular language by permitting

repeated replacement of sentence elements. The application of a production rule is called a production.

For example, if we use the symbol S for sentence, NP for noun phrase, VP for verb phrase, N for noun,

V for verb, ADJ for adjective, and ADV for adverb, then a grammar for a language might be specified

as:

S -> NP VP
NP -> N
NP -> ADJ N
VP -> V
VP -> V ADV

In the above, the pattern on the left of the re-write rule may be replaced by that to the right of the arrow.

Then given a list of terminal symbols (instances of nouns, verbs, etc, such as dogs, attack etc) sentences

such as Fierce dogs attack ferociously may be constructed. Figure 1 shows a parse tree for this sentence,

which may be regarded as a diagram showing the grammatical structure of the sentence, or alternatively

as a pictorial way of showing how the production rules have been applied (S in the top row is replaced

by NP and VP in the second row, then NP in the second row is replaced by ADJ and N in the third row,

and then VP in the second row is replaced by V and ADV in the third row).

23

s

NP VP

/
ADJ
Fierce

N V ADV
dogs attack ferociously

Figure 1. A simple parse tree

Grammars utilising production rules are known as generative grammars because the rules show how to

generate all the legal (grammatical) sentences of the language. However, in many NLP applications the

task is not to generate sentences, because they are already there. The task is to check that the presented

sentences are indeed legal, i.e. to parse them. This involves finding a parse tree for the sentence allowed

by the set of productions. One of the most successful algorithms for doing this is embodied in the chart

parser, a parser which finds a path to any correct parse (and there may be several for a single sentence)

in an efficient manner which re-uses partial parses made along paths ultimately found to lead nowhere

(e.g. Winograd (1983)). It is not necessary for the purposes of this discussion to detail this further;

interested readers may consult Allen (1995) for a full description of the general principles of the chart

However, the problem for NLP is that it is very difficult to construct a complete set of production rules.

Sets of production rules do allow infinite grammars (grammars in which the number of possible

sentences is infinite) via recursion, but in practice it is difficult to write down all the rules needed to

parse real texts. This problem grows more acute as the number of non-terminal symbols (N, NP, V, VP

etc) increases. The example given above defines a very small (finite) grammar based on only a handful

of tokens. For a real natural language such as English, any meaningful parse will require much finer

subdivisions (e.g. to distinguish between plural nouns and singular nouns, or common nouns and proper

nouns, or count nouns and mass nouns etc) and large numbers of production rules (usually thousands)

utilising these symbols. Clearly, the number of rules is dependent upon the number of different symbols

employed, because if a category such as ‘noun’ is further sub-divided into ‘count noun’ and ‘mass noun’,

the number of rules will approximately double. In addition, the lexicon which holds the terminal symbols

must categorise them using the enlarged symbol set, so that many terminals will have multiple senses.

There is therefore a combinatorial explosion in the number of possible parses of a sentence which have

to be tested. Due to the need for a very long list of rules, it is not uncommon for parsers to be unable to

construct valid parses for a large percentage of the input sentences; many sentences are unparsable not

because they are ungrammatical, but simply because the relevant production rules and/or non-terminal

symbols have not been provided. Furthermore, many parses fail due to an inadequate lexicon,

neologisms (recently coined words) being a particular problem.

parser.

24

The above describes failures to provide any parses for a sentence, but the opposite problem often occurs:

too many parses for those sentences which do get parsed. Even where the parser succeeds in creating

parses for a sentence, the output may not in practice be useful, due to very large numbers of possible

parses (e.g. hundreds) caused by multiple word senses multiplying up. This is an inevitable consequence

where a language containing a high percentage of polysemous words (in the same part of speech

category) is processed by a purely syntactic parser as described above. For example, in the sentence We

went to the bank to get some cash a purely syntactic parser would provide two parses identical save for

the different senses of the word bank (financial institution, side of a river). Furthermore, in addition to

the problem of multiple word senses, some whole sentences may be inherently structurally ambiguous,

and this also multiplies up the total number of possible parses. Sentences such as Put the block on the

box on the table illustrate this (see Church and Patil (1982) for a discussion on this problem.) In both

such types of ambiguity, extra semantic processing is required in order to obtain the single correct parse,

possibly including knowledge of the discourse preceding the sentence being parsed, or even of some

extralinguistic situation described by the text.

Grammar Type Name
0 Unrestricted Phrase Structure
1 Context Sensitive
2 Context Free
3 Regular (Finite State)

Table 1. The Chomsky Hierarchy

Grammatical formalisms have been categorised by linguists and computer theorists. The Chomsky

Hierarchy categorises grammars as being of four types, as listed in Table 1. In the Chomsky hierarchy,

natural languages correspond to Type 0 grammars. The context free grammar (CFG) is perhaps the

grammar type which has most often been used to underpin parsers. Clearly, then, there is also a

theoretical mismatch between the abilities of most parsers and real human language. This was recognised

as long ago as 1979, when Gross launched a swingeing attack on the generative approach (Gross

(1979)). Gross described the failure of an attempt to construct a generative grammar of French with a

coverage comparable to traditional grammars, and as a result questioned the validity of the whole

generative grammar approach.

The KEP system as described in Chapter 4 does not in fact employ full parsing of the kind described

above, and for this reason this topic will not be further detailed. However, deep processing systems do

usually parse text and so readers interested in delving further into this topic should consult introductory

texts such as Grishman (1986) (which introduces the Chomsky hierarchy from the viewpoint of the

computational linguist) or Cohen (1986) (which introduces the Chomsky hierarchy from the viewpoint

of computer science).

1.2.5 The Need for Integration

The problems described above cannot be tackled in isolation from each other if full text understanding is

to be achieved. Communication of information must be employed between all levels (lexical, syntactic,

semantic, pragmatic) to ensure correct understanding. For example, in the sentence I went to the bank to

get some cash the word bank is used. In isolation, this word has at least two possible meanings (financial

institution or the side of a river) and so at the lexical level the sentence is ambiguous. In fact, the

sentence is still ambiguous at the semantic level, since it is conceivable that a large pile of money has

been stored on a river bank for some reason. To disambiguate the sentence, pragmatic-level knowledge

is required (financial institutions usually have cash, but river banks rarely do). This knowledge is

communicated to the earlier levels so that the correct sense of bank is selected in the parse. Note also that

it may be that at an even higher level, that of the discourse, information may need to be extracted. If the

sentence was part of a text describing a shipwreck in which banknotes were spread out on the river bank

to dr y off, then clearly this would override the usual pragmatic interpretation.

Thus a strict linear progression of processing from the lexical through to the discourse level will not

work for successful NL understanding. Sparck Jones (1983) has illustrated this point in a discussion on

the problems of parsing compound nouns, such as park border plants, where there are issues such as

bracketing (is it park (border plants) or (park border) plants ?), lexical disambiguation (what sense of

border ?) and meaning characterisation (is a border plant one that is actually in a border, or one that is

for a border?). After an examination of the processing and information required at each level, Sparck

Jones concludes that “there are problems about the conventional natural language program in which the

contents of clearly demarcated information boxes labelled syntax, semantics, and pragmatics are applied

in successive processing steps”. In fact, Sparck Jones goes further and suggests that even a staged

processor which passes on all possibilities from one stage to the next may not work on practical grounds,

because “in the limit (it may be) so inconvenient as to undermine the idea of effective processing on

which the staged processing is based” (italicised text is the author’s addition).

The need for communication of information between levels is greater for some applications than others,

for example in systems where there are actually more levels. Thus in MT and in handwriting recognition

the backwards communication must be extended even further backwards to allow word boundaries to be

detected correctly and individual words to be correctly identified. For example, Rose and Evett (1992)

have shown how semantic knowledge may be used in handwritten word recognition. However, the KE

practitioner is at least fortunate in that his starting point (see next section) is often the end result of

another discipline’s work, such as that of handwriting recognition, where the desired output would be a

machine-readable text.

26

Sparck Jones (1983) describes a system in which all syntactic processing is finished before semantic

processing starts, and all semantic processing is finished before pragmatic processing starts. An

alternative method would be to allow syntactic processing to be paused until information had been

passed back to it from the semantic and higher levels, and so on. Allowing all information from all levels

to be available at any level is in effect simultaneous processing of all levels. But even this will present

problems for the coder, since in any sequential program it will be difficult to decide upon the correct

order of processing. The conclusion arrived at by Sparck Jones is that “concentrating on sentence parsing

in its own right is of limited utility”.

1.3 The Starting Point for Textual Knowledge Extraction

For the KE task discussed here, the input resource is text in machine readable form. Secondly, by choice

this text is explanatory in nature, and may be regarded as the written equivalent of a single speaker

lecturing upon some topic. Thus certain difficulties inherent in speech recognition and dialogue do not

arise. The input text is also assumed to be free from spelling mistakes and grammatically correct. In

addition it is assumed to be coherent; in other words, it is assumed to be a text, and not merely a jumble

of unconnected sentences (see Halliday and Hasan (1976) for an extended discussion on what makes a

text a text). Despite this advanced starting point, the issues discussed above must be resolved if deep text

KE is to be performed. A lexicon will be required. The difficulties of providing reliable parses for all the

sentences as described above exist. For full text understanding, WK in its widest sense is required. Also,

anaphoric devices within text must be detected and resolved. Even with all these items in place,

decisions will have to be made regarding what to extract.

Note that the term full understanding has been used above; as has already been suggested, it may well be

that a deep understanding of the text is not in fact necessary for the intended application of the output

knowledge. A shallow processing approach might prove feasible, in which some or all of the processes

described in the preceding sections may be avoided or omitted. These choices will be discussed in the

following chapter. It is safe to say that all current successful IE/KE systems rely upon aspects peculiar to

their applications in order to reduce the amount of processing required. KE from text is hard. It is not

easy to say just how difficult it is, but Ristad (1993) has argued that the NLP task in its deepest sense is

NP-complete (nondeterministic polynomial complete)2 i.e. is not solvable in a time which grows only

polynomially with the problem size (but which almost certainly requires a time which grows

exponentially with problem size - see Aho, Hopcroft and Ullman (1974)). Therefore any ways of

making the problem easier are welcome.

2 Ristad’s argument is vague, and it is not clear exactly what he meant by this assertion; it is repeated here merely as
supporting evidence for the hypothesis that doing deep NLP is difficult. However, the author of this thesis found
Ristad’s book to be unsatisfying.

27

1.4 Motivation for Reported Work

1.4.1 The Intelligent Recognition Systems Group

The Intelligent Recognition Systems group (IRSG) is a research group within the Department of

Computing at Nottingham Trent University. Members of this group are interested in NLP systems

capable of recognising and processing text at various levels. These range from handwriting recognition

to fact recognition (the subject of this research). In addition the group contains researchers interested in

computer aided learning (CAL) from the viewpoints of both the students and the teachers. Thus a wide

range of pedagogical applications are also investigated. The research reported upon here was initially

motivated by the desire to automate certain aspects of examination marking, but recent developments

have increased the interest in providing knowledge for tutoring systems, and in extracting knowledge for

automatic creation of glossaries.

1.4.2 Motivation for doing Knowledge Extraction

It is useful to ask the question: why is KE worth doing? It has already been argued that the KE task is

both challenging and exciting (section 1.1.1), and some practical benefits arising from successful KE

have been suggested. However, in addition to purely practical benefits, KE systems are also of

theoretical interest to linguists and epistemologists, who are interested in the ways in which knowledge is

expressed in language and the nature of that knowledge respectively. Therefore the interest in KE

systems is not restricted to potential applications.

KE systems are also of interest to the NLP practitioner, because successful knowledge extraction from

text involves most of the major difficulties of doing NLP. KE thus forms an ideal sub-domain of NLP in

which various techniques and approaches can be tried out. It also has the advantage of being a domain in

which results can be compared with human performances in a relatively simple manner, so that the

degree of success of KE systems may be measured. In Chapter 5 the performance of the KEP program

(developed to test a novel pattern-matching approach) is evaluated in this maimer.

In the following paragraphs, some of the applications for KE mentioned earlier are considered in more

detail. One of these, automatic glossary construction, is the KE task chosen for the research reported in

this thesis. The motivation for choosing this particular application is discussed in section 1.4.5.

1.4.3 Automatic Marking Systems

There have been several attempts to automate the marking of student assignments (such as essays and

collections of short paragraphs of text or single-sentence answers). For example, Lou and Foxley (1994)

have developed the STAMS system, which aims to assess the semantic content of students’ NL

responses by comparing teacher and student answers in a fuzzy manner based upon online thesaural

28

■r

entries. This is an area of increasing interest, particularly in the UK following the recent expansion of the

higher education sector, which has resulted in a tendency towards higher student-staff ratios and hence

increasing academic staff workloads.

One prototype examination marking system is that of Allott, Fazackerley and Halstead (1994), which

uses an activation-passing network to mark single-sentence examination/test answers as correct or

incorrect. The approach taken ignores syntactical information in the answers, which at first may sound

surprising, but which due to tire highly-constrained nature of the subject domain (Computer Science,

CS), turns out to be feasible. The method is to look for combinations of key words to trigger nodes in a

hierarchical structure called an activation passing network (APN). A node at a given point in the network

is activated if the sum of its inputs exceeds a preset activation potential, whereupon it produces output(s)

which are input(s) to higher-level nodes. For example, an evidential node might be triggered by the

presence of a particular word or one of its synonyms. The correctness of the whole student response is

determined by whether the single top-level node is activated or not. The APN used to mark student

responses to a given question acts as the knowledge base for that question; each question has its own

distinct APN. These APNs are presently designed and input by the human examiner. The question

therefore arises as to how far the production of APNs could be automated, using KE techniques.

Although the research direction taken by the author does not directly answer the above question, it may

ultimately aid in the automatic marking process. For example, where students are asked to give examples

of concepts, the list of “correct” examples may be collected automatically from text using a KE program.

This list might then be used to construct the APN used to mark student responses.

1.4.4 Automatic Teaching and Learning Systems

CAL systems have a long and distinguished history, extending back almost as far as the computer itself.

However it is only recently that the very large storage capacities required for effective multimedia

teaching systems have become a reality. In addition, research into the ways in which people learn and

how these apply to computerised systems is now mature. Thus the stage is at last set for really effective

teaching systems which are technically feasible, affordable, effective, and above all user-friendly.

Developed within the IRSG, the HypeLab/HyperTutor system (Edwards, Powell and Palmer-Brown

(1995)) utilises a hypertext knowledge base and a windowed front end with a semi-NL interface (Long,

Powell and Palmer-Brown (1995)) to provide a complete CAL system for any subject domain. This

product is discussed further in section 6.3.5, but the motivating factor here is the use of a semantic net as

a KB within HypeLab/HyperTutor. Within this semantic net, nodes hold concepts, which are joined by

various link types indicating specific conceptual relations, such as the partition relation (has part link

29

type). Since KEP aims to extract this sort of conceptual knowledge, the possibility of automatically

populating HyperTutor’s KB arises. This subject is further discussed in a Chapter 6.

1.4.5 Automatic Glossary Creation

The word processor (WP) is today an essential part of office life. Leading WP packages such as

Microsoft Word and Corel WordPerfect have attempted to provide a comprehensive list of features so

that the user may produce documents in a variety of styles with a minimum of effort. Unfortunately, the

plethora of features available may result in incomplete understanding of the product by the user. The WP

manufacturers have recognised this problem and traditionally have provided ‘help’ functions within the

software. More recently, intelligent software agents have been enlisted in order to second-guess the

intentions of the user who finds himself in difficulty, and intervene when appropriate.

In addition, many WP features have been automated to a certain degree; for example, spelling may be

checked continuously in the latest versions of the leading packages. Thus the user need not perform a

distinct spell-check operation at the end of typing. Other features are less well advanced. For example,

index creation relies upon the user indicating in some way which phrases are to be placed in the index

(which is then created automatically, involving the page numbers on which the selected phrases appear).

However, the user is still required to mark phrases for index inclusion, a time-consuming task. Similar

comments apply for glossary and bibliography creation. It would be much easier for the user if there

were a button/icon for completely automatic index/glossary creation. Clicking this button would create

an entire index or glossary for the current document, without the need for the user to specify which

phrases were to be included. Clearly this goal is not achievable unless the WP software is capable of

producing a list of index terms or glossary terms without human intervention.

Automatic glossary creation was chosen for the subject of the research reported here. As mentioned

earlier, it is a challenging area offering great practical rewards whilst allowing for the possibility of

interesting insights into how one should do NLP. It is a relatively self-contained task that might be

achieved through either deep or shallow methods. Attempting to do it in a shallow way might reveal

important results in a field which in many ways is a microcosm of NLP in general. For example, it might

allow one to answer the question Is full text understanding necessary! Questions might also be answered

concerning how easy it is to make non domain specific systems.

Automatic glossary creation is not a trivial task. It is sufficiently difficult to present a real challenge in a

way which, say, automatic index creation does not. Both glossary making and index compilation require

the collection of technical or specialist terms from the text, but a glossary has the extra dimension of

requiring explanations and elucidations of such terms. Intuitively, this is the more difficult part. These

elucidations were introduced earlier, and include such things as definitions and hypernyms. Identifying a

30

—

concept in a text and a definition of it sounds like a job for a deep system. The challenge of this research

was to do it using a shallow system. Furthermore, this challenge was amplified by the attempt to create a

domain-independent system. As will be described in Chapter 4, the challenge was met using a shallow ■<;}

pattern-matching approach which uses no external knowledge resources. The reasons for choosing a

pattern-matching approach are developed in that chapter.

Automatic acquisition of technical terms (TT) is an established field (usually called terminology

extraction) which has been driven in part by the desire to automatically extract index terms. A brief

survey based on some recent papers is given later (in Chapter 5). The KEP program contains a TT

acquisition function based upon the scheme of Justeson and Katz (1995), modified to use part-of-speech

tagging information, and with extra design features intended to detect single-word terms. (This is

described in detail in Chapter 4). The TT acquisition function in KEP is combined with a novel acronym

extractor, with KEP’s pattern-matching conceptual relation extractors, and with linking, cross-

referencing and ordering code, to produce a glossary output. The process of creating the glossary is

indeed completely automatic, but, as will be seen later, the glossary so produced requires manual post

editing. However, even though post-editing is required in order to produce a complete and error-free

glossary, the effort required is still lower than that needed for systems requiring manual TT

identification.

1.5 NLP and Linguistics

Natural Language Processing is a branch of AI, and that means computers and computer programs.

However, the discipline of linguistics has been around for many centuries in one form or another, and

obviously predates the computer. It is worth making some comments regarding the relationship between

NLP and linguistics, not least because the empirical discipline of corpus linguistics is of direct relevance

to the reported research.

1.5.1 Traditional Linguistics

The discipline of linguistics has a long and distinguished past, stretching back to the ancient Greek

philosophers, such as Plato (who in his Theory o f Forms was interested in the connection between words

and the concepts they represent). However, it is not the intention of this section to relate a histoiy of this

subject, for it is modern linguistics which is of relevance here. Thus we shall skip over almost the entire

history of this subject and emerge into the mid twentieth century. The most important event to be aware

of for the purposes of the following discussions is the publication in 1957 of Noam Chomsky’s book

Syntactic Structures (Chomsky (1957)), which marked a watershed in the relationship between

linguistics and other disciplines such as psychology and philosophy. Chomsky’s ideas have been

constantly developing since this time, but his influence has resulted in a new flowering of linguistic

studies.

31

The central idea in Chomsky’s work has been that of innateness, the ability of humans to learn certain

types of language. The idea that humans learn only a small subset of all the imaginable language types is

a powerful one. The suggestion is that we do in fact all speak the same basic language, with grammatical

differences merely being switch settings set at an early age, and of course with vocabulary differences.

For example, one switch might be the function-order switch which determines the basic pattern of

subject, object and verb in a sentence (in English this is set to SVO, but for example in Welsh it is VSO).

This suggestion leads to the ideas of deep structures and surface structures, in which the latter are

alternative ways of expressing the former. Surface structures correspond to different parse trees for

utterances with the same meanings, such as the transformation from active to passive voice. It is

impossible to encompass this huge subject here, and interested readers should consult one of the many

introductory books on modem linguistics (e.g. Smith and Wilson (1990), Pinker (1994)).

Within modern linguistics various sub-fields have arisen, all of them influenced to a greater or lesser

degree by the ideas of the Chomskyan revolution. These sub-disciplines include the study of language

acquisition, language variation (geographical), language change (historical), semantics, pragmatics, and

sociolinguistics. Linguists even study traditional schoolbook grammar. It is the latter which provides the

first link to computer science and NLP. The early computer programming languages required formal

definitions of allowed syntax, and hence methods of expressing grammars. Notations such as Backus-

Naur Form (BNF) were developed since these could represent the transition networks capable of

describing the simple syntaxes of the early programming languages. Naturally, the thoughts of some

individuals turned to the use of transition networks, especially augmented transition networks (ATN), for

the representation of natural languages. ATN approaches have largely fallen out of favour by the NLP

community today, but in the early days they showed some promise and provided limited practical

success (see e.g. Noble (1988) for an ATN-based NLP study). As the theoretical and practical limitations

of ATN approaches became apparent, those computer scientists interested in processing human language

moved on to other formalisms, and the discipline of NLP became truly established. It would be fair to

say then that the field of NLP arose mostly through the practical efforts of early computer scientists,

rather than through interest from traditional linguists.

It is only recently that linguists have taken to the computer en masse. The reasons include purely

practical factors to do with the processing power and storage capacity of modem computer systems. In

addition, a certain change in attitude towards experimentation has arisen in the linguistic community.

This alteration of viewpoint is better discussed in the section which follows this one.

Finally, it should be mentioned that the term computational linguistics is often encountered. To a certain

extent this overlaps NLP. However, the computational linguist has historically tended to concentrate on

the building of parsers (see e.g. Sparck Jones and Wilks (1985)), and to a lesser extent on semantic

32

analysers. The typical computational linguist hails from the linguists’ camp rather than from the AI field.

Grishman (1986) gives an excellent idea of the flavour of this subject.

1.5.2 Corpus Linguistics

It is no exaggeration to say that the field of corpus linguistics has largely been made feasible by the

computer. Empirical studies involving large bodies of text are only possible if they can be achieved

within reasonable timescales and budgets. Prior to the invention of the computer, all such studies had to

be performed manually, from paper resources. Naturally, this prevented many experiments from being

carried out; in fact, it prevented them from even being conceived.

The history of corpus linguistics has been outlined in McEnery and Wilson (1996). It is one of initial

enthusiasm followed by a period of disfavour (on theoretical grounds), followed by a new period of

interest (the period we find ourselves in today). In some sense, then, this history echoes that of AI itself.

However, the period of disinterest within corpus linguistics arose not through lack of success or

stagnation, but because of theoretical objections raised notably by Chomsky. The thrust of Chomsky’s

argument was that no coipus could ever be representative of a particular language because of the infinite

nature of language. On the other hand, introspection by a linguist could indeed generate all aspects of a

language, and so this was a preferable route towards linguistic truth. In linguistic terminology, Chomsky

argued that linguists should examine competence rather than performance.

It is now recognised that although no coipus could be representative of a language as a whole, it does

indeed contain examples of a language as actually used, and so may implicitly contain valid and

interesting linguistic data. This realisation has grown with the increasing practicality of actually doing

the envisaged experiments. It is now easy to obtain large corpora, and relatively cheap in computing

terms. For example, the British National Coipus (BNC), a recently released corpus of about one hundred

million words of general English (spoken and written), is available on only three compact disks and

comes complete with sophisticated accessing and processing software (Bumard (1995)). The BNC is

fully part-of-speech tagged, an extremely useful property which will be referred to in some detail later

(see Chapter 4 for details of the tagger, CLAWS4). Other easily available corpora include the Lancaster

Oslo/Bergen corpus (LOB) (Johansson et al. (1986)), and the Longman-Lancaster corpus (Summers

(1991)).

Although new technology has recently fostered corpus linguistics, linguists were in any case moving

away from Chomsky’s position of competence over perfoimance. The availability of corpora merely

accelerated this process. For example, Sampson (1987) argues that there is good corpus-derived evidence

against the grammatical/ungrammatical distinction for individual sentences, to such an extent that “the

enterprise of formulating watertight generative grammars appears doomed to failure”. The evidence was

33

gathered from about 40,000 words of the parsed LOB corpus, whose manual parsing preceded any

thoughts of carrying out such a study (and thus could not be accused of being biased towards or against

the grammatical/ungrammatical evidence thesis). Noun phrases not occurring in coordinate structures

were selected, giving 8328 instances. These were each categorised as a pattern of constituents from a 47-

member set of constituents, e.g. DT* *S , F meaning determiner + plural noun + comma + finite clause.

This categorisation revealed that the 8328 noun phrases fell into 747 different categories (patterns), but

that one pattern (determiner + singular noun) accounted for 1135 (about 14%) of the 8328, and that

there were 468 patterns represented by only one NP instance. Sampson makes the point that it is

extremely difficult to determine the boundary between “grammatical” (generatable) and

“ungrammatical” (not able to be generated) phr ases if a high proportion of the grammatical phrases are

very rare. The implication is that if the latter were true, then it would be practically impossible to build a

rule-based generator of only grammatical phrases. Sampson goes on to support the thesis that it is indeed

true that a high proportion of grammatical phrases are very rare, by plotting a graph of the logarithm of

constituent-type frequency expressed as a proportion of frequency of commonest constituent-type (x-

axis) against the logarithm of the proportion of constituent-tokens in samples belonging to types of

frequency <= x (y-axis). This turns out to be a straight line approximating to y = 0.4x, and shows no sign

of increasing in gradient at the right-hand end. Sampson argues that such an increase would be expected

to occur in an abrupt manner if there were a distinct grammatical/ungrammatical boundary. Sampson

also discusses possible extrapolations of the graph for larger text samples and argues that grammatical

constructions can indeed be extremely rare statistically.

Sampson’s arguments have not been left unchallenged, however. Taylor, Grover and Briscoe (1989)

have disputed the hypothesis that there are many singletons which a generative grammar cannot handle.

Using the ANLT (Alvey Natural Language Tools) they re-process Sampson’s data, and come to the

conclusion that there simply are not as many singleton types as he claimed, and what is more, the

singletons that do occur are not odd in any way. (Where ANLT fails to parse them, it is usually due to an

obvious oversight in the design of the ANLT parser). They say that “Sampson’s result is suggested by

his analysis of this data, not die data itself’. The author of diis thesis also believes that the presence of a

very large hapax legomenon does not indicate that there is no clear grammatical / ungrammatical divide.

Clearly a human is capable through introspection of stating whether a sentence is grammatical or not, or

is in some way “odd”, even if he cannot state exactly why this feeling arises. In the vast majority of cases

he will be able to make a boolean decision. The test text used by Sampson contained (by definition) only

grammatical sentences; how then could it say anything about wngrammatical sentences, or about the

grammatical / ungrammatical divide? It is probable that the Sampson argument says more about the

practical difficulties of creating a good parser than about the theoretical existence or otherwise of a sharp

grammatical / ungrammatical boundary.

34

1
The Sampson paper is an example of the use of corpora to assist in the competence/performance

discussion, and shows how performance data can give rise to practical NLP implications. It is important <

to note that corpora are being used today by linguists and NLP practitioners largely to provide linguistic

information, that is to say information regarding lexis, syntax, semantics etc. Even the most recent

attempts to use corpora for automatic learning systems (see review articles Ng and Zelle (1997), Cardie

(1997)) derive essentially linguistic knowledge, even if that is at the semantic level. But there is another

sort of information that corpora contain - the actual factual information, i.e. the knowledge, that the texts

contain. This latter aspect has not been exploited to any great degree yet, largely because corpora are not

usually created with such an aspect in mind (unlike online encyclopaedias etc). Furthermore, until

recently there have simply not been enough corpora to support such applications. This situation is now

changing. Corpora exist in many specific domains, such as: computer science undergraduate textbooks

(HKUST corpus, available from the Language Centre, Hong Kong University of Science and

Technology), telecommunications (ITU corpus, available from the Department of Linguistics and

Modern English Language, Lancaster University), agricultural research theses (Reading Academic Text

corpus, RAT), (Came, Fumeaux and White (1996)), and contract law (Aarhus corpus, available from the

Aarhus School of Business, Aarhus, Denmark).

The development of the KEP program described in this thesis utilised corpora in both of the aspects

described above. Linguistic knowledge aids in the extraction of factual knowledge, and corpora

themselves contain texts holding factual knowledge. About 75% of the 3209 written texts in version 1.0

of the BNC are classed as ‘informative’, these texts being classified into eight categories covering topics

as diverse as Arts, Commerce and Pure and Applied Science. Many of these ‘informative’ texts contain

or comprise exceipts from textbooks and explanatory texts, so that they are likely to contain definitions,

examples, explanations etc. Since KEP is designed to be non domain specific, this variety of explanatory

and introductory texts from diverse subject areas acts as a good test of KEP’s NDS claimed credentials.

Therefore the BNC was chosen to provide both training and evaluation texts for the development of

KEP. In addition, the CLAWS tagger used to provide the part of speech tags for the BNC texts is

available as a separate product, so that any text may be tagged in a similar manner to that of BNC texts.

Thus the choice of the BNC/CLAWS combination has allowed KEP to access pre-prepared texts as well

as any other text which is available in machine-readable form (and hence which may be tagged in a

manner identical to that of BNC texts prior to KEP processing).

1.6 Chapter Summary

In this chapter the nature of Knowledge Extraction from text (KE) and how it relates to the wider field of

natural language processing (NLP) have been discussed. The motivation for doing KE has been

examined, and the choice of automatic glossary creation as the subject of the research has been justified.

Difficulties inherent in deep NLP and by implication deep KE have been considered. These problems

35

include that of incomplete message content, the need for large knowledge bases, the difficulty of creating

good parsers, and the need to integrate techniques at all levels (lexical, syntactic, semantic, pragmatic,

and discourse).

The Chomskyan debate regarding competence vs. performance has been introduced, and the rise of

modem corpus linguistics has been discussed within this framework. In the course of these discussions

questions have been raised regarding the degree of practical effectiveness of traditional syntactic parsers,

and indeed regarding the theoretical basis upon which they are founded (i.e. the notion of there being a

definite boundary between grammatical and non-grammatical sentence types). The use of corpora to aid

in KE has been suggested, and the important idea put forward that full text understanding i.e. deep

processing may not actually be necessary for successful KE, so that some or all of the obstacles

described above may be avoided.

36

2. Some Existing Extraction Approaches

2.1 Introduction

In the previous chapter the field of knowledge extraction (KE) was introduced and its place within NLP

research examined. In this section a representative sample of real message understanding (MU),

information extraction (IE) and KE systems is described. The major developments and approaches are

considered. The descriptions given will be couched in terms of a categorisation system described in the

following section. By introducing existing KE/MU/IE systems the aim is to provide a snapshot of the

current state of the art, together with an assessment of the degree of success of such systems.

2.2 A Two-dimensional Categorisation of Extraction Systems

When considering a given MU or KE system it is useful to be able to place it into a framework which

identifies its general approach. A two-axis framework can be provided using the orthogonal aspects of

domain specificity and processing depth.

2.2.1 Domain Specificity

MU and KE systems may be domain specific or non domain specific. The word “domain” is often used

by NLP practitioners in the sense of subject or topic, but within the IE/KE arena it also carries an

additional meaning relating to the type of medium or communication channel used. Media/channels

include newspapers, telexes, textbooks, posters, reports, papers, essays etc. Where a channel such as

telex is specified, what is meant by this is not the fact that a particular electronic method of delivery was

used, but that the genre of the text is that which results from using that channel, either by technological

necessity or by convention. The name of a specific domain usually contains within it an indication of the

medium/channel/genre in addition to its subject area.

An example of a specific domain is banking telexes. The subject area is that of banking, with all that

entails. There will be specialist or technical terms such as credit, debit, account, deposit etc. Thus a

domain specific approach entails a specialist vocabulary. This specialist vocabulary will be closed, i.e.

finite and small in comparison to the full English lexicon. However, there is evidence that in such

situations individual words may be used in ways representing a greater number of parts of speech than in

general usage (McEnery and Wilson (1996)). Thus sublanguages do not necessarily imply that we can

simply throw away half of the lexicon.

Despite this, the finiteness of the domain specific lexicon is a boon for practical computer systems, since

a small word list means faster accessing time and faster processing where more than one word sense is

possible, and where the correct sense must be selected (disambiguation). Fast speed of access is not just a

desirable (but relatively unimportant) feature of practical NLP systems - it can make the difference

between a system that works and one that does not. A parser that takes twenty hours to process a small

paragraph of text (and this is not an unusual figure) may not in practice be regarded as a program that

works, even if it does eventually come up with a solution. (In many cases, there may not be a successful

parse even after this time.) But a program that does the job in twenty seconds would almost always be

regarded as a working program. To illustrate this point, consider that Keenan (1993) found that the

Alvey Natural Language Tools (ANLT) parser (Briscoe (1988)) produced parses in only about 70% of

cases, when run on a test set of sentences taken from the Longman Lancaster corpus. This low rate was

caused by a combination of inherent inability to parse particular sentences, as well as hardware

limitations. System crashes accounted for about 33% of the failures. Furthermore, Keenan reported

single-sentence processing times of up to nine hours for a SUN 3/160 machine, during which time other

users were refused logins due to insufficient swap space. In addition, where sentences were successfully

parsed, there were often very large numbers (hundreds) of possible parses, so that the output was

effectively useless. It is not surprising that Keenan rejected the use of this parser for his chosen

application (syntactic analysis in handwriting recognition).

Note that the banking telexes domain concerns only telex messages. Such restricted communication

channels often utilise a sublanguage. That is to say, the grammar and vocabulary used for telexes is

constrained not only by the subject of the message but also by the fact that it is a telex message.

Constraints may arise through convention, where a certain style of writing arises within a specific user

community, or through technological necessity, as was the case with the old-style GPO telegrams, which

were printed in capital letters only and utilised the word STOP to indicate a full stop. The study of

textual variety is a topic within linguistics which has received increasing interest along with the current

resurgence of computer corpora and their use in empirical linguistics (see e.g. Rademann (1998)).

As hinted at above, it is reasonable to suppose that the restricted nature of specific domains will allow

various short cuts to be taken on the MU/KE path, and indeed this is usually the case. Examples of

domain specific (DS) systems are described later in this chapter. Hahn (1989) argues that in order to

mimimise processing effort, systems should be domain specific - “adapted to the domain involved”.

However, the paper discusses semantic parsers, which require large amounts of domain knowledge in

order to avoid a separate syntactic processing stage. We shall see later from examples of existing NLP

systems that it is indeed true that being DS reduces processing effort, as well as creation effort (the effort

needed to create the NLP system in the first place) since the whole of human knowledge does not need to

be made available to the program.

Non domain specific systems (NDS), also called domain independent systems, are those which are not

restricted to specific subject areas. However, it is possible to conceive of a non domain specific system

which looks only at telexes, say (but on any topic). Thus this definition is somewhat fuzzy because of the

38

possibility of specifying the communication channel(s) allowed. An example of a NDS program would

be one which holds light conversations on any topic with a human user at a computer terminal (keyboard

and screen). It is immediately obvious that NDS systems must be more challenging than DS systems for

the NLP developer. Examples of NDS systems are given later in this chapter.

Although for the reasons discussed above most KE/IE systems are DS, there is also a practical

disadvantage to the DS approach. This occurs when the system is ported to a new domain. The new

domain may require not only the creation of a new DS knowledge base, but it may also require changes

to syntactic information held in pattern files or even in the system code itself. The latter can occur when

the system has been optimised for a particular domain, this optimisation extending to the program code

rather than being confined to external data files. Domain-dependent code should be avoided even in DS

systems if there is any chance that, in tire future, further domains are to be added. However, even for

systems which have been sensible enough to confine DS aspects to external files, there is usually a large

amount of work to be done to add a new domain. This problem has been discussed in the review paper

by Cardie (1997). The solutions to this problem currently being investigated include the provision of

learning mechanisms for automatic acquisition of patterns. These may be completely automatic, or may

require feedback from a human trainer. Completely automatic pattern detection code is the most

desirable, but even where this is not possible the use of an interactive training program can reduce

porting times by large factors. For example, Cardie (1997) cites the example of the AUTOSLOG system

(Riloff (1996), Lehnert et al. (1992)) which was able to reduce average port times from 1200 hours to

five hours using a semi-automatic extraction pattern finder. This is indeed a significant reduction in

porting time.

The KEP program described in Chapter 4 also contains a training function for human-assisted extraction

pattern finding, and the use of this mode is described in Chapter 5. Although as a NDS system KEP

cannot suffer from the porting problem, the training mode assists greatly in the construction of token and

pattern files.

2.2.2 Processing Depth

The second dimension along which one may categorise an NLP system is that of processing depth.

Processing may be deep or shallow. These terms are generally used as follows: deep processing aims for

full text understanding, and utilises parsers, KBs etc to the full; shallow processing means the

achievement of NLP goals without necessarily utilising all of the above tools, due to the availability of

“short cuts” for a particular application. The above represents the author’s own definitions of deep vs.

shallow processing. The terms tend to be used within the IR/MUC community without any formal

definition, although Halm (1989) touches on the subject, and Jacobs (1990) discusses the subject in

relation to methods of skimming text for ‘interesting’ sections.

5

I

i
f

Halm (University of Freiburg) is one of the few researchers worldwide attempting KE from text. In Hahn -

(1989) he discusses the idea that (even in a domain specific program, looking at a text from that domain)

the depth of processing should vary with the perceived degree of relevance of each section of the text -

“relevant parts of a text are analysed in-depth, while irrelevant material is processed in less detail, or f

simply skipped”. Naturally, such an approach presupposes heuristics for identifying “relevant” sections.

In KEP terms this is called triggering, and “relevant sections” becomes “relevant sentences”. This is

described fully later. Jacobs calls the search for relevant sections text skimming. In Jacobs (1990) the text

skimming approach taken in the SCISOR program (Rau and Jacobs (1988)) is discussed (SCISOR is

considered in some detail later). Depth of processing again varies with section relevance, and ranges

from skipping a sentence altogether, through limited parsing to determine roles of actors, to full semantic

parsing. Although the depth of processing varies from section to section of a text in systems such as

SCISOR, these systems are best classified as deep processing systems, because they are able to do deep

processing when necessary. On the other hand KEP is not designed to do deep processing and so is

labelled as a shallow system.

It is usually the case that NDS systems take a deep processing approach, and DS systems take shallower

approaches. This situation has arisen mostly through necessity. Considering the MT application, a

conversational translator will undoubtedly require deep processing techniques if it is not to distort the

speakers’ meanings or create complete mis-translations. However, there is nothing to prevent deep

processing for a DS application, and this approach is sometimes used, not least because of the reduced

lexicon which goes with DS systems (see comments above, concerning SCISOR). It is rare, however, to

find a NDS system which relies upon shallow processing methods. The KEP system described in this

thesis is one such system and is therefore unusual in this respect.

Note that the depth of processing metric is necessarily a continuum. It is usually possible to state whether

a given program uses a deep or a shallow approach, based upon whether it has the ability to do deep

processing when the need arises. In addition one can usually say that Program X uses deeper methods

than Program Y etc. Despite this subjectivity, the deep/shallow dichotomy is a useful one.

One other factor should be mentioned within this section, although it is not directly connected with depth

of processing. This is the issue of robustness. This temi can be used to mean ‘unbreakable’ in the sense

that a given program never crashes as a result of a particular (textual) input (robustness sense 1).

However, it is sometimes taken to mean that some kind of output is always produced, even if that output

contains less detail than would ideally be provided (robustness sense 2). In this sense, a robust program

will produce shallow output under adverse conditions (hence there is a connection between depth of

processing and robustness (sense 2)). For example, the TACITUS system described in Hobbs et al.

(1992) degrades gracefully because the abductive inference mechanism it uses is “inherently robust”.

Stede (1992) has considered the property of robustness in some depth. The issue of robustness is

40

mentioned here since it is usually the case that deeper systems are less robust (sense 1) than shallow

systems. This is predictable; deep systems usually contain more modules, perform more processing on

the input text, and spend a longer time doing that processing. There is therefore more opportunity for

them to fail, either through bugs in the code or through omissions in the design. Very large programs

may also fail for hardware-related practical reasons, such as running out of disk space or memory.

Table 2 shows a grid categorising a selection of KE/MU systems according to domain specificity and

depth of processing. These systems and others are discussed in the following sections, where their

positions in the grid are justified.

DS NDS
Shallow FASTUS

‘wit’
JASPER

KEP

Deep MEDLEE Conceptual Dependency
ATRANS Preference Semantics
SCISOR

Table 2. Some KE/MU systems categorised

2.3 Non Domain Specific Systems

2.3.1 Deep Processing NDS Systems

2.3.1.1 Conceptual Dependency

Conceptual Dependency (CD) is an approach to text processing which attempts to construct an

understanding of the whole text. First suggested in the early 1970’s, the CD suite of programs has been

developed over the intervening years by several AI researchers, most notably Schank, Abelson, Rieger,

and Riesbeck. The system is described in the book Schank and Abelson (1977).

CD parsing amounts to the creation of a CD representation of a whole sentence based on the CD

representations of the individual words in the sentence. The first step is to identify the main verb and

noun in the sentence. The main verb is categorised as stative, transitive, or intransitive, and this is used to

extract the correct CD verb representation from a dictionary. CD representations of verbs form a smaller

set of primitives than the set of verbs in English. This approach allows all the actions expressable by

English verbs to be mapped to a smaller set of ‘atomic’ acts; the aim is that the NL involved is irrelevant,

since the acts are valid for all human societies. For example, the PTRANS act is used for all verbs

indicating Physical TRANSfer of people/objects from place to place. Thus it encompasses walk, run,

crawl, roll, fly, go, etc. Table 3 shows a typical list of CD primitives (taken from Schank and Abelson

(1977)).

41

CD uses the acts (or ACTs, in CD terminology) together with PPs (picture producers, i.e.

objects/people), AAs (action aiders i.e. modifiers of actions), and PAs (picture aiders, i.e. modifiers of

PPs) in allowed combinations called dependencies. These correspond to semantic relationships between

the concepts, and are expressable in diagrammatic form. An example of one such dependency is the

relationship between a PP and an ACT, and another is the relationship between an ACT and the PP that

is the object of that ACT. These are illustrated in Figure 2, together with a sentence that brings these two

together. The table has three columns: the first is the dependency rule together with its graphical symbol

(e.g. double-headed double arrow, single-headed single arrow, superscript o for object); the second

shows an example of the dependency rule with the variables (PP, ACT etc) filled out; the third shows a

fragment of English which would be parsed to the column-2 representation.

Primitive Act Used For
PTRANS Transfer of physical location of object (e.g. go)
ATRANS Transfer of abstract relationship (e.g. give)
PROPEL Application of physical force to object (e.g. push)
MOVE Movement of a body part by its owner (e.g. kick)
GRASP Grasping of an object by an actor (e.g. clutch)
INGEST Ingestion of an object by an animal (e.g. eat)
EXPEL Expulsion of something from the body of an animal (e.g. cry)
MTRANS Transfer of mental information (e.g. tell)
SPEAK Production of sounds (e.g. say)
ATTEND Focussing of a sense organ towards a stimulus (e.g. listen)
MBUILD Building new information out of old (e.g. decide)

Table 3. CD Primitive Acts

The superscript o represents the object relationship. Other superscripts are available, such as p for past

tense (for example, placing a p over the <=> symbol in the first row of the table allows the English

fragment John pushed to be represented), and the slash (/) allows negation {John does not push). There

are several more complex basic dependencies which have not been mentioned, such as the relationship

between a conceptualisation and another that caused it. Each has its corresponding pictorial

arrangement.

Dependency Example of Use Example English

PP <=> ACT John <=> PROPEL John pushes

0 0
ACT <~ PP PROPEL <~ cart pushes the cart

0 0
PP <=> ACT <~ PP John <->PROPEL <-- cart John pushes the cart

Figure 2. Conceptual dependencies and examples (from Schank and Abelson (1977))

Conceptual dependency allows the description of fairly simple actions and events to be pictorialised, but

with a certain loss of granularity. For example, the nuances of meaning inherent in John shoved the cart

compared with John pushed the cart are lost. The above example is an extremely basic one; even simple

English sentences may take several pages of CD diagrams to represent, so the scheme does become

unwieldy. However, the claimed advantages of the CD method are that fewer inference rules are needed

for systems processing CD representations (compared with systems which process other representations,

such as full natural language text), that many inferences are inherent in the representation itself (in the

sense that it is only a matter of reading them off the CD diagram), and that where there are gaps in the

CD representation they are obvious and hence easy to detect and resolve.

As was stated above, during conceptual parsing the main verb of a sentence is first identified. This is

translated to the correct representation and the empty roles are then used to create the full representation

for the sentence. (The initial categorisation into stative, transitive and intransitive type verbs assists in

role filling, since for example one would not expect there to be a direct object role for an intransitive

main verb.) This process involves checking the types of objects, so that certain ambiguous constructions

can be investigated and the correct representation chosen. For example, only animate objects may

perform certain roles (waste paper baskets do not run, for example). The parser may also consult its

‘memory’ (any CD representations created so far, from previous sentences), so that with a sentence such

as John went to the park with the girl it can be decided whether the park had a girl in it, and John went

there, or John and the girl went together to the park. (Prepositional phrase attachment is a topic of

interest for English NLP practitioners, such as Jensen and Binot (1987) who used MRD-based methods,

but the methods employed rarely utilise memory of situations, so CD is unusual in this respect.)

For textual units larger than sentences, CD representations of individual sentences may be combined into

one single diagram. This is useful for applications such as story understanding. The process is not

simple; it involves the use of WK to make links between sentences, i.e. to turn a collection of sentences

into a text. One of the most useful mechanisms for doing this is the use of scripts. A script is a broad

framework of a situation that often occurs in real life, such as going to a restaurant, catching a bus to

work, going to the dentist for a check-up etc. The SAM program (Script Applier Mechanism, also

described in Schank and Abelson (1977)) allows simple stories to be understood as a CD representation.

It is not necessary to go into the details of this program here, but the important point to note is that very

many scripts are needed if a program is to behave in a non domain specific way. Furthermore, scripts

themselves are not the full answer - combinations of scripts, and scripts interrupted by other scripts occur

in real life. Thus a successful script applier must be able to handle variations on a theme, and must be

able to spot the start of a new script situation and the point of resumption of a temporarily suspended

one. Plans and goals were introduced to handle such cases, being planning and motivation-capturing

devices assigned to the human actors involved. It is not feasible to go into these topics here. However,

the division between scripts and plans was never made very clear by the various authors of CD.

43

In the 1980’s Schank reorganised CD/script theory in an attempt to overcome the limitations of fixed

scripts. The idea of memory organisation packets (MOPs) (Schank (1982)) was introduced. MOPs

comprise collections of scenes, such as the ‘queuing at a checkout’ scene, and represent a more flexible

approach to scripting. Also introduced were TOPs (thematic organisation points), which were general

statements of types of themes, such as ‘mutual goal pursuit against outside opposition’, as found in

Romeo and Juliet.

It is clear that the CD representation method embodies deep processing. The method does indeed attempt

to fully understand the input text, and it tackles all the hard problems of NLP to some degree. Meaning

is, however, extracted at a coarser level of granularity than is actually encoded in the original English

text. The methodology is capable of extracting information from texts such as stories, but this involves

the use of several large and complex programs together with large MRDs and WK resources. This is not

really surprising. Human beings take many years of constant exposure and learning to reach a point at

which they can understand simple stories, based upon knowledge of physical law, human motivations

and script-like scenarios. It would be surprising if a similar amount of learning were not required for a

program attempting to perform the same task.

Is CD a NDS system? The general approach is certainly NDS, since the CD representation is designed to

be able to capture models of general real life situations. It is also true that there do not appear to be

barriers to the expansion of CD to new domains, e.g. by the addition of new scripts. Thus the structure of

CD is indeed inherently NDS, since it boils down all actions into a set of universal primitives and it

allows the addition of modularised extensions to its WK. This is not to say, however, that CD cannot be

used in a DS way: see section 2.4.1.2, which describes the ATRANS system, for such an application.

If CD, a non domain specific system, can also be used in DS situations, then one might ask whether all

NDS systems can be used in DS circumstances. The answer to this question is tied not just to specific

KBs needed for the new domain, but also to the textual variety (genre, sub-language, communication

channel) of the specific domain. Where there is an evident difference going from NDS to DS, e.g. from

story understanding to telex message IE, it is almost always the case that much tailoring of the system is

needed to do the DS extraction well. Thus to say that a NDS system can also “be used in a DS way” does

not mean that it can be dropped into the new specific domain without any changes. As will become

apparent from forthcoming descriptions of DS systems, these invariably use characteristics of their

domains in order to do the job well. Thus when a NDS system is ported to a specific domain, those

characteristics peculiar to the new domain need to be catered for if the best possible performance is to be

achieved.

44

2.3.1.2 Preference Sem antics

Preference Semantics - Wilks (1975) - is another system based upon semantic primitives, also developed

in the early 1970’s. It is thus a contemporary of CD. Whereas CD attempts to map several words (verbs)

to one of several primitive acts, Preference Semantics (PS) maintains a dictionary of meanings for each

word, expressed as formulas built out of primitive elements. The idea of PS is to understand English

sentences by building up possible meanings for them based upon the meanings of the individual words.

Then the preferred meaning is picked out. Groups of words (clauses, simple sentences) form templates.

A paragraph of text forms a semantic block.

The elements used to build up the formulas include entities such as MAN (human being), THING

(physical object), and FOLK (human groups). They also include actions such as CAUSE, type indicators

such as HOW, and sorts such as GOOD. Cases are used in the manner of noun declensions i.e. TO

(towards), SOUR (source i.e. from), SUBJ (i.e. nominative), OBJ (accusative), IN (containment), POSS

(genitive) etc. In addition, classes of elements are used, such as *ANI for the class of animate elements

(i.e. MAN, BEAST, FOLK) or *HUM for human elements (MAN and FOLK). These elements are

combined to give the formula for a particular word sense. For example, for policeman the formula is:

“policeman” -> ((FOLK SOUR)((((NOTGOOD MAN)OBJE)PICK)(SUBJ MAN)))

which means “a person who selects bad persons out of the body of people”. The head of this formula is

the rightmost MAN element. A bare template is a pattern of three heads, such as MAN GIVE THING. A

list of possible bare templates is held. To understand a piece of text, it is fragmented (in a manner

discussed shortly) and each fragment assigned a list of bare templates that match it. For example, MAN

GIVE THING matches John gave Mary the book.

The different template MAN GIVE MAN also matches John gave Mary the book. However, when the

formulas attached to the heads in the template are combined and expanded, the semantic density of MAN

GIVE THING is found to be greater than that of MAN GIVE MAN, and so the former is the preferred

template. The preference of GIVE is for a physical object to be the thing given (not a human). So the

preferences embodied in the individual formulas are used to indicate the preferred meaning of the whole

text fragment. (The preferences are built into the word formulas by having a first section like (*ANI

SUBJ), which means that the preferred subject (the agent) is an animate element.)

Pairs of templates are linked together by “TIE” routines into paraplates. A mark template and a case

template are linked. For the sentence He ran the mile in four minutes a paraplate, attached to in, links the

mark template on he ran the mile to the case template on four minutes. The patterns within the two

linked templates are used to discover that the linking paraplate is a TIMELOCATION paraplate, rather

than any other sort (such as a CONTAINMENT paraplate, e.g. as in He ran the mile in the sports hall).

Again the decisions are made on the basis of preferences. This also works with sentences such as He pat

the key in the lock where “lock” can mean part of a canal or part of a door.

The PS TIE routines also handle simple anaphora on a preference basis. For example, in the sentence I

bought the wine, sat on a rock, and drank it the preference of drink for a liquid object is used to tie “it”

to wine (rather than rock). But this does not work for cases where the possible references are both in the

same class, as in The soldiers fired at the women and we saw several o f them fall. For these, a set of

common sense rules is applied to an extraction from the templates. This uses a common sense rale such

as “struck things fall” and matches this against the extraction “the women were struck”. The latter is

condensed from the templates/formulas.

The text is originally fragmented prior to matching against the 3-head bare templates using an extensive

list of key words to indicate fragmentation points. This list includes “all punctuation marks, subjunctions,

conjunctions, and prepositions”. The fragmentation process also uses other heuristics where no key

words are found, although these are not described in the paper. (Sentence fragmentation is an important

topic in this thesis, since the novel pattem-matcher under test (described in Chapter 4) fragments

sentences (using key phrases and punctuation) prior to pattern matching.) Where there are alternative

fragmentations for a sentence, PS determines its preferred fragmentation using individual preferences of

the agents involved. Thus for the alternative fragmentations I heard an earthquake / singing / in the

shower and I heard / an earthquake singing / in the shower the preference of animate agents (such as I)

over inanimate agents (such as earthquake) for notions such as singing ensures that the former is

preferred.

As is the case with CD, PS seems to have quietly faded from view over recent years, although these

systems have left a legacy of new systems incorporating many of their concepts, such as the use of

primitive actions within virtual reality systems. Today the areas of interest seem to have shifted towards

shallow systems. This may in part be due the realisation of the scope of the NLP problem as revealed by

systems such as CD and PS, but it is also undoubtedly the result of pressure to come up with “working”

systems within short timescales and budgets. Large-scale deep processing NLP projects do of course still

exist, particularly when funded by multi-country organisations such as the European Community, but for

now the shallow approach is in the ascendant. In the next section some of these systems are considered.

2.3.2 Shallow Processing NDS Systems

It is very difficult to find any examples of KE or IE systems which are shallow and NDS. The KEP

system appears to be novel in this respect. Instead, a program is described here which really lies in the

content analysis or text summarisation fields, and which has as its application the information retrieval

46

(IR) field, as defined in Appendix A - Nomenclature of KE-related fields. Also described is a typical

dictionary definition processor program, one of several such systems which rely on the fact that

dictionaries are in effect collections of definitions (thus removing the need to find instances of definition

in running text).

2.3.2.1 The COMMIX system

The COMMIX system of Norris (1996) is not a KE or IE system which extracts individual facts or

pieces of information from text, but it does capture a glimpse of what a shallow-approach non domain

specific system looks like. The purpose of COMMIX is to produce a single phrase which captures the

“aboutness” of a text. It creates a sort of “super abstract” of the given text, condensed into a single phrase

(the intended target application being condensation of abstracts, for use by an IR system). For a deep

system to do this there would have to be the creation of a structure containing the understanding of the

abstract (e.g. a CD-like representation). This understanding would then have to be condensed to a single

sentence. Both of these stages would require extensive processing involving lexicons, syntactic

knowledge, semantic processing, pragmatics, and discourse structure knowledge. The shallow approach

taken by COMMIX is to use part of speech information together with a MRD and heuristics to produce a

compound nominal term. No attempt is made to parse the text (syntax) or to find its whole meaning

(semantics), and yet the aim is to produce an output phrase which contains within it an encapsulation of

the subject of the text.

An example heuristic is to look for phrases M l N and M2 N separated in the input text, where Ml and

M2 are modifiers, and N is a noun. Then the compound term Ml M2 N is constructed. For example, big

dog and black dog give rise to big black dog. This is the simplest sort of rule, for the ‘semantic

relatedness’ of the two nouns is clear (they are the same noun). However, another example occurs where

M l N1 and M2 N2 are seen, with N1 and N2 different, and where N2 appears in the definition of N1 (in

a MRD or MR thesaurus). The semantic relatedness here is lower but nevertheless exists. An even

weaker overlap occurs where N1 and N2 share a word W which occurs in both of their definitions. These

techniques have been suggested in a similar manner by Jobbins and Evett (1995) for use in automatic

evaluation of textual cohesion and in Rose and Evett (1993b) for calculation of definitional overlap.

The video games industry is growing fa s t and will dominate the toy market and become an established
part o f home entertainment. The 1991 computer games market was worth 275 million pounds sterling

s growing to 500 million in 1992, ha lf the toy market. Hardware sales will rise from 261 to 635 million
pounds sterling in 1994. Associated software sales are forecast at 645 million pounds sterling in 1993.
The compact disc market is worth 345 million pounds sterling. The main competitors in the market are
Sega and Nintendo. Nintendo will spend 15 million pounds sterling on advertising over Oct-Dec 1992.

Figure 3. Sample input text fo r COMMIX (from Norris (1996))

47

Figure 3 shows a test input for COMMIX. Processing proceeds as follows. Firstly, all closed class words

(determiners, auxiliaries, prepositions, conjunctions etc) are deleted and all open class words labelled

with their syntactic classes (as listed in WordNet, Miller et al. (1990)). Then all existing compound

nominals are identified and counts of nouns occurring more than once are made. This yields compounds

such as video games industry, growing fast, toy market, associated software sales, hardware sales etc.

and the noun count list:

games 2 toy 2 market 5 worth 2 million 6 pounds_sterling 5 sales 2

The definitions of these nouns are then retrieved and processed to remove closed class words and words

there merely to aid in description, and the open class words are labelled. Matching can then be done

between the definitions in the ways described above. For example, hardware sales and associated

software sales give rise to hardware associated software sales. Links so created are weighted based upon

the degrees of semantic relatedness, so that the correct pairs of phrases can be combined in the correct

order. The final nominal phrase is constructed by linking salient nouns in such a way that the most

salient is used as the head term. For example, hardware associated software sales and toy computer

games compact disc market would be linked as toy computer games hardware associated software

compact disc market, because market has a higher count than sales (see above). This forms the final

output phrase available to IR systems.

The paper Norris (1996) does not report any systematic evaluation of COMMIX, merely stating that its

performance is “encouraging”. Although the processing of one test text is followed in some detail, it is

difficult to know how many other texts have been used and whether the outputs produced by COMMIX

were deemed worthwhile. Given that the output statements are in the form of one large noun phrase, it is

difficult to know how one could score each output for correctness. Norris does not discuss this problem.

Note that the reliance on WordNet reduces the NDS-ness of COMMIX. This means that COMMIX

would not work effectively on very specialised domains having terms not present in WordNet. However,

given that WordNet is a general resource which does currently exist, it is justifiable to label COMMIX as

an NDS system. On the other hand, one should be aware of die counter-argument, which is that it could

be argued that any system which could become NDS if the relevant lexicons etc were added should be

regarded as NDS.

It is also debatable as to whether COMMIX should be labelled as a shallow processing system. Although

no attempt is made to understand the input text, comparative semantic knowledge is used, i.e. meaning is

used in the system. However, the process does not attempt to find the meaning of the whole text. What is

more, some of die operations even dispense with the WordNet look-up, e.g. in the Ml N, M2 N

combination heuristic. Thus the system is indeed quite shallow.

48

2.3.2.2 Alshawi’s Definition Analyser

Alshawi is just one of the various researchers who have attempted the processing of definitions from

machine readable dictionaries (MRDs), Other attempts include that of Martin (1992), (although this

system handled only medical definitions, and so was DS), Zhu and Shadbolt (1995) and Chodorow

(1985). In the sense that a non-specialist dictionary is a collection of definitions on any topic, this is a

NDS field. MRDs have also been used for purposes other than definition processing, such as with Jensen

and Binot (1987 and 1988) who used an MRD to resolve ambiguity of prepositional phrase attachment.

Alshawi (1987) describes a program which reads Longman Dictionary of Contemporary English

(LDOCE) entries and builds semantic structures from them to extract the semantic head and other

information. For example, for the noun mug in its ‘gullible person’ sense, the semantic head would be

person rather than drinking vessel. Other pieces of information attached to ‘mug’ by the program include

the property foolish and object-of class deceive.

The algorithm is described as follows. The analysis mechanism “has the flavour of a pattern-based

phrasal analyser” which “...was designed to overcome some of the more obvious difficulties of applying

a simple pattern matching approach to robust phrasal analysis”. The approach is to use a hierarchy of

phrasal analysis patterns in which less specific patterns dominate more specific ones. This is done as

follows. The input definition is taken and attempts are made to match patterns with it. If a match with a

pattern occurs, attempts are made to match the input definition with each of the matched-pattern’s

daughter patterns. These daughter patterns are more specific (detailed) foims of the successful top-level

pattern. This process continues until the most specific matches against the input pattern are reached. This

progression towards more-specific “parsing” is the reverse approach to that taken by many other robust

parsers, which try to start with the most detailed parse, and relax these to more general parses if need be.

The hierarchy of patterns is stored as a list of analysis rules. Each analysis rule has the form:

(rule id (pattern) ru le id , ru l e id .„)

The leftmost rulejid is the name of the rule, e.g. n-100. (n-100 is the topmost i.e. most general noun

phrase rule). The middle part is the pattern to be matched against the input text. The rightmost list of

rule_ids is the list of the daughter (more specific) rules, which are applied if the leftmost rule id is found

to match. These daughter rules have the same format as above. Here is an example pattern for a rule (this

is for n-100):

(n && +0det && &0adj &noun &&)

49

The meanings of the elements in the above are as follows:

n noun pattern
&& one or more words (equivalent to KEP’s ‘X’ token - see section 4.6.10.1)
+0det zero or one determiner
&0adj zero or more adjectives
&noun one or more norms

Thus rale n-100’s pattern would match phrases such as the large black dog, a small but brightly-
coloured buzzing insect, Big mountains by the sea etc.

Now consider rale n-110, one of the daughter rules in the RHS list of n-100:-

(n-110 (n +0det +0intens &0adj &noun *0pp-mod &&))

In this rale, *0pp-mod means zero or one PP modifier; the asterisk indicates that this element is itself

expandable into sub-elements. The last of the three example phrases above fits the pattern for this rale;

obviously it is a more specific pattern-match than that given by n-100. Also, in the case of n-110, there

are no daughters to match. Note that individual words can be part of a pattern, too.

Once the pattern matching has gone as far as possible, the analysis rale’s associated structure-building

rule is activated. Here is n-100’s structure building rale:

(n-100 ((compound-class &noun) (properties &0adj)))

A phrase which matched n-100’s analysis rale but none of its daughter rales would use the above to bind

a noun (or nouns) to &noun, and adjective(s) to &0adj. That would be the end of the semantic structure

building process. But if the matching process finished at a more detailed level, the relevant building rale

would extract more information. (Note: This binding process is equivalent to KEP’s matching of C

(Concept) to X (some words) and 0,1,2... (examples etc) to X (some words). This is explained in Chapter

4.) In fact, all paths are followed i.e. there might be more than one extraction, although this rarely

happens to a deep level. This is equivalent to KEP’s use of all tokenisation combinations. In Alshawi’s

program the method used to select the correct extraction is simply to pick the one that accounts for most

words in the input.

The Alshawi paper does not explain in detail how the patterns are matched against a text fragment. But

given that this pattern matching can be achieved, the method demonstrates that it is indeed possible to do

knowledge extraction with a pattern matching approach. The output data structures could presumably be

used to build a semantic net. Thus this system appears to be able to read LDOCE and “understand” the

definitions to a level from which a large interconnected knowledge base could in theory be constructed.

.7

-^

—

_
—

_
—

.
.

—

-
11.

—

—

—

.

r.

..
..

.

:
..

‘

■ A
i'.v

;;.
:.-

What is more, it is robust in that even if veiy detailed knowledge cannot be extracted, at least some

information can be retrieved. The paper states that 77% of semantic heads were extracted correctly, and

88% of other information.

The above illustrates the power of pattern matching techniques, and demonstrates how a system may

avoid parsing and yet still give high precision rates. The task is made easier here because of the nature of

the communication channel i.e. because of the lack of the need to find the definitions in miming text. It

nevertheless demonstrates a shallow technique in action.

2.4 Domain Specific Systems

2.4.1 Deep Processing DS Systems

2.4.1.1 The MEDLEE System

MEDLEE is an IE system designed to extract information from medical (radiology) reports, and was

developed at Columbia-Presbyterian Medical Center (CPMC) (Friedman et al. (1995)). MEDLEE stands

for MEDical Language Extraction and Encoding System and is integrated with the clinical information

system at CPMC. It is thus a working system. Written in Prolog, MEDLEE performs syntactic and

semantic analyses on sentences taken from radiology reports (chest X-rays and mammograms). The

input is a short machine readable report derived from dictated comments which includes some fixed

fields and some free NL fields. However, within these the terminology used by the medical practitioners

is constrained in the sense that certain phrases are used consistently (e.g. cannot be excluded, which

means Tow possibility9). In addition, technical terms specific to the domain abound (e.g. cardiomegaly,

retrocardiac opacity etc). Output is into a structure designed to hold clinically salient information, based

on information formats of the Linguistic String Project (Sager, Friedman and Lyman (1987)). This Rad

Finding Structure comprises various slots such as Central Finding (the main finding of the report),

Bodyloc Mod (body location information), Certainty Mod (certainty rating of central finding, which

can be one of no, low, moderate, high, cannot evaluate, and rule out) etc.

The first stage uses a definite clause grammar (DCG) to zone the document, so that the free text sections

may be identified. There are four such sections: Report, Clinical Information, Description and

Impression. It is these sections which are of interest here. The first act is to chop them into their

sentences (by a method not described in the paper). Clinically nonrelevant phrases are then removed

(e.g. on the basis o f this exam, which adds nothing to the findings). This is done using a list of

commonly-used phrases. Phrases which should be regarded as atomic, such as no conclusive evidence of,

are then bracketed. The output of this first stage of processing is a form suitable for input to the next

stage, the parser. For example, the Impression field may contain the sentence An infiltrate cannot be

excluded on the basis o f this examination, and the output of the first stage for this sentence would be:

51

[infiltrate, [cannot, be, excluded],.]

The parser stage is now applied. This is mostly a semantic parser rather than a syntactic parser, since the

first stage effectively performed the latter. Using the semantic categories of the words in the sentence,

the parser firstly determines which types of high-level production rules to apply. For example, if

cardiomegaly is spotted in the sentence, then the parser will look for phrases such as increasing

cardiomegaly, increase in cardiomegaly, cardiomegaly increased, cardiomegaly has increased etc.

These are syntactically different but semantically equivalent. The semantic head is cardiomegaly, and

this is modified by a temporal qualifier that is a form of increase.

The parser uses a semantic grammar which resembles a DCG but is in direct Prolog form. In order for a

parse to be successful, the parser must be able to identify all the words in the sentence and the sentence

must match one of the allowed semantic forms. If a sentence cannot be parsed, it is segmented around

connectives such as the phrase ‘may represent’ in the sentence Opacity may represent effusion. The

smaller segments are then parsed. Note then that the parser is designed to handle fragments of sentences,

and not just whole grammatical sentences. This is important in a domain where the dictated reports often

contain fragments of text, such as verbless phrases, due to the production process.

The next stage is a compositional regularizer. This ensures that phrases such as enlarged heart and heart

appears to be enlarged are both reduced to enlarged heart. A database of mappings of multi-word

phrases is used to do this. However, in order that the output of MEDLEE is compatible with terminology

used in other clinical information systems, an encoder stage is now performed. This maps synonym

terms to a preferred single term found in a medical entities dictionary (MED), using couplets such as:

synonym(‘enlarged heart’, cardiomegaly)

Thus in the final output the Central Finding slot is set to cardiomegaly, whatever the wording used in

the report to indicate the fact that the patient’s heart was enlarged.

In the words of Friedman et al. (1995), “MEDLEE became an integral part of the operational clinical

information system after two independent evaluation studies demonstrated that it performed comparably

to experts under certain circumstances”. Thus MEDLEE is a demonstration of an effective IE system

which is actually being used on a routine basis.

Clearly, MEDLEE is a DS system. The various processing stages described above require medical

lexicons, MRDs and databases, more specifically those relating to radiology and radiological

examinations. The “nonrelevant phrases” removed in the first stage of processing are also domain

52

specific (the domain being that of medical examinations). Much of the processing relies upon the fact

that the medical practitioners dictating the reports use a common sublanguage with great regularity. The

various symptoms that may occur and the medical conditions they suggest form small sets.

MEDLEE has been categorised here as a “deep processing” system because the parser is a semantic

parser capable of extracting meanings from sentences having varying syntaxes. Although a full syntactic

parser is not used on the initial sentences, the processing does reach the semantic level, and it does

involve large amounts of knowledge in order to come to an understanding of the text.

2.4.1.2 The ATRANS System

The ATRANS program is an information extractor for interbank money transfer telex messages (Lytinen

and Gerslnnan (1986)). The program is domain specific, and robust. It uses a ‘semantically-based

predictive conceptual analyzer’ to produce a CD-style representation of the message content. ATRANS

is a large and complex system and it is therefore not possible to detail its operation here. However,

certain aspects of the system are of interest, such as its use of stacked mini-scripts as described shortly.

Interbank money transfers usually follow a simple script or a variation on this (of the form Customer C

asks Bank A to send money M to beneficiary X, Bank A requests Bank B to transfer M to local Bank L

and so on), and so the first stage of processing (the message clarifier) is to choose the correct script

version based upon various clues including document layout. The telexes used in interbank transfers do

not have to conform to well-defined layouts, although as in any domain, specialist terminology has

arisen and certain fields are obligatory, such as the sender, target recipient, amount to be transferred etc.

Thus the message clarifier must be able to decide upon the particular script version despite this

uncertainty in layout. When this has been done, the text analyser stage is brought to bear.

The task of the text analyser, the heart of the system, is to process each telex to produce a CD

representation of it. An interesting feature of the text analyser is the use of local context for lexical

disambiguation. ATRANS uses a hierarchy of lexicons/scripts, with the most specific lexicon made

active (by local context) and then used to disambiguate problem words. For example, if the activated

lexicon is the one for “sender details”, then any number encountered will be interpreted as a date (rather

than as a monetary amount) because the sender lexicon has no entries relating to money but does have

entries such as “sent date” etc.

Thus the lexical disambiguation problem has been transformed into a different problem: how to activate

and end local contexts. This is a problem which has been studied by NLP practitioners and linguists

interested in the structure of discourse, such as Grosz and Sidner (1986), who suggest that texts contain

three structures: the actual utterances (linguistic structure), an intentional structure (a structure of

53

purposes), and an attentional structure (a state of focus of attention). These overlapping structures allow

text to be segmented accordingly. However, this is at present a manual technique. Automatic techniques

include that of Crowe (1996) in the CONTESS system. Here, a clause-event grid is constructed for news

reports, where events are incidents as specified by the MUC guidelines. Three parallel-runnable analysis

modules are used to segment the text into events: temporal phrase analysis, cue phrase analysis, and

location phrase analysis. Each of these finds pairs of clauses which cannot refer to the same event. An

event manager stage then produces a single grid representation which shows the event nesting structure

of the input text. Another automatic technique is that of Hearst (1994), who presents a method which

segments a text at paragraph boundaries based upon subtopic structure based upon term repetition alone.

The method adopted in ATRANS is relatively simple. Whereas a lexicon can be made active by the

detection of certain key words and phrases, its deactivation is triggered by the detection of words not in

the current context. For example, to disambiguate beat in John raced Mary; Mary won. John got angry

and beat her we need to know that the ‘race’ context ended after the word won, where the ‘conflict’

context starts, as triggered by the word angry. The method used is to stack contexts, so that when an

encountered word is not related to the current context (i.e. not in its lexicon) but is related to a previous

context, then the current context is ended and the previous one popped off the stack to become the new

current context.

The third stage of processing is the message interpreter. This verifies the extracted information (in the

CD construct) and checks it for consistency. Databases containing banking knowledge are used to check

bank names, customer names and account numbers. The output from this stage goes to an output

formatter stage.

Lytinen and Gershman state that “in contrast to other message-parsing systems such as FRUMP3 or

TESS4..., ATRANS carefully analyses every word in a message, producing a highly-detailed

representation of its content.” Thus ATRANS falls firmly into the deep processing camp. The lexicons

used in the hierarchy and the banking KBs are clearly very domain specific, so ATRANS is DS system.

The communication channel in this case is that of a telex message which contains certain mandatory

fields, but not in any defined format or order. ATRANS does not have to parse full sentences, but all of

the words in a message are considered.

The paper Lytinen and Gershman (1986) does not say much about evaluation of ATRANS, other than

that “ATRANS is currently undergoing live testing at a major international bank” and that “the average

3 FRUMP is a newswire IE system; see DeJong (1979)

4 TESS is a banking telex summariser; see Young and Hayes (1985)

54

processing time on a VAX 11/785 is under 20 seconds per telex”. It is difficult to form an impression of

the effectiveness of the ATRANS system without precision and recall figures.

2.4.1.3 The SCISOR System

The SCISOR system described in Rau and Jacobs (1988), Rau, Jacobs and Zernik (1989), Jacobs (1990)

is a deep processing DS system which extracts information from newspaper stories about corporate

mergers and acquisitions. Figure 4 shows a typical input text and a User/System dialogue concerning it

(source: Rau and Jacobs (1988)).

W ACQUISITION UPS BID FOR WARNACO
Warnaco received another merger offer, valued at $36 a share, or $360
million. The buyout offer for the apparel maker was made by the W
Acquisition Corporation of Delaware.

User: Who took over Warnaco?
System: W Acquisition offered $36 per share for Warnaco

Figure 4. Example SCISOR input and dialogue (from Rau and Jacobs (1988))

The first point to note is that SCISOR uses both bottom-up (parsing) and top-down (conceptual)

methods in attempting to extract information from texts. The conceptual approach is valid because, in a

limited subject domain, certain types of information (concepts) can be expected. SCISOR actually uses

four sources of knowledge in order to extract information. Firstly, role-filler expectations are used. In a

takeover, there will always be the roles of suitor and target. These roles can be filled by companies, but

not by other entities. This role-filler expectation knowledge can be used when there is ambiguity in the

other sources of information, described shortly. The second source of knowledge used by SCISOR is that

of Event Expectations. Using a script-like approach the output from one text is used to partially fill script

instantiations which processing of later texts can call upon. Thus if one text was about a rumoured

takeover bid of ACME by Universal Widgets, then a later story about ACME’s acquisition by Universal

Widgets can call upon the role-filler knowledge already stored. Thus SCISOR has a temporal aspect.

The third source of knowledge for SCISOR is linguistic, i.e. lexical and grammatical. The TRUMP

parser (detailed in Jacobs (1987)) is used for bottom-up processing of text. It is a flexible language

analyser consisting of a syntactic processor and a semantic interpreter. Within SCISOR, TRUMP

identifies linguistic relationships in the input, using lexical and syntactic knowledge. Knowledge

structures so produced are improved by the expectations employed by SCISOR, e.g. expected role fillers.

Thus full syntactic/semantic parsing is performed, one of the reasons for classifying SCISOR as a deep

system. It is not feasible to describe TRUMP in detail here, but Figure 5 shows the final TRUMP output

for the given input sentence.

55

W Acquisition offered $36 a share for Warnaco.

(offer
(offerer W_Accjuisition)
(offeree Warnaco)
(offer (dollars (quantity 36)

_______________ (denominator share))))______________________________________

Figure 5. Example TRUMP output (from Rau and Jacobs (1988))

Lastly, SCISOR uses domain knowledge. This is encoded in heuristics of the form “If A then B”. For

example: If it is ambiguous whether ACME is taking over UW, or UW taking over ACME, then choose

the larger company as the suitor and the smaller as the target. This is obviously very useful in

disambiguating certain situations. In the words of the authors, “...there is a great deal of ‘common sense’

information that can increase an understanding mechanism’s ability to extract meaning.”

The process of using the four sources of knowledge to extract information from text works as follows.

The text is scanned for apparent events (e.g. rumour of a takeover), role-fillers obtained where obvious,

and event expectations set up whenever possible. SCISOR then processes the text in detail, using

linguistic and domain knowledge to fill in roles and close events. Linguistic knowledge can be used to

determine which company is the suitor and which the target, or if this fails, domain heuristics are

applied.

The initial skimming phase used by SCISOR has been described in Jacobs (1990). It has strong echoes

to KEP which skims (scans) text looking for exemplifications etc (described in a later section). The

skimmer described effectively scans for words and phrases (lexical items) which indicate the presence of

an occurrence of a concept, e.g. the corporate takeover concept. Sections of text which do not contain

concepts camiot be fully processed by SCISOR, so they are discarded. (This is also what KEP does when

looking for exemplifications, definitions etc.) Once an information-rich piece of text is encountered, the

various roles in the concept are filled out on an initial basis. This is done by categorising die lexical

items either as triggers or as role fillers. Note that the triggers do not have to be single words -

combinations of separated words may be used.

The discarding of unwanted parts of the text, and “attachment” (who does what, who suffers what etc)

are actually performed in a bottom-up (i.e. parsing) way. Thus this skimming system is not just

something which highlights interesting text; it actually starts some of the analysis of the relevant

sections. The interesting aspect of this processing is the order in which it is done. Parts of the text are

discarded before the attachment is performed. Thus the discarder must perform limited parsing so as not

to throw away text which is needed later.

56

Jacobs makes an interesting point when he says that pure template-based approaches (for top-down i.e.

conceptual processing) fail if the conceptual information cannot distinguish between roles. For example,

in company takeovers, both the suitor and the target are companies. Thus one must use syntactic clues to

determine which company is the suitor.

Clearly SCISOR is a deep system because (although it does not parse the whole of a text) it does do full

parsing on those extracted parts. It also applies WK in order to understand correctly the roles of entities

taking part in the events described in the input texts. SCISOR is also DS, because domain-dependent

WK is used.

The paper Rau and Jacobs (1988) does not include any discussion of evaluation of SCISOR. However, in

the intervening two years between the publication of this paper and the Jacobs (1990) paper a certain

amount of evaluation must have been'performed, since Jacobs (1990) states that SCISOR is "... a

completed prototype that reads news stories at the rate of about 500 per hour. It extracts certain key

information..., identifying target, suitor, purchase price, and other information with about 90%

accuracy.” However, no recall figure is given.

2.4.2 Shallow Processing DS Systems

2.4.2.1 The JASPER System

JASPER (Journalist’s Assistant for Preparing Earnings Reports) is a “fact extraction system” developed

by Carnegie Group for Reuters (described in Andersen et al. (1992)). In the words of the authors,

“JASPER uses a template-driven approach and partial understanding techniques to extract certain key

pieces of information from a limited range of text”. Thus, like ATRANS, and indeed SCISOR, JASPER

is a DS system aimed at automating a specific task for a commercial organisation. Having said this,

JASPER is distinguished by the fact that it has a domain independent (i.e. NDS) core module to which

DS modules are attached. Thus it could be argued that JASPER is potentially NDS.

The input to JASPER is a live feed of company press releases (PR). Only those press releases containing

details of company earnings or dividends are selected (selection stage), and these are processed to extract

a predetermined set of facts (extraction stage). These facts are then reformatted as a candidate Reuters

news story which is passed to a financial journalist for validation and completion. It is claimed that

JASPER thus “improves both the speed and accuracy of producing Reuters stories and hence provides a

significant competitive advantage in the fast-paced world of financial journalism”. This is a bold claim;

if a human reader is to trust the system, i.e. if he is not to have to check the original text every time, then

precision should be very high. Also, high recall rates are desirable if the system is not to miss out

completely on relevant stories buried in the newswire feed.

57

For the selection stage, both recall and precision are given as between 95 and 97%. Thus JASPER is very

good at detecting the stories of interest. For the extraction stage, Andersen et al. use the terms

completeness and correctness, which correspond closely to recall and precision, and which are based

upon the individual targeted pieces of information (facts) which are potentially present in a given story.

In this stage, completeness hovers around the 75% mark, and correctness around 90%. The emphasis was

deliberately placed on correctness rather than completeness by the system’s designers because it was

thought that reporters were less likely to overlook gaps in the output than errors. Although these figures

are very good, clearly human input is required to check the extractions. This is brought home by the fact

that only 21% of earnings stories and 82% of dividend stories are handled perfectly (with a 33% perfect-

rate overall). Thus although JASPER extracts the majority of target facts from the newswire, if used as a

completely automatic system its reports would contain errors in two cases out of three.

JASPER achieves the above performance using frame-based knowledge representation, object-oriented

processing, pattern matching, and heuristics. The heuristics take advantage of stylistic, lexical, syntactic,

semantic and pragmatic regularities observed in the input stream. Andersen et al. describe the approach

as “shallow, localized processing”. They also mention that although JASPER has a NDS core processor,

the DS knowledge base required for a specific application involves a significant knowledge engineering

effort (about 8 man-months in the case of the company earnings/dividends applications). For this reason

JASPER has been classified as essentially a DS system. Furthermore, the communication channel is

restricted to newswire input (JASPER does not read newspaper articles, or books) and this further

reinforces the categorisation of JASPER as DS.

The newswire story selection stage utlised by JASPER is Carnegie Group’s Text Categorization Shell

(TCS) (Hayes et al. (1990)), which is itself a shallow system and which is over 90% accurate in its

categorisation decisions. TCS works by pattern-matching for concepts in the text, applying rules to

assign a text to predefined categories. Rules and concepts are domain specific and require some

knowledge engineering. The selection stage of JASPER selects about 1 in 5 of the newswire stories as

relevant, and generates some of the time savings provided by JASPER. Other time savings are made by

the automatic creation of a standard format Reuters story ready to be edited. Andersen et al. report an

average creation time of 25s for each ready-to-edit story, which is extremely fast compared with likely

processing times of systems utilising full parsers.

In the extraction stage, the selected stories are matched against a frame of slots, the slots defining both

the fact to be searched for and the method of processing to achieve this. Each sentence in the selected

story is processed for each slot, by attempted word-pattern matching. (Thus JASPER is similar to KEP in

that the basic pattern-matching unit is the sentence. KEP’s approach is described in Chapter 4 of this

thesis.) If a pattern match is found, the process associated with the slot is called in order to assign a value

to the slot, or reject the match as not useful. Once all sentences in the story have been processed for all

58

the slots in the frame, the partially filled frame is used as the basis of the editable news story. (It is rare

for all slots to be filled since the complete set of relevant facts is rarely present in the source - the

earnings application, for example, has 56 target facts.)

The frame with its slots, slot patterns and slot processing methods make up the DS part of JASPER,

termed a rulebase. The pattern matching mechanism is able to match several patterns to one sentence

(and vice versa) and includes the notions of optional elements, skipping over runs of words,

automatically generated morphological forms (for nouns and verbs), and negation amongst other things.

Let us consider an example pattern:

(profit +N ! earnings)
(&skip 8 ($n ?million dollar +N))
(&n (per share))

This pattern is interpreted as follows. Note firstly that the pattern comprises three parts (one part on each

line of the pattern, bracketed), and that it is intended to match text having three parts in the same order.

The first part is to match the word profit or profits (the +N signifying that profit is a noun and so may be

present in its plural form) or the word earnings, the exclamation mark being the OR operator. The

second part means that this is to be followed within 8 words (&skip 8) by any number ($n), optionally

the word million (?million), and then the word dollar or dollars. The third part says that this is not to be

followed (&n) by the phrase per share. The pattern may be matched against a whole sentence or part of a

sentence by the pattem-matcher. Thus it would match the sentence:

ABC Company announced profits o f more than 50 million dollars last year.

However, it would not match:

XYZ Company’s profits will be 2.25 dollars per share.

The pattern matcher is sophisticated enough to recognise different morphological forms for nouns and

verbs and so removes the need for the person specifying the patterns to list all possible forms. The

negative-match facility is a powerful feature which allows many unwanted forms to be rejected early

(rather than in a post pattern-matching stage) without the need to list them all. The skipping facility is

also a very useful feature, and corresponds to the X-token mechanism in KEP’s pattern matcher

(described in Chapter 4).

A successful pattern match results in the binding of a phrase from the text to a pattern variable, thus

extracting the bound item. This can be done in such a way as to allow different items in the text to set the

pattern variable to the same value. For example, fourth and 4th in the text can both cause a pattern

variable called % q u a r te r to be set to the value 4. This means that slot fillers can be written in a

59

consistent way, e.g. so that the Quarter slot is always set to one of the numbers 1,2,3,4. Slots also have

allowed filler classes and are grouped together accordingly. For example, several slots may take a value

which is a net income figure. These slots would be labelled as taking a <net-income-object> value, and

all such slots would be classed as <net-income-group-object>. Thus a frame is not simply a collection of

slots, but can contain hierarchies of types of slot.

JASPER handles multiple pattern matches to a sentence using “a heuristic procedure”, which

unfortunately is not described in the paper Andersen et al. (1992). Presumably the heuristics encode

domain knowledge (such as when earnings rises, the final number is larger than the starting number).

The resolution of multiple pattern matches to a single sentence has proved an important process for the

KEP program described in Chapter 4. As will be seen, since KEP is not DS it is not possible to use DS

heuristics. Thus the problem is actually more difficult for KEP. The techniques used by KEP are

described later.

JASPER also attempts to overcome time context problems arising through its focus on separate

sentences. For example, in the following couplet the Sales referred to in the second sentence are 4th

Quarter Sales:

Earnings during the fourth quarter o f 1990 were 50.5 million dollars. Sales were 74.3

million dollars.

The above illustrates a form of indirect anaphora (see the following chapter for a discussion of anaphora)

and, as with all instances of endophors, will cause problems for any KE/IE program which works on a

per-sentence basis (such as KEP). JASPER attempts to solve the time context problem by using a

persistent time context which is changed when certain syntactical or semantic clues are found in the text

stream. However, Andersen et al. report that this method is not always successful (although no figures

are given for error rates caused by this).

JASPER is a good example of a very successful, fast, shallow IE/KE system, based on pattern matching.

It demonstrates what can be achieved without full syntactic and semantic processing stages. Although it

requires a certain amount of human supervision (acting more as an assistant than as a completely

automatic journalist), it is clearly a system which is cost effective for the task of sifting huge amounts of

text for specific types of information. Systems like JASPER will undoubtedly become standard tools in

the MU task domain, where one can envisage many copies of the system simultaneously scanning the

incoming text stream for information pertinent to their own target domains.

2.4.2.2 The FASTUS system

The FASTUS system (Myers and Mulgaonkar (1995), Appelt et al. (1993)) performs the information

extraction function in a printed document IE system developed by SRI International. Based on a series of

cascaded finite state automata, NL text is searched for specific logical structures of interest. FASTUS is

domain specific; terrorist incidents form the target subject. However, the communication channel is not

restricted (to e.g. telex messages), because full NL text, as found in newspaper reports etc is processed.

(It might be argued that the newspaper medium does represent a distinct communication channel, but

even so this channel is not as constrained linguistically as that of telexes etc.) FASTUS took part in

MUC-4 (the fourth Message Understanding Conference) and achieved 44% recall and 55% precision

figures.

Four stages of processing are performed: (1) triggering, (2) phrase recognition, (3) domain pattern

recognition, (4) incident merging. Triggering involves scanning sentences for keywords, such as

‘terrorist’, ‘killed’ etc. There is a similar stage in KEP (see section 4.6.7). Phrase recognition then cuts

die triggered sentences into noun groups, verb groups and particles. Domain pattern recognition involves

scanning phrases output from the previous stage for patterns of interest, so that incident structures can be

built from them. This stage represents pattern matching at the semantic level. For example, one pattern

looked for is:

<Perpetrator> <Killing> of <Human Target>

Finally, the incident merging stage attempts to recognise different descriptions of the same incident

separated in the input text.

FASTUS has been placed in the “shallow processing” category here because it uses pattern matching in

essentially shallow ways. Phrases are recognised using syntactic information and domain knowledge,

and patterns of those phrases are then looked for. No parsing is performed on the input text.

Furthermore, only sentences thought likely to contain useful information are processed - the rest are

discarded. The fourth stage, that of incident merging, is an ingenious idea which allows two separate

extractions to create one single, more reliable, extraction. This helps to overcome the complete lack of

semantic processing (text understanding). The fast, shallow approach was a deliberate stance taken after

experiments with TACITUS (a previously developed deep system) showed that “it was wrong to

approach the information extraction task as a ‘traditional’ computational linguistics problem” - Appelt et

al. (1993).

It is the contention of Appelt et al. that finite-state models (regular grammars) can achieve more than was

previously thought possible, despite the fact that English has constructs (such as centre embedding) that

61

cannot be described by a finite state grammar. A 37-state nondeterministic finite state automaton is used

in FASTUS’s phrase recognition stage to identify noun groups. By noun group is meant the head noun of

a noun phrase together with its determiners and other left modifiers. This allows noun phrases such as

the following to be recognised:

approximately 5kg
more than 30 peasants
the newly elected president
the largest leftist political force
a government and military reaction

Note the similarity of these phrases to those found by rule n-100 in Alshawi’s program. Since regular

languages (those generated by regular expressions, as used by Alshawi) can be accepted by FSAs

(Kleene’s theorem5, see Cohen (1986)) this is not surprising.

Similarly, verb groups (the verb together with its auxiliaries and any intervening adverbs) are handled by

an 18-state FS machine. All verbs are tagged as Active, Passive, Gerund or Infinitive, although in some

cases the automaton is not able to distinguish Active/Passive, as in the sentence Several men kidnapped

yesterday were released today. In such cases, the pattern recognition stage is left to make the decision.

Although some relevant adjectives and adverbs are recognised, most are simply ignored.

Recognised phrases are passed onto the pattern recognition stage, which processes them in the order they

occur. For example, the sentence Guerrillas attacked Merino’s home in San Salvador 5 days ago with

explosives is turned into the string of phrases:

(Guerrillas) (attacked) (Merino)(’s) (home) (in) (San Salvador) (5 days ago) (with) (explosives)

This matches the pattern:

<Perp> attacked <HumanTarget>’s <PhysicalTarget> in <Location> <Date> with <Device>

In order for this match to be recognised, the DS knowledge must include lists of perpetrators, human

targets etc. Although some research has been done on the automatic recognition of proper names in text

(see e.g. McDonald (1992), which describes a system (SPARSER) which extracts incidents of job

appointments reported in the Wall Street Journal), it is not clear whether FASTUS uses any such system.

FASTUS does however link bare surnames to full names occurring in previous text, thus allowing full

names to be used in the output incident structure if they are ever given in the text.

5 Any language that can be defined by a regular expression, or a finite automaton, or a transition graph, can be
defined by all three methods.

The above pattern match eventually leads to the extraction:

Incident:
Date:
Location:
Instr:
Perp:
PTarg:
HTarg:

ATTACK/BOMBING
14 Apr 89
El Salvador: San Salvador
“explosives”
“guerrillas”
“Merino’s home”
“Merino”

FASTUS also carries out a certain amount of “pseudo-syntax” to skip over prepositional phrases when

necessary. As the above example shows, it also uses WK to de-reference times and dates and to expand

locations. A rudimentary sort of pronoun resolution is also performed: where a pronoun occurs as a

human target, an antecedent is sought. The algorithm is simple, amounting to a backwards search (as far

as the last paragraph break) for a suitable noun group which agrees in number with the pronoun. The

authors claim a near 100% correctness rate with this method, although this seems surprisingly high.

Note that FASTUS, like JASPER (and KEP, described in Chapter 4) essentially processes single

sentences. Where this causes problems, i.e. due to anaphoric links, both FASTUS and JASPER use bolt-

on heuristics to attempt to retrieve the antecedent. As will be seen later, KEP currently detects anaphoric

links starting on demonstrative pronouns which may stand in for a concept (this, these) but does not yet

have a function to follow die links to their antecedents. Neither the JASPER nor FASTUS papers report

the percentage of sentences in their specific applications which require antecedent finding.

FASTUS again demonstrates how shallow systems can be successful for IE applications. In the words of

Appelt et al. (1993), “Although the full linguistic complexity of the MUC texts is very high... the relative

simplicity of the information extraction task allows much of this linguistic complexity to be bypassed.”

The MUC-4 precision (55%) and recall (44%) figures demonstrate that real, useful systems may be

constructed using the shallow processing philosophy in a domain specific application.

2.4.2.3 The ‘wit’ system

The ‘wit’ KE system described in Reimer (1989) builds a semantic net as a result of exposure to large

amounts of explanatory text. However, this net contains only “is a” links, used to indicate “is a type o f ’

as well as “is an instance o f’. Furthermore, the concept nodes joined by these links contain slots (created

by ‘wit’ dynamically) which allow other information to be held within the nodes rather than as external

links. Thus printer has a manufacturer slot, say. Partitions (descriptions of sub-parts of objects) are also

held as slots rather than as has-part links.

The ‘wit’ system uses a small amount of domain specific knowledge to commence on a new domain.

This is referred to as “knowledge bootstrapping” or closed-loop learning, because newly acquired

knowledge is immediately available to aid in the extraction of yet more knowledge. This knowledge

allows ‘wit’ to “focus its attention” on interesting parts of the text (a sort of triggering, but semantic

triggering, not syntactic/lexical as used by KEP).

The approach is one which uses term acquisition techniques (see also section 4.6.4). Two major ways of

finding new concepts based upon phrasal patterns are used, as illustrated these by examples:

(1) If concept cartridge is already known, and ink cartridge is repeatedly seen, add ink cartridge as a

new concept (new hyponym).

(2) If cpu board and memory board are repeatedly seen, then add the concept board as a hypemym of

both.

These hyponym/hypernym techniques have been suggested by various researchers, and one of the two

techniques (the latter) is used by KEP. In addition to the above two methods, a separate function in ‘wit’

looks at the results of past parses (of many documents, as held in the growing semantic net) and decides

whether to make a new slot within a concept node. This process is given a “certainty” rating, in a manner

which is not relevant here. It also merges parts of the network based on is-a links where syntactic

information is lacking but semantic information allows it. For example, if Courier is-a font, and

Helvetica is-a font, then the two font concept nodes can be merged into one single node. Slots may also

be promoted to entirely new concept nodes in their own right, and this is done when a statement about a

slot or its entry has been found in a text.

It is claimed that ‘wit’ can avoid parsing errors by processing very many texts, so that erroneous parses

are eventually dropped. This situation arises almost naturally because the KB takes form as the weight of

evidence gradually builds up. Thus ‘wit’ has a module for extracting possible facts (the parser), and other

functions for integrating all extracted facts into a semantic net and maintaining that net (something not

attempted in KEP). The latter is done in such a way as to effectively throw away bad extractions. In

contrast, KEP attempts to get only good extractions. Thus ‘wit’ uses sheer volume of text (i.e. very many

separate texts) to find the good facts hidden within a mass of possibly erroneous facts. This is an

appealing idea, and may even reflect the way that humans obtain knowledge.

The ‘wit’ system has been placed here in the ‘shallow processing’ category, despite the fact that

sophisticated functions are provided to maintain knowledge in the semantic net KB. This is because

these functions are not part of the actual extraction mechanism, i.e. the parser. This parser (see Hahn

(1989)) is a syntactic/semantic partial parser which outputs a set of propositions which are processed by

the KB-updating component as described above, and which does not attempt a full parse of every word

in the input. It is thus a reasonably shallow approach. The parser’s output depends upon the amount of

WK available, but assuming that sufficient knowledge is provided, the text given in Figure 6 (source:

Reinier (1989)) would give rise to the proposition structures shown in Figure 7. In the former the bold

text indicates concepts (themes) and the italic text closely associated concepts (rhemes).

The DeskWriter from HP is a new ink-jet printer. Ink is deposited from a disposable ink

cartridge at a resolution of 300 dpi. The cartridges are priced at a reasonable $18.95. The

DeskWriter comes with four fonts: Courier, Times, Helvetica and Symbol.

Figure 6. Theme-rheme patterns in “w it” parser sample input (from Reimer (1989))

DeskWriter is_a ink-jet printer is_a printer
<manufacturer> <manufacturer> <manufacturer>
HP 0.8

<ink>
<ink cartridge>

ink cartridge-1 ink cartridge-1 is_a ink cartridge
<resolution> <price>

300 dpi $18.95

Courier Courier is_a font
Times Times is_a font
Helvetica Helvetica is_a font
Symbol Symbol is_a font

Figure 7. “wit" parser output fo r text in Figure 6 (from Reimer (1989))

In Figure 7, angle brackets <thus> represent slot names and the text on the following line the slot

contents. Where a number such as 0.8 occurs, this is a certainty factor attached by the parser to indicate

how sure it is about the given knowledge. The ‘wit’ parser utilises lexical knowledge, syntactic

knowledge, knowledge of text coherence and domain-independent world knowledge e.g. about part-

whole relationships.

Note that ‘wit’ is a KE system rather than an IE or MU system. Its aims are very similar to those of the

KEP system. However, it is not clear how successful ‘wit’ actually is in practice, since the papers

referred to above make it clear that the parser function was still being written at the time of publication.

Furthermore, no references to the ‘wit’ system dated later than Reimer (1989) have been discovered by

the author of this thesis. Other authors closely associated with Reimer (e.g Hahn, who wrote the parser

paper referenced above) also do not refer to any more recent papers. For example, in a paper on

knowledge acquisition from text dated 1996 (Hahn, Klenner and Schnattinger (1996)) there is no

reference to any later paper on the ‘wit’ system. This suggests that perhaps the ‘wit’ parser, and indeed

the total ‘wit’ system, did not live up to early expectations as described above.

65

2.5 A Note on Evaluation

Before concluding this chapter, it is worth making an observation concerning the state of ‘reality’ of the

systems just described. Do all these systems really exist, or are they little more than ‘paper’ designs?

Unfortunately, the latter appears to be the case all too often in the KE field. Many papers describe

systems under construction, and hence contain few results of evaluations of their performances. The

‘wit’ system above seems to be one such design. Other systems, such as FASTUS, are clearly further

down the road to real-world application, and one reported system (JASPER) is already in commercial

use. The real test must be the existence or otherwise of recall and precision figures - one cannot evaluate

a system that has not yet been coded, but if a system has been evaluated then it must be runnable.

2.6 Concluding Remarks

What are the lessons to be learned from the examples of MU, KE and IE systems described above?

Although only a small set of programs was described, it is possible to draw out the important trends.

These are as follows:

(1) Shallow systems can be successful. This has been demonstrated by the JASPER and FASTUS

systems (which are domain specific), and Alshawi’s MRD analyser (which is NDS). Many IE systems

are shallow systems (see review paper Cardie (1997)).

(2) Domain specific systems can be successful. See MEDLEE, ATRANS, SCISOR, JASPER and

FASTUS. Such systems rely on DS WK to facilitate extraction, largely by providing expectations of the

information to be extracted. Most IE systems are DS systems (see review paper Cardie (1997)).

(3) NDS systems are usually large systems. This is demonstrated by the scale of Conceptual Dependency

and Preference Semantics. NDS systems are only small when the communication channel looked at is

tightly constrained (e.g. Alshawi’s MRD analyser).

(4) Shallow NDS systems are rare. This is evidenced by the difficulty the author had in finding examples

of them in the KE/IE/MU fields. Where shallow NDS systems do occur, they usually reduce the scope of

the problem by looking only for specific types of information (such as definitions), or by restricting the

communication channel used (e.g. dictionaries), or both of these.

(5) Pattern matching techniques are useful in shallow systems. See COMMIX, Alshawi, MEDLEE,

JASPER, and FASTUS. Pattern matching may occur at the semantic level in DS systems, although in

NDS systems (e.g. COMMIX) it usually occurs at the lexico-syntactic level.

66

(6) Part o f speech information is useful in shallow systems. Automatic part-of~speech tagging permits

lexical/syntactic pattern matching. Other methods of identifying word categories are also used (e.g.

MRDs, WordNet).

(7) KE systems are rare. The ‘wit’ system is one example of a KE as opposed to an IE system. Note,

however, that even this one example does not appear to have been fully evaluated.

Throughout this thesis other systems are also mentioned and briefly described. These also bear out the

above conclusions.

The examples of KE and IE systems described in this chapter have been taken from a wider set of such

programs, but those chosen are representative of these fields. Having examined these examples and

drawn the above conclusions, it is now possible to discuss the novel KE program being developed by the

author of this thesis. In particular, the design rationale may be considered in the light of the above points.

In Chapter 4, the KEP program is described. KEP aims to be shallow and NDS. It does this by looking

for only specific types of information (see the fourth point above). A pattern matching approach is used

(fifth point) which relies on part-of-speech tagging (sixth point). The rationale for KEP’s approach is put

forward in Chapter 4, where it is shown that for the intended application and given the available

timescale, a shallow-processing approach which looks for specific types of knowledge is the route most

likely to yield useful results. However, the above descriptions have thrown up a number of linguistic

issues, such as the problems caused by anaphoric links between sentences and the nature of the text to be

processed. Therefore before describing the KEP program in detail it is useful to explore linguistic issues

which have affected the design and development of KEP. Chapter 3, which follows, introduces

discourse-level concepts such as the nature of the text (is it explanatory, historical, fictional? etc) and the

functions of sentences (informational vs. presentational). Categorisations such as the latter are important

because in a shallow IE/KE system if one can filter out “the wrong type of sentence” then much fruitless

processing may be avoided.

3. Linguistic Issues Relevant to KE

3.1 Introduction

In the previous chapter several real message understanding (MU), information extraction (IE) and

knowledge extraction (KE) systems were described. For domain specific shallow systems in particular it

became apparent that pattern matching techniques on a sentence-by-sentence basis are often used. It also

became evident that there are features of natural language which may partially frustrate a sentence-by-

sentence approach, whatever extraction method is proposed. One such feature was the existence of

indirect anaphora relating to time context, as discussed with respect to the FASTUS system. Direct

anaphora also posed a problem (e.g. finding the antecedent of a pronoun such as he).

It is the purpose of this chapter to introduce linguistic issues particularly relevant to shallow systems

which process text a sentence at a time. This is the approach taken by KEP (described fully in the next

chapter). By discussing linguistic issues which might affect KEP at this point, the need to parenthesize

grammatical explanations in the following chapter will be avoided. Thus when these linguistic issues

arise in the following chapter, the solutions adopted (if any) may be described without further preamble.

There are two main areas in which linguistic issues may affect shallow sentence-by-sentence KE: the

first relates to the type of text to be processed, and the second to grammatical features which must be

correctly handled for good IE/KE. To some extent these categorisations apply to all types of KE (DS and

NDS, deep or shallow) but the discussions which follow are biassed towards shallow systems, be they

DS or NDS, which essentially pick out individual sentences for processing (such as JASPER, FASTUS

and KEP). The following discussion will cover only text types; it is assumed that the reader is familiar

with grammatical constructions such as anaphora, ellipsis, apposition etc.

3.2 Types of Text

In this section the properties of texts as a whole which may be of concern to a KE system are considered.

These properties relate to the suitability of individual texts for KE input. The properties are concerned

with the purpose of the texts, the intended readerships, the style of writing etc.

3.2.1 Fictional vs. Non-Fictional Texts

The programs discussed in this thesis are not intended to process works of fiction. Although fictional

texts may well contain facts, their main purpose is not to convey those facts to the reader - the facts are

incidental to the plot. Fictional texts do indeed contain information regarding how language is used

(lexical, grammatical, and stylistic information) but this is not relevant to the research reported upon in

this thesis. Works of fiction will not therefore be considered further.

3.2.2 Explanatory vs. Historical Texts

Not all non-fictional texts are of interest to KE programs, although they might be of interest to IE

systems. Non-fiction may be classified as historical non-fiction or explanatory non-fiction. The term

expository text is also used, although it can also refer to the setting out of an argument, where the

purpose of the text is not so much the conveyance of knowledge but the arguing for a particular

viewpoint. Expository texts of this type may well use factual knowledge to bolster their case, even

though the transferral of knowledge is not the prime aim (the prime aim being to persuade the reader to

adopt a certain viewpoint). Despite these motivational differences, the terms explanatory text and

expository text are often used interchangeably in the NLP community (see e.g. Hearst (1994), Tucker,

Nirenburg and Raskin (1986)).

Historical texts, which are descriptions of chains of events, are not usually designed to convey individual

facts to a reader or to introduce a topic. The medical reports processed by the MEDLEE system (see

section 2.4.1.1) are historical reports - they are not intended to teach radiology to the reader. Although

they are of interest to the MEDLEE system, which is an IE system, they would not be of interest to a KE

system attempting to extract general medical facts. Thus for systems looking to extract facts as defined hi

the first chapter of this thesis, historical reports are not valid input texts. Newspaper reports and

newswire stories likewise tend to be of more interest to IE systems. This topic has been discussed in the

first chapter, in which episodic knowledge was introduced (Burkert (1995)).

Explanatory texts are on the other hand precisely those texts designed to convey knowledge to the

reader. The purpose of a textbook on chemistry is to convey facts to the reader, in a structured way

which builds up the reader’s knowledge of the subject. Such texts are the prime inputs for KE systems.

There will, of course, always be texts which are difficult to place into one or other of the above

categories. Technical reports may be a mixture of historical narrative and factual content. Indeed, this

thesis probably falls into this mixed category. Such texts are still useful as KE inputs. However, the KE

system will then be faced with the extra burden of deciding which parts of the text are fact-bearing.

3.2.3 Informational vs. Presentational Sections of Text

Not all sentences in a text are designed to convey information directly. Many sentences exist to smooth

the flow of reading or point the reader to other parts of the text. Presentational sentences may start with

phrases such as “The example given above...” and then go on to discuss the example rather than actually

give an example of a concept. An informational sentence might take the form “An example of an X is

the Y”. For a shallow KE system which triggers likely sentences based on keyword searching, both

sentences could be triggered (i.e. by the word example). However, the presentational sentence cannot

give rise to an extracted example, and any subsequent processing done on it by the ICE program is a

69

waste of effort. Worse still, it might result in a false extraction. Thus it is desirable for a KE system such

as KEP to be able to detect, and hence ignore, presentational sentences.

3.2.4 Generic vs. Specific Sections of Text

It was stated above that historical texts are not generally of interest to KE systems. One of the main

reasons for this is that sentences and larger units of text may refer to specific items rather than to general

classes of items. Episodic knowledge about a specific dog Fido is of less interest than facts about dogs in

general. Individual sentences in a text may refer to either specific or generic items and so for a KE

system which works on a sentence-by-sentence basis it is desirable for the system to be able to

distinguish between the two types of sentence. This topic has also been introduced in the first chapter.

3.2.5 Fact-Rich vs. Fact-Poor Texts

For NDS KE systems working on texts from widely varying topics it is likely that extractable facts are

more numerous in certain domains than others. This may be the case irrespective of author style

differences or medium variations. For example, in texts from some disciplines such as sociology it is

unusual to find baldly stated facts such as “an increase in truancy causes an increase in crime”. Instead,

the entire text may argue for or against a view such as the above. The complex nature of human society

is such that in this domain causal relationships are much more difficult to identify than in subjects such

as computing. Thus one should expect “fact density” to vary with domain, and indeed this appears to be

KEP’s experience.

Clearly fact density is related to writing style. Although ICE systems are not designed as style

investigators, metrics such as the number of extracted facts per 100 words, as a function of domain,

might prove of interest to stylistics researchers.

3.2.6 Declarative vs. Procedural Texts

Texts such as instruction manuals contain knowledge/information on how to do things. Skuce et al.

(1985) distinguish this procedural knowledge from declarative (factual) knowledge. A single “piece” of

procedural knowledge is likely to be spread over more than one sentence, since it may contain numbered

steps etc. A piece of procedural knowledge may be regarded as an elaboration of a concept how to do X,

where X is an action or a goal state, rather than as a definition of concept how to do X. To illustrate the

difference, consider the concept peeling an apple. This concept is indeed an action. However, its

elaboration would be something like: take a knife, pick up the apple, and starting at the stalk cut the skin

off in a single spiral. The definition of peeling an apple on the other hand might be: the action o f

removing the skin from an apple. KEP is not designed to extract procedural knowledge. Although actions

are valid target concepts, elaborations of such concepts in the above sense are not attempted by KEP.

However, there may be times when a ICE/IE program is unable to distinguish between the two types of

knowledge, so the designer of such systems must be aware of this issue.

3.2.7 Complex vs. Simple Texts

As was mentioned in the Introduction, a text is not just a set of standalone sentences (see Halliday and

Hasan (1976)). The sentences in a coherent text are correctly ordered and refer to the other sentences or

to concepts created by the body of text up to the current point. We may regard a text which has many

such cross-links as a complex text. We may envisage many types of cross-links (connections, relations)

at both syntactic and semantic levels. Taking just one example, an abundance of anaphoric links will

clearly have an effect upon a sentence-by-sentence based KE system, especially if that system does not

have the ability to de-reference such links. Even if the KE program is good at resolving anaphora, there

may be facts which are not extractable because they are generated by an understanding of the text as a

whole, an understanding which requires the identification of other types of connection.

3.2.8 Technical Text vs. General Text

Explanatory texts confined to a single domain which is specialist in nature invariably use specialist

terms, or technical terms (TT). TTs are present in legal documents, medical texts, technical reports,

scientific papers, trade journals, professional newspapers etc. The word “technical” does not imply

“scientific” or “engineering”; it means specialised to the group of practitioners who need to

communicate within their group concerning their specialism, whatever that might be. Thus estate agents,

plumbers, patent agents, and astrophysicists all use TTs. The ability to detect TTs in texts is useful for

KE systems, especially if those terms are the concepts being elucidated. For a NDS system, automatic

detection of TTs is desirable, if not mandatory in practice (i.e. it removes the requirement to store many

lists of TTs, costly to create and maintain). In section 4.6.4 the TT acquisition method used by KEP is

described.

Such texts also often make use of abbreviations, which play the part of technical terms. Where an

explanatory text uses acronyms then the full text for the acronym may be regarded as a useful fact to be

extracted (e.g. “FSA stands for Finite State Automaton” is itself a useful fact). In section 4.6.5 the

acronym acquisition method used by KEP is described.

General texts, whose target readership is not the closed class of a specialist group, are likely to use TTs

and abbreviations less frequently. However, where a text has been written by a specialist for a general

audience, it is more likely that any TTs and abbreviations that do occur are explained to the reader, at

least on the first occurrence. Thus general texts also provide valuable input for KE systems. In fact, such

texts may actually prove more valuable than highly specialised texts because they are aware of the need

to teach in this way.

71

3.3 Conceptual Relations

This section introduces the knowledge-bearing constructs which are used by KEP to construct the

explanations found in the third column of the glossary output. These are conceptual relations.

A KE system which attempts to use world knowledge to be non domain specific is currently not feasible

on practical grounds - as evidenced by the efforts of Lenat in the CYC project (Lenat (1995a), Lenat

(1995b), Lenat and Guha (1990)). A different approach must be taken to achieve generality (NDS-ness).

Since factors external to the text are impractical, devices within text must be used. One way is to use

knowledge about how information is encoded within a piece of writing. The study of textual discourse

structure provides insights into such devices. Specifically, the structures variously known as conceptual

relations, coherence relations (Hobbs (1979)), or semantic relations (Ahmad and Fulford (1992)) are

available6. The preferred term in this thesis is conceptual relation, since the various instances all

involve a concept which is elucidated in some fashion.

However, the term coherence relation also carries some weight since these textual structures tend to

make a text coherent and, via anaphoric links and other mechanisms, cohesive. Morris and Plirst (1990)

have pointed out that the terms coherence and cohesion are often (incorrectly) used interchangeably.

Whereas cohesive links are all about the sticking-together of words in a text, coherence is concerned

with relations among sentences and clauses, such as elaboration, cause, and exemplification.

Furthermore, whereas cohesion lends itself to computational identification, there does not exist a general

computationally feasible mechanism for identifying coherence relations. The KEP program represents an

attempt to rectify this omission, albeit by looking for specific types of relation. Hoey (1991) also

distinguishes coherence from cohesion; for Hoey, coherence is that (somewhat subjective) property of a

text which arises due to cohesive links between sentences - a coherent text is one which makes sense as a

text. Hoey argues that those texts containing many bonds between sentences (formed from cohesive

links) are likely to be coherent.

Many researchers have attempted to categorise the various conceptual relations, or to examine a

particular relation in some depth. For example, Vander Linden and Martin (1995) have made a study of

the forms of the purpose relation as used in instruction manuals, from a Natural Language Generation

(NLG) perspective. Ahmad and Fulford (1992) used both manual lookup and corpus-based methods to

compile lists of lexical forms used in the synonym, hyponym, partitive, causal and material relations.

Broad studies include that of Cruse (1986), who considers taxonomies (hyponymy), meronomies (parts

and pieces), opposites (including antonyms) and synonyms. Lyons (1977) considers conceptual relations

as part of a wider treatise on semantics, where the term formulae is used to describe lexical patterns used

6 These terms are used by the references given, although may not have been coined by them.

72

to evince conceptual relations. Attempts have also been made to standardise terminology for particular

applications, such as the British Standard Guide to the Establishment and Development of Monolingual

Thesauri (published by the British Standards Institute, BSI) which considers hierarchical relationships

(generic, whole-part, and instance), and the associative relationship (the related term relationship, for

example as between “birds” and “ornithology”).

Four major conceptual relations are definition, exemplification, partition and hyponymy. These are the

four relations targeted by the KEP system described in die following chapter. It was not possible to test

all conceivable relation types within the scope of the research reported upon in this thesis, and so it was

necessary to decide upon a small set of important and interesting ones. The above four types were

chosen out of all the possible relation types because they are commonly found in glossaries (this being

determined by manual inspection of a small random sample of glossaries from technical reports, theses

and textbooks).

Examples, part-whole descriptions and class inclusion statements are clearly useful pieces of knowledge

which help a reader to understand a new concept, and definitions provide a statement of what a specific

concept is or what it means. These four relation types seem more frequent and more fundamental than

some of the others (appellation, causation, characterisation etc). In addition, they are somewhat different

from each other in terms of then main purpose or emphasis, and so allow a KE approach to be tested for

varying textual aspects. Definitions are given to tell the reader what is meant by a concept, examples

seem to be given to aid hi reaching an understanding of complex or subtle concepts, hypernyms place a

concept into a tree-like categorisation scheme and hence allow the description of a new concept based

upon differences from existing concepts, and partitions describe concepts as aggregates of components

(which might already be familiar to the reader). Of the four chosen relations, one appears to be

qualitatively different: definitions appear to be driven mainly by their purpose; they may in fact borrow

the other three types in order to achieve this. Thus the set of four relation types chosen provides variety

whilst being likely to cover the more important and most frequently found facts.

The author defines the four chosen relation types as follows (definitions in larger point size with

explanatory text folio whig each):

A definition is a description of a concept in such a way and to such a depth that

it presents the essential features of that concept.

Definitions play a crucial role in subjects requiring specific technical terms, such as engineering,

mathematics and law. Note that the word “essential” within the above is being used in the sense of

captures the essence of. Definitions have also been considered by other researchers, such as Swales

73

(1981), who states that the purpose of a definition is “to cany the reader from the known to the unknown

either by explaining new terms or by re-defining old ones.” Perhaps a more useful explanation is given

by Skuce et al. (1985), who define a definition of a concept as the answer to the question What is the

meaning o f <concept>? This provides a useful working test for the presence of a definition in text. If the

text is considered to correctly answer the question What is the meaning o f <concept>?, then it can be

considered to contain a definition of <concept>. It is important to be able to identify definitions in text

in some standard way because the recall metric requires it (see Chapter 5).

Clearly, even with a test such as the above, there will be an element of subjectivity involved in the

manual identification of definitions. The combination of the author’s definition and Skuce et al.’s

definition, which are conceptually very similar, should reduce this subjectivity. The usefulness of this

approach will be illustrated in a later section. Note however that it would successfully have identified a

definition of an action concept such as peeling an apple (i.e. What is the meaning o f peeling an apple? is

answered not by a list of steps required, but by some statement such as the action o f removing the outer

skin o f an apple).

Definitions have also been considered in great depth by Flowerdew, and no discussion of this relation

would be complete without mentioning this work (see, for example, Flowerdew (1991), Flowerdew

(1992a), Flowerdew (1992b)). However, the focus of the Flowerdew studies is spoken text (specifically,

science lectures) and so much of the discussion is not relevant to the work reported upon in this thesis,

since it covers features not often used in written text, such as repetition, and also paralinguistic features

(e.g. emphatic stress, hand-waving, body language etc). However, much of it might indeed prove useful,

especially for the detection of a definition prior to extraction. For example, in Flowerdew (1992b) the

use of grounders is considered, these being sentences or phr ases preceding a definition in order to pre

introduce the concept about to be defined. For example, a speaker/writer might say Let us now turn to X.

An X is <definition>. KEP does not currently search for clues as to whether a definition is imminent;

clearly this would be a useful feature in an improved triggering function (i.e. the function which signals

the possible presence of a definition in a sentence; the forthcoming section 4.6.7 discusses the current

triggering method). Such work is outside the scope of the present research, although it is indeed in the

author’s long-term plan to utilise it.

Aii exemplification is an elaboration of a concept using a specific instance (or

instances) of that concept.

Examples are a valuable tool in instructional text and their roles in pedagogical applications have been

much studied. Almost all explanatory texts make use of exemplifications, this thesis itself being no

exception.

74

Mittal and Paris (1993) attempt to categorize exemplifications as found in instructional texts. The authors

start by describing the example categorisations of Polya and of Michener, which are as follows. Polya

(1945) gave three categories (i) leading examples, (ii) suggestive examples, (iii) counter examples.

Michener (1978) gave five categories (i) introductory examples, (ii) model examples, (iii) reference

examples, (iv) counter examples, (v) anomalous examples. These schemes are criticised by Mittal and

Paris on the grounds that because the context of the example is not looked at, the same example can be

categorised differently in different contexts. Also, because the categories are somewhat fuzzy, it is

difficult to implement a computational system to pick them out.

The method preferred by Mittal and Paris is based on the well-supported hypothesis that context is

important when assessing the effectiveness of exemplification in instructional texts. To this end, three

dimensions are used:

• the relationship between the information in the example and that in the context
• the intended audience of the example
• the knowledge type being communicated by the example

The first dimension is categorised three ways. Positive examples are instances of the concept being

described in the accompanying text (context) and they satisfy all tire properties of the concept as

described. Such examples play an elaborative role. Negative examples are counter-examples and as such

are deliberate non-instances of the concept being described; they play a contrastive role. Negative

examples allow necessary concept features to be highlighted (the so-called critical features.) Finally,

anomalous examples are irregular or exceptional cases which are either positive instances of the concept

even though the accompanying description of the concept does not directly imply this, or negative

instances which readers often misclassify as positive (and hence which require highlighting). Such

anomalous examples will always require appropriate explanatory text, and are often presented apart from

the other two types (e.g. towards the end of tire discussion).

The second dimension concerns the intended readership of the text. Mittal and Paris suggest three levels

of example as follows. Introductory examples are aimed at novices who want to learn about the concept.

Intermediate examples are aimed at users with moderate previous exposure and who want to learn to

make use o f the concept. Advanced examples are aimed at users with extensive knowledge who want to

have some point about the concept clarified. It is worth pointing out that KEP is designed only to

consider the first of these levels. The latter two categories imply the updating of pre-existing nodes hi the

knowledge base, rather than the creation of new nodes.

The third dimension is the knowledge type. Here, Mittal and Paris categorise the concept being

exemplified into one of the three types concepts, relations or processes. By concept they mean “thing”

e.g. “a list”. By relation they mean something which relates one thing to another, such as the input of a

75

function to its output. Processes are chains of events. Thus processes correspond to the procedures of

Skuce et al. (1985) discussed earlier.

Mittal and Paris state that they have used their example categorisation scheme in a planning system that

suggests the required places and types of examples needed in a text. The input is a top-level goal such as

describe “list". The output is a plan of the tutorial required. This output is in the form of a “discourse

tree”, which is a hierarchical representation of the sub-goals within the plan, the leaves being primitive

statements such as INFORM... i.e. which could be turned into English language statements. It is claimed

that a “grammar interface” converts the discourse tree into a form suitable for input to PENMAN, an

NLG system.

A partition is an elaboration of a concept using a list (or partial list) of its

component parts.

The partition relation is signalled by keyphrases such as is made up o f three parts, comprises, has the

following components etc. It is not to be confused with the material relation, which describes the

substance from which a concept (usually a physical object) is made. The partition relation has been

investigated widely largely because of its informational (rather than presentational) content. It appears to

be one of the fundamental semantic relations used within text to say something about how things are hi

the real world. It is an ideal starting point for a KE program because it presents facts. Phrases such as

(la) to (If) below demonstrate this.

(la) The handlebars are part of a bicycle.
(lb) A computer has three components: a monitor, a keyboard, and a CPU unit.
(lc) A jug has a handle and a spout.
(Id) Germany is part of the EC.
(le) A suit comprises jacket and trousers.
(If) A tree is part of a forest.

Note that these examples show various lexical forms available to the partition relation. They also reveal

sub-divisions within the partition relation relating to the nature of the object being partitioned and the

manner of that partition. In order to detect instances of the partition relation within text it is necessary to

define precisely what is meant by this term, and what is to be excluded.

A detailed study of the taxonomy of the partition relation has been made by Winston, Chaffin and

Herrmann (1987). The taxonomy describes six types of partition relation, as follows:

Component/Integral Object An object is characterised by its components, as in (la), (lb), (lc)

and (le) above. The components are functional parts of the object, can in theory be separated

from it, but are not homeomerous i.e. they are not similar to one another and to the whole

object. Thus (Id) also falls into this category. This is the type of partition relation which most

readily springs to mind. Note that die wholes do not have to be physical objects, and that their

components are not the same thing as pieces of the whole (a broken jug’s pieces are not the

same as its components, as in (lc).)

Member/Collection Members of a collection are indeed parts of it but do not perform a

particular function or possess a particular temporo-spatial arrangement with respect to it.

Sentence (If) provides an example. Winston, Chaffin and Herrmann make the point that classes

differ from collections in that membership in a class is determined on the basis of similarities to

other members, but collection membership is determined by spatial proximity or social

connection. The special term groups is used when social connection is the binding factor. Note

that this type of partition is not the same as the Member/Set relation. A set is not the same thing

as a collection; sets have names which reflect their membership, such as the set o f all positive

integers. Here, we could not say that 198 is part o f the set of all positive integers. A set is

essentially a collection of individual items, not a whole thing, such as a forest.

Portion/Mass A portion of a pie is a part of that pie, but it is not a component of it. In this type

the parts are homeomerous (the piece of pie is “pie”, and so is the whole), non-functional, and

separable. The lexical form “some o f’ indicates this partition type if it may replace “part o f ’

without altering the meaning. This is the mass sense of “some o f ’, but since this phrase also has

a count sense (as in some o f my friends are boring) it cannot be relied upon to exclusively

indicate the portion/mass relation.

Stuff/Object Winston, Chaffin and Herrmann argue that in a sentence such as A martini is partly

alcohol the alcohol is to be regarded as a part of the whole drink, as evidenced by the term “is

partly”. Clearly this is a troublesome area because they also discuss the need to use “is made o f’

when the whole object is composed of the same substance, as in A lens is made o f glass. The

author prefers to regard both these examples as belonging to the material relation. In the first

sentence, the term “is partly” has the intended meaning “is partly made o f ’, where the emphasis

is actually on the elided “made o f’. Thus the main intention of the sentence is not to list one or

more of the parts of a martini, but to state that a martini is (partly) composed of a particular

material (alcohol). It is suggested that the parts of a martini are vermouth, gin, ice etc, i.e. its

ingredients. However, one might argue that this still comes under the material relation, and so

clearly this is an area open to debate.

77

Feature/Activity Here the whole is an activity, such as shopping, and its part a stage (feature) of

that activity. Thus Paying is part o f shopping contains meronymic information. The

components in this type are functional, but not homeomerous or separable. Interestingly, this is

the only relation type in the taxonomy which cannot be expressed in the form X has Y. (Bicycles

have handlebars, forests have trees, pies have slices, ?shopping has paying). Since we are

ultimately interested in partition relation KE from texts, forbidden forms such as these are of

importance.

Place/'Area This is the relation between areas and special places within them. For example, The

Everglades are part o f Florida. This type appears to be similar to the portion/mass type, but

here the part is not in theory separable from the whole. Parts are, however, homeomerous (the

Everglades are “Florida”, as is Florida).

Winston et al. use the above taxonomy to explain apparent failures in transitivity within syllogisms, such

as in the following triplet:

(2a) Simpson’s arm is part of Simpson
(2b) Simpson is part of the Philosophy department
(2c) Simpson’s arm is part of the Philosophy department

Sentence (2c) apparently follows logically from (2a) and (2b), although it is obviously odd. This is

explained by the recognition that in (2b) the semantic relation is in fact that of meronymic

member/collection, whereas in (2a) it is meronymic component/integral object. Sentence (2c) is thus

invalid due to the mixing of different semantic relations in the preceding assertions. This becomes

clearer if “part o f’ in (2b) is replaced by “a member o f’. Thus it is the vagueness of the phrase “part o f’

which allows the apparent failure of transitivity. To put it another way, the phrase “part o f’ can be used

to indicate more than one type of partition, if not other non-meronymic relations as well.

Further discussions relating to these issues are presented in the paper Bowden, Evett and Halstead (in

preparation).

A hypernym is a categorisation of a concept achieved by stating the parent

class of that concept.

The hypernym relation is signalled by phrases such as is a type o f e.g. a dog is a type o f mammal. The

hypernym relation is the other facet of the hyponym relation, since hypemyms and hyponyms exist as

pairs. In the hyponym relation, the concept is the hypernym (parent class) and the elaboration is a

member of that class; this relation is signalled by phrases such as include e.g. mammals include humans.

The hyponym relation, also called class inclusion, is a natural link type for semantic net knowledge

bases. Hypernym/hyponym pairs (such as mammal/dog, computer/mainframe etc) allow the construction

of a hierarchy of concept nodes. The most commonly used link type for this relation is is a type of, where

the link goes from the hyponym (lower class) to the hypernym (higher class). However, the link wording

is a is also often used, e.g. as in WordNet (Miller et al. (1990)). Thus a dog is a type o f mammal, or a

dog is a mammal. The relation should not be confused with the instance relation, which attaches a

terminal node to a category, such as in Fido is an instance o f a dog. (Confusingly, is a is sometimes used

for this relation too.)

The hyponym relation underpins the currently fashionable object-oriented (OO) programming

philosophy and it has been extensively studied for this reason alone. Within the KE arena the hyponym

relation has been the target of attempts to automate hierarchy creation from dictionaries (e.g. by

Chodorow (1985), Markowitz, Ahlswede and Evens (1986), Alshawi (1987), Zhu and Shadbolt (1995)),

and from other texts (e.g. Hearst (1992)). Hyponym extraction from MRDs has been found to be

especially tractable, due in part to the nature of dictionary entries (i.e. they are definitional by nature, and

easy to find because they are not surrounded by much irrelevant text) and also because of the rigidly

constrained syntax used (e.g. nouns are explicitly marked as such). For example, Chodorow (1985)

claims a 98% accuracy rate on extractions from Websters 7th Collegiate Dictionary, using the simple

heuristic of looking for the head of a defining noun phrase.

Hyponym KE from running text is not so straightforward, but has already been suggested using pattern-

matching techniques. Hearst (1992) claims that hyponym lexico-syntactic patterns are easily

recognisable, occur across text genres, and “indisputably indicate the relation of interest”. Hearst also

states that “for finding simple semantic relations, pattern recognition is far more accurate and efficient

than parsing”, and goes on to suggest an algorithm for discovering the patterns. The idea put forward is

to use already-known hypernym-hyponym pairs (such as Country-England) to discover new lexico-

syntactic patterns used to hold hyponymic knowledge. This method would require large amounts of pre

existing knowledge accessible to the current ran of a KE program, and very large amounts of textual

input. It is not the method used by KEP.

Note that for all four relation types described above, the relation has been named after what is extracted

for the concept, rather than for the concept itself. Thus in the case of the hypernym relation, the concept

being elucidated is the hyponym (e.g. dog), and the elucidation (extracted solution) its hypernym (e.g.

mammal). Thus although the concept to be elucidated may be the grammatical subject of the sentence (a

dog is a type o f mammal), the conceptual relation is named after the relation of the extracted part to the

concept (mammal is the hypernym of dog). This convention is arbitrary and not all authors stick to it, but

it seems logical given that it results in consistent concept/elucidation pairs:

DEFINITION RELATION = concept + its definition (a definition of the concept)
EXEMPLIFICATION RELATION = concept + its exemplification (example(s) of the concept)
PARTITION RELATION = concept + its partition (what the parts of the concept are)
MATERIAL RELATION = concept + its material (what the concept is made of)
HYPERNYM RELATION = concept + its hypernym (what the parent class of the concept is)
HYPONYM RELATION = concept + its hyponym (member(s) of the concept’s class)
INSTANCE RELATION = concept + its instance (instance(s) of the concept’s class)
CAUSATION RELATION = concept + its cause (what caused the concept usually an action or a state)
NOMINATION RELATION = concept + its name (what it is called) (Also called APELLATION)
CHARACTERISATION RELATION = concept + its characteristics (properties)
etc.

The concept need not be the grammatical subject of the sentence; the relations above are concerned with

thematic rather than grammatical roles. For this reason relation types such as the above may overlap each

other. The hyponym relation usually gives a class of items which exists within the concept’s class (e.g.

Dogs (concept) include hunting dogs (hyponym)), whereas the instance relation gives a named object in

the concept’s class (e.g. Dogs (concept) include Fido (instance)). The exemplification relation is similar

to the instance relation, and in many cases it may be difficult to distinguish the two. For example, in

PASCAL is a high-level language, is the relation an exemplification (of high-level language) or an

instance? Or both? Or is it a definition of the PASCAL concept? To answer these questions it may be

necessary to examine the surrounding text to find the motivation for the statement. The definition

relation may also have some overlap with other relations, since the definition of the concept may actually

be made using a hypernym. Thus for an essentially arbitrary and open-ended set of conceptual relations,

deciding whether a given relation is present in the text, or deciding whether it is the sole relation present,

are important issues. Are there in fact any trigger phrases which unambiguously confirm die presence of

a given relation in text? This question is returned to in later discussions.

80

4. The Knowledge Extraction Program (KEP)

4.1 Introduction

In this chapter the novel KE system developed by the author is described. KEP (Knowledge Extraction

Program) aims to be a non domain specific system which can extract factual knowledge from

explanatory texts. Possible applications have been mentioned in section 1.4 and are returned to in section

6.3. An earlier version of the KEP system has also been described in Bowden, Halstead and Rose

(1996a) and (1996b).

4.2 Avoiding Deep Processing

4.2.1 Motivation for a Shallow Processing Approach

The deep processing programs described in Chapter 2 demonstrate clearly the difficulty of attempting

NDS KE using a deep processing approach. Most of the deep approach examples are domain specific.

The only deep processing NDS systems described earlier are Conceptual Dependency and Preference

Semantics. The former is a huge suite of software developed over several years by several people, and

the latter is hardly less broad in scope. Since the NDS approach is desired for KEP, a shallow processing

approach is the only practical route given the resources involved in this research. However, practical

considerations are not the sole factors here. One of the major motivating factors for this research was the

desire to discover to what extent a shallow technique could be used for the KE task, and in particular for

the NDS KE task. This theme is expanded upon in a forthcoming discussion section, but it has already

been discussed in the first chapter. The idea is to reveal how far a shallow approach could go whilst at

the same time creating a useful system, if indeed the latter turns out to be possible. Along the way, it is

hoped that some interesting linguistic discoveries might be made.

4.2.2 Pattern Matching for a Shallow Approach

If full syntactic/semantic parsing is not to be performed, what are the alternatives? Examination of the

examples of systems given previously shows that there is really only one approach - pattern matching.

This is a broad term and can cover everything from looking for certain exact phrases (veiy shallow),

through using pattern templates of parts of speech, to patterns of functional parts (subject, object etc).

For domain specific systems, such as SCISOR, the elements in the pattern may be at a high-level

semantically, including items such as dates, companies, specific events, people’s roles etc. Thus at the

highest level a pattern might be something like <company take-over company>. Actually matching this

pattern to a piece of text involves linguistic knowledge (e.g. so that took over is recognised) as well as

world knowledge (e.g. so that Acme Widgets is recognised as a company). Thus the term pattern

81

matching in reality covers a whole set of techniques which operate at different levels syntactically and

semantically. The pattern matching approach used by KEP is described in section 4.6.10.

4.3 Avoiding Domain Specificity

4.3.1 Motivation for NDS system

Why attempt to create a non domain specific system? The first answer is so that the program can be

used in many domains without the need to spend a lot of time and effort compiling domain knowledge.

Such knowledge is not likely to be static, especially when the domain is a fast-moving field such as

computing. Thus there is not only an initial set-up effort required; any KB will require continuous

updating and maintenance. This problem has been recognised by researchers in various fields, such as

those trying to devise systems aimed at extracting technical terms from documents (see e.g. Justeson and

Katz (1995)). It is of course true that domain knowledge must be compiled and maintained for a DS

system too. But the difference is one of scale; in practical terms die KB needed for a DS system may be

finite, whereas that needed for the NDS system may be very many times larger, if not open-ended in

scale.

A second reason for attempting an NDS system is that it may tell us somediing about the nature of

language, particularly about the ways in which English is used to hold knowledge. Such knowledge may

be interesting in its own right, but it may also have practical applications. The coipus studies described

later in this document revealed systematic data concerning the ways in which definitions,

exemplifications, partitions, hypemyms etc are structured in English, and hence allowed moderately

successful methods for automatic extraction. Other researchers have already performed similar corpus

studies, motivated by various applications. For example, for TEFL (Teaching English as a Foreign

Language), Xuelan and Kennedy (1992) report on ways of expressing causation in English, their

motivation being the desire to ease the learning of ways of expressing this concept in English for second-

language students (see section 6.2.11),

Thirdly, NDS systems may tell us something about the way to create systems that learn. This is an

important research area which has frequently arisen within NLP (see the review paper Collier (1994)).

Learning is more important in NDS systems than in DS systems because with the former it is often

impossible to manually encode all the necessary world knowledge at the outset, thus creating the

requirement for automatic learning.

The above is all very well, but what is it that makes the author of this thesis believe that an NDS system

is indeed possible? This question is especially important because the system is also to be shallow, and (as

has been pointed out in the Concluding Remarks of the second chapter) therefore represents a rare

combination of these two dimensions. The answer lies in the nature of the communication chamiel

chosen i.e. in the narrower task attempted by KEP. Instead of attempting to extract all knowledge,

something which would undoubtedly require large amounts of WK, only certain specific types of

knowledge are to be uncovered. The approach is to use knowledge types which occur in all explanatory

texts, whatever their subject areas. Furthermore, if such knowledge types are often present in the same

(finite) set of lexical patterns, then a shallow pattern-matching approach may be used to extract the

knowledge. The knowledge types referred to are conceptual relations-, these were introduced in section

3.3.

4.4 Output formats

This section discusses the appearance of KEP output, and demonstrates what KEP is capable of. The

description which follows uses a test text created solely for this purpose; this test text was not part of the

formal evaluation of KEP. The test text is given as Figure 8. The advantage of describing the output

formats at this stage is that it gives the goal towards which we are aiming. By giving a ‘black box’

description of the KEP system, i.e. by describing its input and resultant output, the reader will appreciate

the nature of the attempted task at the outset. This then allows a top-down description of how that goal is

achieved to follow in later sections.

Sorting is the action o f arranging data items into some specific order. We can define a sort

routine (SR) to be a function which orders a list o f items according to some criterion. Examples

o f SRs include the bubble sort and the quick sort. Sort routines are composed o f four elements:

input list, output list, sort criterion and sort algorithm. An example o f a sort criterion is

alphabetical order. A sort routine is a type o f data rearrangement algorithm, or DRA. In these,

data elements are not themselves altered, but their order o f presentation is changed to assist the

calling application.

Figure 8. Example o f text containing 4 conceptual relations

There are five standard output formats for KEP:

• long format (a file containing a copy of the text read in, the sentence structure of that text, and details

of the extraction process as it proceeded, together with the extractions themselves and some counts);

• short format (a file containing only the extinctions, of which Figure 9 is an example);

• KEN format (Knowledge Extraction Network, of which Figure 10 is an example);

• glossary format (of which Figure 11 is an example);

83

term summaries output (of which Figure 12 is an example).

Figure 9, Figure 10, Figure 11 and Figure 12 correspond to the input text of Figure 8. Whereas the first

four bulleted output formats above are essentially the same extractions formatted in alternative ways, the

fifth (Figure 12) is different in content - it is a list of technical terms discovered in the document,

together with blocks of source text containing those TTs. (The long output file, first bullet point, is too

long to include as a figure here and therefore has been included as Appendix D.) The reasons for

choosing the output formats given below are given later in this thesis.

Concept: sort routine
Definition: a function which orders a list o f items according to some criterion
Hypernym: data rearrangement algorithm, or DRA
Example: bubble sort
Example: quick sort
Part: input list
Part: output list
Part: sort criterion
Part: sort algorithm

Concept: sort criterion
Example: alphabetical order___

Figure 9. Example short KEP output

C:sort routine]
{has an acronym}
GSR]
{has a definition}
C:a function which orders a list of items according to some criterion]
{has an example}
C: quick sort]
{has a part}
C:input list]
{has a part}
Goutput list]
{has a part}
G sort criterion]
{has a part}
G sort algorithm]
G sort criterion]
{has an example}
Galphabetical order]
C: data rearrangement algorithm]
{has an acronym}
GDRA]___

Figure 10. Example KEN output

84

ACRONYM TERM EXPLANATION

DRA data rearrangement algorithm

sort criterion Examples: alphabetical order

SR sort routine Definition: a function which
orders a list of items
according to some criterion.
Type of: data rearrangement
algorithm, or DRA. Examples:
bubble sort and quick sort.
Parts: input list, output
list, sort criterion and sort
algorithm. SEE ALSO sort
criterion, data rearrangement
algorithm

Figure 11. Example Glossary output

SR sort routine

1 We can define a sort routine (S R) to be a function which
orders a list of items according to some criterion .

2 Examples of SRs include the bubble sort and the quick so r t.

DRA data rearrangement algorithm

5 A sort routine is a type o f data rearrangement algorithm ,
or DRA .

sort criterion

3 Sort routines are composed of four elements : input l i s t ,
output l i s t , sort criterion and sort algorithm .

4 An example of a sort criterion is alphabetical order .

Figure 12. Example Term Summaries output

Output may be displayed on screen (piped into the UNIX more facility) and/or printed at a laser printer.

This is under user control. KEP does not at present provide a graphical output. Figure 22 on page 206

gives an example of such an output (essentially from the above short output, except that the extra sorting

85

node is shown). Note that a graphical output shows explicitly the links between concepts implicit in the

short output. For example, in the short output the concept sort criterion is linked to the concept sort

routine since the former is a part of the latter; these relationships are not always easy to spot in a textual

output file.

Although the glossary produced is correct as far as it goes, it is worth noting what does not appear in the

above output. There are two obvious omissions which a human glossary maker might have provided: (1)

there is no glossary entry for sorting, and hence no accompanying definition of this concept (first

sentence), (2) there is no explanation of a DRA based upon the last sentence in the text. Questionably, a

human might also have provided an entry for data item, realising that data item (first sentence) and data

element (last sentence) are semantically equivalent in this text. The reasons for these omissions will

become clear as the KEP program’s modus operandi is described in the following sections.

4.5 KE Strategy: An Overview

Before detailing the processing used in KEP, it is useful to outline the major steps. The following

paragraph is the outline of processing performed for a full run of KEP started using menu choice 6 (see

Table 5 on page 93). The outline need not be read at this point; the reader may return to it after having

read the rest of the chapter, or may wish to read it both before and after the full description. Each of the

steps in the outline is described in detail in the following sections. The outline itself contains no

justification for each step (i.e. why each step is necessary) - it is merely a statement of what KEP does in

what order. The need for each step and the rationale for the order of processing are developed in the

following sections, but much of the rationale has already been described in earlier sections, where the

reasons for choosing a glossary were discussed (section 1.4.5) and the necessary elements of a glossary

considered (section 1.1.3.7). To a large extent these determine the required processing steps, although

not of course how these are achieved.

OUTLINE OF KEP PROCESSING After a file of text has been part-of-speech tagged and pre-

processed to bring it into a common format, it is read in by KEP which copies it into memory and

obtains the sentence structure. Each sentence is then examined for technical terms (TT), a process which

involves looking ahead to future sentences. Next, each sentence is examined for acronyms and what they

stand for and, where acronyms stand for phrases which are TTs, reference links are made between the

TT and the acronym. For each of the four conceptual relation types, triggering is performed to find the

“interesting” sentences. Presentational sentences are then rejected. A novel pattern matching technique is

then brought to bear on these sentences, to obtain fragments of text which hold knowledge. Fragments

are validated to confirm that the pattern match was a useful one. Validated fragments are then presented

as useful extractions. The various output formats are then constructed, including the main output format

- a glossary for the input text.

86

These stages will now be considered in some detail. An overview of processing is also given in the

architecture diagram (Figure 13), in which arrows represent text flows and boxes represent processes

performed on these.

O f f l i

o &, O.

Figure 13. KEP System Architecture

87

4.6 KEP Processing

4.6.1 Pre-KEP Text Processing

4.6.1.1 Part of Speech Tagging

The KEP program relies upon its input being part-of-speech tagged prior to its being read in. Since this

process is not carried out by any program designed by the author, it is worth discussing the nature of the

process and why it is needed.

A part of speech tagger, usually referred to simply as a tagger, is a program which accepts a text and

returns that text with each word ‘tagged’ with a part of speech code. Consider again Figure 1 on page 24.

If the leaf nodes of the tree are attached to die terminal symbols using an underscore character, a tagged

sentence results:

Fierce ADJ dogs_NN attack V ferociousIy ADV

However, it is important to realise that a tagger is not a parser. Although the output from a tagger looks

like the bottom line of a parse tree, the upper parts of the tree are absent, because they were never

produced. Taggers work by looking up words in a lexicon and finding the possible parts of speech for

each word. Each word may have more than one potential tag. For example, dogs in the lexicon may be a

noun or a verb. The task of the tagger is therefore to select the correct tag out of the set of tags available

for each word. Perhaps surprisingly, this process does not require a full parse of the sentence, because

statistical methods may be employed to select the most likely tag for a particular word, given the tags of

the words near to it. Using such methods most successful taggers are able to select correct tags for more

than 90% of all the words in a text.

For example, the CLAWS tagger (Constituent Likelihood Automatic Word tagging System) takes the

above approach. See Garside, Leech and Sampson (1987) for a detailed description of the original

program, and Leech, Garside and Bryant (1996) for an overview of the latest incarnation (CLAWS4),

which was used to tag the BNC. The heart of the tagger uses a Hidden Markov Model (see e.g. Chamiak

(1996) for an explanation of HMMs) for the assignment and disambiguation of tags, but CLAWS also

contains a rule-driven contextual part-of-speech assignment section, designed to tag idioms (such as he

kicked the bucket) i.e. parts of speech which extend over more than one orthographic word. (Thus if

kicked the bucket is being used in the sense of died, then each of the three words kicked, the, and bucket

should be tagged in such a way as to indicate that they are to be treated as a single entity.) This part of

CLAWS4 is becoming more important, since there are general idioms such as as much as, which might

be regarded as a single coordinator, and complex names such as Dodge City and Mrs. Charlotte Green.

88

Also handled are foreign expressions such as annus horribilis. Separate lexicons are used to handle these

types, and they now hold over 3,000 entries in toto.

The CLAWS4 tagger has an error rate of about 1.5% (i.e. words incorrectly tagged) and leaves a further

3.3% of words ambiguously tagged (i.e. CLAWS4 is unable to decide upon a tag, and gives so-called

portmanteau taggings i.e. lists of possible tags). However, these figures are averages and many factors

should be examined when discussing error rates. For example, when tagging the word horrifying in a

horrifying adventure, should it be labelled as an adjective or a verb particle? Clearly it is important to

measure error rates against a published standard which details such cases, i.e. an amiotation scheme. This

is currently being produced for CLAWS4. Surprisingly, the size of the tagset does not seem to affect the

error rate. Two tagsets were used for the BNC tagging: the C5 tagset of 58 tags for the whole corpus, and

the C6 tagset of 138 tags used for a ‘core corpus’ part of the BNC.

Part of speech tags are used by KEP mainly for technical term acquisition (see section 4.6.4). Future

enhancements may also utilise them for text fragment validation and pseudo-parsing.

The list of part of speech codes which a tagger uses (the tagset) normally contains several tens of

different tags. Although the common grammatical categories exist within all taggers (singular noun,

plural noun etc) there is not always a one-to-one correspondence between two different tagsets, because

some categories may be subdivided in one tagset, absent in another etc. For this reason, automatic

translation between tagsets is not easy. Thus KEP pattern files (see Table 6) must be created largely

manually if a new tagger is used. The paper Qiao (1995) demonstrates the sorts of problems which need

to be considered if automatic tagset translation is desired; here the mapping is actually between parsed

corpora rather than merely tagged corpora (the Lancaster Parsed Corpus and the Susanne Corpus) but the

requirement includes within it tagset mapping. Although the approach may be said to be applicable to

any two tagsets, much of the detailed work is specific to the two annotation schemes involved. Thus

whenever a new tagging scheme is encountered, a new translation program would be needed for every

other existing tagging scheme. The upshot of this is that in order to re-tag a text one would not normally

run a translator program, but simply re-tag using the new tagger. This is fine, but would not solve KEP’s

pattern file translation problem. In the work reported upon here this problem has been largely

sidestepped by using just the one tagger and its corresponding tagset(s) - the CLAWS system as

described above.

CLAWS may now be purchased for installation on a local computer. Thus any text file may be pre-

processed to provide tagged input for KEP. In addition, existing BNC files come pre-tagged (by

CLAWS, see above), although the format (layout) of these files requires pre-processing before KEP can

.use them.

89

Before leaving the subject of taggers, it is worth justifying their use in a non domain specific system. The

following paragraphs discuss the issue of domain specificity and give examples of other NDS systems

which use part-of-speech taggers. These arguments are used to justify the use of the CLAWS tagger by

KEP as a pre-processor program.

All British English part-of-speech taggers have been designed to work on any (British English) text,

whatever its subject matter or style. Thus taggers are inherently non domain specific NLP programs.

Taggers do of course use internal lexicons, but these too are not domain specific. Since many technical

terms are made from everyday words (e.g. chain reaction) they are properly tagged even within domain-

specific texts. Furthermore, most taggers attempt to tag unknown words, with a high degree of success.

In addition to being NDS, the tagging process does not involve human intervention and so a tagger is an

automatic system. Thus a tagger is an automatic, NDS program. This justifies the use of a tagger as a

fust stage of a system which claims to be both fully automatic and NDS and which takes plain text as its

input.

Other researchers have also used part of speech taggers in then NLP systems. For example, Zernik and

Jacobs (1990) used pre-tagged text to discover thematic relations (i.e. the roles played by elements of

text, such as actor or recipient). Word co-occurrence data was collected from a corpus of business

articles, tagged by an in-house developed tagger (un-named). The word co-occurrence counts together

with the word tags were used to discover facts such as that shareholders are the recipients of pay,

whereas dividends are the objects. This is a good achievement for a system which does not use world

knowledge, and shows the degree to which syntactical information may aid in KE. Manning (1993) used

tagged text to discover verb subcategorisation information automatically from text. Subcategorisation

information includes factors such as whether the verb is transitive, intransitive, stative etc, and whether

certain prepositions may or must follow the verb. Tagged text is therefore required in order to identify

the verbs and the other parts of speech following them, the verb and its associated text being processed

by a finite state parser. Manning foimd die 5% error rate of the tagger used (a version of Kupiec’s

stochastic tagger, Kupiec (1992)) to be acceptable for his application. Thus taggers are beginning to be

used as knowledge-discovery tools, both for purely syntactic knowledge (Manning) and higher-level

knowledge including thematic WK (Zernik and Jacobs).

4.6.1.2 Pre-processing Programs

A tagging format is a description not of the tags used in a particular tagset, but of how those tags are

attached to words in the text. In order to avoid the need to add modules to KEP to handle each of the

tagging formats which might be encountered, KEP accepts only one tagging format - part of speech tags

attached to word endings via a tag-attacher character or characters. KEP uses pre-processor programs to

provide this. Coipora may use pre-word tags (e.g. BNC <w> tags) and usually contain other mark-up

devices, which need to be stripped. In addition, some corpora (e.g. LOB) arrive in vertical format i.e.

90

each word (together with tagging and other information) is on a separate line. Currently, the pre

processor programs detailed in Table 4 have been written. By default, their output is placed in the file

kep.in, which is the KEP default input file. Note that the third of these, conclaws.c, is designed to handle

tagged texts which were originally input as plain text to the CLAWS4 tagger, rather than pre-existing

corpus texts. It thus allows any text to be processable by KEP, e.g. texts created by word processor and

saved as plain ASCII text, or other pre-existing ASCII documents. The conclaws program contains

within it a mapping function from the CLAWS4 C7 tagset to the simpler C5 tagset used by much of the

BNC (and by KEP).

Program Name Source Converted
conlob.c vertical-format LOB files
conbnc.c BNC files (CLAWS C5 tagset,

pre-word o -tag s as input)
conclaws.c vertical-format CLAWS \c 7 ’

files (C7 tagset or C5 tagset
..- . ‘

Table 4. KEP preprocessor programs

It might be considered wasteful to strip out useful annotation information from a tagged text, such as a

BNC text. Why remove the annotation which indicates sentence structure, say, but then try to recreate it

within KEP? The answer is that KEP is designed to process texts from various sources. Plain text is first

tagged and then passed to KEP. Since not all taggers provide higher-level annotation, it is not sensible

for KEP to rely upon it. Higher-level tags (e.g. those to indicate headings, paragraph starts, sentence

structure etc) are not usually created automatically (i.e. by a program) and so cannot legitimately be used

in a non domain specific automatic KE program designed to handle any plain text. (There are, of course,

exceptions; the CLAWS4 tagger does provide sentence fragmentation.)

4.6.2 Initial Processing

4.6.2.1 Starting the Program

KEP is started from the UNIX prompt by entering ‘kep’. The user is then queried as to the various

options required for this particular program run. The current list of queries generated by KEP is shown in

Table 5. Single keystroke answers are accepted for the Yes/No questions. Note that, in keeping with

good HCI practice, default values are provided wherever possible and KEP echoes responses back to the

user. It is not possible to run KEP with a “bad” combination of answers, since the questions are

structured and presented so as to prevent this.

The decision to use a simple prompt-based method of starting KEP was made because it was not the

purpose of this research to develop a sophisticated front-end; cosmetic aspects may be handled at a later

date e.g. when KEP is incorporated into some larger system. This approach is also detectable in the

limited set of questions posed to the user at KEP start-up. Many variables are set to default values so that

91

KEP may be started with the minimum of keystrokes. (However, all default values and assumptions

made are written to the long output file.) The set of questions presented to the user is alterable at compile

time, so that where there are repeated runs of the program under similar circumstances of input it is not

necessary to display all the questions. For example, a typical configuration (for processing BNC texts) is

to include the questions on the second and third rows, the MENU rows, and the Do you want to

see/print? rows.

During the program run, diagnostic and error messages (if any) are displayed on the screen. Messages

are also displayed as to the current stage of processing attained. These confirm to the user that the

program is still running and that all is well. (These messages are not given in the table.)

f
t
y?

Query Text Required Response Purpose
Where’s the input? (filename, or
<cr> for default):

Valid filename, or just <cr> Names file holding text to be
processed

Original BNC file name? : 3-char identifier, or just <cr> Printed to output to identify the
BNC text (if applicable) used as
input

Output to where? (filename, or <cr>
for default) :

Valid filename, or just <cr> Names output file

Is the input text already in one
sentence per line format? (y/n) n] :

y or n Finds out whether sentence
boundary detection is needed

Are there full stops etc terminating
these sentences? (y/n) n] :

y or n If y to last query, finds out if KEP
needs to add punctuation

Is the input text part of speech
tagged? (y/n) n] :

y or n Stops parts of processing which
need tags

Tag attachment character(s) ? one or more characters Tells KEP what to look for between
word and its tag

What are the plural noun tag
characters?

one or more characters Used by KEP in some functions
e.g. term acquisition

Do you want to ignore “is a”
triggers? (y/n) n]

y orn Allows general triggers based on
verb “to be” to be ignored

Do you want to ignore apposition
triggers? (y/n) n]

y orn Allows specific apposition pattern
triggers to be ignored

MENU choice 1
Just do acronyms

1 Only extract acronyms and their
expansions

MENU choice 2
Just do TTs and acronyms

2 Get acronyms, their expansions,
and technical terms only

MENU choice 3
Just do relation triggering

3 Do nothing but trigger sentences
for relations

MENU choice 4
Just do TTs, acros and triggering

4 Get TTs and acronyms, then trigger
for sentences having relations

MENU choice 5
Highlight triggered sentences
bearing TTs

5 As above but select only triggered
sentences having TTs in them

MENU choice 6
Full extractions, TT-bearing
sentences only

6 Do all processing for triggered
sentences bearing TTs

MENU choice 7
Full extractions, all triggered
sentences

7 Do all processing for all triggered
sentences

MENU choice 8
Exit

8 Abandon program run

If same text as last ran, do you want
to restore last run’s TTs and
acronyms? (y/n) n]

y or n Allows user to shorten run time
when text being processed is
identical to that in previous run

Do you want to do all 4 relation
types? (y/n) n]

y or n Allows user to select all relations or
pick a subset of them, by the
following questions

Do definitions? (y/n) n] y or n Marks this relation to be done
Do exemplifications? (y/n) n] y or n Marks this relation to be done
Do partitions? (y/n) n] y or n Marks this relation to be done
Do hypemyms? (y/n) n] y or n Marks this relation to be done

(table continued on next page)

93 1.A4

<•

.7

i

 .
...

.

Look ahead all the way to end of
file? (y/n) n]

y or n Concerns TT look-ahead distance

Look ahead for how many
sentences?

an integer Concerns TT look-ahead distance

Do you want to see the full output?
(y/n) n] :

y or n Allows user to see output on screen
if desired (longer output, with
diagnostic messages)

Do you want to see the short
output? (y/n) n] :

y or n Ditto, short output file (no
diagnostics)

Do you want to see the glossary
output? (y/n) n] :

y or n Ditto, glossary output file

Do you want to see the term
summaries output? (y/n) n] :

y or n Ditto, term summaries output file

Do you want to print the full
output? (y/n) n] •

y or n Allows user to request printout

Do you want to print the short
output? (y/n) n] :

y orn Allows user to request printout

Do you want to print the glossary
output? (y/n) n] :

y or n Allows user to request printout

Do you want to print the term
summaries output? (y/n) n] :

y or n Allows user to request printout

Table 5. KEP user queries

4.6.2.2 External Storage

KEP uses permanent data held in various files on disk. In addition, both input and output reside in disk

files. These files7 are listed in Table 6 and then uses will be discussed in the descriptions which follow.

4.6.2.3 Internal Storage

Two major areas of internal storage are reserved by KEP: the first holds the input text on a line-by-line

basis, and the second holds it on a sentence-by-sentence basis. In addition, various linked lists are

created dynamically as required. The input text and sentence arrays are fixed in size and so do not

present memory problems after compile time, except where sentences are longer than the pre-set

maximum sentence length (800 characters). The linked lists use the standard ‘C’ library malloc() system

call to obtain memory for new elements, and the success status of all such calls is monitored and

reported upon. Failures are rare and only occur where memory for the process has been restricted by

external factors beyond the user’s control. Various internal limits have also been incorporated to prevent

demands for excessive amounts of memory (hundreds of megabytes) and indeed to prevent excessive run

times. These limits do have implications for KEP’s performance but do not greatly affect recall and

precision.

7 NOTE: where files contain patterns of part-of-speech tags, these will be tagset dependent (and hence the correct
version must be used for the tagged input).

94

Filename Purpose
defcontag.txt definition concept tag patterns
excontag.txt exemplification concept tag patterns
ptcontag.txt partition concept tag patterns
hypcontag.txt hyponym concept tag patterns
defelutag.txt definition elucidation tag patterns
exelutag.txt exemplification elucidation tag patterns
ptelutag.txt partition elucidation tag patterns
hypelutag.txt hyponym elucidation tag patterns
deftrigs.txt definition positive trigger phrases
defntrigs.txt definition negative trigger phrases
extrigs.txt exemplification positive trigger phrases
exntiigs.txt exemplification negative trigger phrases
pttrigs.txt partition positive trigger phrases
ptntrigs.txt partition negative trigger phrases
hyptrigs.txt hyponym positive trigger phrases
hypntrig.txt hyponym negative trigger phrases
deftoks.txt definition token characters
extoks.txt exemplification token characters
pttoks.txt partition token characters
hyptoks.txt hyponym token characters
defpats.txt definition pattern templates
expats.txt exemplification pattern templates
ptpats.txt partition pattern templates
hyppats.txt hyponym pattern templates
defpres.txt definition presentational indicators
expres.txt exemplification presentational indicators
ptpres.txt partition presentational indicators
hyppres.txt hyponym presentational indicators
termtag.txt technical term tag patterns
kep. in default input text file
kep. out default long output file
kep. tout output of sentence structure only
kep.sout default short output file
kep.gout default glossary output file
kep.sumout default term summaries output file
kep.ken default knowledge extraction network output file
tttest.out all text fragments used in making TTs
ttnola.out all potential TTs that occurred just once
ttdisc.out complete dump of all internal TT data
acdisc.out complete dump of all internal acronym data

Table 6. Files associated with KEP

4.6.2A Obtaining Sentence Structure

The first action of KEP is to open the file containing the tagged input text (either a BNC file or a text

tagged using CLAWS and then re-formatted using the conclaws program - see Table 4) and to read it

into the line structure storage array (currently, a maximum of 14,000 lines can be processed). An

example of tagged text read into the line structures is given in Figure 14. Note that not all words may be

tagged - CLAWS tags only the first word of certain multi-word phrases, such as apart from, in case, for

sure etc. This would cause processing problems due to the mixture of tagged and untagged text, so the

second action taken is to find all untagged words in the input and attach a tag of the form _XXX.

Sorting_VVG is_VBZ the_AT0 action_NNl of_PRF arranging_VVG data_NN0 items_NN2
into_PRP some_DT0 specific_AJ0 order_NNl ._. We_PNP canV M O defme_VVI a_AT0
sort_NNl routine_NNl (_(SR_UNC)_) to_TOO be_VBI a_AT0 function_NNl which_DTQ
orders_VVZ a_AT0 list_NNl o f P R F items_NN2 according_II21 to_II22 some_DT0
criterion_NNl ._. Examples_NN2 ofJPRF SRs_NP0 include_VVB the_AT0 bubble_NNl
sort_NNl and_CJC the_AT0 quick_AJ0 sort_NNl ._. Sort_NNl routines_NN2 are_VBB
composed_VVN of_PRF four_CRD elements_NN2 input_NNl list_NNl ,_, output_NNl
list_NNl sort_NNl criterion_NN 1 and_CJC sortJNNl algorithm_NN 1 An_AT0
example_NNl of_PRF a_AT0 sort_NNl criterion_NNl is_VBZ alphabetical_AJO
order_NNl A_AT0 sort_NNl routine_NNl is_VBZ a_AT0 type_NNl of_PRF data_NN0
rearrangement_NN 1 algorithm_NNl or_CJC DRA_NP0 ._. In_PRP these_DT0

data_NN0 elements_NN2 are_VBB not_XX0 themselves_PNX altered_VVN
but_CJC their_DPS orderJNNl of_PRF presentation_NN 1 is_VBZ changed_W N to_TOO
assist_VVI the_AT0 calling_AJ0 application_NNl

Figure 14. Example o f CLAWS-tagged input text, after 'conclaws'pre-processing with C5 tagset
mapping

In the KEP system it was decided to attempt KE on a sentence by sentence basis, since the sentence is a

natural unit of expression capable of holding facts, and has traditionally been described as “the complete

expression of a single thought” (Crystal (1987)). Although some kinds of knowledge may be spread over

several sentences, such as procedural descriptions (see e.g. Vander Linden and Martin (1995), Sutcliffe

et al. (1995), Skuce et al. (1995)), the sentence is the basic unit from which texts are built. Texts are not

arbitrary collections of unrelated sentences; they are coherent. The coherency-creating devices include

anaphors and cataphors, but these do not essentially alter the position of the contained fact - it is still

within the sentence, even if part of it is actually a pointer to some other part of the text.

However, it is not mandatory to use the sentence as the basic unit for pattern-matching KE, as used by

KEP. It is conceivable that a KE system might ignore all sentences altogether, or it might consider

phrases within sentences, and indeed partial parsers have been built which consider parts of sentences

(e.g. the SPARSER system of (McDonald (1992)). Therefore some justification for using the sentence as

a basic unit is required. The first justification has already been given in the above paragraph; a sentence

is traditionally the natural unit for expressing a complete idea. Thus it is physically large enough to

contain a fact. Sub-units of sentences are probably not big enough to contain complete definitions etc,

although as sentences may be arbitrarily long this needs qualifying: phrases within sentences are

probably not large enough. The sentence therefore seems to be the minimum-length section of text worth

considering for the chosen application.

What of the upper bound? Why not use a paragraph, section, chapter, or indeed an entire text? This is

answered by practical considerations. The shallow extraction method to be used (justified in section

4.2.2) requires matching of lexical patterns against text. If the unit to which the pattern is to be matched

is very large, this process becomes unwieldy and may in fact be infeasible. The specific technique used

by KEP would not in fact be practicable for very large pieces of text, for it is based upon an exponential

method (described shortly) which would not be able to make the match against a whole text. However,

since patterns are matched against one sentence, and then the next, and so on, one might regard it as

actually matching against the whole text in the sense that the pattern scans through it. The text is

chunked into sentences for the puiposes of this scanning, but it might equally well be chunked by the

lines of input. The problem with the latter is that sentences, containing as they do an “entire thought”,

would not always be matched against the pattern, for sentences can go over the end of one line and onto

the next etc. The patterns looked for are themselves “entire thoughts” containing definitions etc, i.e. they

are themselves naturally expressed as sentences. Thus if one line were to end with the words Let us

define a widget as then the pattern match for an entire definition such as Let us define a X as Y would

never occur. Matching against a paragraph would work, but again this would be defeated by practical

text-size considerations, as would any unit larger than a paragraph. Therefore the sentence emerges as

the basic unit for the pattern matching approach to the extraction of definitions etc from text. Thus the

first task is to cut the input text into sentences.

Code exists to handle the case where each sentence is on its own line, and if this is the case KEP copies

the line structure array to the sentence structure array directly. However, the default case is that

sentences are spread across any number qf lines (including the case where more than one sentence can be

present on a single line of input) and so KEP attempts to split the input into sentences to fill the sentence

storage array. Splitting text into sentences is not a trivial task. It is very difficult to achieve 100% correct

division if tags within the input are not used. (See discussion above concerning the deliberate non-use of

<s> tags.)

It is generally conceded that a good sentence-end detector function should correctly reveal 95% of

sentence boundaries or better (Palmer and Hearst (1994)). One of the main obstacles is the presence of

potentially sentence-ending punctuation within abbreviations, such as in He arrived at 5 p.m. in his car.

Another problem is the use of sentences within quoted speech, such as “L et’s go! ”, he said. Headings

also prove problematic if they were present in the original text in a different font without a terminating

punctuation mark, or contain numbering involving full stops (e.g. see this section’s heading). Sentence-

end detection may also require the detection of the start of a following sentence, e.g. where a sentence

ends in an ellipsis printed as three full stops.

97

Various sophisticated methods of finding sentence boundaries have been proposed, such as that

described in Palmer and Hearst (1994), where a neural net is used to examine the likelihood of a

sentence ending at a particular mark, based upon part of speech tag patterns in nearby text. The resulting

claimed accuracy is 98.5%, most of the failures being due to title/name collocations where the name

occurred in the lexicon (e.g. Col North) and cases where the sentence ending was missed as a result of

an abbreviation ending the sentence. However, unsophisticated methods relying upon large amounts of

laboriously collected abbreviations etc can also give high accuracies, such as those of Wasson reported

upon in Palmer and Hearst (1994). The pragmatic view taken for KEP was that as long as 95% or so of

sentences were correctly delineated, useful KE could be performed. Thus the approach was to mark

sentences as ending at certain punctuation marks (namely . ! ?) unless these occurred in certain lexical

units, some of which are listed in Table 7. (For the puiposes of brevity, upper case versions are not

listed.) Tests on BNC files indicate that KEP correctly identifies over 90% of sentence boundaries (see

section 5.3.1). This figure could undoubtedly be improved, but this task is a small part of the KE goal

and was not a high priority area for KEP.

Phrase Problem Caused By
e.g. Either full stop
i.e. Either full stop
fig. n Full stop in reference (n is numeric)
no. n Full stop in reference (n is numeric)
n.m Full stop in reference (n,m numeric)
... Full stops used as ellipsis punctuation character
Mr. Full stop in title
Mrs. Full stop in title
Dr. Full stop in title
Ms. Full stop in title

Table 7. Some sentence boundary exception phrases

Where sentences are more than the allotted 800 characters in length, they overrun into the following

sentence array. To avoid this, too-long sentences and the sentences which immediately follow them are

marked as unusable and do not take part in any further processing. Such sentences are rare (usually less

than 1 in 200 sentences, although this ratio varies from text to text.) In most cases they arise through

missing end-of-sentence markers in the tagged text input or in the plain text prior to tagging. Although

no specific study has been made, it is not thought that such occurrences contribute noticeably to a drop in

the extraction recall metric. This approach to too-long sentences, together with the _XXX tag adder

code, ensures that KEP remains robust i.e. does not crash due to input irregularities.

The third action taken is to create a separate array of sentences stripped of tags. During the subsequent

processing, depending on the function to be performed, the sentence array is chosen which makes the

processing easier or faster. All sentences are numbered; corresponding tagged and untagged sentences

have the same numbers. Sentence numbers are used widely in screen and file output.

98

4.6.3 Heading Identification

Titles, headlines, by-lines, chapter headings, column headings and section headings are all parts of

printed documents such as newspapers, reports and books. These headings may be present in the tagged

single-font single-pointsize ASCII text which is input by KEP, usually on then own lines of input.

Unlike some systems designed to handle complex page layouts (such as Myers and Mulgaonkar (1995)),

KEP is unconcerned with such matters. However, headings are rarely full grammatical sentences and

often are not terminated by punctuation (since, in the original source, page layout conventions or a

different font or point size were used). The lack of a terminating punctuation mark can result in a

heading being prepended onto the first sentence following the heading by KEP’s sentence-end detector,

resulting in an incorrect sentence delineation. For this reason alone, KEP detects very simple commonly

occurring headings in the input document so as to mark them as separate “sentences”. Simple headings

detected include “Introduction”, “Conclusion” etc. This simple approach usually detects a handful of

cases for each input BNC text, and contributes to the sentence-end detection rate.

Heading detection in the absence of font, pointsize, or vertical spacing clues is difficult. Even where

there are numbered section headings the task is not simple. To do the job properly requires examination

of the preceding line of text (e.g. to look for a terminating full stop) and the following line of text (e.g. to

see if it appears to be the start of a new sentence). It may also include the need to scan several lines

behind and forward, to search for headings in a numbered sequence. In addition, the ability to detect

phrases which are not well-formed sentences is helpful. These tasks were not attempted for KEP since

the effort did not justify the small increase in extraction performance which might result from perfect

heading detection. In a sense this would have been an artificial task, for in those systems which do

attempt to detect headings the layout clues are invariably used. The correct place for this task is at an

earlier stage in document processing.

4.6.4 Technical Term Acquisition

Technical Terms (TT), or specialist terms, have been introduced earlier. KEP uses TTs in various ways.

In the glossary output, TTs form most of the middle column. Teclmical terms are (some of) the concepts

which are being defined etc in the input text, and so KEP needs to be able to identify them.

Technical terms are usually domain dependent. How then could a non domain dependent system ever

hope to identify them? One way would be to provide the program with lists of teclmical terms from all

domains. Clearly this is not a practical proposition; the lists would require extensive collection time and

effort, would be huge (perhaps containing many thousands of entr ies), and would need to be constantly

updated to add terms recently coined (e.g. cold fusion, web spider etc). Not only that, but as terms move

through their lifecycle, from coinage through common usage to obsolescence, their accepted meanings

often change. This process has been discussed by Ahmad (1996) and Ahmad and Collingham (1996).

99

Although specialist term bases do indeed exist, the NDS nature desired for KEP would mean that very

many DS term bases would be required, and furthermore, KEP would then need a means of determining

which of them to apply (this is essentially the text topic identification problem). This approach is clearly

not practicable. Therefore, another method must be sought. This other method should detect most or all

of the teclmical terms within a document, for any domain, but not return things which looked like terms

but were not.

Fortunately, this goal turns out to be partially achievable, using a relatively straightforward method

which relies upon the fact that technical terms, whatever their domain, take similar syntactical forms and

usually occur more than once in any given document. The method unfortunately cannot detect single

word terms, but gives a high success rate for n-word tenns where n is 2 or more. This is the method of

Justeson and Katz (1995). The basis of the algorithm is the observation that technical terms are almost

always multi-word noun phrases, which consist of adjectives and nouns and sometimes prepositions, but

veiy rarely verbs, adverbs or conjunctions. KEP uses a modified version of this method (the modification

being a different way of determining parts of speech). In addition, KEP finds single-word TTs in a

manner described shortly.

The point is made by Justeson and Katz that technical terms are lexical i.e. they can be treated as words

and must appear in the lexicon. For example, central processing unit is to all intents and purposes a

single word, whose meaning is quite specific and which is more than the sum of its parts. Technical

terms also occur repeatedly throughout the text but also in such a form that their modifiers vary less than

for other NPs. The two properties mentioned in italics are therefore used to aid in the technical term

acquisition. Concerning the latter point, Justeson and Katz point out that there are factors within text

which actually prevent the exact repetition of NPs which are not technical terms. One of these is

variation so as to avoid monotony (for the reader). Another is the point that NP premodifiers are often

there to emphasize some particular aspect of the entity in focus, and so later in the text where this aspect

is no longer to the fore, different premodifiers are used. (Omission of modifiers is regarded as a form of

change of modifier.) Thus for non technical terms, it is unusual to have the exact same NP repeated

throughout a text. This means that when we do see a repeated NP (especially one of a particular part-of-

speech pattern) it is likely to be a lexical item i.e. a technical term.

The claim about the NP nature of technical terms is backed up by technical dictionary studies, which

suggest that between 92,5% and 99% of technical terms are NPs, of which 99% do not use verbs,

adverbs or conjunctions. The reasons for this are discussed, including the notion that two or more words

are needed for the required degree of precision (i.e. to distance the term from general usage senses), and

the point that teclmical domains often use a hierarchical taxonomy which lends itself to multi-word terms

where lower levels in the tree can be achieved by adding extra modifiers (these extra modifiers

themselves being “standard” in the sense that they occur at the same level in the tree in different

100

branches). The average term length from the teclmical dictionaries was 1.91 words (medicine was 1.78,

and fibre optics was 2.08 - these are the lowest and highest domain averages). So 2-word terms

dominate. (Medicine is peculiar in that Greco-Latinate compounds are used, which are like multi-word

terms in those languages - e.g. synarthrophysis = syn + arthro + physis — “together growing joints”).

The algorithm involves looking for strings using the following rules. (1) Candidate strings must occur at

least twice in the text (2) Look for candidate strings meeting the regular expression:

((A|N)+|((AjN)* NP)?)(A|N)*)N

where A is an adjective, N is a noun, P is a preposition

Putting this into words, “a candidate term is a multi-word noun phrase; and it either is a string of nouns

and/or adjectives, ending in a noun, or it consists of two such strings, separated by a single preposition”.

The regular expression generates 2 patterns of length 2 words, and 5 of length 3 words. These are listed

in Figure 15.

AN e.g. lexical ambiguity, conceptual relation
NN e.g. knowledge extraction, discourse structure, word sense, term acquisition, noun phrase
AAN e.g. Gaussian random variable,
ANN e.g. lexical ambiguity resolution, natural language processing
NAN e.g. domain independent extraction
NNN e.g. text analysis system
NPN e.g. analysis of text___

Figure 15. Term patterns from Justeson and Katz (1995)

The implementation of the algorithm by Justeson and Katz themselves does not use a tagger. Instead,

allowed parts of speech for each word are obtained from a dictionary and assigned as N, A, P by

preference if this is possible. This is done so that e.g .fixed disk drives comes out as ANN and not VNN.

The authors call this “filtering”. They mention problems that it causes (verb/noun ambiguities), but

results have been impressive (recall and precision, or “coverage” and “quality”, as the authors call it,

both consistently being over 90%). Terms not obtained sometimes occurred because they were only

mentioned once despite being technical terms (e.g. Heaviside function), often because they were not

topical in the text.

A version of this algorithm has been coded into a KEP function. KEP is able to utilise part of speech tags

(and so does not need MRD lookup) and the patterns corresponding to those in Figure 15 are stored in an

external file (temitag.txt - but see later for further discussion on this technique). The method does indeed

appear to extract teclmical teims with high recall and precision, and the false positive rate seems to be

low. (Full evaluation results are given in the next chapter.)

The operation of looking for two- and three-word TTs in sentences involves cutting each sentence into

all possible fragments 2- and 3-words long, obtaining the tag set for each such fragment, and comparing

each tagset against patterns held in termtag.txt. (Since punctuation marks are treated as individual words,

fragments involving punctuation arise; these are rejected.) If a match occurs, then the sentence fragment

is a potential TT. One practical problem encountered during the development of the TT stage was related

to the tagset used by BNC texts (i.e. by the CLAWS tagger). The problem was that there are in fact over

2,000 ways of providing the part-of-speech tag patterns given in the above table, due to combinations

caused by the fine divisions of tags (e.g. NNO, NN1, NN2, NN1-NN0, NN1-VVG, NN1-VVB etc are all

tags for nouns). Thus each fragment of each sentence had to be compared with up to 2,000 or so patterns

from termtag.txt. Since a sentence of n words has 2n-3 two- and three-word fragments (n >= 2), then a

20-word sentence would require up to about 75,000 comparison operations. This resulted in processing

times of minutes per sentence. This problem was overcome by the realisation that fortunately the

CLAWS tagset is such that only the first letter of each tag needs to be read in order to classify a word as

a noun or an adjective, with the exception of the tags AT0 (used to tag articles), AJC (comparative

adjectives), AV0 (adverbs), AYP (adverb particles) and AVQ (w/z-adverbs). Thus the patterns given in

Figure 15 were able to be hardcoded and only up to 7 comparisons performed for each fragment. This

reduced potential TT identification processing times to a fraction of a second per sentence. However, this

method is only possible because of the naming convention of the CLAWS tagset, and so the use of the

termtag.txt file lookup might be required for another less well designed tagset.

When a potential TT has been identified in a sentence, then the rest of that sentence and all other

sentences following must be checked for a second occurrence of the potential term. One way to do this is

to store all potential TT fragments and increment counters as these are repeatedly found. However, this

method turns out to be impractical, due to the memory requirements. In a 2,000-sentence text there

might be 10,000 different potential TTs, of which only 200 have counts greater than one. Therefore KEP

uses a look-ahead mechanism to detect second occurrences of potential TTs, and stores only those

having a count of 2 or more. The look-ahead mechanism is a “fast” method which does not look for an

exact match for a potential term, or a version of it in a different number (singular or plural - see next

paragraph). In addition, the user may specify a look-ahead distance in sentences, in order to reduce

processing times for long texts. Ad-hoc experiments have shown that the majority of potential TTs repeat

within twenty sentences of their first occurrence; clearly this is related to the topic substructure of text.

The look-ahead method will, however, miss TTs which are widely separated if the user does not choose

a look-ahead right to the end of the text.

Since the algorithm requires the counting of occurrences of potential terms, some method of finding out

whether a plural term is the same basic term as a singular term must be provided. For example, a text

may contain one occurrence of chain reaction and one of chain reactions, or one of director o f studies

and one of directors o f studies, and the function must count at least two occurrences of the potential term

102

in order to highlight it as a real term. Thus a function is required to either find the plural form of any

singular noun, or the singular form of any plural noun. The latter approach has been adopted because it is

probably easier (nouns such as formula have more than one recognised plural, i.e. formulas and

formulae, so more checking would be required if the transformation were to go in this direction). Section

4.6.13 details the novel function which does this. Note also that the correct noun in the term must be

singularised - the last in the case of terms made solely from adjectives and nouns, but the first in cases

such as men o f war.

Fast look-ahead does result in the storage of a few potential TTs which are subsequently not confirmed

as such, due to the practice of examining only the first few characters of the fragment (i.e. coincidentally

these characters form the start of a different phrase) or, in the case of terms of the format NPN, the last

few characters of the fragment. Such “unconfirmed terms” are rare and therefore have no speed or

memory repercussions. These cases do include real TTs which are mentioned only once in the text (and

hence which are lost) but the majority are due to inconsistent tagging in the source. Conversely, some

non-TTs are identified as real terms. Examples include recent year, old friend, serious error etc. An

attempt has been made to identify such “duff terms”, but the task is difficult and the present mechanism

is not reliable. Unconfirmed terms and duff terms are listed in the long output. In addition, all tagged text

fragments from which TTs were derived are placed in an external file (tttest.out), and all such fragments

for which the corresponding TT occurs only once in the source are written to a separate output file

(ttnola.out). These two output files are used in conjunction with the duff/unconfirmed lists to aid in TT

performance evaluation.

The single word teclmical term extraction problem remains, despite the suspicion that technical terms are

not often one word long. (However, some subjects are probably more prone to singleword TTs than

others - medicine, for instance. For other domains, the percentage of such terms probably hovers around

the 10% mark.8). Where these are acronyms, they can be recognised from their expansions. However,

non-acronym single word terms may be detectable from hyponymic relations. This possibility has also

been recognised by others, e.g. Reimer (1989) and Rousselot et al. (1996) and arises in situations where

(a) one term is a substring of another, or (b) terms have common endings. The latter is exemplified by

mainframe computer and personal computer, from which the term computer may be deduced. The

former occurs with e.g. room temperature superconductors and superconductors, where the shorter term

is the hypernym (parent class) of the longer term, the shorter term corresponding to the right-hand end of

the longer term.

Method (a) has been coded into KEP for 2-word TTs only. Although useful, it can sometimes generate

singleword terms which are too broad to be regarded as good TTs. For example, the terms RMS error

8 In the domain of satellite communications, Nkwenti-Azeh (1994) found that single-element terms occurred as
9.15%, 7.30% and 30.73% of three separately-derived term lists respectively.

and Poisson error would give rise to the term error. Cases (a) and (b) are illustrated in Figure 16. A third

method (c) is to consider terms where the first word is a noun acting adjectivally to a following noun.

For example, map error and map reference would give the singleword term map. This method has not

yet been coded for KEP, although interestingly it is often the case that singleword terms it would have

created were already generated by method (a) from other sentences.

computersuperconductor

personal computermainframe computerroom temperature superconductor

Figure 16. Hyponymic relations from technical terms

4.6.5 Acronym Acquisition

The next stage of processing is to find all acronyms in the input text, and if possible, what they stand for

(called by the author the acronym’s expansion). The novel acronym extraction method devised for KEP

is described in detail here due to its importance in the extraction process; it has also been described in

Bowden, Evett and Halstead (1998). Although the word ‘acronym’ has historically been used only to

describe abbreviations made from word-initial letters which may be pronounced as a word (e.g. NATO),

rather than as separate letters (e.g. BBC), it is used here for both senses. (See Daintith et al. (Eds) (1993)

for a discussion on the nomenclature of abbreviations.)

Acronyms are used throughout explanatory text. The TLA (three-letter acronym) is a feature of modem

technological life. Some organisations are more prone to their use than others; NASA, for example, uses

many thousands of acronyms in an attempt to label the multitude of systems used in spacecraft. This

often leads to problems for newcomers to such companies, for there is a large number of acronyms to be

learnt. Within the aircraft manufacturer Boeing the situation became so critical that one of the

computational linguists employed in technical manual production created an acronym look-up program

available to online users all over the company. Although this was an “unofficial” project, it soon became

one of the most heavily used software packages within the company. This system utilises tables of

acronyms plus their expansions, so the system required many man-hours to create, and still requires

continuous updating9. It is clear that there is a pressing need for an automatic acronym extractor capable

of creating lists of acronyms and what they stand for, from text. The acronym extractor designed for

9 No details o f this system have been published. The author learnt of it during a conversation with its designer,
Richard W. Wojcik, at the COLING’98 conference.

104

KEP does just this, although at present it does not archive acronyms from one run to the next. (This

would be a minor enhancement to make.) Acronyms occur as the first column of the glossary output, and

thus are linked to extracted middle-column terms. The knowledge of what an acronym stands for also

allows better cross-referencing in the third column.

In the KEP glossary creator, acronyms are assumed to be all-caps, except where they are in the plural

(e.g. CPUs). Acronyms can be exact (nomenclature of the author) meaning that each and every letter in

the acronym matches a word in the expansion in the same order and that there are 110 words in the

expansion not represented in the acronym. For example, for die acronym GIS the expansion words start

G IS (Geographical Infonnation Systems). Acronyms may also be inexact, meaning that there are exha

letters in the expansion (e.g. as between IUCN and International Union for Conservation of Nature,

which actually starts IU F C O N), or exha letters in the acronym (as between RIMNET and Radioactive

Incident Monitoring Network, which starts R IM N).

The first step is to search for all-capital words. KEP is currently not capable of finding mixed-case

shortenings (such as D/E for Department for the Environment). Acronyms containing full stops are not

found in BNC texts - instead acronyms occur as capitalised words containing no punctuation, tagged in a

variety of ways (such as NPO for proper noun or NN2 for plural noun). Often the tag used is not correct,

but this does not affect the acronym extractor since the tag is not read. Certain words such as FIGURE

are held hi a stop-list of probable non-acronyms, to reduce the occurrence of such forms being regarded

as acronyms, and in addition all all-caps words longer than 7 letters are ignored. When a potential

acronym is found, then if this is the first time it has been seen ill the text, its expansion is searched for in

the current sentence. If found, it is stored with the acronym. If not found, then the previous sentence is

searched. If still not found, then when the acronym is next seen in a future sentence, the search will be

repeated. Thus KEP never gives up looking for the acronym’s expansion, which may not always be

given near to the first occurrence of the acronym.

Acronym expansion detection involves fragmenting the sentence into n-word sections, where 11 is the

number of letters in the acronym (e.g. n=3 for GIS), and also into other fragment lengths ranging from 1

to n+3 (but inside the range 1 to 10). This is necessary for inexact expansion finding. A list of candidate

expansion fragments is then drawn up, using the test that a candidate must have word-initial letters

forming a string which is better than 60% the same as the acronym. This is achieved using a version of

the Ratcliff-Obershelp string-comparison algorithm (Computing (1992)). Candidate expansions must not

start with the acronym itself, and must not start or end in a “glue” word such as and, for, of, by, etc.

For the expansion candidates, scoring heuristics are applied as follows:

105

(a) the percentage match as above adds points 10 for 100% match, 9 for 90 - 99%, 8 for 80 -

89% etc,

(b) the presence of the candidate expansion within brackets (or dashes, or other such markers)

adds 10 points,

(c) the presence of the acronym within brackets (or dashes etc) contiguous with the candidate

expansion adds a further 10 points, but only 5 points if it does not follow immediately after,

(d) if a candidate has glue words within it, then if when stripped of all its glue words this would

give rise to an acronym identical to that being processed, another 10 points are added,

(e) if an acronym is constructed from all the capital letters in the candidate, and this matches the

acronym, 10 points are added.

The highest scorer is chosen as the expansion, subject to a minimum threshold of 10 points.

In addition to the above, single-word candidates which contain hyphens, such as red-green-blue for

RGB, are handled with extra code to remove the hyphens so that they may use the same scoring method.

A separate function also attempts to identify Roman numerals, such as IV, which may or may not be

acronyms (IV might stand for In Vitro). This is done by examining the preceding word. Thus Mark IV

would indicate a Roman numeral. (A future development will augment the decision making process by

searching for runs of numerals in preceding and following text.)

The above scoring heuristics were developed on an ad-hoc basis but subsequent evaluation (see section

5.3.3) has shown that the correct expansion is extracted approximately 85 times out of 100 if it was

present in the text. Out of the five scoring rules given above, the dominant factor is usually rule (c), f

because it appears to be very common to introduce a new acronym by giving the phrase first and then %

placing the acronym in brackets immediately after it. Rule (e) is also quite useful since it can find

abbreviations such as RIMNET if their expansions are like ‘Radiation Incident Monitoring NETwork’.

The acronym extractor produces a series of counts concerning the above scoring rules and thus is able to

report upon the incidences of all types of acronym-expansion syntaxes used in a corpus.

Not all acronyms have their expansions found from the text (e.g. USA is rarely expanded in text, because

probably all adult English-speaking readers know what it stands for). In keeping with KEP’s NDS J

approach, no domain specific lists of acronyms are stored internally, but very common NDS acronyms

such as UK, US etc are held internally, and the list of these is consulted only after all attempts to find A

106

expansions from the text have failed. This allows local usage to take precedence over the general usage.

This list contains less than ten entries.

Where an acronym has been found which has an expansion, then that expansion is stored in standard

form as used for technical terms, i.e. lowercase word-initial letters and singular form. It is then checked

against all the TTs previously found, to see if it is identical to one of them. If so, a cross-reference is

made (2-ways) between the acronym and the existing TT. If an acronym is not linked to a TT, its

expansion is added to the TT list as a new TT. This is done regardless of whether or not the expansion

agrees with any of the TT allowed tag patterns. This catches the case where an author introduces a term

and gives its acronym, but then subsequently refers to it only by its acronym. It also allows all acronyms

for which an expansion has been found to appear in the glossary output.

Where acronyms occur within other TTs, they are restored to all-capitals form (because hi standard TT

form, GIS would be gIS). In the glossary output, cross-references are provided (so that for an entry for

GIS integrity (middle column) there would be a comment in the third column SEE ALSO geographical

information system). No processing yet takes place to handle acronyms within acronyms (e.g. XSQL =

Extended SQL).

4.6.6 Term Summaries

KEP provides an output file which lists all TTs (or TT-acronym pairs if linked) together with the text in

which they occur. Several pages from a substantial term summaries output are given in Appendix B

(derived from the BNC text ‘B IG ’), although a smaller example has already been given (Figure 12).

Blocks of text containing each TT are printed with vertical ellipses separating text blocks. If the gap

between text blocks is less than or equal to two sentences then the gaps are filled-in with the non-TT

bearing sentences. This approach allows the reader to pass smoothly over short sections of text which do

not explicitly mention the term.

The term summaries allow a reader to focus on those parts of the source text relating to a given technical

term (concept). They represent a type of term-specific text summarisation. There are several uses for the

term summaries:

(1) Since they contain all the text from which any relation extractions have been made (see following

section) they allow KEP extractions to be checked against the original text without the need to check a

large document against a list of sentence numbers. Furthermore, if the KEP glossary maker were to be

later incorporated into a word processor, it would be possible for the editor of the glossary to bring up

the term summary entry for a highlighted concept in a separate window. This would allow the editor to

refine KEP’s attempted extractions by cut-and-paste methods from the original text.

107

(2) Term summaries are a form of high-level KE in their own right. Not only is KEP saying that “this

document talks about concept X” but it is also saying “furthermore, this is what it says about X”. A

caution, however: ideas built up by a reading of the whole text may not be present in die term summary

alone. Thus this method of concept extraction may miss text-level ideas. However, since “gap” sentences

are often provided, and since ideas to be conveyed by the text are often developed within a contiguous

section of text, it is likely that a useful summary of the concept is present. In the words of Rau, Jacobs

and Zemik (1989), who were discussing the use of text summaries to answer specific user queries,

“Summaries of whole texts do not replace source texts. In many cases, a document or section o f a

document is an appropriate response to a user query.” (Italics the author’s addition.) Thus term

summaries have a role in query-based IR, or in a system which effectively auto-generates those queries

(i.e. using technical terms as search terms).

(3) Term summaries provide information as to the structure of the input text, as to in which parts of the

text a particular concept is discussed. Although this is not the aim of KEP, it may lead to methods of

identifying topic substructures within text, currently an active area of research (see e.g. Hearst (1994),

Rose and Evett (1993a)).

4.6.7 Relation Detection and Triggering

In the descriptions which follow, the processing described is that which attempts to fill the third column

of the glossary-format output, and the equivalent parts of the other output formats. The desired

extractions are the definitions, exemplifications, partitions and hypemyms of concepts. The extraction of

these concept elucidations is a challenging task and has not been attempted before in a NDS way from

explanatory text. Thus both the task itself and the method used are novel.

The purpose of the triggering stage is to find those sentences which possibly contain a conceptual

relation of interest. To illustrate triggering, the definition conceptual relation alone will be discussed.

However, the same basic method is used for all four relation types handled by KEP.

For systems which detect and process definition relations from dictionaries and thesauri, the act of

relation detection is straightforward, for each book entry is certain to be a candidate. Such systems, for

example Alshawi (1987), Zhu and Shadbolt (1995), Martin (1992) tend to concentrate on the extraction

of the various semantic parts of the definition into some useful data structure. The aim of the KEP

program is to extract entire word strings rather than to dissect extracted concepts into their semantic

parts. However, the detection of definitions within running text is not as straightforward as the simple

location of definitions in a dictionary. Consider sentences a through d below, which are intended to

represent sentences taken at random from some body of text.

108

a A marsupial is defined as an animal with a pouch for its young,
b A byte is a contiguous group of eight bits,
c A television set is a modern marvel,
d There is a way to do this.

Clearly, a and b are definitions, whereas c is not (it is merely a statement about televisions in general).

Sentence d is clearly not useful as a standalone. Note that a contains the trigger phrase is defined as but b

through d contain only the very general phrase is a. It is difficult to pin down what makes b a definition

but c not. However, notice that Skuce et al.’s definition-test method (see page 73) is successful in

distinguishing b from c. Sentence b does indeed answer the question What is the meaning o f a byte?, but

sentence c does not answer the question What is the meaning o f (a) television set?. This topic is returned

to in section 6.2.2.

Relation detection in KEP is provided by a triggering mechanism. Positive and negative trigger phrases

are used to locate possible instances of conceptual relations. The character string define is sufficient to

catch sentence a. The negative trigger string cannot be defined can be used to rule out some sentences

containing the characters define in the wrong sense (e.g. The 3-body algorithm cannot be defined). Thus

the positive/negative triggering method first highlights all sentences containing positive triggers, and

subsequently rejects some of these if the positive trigger phrase detected was part of a larger negative

trigger phrase. Each relation type processed by KEP has two trigger data files associated with it, one

each for positive and negative trigger lists (see Table 6). These lists have been found to be short, and the

method of searching for them is described in die following chapter. It is found that very approximately

one in 100 positively triggered sentences are subsequently de-triggered due to the presence of an

overlapping negative digger, although this figure can vary greatly from text to text.

Just one positive trigger (without a corresponding negative trigger) is enough to allow the sentence

through the triggering filter. The triggering mechanism does not find all the positive triggers which exist

in the sentence, because this is not necessary. But note that if a positive trigger is found in a sentence,

and this positive trigger is subsequently found to be part of a negative trigger, then the sentence is de

triggered. However the sentence then searched for the next positive trigger in the positive digger list.

Thus the first positive trigger which is not cancelled out by a negative trigger is detected (if indeed there

is such a thing in the sentence).

Triggering illustrates the filtering approach used throughout KEP. Starting with a set of sentences, too-

long sentences are filtered out, then from what is left (good-length sentences) headings are filtered out,

then from what remains (good-length sentences which are not headings) all sentences not containing

positive triggers are filtered out, then from the remainder (good-length non-heading triggered sentences)

those containing negative triggers are filtered out, and so on through subsequent stages of processing.

109

It is important to realise that the purpose of triggering is to highlight sentences that might contain an

instance of a particular conceptual relation, not ones that definitely do. The latter is left to the pattern

matching and subsequent stages. Thus KEP errs on the side of caution in this stage.

KEP does not need domain specific knowledge for triggering, unlike some similar systems. For example,

the “wit” system of Reimer (1989) required a small amount of domain knowledge to “focus its attention”

on relevant parts of the text, in addition to linguistic clues. However, KEP uses only surface linguistic

knowledge to detect interesting sections of text.

4.6.8 Apposition Triggers

If no trigger phrases are found in a sentence, KEP looks for separated markers which may signal the

presence of apposition. For example, in the sentence The potto, a type o f lemur, is rarely encountered the

two commas signal that The potto is in apposition to a type o f lemur. This sentence contains an instance

of the hypernym relation and therefore should be further processed. However, the two commas are

separated by several variable words and so the positive triggering mechanism described above cannot be

used since it searches for fixed phrases. Therefore a separate function is used to detect sentences that

might contain appositive facts. Separated marks which might include apposition include , ... , and

and (. . .) and - (the ellipsis indicating one or more separating words which form the appositive

phrase).

Although some have argued that apposition is a relation in its own right (Meyer (1991)) it is clear that

the above apposition syntax may hold various conceptual relations. The appositive phrase may be a

definition, a hypernym, a description of the components of the concept, a statement of the material it is

made from, and so on. Thus it is not possible at this stage to determine the relation present (if any). KEP

does not therefore use separate sets of apposition triggers for each relation type extracted. Although the

phrase within the commas usually says something about the preceding concept, it is not possible to label

that statement as a definition etc. This is a problem which is considered in the following chapter.

Not all types of apposition require separated punctuation marks (see Greenbaum and Quirk (1990)) and

some of these other types may be triggered using the standard triggering mechanism. The trigger which

is a comma followed by the word “or” is one example of this; the sentence High-energy radiation with

wavelengths shorter than visible light, or ultra-violet radiation, can be dangerous to the skin defines

ultra-violet radiation using apposition. Others may not be triggered at all by KEP. For example, in the

sentence The XL5 spaceship rocketed off its launcher the name XL5 is in apposition to spaceship. This

sentence contains episodic knowledge as discussed earlier. It contains an instance of the instance

relation; the specific object XL5 is an instance of the class spaceship. KEP does not presently attempt to

extract instances which use this syntax. However, since most taggers are capable of detecting proper

110

nouns, it would seem feasible that such instances could be detected by searching for proper noun

/common noun collocations. Unfortunately, the pattern matcher used by KEP would not then be able to

extract correctly from this sentence, since it does not use patterns of part-of-speech tags. Thus a separate

function would be required; this work has been added to the “future enhancements” list.

Apposition triggering may be turned off by the user since it often results in the triggering of sentences

which do not contain an instance of apposition. This facility allows the performance of KEP when

triggering for apposition to be compared to the performance without such special trigger patterns.

4.6.9 Filtering of Presentational Sentences

Following die triggering stage an attempt is made to detect and hence filter out presentational sentences.

Each of the four relation types has an associated presentational phrase file (see Table 6) containing

phrases which indicate that the sentence is probably presentational. For example, the phrases example

given above and preceding examples suggest that the sentence is talking about an exemplification given

in previous text rather than in the current sentence. The author has dubbed these sentences relation

references, since they are references to relations given elsewhere. Phrases used to detect relation

references were collected by introspection and during developmental testing.

The use of filter phrases in this manner is somewhat simplistic. A sentence such as The example given

above is a poor one - a better example o f a 3G language is 'C' would be marked as presentational even

though it is partly presentational and partly informational. The extraction of ‘C ' as an example of a 3G

language would be missed. Conversely, presentational sentences which are not relation references can

pass through the filter. The sentence It is difficult to find a good example o f a sorting algorithm would

pass through the filter even though it is presentational. The only way to catch this sentence would be to

add the phrase difficult to find a good example to the filter phrase list. This is not a sensible idea - many

hundreds of similar phrases could be imagined and in practice a comprehensive list would probably not

be achievable. (Note that the negative triggering stage does attempt part of this task e.g. by the use of a

negative trigger phrase such as cannot be defined). The success rate of this filter is discussed in the

relevant evaluation section in the following chapter.

4.6.10 Pattern Matching

The KEP program uses an essentially pattern-driven approach to relation extraction. After the above

stages, a list of sentences is held for the relation being targeted. Pattern matching is then performed on

each of these sentences. KEP does all extraction processing (for all sentences) for one relation type (e.g.

definition) before moving on to the next relation type (e.g. exemplification). Where a concept has more

than one extraction made for it, either of all the same relation type or of mixed relation types, then the

extractions are merged at a later stage.

I l l

Pattern-matching techniques have proved successful in various robust parsing and extraction systems,

such as that of those described in Chapter 2, and in the flexible parsing approach of Hayes and

Mouradian (1981), in which the use of the FlexP parser for partial parsing is discussed. Hearst (1992)

has also described a pattern-based system for extracting hyponym relations (having a very limited single

specific syntax) from free text. What these systems have in common is the use of part-of-speech

information to aid in die template matching. Where KEP differs from this approach is to perform an

initial set of non-syntactic template matching operations to cut a sentence up into sections, but reserve

syntactic information for the subsequent validation of each of the possible segmentations of the triggered

sentence. The motivating idea behind this is that, should deeper processing eventually prove necessary,

then it would be performed on small fragments of sentences rather than on whole sentences. Thus some

of the problems of parsing etc (see Chapter 1) would be reduced in magnitude. Partial parsers have been

created by several researchers (see e.g. McDonald (1992), Zhu and Shadbolt (1995), Hayes and

Mouradian (1981), Burstein and Kaplan (1994)) so this is not an unreasonable approach.

The KEP program looks for single-sentence relations, although endophoric concepts are sometimes

identified. The triggered sentence is segmented in a number of ways according to a tokenisation string

generated combinatorially. This process is best explained using an example. Consider the sentence An

example o f a 3G language is PASCAL. This sentence contains an instance of the exemplification relation.

Specifically, the concept is 3G language and the example of it is PASCAL. It is the pattern matcher’s

task to perform the extraction which gives this answer. The explanation starts at the point where the

sentence has been triggered as likely to contain an instance of exemplification, is not presentational, and

with the knowledge that 3G language is a teclmical term within the text. However, the latter piece of

knowledge does not take part in the initial pattern matching stage, being reserved for fragment

validation, as will be explained shortly.

4.6.10.1 Sentence Tokenisation

The first stage of the pattern matching process is tokenisation of the sentence. The sentence is reduced to

a string of single characters by the replacement of words, groups of words, and punctuation by token

characters.

Each relation type in KEP has an associated list of token/phrase pairs. The tokens are single-characters

which are used to stand in for the phrase. For example, the token e could stand for the phrase An

example o f and the token = for the phrase is. The list of token/phrase pairs is held in an external file.

Phrases may be several words long, a single word, or a punctuation mark. Phrases including punctuation

marks are also allowed. The pattern matcher regards punctuation marks as separate words in the

sentence. Punctuation marks must however be tokenised by themselves, e.g. token=! and phrase^! . In

addition, the numerals 0 to 9 may not be used as tokens, for a reason which will become clear shortly.

112

Some examples of token/phrase pairs are given in Table 8. Note that one token (such as e) may take part

in several token/phrase pairs, with different phrases in each case. Thus the token e may stand for the

phrases example, an example of, An example o f etc.

Token Phrase
e example
I instance
e Examples of
I Instances of
e an example of
e An example of
I an instance of
I An instance of
s such as
1 like
f for example
f for instance
+ and

= is
are

Table 8. Sample list o f exemplification tokens

Sentence tokenisation also makes use of a special token, the X-token. This token’s phrase is not fixed - it

can be any group of words and/or punctuation marks. X matches anything.

The tokenisation algorithm accepts the input sentence as a string of words separated by spaces (all

punctuation marks being regarded as words). Part-of-speech tags do not play any part in the tokenisation

process, so the untagged sentence arrays are used. The algorithm reduces the sentence to a string of

tokens, or rather, it reduces the sentence to all possible strings of tokens. This is done by using the

token/phrase pairs, and the X token (whose associated phrase is any group of words). For example, one

tokenisation of the sentence An example o f a 3G language is PASCAL . , using the above token/phrase

pairs, is eX=X. . To obtain this tokenisation, the phrase An example o f was matched to the token e, the

phrase a 3G language was matched to the token X, the phrase is was matched to the token =, the phrase

PASCAL was matched to the token X, and the phrase . was matched to the token . . Note that the

terminating full-stop takes part in the tokenisation process as a word in its own right.

The tokenisation process starts by listing all the tokens found in the sentence. In our example An example

o f a 3G language is PASCAL, there are four tokens: e for An example of, e for example, = for is, and . for

a full stop. The tokenisation method firstly attempts the tokenisation using zero token/phrase pairs from

the list. This gives the tokenisation X for any sentence (i.e. X matches the entire sentence). This is a

113

trivial tokenisation which is discarded. The tokeniser next attempts to tokenise the sentence using one

token/pair, attempting this for every token/pair in the list. Given the token/pairs in Table 8 above, this

would give the following tokenisations for the test sentence:

eX XeX X. X=X

The tokeniser next attempts to create tokenisations using two token/pairs at a time from the table. Certain

pairs of token/pairs cannot be used to do this within the same tokenisation, i.e. where one phrase is part

of the other phrase. This results in the following set of tokenisations of the test sentence:

eX. XeX. eX=X X=X. XeX=X

The tokeniser next uses three token/pairs at a time. This gives the following allowed tokenisations:

eX=X. XeX=X.

Note that strings such as XX, XXX etc do not occur in any tokenisation - these are always reduced to X.

The process of tokenisation continues with increasing numbers of token/pairs used at a time, until no

more are possible (i.e. until the number to be used at one time exceeds the number of recognised phrases

in the sentence). The full list of tokenisations for die sentence is then stored. This list may well include

duplicated tokenisation strings, because a single token such as e may be mapped to more than one

phrase. However, stored alongside each tokenisation are the sentence fragments which gave rise to that

tokenisation. Thus the tokeniser can distinguish between seemingly identical tokenisation strings. The

sentence fragments are used in the relation extraction, as described in the following subsection.

The full list of tokenisations for the test sentence An example o f a 3G language is PASCAL . (using the

token/phrase pairs in Table 8) is given below:

eX XeX X. X=X eX. XeX. eX=X X=X. XeX=X eX=X. XeX=X.

The tokeniser has effectively cut the sentence up in all possible ways using a set of known phrases.

Within the set of tokenisations there may be one or more in which X~tokens cover the concept to be

elucidated, and the actual elucidation (exemplification). The punctuation and the relation-specific

token/phrases act as sentence section boundaries and span markers. The task of the template pattern-

matcher is to identify the cases of interest out of the tokenisations and to thereby extract text fragments

which may act as concepts and examples (etc). This is described in the following section.

;
J l

114

Because all possible combinations of token/phrase pairs are used in the tokenisation stage, there is an

approximately exponential rise in the number of tokenisations to be attempted with an increase in the

number of phrases from token/phrase pairs (p) actually present in the sentence. Table 9 shows how many

tokenisations must be attempted for values of p up to the maximum of 16 used by the tokeniser (the

trivial tokenisation X for any sentence is not counted). The tokenisation mechanism stores only those

tokenisations which could feasibly give rise to extractions, all others being discarded. This minimizes

memory requirements (since each tokenisation requires a fixed amount of memory capable of holding all

the fragments of an 800-character sentence, plus other data such as the tokenisation itself and

miscellaneous flags).

No. of distinct
token phrases
present in
sentence (p)

Total no. of potential
tokenisations arising
because p phrases were
found.

0 0
1 1
2 3
3 7
4 15
5 31
6 63
7 127
8 255
9 511
10 1,023
11 2,047
12 4,095
13 8,191
14 16,383
15 32,767
16 65,535

Table 9. Numbers o f tokenisations needed fo r p tokens present in sentence

The maximum value of p is restricted not by memory but by running time. For the maximum p-value of

16 tokens, running time for one sentence on the development machine varied between 10 and 20 minutes

depending upon the precise amount of processing required for each individual tokenisation. Fortunately,

in most cases the p = 16 case did not arise, and the tokenisation times were measured in seconds rather

than minutes. However, the exponential nature of the tokenisation method does have implications for

token file design, and this is discussed later. (In brief, the number of token phrases should be kept as

small as possible, so that the p = 16 limit is not reached or breached.)

In the case of our example, p = 4 and so potentially there are 15 tokenisations. However, 4 of these

would have involved overlaps between the two phrases An example o f and example, which both map to

token e. (These were the cases where two tokens ee, three tokens ee. and ee= and four tokens ee.= would

be tried at the same time, where the two e’s are the different e-tokens.) Such tokenisations are not

115

attempted by the tokeniser, since they are not capable of sectioning the sentence. This leaves the 11

tokenisations listed above. Discarded tokenisations also include those not ending in one of the three

punctuation characters . ? ! since nearly all sentences end with one of these and since concepts or their

elucidations do not. Thus, out of the 11 tokenisations given above, the following 6 are left:

X. eX. XeX. X=X. eX=X. XeX=X.

In addition, those tokenisations not having at least two X-tokens in them are discarded (i.e. those less

than four tokens in length). This is because it is the X tokens that give rise to the concept and its

elucidation, and so at least two X tokens are needed for any ultimately successful extraction. This leaves

the following 4 tokenisations:

XeX. X=X. eX=X. XeX=X.

Tokenisations which pass these tests are labelled as good and stored.

4.6.10.2 Template Pattern Matching

Each relation type has a file of templates against which tokenisations are to be matched. Templates are

similar in form to the tokenisations described above except that (1) they always end with a sentence-

terminating punctuation mark, and (2) instead of containing X-tokens they contain the token C and the

tokens 0, 1, 2 ...9. A sample list of templates for the exemplification relation is given in Table 10. (In

reality this list is much longer, since it needs to capture all of the patterns for expressing

exemplification. For example, the full list for the definition relation is given in Appendix C). The

meaning of these templates will become clear shortly.

The pattern matcher performs a match between all tokenisations which pass through the “good

tokenisation” filter (see above) and the templates in the template file. Each “good” tokenisation is

matched against every template in the template file. It may match more than one template for reasons

described shortly. Up to three matches are stored for any one tokenisation.

Template__________
eOO.______________
eC=0+l.____________
X,eOO.____________
0=eC,X.____________
0,l+2=eC.__________

Table 10. Some exemplification templates

A “match” occurs when the tokenisation matches the template character by character, except where the

tokenisation has an X token. Here, the X is allowed to match either the C token in the template or any of

116

the 0 - 9 tokens. Returning to the example sentence, note that one template in the table takes the form

eC=0. . This is deemed to match the tokenisation eX=X. , where the first X corresponds to C in the

template, and the second to 0 in the template.

The C in the template stands for Concept, and the 0 in the template stands for the first example (up to

ten, 0 through 9, may be present in the template). It was mentioned previously that the tokenisation

process associates a word string with each token. For the tokenisation eX=X. , the associated word

strings and corresponding template tokens are given in Table 11. When a tokenisation-template match

occurs, the phrase associated with the C token is marked as the concept and the phrase associated with

the 0 (etc) token is marked as the exemplification (in this case). Any initial indefinite articles (a, an, A,

An) are then stripped from the concept. This gives the extraction Concept: 3G language Example_0:

PASCAL.

Tokenisation Word string Template token
e An example of e
X a 3G language C
= is =

X PASCAL o 1

Table 11. Example o f a KEP tokenisation

This extraction is at this stage merely a candidate extraction. Because one single tokenisation may match

up to three templates, and because there may be many “good” tokenisations all to be matched against the

list of templates, there may be several candidate extractions. Some of these may differ only slightly but

others may be completely different. Therefore validation and amalgamation methods are required to

filter out the good extractions from the set of candidate extractions.

It was stated above that one tokenisation may match up to three templates. It is in fact theoretically

possible that one tokenisation could match more than three templates (for relationships with multi-part

elucidations using the 0 - 9 tokens). The 3-match limit was imposed mainly to limit processing, but also

because in practice it is extremely rare for a tokenisation to match more than two templates (it usually

matches just one). The 2-match case arises where the tokenisation matches not only the template

designed to match it, but also one designed to match another tokenisation of the same length but with

concept and elucidation in reversed position. For example, consider the tokenisation eX=X. which is

designed to match a sentence such as An example o f a 3G language is PASCAL. , which would have the

template eC=0. . The problem here is that there might also be a template of the form eO=C. which

corresponds to a sentence such as As an example PASCAL is a 3G language, (where in this case the

token e stands for As an example). Both templates match die tokenisation eX=X. . Since the pattern

matcher would and should detect both matches (because the pattern matcher has no way of knowing

which is the “correct” match) then both matches need to be stored for further processing. This situation is

however rare; it is also avoidable by the judicious choice of token/phrase pairs i.e. by avoiding the re-use

of tokens such as e for phrases which occur in quite different sentence structures.

For successful KEP operation the token and template files for each relation type must be populated in a

consistent and comprehensive manner. Consistency is required in that there must be no tokens present in

any template in a template file which are not defined in the corresponding token file. (KEP detects this

situation if it arises and issues a warning message to the user, but this does not stop the run,)

Furthermore, the set of tokens must have been created with the templates in mind, and vice versa, since

the degree of “detail” to be matched is completely under the designer’s control. Comprehensiveness is

necessary because if a template is missing then extractions will be missed. The construction of the token

and template files is described in the following chapter, since this process is best considered alongside

evaluation.

4.6.11 Fragment Validation

The text fragments associated with the tokenisation-template matches arising above are tested for

validity, and where these fail they are rejected. If all fail, no extraction will result. If only one passes,

then this becomes the extraction reported. If more than one passes, they are amalgamated using a

procedure described in a following section. The aim is to label just one extraction as the correct

extraction, or construct such an extraction from the candidate extractions.

The text fragments are either supposed to be die concept or the concept’s example (definition, partition,

hypernym). Fragments from the C token are validated as concepts, and fragments from the 0 (1, 2, ...9)

token are validated as examples (etc).

4.6.11.1 Validation as Technical Terms

For a sentence fragment which might be a valid concept, one way of validating it is to see if it is a

technical term in the source document’s domain. If it is, then it is likely that it is a valid concept. KEP

validates concept fragments by checking them against the TT list previously constructed. This involves

handling letter case differences (since a fragment starting a sentence may start with a capital letter,

whereas one in the body of the sentence may not) and it also necessitates reducing any plural fragments

to then singular forms before making a string comparison (since the fragment may be industrial

complexes and the TT industrial complex, say).

TT validation is a most effective way of validating a concept fragment, but does occasionally lose good

extractions because the TT is not stored. In addition to TTs, concepts which are recognised as acronyms

having expansions are also marked as valid.

4.6.11.2 Tag Pattern Methods

It was originally envisaged that KEP would validate sentence fragments by the compilation of lists of tag

patterns (for the concept parts of the extractions, and the elucidation parts). Technical term methods as

above might mean this is not necessaiy for the concept parts, but the elucidation fragments need not be

technical terms. Very often they are longer sections of sentences, especially for the definition relation. It

would not be practicable to list all possible tag patterns for such segments. Some form of partial parsing

is probably required, e.g. to detect fragments which are noun phrases (NP) (e.g. small south american

rodent) or NP plus further elucidation such as by a which phrase (e.g. small south american rodent which

is mainly found in the rainforest). Although KEP detects elucidation fragments which are TTs or

acronyms, it does not reject fragments which are neither. All fragments are currently marked as valid.

This is a ripe area for future research. (See also Chapter 6 for further discussions on parsing elucidation

fragments.)

4.6.12 Candidate Extraction Amalgamation

After candidate fragment validation there may be zero, one, or more validated candidates i.e. extraction

candidates where both the concept part and the elucidation part (definition, hypernym etc) are marked as

valid. If there are no validated candidates, the extraction attempt has failed to make an extraction and

processing has finished for this sentence for the relation type being searched for. If there is one validated

candidate then this is presented as die successful extraction and ultimately printed to the output files.

For two or more validated extraction candidates a decision or an amalgamation process is necessary,

since KEP is only able to perform one extraction for a given relation type for each sentence. Where all

candidate extractions are identical in both parts, then any of them will do and so the first is presented as

the extraction. This often occurs because for the concept part, initial indefinite articles are always

stripped off. Where there are two or more candidate extractions and the concept parts are the same but

the elucidation parts are different, then decision making/amalgamation is required on the elucidation

parts. Where concepts differ between candidates and elucidations are the same, or where concepts and

elucidations are a mixture, the decision making /amalgamation process can become complex, as is

demonstrated below.

Where there are two extraction candidates having different concepts, the first candidate extraction is

picked as the correct one. Where there are two extraction candidates having identical concepts but with

some similarity in their elucidation text fragments (more than 30% similar), then the two elucidation

parts are passed to a longest common substring (LCS) function. This returns the common core of the two

fragments, and since the fragments usually differ only at the ends (where there are added or missing

words) then this method usually returns the correct elucidation text. Where there are two extraction

candidates having identical concepts but differing greatly in their elucidation text fragments then the first

extraction candidate is returned.

Note that the LCS function can only be used when it is known that the strings involved are similar, since

the LCS of two widely different strings is usually very short or even non-existent. For example, there is

no LCS for large brown dog and small wild pig. The LCS function developed for KEP works on a word-

atomic basis (not on a character-atomic basis) so that the LCS of large brown dog and large brownish

dog would be large, not Targe brown’. This LCS method is ideally suited for sentence-fragment pairs

such as the following (where the LCS returned is given in bold on the thud line):

type of large brown dog found in the Andes , but
a type of large brown dog found in the Andes

type of large brown dog found in the Andes

For three or more validated extraction candidates, the process becomes more difficult since it is possible

to have many combinations of identical/different concept and elucidation parts. The approach taken

actually applies to any number of validation candidates (including 1 or 2) and is to count each distinct

concept and use the one with the highest count (or, in the case of a tie, the first group of concepts with

the joint highest count). Then only elucidations from that group of candidates are considered. The largest

group of identical or near-identical elucidations is chosen and the LCS from this returned as the

elucidation extracted.

Despite the potential complexities of the above process, in practice it is mostly the case that only zero,

one or two valid extraction candidates are put forward. Thus in the majority of cases the more difficult

combinations within die amalgamation process are not explored. The amalgamation process is an

important area for future improvement since the “correct” extraction is usually present within the

amalgamation candidate set when the set is not actually empty. It is thus especially disappointing when

the amalgamation procedure fails to find it, as occurs occasionally.

4.6.13 Noun Number Resolution

The techniques described in the above sections mention that it is often necessary to compare plural nouns

with singular nouns, to check if the former is in fact the plural form of the latter. KEP contains a novel

function developed specially to do this (the sing() function). This function accepts a word which is

known to be a plural noun, and returns the singular form. Less than one word in every thousand is

incorrectly singularised, a very high success rate of better than 99.9%. Furthermore, this is achieved

without the use of a machine readable dictionary (MRD). The approach is fully detailed in Bowden,

Halstead and Rose (1996c), but the major points will be outlined below. Note that the absence of the

MRD means tiiat KEP is more easily able to remain domain dependent. Not only is a lexicon of

specialist domain terms not needed (an important factor for domains which have very large specialist

120

• ■ • ' ■ ■ - - f .

I

vocabularies, such as medicine), but also neologisms can be handled correctly (an important factor for

domains which are fast moving, such as information technology).

Various factors complicate the at-first seemingly straightforward task of finding a singular fomi for a

plural noun:

• homonymic plurals e.g. bases (basis, base)
• alternative plurals e.g. pennies, pence (penny)
• multiple singular forms e.g. axes (ax, axe)
• mixed homonymie/multiple e.g. axes (ax, axe and axis)
• multiple plurals e.g. formulas, formulae (formula)
• no change e.g. series (series)
• central vowel changes e.g. feet (foot)
• no meaningful singular e.g. trousers (1 trouser)
• completely different word e.g. people (person)
• genuine oddities e.g. dice (die)
• hyphenated plurals e.g. men-of-war (man-of-war) [not yet handled]
• semantically-determined senses e.g. mechanics (people or discipline?)

In order to handle these, as well as the more usual “exceptions”, the sing() function is rule-based, using

also lists of exceptions to rules. It is essentially structured as a tree of if-then-else structures, where the if

parts test the final characters of the input plural noun. For example, a rule such as remove ies and add y

can handle words such as cities, but there are exceptions, such as with pies. In fact, up to seven levels of

if-then-else structuring are used, arranged in such a way that the lists of exception words are kept as

short as possible. Some of the exception lists needed are shown in Table 12.

aeries koppies
bogies lassies
calories lies
collies mounties
coolies magpies
cookies movies
corries neckties
cowries verlies
darkies pies Some exceptions to the rule ies -> y
dies pixies
dixies quickies
eyries reveries
falsies sorties
gillies talkies
genies ties
goalies toughies
indies zombies

Figure 17. singQ exception list 002

It is interesting to note that only about 350 exception words are needed in order to achieve the 99.9%

success rate. The longest list is list 005, which contains words whose pronunciation gives clues as to how

121 |

 •• v. 2

;

^

;
;

-

-

r—

—
;—

to form the singular; clearly this information is arbitrary and therefore not available to the sing() function

(e.g. the u vowel sounds in buses, fuses and octopuses are pronounced in three different ways by most

native English speakers, although there are more than three ways of pronouncing them in toto if regional

dialects are considered).

An example of one of the lists, list 002, is given in Figure 17. The simple structure of the function,

together with the shortness of the exception lists, means that the sing() function is fast. This is an

important factor in a program that may need to make thousands of such calls during a run.

EXCEPTION LIST NUMBER DESCRIPTION OF WORDS EXAMPLES
001 end ies, no change series
002 end ies, lose s pies, movies
003 end sses, no change molasses
004 end sses, lose s crevasses, posses
005 end ses (not sses), lose es bonuses, gases
006 end ses (not sses), ses to sis analyses, oases, dieses
007 words in 006 with other sing. bases
008 end xes, lose s axes
009 words in 008, also xes to xis axes
010 end ces, ces to x appendices, matrices
011 end ices, ices to ex indices, vertices
012 end ches, lose s tranches
013 end ves, ves to f calves, leaves
014 end oes, lose es potatoes, cargoes
015 end ies, no change electronics
016 end s (not ies etc), no change trousers, tongs
017 the word corpora corpora
018 end ice, ice to ouse mice, lice
019 the word pence pence
020 the word dice dice
021 the word geese geese
022 the word people people
023 end ia, ia to ium bacteria, media
024 end ves, ves to fe knives, wives
025 end ies, ies to ey monies
026 the word feet feet
027 the word teeth teeth
028 end zes, lose es topazes, waltzes
029 the word brethren brethren
030 end hes, no change clothes
031 end ies, lose es chillies
032 end la/ta/da, a to on automata
033 end sses, lose ses gasses

Table 12. Exception lists in the singQ function

122

4.6.14 Dealing with Anaphora

It is sometimes the case that fragments from the extraction stage are found to be anaphoric (pointing to

previous text), cataphoric (pointing forwards in the text) and even semi-exophoric (pointing out of the

text to some other entity on the page, such as a figure or a table). Simple anaphoric fragments include

this, these etc. More complex constructs include phrases like such devices, this type o f <noun>, given in

Figure. 5.7 etc. The simpler demonstratives are validated before syntax-checking, but the more complex

phrases are handled in a function designed specifically to detect endophoric links.

Links which point to tables and figures within the text cannot be simply resolved, and where such a

pointer is detected the output is therefore set to text such as <given in an accompanying diagram>. The

set of phrases indicating such links is small and so is hardcoded into the detection function.

Links within the text proper do at least terminate on other phrases, and so some attempt could be made to

follow them back (or forward) to the relevant concept (or example etc). For phrases like such a device in

the sentence An example o f such a device is the laser printer it is likely that the linked concept lies in the

immediately preceding sentence, usually as the head. This is an area within KEP which is presently

being worked on; currently die detection code is being implemented (using a file to hold trigger text

patterns such as those given above). However, it is already evident that only simple target concepts will

be extractable. Anaphoric links may point back to intangible concepts described by the whole of a

preceding paragraph (or even larger textual unit). No simple syntax-based extinction method would ever

succeed in resolving such links; systems incorporating semantic and pragmatic knowledge will be

required. (For a discussion on how humans may form complex concepts whilst reading through a text see

Kieras (1982). This paper concentrates on the way in which the reader finds the important

topics/sentences in a text, so it is also relevant to the discipline of automatic text summarisation,

discussed later.)

For further discussions on the anaphoric resolution function, together with ideas concerning more

difficult types of anaphora (such as first-mention definite noun phrase anaphora) the reader is referred to

Bowden, Halstead and Rose (1996d).

4.6.15 Merging of Extractions by Concept

The output shown in Figure 9 on page 84 groups four extractions (a definition, an exemplification, a

hypernym and a partition) against one concept {sort routine). However, this was not how KEP originally

found the extractions; they were found at separate times because KEP processes one relation type at a

time, going through the whole text for each relation type. Thus a merging function is required to produce

the output as shown. The merging function detects identical concepts and ensures that all extractions for

them are grouped together.

123

Merging of concepts takes place only within a single run of KEP. Since the program does not at present

maintain a memory of past runs (in the form of a semantic net KB) then merging is not required in such a

structure. However, this problem will arise within curriculum graphs of the HypeLab/HyperTutor system

if future work succeeds in providing a reliable interface. The updating of existing semantic nets is not a

simple task (see e.g. comments by Hearst (1992)) but this work rightly resides within

HypeLab/HyperTutor, and so unless it is later decided that KEP should maintain its own KB memory, it

is not of concern here.

Merged extractions are stored in a linked list based structure configured as a spinal LL in which each

element contains a unique extracted concept. Each element in this spinal LL may have up to four side

LLs to hold lists of definitions, examples, parts and parent classes. Thus the entire set of extractions from

the input text is held in a single data structure from which output may be obtained for the short, long and

KEN output formats.

4.6.16 Construction of Output Files

Short output contains only a heading line and output taken directly from the spinal LL data structure, in

the order present. KEN output is essentially a reformatted short output. Long output contains the same

extraction data plus all processing comments and error messages (if any) as well as line and sentence

structures. It also contains much statistical information regarding the extractions made or attempted. It is

essentially a diagnostic and recording tool which shows in detail the processing performed. The file is

usually very large (more than twice the size of the input text). The size of the long output given in

Appendix D illustrates this point. Long output is rarely printed, since it is easier to read/search an online

version.

Glossary output is also produced from the spinal LL but in a reformatted form that orders glossary

entries alphabetically on the first column present (acronym or term). A separate LL structure is used to

hold the glossary, each LL element holding one glossary entry. The glossary-maker function also builds

cross-reference information between entries. These cross references have been kept deliberately few in

order to avoid a plethora of mostly unhelpful links. For example, links between terms (middle column)

and their hyponym/hypemym terms are avoided, since they can result in all the terms involved listing all

the related terms. Instead, three types of cross reference are made: between terms used in the text of the

third column and those terms’ own glossary entries, between acronyms used in the text of the third

column and the entries for their expansions, and between acronyms which are part of terms in the middle

column and the entries for their expansions. Thus for example if the 3rd-column text mentions GIS, or if

GIS forms part of the middle column, there will be a link of the form SEE ALSO geographical

information systems if this has its own glossary entry elsewhere. This helps the reader to understand an

unfamiliar acronym whilst reading a glossary entry.

124

Term summaries (introduced in section 4.6.6) are not held in the spinal LL data structure and are

constructed after TTs and acronyms have been collected. This is essentially a search operation on the

sentence arrays, although TTs must be searched for in both plural and singular forms, and with or

without term-initial capitals. The process also reads sentence numbers to group the output into blocks

and to fill inter-block gaps less than two sentences long.

4.6.17 Evaluation Considerations

It is a fact that a full extraction run, on a large text such as ‘BIG’, for all four relation types, and with

apposition triggering and is a triggering switched on, may take many hours. This important issue will be

discussed later. It can be a problem for practical reasons, such as non-availability of the computer for

long periods (e.g. on some systems essential book-keeping programs are run overnight, requiring 100%

of the computer’s resources). However, since each of the four relation types is processed separately, it is

possible to run KEP four separate times, once for each relation type. During evaluation (see Chapter 5),

precision and recall can then be found for each in turn. (It is in fact possible to run KEP for any

combination of the four relation types, since the user is asked whether to ran for all four or to ran for

some lesser combination - see Table 5.)

However, running KEP for each of the four relations in turn would duplicate the effort of finding all the

TTs and acronyms in each run, i.e. the process would have to be done four times, three of them

unnecessarily. Since TT/acronym extraction itself may take several hours if full text look-ahead is used,

this represents much wasted time. KEP has therefore been provided with the facility to store all internal

term and acronym data structures to disk (files ttdisc.out and acd.isc.out - see Table 6; these files were

also useful during system development because they are human-readable). Upon running KEP, the user

is queried as to whether the text being processed is the same text as for the last run. If so, the user may

choose to restore the last run’s TT and acronym data from disk. This leaves KEP in a position identical

to the one it would have been in had it extracted TTs and acronyms from scratch; the only difference is

that this point in the processing is reached several hours earlier. Clearly this is a useful feature during

multiple extraction runs on the same file (e.g. ‘BIG’). This method was used in the evaluations described

in Chapter 5. (Note: In order to construct a full 4-relation glossary, KEP must be ran at least once for all

four relations together. Even here, however, TTs/acronyms may be restored from disk from the original

ran.)

4.7 Concluding Remarks

KEP is a large program (over 22,000 lines of ‘C’ code, split over eight source files). Its central feature is

a novel pattern-matching facility which allows the segmentation of sentences around punctuation and

special phrases. This pattern matcher is unlike those developed for domain specific NLP systems since it

contains no domain specific phrases. Instead, relation specific phrases are utilised. Together with a

modified and enhanced form of an existing term acquisition method, and a completely novel acronym

extractor, KEP attempts to extract instances of the definition, exemplification, partition and hypernym

conceptual relations. KEP is designed to process explanatory texts, but these texts may be about any

topic. Input texts must first be part-of-speech tagged using a commonly available tagger such as

CLAWS. KEP has been designed to be robust; it is not stopped by irregularities in the input text and is

capable of processing very large texts comprising thousands of lines or sentences. KEP requires no

external resources such as machine readable dictionaries or thesauri, because a shallow approach is used

which utilises lexical and syntactic information available within the input text, in-built knowledge of

how plural nouns are formed in English, and lists of relation-specific phrases provided during

development.

In the next chapter the performance of KEP is evaluated. In addition the methods used to acquire lists of

relation triggers and phrases are described. In the final chapter, the limitations of the methods are

considered and possible future enhancements discussed.

126

5. Evaluation

5.1 Introduction

This chapter reports upon evaluation and testing of the KEP system. The results of the evaluations are

discussed so that the successes and limitations of the methods used by KEP may be considered.

The primary evaluations described in this chapter relate to KEP’s ability to extract instances of the four

conceptual relation types attempted (definition, exemplification, partition and hypemymy). Contributing

to these evaluations are secondary evaluations of some of the elements of the above, such as how well

KEP can extract acronyms or spot technical terms. At a third and lower level are evaluations of

commonly-used functions such as KEP’s plural noun singulariser.

In addition to evaluation, this chapter also contains a description of the methods used to populate the

token and pattern files used in the central pattern-matching mechanism novel to KEP. Since these were

created in a systematic way coupled closely to evaluation, this chapter is the natural place to do this.

5.2 Precision and Recall

IR (information retrieval), IE, MU and KE systems are properly evaluated against the metrics of

precision and recall. These two measures may mean slightly different things in different circumstances,

but the essential concepts remain the same. Both relate to the “answers” given by the system, and

whether they are “correct”. It is the nature of the answers which vary from application to application - an

“answer” may be an extracted fact, or an identification of some linguistic structure, or the highlighting of

a relevant part of a text etc. Correctness is likewise application dependent; it is necessary to state what

one means by “correct” when looking at a certain type of answer. Although deciding whether a particular

answer is correct can often be difficult, correctness has to be coerced to be a boolean variable - an

answer must be either correct or incorrect for the calculation of precision.

The precision of a system is a measure of what fraction of the given answers are correct. It can be

calculated as:

precision = (no. of correct answers / no. of answers presented) * 100

To take an example, consider KEP’s acronym extractor. A precision figure can be calculated for those

cases where an acronym has been found and an expansion for it presented. In this case, the “answer” is

“an acronym from the text together with what it stands for”. The “correct” value is either true or false;

true means that both parts of the extraction are correct in all details i.e. the extraction is indeed of an

127

acronym, and that the expansion given is indeed the right one as mentioned in the text. False means that

part of the extraction is wrong. Thus if the acronym detector found 84 acronym/expansion pairs and 80

of these were deemed to be correct, the precision would be (80/84)* 100 = 95% (to the nearest percent).

It is important not to use too many decimal places - for raw data counts of the order of 100 it would not

make sense to give the precision to more than one percent. For raw data counts of around 1,000 then one

place of decimals would be acceptable (i.e. to say that KEP has a 99.9% precision for finding the

singular form of a plural noun implies that at least a thousand cases have been tried).

Note the importance of stating what is being measured. One could for example generate precision figures

for just identifying acronyms in the text; in this case the correctness question might be a yes-no decision

as to whether the identified word really is an acronym or not (irrespective of whether it had an expansion

in the text).

In the above example, incorrect answers may arise for a number of reasons. The expansion may be

present in the text but wrongly extracted. The expansion may not be present in the text, but one was

extracted anyway (obviously incorrectly). The acronym identified might not have been an acronym at

all, so the extraction would have been wrong whether or not an expansion was presented. The first of

these three cases is a simple wrong answer, but the last two are examples of false positives. A false

positive is an incorrect answer obtained because an answer was found where none actually existed. It is

usual to state the false positive rate separately since it may be a separate variable that can be reduced

without altering the rate of ordinary wrong answers. Precision figures which do not incorporate false

positive rates are higher than those that do, and so one must always state whether a given precision

figure includes it. For example, if three of the incorrect answers in the above example were due to false

positives, then by removing these from the precision calculation die precision rate jumps to (80/81)* 100

= 99%. Clearly, this can be misleading. All precision figures reported below include false positives i.e.

take the most pessimistic figure.

Precision says nothing about how good a system is at finding all the “answers” in a text. A program

might have 99% precision because it gets 99 out of every 100 answers right, but still only get 20% of the

answers that are there to be found. This is where the recall metric is useful:

recall = (no. of correct answers presented / no. of answers available in the text) * 100

For example, if the acronym detector found 80 correct acronym/expansion pairs from a text which

actually held 85, then the recall rate would be (80/85)* 100 = 94%. In practice recall measures are usually

lower (sometimes substantially lower) than precision measures. It is also often the case in real systems

that recall and precision figures are linked inversely - tweaking a system to increase precision often

causes a drop in recall, and vice versa. This is to be expected; those instances of items not found by

initial methods are likely to be the more difficult ones to extract. Thus, any improved method aimed at

getting them is attempting to obtain the more difficult instances. Thus there is a higher likelihood of the

new method making mistakes in these cases. The aim of course is to create a system having both high

recall and high precision.

Thus the recall metric shows how comprehensive a KE/IE system is, and the precision metric how

accurate it is with what it does find.10 Recall is often the more difficult to calculate simply because it can

be difficult to count the number of items available for extraction. For example, it is not easy to decide

whether a definition is indeed present in a sentence, and so it is not easy to provide the denominator for

the recall metric. This is why tests such as Skuce et al.’s definition-presence test (see page 73) are

important.

The precision and recall figures which are given in the following evaluations adhere to the philosophy of

being pessimistic. Wherever there is some doubt the decision is made so as to lower the precision and

recall figure arising, not raise it. Where such decisions occur they are discussed in the accompanying

text.

5.3 KEP Function Evaluations

The evaluations which follow have been arranged in the order of KEP processing as described in the

previous chapter. Thus the prime evaluation, that of KEP’s performance as an extractor of conceptual

relation instances, appears towards the end of the chapter (section 5.3.6, page 153).

5.3.1 Sentence Delimitation

Sentence-end detection is not a high priority area for KEP, but it must be good enough to allow the

program to function correctly. Thus evaluation need not be exact - it need only say whether an

acceptable rate has been achieved. Manual checking of BNC texts (which may be tens of thousands of

lines long) against KEP’s sentence structure would be a laborious task and is not in fact necessary to

achieve the above goal. Instead, a comparison between the number of sentences thought to exist in the

text by KEP and by the CLAWS tagger is sufficient. Clearly this will not give an exact figure, since

multiple errors may cancel each other out (i.e. sentences may be incorrectly concatenated, or incorrectly

split). However it does indicate whether the two systems give comparable counts. The number of

mutually-cancelling errors camiot in any case exceed the number of instances where two sentences are

incorrectly concatenated, which in the vast majority of cases happens where a heading is prepended onto

a following sentence. Since headings form only a small percentage of the sentences, it follows that the

10Some researchers present an average of recall and precision which they call accuracy, another measure is the F-
measure, F = 2PR/(P+R)

mutual-cancellation rate must be low. Thus this method does give a good comparison of KEP’s and

CLAWS’ sentence delineation decisions.

The number of sentences found by KEP is the number of the highest sentence number, plus one (because

the first sentence is labelled as sentence 0, in the ‘C’/UNIX tradition). This count includes headings

where they have been identified. The corresponding count for a BNC text is obtained by examining the

tagging declaration element of the BNC text’s encoding description, part of the file header. An element

of the form ctagUsage gi=s occurs-2411> indicates that the text contains 2,411 s-tags i.e.

2,411 sentences. The Users Reference Guide for the British National Corpus (Version 1.0) Burnard

(1995) describes the <s> tag as being for a “sentence-like linguistic segment”. This includes heading

lines as with KEP. Thus the sentence count contained in the BNC text header is comparable with that

described for KEP above.

Three large ‘informative’ BNC files were used to compare BNC and KEP sentence counts s(BNC) and

s(KEP). The results are given in Table 13. In each case the accuracy (s(KEP) / s(BNC)) * 100 was

calculated. (This figure is not a precision metric because the value of s(KEP) may be higher or lower

than the s(BNC) count.) The figure gives an indication of the closeness of the two counts and shows that

KEP achieves a rate within a 10% band.

BNC text name s(BNC) s(KEP) ((s(KEP)/s(BNC))*100
BIG 1650 1513 92
EAK 1346 1357 101
FTE 1514 1407 93

Table 13. BNC/KEP sentence count comparisons

The rates given above are pessimistic in that they do not make any allowance for errors created by the

conbnc pre-processor program, which very occasionally splits or joins sentences due to errors during tag

stripping and re-attachment. The counts are close in all three cases, but each file has its individual

characteristics. For example, the text FTE has two domain-specific problems. The first of these is the

naming of bacteria. Latin bacterial names are often written in short form like E. Coli or B. Subtilis. Like

peoples’ names, these trip up the detector due to the full stop after the initial capital letter. However, one

would expect this problem to cause KEP to find more sentences than BNC, not less as actually occurred.

The second DS peculiarity is that this text actually contains a large number of unterminated sub

headings, which are therefore wrongly prepended onto good sentences. This explains the shortfall. Since

the text contains very many words having initial capitals (or being all capitals) it is difficult to see how

any mechanism based upon sentence start words (beginning with a capital) could help this situation

without causing many more false end detections. When these two types of error are subtracted from the

output, nearly all sentences are correctly identified.

130

It is clear that the relatively simple approach to sentence-end detection used by KEP gives satisfactory

accuracy rates, and since this specific area is not of prime interest to KEP, it will not be discussed

further.

5.3.2 Technical Term Acquisition

5.3.2.1 TT Acquisition Performance

The calculation of precision and recall for KEP’s technical term (TT) finder is prone to uncertainty due

to the subjective nature of the task. Precision is the percentage of reported TTs which were indeed TTs,

and recall is the percentage of TTs in the text which were reported as TTs. In both cases it is necessary to

identify the TTs in the source. This is the problem. To reiterate a previous example: if map error and

map scale are terms in a text from the cartography domain, then is map ? In a text on programming,

iteration and for loop may be terms, but what about looping ? Can a phrase such as serious error ever be

a TT? (What if the latter were part of a text on error calculation which classified errors as one of simple,

intermediate, and serious?)

Issues such as the above must be resolved by a human decision maker, who must scan the entire text

looking for all possible terms. This is a subjective process. It is also a difficult and time-consuming

process, since every sentence in the text must be carefully checked, with every “possible” TT phrase

identified and considered. The process of finding all the genuine TTs in the source text for the human

evaluator is aided by the output files tttest.out and ttnola.out, which were described in the last chapter,

and which contain lists of text fragments from which KEP derives all TTs. The process also requires the

inspection of the lists of unconfirmed and duff terms given in the long output, and inspection of the

source text or tagless sentences in the long output. This combination of resources gives a high degree of

confidence that all 1-, 2- and 3-word terms are identified. However, tagging errors in the source may

cause some real TTs to be missed completely by the sentence fragmenter. A term such as lay by may not

be considered if by was tagged as a preposition. This is why manual inspection of the source is still

required. It is not practicable to perform all the above for several BNC texts, especially where more than

one look-ahead distance is chosen, and for this reason a single text was selected for evaluation and

discussion purposes. This text, ‘BIG’, was chosen because it is one of the larger BNC texts, and hence

allows of the possibility that many acronyms, terms and conceptual relation instances may be present,

and also because it meets the criteria regarding “the right sort of text” as discussed in Section 3.2 (i.e. it

is non-fiction (see Section 0), explanatory (Section 3.2.2), contains large sections of informational text

(Section 3.2.3), contains much generic knowledge (Section 3.2.4), contains many facts (Section 3.2.5), is

mostly declarative (Section 3.2.6), and is largely technical in nature (Section 3.2.8)). The TT results are

given in Table 14.

131

BNC text TT precision
(a) 10-sentence
(b) to end of file

TT recall
(a) 10-sentence
(b) to end of file

TT false positive
(a) 10-sentence
(b) to end of file

BIG (a) 304/343 - 89%
(b) 658/750 = 88%

(a) 304/3530 = 9%
(b) 658/3530 = 19%

(a) 39/343 = 11%
(b) 92/750 = 12%

Table 14. KEP TT extraction performance metrics fo r BNC text B IG

The precision and recall metrics have been described above; the false positive metric has been calculated

as the number of terms reported by KEP which were judged not to be real TTs divided by the total

number of TTs reported by KEP, multiplied by 100. Since in this instance all incorrect TTs are by

definition false positives, the false positive rate is equal to 100 minus the precision. Figures are given for

(a) a look-ahead distance of 10 sentences, and (b) a look-ahead distance of all the way to end of text.

Errors due to bad tags in the input are included in the calculations.

The calculations do not include TTs more than three words long. The recall figure would undoubtedly

fall if such terms were included, but it is thought that such terms are relatively rare if terms not involving

prepositions (i.e. just nouns and adjectives) are considered. (Inspection of the BNC text BIG suggests

that only a handful of such terms exist. An example of such a term from text BIG is monte carlo

simulation methodology. Many of these terms end with methodology, technique, approach, system etc

which indicate that they are really 3-word terms with an appended noun to which the 3-word term acts

adjectivally.) Nkwenti-Azeh (1994) counted 4-element terms from the satellite communications domain,

and for three separate corpora found that they represented 2.06%, 8.88% and 3.50% of the total term set

respectively; >4-element terms were even rarer (0%, 1.97% and 0.8% respectively). If such figures can

be extrapolated to other domains, this would suggest that at most only about a tenth of all terms are

greater than three words in length.

Going on the number of terms reported by KEP, 750 - 343 = 407 extra terms were made by doing the

full look-ahead. Thus roughly half of all terms re-occur locally (within a 10-sentence window). A

difference operation on the two ttnola.out files shows that the terms added by doing a full look-ahead

were general TTs relating to the overall topic of the text (such as image processing, cartographic

information, map scale etc) or duff terms such as cause o f uncertainty. This suggests a novel method for

text topic identification: run the TT extractor with the two different window sizes, and use the added

terms as above (less any duff terms) to find the overall topic of a text. This is equivalent to finding those

TTs which occur throughout the document rather than concentrated in one part of it. KEP’s output

statistics do keep a record of where each term occurred in the text (by sentence number) and so it is

possible to mark term occurrences on a graph representing the text. KEP’s term summaries facility

effectively draws the occurrence graph for each term (in a vertical format). Appendix B contains part of

132

the term summary output for BNC text BIG and demonstrates the localisation or otherwise of TTs in that

text.

The precision figures given above are high. They confirm11 Justeson and Katz’s claims that (a) the

method is effective, and (b) that it is rare to find TTs having the form NPN. (Approximately one term in

ten reported by KEP contains a preposition (this includes false positives), and in most cases it is the word

“o f’, e.g. as in census ofpopulation.) Furthermore, almost all of the terms extracted appear to be related

to the subject matter of the text, which bodes well for an automatic glossary maker.

Recall figures are lower, and at first sight appear disappointing. The vast majority of the missed terms

occurred only once in the text, and so defeated the shallow mechanism used to find them. Many of these

missed once-only TTs are terms from other domains (i.e. they are not related to the topic of the input

text) which explains why they were less likely to be repeated. Thus although the recall figures are lower

than one might wish, many of the TTs not detected were in fact terms not relevant to the input text. This

is an important point. The evaluation has asked the question “is this a TT in any domain?”. Perhaps the

question should have been “is this a TT in the domain of this text ?”. The latter is the more relevant

question for a system aiming to build a glossary for a given input text - in a text on GIS one does not

need to be told that police force is a TT, even though it would be a useful term in a glossary derived from

an article discussing crime rates, say.

Determining whether a given term is or is not relevant to the domain of a given text is a highly

subjective process, and therefore any count of domain-relevant TTs must be subject to fluctuation

between different human evaluators. It is also an extremely difficult process, because there are many

terms which appear borderline to the text’s topic12, or which force one to reconsider what the topic of the

text actually is. Having said this, an attempt was made to estimate the number of terms relevant to GIS

from text BIG, and hence a re-calculation of the recall metric made. This becomes 658/1220 = 54%.

Clearly this is a much higher recall figure. But perhaps even this figure is not high enough; there is a

case for arguing that by definition a TT isn’t relevant to the domain of a text unless it occurs at least

twice, Of course one might argue that it is quite possible for a text to be about a topic X without once

mentioning X explicitly, but this has not happened with any of the BNC texts encountered during KEP

evaluation, and so appears to be very rare. (At the very least, the topic of a text may be mentioned in its

main heading.) The above seems as good a definition of “relevant” as any, and at least it has the

advantage of testability. Of course, using this definition, which is the approach used in the KEP TT

"U nlike in other branches of science, it appears rare in this field for one researcher to attempt to confirm or refute
the results of another. It is difficult to say why this is, but the author believes it would do us no harm to have
more confirmatory studies.

12 Meyer and Mackintosh (1996) discuss this problem and refer to it as the problem of where to place the “side
boundaries”.

133

extractor, recall will be 100% because KEP does not fail to detect any potential term which occurs twice

or more (for full look-ahead), even if the occurrences have different number (singular/plural) or

capitalisation (e.g. due to one occurrence starting a sentence and another residing mid-sentence). As

discussed earlier, KEP also detects the case where a term occurs once but is from that point onwards

represented by an acronym. (The usual caveats about terms longer than 3 words apply.)

Some of the terms missed by the extractor were single-word terms not uncovered by the added

hypernym mechanisms because they did not take part in longer terms, or because where they did take

part it was always as the first word in a 2-word term (the term never occurring in two separate terms as

the second word), a situation not currently handled (e.g. traffic movement + traffic monitoring giving

traffic, where there were no terms such as heavy traffic and light traffic). Future enhancements may

address the issue of better terms-within-terms resolution.

5.3.2.2 TT False Positives

Although KEP’s overall performance on relevant TT detection is good, perhaps the most interesting

aspect is the false positive rate. False positive TTs appear to fall into four categories. The first of these

contains phrases which are right-hand-side sub-phrases of a genuine TT, but not TTs themselves. These

include phrases such as carlo method (genuine TT is monte carlo method) and processing unit (genuine

TT is central processing unit). The problem here is that there is a strong bond between the first pair of

words in these 3-word phrases, and this cohesion is not reflected by any morphological clue such as a

hyphen linking the two first words. One way of dealing with this situation would be to reject any 2-word

term which always occurs as the last two words of the same 3-word term (and never by itself). However,

it is conceivable that the 2-word term is indeed a TT in the text’s domain, but that it just so happens that

it is not used in the text under consideration. A future enhancement will test this method.

The second category of false positives includes terms made from commonly occurring adjectives and

nouns, particularly those which may be used in a general manner in all domains. The above example

serious error is one such term, as is recent year and massive change. These were introduced as “duff

terms” on page 103 where it was stated that the method of finding them was poorly defined. Indeed, as

has been shown above, it is not just a matter of finding such terms, since context may make them

genuine TTs. It is interesting to note that such terms arise in languages other than English - Daille

(1995) also discovered them, in TT extractions from French. Daille’s method also utilised repeated part-

of-speech patterns, so this appears to be a fundamental drawback of such methods.

KEP includes a simple function which attempts to identify 2-word duff terms using lists of first-word

and second-word items. Three types of terms are rejected. The first comprises mainly temporal

adjectives followed by any word, such as aforementioned program, last year and previous quarter. This

134

method is designed to catch terms which are anaphoric to a previously mentioned good term (or indeed

cataphoric to a future item), i.e. to detect presentational terms. Although this type uses mostly temporal

qualifiers, spatial adjectives referring to some other point in the text also occur (e.g. accompanying

diagram). The second type comprises combinations of first word / second word, generated from two

lists. Examples include considerable importance and potential application. This category is designed to

catch commonly used phrases from all subject areas. To detect duff terms of the carlo simulation type,

the third type of duff term, a list of words is maintained that cannot start a 2-word term because they

must occur prepended by another given word. Thus carlo may not start a term, or der (as in Van der

Waals) etc. (Names of people are valid terms.)

The duff-term mechanism will reject terms such as serious error even where context shows them to be

good TTs. It also suffers from the serious problem of having to maintain lists of the common/general

adjectives/nouns, an open-ended task in that these lists invariably need adding-to after each new text has

thrown up more examples. Clearly this mechanism is not ultimately satisfactory and presents an

interesting opportunity for future research. However, it is thought that the method does reduce the false

positive rate without greatly reducing recall. Although the duff-term function started off with word lists

generated by introspection, the precision and recall metrics given above were calculated before new

words were added to the duff-term lists i.e. in the above tests KEP reported some duff terms as being

good. Only after the run were new words added, ready for the next run. Thus the above results do not

incorporate any “training” for a particular source text. However, for the purposes of illustration, after

new word addition a re-run on file BIG gave rise to the list of duff terms given in Figure 18. Note that

none of these terms appears to be a genuine TT wrongly labelled as duff, with the possible exception of

direct interpretation, which might have a specific meaning in the remote sensing/GIS arena.

previous part considerable importance potential application
organizational issue possible link carlo approach carlo
simulation
different map different source different level different scale
other issue other data recent study recent research
different type other disaster recent work recent year
wide range direct interpretation general approach
potential application field

Figure 18. Some 'du ff terms from text B IG

There is a handful of reported terms which are incorrect due to a related problem to the monte carlo

simulation problem, and these represent the third category of false positives. These are left-hand-side

sub-phrase cases. In these cases the first word of three qualifies the last. The term toxic air pollution is

good, and so is air pollution, and so is the derived toxic pollution. However, toxic air is not good. The 3-

word term can be read as toxic (air pollution) but not (toxic air) pollution. (See also the park border

135

plants discussion on page 26). Air pollution is pollution of the air, toxic pollution is pollution which has

the property toxic - these are different ways of classifying pollution. The TT extractor will inevitably

find the term toxic air, since it has the pattern AN. In most cases there is not a problem and all three

terms from the ANN parent pattern (i.e. AN, NN and ANN) can be regarded as good terms, but

occasionally the above situation arises.

Resolution of problems such as that of toxic air pollution may be resolvable using mutual information

methods for detecting word collocations. The paper Kita et al. (1994) describes two approaches, one

based on mutual information (MI), and the other on a new technique which they call Cost Criteria (CC).

The latter is a method which attempts to find collocations based upon the reduction of effort which a

learner of the language would experience if the words involved were learnt as if they were a single word.

It tends to find “frozen” phrases such as “thankyou very much”. The former seems more useful for our

problem, however, since it is able to rank the possible phrases (toxic air pollution, toxic air, air pollution,

toxic pollution) numerically. Thus if toxic air was given a low rank compared with the other phrases, it

could be ruled out as a good TT. It is not desirable to go into the detail of these methods at this point, but

the incorporation of such approaches will certainly be investigated for future versions of KEP.

The fourth category of bad terms comes from the hypernym-derived single terms. Single words may be

derived which are so general as to be meaningless. These include method, time, process etc. For the all

way look-ahead test on BIG reported above, 109 singleword terms were found, of which 59 were judged

to be bad. These 59 bad terms represent a high percentage of all the bad terms (59/92 = 64%) and reduce

overall precision disproportionately. Turning off the single-word mechanism would cause the precision

figure to rise to (658-(92-59))/(750-92) = 95% and change the false positive rate therefore to 5%. Since

output from other BNC texts often throws up the same bad singletons, a simple method of easing this

problem would be to include a stop list of bad single-word terms; this has been left for the future.

However, even terms such as process may be correct, e.g. in computer science where process is the term

used for a running program. Thus the stop list approach may mark some good terms as bad, and by so

doing fail to extract a relation instance (e.g. from “We can define a process as a running program”).

5.3.2.3 Other Term Acquisition Approaches

The above discussions may have given the impression that Justeson and Katz are the only people to have

put forward a TT acquisition method, but this is not the case. As was stated in Chapter 1, terminology

extraction is an established field. Many researchers have investigated term acquisition methods, and

some of these may be helpful within an improved KEP. Some methods require part-of-speech

information, but others do not. For example, Enguehard (1994) in the ANA system claims to have

dispensed with the need for part-of-speech tags, although a DS ‘bootstrapping’ vocabulary is required.

This system aims to find new partial-tenns such as shade o f in shade ofpaint by detecting the similarity

of this phrase with known phrases such as colour o f paint. Goldin and Berry's AbstFinder system

(described below) also dispenses with PoS information, and indeed word boundaries. Some of the more

recent papers on term extraction are reviewed below; however, this review is in no way comprehensive.

The literature on term extraction is extensive, and it would not be appropriate to provide a

comprehensive review within this thesis. Interested readers are directed to Salton (1988), who discusses

syntactic approaches to automatic index term extraction, and to the references sections of the papers

discussed below, which often refer to non-overlapping sets of previous papers.

Rousselot et al. (1996) present an interactive method, also using untagged text, which takes a similar

approach in an attempt to discover verb-based relations in text. For example, patterns of the foim A

VERB B are searched for, e.g. lions eat zebra, cats eat mice etc. Using knowledge of the categories of

the fillers of the A and B slots in the pattern, the system discovers the eat relation. This method strictly

finds new relations rather than terms, but where a system needs to find abstractions this ability is

important. Abstractions are discussed shortly. The above example concerns the eating abstraction;

several terms may map to it (food consumption, eating food, etc) since, as was discussed in Chapter 1,

terms are alternative lexical ways of representing an underlying concept.

Hahn, Klenner and Schnattinger (1996) also dispense with tags, utilising instead examinations of the

syntax surrounding new (unknown) concepts. These examinations are used to create sets of hypotheses

as to the nature of the new concept. These hypotheses are then tested by looking for other instances of

the new concept, so that the best hypothesis is found. For example, if OS/2 is an unknown concept seen

in the phrase a computer with OS/2 then if it is already known that a computer has part motherboard, a

computer has part operating system, and a computer has part keyboard then the three hypotheses about

OS/2 are that it is either a motherboard, operating system or keyboard. The correct hypothesis is

discovered when later in the text phrases such as the operating system OS/2 or operating systems like

OS/2 are found. It is not clear, however, whether this method has actually been coded into a computer

program. It does however provide one method of extracting concepts from appositions e.g. to extract the

concept operating system and its example OS/2 from the appositive phrase the operating system OS/2.

TT extraction methods may not only dispense with word tags, but sometimes with the word boundaries

too. The AbstFinder method of Goldin and Berry (1994) utilises a shift-then-compare TT identifier,

where the shifts take place at the character level. The method identifies repeated phrases made from

characters, including the space character. It is a domain-specific method because certain DS phrases are

ignored in order to see better other TTs. Also ignored are common words and phrases (e.g. “the”, “and”)

placed in stop lists. The intended application (analysis of requirements specifications) requires the

recognition that a phrase such as buy widgets is essentially the same concept (“abstraction”) as purchase

widgets, so a synonym dictionary (actually a DS file compiled by the user) is utilised. The method does

seem to be moderately successful. However, it is to be noted that the abstractions looked for by

AbstFinder may not correspond to TTs as detected by KEP, since the abstractions clearly do not have to

137

have exactly the same orthographic forms. They are higher-level concepts and processes such as buying

valves. These abstractions are clearly relevant to a program which ultimately would want to estimate the

number of tasks and corresponding workloads in an engineering project. (Incidentally, the paper Goldin

and Berry (1994) also states the desire for an acronym finder. Berry (personal email correspondence) has

expressed an interest in KEP’s acronym detector as described in this thesis and in the paper Bowden,

Evett and Halstead (1998).)

TT acquisition is also possible in languages other than English. Nakagawa (1997) has made a study of

“index words” for Japanese. Here, TTs usually take the form of compound nouns, with few or no

adjectives (personal e-mail correspondence with H. Nakagawa). Nakagawa does not take account of the

fact that TTs are repeated in a text because of the way his method counts distinct words. The scoring

proceeds as follows. For a distinct noun N in the text, the following two counts are defined:

Pre(N) = number of distinct nouns that immediately precede N in the text

Post(N) = number of distinct nouns that immediately follow N in the text

(Note: the wording is that of the author of this thesis; Nakagawa says “come just before” (rather than

“immediately precede”), and he also adds the phrase “and make compound nouns with N” to each of the

above.) The above counts are combined to give an Importance score for any single noun or compound

noun in the text (Imp). Several different Imp formulae are suggested. One is a simple addition of all the

Pre and Post scores for each N in the compound (or single) noun. Others involve products rather than

sums (with Pre and Post values having 1 added to them to avoid times-by-zero problems). The candidate

TTs are then sorted into decreasing Imp order. The list is then examined. For high Imp values the terms

are very likely to be “index words” (as judged by a panel of humans), and furthermore these terms are

mostly compound nouns (as opposed to single words).

The results fit well with the Justeson and Katz approach. The main difference seems to be that Nakagawa

is taking a distributed approach. Instead of looking for repeated NNs etc, he looks at the individual Ns in

the terms, and checks whether they occur in other terms. If they do, they get a higher score. So what this

method does is to find out how likely a particular N is to be involved in TTs, and weights it accordingly.

Thus a term made from three “very likely” Ns will have a higher score than one made from not-so-likely

Ns.

Furthermore, the singleword TT identifier inherent in Nakagawa’s approach is equivalent to a hyponym

method with higher scores for single nouns that can be found in larger numbers of longer terms. This is

an interesting improvement; once one knows that disk file and output file are TTs, then one can be fairly

138

sure that file is also a TT. The discovery of a third term input file adds a little more certainty to this

hypothesis. Nakagawa’s method quantifies this extra bit of confirmatory knowledge.

French researchers are also interested in automatic TT acquisition. Oueslati, Frath and Rousselot (1996)

describe a system for French which finds repeated terms yet rejects ‘duff terms using stop lists. This

system builds tree hierarchies so that hyponyms are identified. Bad terms are also discussed in Daille

(1995) which reviews various TT acquisition methods for French, concluding that a simple frequency

count is almost as good a determiner of TT status than any other (more complex) method.

One of the problems that besets automatic TT acquisition is that of the singleword teim. This issue has

been raised before in this thesis, and some solutions have been suggested. Nakagawa’s method above

tackles it in a maimer which is integrated with the overall approach taken. The “hypernym term” method

finds single word TTs in a manner already described (see Figure 16), and has been suggested

independently by several researchers.

However, a novel method has also been suggested by Yang Huizhong (1986). This approach uses data

from several separate texts known to be about different topics. As such it is not useful for KEP, but it is

nevertheless worth considering, since the method might form the basis of some future KEP

enhancement. The method for single word term discovery is to examine several texts from the corpus,

each from a different subject area, doing word frequency counts for all non-function words. Then those

words having high peakratio and high rangeratio are likely to be single word terms. These metrics are

defined as follows. Peakratio is the maximum frequency of occurrence of a word (i.e. the number of

times the word occurs, in the text in which it occurs most) divided by the average frequency (i.e. the total

number of occurrences of the word in all the texts, divided by the number of texts). Thus peakratio is a

measure of how specific a chosen word is to one particular text (the one in which it might be a technical

term). Rangeratio is maximum frequency divided by minimum frequency. It therefore measures for the

chosen word the relative range of occurrence over the texts.

The method amounts to looking for single words (nouns) that occur a lot in a certain subject, but not

much elsewhere. These are then likely to be single word technical terms in that subject. Although the

author does not make the point, clearly the method’s success depends upon it being used on a large

sample of texts, where each subject (medicine, nuclear physics etc) has several texts to represent it. In

this way the effects of idiosyncratic authoring (e.g. the tendency of a particular author to use certain

words) might be mled out. Although this approach is of little use to a system which processes one text at

a time, it might prove useful in a learning system which compiles lists of DS TTs for use by other

programs. This type of approach to finding singleword terms has also independently been suggested by

Ahmad (1995), who refers to the document-specificity of certain terms as their “weirdness”. The method

is appealing because it mimics one of the ways in which a human surely detects TTs. However, it cannot

be the whole story, for a human reader is able to detect common words used as technical terms within a

single document, even where the exact meanings of those TTs are not apparent. Thus there must still be

scope for devising a novel function to detect singleword TTs within a single text.

It is difficult to compare the performance of the term extractor embodied in KEP with other working

term extractors, particularly where these are designed to process natural languages other than English.

There is as yet no MUC- or TREC-like competition designed to compare automatic term extraction

systems. Where evaluations are reported there is often lack of consensus as to the metrics to be used,

despite the availability of precision, recall and false positive rate as good measures. Evaluations often

focus on some particular aspect such as on multi-word terms only, or on all teims excluding those

involving prepositions. For example, Lauriston (1994) has described the TERMINO system (which is a

term extractor for French) and claims that 51% of all complex (i.e. non-singleword) terms from an 8500-

word text containing 592 manually-identified terms were extracted, with “noise” (i.e. false positive rate)

being 52% of all terms reported. However, no mention is made as to the method of manually identifying

terms (e.g. as to scope - within the domain or without), and in any case only one text has been evaluated.

(It is also not clear as to whether these figures relate to distinct terms, or to all occurrences of all terms,)

Perhaps therefore there is a need for a competition within the automatic term extraction research

community to help standardise the metrics and, ironically, terminology to be used.

Clearly, TT acquisition is an important field of research, not least because of its obvious practical uses.

Although KEP’s TT extraction performance is good, its central importance within the KEP program

means that future enhancements must regard TT acquisition performance improvement as of the highest

priority.

5.3.3 Acronym Extraction

The acronym extractor has been evaluated against 20 BNC informative texts. KEP was run in acronym-

only mode for each text and comparison of the output made against a manual inspection of the source.

The results are summarised in Table 15 on page 143. The following studies have also been reported in

Bowden, Evett and Halstead (1998).

In the table, the columns headed CO through C9 are manual and KEP-made counts/percentages made

from the source. These columns are about how acronyms occurred in the texts rather than about KEP’s

performance in retrieving them. They are constituted as follows:

140

CO Percentage of distinct acronyms present in the text which had an expansion in the text
Cl Percentage of acronyms where the expansion was bracketed in some way
C2 Percentage of acronyms where the acronym was bracketed in some way
C3 Percentage of acronyms where a bracketed acronym immediately followed the expansion
C4 Percentage of acronyms where the expansion was a single hyphenated word
C5 Percentage of acronyms where the expansion was a single non-hyphenated word
C6 Percentage of acronyms where the acronym was made exactly from capitals in the expansion
C7 Percentage of acronyms where acronym was made from expansion with “glue” words deleted
C8 Percentage of acronyms which were exact
C9_____Percentage of acronyms where expansion did not occur near the first occurrence of the acronym

In counts Cl to C9, for acronyms read acronyms having expansions explicitly stated in the text

somewhere. The term acronym is defined here as any word comprising 2 to 7 letters, all o f which are

capitals. Thus acronyms longer than 7 letters have not been investigated and do not contribute to the

metrics given in the table. These are thought to be extremely rare, although no formal count has been

made of them. Also not included are initialisms such as D/E (Department for the Environment) i.e.

mixed-case abbreviations.

Note that the counts are non-exclusive; for example, all those occurrences counted for C3 (cases where a

bracketed acronym immediately followed its expansion) were also counted as part of C2 (cases where

the acronym was bracketed, regardless of its position with respect to the expansion). Similarly, acronyms

counted for C6 might also take part in C5, C2 etc, and so on.

The first column (No. pres.) gives the actual number of expanded acronyms/initialisms present in the

named text. Note that this count includes cases where the expansion is some way from the acronym - in

other words where the expansion is somewhere in the text, even though there are no syntactical clues to

link it to the distant acronym. This is in keeping with the philosophy of asking whether a typical human

reader would have discovered what the acronym stood for. This approach ensures that recall figures are

conservative. However, the figure does not include those cases where world knowledge and a degree of

mental processing would be required to find the acronym expansion (such as the knowledge that “RU”

often stands for “Research Unit”, so that for an acronym like SSRU a human would look for the SS

expansion separately). Thus the figure in the first column is a count of distinct acronyms having

explicitly stated expansions somewhere in the text.

It is important to know this figure, because a 100% recall and precision sometimes occurs for BNC texts

having only a handful of expanded acronyms (see e.g. ALG and CP9). Conversely, oddly low figures

can occur (e.g. 33% recall for HT6). Clearly, where there are only a few expanded acronyms in a text,

the precision and recall figures are prone to wide fluctuations due to the large percentage impact of each

single acronym occurrence. Thus those texts with larger numbers of expanded acronyms are to be

141

preferred when attempting to determine KEP’s performance. For example, texts BIG, B77, CTR, B3C

and K5C probably give a more realistic idea of KEP’s acronym-extraction performance.

KEP’s major acronym extraction performance metrics, recall and precision, are given in the rightmost

two columns of the table. Recall is calculated as the number of distinct full extractions correctly found

divided by the number present in the text (as established manually), expressed as a percentage. Precision

is calculated as the number of distinct full extractions correctly found divided by the number of distinct

full extractions reported, expressed as a percentage. Precision includes false positives i.e. cases where

KEP found an expansion even though none was present in the source. The false positive rate has not

been individually calculated but is estimated to be around 2 to 3% on average. In the above definitions,

“correctly” means that the given acronym/expansion pair was exactly right in all details.

The reported figures show that the acronym extractor has the ability to detect and extract capitalised

acronyms and initialisms from a wide range of informative texts with high recall and precision, where

those acronyms etc are explained in the text. For the five larger texts suggested in the previous paragraph

but one, the mean precision is 84% and the mean recall 72%. For all 20 texts, the mean precision is 90%

and the mean recall 73%.

Although the acronym extractor detects all capitalised words of 2 to 7 letters in length, the above figures

do not say what percentage of “acronyms” triggered by KEP were really names, Roman numerals, or

words capitalised for stylistic reasons. Resolution of these cases is not always a simple task even for a

human reader, since in the absence of anything that looks like an expansion it is not always possible to

make a firm decision as to whether a capitalised word really is an acronym or initialism (rather than a

name of a project or item of equipment, say). Although the algorithm always detects capitalised words

that might be Roman numerals, it is not always able to confirm this suspicion since it does not currently

study the text for contiguous runs of numbered points.

Roman numerals and other capitalised words without expansions slow down processing due to fruitless

searches for expansions, but due to the low false positive rate this does not greatly affect recall and

precision. In order to speed up processing a future enhancement will involve giving up trying to find the

expansion for a suspected acronym after, say, five tries. It is not thought that this would greatly affect the

two performance metrics.

142

i
I
j
i
i

BNC
text

No.
pres.

CO
%

Cl
%

C2
%

C3
%

C4
%

C5
%

C6
%

C7
%

C8
%

C9
%

KEP
prec.

KEP
recll.

BIG 60 50 12 88 83 3 2 52 12 57 7 93 92
HU6 7 30 0 12 12 0 0 4 4 8 4 83 71
ALG 4 100 0 25 25 0 0 100 25 75 25 100 100
B77 31 21 10 35 29 0 0 58 19 68 3 86 61
CND 7 11 14 0 0 0 0 86 29 57 0 75 86
CP9 1 2 0 0 0 0 0 100 100 0 0 100 100
CTR 25 26 0 12 12 12 0 72 12 80 24 77 80
G14 7 47 14 29 29 14 14 14 0 29 0 80 57
HT6 3 33 0 100 100 0 67 0 0 33 0 100 33
HX2 11 26 9 73 73 0 0 73 36 45 9 83 91
ARC 2 12 0 0 0 0 0 50 0 50 50 100 50
B3C 17 27 6 59 59 0 0 65 24 35 18 75 71
EAR 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
F9D 14 25 7 57 57 0 7 57 7 64 14 79 79
FCH 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
FTY 9 24 0 33 33 0 0 33 11 33 22 100 56
HD1 2 100 0 0 0 0 50 0 0 50 0 100 50
HXF 6 46 67 0 0 0 0 50 33 33 17 80 57
HOH 3 37 0 0 0 0 0 100 66 33 66 100 67
K5C 24 16 12 33 33 0 4 79 21 58 29 87 54

Table 15. Acronym extraction results

It is also worth considering the comments made earlier relating to texts such as surgeons’ reports, which

are essentially historical narratives between experts. Here, even very specialised acronyms are not

expanded - there is no need, since the reader is bound to understand them. Several of the above texts

showed evidence of this effect. For example, the BNC text CND did so (it was on computing, and did

not explain terms such as IBM, PC, MIPS, CPU etc). At a more general level, there are some acronyms

for which we are all experts, such as UK, USA, UN etc. Again, these are rarely expanded.

The above corpus study gives a clear indication of how acronyms are introduced in informative text. The

most popular way is by stating the phrase to be abbreviated and following this with the acronym in %

brackets of some description (most commonly round brackets, but sometimes paired commas or dashes

etc) - see column C2. In most cases the bracketed acronym immediately follows the expansion (column |

C3). It appears to be much less popular to state the acronym but place the expansion in brackets (column

Cl). Column C9 shows that it is rare to expand an acronym other than at its first occurrence - but the

small rate shown may be due in part to the use of an acronym in a heading before its use and explanation ?

in the following paragraph. Counts C6 - C8 show that where capitals, glue-words or exactitude are
I

concerned, acronyms are variable and highly text-dependent. In particular it is clear that most acronyms %

143

...

 —
—

-
-

-
-;s

are not exact (C8). These results are indicative but clearly a larger number of texts would be desirable for

a definitive study of acronym/initialism occurrence in British English explanatory text.

It would be a relatively simple matter to add code to allow KEP to update a permanent acronym file on

disc. Any acronyms found by KEP would be added to this (including multiple expansions for a single

acronym, such as polychlorinated biphenyl and printed circuit board for PCB). This could be useful to

compilers of dictionaries of abbreviations. However, in keeping with the domain-independent

philosophy it would not be advisable to use this list as a look-up table for future extraction attempts.

The above experiments also showed areas in which KEP’s acronym performance could be improved still

further - such as in sentence delineation. Sometimes an acronym was not extracted solely because KEP

failed to cut the text into sentences correctly. This means that the recall and precision figures given

above could have been better, had this other aspect of KEP worked better. Another area of improvement

would be to prevent suggested expansions such as “teapots , violins” for TV. There are probably very

few acronyms (of any length) having a three-word expansion with the middle “word” being a comma

(although commas do validly occur in longer expansions).

144

5.3.4 Triggering

5.3.4.1 Triggering Evaluation

The triggering process aims to place a tick against those sentences which might have within them an

instance of a relation (definition, exemplification etc). This process does not aim to mark only those

sentences that definitely do contain a relation instance. Triggering is a filtering operation that rejects

(blocks) sentences which do not have possible relation instances in them. It is undesirable yet acceptable

to allow sentences not having relation instances to pass through the filter; undesirable because they will

waste processing effort, but acceptable because they will probably not give rise to an extraction (i.e. a

false positive extraction). In these circumstances the most appropriate way to judge the performance of

the triggering mechanism is to calculate how many sentences were blocked by the filter when they

should have passed through it, the wrongly blocked rate, which is a count of the incorrectly blocked

sentences, s(wrongly-blocked), expressed as a percentage of those sentences which did or should have

passed through (s(passed) + s(wrongly-blocked)). It is the s(wrongly-blocked) sentences which will give

rise to lost extraction opportunities and hence contribute to a fall in extraction recall rates.

Despite the above argument, it has to be said that a filter which passed all sentences presented to it would

be useless (in fact, it would be worse than useless, since it would have performed substantial unnecessary

processing). Therefore some measure of the fraction of sentences passing through the filter would be of

interest. This fraction is the ideal pass rate calculated as (s(passed) + s(wrongly-blocked)) / s(all), where

s(all) is the total number of sentences in the text, not including “too long” sentences, as determined by

KEP. (Thus s(all) = s(blocked) + s(passed).) The ideal pass rate adjusts for the wrongly-blocked

sentences, whereas the actual pass rate shows the actual fraction achieved, s(passed) / s(all).

It is important to realise that the ideal pass rate is not the fraction of sentences that actually did contain

an instance of a relation, for it includes sentences which passed through the filter even though they did

not ultimately contain a relation instance. The number of extractions made is usually substantially lower

than the number of sentences passing through the triggering filter because (a) only triggered sentences

containing a TT will be further processed, (b) some presentational sentences will be filtered out, (c) not

all sentences left will have extraction templates stored in the external files, this being mainly due to the

fact that many of them do not contain a relation instance at all (merely a trigger phrase used in some

other context). It is cases of this last type which dominate the “wrongly passed” rate.

145

The above task involves manual examination of all sentences not passed by the triggering stages so that

it can be decided whether they ought to have passed through the filter. The wrongly blocked rate, actual

pass rate and ideal pass rate were found for the BNC file ‘BIG ’ as given in Table 16. The results are

given for each of the four relation types searched for. In this table the counts do not include apposition

trigger patterns; this is discussed shortly. The figures also omit counts for is a type triggers.

Relation s(all) s(passed) s(blocked) strongly-
blocked)

wrongly-
blocked
rate

actual
pass rate

ideal pass rate

D 1489 96 1393 6 6/(96+6)
= 6%

96/1489
= 6%

(96+6)/1489
= 7%

E 1489 212 1277 5 5/(212+5)
= 2%

212/1489
= 14%

(212+5)/1489
= 15%

P 1489 73 1416 1 l/(73+l)
= 1%

73/1489
= 4%

(73+l)/1489
= 4%

H 1489 226 1263 8 8/(226+8)
= 3%

226/1489
= 15%

(226+8)/1489
= 16%

Table 16. Triggering evaluation results fo r BNC text 'B IG '

Note that the wrongly blocked rates are low and so there is little difference between the ideal and actual

pass rates (less than or equal to one percent in all cases). This is good, for it means that not too many

extractions will ultimately be missed simply because the sentences containing them were ignored. The

pass rates are likewise acceptably low (a high pass rate indicating that the filter is not doing much useful

work). Thus KEP’s dual triggering mechanism (positive and negative triggering) appears to perform

very well for non-apposition diggers.

This performance does however become degraded if apposition triggers such as are included (i.e. any

sentence containing two commas with text between them, and so forth). Very many sentences, perhaps

as many as three-quarters of all the sentences in a text, follow such patterns, and few of them will

actually contain an appositive relation instance. It is difficult to know how to deal with this situation. At

the moment the appositive trigger patterns are searched for by the positive triggering function (no

negative triggers being allowed for these). If appositive triggers are switched off, no appositions will be

detected or extracted. If they are switched on, much unnecessary processing occurs. One solution might

be to re-write apposition detection as an entirely separate function outside of the general approach taken

so far. This seems a sensible idea given that appositives suffer from another apparently intractable

problem, which is that even if apposition is present, it is not possible to tell from the pattern alone which

relation is present. There may be no key words such as define or an example o f to help this

determination. In the sentence The byte, a contiguous group o f eight bits, is the basic unit o f memory

there is a definition (of byte). In die sentence The Scimitar, a sports car, remains ever popidar there is a

hypemym/hyponym relation (a Scimitar is a type of sports car). This problem is similar to the “is a”

146

problem discussed in various places in this thesis. Resolving it may require world knowledge, for

example to determine that sports car is itself a type of car and so it is likely that this sentence is all about

classification, and therefore likely to contain a hyponym. This separate apposition function will be left

for future research.

It is to be noted that KEP is searching for explicitly stated relation instances. Sometimes a relation

instance is implicitly present in a sentence. This often occurs with the hypernym relation. For the BNC

text FTE, a separate test showed that 14 sentences blocked by the triggering filter contained such implicit

hypernyms. These could not have been extracted by KEP fully, and so it would not be correct to count

these as wrongly-blocked sentences. An example of such an occurrence would be a sentence containing

the phrase oligonucleotides I and III. Clearly, oligonucleotide I and oligonucleotide III are types of

oligonucleotide. This situation is similar to that occurring when single-word hypernymic terms are found

during the TT extraction phase; in this situation KEP does not state in a glossary entry that the longer

terms are types of the singleword term. For example, if two TTs right-wing politician and left-wing

politician give rise to the single-word TT politician, KEP does not add text in the glossary entry for

right-wing politician stating that this is a type of politician. This hypernymic relationship is implicit in

the glossary as a whole (and in many cases a SEE ALSO link is present). Although it would have been

technically feasible to make explicit such “is a type o f’ links in the glossary entries, it was thought that

this was not necessary, and might in fact be regarded as a nuisance (e.g. it is obvious that map error is a

type of error).

In many cases implicitly-stated hypernyms are discovered by the single-word TT mechanism, even

though KEP does not extract them from a single sentence. In some cases the sentence structure is so

convoluted that even a human reader would have to think carefully (possibly bringing in other world

knowledge) to detect an is a type o f relationship. For example, in the below sentence from text FTE it is

probably the case that polybrene is a type of poly cation-.

Because of the relatively high transfection rate observed with polybrene, we examined the relative efficiencies of

other polycations for their abilities to transfect CHO celis.

KEP camiot in principle extract such difficult cases of the hypernym relation, and so it is not correct to

mark such sentences as “wrongly blocked” by the triggering stage. Note however that KEP did extract

the hypernym-hyponym terms cell and CHO cell from this and other sentences. (From a different

sentence it also found that CHO stood for Chinese Hamster Ovary, and made the correct cross-references

in the glossary.)

147

5.3.4.2 Trigger and Template Collection

In this section the method by which the positive and negative trigger files were populated prior to the

above evaluation will be described. The complete list of trigger phrases for the definition relation,

divided into positive and negative sections, is given in Appendix C.

Ahmad and Fulford (1992) have described the method they used to create lists of phrases (“knowledge

probes”) which indicate the presence of a named conceptual relation (“semantic relation”). The five

relations for which lists (“archives”) were created were: synonymy, hyponymy, partitive, causal, and

material. Note that KEP shares an interest in two of these (hyponymy and partition). Ahmad and Fulford

compiled their lists in a multi-stage process which started with a manual identification of likely phrases

from the Surrey English Automotive Corpus (reference not provided) together with synonym

dictionaries (so that in a phrase such as X is a type o f Y the synonyms of type are found, e.g. kind).

Wildcard characters were used, so that probe g%v* rise to would match gives rise to, gave rise to,

giving rise to etc. (This is not an approach which was taken within KEP, where each phrase must be

separately listed.) Following this first stage an iterative process was then followed to improve the

original lists (particularly the wildcarding patterns) using more automotive texts. The third stage was to

use a thesaurus (the Macquarie Encyclopaedic Thesaurus) to refine the lists by searching for more

synonyms and related phrases.

The approach taken by KEP has been similarly pragmatic. Initially the positive trigger lists were

compiled through introspection. These were then supplemented with synonyms and related phrases using

Roget’s Thesaurus (Browning (1978)). The lists were also supplemented using phrases gleaned from

other published sources, including studies such as that of Ahmad and Fulford (1992) and textbooks e.g.

Cruse (1986). Negative triggers were likewise collected, although many of these arose during initial ad-

hoc testing of the mechanism during development. A more formal trigger-collection process was also

performed using 25 randomly-selected BNC informatives. These texts were passed through KEP’s

triggering stages (menu choice 3) so that sentences not triggered could be examined to see if they should

have been triggered, with the consequent addition of a new trigger phrase. In addition, the triggered

sentences were checked to see if any of them could benefit from a negative trigger i.e. because they did

not contain a relation instance and because a negative trigger (corresponding to the positive trigger

found) was indeed possible.

Note that although the above method was used for the trigger files, the lists of phr ases obtained and the

patterns (templates) they occurred in (what Ahmad and Fulford term “formulae”) were used to start the

token and template files used by KEP for performing extractions (see previous chapter). Thus although

this section is concerned with triggering, this is a good place to continue the description of phrase

collection for the extraction process.

Trigger phrase collection and token/template collection are largely the same operation. Thus is a type o f

would be used as a positive trigger, whereas the wider clause it occurred in, X is a type o f Y , would be

used to create a template such as CtO. , and any token/phrase pairs such as “t stands for is a type o f ’

would also be created. The initial file population was a manual process which involved examining BNC

texts (or the tag-stripped versions in KEP’s long output file) and then editing the various files to add the

new elements. However, in addition to those phrases collected in the trigger list creation phase,

extraction patterns were found using an interactive training mode, selected by choosing option 5 011 the

main menu and subsequently indicating that interactive mode is required. This mode presents to a user

sentences which have passed die triggering filters and which contain TTs and/or acronyms. These are the

sentences from which successful extractions usually arise. Such sentences are presented one at a time

and the user is able to add a new template which would extract the relation instance, or he may reject the

sentence. If any of the tokens in the newly-added template are unknown, KEP prompts for them and

adds the new token/phrase pairs to the correct token file. A subsequent extraction run of KEP on the test

text then confirms that an extraction has been attempted for the newly-added patterns.

The above interactive process was performed on 5 BNC texts: EAK, ALG, CND, GW6 and CLT. Note

that these texts do not include the large text ‘BIG ’ which was the subject of the detailed evaluation

presented shortly (section 5.3.6). Thus the text ‘BIG’ remains “unseen” for extraction puiposes.

(Clearly, if ‘B IG ’ had been included in the training stage then all possible tokens/templates would have

been provided, giving an unrealistic picture of KEP’s extraction performance on a truly unseen text.

However, this is not to say that the recall and precision figures would then have been 100%, for there are

instances where templates could not in theory be provided. These issues are discussed later.)

Having an interactive training mode provides advantages and disadvantages. The main advantage is that

a great deal of the scanning effort is removed; the human user need only respond to selected sentences

placed before him. Because the program handles file editing, it is not necessary to know how to use a

text editor to add a new extraction template. Furthermore, the system itself is able to notice “missing”

tokens, and prompt for them when this occurs (either deliberately or by accident). The system is also

able to recognise patterns which are already in the template files, and so avoid duplicating them. Thus

the interactive mode maintains file integrity, which in turn prevents system error message creation due to

missing tokens or badly-terminated entries. (In all cases the external files have lines conforming to a

fixed format: for example, the token files require lines of the form defmed=i==d i.e. with three equals

signs separating the phrase from its corresponding token. Other files may use a terminator: the trigger

files have entries of the form define~, where the tilde character ends the trigger phrase.) One minor

difficulty with this method is that the user needs to be aware of the existing contents of the files, so as to

avoid needless duplication of tokens etc. (The system prevents duplicate lines being entered but allows

two different tokens to be attached to the same phrase, for example.) For this reason, KEP displays the

meanings of all tokens used in a newly-added template. This keeps the user informed. The main

149

disadvantage of the method, which applies to any interactive method, is that it involves working at the

terminal rather than working away from the terminal (from paper listings). Of course this may be done

too - the existence of the interactive mode does not preclude off-line methods. But an interactive session

may last hours on a large text and should really be performed in one sitting.

One other disadvantage of the interactive mode as described is that it does provide opportunities for

good relation instances to slip through the net, because only triggered sentences bearing TTs/acronyms

are presented. It is possible that a sentence was not triggered when it should have been, so the

comprehensivity of the training mode does depend on the quality of the trigger lists (i.e. whether they

approach being complete). It is also possible that a pattern, for a relation instance containing a genuine

TT (which occurred just once), is missed (i.e. because KEP did not recognise that TT). Also, relation

instances may occur for concepts which are not TTs at all. In a sentence such as An example o f the use o f

loops in a C++ program is the use o f the do-while loop for input collection the concept is the use o f

loops in a C++ program, which clearly is not a TT as found by KEP (although it may contain a TT -

more on this later during the relation instance extraction performance discussions). Long TTs not found

by KEP are also a problem (e.g. “relation instance extraction performance”, which is a TT in this text

comprising four nouns). However, it is thought that the advantages of having an interactive training

mode outweigh the disadvantages, especially as this mode is an additional method of collecting patterns

and not the exclusive method.

The interactive mode does in fact represent a semi-automatic learning mechanism for pattem-matcher

patterns. Automatic learning of pattem-matcher templates is currently a vigorous area of research. Most

systems, including KEP, require a human to “close the loop” i.e. to indicate to the system that a

suggested pattern is good or bad. A few systems do without the human input (e.g. the domain-specific

AUTOSLOG information extraction system, which leams transitive verb/ recipient o f action pairs such

as shot general Perez (Riloff (1996), Lehnert et al. (1992))), but this is not possible for KEP because

there is usually one good extraction pattern for a relation-bearing sentence, hidden amongst many bad

patterns. Therefore a person is required to indicate to KEP which is the good pattern to be stored as an

extraction template. However, whether a system is totally automatic in its learning or human-aided, it

will require a corpus of text as training data. KEP’s training corpus is a subset of the BNC, although a

training run may be performed at any time on a CLAWS-tagged text from any source. Cardie (1997)

provides a review of corpus-based learning systems in Information Extraction (IE), the field most closely

related to Knowledge Extraction (KE). This review suggests that most automatic-loop systems require

both syntactic and semantic/pragmatic knowledge. Thus such systems often tag or parse the text, identify

the grammatical subject and object, and then use domain specific pragmatic knowledge and verb

subcategorisation knowledge to determine role-fillers (e.g. that Lima is a city, that Perez is a general, that

The Shining Path is a terrorist group, that generals are often the targets of terrorist groups, and that the

direct object of shot might be a general and the subject might be a terrorist group). Since it is a matter of

150

design philosophy that KEP does not maintain DS knowledge bases, and since deep processes such as

parsing are not used, KEP cannot learn new extraction templates completely automatically.

5.3.5 Detection of Presentational Sentences

The mechanism used to identify presentational sentences has been described in section 4.6.9. The point

at which KEP tests for a presentational sentence is after a triggered sentence has been identified as

containing at least one TT or acronym. This stage is once again a filtering process, the aim being to filter

out relation references. A sample of filter phrases is given in Figure 19 below. These phrases were

collected in an ad-hoc fashion during test runs, and from introspection.

Definition filters definition above
previous definition
was defined in
in the definition
no definition is possible

Hypemym filters previous type
earlier kind
type above
above categorisation

Exemplification filters example above
aforementioned example
a poor example
consider for example
see e.g.

Partition filters listed above
previous list
components given above
parts given in

Figure 19. Sample ofpresentational filter phrases fo r each relation type

KEP was run in highlight-only mode with a 10-sentence TT look-ahead window (apposition triggering

and is a triggering being switched on). Highlighted sentences were counted (h), and out of these, those

marked as presentational by KEP counted (p(KEP)). Of the sentences highlighted by KEP, the number

deemed to be relation references was counted (p(KEP_HUM)). For example, for die BNC text BIG, h =

2,056 sentences were highlighted (figures for all four relation types have been added) of which only

p(KEP) =13 were marked by KEP as presentational, and of which p(KEP_HUM) = 10 appeared to be

genuine references to relation instances given elsewhere. Thus the filter only removed a very small

percentage (13/2056 = 0.6%) of the highlighted sentences. In this case, the filter was right to remove

these sentences from consideration since they either did not contain a relation instance at all or did

contain a relation reference. No attempt was made to read each of the 2,056 highlighted sentence-cases

to see if there were any relation references which inadvertently passed through the filter, since this was

151

an impracticably large task not justified by the likely gain. The figures for two BNC texts are given in

Table 17.

BNC text Total no. of
highlighted
sentences,
h

No. of
blocked
sentences,
p(KEP)

No. of genuine
relation refs
blocked,
p(KEP HUM)

Fraction of
h filtered
out

Fraction of
p(KEP)
which were
relation refs.

BIG 2056 13 10 0.6% 77%
FTE 2973 22 1 0.75% approx. 5%

Table 17. Detection o f presentational sentences

The number of triggered TT-bearing presentational sentences in the selected BNC texts appears to be

genuinely low. Since there are so few relation references to be discarded, it follows that the improvement

of this filter facility may be assigned a low priority. The presentational filter in practice makes little

difference to KEP’s extraction performance metrics, as described in the following section. Thus although

it seemed a useful thing to do, in practice it turns out to be of little use. It does indeed highlight sentences

containing pointers to figures, tables, and previous parts of the text, but such sentences do not appear to

be plentiftil enough to justify this function, even if it could be made “perfect”.

Although not appearing of prime importance to KEP, the presentational vs. informational divide has

been considered by other computational linguists. Moore and Pollack (1989) addressed the issue during a

criticism of Rhetorical Structure Theory (RST) (Mann and Thompson 1988). Their thesis is that a text is

simultaneously both presentational and informational, so that a single RST analysis will not do. For

example, in the text George Bush supports big business. H e’s sure to veto House Bill 1711 two equally

plausible RST analyses exist, one using the evidence relation, and the other using the volitional cause

relation. The evidence relation is presentational, but the volitional cause relation is informational. What

is the solution? It is not given in the paper, but it could be that one needs to perform two separate RST

analyses on the text, one utilising solely presentational relations, and the other using only informational

relations. The problem with this is that one may affect the other. The same piece of text may supply

different information if its intention is perceived differently. So possibly one needs to go through the

text, assigning all possible relations (of either type) wherever they can be assigned. A following process

could then track through the marked-up text attempting to produce a coherent pathway in which the two

views coexisted. This might require world knowledge, so may not be straightforward. In any case, RST

is not an automatic procedure and so the usefulness of such an approach to automatic KE programs is

doubtful.

Tucker, Nirenburg and Raskin (1986) also consider the presentational / informational dichotomy,

although these exact terms are not used. The main topic of the paper is focus shift and how it may be

evidenced e.g. by definitions and exemplifications. It is clear that the presentational structure of a

document is reflected in the placing of examples etc (see also Mittal and Paris (1993)) so this is a topic

which should not be ignored in the long term.

5.3.6 Conceptual Relation Extraction

5.3.6.1 Introduction - How to Detect a Relation Instance

Precision and recall for relation extraction are the prime metrics for KEP evaluation. They test the novel

pattern-matcher/extractor employed by KEP and they demonstrate the degree of success of the domain

independent, shallow approach attempted by this program. They subsume the metrics for the lower-level

functions described elsewhere in this chapter and act as the prime evidence for KEP’s claimed success

rate.

As with technical terms and other aspects above, there is inevitably a degree of subjectivity involved in

determining precision and recall for relation instance extractions. As usual, the difficulty lies in deciding

whether or not the items to be extracted are really present in the text. Ultimately, deciding upon whether

a given sentence contains a definition etc or not must reside with the human evaluator, which in this case

is the author of this thesis. To do this, use was made of the definitions (of definitions, exemplifications

etc) described in Chapter 3, together with Skuce et al.’s test (page 73), and the author’s own judgement.

Despite this, the decision process was still difficult. Take for example definitions: in the table of results

following shortly it is stated that there were 12 definitions found manually in the text. There were in fact

only 8 clear-cut instances of single-sentence definitions - but there were also 4 other cases where one

might regard the sentence as holding a definition, bearing in mind Skuce et al.’s test. Here are two

definitions, the first “clear-cut”, and the second “possible”, both taken from text BIG:

The areal interpolation problem can be defined as the transfer
of data from one set (source units or zones) to a second set
(target units) of overlapping, non-hierarchical areal units.

The point interpolation methods essentially use a point, usually
the centroid, as a surrogate for the areal units and then apply
conventional point interpolation methods.

The former is a straightforward definition of areal interpolation problem. The latter is probably a

statement about point interpolation methods, but the word essentially indicates that it is talking about the

essence of these, i.e. what their meaning is (see Skuce et al.’s test, and the discussion about definitions in

section 3.3). (KEP correctly extracted the first of these.) This example demonstrates the difficulties of

identifying relation instances in text, even when a formal definition of the relation is available to aid in

the decision-making process. However, in order to provide conservative results, all twelve

153

probable/possible definitions were included in the recall calculation for definitions given later. These are

listed in Table 19 which follows shortly.

Skuce et al.’s test applies only to definitions. It would be helpful to have similar tests for the other three

relation types used by KEP. Therefore, to aid in the manual detection of partitions, the partition sub

categories put forward by Winston, Chaffin and Herrman (1987) have been considered; these are

investigated in detail in an paper concerning the taxonomy of the partition relation Bowden, Evett and

Halstead (currently being written). In this paper the scheme of Winston et al. has been modified slightly,

in that the Stuff/Object partition type of Winston et al. is not regarded as a type of partition (it is instead

regarded as a type of material relation - what some thing is partially made of). The types of partition

used are: (1) Component/Integral Object, (2) Member/Collection, (3) Portion/Mass, (4) Feature/'Activity,

(5) Place/Area. These types are used to determine whether a partition relation is indeed present; if it is

not possible to place the putative partition instance into one of the sub-categories, then it is not in fact a

partition. This test procedure says something about the partition relation: that partition may not be a

single relation type. Although partition types are all about dividing some thing into smaller things, in the

long term for programs such as KEP it might be better to regard all the partition relation sub-types as

distinct relation types, each having its own set of trigger and template files.

For exemplifications, where the choice of the relation is often difficult, a test question is proposed: Is the

purpose o f this relation instance mainly that o f providing an example o f the concept, or is it really to

define, categorise, explain etc the elucidation o f the concept? This test again requires that a subjective

decision be made (i.e. as to what, in the evaluator’s opinion, the writer’s purpose was when he

constructed the sentence) but assuming that the purpose is usually detectable the test question allows the

evaluator to find examples given purely for the sake of exemplification o f the concept. Note that the test

forces the evaluator to ask whether the relation instance is really about the concept or about the concept’s

“example”. True exemplifications occur where the text is about some concept, which needs exemplifying

so that the reader gains more knowledge of the concept, not of the example of that concept. Thus an

article on high-level programming languages may use an example of a high-level language (e.g.

PASCAL) to aid the reader in understanding what a high-level language is, rather than to say anything

about PASCAL (PASCAL is not the subject of the article).

Where hypernyms are concerned, the test question is simpler. It is merely a matter of determining

whether a concept / parent-class pah is being given. Again, it is the concept which is being explained by

way of extra information for the reader (i.e. what sort of class the concept falls into). This relation type

was the easiest of the four to identify, perhaps because of its purity. However, the hypemym relation

occurs frequently in implicit forms. KEP has not been designed to extract implicit hypernyms and

therefore such cases are not counted in these evaluations. (Many of the hyponym/hypemym pairs

implicitly present in text are in any case “dubious” for a glossary maker - e.g. in the phrase birds with

154

long legs one would probably not want to make the extraction Concept: bird with long legs Hypernym:

bird.)

Having discussed how relation instances were identified in text, it is necessary to consider whether all

such instances are to take place in the evaluation. (The discussion that follows concerns only single

sentence relations; multi-sentence relations were not counted, except where they were multi-sentence

solely because of an anaphoric link to another sentence. Such cases are effectively single-sentence

instances.) It is apparent that two evaluation approaches are possible: (1) calculate metrics only for those

cases where KEP has identified the concept being defined etc as a technical term, or (2) calculate metrics

for all definitions etc regardless of whether they are for a KEP-identified TT or not. Since these

approaches essentially differ only in whether a TT was recognised (assuming the definition etc syntaxes

used are from the same set in both cases), it was decided to take approach (2). This also has the

advantages of being conservative in its estimate of KEP’s performance, and of being more practically

useful, i.e. it answers the questions What percentage o f all the single-sentence definitions etc present in

the text does KEP extract? and What percentage o f the proposed definitions etc are correct?. In other

words, given an explanatory text, the approach (2) answers the question How good is KEP at extracting

the chosen types o f fact (definitions, examples, hypernyms, partitions) from this text?

Since the process of determining recall and precision involves a great deal of detailed manual study of

the test texts, it was not feasible to carry out the process on large numbers of texts. Manually processing

a large (1500-sentence) text takes many times as long as merely reading it. The detailed study of one text

to the level demonstrated below may take several weeks to complete, and there are no short cuts

available. Thus it was decided to take one large BNC text and apply a detailed analysis for recall and

precision. The chosen text was BNC text ‘B IG ’ as encountered in previous evaluation.

5.3.6.2 Evaluation of Precision and Recall

The evaluation was done using the long-output file, which contains a readable tag-stripped version of the

text, segmented into numbered sentences, these sentence numbers being cross-referenced to following

extraction attempt reports. The first stage was to manually inspect every sentence in the input text for

each of the four relation types, and record details of all sentences where a relation instance was deemed

to be present. This was done using the sentence-stracture part of the output only, i.e. without reference to

KEP’s own extraction attempts. Details recorded included the concept being elucidated, the relation

present, the actual elucidation (definition, hypernym etc), whether the concept was too complex or too

long to be a TT as found by KEP, and whether there were anaphoric elements to the concept.

The second stage was to compare the manually identified cases with extractions reported by KEP. Recall

was then calculated as the percentage of manual extractions also reported correctly by KEP, and

precision as the percentage of correct extractions given by KEP from the total number reported by KEP.

155

A correct extraction is defined as a reported extraction attempt where (a) this was one of those detected

manually, and (b) both parts (concept and elucidation) were the same as those given in the manual

extraction. (This precision figure has been labelled as ‘strict precision’ in the results table given below;

the other precision rate, ‘useful precision’, is explained shortly.)

The recall and precision metrics are given in the table for each of the four relation types. Correct

extractions include those with anaphoric concepts such as “this”, i.e. where de-referencing of the

anaphor would have given the correct concept. Note that the denominator in the Strict Precision column

may be larger or smaller than that in the Recall column, since KEP may report more or fewer extractions

(denominator in Strict Precision) than manually identified (denominator in Recall). Where KEP

identifies a relation instance not identified manually, a false positive extraction has arisen. As we shall

see shortly, such false positives are not always plain wrong; they may often be of some worth.

Recall Strict
Precision

Useful
Precision

Definition 5/12 = 42% 5/64 = 8% 24/64 = 37%
Hypernymy 1/12 = 8% 1/5 = 20% 1/5 = 20%
Exemplification 5/50 = 10% 5/7 = 71% 5/7 = 71%
Partition 3/14 = 21% 3/9 = 33% 5/9 = 56%

Table 18 Recall and Precision for each of 4 relation types for BNC text 'BIG'

It is immediately clear that the numbers of relation instances present in the test text vary quite widely

with the relation type. Most common were examples - 50 of these were detected manually. Partitions

were the next most common with 14 of these being manually identified. Definitions and hypernyms were

equally scarce on 12 each. It is also apparent that the strict precision values were low in most cases

(exemplification being an exception, discussed shortly), although “useful precision” figures (explained

shortly) could be higher. Recall too was low in all cases apart from the definition relation, where KEP

has performed reasonably well.

However, terms such as “low” are of course subjective - one might regard the figures given as

remarkably high for a shallow NDS KE system. None of the figures is zero i.e. KEP did manage to find

relation instances correctly for all four relation types. What is more, the figures do not even represent

KEP’s maximum theoretical performance, since text ‘BIG’ was processed “unseen” for patterns in the

template files. Adding the missing tokens and patterns improves the figures in all cases, sometimes

greatly (see e.g. the forthcoming discussion on partitions). The author believes that the fact that KEP did

actually extract some of the available target facts from the test text is a respectable achievement.

156

Hypernyms

The hypernym relation was relatively rare in the test text. The denominator in the recall for hypemymy

reflects this. The figure of 12 is greater than the number of sentences in which they occurred (8), since

some sentences contained more than one.

KEP was designed to extract hypernyms i.e. cases such as X is a type o f 7, where X is the concept and Y

its hypernym (parent class). It was not designed to extract hyponyms i.e. cases such as X includes Y

where X is the concept and Y is its hyponym. Whilst it is true that the hypernym and hyponym relations

are symmetrical between a parent class and an object in it, this is not the case for the textual forms used

to hold such cases, as the above example phrases show. (It would of course be perfectly feasible to

provide KEP with the ability to extract hyponyms as a separate relation type. For a clarification of the

difference between the hypernym and the hyponym relation, the reader is referred to the discussion on

relation naming on page 80.)

The hypernyms found in ‘BIG’ were a diverse set; they included both straightforward concept-parent

cases and complex cases involving several hypernyms for more than one concept in the same sentence.

However, even in the simple cases some degree of WK was required in order to spot the fact that a

classification was being made. Here is a relatively straightforward case:

Dutch elm disease is a floral hazard but is exacerbated by the
transport of infected l o g s .

Clearly, Dutch elm disease is a type o f floral hazard (note use of is a in sentence). There follows a

sentence which actually contains two concepts (underlined), each of which has two hypernyms (in

italics). The wording of the sentence shows that it is deliberately making the point that each concept can

be placed in more than one parent class:

It is more useful (Johnson (1983) to adopt a non-partitional
scheme (fig. 10.1) that recognizes, for instance, food poisoning
as both a personal and consumer hazard, or lead pollution (e.g.
from car exhausts) as both a meteorological event and a
technological hazard (both public and private).

Furthermore, ellipsis affects one of the hypernyms - personal hazard - and another hypernym has

attached to it two of its other hyponyms, each ellipted - technological hazard (public technological

hazard, private technological hazard) .

There was even one semi-exophoric hypemym-bearing sentence, in which the hypernyms were listed in

a nearby table. It is not suiprising, therefore, that KEP faired relatively poorly with this relation. In fact,

the only one of the 12 manually-identified hypernym relations con-ectly extracted by KEP was from the

following sentence: Data integration is one o f the fundamental GIS operations (Burrough (1986). Here,

157

the identification of the concept data integration and its parent class fundamental GIS operations

(Burrough (1986) occurred. Note, however, that this sentence was also a target for the definition relation

(discussed shortly).

Partitions

The hypernym and other relations are easily confused where the member/collection partition subtype or

the member/set relation occurs. For a phrase such as England and France are EU countries it is

important to realise that this is not saying that England is a type o/EU country. It is saying England is a

member o f the set o f EU countries. However, as discussed in section 3.3, the member/set relation is not

regarded as a subtype of the partition relation, but as a relation in its own right. (The member/collection

subtype is however one of the partition types counted.) However, the example given shows how difficult

it can be to decide upon the exact relation present, since a statement such as “England is part of the EU”

seems reasonable. (KEP found 2 Member/Set relation instances, mistaking them for partitions, in ‘BIG’;

both had anaphoric concepts. These two instances took part in the “useful precision” metric, as explained

in the paragraph on Definitions shortly.)

Although the partition relation was subdivided for the purpose of identifying it, counts were made for the

relation as a whole and not for each sub-relation. The reason for this is statistical - one would require

much more data before meaningful conclusions could be drawn concerning the individual partition sub-

types. However, a partition-only investigation is planned using many tens of BNC texts in order to

discover significant trends in British English (see Bowden, Evett and Halstead (currently being written)).

The topic of relation sub-types is considered in the next chapter.

KEP correctly extracted the partition from the following sentence:

The basic components of a DSS comprise: data storage files; data
analysis modules; display and interactive use technology.

Here, using the previously-extracted acronym DSS, KEP gave the extraction:

Concept: decision support system
Part: data storage files
Part: data analysis modules
Part: display and interactive use technology

The disappointment of the low percentage of partitions extracted by KEP is ameliorated somewhat by

the fact that another 9 of the non-extracted partitions could have been extracted by KEP if their triggers,

tokens and patterns had been present in the relevant files. This would raise recall to 12/14 = 86%, and

represents the best that KEP could have done on the manually-identified partition set. This is a very high

level of recall. For example, there is no reason why KEP should not be able to make a successful

extraction from the following:

The second main component of the GUI is the imaging model which
controls the screen representations such as fonts and icons; an
example of this is Display Postscript.

Here, the concept is GUI (actually generic despite the use of the definite article preceding it - this from

context) and this has the part “imaging model which...”. This is probably a Component/Integral Object

partition subtype, although due to the nature of code it is difficult to place a piece of computer software

and its components into the chosen subtype set (in some cases the Feature/Activity subtype is more

applicable, or even Member/Collection if the software is viewed as a collection of modules). The

sentence above is actually part of a multi-sentence partition instance, where the other sentences do not

contain pattern-matchable instances. Nevertheless, the opportunity to extract should not be overlooked in

such cases.

Note also that there are three exemplifications in this sentence - two for the concept screen

representation, and one for anaphoric “this” = imaging model (= second main component of the GUI).

The author has noticed that this sometimes occurs; sentences often contain instances of more than one

relation type. It is possible that such “fact density” observations have uses in automatic text

summarisation systems, discussed in Chapter 6.

Exemplifications

Exemplifications were rarely extracted correctly by KEP, despite the large number of them manually

identified. The poor recall figure arose almost exclusively because the concepts being exemplified were

long TTs (more than 3 words) or complex entities not present in the text in the required lexical form.

This is an interesting result, and is further considered shortly, during a discussion on concept non

recognition. However, the precision figures were actually high for exemplification: 5 of the 7 reported

examples were good. In fact 4 of these 5 were cases in which the concept was an anaphoric “this”, which

as stated above is counted as correct if de-referencing would have given the correct concept. Since it is

easy for such a pointer to reference a long previously introduced concept, it is actually easier for KEP to

find these cases. This explains the unexpectedly high precision figures.

Definitions

The strict precision figures given in Table 18 were calculated as the fraction of extractions given which

were correct i.e. previously identified manually in exactly the same form. These strict precision figures

are on the low side for definitions. This may give the impression that KEP is reporting mainly nonsense

with one or two nuggets of knowledge embedded within it. In fact, this is not the case, because KEP will

not report any extraction unless the concept is a valid technical term. Since most TTs found are valid

concepts for the text, this means that many of the incorrect extractions are near-miss definitions etc, or

159

useful pieces of information about a valid concept. However, they have not been labelled as correct since

they were not one of the manually-identified definitions etc.

This is a very strict approach. Relaxing it to allow all extractions which one might find “useful” in a

glossary gives higher precision rates in some cases. For example, for definitions there were 24

extractions which provided useful information about the (valid) concept. Thus 24/64 = 37% of definition

extractions were “good” in the sense that they would be useful in the third column of the glossary. Such

useful precision figures have been given for all four relation types in Table 18. (Note that useful

precision can equal strict precision where there were no extra useful extractions reported.)

For example, here is one such “useful” case, actually two separate definition extractions for the same

concept and later merged, not labelled as strictly correct since they were not manually-identified:

Concept: data integration
Definition: one of the fundamental GIS operations (Burrough
(1986)
Definition: especially a problem for geographers because
information synthesis is at the very heart of the discipline

Placing these “definitions” in the third column of the glossary entry for data integration would provide

useful knowledge to the glossary reader, even though they are not strictly definitions of the concept (they

are statements about it). The following triple-extraction also bears useful information to the reader of an

article on recent GIS developments:

Concept: user interface
Definition: vital element of any GIS
Definition: now beginning to attract its due attention
Definition: not just pretty screen representations: as their use
is extended they will come to express the whole nature of the
system data model, and will probably become highly specialized
as the interfaces move from function-oriented to task-oriented
forms

Some of the extractions are unintentionally humorous and yet reveal views held by the writer, as the

following pair of extractions demonstrates:

Concept: m r s . thatcher
Definition: a recent convert to environmental conservation
Concept: political concern
Definition: not altruistic

Thus the extractions provided by KEP are capable of reporting information/facts which may not strictly

fall into the rigid conceptual relation boundaries set for them, but which nevertheless provide a useftil

insight into the contents of the text being processed.

The remaining definition extractions are not useable, mostly because they report episodic knowledge,

usually for a broad term being used in a specific case in the text. Usually the TT reported is dubious for

the text, due to its broad meaning. The following are typical cases:

160

Concept: range
Definition: now from -3506 to 204
Concept: system
Definition: used to determine restriction zones for the movement
of sheep after the explosion at Chernobyl in 1986

It is interesting to note that for all four relation types many of the non-useful episodic cases were for

single-word concepts, such as those immediately above. A plausible explanation for this is that single

word terms are often general teims understood by any reader (range, system, method, approach etc), and

hence which do not need to be defined etc. Thus where an apparent definition is detected it is more likely

to be for a specific instance of the teim, than for the term in its general sense.

5.3.6.3 Failures to Extract Definitions

The precision and recall rates achieved by KEP are encouraging, but it is worth detailing further the

reasons for the failure to attempt to extract a given relation instance (recall) and for errors in extractions

(precision), This will be done in this and in following sections. However, in this section the definition

relation alone will be examined. The focus of this section is the recall metric.

Since there were only a few definitions found manually in the text, it is possible to detail all of them

together with their failure reasons where appropriate. These are given in Table 19.

n - KEP sentence number
Sentence

Ideal extraction
C: concept
D: definition

Definition
extracted
correctly?

Comments

18
The areal interpolation problem
can be defined as the transfer of
data from one set (source units or
zones) to a second set (target units)
of overlapping, non-hierarchical
areal units.

C: areal interpolation
problem
D: the transfer of data from
one set (source units or
zones) to a second set (target
units) of overlapping, non-
hierarchical areal units

y A perfect example of a definition
given in an explanatory text.

30
The point interpolation methods
essentially use a point, usually the
centroid, as a surrogate for the
areal units and then apply
conventional point interpolation
methods.

C: point interpolation method
D: essentially use a point,
usually the centroid, as a
surrogate for the areal units
and then apply conventional
point interpolation methods

n No pattern stored - context
shows that this is probably a
definition of the concept (point
interpolation method).

465
This is a device which supports
PostScript, and which has a
specified resolution of 300
pixels/inch, both the vertical and
the horizontal direction.

C: This
D: device which supports
PostScript, and which has a
specified resolution of 300
pixels/inch, both the vertical
and the horizontal direction

y Anaphoric “This” not linked to
concept (IBM 4216 PagePrinter)
in previous sentence, but
identification of “This” as
concept is counted as good
extraction.

509
Characteristics of a user interface
A user interface, at its most basic,
consists simply of a system for
communication with the computer.

C: user interface
D: system for communication
with the computer

n Sentence delimiter failed to
detect end of heading, which has
therefore been prepended to
sentence. Also, pattern looks like
partition.

514
The GUI is an audio-visual display
on the computer screen which
presents a screen metaphor for the
actions which the computer or
program can carry out.

C: graphical user interface
D: audio-visual display on
the computer screen which
presents a screen metaphor
for the actions which the
computer or program can
carry out

y Note use of “is a” for definition
of concept (GUI). Acronym is
expanded for concept part.

608
Thus, Bertin (1983) defined the
concept of a “map-to-see” as “a
clear graphic representation which
can be comprehended in a short
moment”.

C: map-to-see
D: a clear graphic
representation which can be
comprehended in a short
moment

n Concept (map-to-see) not a TT;
it only occurred once in the text.

905
A 4-year experimental programme
to “collect, co-ordinate and ensure
the consistency of information on
the state of the environment and
natural resources in the European
Communities” was set up and
labelled CORINE.

C: CORINE
D: 4-year experimental
programme to “collect, co
ordinate and ensure the
consistency of information
on the state of the
environment and natural
resources in the European
Communities”

n Sentence not triggered for
definition. Probably a definition
of the concept (CORINE)
although it appears as appellation
(naming) of the entity described
by the first part of the sentence.

(table continued on next page)

162

1
•g

1052
Formally, a hazard can be defined
as: “a physical situation with a
potential for human injury, damage
to property, damage to the
environment, or some combination
of these” (Health and Safety
Executive 1989: 30).

C: hazard
D: “a physical situation with
a potential for human injury,
damage to property, damage
to the environment, or some
combination of these”
(Health and Safety Executive
1989: 30)

y A perfect example of a definition
given in an explanatory text.

1053
A hazard is a threat which, given a
set of circumstances, may become
translated into a realized event.

C: hazard
D: threat which, given a set
of circumstances, may
become translated into a
realized event

y Note use of “is a” for definition
of concept (hazard).

1079
By “risk” we understand “the
likelihood of a specified undesired
event occurring within a specified
period or in specified
circumstances” (Health and safety
Executive 1989: 30).

C: risk
D: the likelihood of a
specified undesired event
occurring within a specified
period or in specified
circumstances

n Pattern b”C”u”0”X. not in file,
where b is token for ‘By’ and u
for ‘we understand’. This
extraction could in theory have
been made.

1452
Decision support systems and GIS
A decision support system (DSS)
can be considered as an integration
of computer hardware and
software specifically designed to
complement the human thought
process in problem-solving,
decision-making and information
processing (Benbasat 1977).

C: decision support system
D: an integration of computer
hardware and software
specifically designed to
complement the human
thought process in problem
solving, decision-making and
information processing
(Benbasat 1977)

n Sentence delimiter failed to
detect end of heading, which has
therefore been prepended to
sentence. Also pattern C(X)cO.
not in file, where token c means
‘can be considered as’.

1453
According to Berke and Stubbs
(1989) a DSS can often be
conceptualized as a tool to be used
as part of an interactive learning
process allowing the user to
undertake “what i f ’ analyses and
view the consequences of such
alternatives.

C: decision support system
D: tool to be used as part of
an interactive learning
process allowing the user to
undertake “what i f ’ analyses
and view the consequences of
such alternatives

n Pattern X)C-0. and token = for
‘can often be conceptualized as’
not in files. This extraction could
in theory have been made.

Table 19. Manually-found definitions from 'BIG' with KEP extraction results and explanations

The main problem with definitions appears to be in recognising them. The table gives instances where

context (usually the preceding sentence) demonstrates that the sentence is effectively a definition,

although it appears in the guise of a different relation type (e.g. appellation/nomination or partition). This

again supports the suggestion that a definition is not a ‘pure’ relation type - it is a functional relation

type, where the function of definition may be achieved using other relation types. Thus although KEP

has had some success in (a) finding and (b) extracting definitions, in order to do (a) properly it is clear

that syntactic solutions alone will not suffice. In the cases examined above, the sentences containing the

functional definition occurred near the introduction of the concept. Thus it is conceivable that some extra

weighting could be given to such possible definitions, based upon proximity to the first mention of the

concept in the text (see also the previous discussion in section 3.3 concerning grounders, as introduced

163

 ••••• - " ' v

in Flowerdew (1992b)). However, to do the job properly would undoubtedly require a deeper treatment

involving semantics.

It is worth asking how KEP’s definition extractor compares with approaches by other researchers. The

author has found only one other researcher who is attempting to extract definitions from text using

lexical patterns on a “(semi)-automatic” basis. Pearson (1996) describes an approach based upon two

common lexical patterns involving hyponyms plus further defining characteristics. Two major patterns

are looked for:

X = Y + distinguishing characteristic

Y + distinguishing characteristic = X

In the above, X is the concept being defined, and Y is its hypernym. In order to match to these patterns,

X, Y and = have validation conditions placed upon them. X must be a term (as with KEP) - but Pearson

does not discuss how terms are identified. In addition, conditions relating to the presence of definite and

indefinite articles are placed on X and Y in each pattern above. Some of these dismiss patterns which the

author of this thesis would regard as containing valid definitions. For example, Pearson would dismiss

The anvil is a tool used by blacksmiths because in the first pattern she states that X must not be preceded

by the definite article. Similarly, Pearson would not consider Anvils were tools used by blacksmiths

because she does not allow past tense forms in the defining phrase, which she calls the “hinge” (the =

part). Pearson also ignores hinges incorporating modal auxiliaries, such as can be defined as, on the

grounds that they allow for other ways of defining a concept, and hence are not the definition of the

concept. This seems far too constricting to the author of this thesis; KEP attempts to extract anything that

a human would say was a definition (using Skuce et al.’s test), and KEP’s recall and precision figures are

based upon this assumption. The first definition given in Table 19 actually uses the phrase can be

defined as, and the author regards this as a perfectly legitimate definition that ought to be extracted. In

fact, at least nine of the manually-identified definitions given in Table 19 would not have been found by

Pearson (due to their not matching one of the two basic patterns, or due to infringements of

definite/indefinite article precedence rules and/or allowed hinge-syntax rules), and it is not clear that the

other three would have been extracted either.

Unfortunately, the Pearson paper does not make it clear whether the extractions were performed using a

computer program, or whether it reports a purely manual exercise; the latter seems likely, since there is

no mention of such a program in the paper. The lack of any discussion regarding automatic tenn

acquisition, part of speech identification, pattern matching algorithms used, running time etc, and the

lack of any reference to any previous or concurrent work involving a computer system also support this

conclusion. Furthermore, although the paper states that “all simple formal definitions” are retrieved

164

(which implies a 100% recall), Pearson’s “simple formal definitions” are not as broad in scope as those

searched for by KEP, as has been demonstrated in the previous paragraph. No false positive rates are

given, even though Pearson recognises that “there are many statements in the corpora which match the

above patterns for foimal definitions but which are not themselves formal definitions”. The implication

is that the false positive rate is zero; this is difficult to credit, and again suggests that an automatic system

was not in fact used.

However, Pearson does seem to recognise that her approach does not in fact retrieve all the definitions

within an explanatory text, because she states that the investigation “has shown that it is possible to

retrieve at least some o f the definitional information which would normally be collected through

consultation with subject experts” (italics by author of this thesis). Pearson’s work also supports the

suggestion that definitions will be rare in reports between domain experts (see discussion in section

1.1.3.3), since her study of articles from the journal Nature showed far fewer definitions than from the

other two corpora used (ITU, GCSE), which were less specialised in domain.

Table 19 details all the manually identified definitions together with reasons for non-extraction where

appropriate. We shall not examine the other three relation types separately in the above detailed fashion;

it is more useful to consider reasons for non-extractions by category for all four relation types.

5.3.6.4 Concept Non-Recognition

One of the major causes of failure to extract a real relation instance is that of non-recognition of the

concept as a TT. For definitions, one of the available 12 instances was not extracted because the concept

being defined was not recognised as a TT in the sentence (“map-to-see”). Resolving this would raise

recall for definition to 6/12 = 50%. For “map-to-see” there is an obvious solution: examination of the

sentence reveals the phrase the concept o f a “map-to-see ”. This phrase is telling us directly that map-to-

see is a concept. Thus a future KEP function could look for introductory phrases such as the concept o f

X or the X concept, where X is a concept in the text. This method has the advantage of working for

concepts of all lengths, including one word.

Although TT non-recognition can happen because the concept, (although of the correct part-of-speech

pattern) occurred only once in the text (“map-to-see”), or for reasons connected with code not yet written

(sentence numbers for terms derived from hyponyms are not yet recorded against all single-word terms),

it often occurs because the concept was a more complex entity not conforming to the Justeson and Katz

tag patterns or derived hypernym patterns (which are of course shorter and simpler). It is wasteful to lose

a good relation extraction and so future studies should examine these cases with a view to detecting

patterns of usage that might be simply resolvable. For example, concepts such as the use o f TT, where

TT is a term already identified, might easily be spotted and hence added to the glossary output.

However, it is probable that the majority of instances will not be simple cases of TTs found within

longer strings; in most cases they will be TTs of more than 3 words in length (not yet catered for), or

more problematically, concepts not actually present word-for-word in the text.

Concept non-recognition was more of a problem for exemplifications than for the other relation types.

Many of the examples found manually in ‘BIG ’ concerned complex concepts not present explicitly in

nearby or preceding text. Here is a typical example:

Where the source zones nest hierarchically into the target
zones, for example UK administrative EDs nest exactly in wards,
transfer of data from the source units to the target units is
one of simple aggregation.

Here, although the example is indeed contained within a single sentence, the concept being exemplified

is “the hierarchical nesting of source zones in target zones”, a complex concept not present in this exact

lexical form in the sentence. Clearly the TT concept validation method is inadequate in such cases, for

not only are the concepts not TTs in the text, but in addition they are not even present as a lexical string.

The vast majority of manually-identified single-sentence exemplifications in ‘BIG’ concerned long or

complex concepts (at least 40 of the 50). Even where the concept was present in the text in the exactly

correct lexical form it was often too long to be a KEP-type TT. Why do exemplifications suffer most

from this situation? The reason must lie in the purpose of the relation. Let us recall earlier discussions on

example types (in section 3.3) - in particular the positive examples of Mittal and Paris (1993), which

play an ‘elaborative’ role. It is clear that examples are often used to aid in the explanation of a concept.

The need to do this is greater for the more difficult (complex) concepts, because these are the ones that a

reader will have more difficulty in understanding. A good writer intuitively knows this, and provides

examples to aid in reader understanding. Thus the exemplification relation thrives on complex concepts.

Studying the instances of exemplification in ‘BIG ’ in such detail has convinced the author of this thesis

that examples are a fundamental coherency-creating device used in explanatory texts. By elaborating

complex concepts introduced as a result of a reading of a section of text, they bind that previous text

together over long distances (i.e. several sentences). Examples may themselves take several sentences to

describe, and in fact there were many such multi-sentence examples discovered manually in the test text.

Examples are fundamentally concerned with concept understanding - this is their purpose. On hindsight

it is hardly surprising, therefore, that a simple, shallow, pattern-matching technique has difficulty in

extracting them.

S.3.6.5 Amalgamator Failure Rate

There were no amalgamation failures in the ‘B IG ’ test, i.e. cases where there were several candidates

found for a correct extraction, and where one of these candidates was the correct one, but where the

166

amalgamation code (see section 4.6.12) returned the incorrect one. At first sight this appears a

remarkable result, and could be taken to imply that the amalgamation algorithm is extremely good.

However, although the amalgamator code did in fact work well in all cases when called upon, much of

the credit for this situation must come from the fact that the vast majority of correct extractions arose

from cases where only one candidate was put forward (and hence where the amalgamation stage was not

in fact called). For example, for definitions the mean number of amalgamation candidates for correct

extractions was 1.25. This figure shows that the amalgamation code was not frequently invoked, since it

is close to an average of one (i.e. one single candidate extraction per correct extraction reported).

This situation itself is good, however. It shows that the basic idea of cutting sentences into sections

according to lexical patterns specific to various conceptual relations is sound. It might well have turned

out that many candidate extractions arose for each attempted extraction, which would have required

heavy use of the amalgamator and which would have implied that the idea of cutting-up sentences using

a simple pattem-matcher was in some sense inadequate. Heavy use of the amalgamator code would also

have created many chances for the wrong candidate to be chosen, and might thereby have reduced

precision to a miniscule rate. This has not been the case - in the large majority of cases KEP decided that

there was only one possible way of cutting up the sentence so as to give a valid concept plus its

elucidation. Thus the novel pattern-matching approach specific to individual conceptual relations does

appear to be a valid one.

5.3.6.6 77?/s-anaphora counts

Manual inspection of the source text revealed eight cases (Definition: 3, Partition: 1, Exemplification: 4,

Hypernymy: 0) where a f/w's-concept took part in a correctly-extracted relation instance (counts include

this, This, these, These). In two of these cases, the antecedent was a known TT (or TT-like in form) in

the same sentence, but in no cases was it a more complex construct in the same sentence. In three cases

the antecedent was a known TT (or TT-like in form) in the preceding sentence, and in three cases it was

a more complex construct in the preceding sentence. Surprisingly, in no cases was the concept further

back in the text, either as a simple TT-like form or as a more complex construct.

These results are probably too few in number to generalise from, but indicate that although the

antecedent is often in the previous sentence, it is not always a simple TT that can be looked for and

snipped out. Where it is not a simple TT form, it would be acceptable for some applications to return the

entire previous sentence as the concept being defined, exemplified etc. However, this is not likely to be a

useful strategy for the glossary output, where a short concept is placed in the middle column.

Furthermore, the act of finding out whether the antecedent is simple or not is surely part of the resolution

process i.e. inseparable from it.

167

";v ;|

i

77?/s-concepts make up 8/35 = 23% of the ‘useful’ extractions reported. This is not an insignificant

fraction of the reported extractions. Because KEP does not resolve //us-concepts at present, they cannot

appear in the glossary. Thus in the case of text ‘BIG’ one fifth of the useful extractions made by KEP

did not appear in the glossary. This is a waste; resolution of f/zfr-anaphors must remain a high-priority

task for future research.

5.3.6.7 Effect of Ellipted Materia!

Ellipsis alone was responsible for no failures to make an extraction from ‘BIG’. Clearly, it can and does

occur, as the “food poisoning” example given previously shows (see discussion of hypernym results in

section 5.3.6.2), but in such cases other difficulties prevent the extraction long before ellipsis becomes

critical. Ellipsis is likely to be more critical when it occurs in the concept part of the extraction, since

concepts must be matched against the TT list (elucidation parts are usually longer sections of text which

are understandable by the reader even if they include ellipsis). KEP does not presently contain functions

aimed at restoring ellipted text; this would represent a large area of research in its own right, akin to the

resolution of anaphora in its complexity. For these reasons ellipsis has not been assigned a high priority

for future research, although of undoubted linguistic interest.

5.3.6.8 Effect of Fronting, Cleft Sentences and Embedded Phrases

Fronting, cleft constructions and embedded clauses did not prevent any extractions from taking place.

Patterns can be devised for most fronted and cleft constructions, but where a concept is dispersed due to

an intervening phrase there would be problems. However, since KEP recognises concepts only if they

are technical terms, and such terms are by their nature ‘lexical’ i.e. not usually split, this situation does

not currently arise. Should the anaphora- resolver be developed, however, this might not be the case. For

exemplifications, where an anaphoric ‘this’ is often used as the concept, the antecedent is often very

complex (as has already been discussed). In such situations the complex antecedent might well be

interrupted by subordinate phrases. This work is outside the scope of the current research.

5.3.6.9 Missing Tokens and Templates

Some extraction failures arose simply because the correct extraction templates and tokens were not

present in the external pattem-matcher files. For definitions, as shown in Table 19, there were 2 such

occurrences. For partitions, there were 9. These are in theory easily corrected by the addition of extra

tokens and patterns. However, KEP currently has a 16-token limit for any one sentence and so the

addition of many new tokens might cause the non-processing of other good sentences. For this reason the

change in precision and recall are not easily calculated without re-running KEP after the new additions.

Having said this, assuming that adding the new tokens and templates would not cause any new token-

limit breaches, then the recall for definitions would rise to 7/12 = 58%, and for partitions to 12/14 =

86%.

168

In fact, the 16-token limit turned out to be a very minor factor in failures to extract relation instances.

Although there were several occasions where the 16-token limit was breached, in most cases a higher

token limit (as high as necessary) would not have changed the outcome. Only 10 extractions in total (for

all four relation types) were missed solely due to KEP abandoning sentences having more than the

maximum 16 tokens in them. This low figure indicates that the correct balance has been achieved

between the token limit (and hence processing time) and the token sets chosen. Token numbers

sometimes rose as high as 25, but these were for unusually long and rich sentences, often without any

relation instance hi them to be extracted (despite their being triggered). Thus there does not appear to be

a need for a higher token-number limit (and hence the requirement for much longer processing times per

sentence - see discussion surrounding Table 9). This is an important point - the exponential nature of

the tokeniser means that processing times potentially double for each additional increment of the token

limit.

5.3.6.10 Apposition False Triggerings

Appositive definitions etc can occur signalled only by punctuation such as paired commas or brackets.

(Appositive triggers are not looked for until after other triggering methods have failed.) Since very many

sentences contain such structures, a high false triggering rate and hence a high false positive rate may

arise. A sentence will not however be processed after triggering unless it also contains a TT, because a

sentence which does not contain a known TT can never give rise to an extraction with a good concept.

However, sentences may be triggered for an appositive structure and yet contain a TT even though no

relation instance is actually present.

In ‘BIG’ there were 14 false positive extractions arising as a result of appositive false triggerings. These

instances represent only those cases where an extraction resulted from an appositive triggering. Many

more appositive triggers were in fact detected which did not give rise to an extraction in the end. This

glut of triggerings leads to a significant increase in total run time (approximately doubling the run time

in this case). For this reason, KEP has been provided with a user-choice to allow apposition triggers to be

ignored. Since in the evaluation run there were in fact only 2 cases (for all four relation types) where an

apposition structure contained a good definition, example etc (this being determined by comparing

outputs from ‘apposition-on’ and ‘apposition-off runs), turning off apposition triggering in this way

would hardly have affected recall, whilst raising precision noticeably due to the reduction in bad

extractions. Thus the ‘BIG ’ experience indicates that it is best not to search for apposition structures at

all, because not searching for them (1) has little effect on recall, (2) gives a significant rise in precision,

and (3) allows a much shorter run time. It is of course conceivable that in a different text, where for

example an author was particularly fond of appositive definitions (such as the implicit definitions

described by Selinker, Trimble and Trimble (1976) and Darian (1981)), this omission might give rise to

poor performance on recall. However, ad-hoc tests performed on other BNC texts do not seem to

indicate that this will be a major problem.

169

Ultimately, the apposition problem must be tackled if 100% recall is to be achieved. It is similar in scope

to the is a problem, which is discussed in the following chapter, and therefore solutions may also be

similar to those later suggested. Apposition itself will not however be considered further in this thesis.

5.3.6.11 The Sparse Nature of the Glossary

Note that there were not many extractions to be found in the text BIG (12 Definitions, 12 Hypernyms,

50 Exemplifications and 14 Partitions as determined by manual inspection). Thus even with a perfect KE

program the glossary which would be produced would be sparse in the sense that few of the middle-

column entries would have 3rd-column explanations to them. This is to be expected; it is rare, even in

explanatory text, for an author to define, exemplify etc all concepts used. (This is, of course, why

glossaries are needed. One might therefore argue that it is not enough to base a glossary on the contents

of the text alone. However, this argument is not valid since definitions etc may occur in sections of text

not yet read by the reader, who wishes to check the encountered unknown term without having to hunt

through the rest of the text for its possible definition. This mode of glossary usage is particularly

appropriate where a reader is “dipping into” a large text.)

With the less-than-perfect KEP extractor, the glossary becomes even sparser, because (1) some good

relation instances are not extracted, and (2) ^/.y-concepts are not yet resolved. However, this is partially

offset by the addition of “useful” extractions placed in the third column. (Note that such useful

extractions could be made to look less wrong by removing the relation specifier printed before them -

the 3rd column entry then merely looks like information “about” the term i.e. it loses the granularity of

the separate relation types.) Part of the glossary output for file BIG is reproduced in Figure 20. Notice

that only one entry from the chosen page of the glossary has 3rd-column text. In fact, many pages have

only middle-column entries (terms), perhaps with the odd acronym. This demonstrates the sparse nature

of the glossary.

It would be possible to create a “condensed” glossary, in which only those terms having 3rd-column

entries were printed. This might prove to be a way of identifying the most important terms in a text (i.e.

they are the most important ones because they have been defined etc). However, it is thought preferable

to allow the user (editor) of the glossary to make the choices as to which TTs are to be deleted (if any)

and to add explanations to TTs as seen fit; in most cases the user will want to add explanations rather

than delete the entry altogether. It is better that possibly-good material is provided, than possibly-good

material is omitted, since deleting an entry is a very simple operation (decision plus action) whereas

devising and entering a new term and its explanation is an ‘intelligent’ time-consuming operation,

requiring a reading/understanding of the whole text. Making life easier for the WP user is, after all, the

purpose of having an automatic glossary maker.

170

data source

data storage

data structure

data uncertainty

data volume

data

database for hazard

database management system

database management

database view

database

DSS decision support system Parts: data storage files,
data analysis models and
display and interactive use
technology. SEE ALSO data
analysis, data storage,
interactive use, data,
analysis, use, model

decision support

deep repository

defence system

derived polygon

design

Figure 20. Part o f the Glossaiy Output fo r BNC text 'B IG ’ after fu ll evaluation run

5.3.6.12 Concluding Remarks on ‘B1G’ Evaluation

The important issue is that KEP should be able to extinct as many of the present relation instances as

possible. The precision and recall figures given in Table 18 fall short of the ideal 100% but show that

KEP succeeds reasonably well at this task, and indeed especially well if “useful” extractions of any sort

are counted. KEP seems rather poor at examples but particularly good at definitions.

These evaluations have demonstrated that KEP’s novel pattern-matching approach to conceptual relation

extraction is a valid one which can do useful fact extraction. However, they have also demonstrated that

the approach will never achieve 100% precision and recall due to: (1) the need to examine context in

order to confirm the presence of a specific relation type, (2) the inability of the pattern matcher to cut up

sentences around TTs in some cases (this is discussed in the following chapter), (3) self-imposed time

constraints arising from the 16-token limit, and (4) non-recognition of concept-TTs for long or

“constructed” concepts. Point (1) arises for a sentence within the context of a surrounding group of

sentences, and also for an appositive phrase in the context of its surrounding sentence. Points (1) and (4)

may well require semantic and pragmatic processing in order to resolve them, although in some cases a

simpler method based on WK (e.g. a MR thesaurus) may suffice. Points (2) and (3) are a matter of

software and technology and there is no reason why progress should not be made for these, with the

caveat that in point (3) the exponential nature of the process will inevitably impose some limit, albeit

higher than at present.

Despite the fundamental limitations of the approach demonstr ated in points (1) and (4) above, it is clear

from these evaluations that KEP can and does provide a useful glossary output. The output is a good

starting point for the construction of a glossary for an existing document that does not have one. Most of

the essential concepts within the text are found, and many of the clear-cut cases of definition,

exemplification etc are presented. Where facts do not fall exactly into the chosen relation categoiy they

often still present useful information about the concept which an editor might want to use. Most

expanded acronyms are correctly reported and linked to 2nd-column concepts. Cross references where

provided are useful and yet not overly numerous, and the whole glossary is correctly sorted

alphabetically. Furthermore, although the proto-glossary so produced is somewhat sparse in the sense

that there are not many 3rd-column entries, only a small fraction of it comprises bad lines which need to

be deleted rather than expanded upon.

5.3.7 Plural Noun Singulariser

The sing() function has been described in Chapter 4. A detailed description of it has been given in

Bowden, Halstead and Rose (1996c) where its performance has been evaluated. This function has a

precision rate (i.e. (number of plural nouns correctly singularised / number of plural noun

singularisations attempted) * 100) of better than 99.9%. (Recall is not appropriate, since every word

passed to sing() is assumed to be a plural noun - the function does not test this.) Full details of the

development and evaluation method are given in the paper and so will not be repeated here.

This function is a vital part of the KEP system, for without it the technical term extractions would not be

possible. It is used in several places, wherever there is the need to compare nominal items of unknown

number (.s', or p i). However, veiy occasionally it is found that it has apparently failed. In most cases of

this detected so far it has transpired that the sing() function did not in fact fail; the cause of the error was

a bad tag in the input text. Where TTs are reported in the plural form, this bad tagging (of a plural noun

as a singular noun) must have occurred at least twice in the text. Manual correction of the bad tags by

editing the source text causes the plural term to go away, confirming that sing() has indeed performed

correctly.

Very rarely, however, KEP fails where there are two possible singular nouns for the input plural - such

as for the word bases. Although an interactive version of KEP returns both possible singular forms to

the user (basis and base), the version of the function built into KEP has to make a decision on which is

correct. Currently this is done without any intelligence - the first version is always returned. There is one

example of this failure in the glossary given in Appendix E, where KEP has invented the term knowledge

basis. The source text shows that this arose from the words knowledge bases, i.e. plural of knowledge

base. This situation is so rare that it has not yet been addressed in the code. However, the author has

considered ways of resolving the problem, and the use of context for doing so has been discussed in

Bowden, Plalstead and Rose (1996c).

Although it might seem unnecessary to develop a self-contained function to perform plural noun

singularisation, there are good reasons for doing so. Firstly, no external machine-readable dictionary

(MRD) is then needed. Since KEP does not use one for any other purpose, it would be unwieldy to

introduce one simply for this purpose. MRD look-up requires open and closing of files, searching, and

possibly morphological processing to obtain the singular form. The latter may not be simple - most

HRDs (human-readable dictionaries), from which MRDs usually derive, contain the singular forms of

nouns with an indication of how to form the plurals. For example, consider the (simplified) entry

phenomenon (n), pi. -na. Here a human reader has no difficulty in realising that the plural form is made

by matching the -na element to the end of phenomenon so as to make phenomena and not phenomenona.

This is a difficult task in itself, but worse still, most dictionaries use different conventions with different

nouns; with dog (n), pi. -s there is no matching needed and the s is simply appended to the singular, but

with series (n), pi. series the whole plural word is stated. Thus a complex set of rules may be needed to

generate the plural. (The direction of transformation, from singular to plural or vice versa, is not a

problem, however, since KEP could just as easliy have been written to work in this direction i.e. instead

of a sing() function there could have been a plur() function using the MRD.)

Not only does the above describe a complex process, which may in practice be difficult to get right in all

cases, but also it describes a slow process. Opening and closing of files via system calls, searching, and

the necessary morphological processing all take time. Since KEP may need to call the sing() function

tens of thousands of times during the processing of a single text, a fast sing() function is highly desirable.

The standalone function developed for KEP is capable of returning the singular form in a time which is

for all practical purposes instantaneous.

173

A further reason for developing a function such as KEP relates to the linguistic interest. Evaluation in

Bowden, Halstead and Rose (1996c) has shown that the most commonly used nouns with 11011-5 plurals

are almost without exception words long established in English, which is of interest to historical

linguists. (Words such as feet, lives, wives, teeth, leaves, geese, knives, calves etc fall into this category).

Also, actually writing a function such as sing() forces the designer to state all the possible rules and

exceptions for creating plural forms in British English, a categorisation which may not have been stated

explicitly in as much detail before.

Noun plural formation is a small but interesting area of NLP research. Wotlike (1986) discusses the

automatic learning of English noun plurals from singular/plural pair examples in a learning corpus.

Wothke describes a program (the PRISM system) which takes pairs such as city/cities, house/houses etc

and induces the rales required to pluralise (rather than those to singularise). Wothke has essentially

proposed automating what was done manually when developing the sing() function. However, the scope

of PRISM is broader since it is not confined to nouns; any derivations, such as finding the negative

versions of adjectives, are targeted (e.g. perfect becomes imperfect). Since this approach depends upon

the quality of the training corpus, good performance for less frequent forms (e.g. mouse/mice) is

dependent upon the system having seen the exceptional case during training rather than through human

introspection and subsequent rale-coding. The difference between sing() and PRISM is ultimately that in

the case of PRISM the system itself infers the rules from pairs of words, whereas with sing() this

inference function was performed by the author of this thesis. Although the end result is the same,

Wothke’s interest lies mainly with the inferencing mechanism, which is not of immediate concern here.

In Bear (1986) a theoretical approach is taken to lexical morphology. Bear distinguishes between

“lexical characters” and “surface characters”, where the word “lexical” is being used to indicate the form

of a word based upon morphemes and their functions, and where “surface” means the actual spelling

used. Thus for the string of lexical characters [b o x + s] there is the string of surface characters [b o x e

s]. Here it is seen that a morpheme boundary at the lexical level (+) corresponds to an e at the surface

level. Bear provides a formalism for writing rules which show how the lexical level provides the surface

level forms. So if + lies between an x and an s, the rale might be:

R l) + -> e {x | z | y/i | c h} _s

This rale is read as: Rule number 1: a morpheme boundary (the + symbol) at the lexical level

corresponds to (the arrow ->) an e at the surface level whenever (the braces { . . .}) it is between an x

and an s, or (the vertical bar |) between a z and an s, or between a lexical y corresponding to (the

forward slash /) a surface i and an s, or between ch and an s. Several rales may be required to form the

plural form for a singular noun, applied in a manner so that the result is correct. This is discussed in

174

some detail. Bear’s contribution appears to be mainly a formalism for writing rules, such as the rules for

forming plural nouns from singular nouns, together with methods of applying the rules.

The formalism is designed to be code, function, and language independent - it is a framework for a

general lexical morphological analyser which would work together with or as part of a parser. However,

it is not clear that Bear has actually built a system using his formalism. Thus it is not clear that it would

be able to pluralise nouns with a high success rate. The rules built into sing(), however, do work. Thus

although the works of Wothke and of Bear are interesting, the problem of plural noun singularisation has

in practice been solved for KEP by the sing() function. There are no plans to develop sing() further,

although an interesting future study might be to write the corresponding plur() function. This would

reveal whether it is indeed simpler to go from plural to singular rather than from singular to plural.

5.4 Processing This Thesis using KEP

5.4.1 Introduction to the Thesis Test

Although the above evaluations demonstrate KEP’s performance, both in terms of its individual

functions and overall, they may not convey to the reader of this thesis the full flavour of KEP’s text

processing abilities, since the reader of this thesis has probably not read the individual BNC test texts

used. What is required is a large text which the reader has indeed read. The ideal candidate is of course

this thesis itself.

Therefore, as a concluding demonstration of KEP’s abilities, a large part of the body of the submitted

version of this thesis was processed, i.e. chapters 1 to 4 inclusive13. The WORD file containing this thesis

was saved as plain ASCII text (with line breaks), copied from PC to the UNIX machine running KEP,

pre-edited (using the ‘vi’ editor) to remove extra ctrl-M characters (placed there by WORD) and to

contain the single <text> and </text> SGML pair of tags required by CLAWS, tagged using CLAWS,

and pre-processed by conclaws.c (see Table 4) into the kep.in default KEP input file. KEP was then run

for glossary production. Term acquisition was run with full look-ahead, and elucidation extraction was

run with apposition triggering turned off (see earlier results regarding the lack of usefulness of apposition

triggering). The full glossary output is given in Appendix E.

5.4.2 Thesis Test Results

The duration of the thesis test run was approximately 60 hours on a lightly-loaded machine

(SPARCStation 10, running SunOS 4.1.3). The length of the untagged ASCII input file was 60,145

words on 4,695 lines (372,305 characters). KEP converted this input into 2,737 sentences.

13 It is stressed that this exercise is not intended to represent an unbiassed evaluation o f KEP, since the creator of
KEP also wrote this thesis. The puipose is merely demonstrative.

175

It was not the purpose of this demonstration to repeat the detailed evaluations of the above sections.

Rather, the aim was to provide a positive demonstration of what KEP can do, and to show that the output

does indeed form a good basis for a glossary for this thesis. The output given is “warts and all”, and so

reveals both the successes and the false-positives, together with a handful of minor bugs. We shall

consider the performance of individual glossary functions.

5.4.2.1 Acronyms (First Column)

Almost all of the reported acronyms/expansions are correct - 57 out of 58, giving a precision of 98%.

(Where the minor error of wrongly reporting the expansion as a plural occurred, these were counted as

correct. There were 5 such cases, arising because the expansion was given in the text in the plural

whereas the acronym itself was singular i.e. without a final lowercase ‘s’. Although not a problem for a

human reader, these cases can cause problems at the TT-linking stage i.e. the plural and singular

expansions are listed as separate TTs.) The one bad acronym was a false positive i.e. was not an acronym

in the text. There are 69 acronyms with expansions given in the input text, so recall was 57 out of 69 or

83%. These figures are very good but probably reflect the author’s systematic use of brackets - 36 of the

reported acronyms were bracketed, and 7 expansions were bracketed. However, since in no case were

both expansion and acronym bracketed, this means that the acronym extractor found 57 - (36 + 7) = 14

correct acronyms not signalled by bracketing in some way. Of the reported acronyms, 16 were non

exact, and 1 was a single compound word made from hyphenated words (0 0 from object-oriented),

although hyphens did occur linking some of the words in 3 other cases (all correctly reported). Sixteen of

the reported acronyms were not expanded near their first use, which at first surprised the author, but

which on investigation turned out to be cases where the acronym appeared in a heading before its

introduction in the following text.

KEP correctly rejected IV as a roman numeral in the context of its use. However, it failed to find

expansions for NL, MUC, PS, CD, MR, FS, CPU, XSQL and LLC, despite the fact that all of these were

expanded somewhere in the text in a form which a diligent human reader could have spotted. Two of the

omissions were blatant - PS and CD, both of which were placed in brackets after their expansions.

Clearly, two-letter acronyms require enhanced processing. However, this will not simply be a dropping

of the reporting threshold, since this would also increase the false positive rate. (It is conceivable that

some acronyms were not extracted because the expansion occurred in a “too-long” sentence, which was

not examined by KEP after being labelled as such; there were 44 of these sentences. This information is

available in implicit form in the long output plus input text.)

Overall, KEP has made a very good attempt at finding and expanding the acronyms given in the first

four chapters of this thesis. Precision was 98% and recall was 83%. About one entry in every 19 in the

glossary has an acronym in column 1.

5.4.2.2 Technical Terms (Middle Column)

KEP reported 1,078 technical terms. Of these, 115 were deemed to be ‘bad’ by the author, i.e. about one

in 9 reported terms was probably not a valid TT for the document. In the following discussion, each bad

term has been placed into a single category which defines what was perceived to be wrong with the term.

This was a subjective process and at times it was difficult to decide which category to place a bad term

into. However, the resulting lists do give an reasonable picture of how common each type of error was.

Some of the bad terms were ‘duff as defined earlier (14 of them). (Other duff terms such as recent year

and other method had correctly been removed by the duff-term detector.) There were also 29 2-word

terms arising wrongly due to 3-word terms (and 3- from 4- etc), such as interbank money from

interbank money transfer (see discussion in section 5.3.2.2). Clearly, this is a serious problem for the

chosen term identification method and steps need to be taken to reduce the incidence of such terms. Of

the 188 terms involving a preposition (i.e. found using a pattern of the form NPN), 10 appear to be bad

(e.g. case of terms), although some bad NPN terms were counted in the previous category rather than in

this one, so this rate might actually be higher than 1 in 19. For the hypernymic 1-word terms, 20 out of

die 125 reported are probably not TTs for the text because they are just too general in scope (way, type,

amount, item etc) although most are definitely good in the context of KE (e.g. sentence, language,

meaning, sense, phrase, information, knowledge, syntax).

The remaining 42 bad terms were difficult to categorise under one of the above headings. They include

terms such as s definition, which arose because apostrophe-5' is separated out as a word by the CLAWS

tagger, and terms such as just name and phrases example which meet the Justeson and Katz A/N

patterns but which are obviously not good. A few bad terms were genuinely mysterious, such as purpose

wheres, which may have arisen through bad pre-processing by the conclaws program. In a few cases,

terms appeared as separate entries in both singular and plural forms, due to incorrect acronym expansion

reporting or other reasons (see above), e.g. for technical term itself, which appeared next to technical

terms (which had the acronym TT attached). In one single case the sing() function failed and created a

bad term, namely knowledge basis from knowledge bases (it should have been knowledge base),

although the correct term was also present.

Overall, KEP has reported 1,078 TTs, of which 963 appear to be good for the text used. This represents a

precision of 89%. In other words, only about one tenth of the TTs reported in the glossary are bad, and

hence would need to be deleted by a human post-editor. This is regarded as an acceptable level of false-

positive reporting.

177

5.4.2.3 Explanations (Third Column)

As expected, the third column was sparsely filled. The text provided is mostly useful, and the correct

definitions etc are particularly pleasing. There are however incorrect extractions, and these tend to stand

out in an obvious fashion. This is, however, no bad thing - it is much better to have easily-identified

errors than subtle ones which are therefore not removed by the human post-editor. It is very difficult to

provide reliable counts for the precision in die 3rd column, since there are many factors to consider (e.g.

do we only look at entries for terms which we deemed “good” in the 2nd column, or do we look at them

all? Do we count both “useful” and strictly-definition etc cases as good, or count these separately? Do

we mark the whole entry as correct/incorrect or count its individual definitions etc separately? etc).

Instead, some general observations can be made. Firstly, definitions are much more common than the

other three relation types in the glossary output given as Appendix E. To some extent this is a result of

the order in which the four relation types are combined to form die explanation (D,H,E,P) since code

exists to prevent repeated explanations for one concept (e.g. where the exact same elucidation occurs as

both a definition and a hypernym for some concept, the hypemym elucidation is not added to the

explanation by the Extraction Combiner). Thus one might expect there to be some suppressed

hypernyms, examples and partitions, but no suppressed definitions; this is another reason why it is not a

good idea to make precision counts from the glossary output, but rather from the long output file. KEP

does not currently count the numbers of suppressed elucidations (either in total, or separately by type H,

E and P), although this would clearly be a useful enhancement. However, having written the input text,

the author of this thesis believes that the preponderance of definitions hi the output probably does reflect

to a close degree then relative numbers in the source, even if many of those given are not in fact strict

definitions, but “useful” facts relating to the associated 2nd-column term.

The explanation column demonstrates the difficult problem of reporting specific instances as though they

were generic. Several of the explanations clearly refer to specific programs, systems, items etc and not to

generic examples of such things. For example, the definition entry for pattern matcher actually refers to

the manual approach of Ahmad and Fulford (1992), rather than to pattern matchers in general. As has

been discussed elsewhere in this thesis, this is a difficult problem to overcome in a shallow “text cutting”

system. In many cases, however, the specificity does not appear to matter, since it is directly relevant to

the content of the input text. For example, the explanation for bare template is highly specific, and yet

is actually a perfect description of the bare templates used by the Preference Semantics approach as

described in this thesis.

Many of the explanations given, although not strictly definitions, examples etc are nevertheless “useful”.

This phenomenon has been discussed earlier. In such cases a human post-editor could quickly make

them good; one way of doing this would be to introduce categories such as Usage: or Characteristics:

178

alongside the existing Definition:, Examples: etc. For example, the entry for information is given as

“distinguished from knowledge in that it is intended to be used within a short time after its reception” -

this might be better described after Characteristics: rather than as a Definition: of the concept. The

entries for human reader, generic fact and british national corpus (amongst others) also give

characteristics. The entry for sentence number might be better described as a Usage:, this also having

the advantage of negating the specific nature of die explanation given (“used widely in screen and file

output”). An alternative approach would be to produce a glossary in which the individual relation types

were not mentioned at all, these being replaced by a simple dash. This then leaves it up to the reader to

decide what kind of knowledge is being presented. However, this approach would seem to negate the

effort of finding the explanations separately by conceptual relation, and in some cases might not be

appropriate (e.g. where a list of examples was presented, although even here a human reader would

probably realise that an explanation such as PASCAL, FORTRAN and C” was a list of examples for a

hypothetical concept like third generation language).

The output in Appendix E does however include several fully successful extractions, i.e. where the

explanation given really is a definition , list of examples, hypernym or list of parts. These may be of two

or three columns filled (2nd and 3rd columns, all three columns). There are excellent entries for the

concepts artificial intelligence, deep technique, fact (with removal of two words), glossary, historical

text (one definition, one set of characteristics), knowledge extraction (two definitions, one set of

characteristics), negative example, process, set (one set of characteristics, one definition), shallow

technique (one definition, one usage), and token. Many other concepts have long 3rd-column entries

which contain perfect definitions etc amongst less correct text.

5.4.2.4 Cross References (Third Column)

The “SEE ALSO” cross referencing has worked well. The cross references are not intrusive due to then

number and do indeed point the reader to other terms in the glossary. The expansion of acronyms (given

as part of the third column entry) in the “SEE ALSO” part appears to be particularly useful, although as

the writer of this thesis perhaps the author is not best placed to judge this.

Because cross references are made using string-within-string operations, acronyms within acronyms are

reported. This is usually good, because very often where this occurs the longer acronym does indeed

utilise the shorter one within it (e.g. KEP / KE). However, it occasionally causes a bad cross reference.

For example, the reference to information extraction in TIE routine is incorrect. In general, however,

the cross reference precision and recall are both veiy high, i.e. almost all of die cross references given

are correct, and there are very few omissions.

179

There are several 3rd-column entries which comprise nothing but a SEE ALSO string, i.e. where the 2nd-

column concept itself contains an acronym but where no definition etc was found for the concept. These

cross references are in general helpful, but in some cases following them does not lead to an increase in

reader understanding of the original concept. KEP does not currently check that the target of the SEE

ALSO string does indeed have an explanation attached to it. Although one could arrange for such

“dangling links” to be omitted, this is not thought to be a good idea because the glossary is designed to

be post-edited. When the editing has been done, the cross references will probably no longer point to an

unexplained term. The only disadvantage of this approach is where the human editor decides to delete an

entry altogether; in such cases he will also have to search the entire glossary for now-useless SEE ALSO

entries to the deleted term, so that they themselves may also be removed. However, if the post-editor

program were part of a complete system (e.g. one in which the original section of explanation text could

be brought up in a window for cut-and-paste operations, as suggested earlier) then it would be possible

to build an “intelligent term delete” operation into the editor, capable of automatically removing all

defunct cross-reference text on deletion of the referred-to term.

5.4.3 Concluding Remarks on the Thesis Test

It is clear that the KEP program has made a good attempt at producing a glossary for the first four

chapters of this thesis. The error rate is acceptable and the glossary obviously captures the main

specialist terms used. If one were to pick up this glossary not having first seen the body of the thesis, one

would be able to deduce that the source document was to do with natural language processing, technical

terms, acronyms, knowledge extraction, and a novel program called KEP (witness die very large amount

of explanation text for KEP, KE etc). Although there are occasional errors, and the third column is rather

sparsely filled, a few minutes of post-editing would transform the glossary into an accurate and

comprehensive document. Production of the glossary using KEP’s assistance would have taken a

considerably shorter amount of time spent by the writer at the keyboard, especially if the writer had left

the decision to create a glossary until after the document had been written.

However, the long time taken by KEP to compile the glossary would have required the user to start the

process and then retire to some other activity whilst it was being made. This is not necessarily a problem,

but since earlier in this thesis negative comments were made regarding the utility of programs which take

a long time to run, it is necessary to defend this statement. Several points contribute towards this

defence. Firstly, a major puipose of this research is to determine whether the novel pattern-matching

metiiod can in principle succeed. This is a question that can be answered regardless of running time.

Secondly, KEP has not yet been optimised for speed (clearly a desirable activity before use as a

commercial program). Thirdly, one must not neglect the probable increase in speed which would come

from using a faster computer. CPU clock rates are increasing year on year, and are predicted to continue

to rise rapidly over the next few years. Given a 2-order of magnitude (100-fold) increase in processing

speed, a sixty hour run drops to 36 minutes. A 3-order of magnitude increase drops a 60-hour run to just

180

over three and a half minutes. Furthermore, as larger amounts of fast memory are incorporated into

computers, the need for many time-costly disk accesses decreases. (Indeed, the day may shortly come

when rotating magnetic disks are entirely replaced by solid-state non-volatile memory.)

Fourthly, this is not the only hardware-oriented improvement that could speed up KEP. Since KEP

processes one sentence at a time, it is theoretically possible to process each sentence in parallel. In the

ideal scenario, each sentence in the text would be assigned its own processor, and a copy of the whole

text would also be made available to each processor. Each processor would then (1) find all TTs in its

sentence, using the copy of the rest of the text for TT look-ahead, (2) find all acronyms and then

expansions in its sentence (or preceding sentence), and (3) process the sentence for each of the four

relation types in turn (triggering and then extraction attempt if triggered). This last step could itself be

parcelled out to four processors so that the four relations too could be processed in parallel - this would

represent the most parallel scenario possible. (In fact, TTs and acronyms could also be found in parallel,

although linking of TTs to acronyms is required at some stage.) Finally, the controlling processor would

build the glossary by merging identical 2nd-column entries (terms) found by the separate processors, and

sorting alphabetically. The duration of the entire run should be little more than the time taken to process

the sentence with the largest number of tokens and relation instances in it, plus glossary-building time.

Thus, given a system with enough processors, the run might never take more than a few minutes,

however long the text. Given recent suggestions for massively-parallel architectures based upon

thousands of cheap processors, this is not out of the question. Parallelisation also opens up the possibility

therefore of increasing the 16-token limit by several tokens, dependent on the maximum acceptable

sentence-processing thne. Thus extractions lost due to the token-limit might be brought back into the

fold.

5.5 Summary of Evaluation Results

The evaluations presented in this chapter have demonstrated that KEP performs well in many of its

functions. The sentence-end detector works correctly in approximately 95% of cases, and of the

technical terms extracted from a text, almost 90% are good. However, up to 80% of all terms may be

missed, or about 50% if only “text relevant” terms are considered. KEP performs exceptionally well

when extracting acronyms and their expansions, reaching high precision and recall rates often greater

than 80%. TTs and acronyms form the bulk of the glossary produced by KEP, and even without any

third-column explanations provide an accurate and practically useful output.

KEP succeeds in triggering on relevant sentences without filtering out a significant number of those

which ought to have passed through. Surprisingly, an attempt to then filter out presentational sentences

proved to be of little use, due to the scarcity of such cases. Switching off apposition triggering also

affected recall figures by only a small amount, but had the advantages of increasing precision (due to a

181

fall in false positives) and greatly reducing running time. Grammatical issues such as sentence structure

(e.g. fronted and cleft sentences) also proved to be of little import.

On the actual extraction performance, KEP’s success rate varies considerably with the relation type

targeted. KEP is particularly good at finding and extracting definitions, but its performance on the other

three relation types is mixed. Examples proved particularly difficult to extract, probably due to their

essentially complex usage. Relaxing strictly-defined categories to allow all “useful” extractions to be

counted showed that KEP is able to find many useful facts from a text, and link them to the correct term.

Glossaries produced by KEP are sparsely filled in the explanation column, but this is to be expected for a

system which does not use an external knowledge base.

KEP’s performance has been exemplified using a large part of this thesis as its input. This demonstrates

the usefulness of the output and shows that the novel pattem-matcher used within the program performs

well. Although KEP currently takes a long time to run on a large file, it has been argued that this is not a

relevant factor in this research.

In the following chapter, further discussions of KEP’s performance as revealed by the above evaluations

are provided, followed by consideration of possible future applications not yet discussed in detail.

182

6. Discussion and Future Directions

6.1 Introduction

In the previous chapter the performance of KEP was evaluated both in terms of the individual functions

and overall for glossary creation. In this chapter the performance of KEP is further discussed, together

with possible ways to improve it. The aim is to consider whether the novel pattern-matching approach

taken may ultimately be enhanced to the point at which it reliably extracts all of the terms, acronyms and

facts from an input text, so that it may be routinely used, for example, as part of an advanced word

processing system. Do the limitations of shallow systems such as that embodied in KEP mean that they

are doomed to remain below a “glass ceiling” of achievement? Will it ultimately prove necessary to add

modules which access knowledge bases? Will full parsing ultimately be required, or can an acceptable

level of performance be achieved without it? Is KEP best used as a “first pass” system? These are

important questions at a time when shallow NLP systems are in vogue. It may well be that all the

difficulties relating to deep systems described in the first chapter of this thesis have to be faced - there

may be no alternative but to tackle them and solve them. On the other hand, it may be that tasks

previously thought to require deep processing turn out to be solvable in a shallow manner.

In addition to the above-mentioned discussions, some practical uses of KEP as it stands (or as it might

stand after a conceivable course of development) are considered. These include marking of student

essays and automatic building of large knowledge bases.

6.2 Further Discussions and Future Enhancements

6.2.1 Categorisation of Relation Syntaxes

One of the major obstacles encountered by the pattern-matching approach to conceptual relation

extraction as described in this thesis has been that of determining which of the relation types is actually

present in an extraction. Wrong-relation and no-relation extractions do occur. This problem has been

highlighted at various places in this thesis; it arose when discussing the is a problem (see also below), the

apposition-pattem detector, and in discussions of the nature of definitions, examples, partitions and

hypernyms. Let us now inspect the issue further with a view to resolving it, if possible.

Bowker (1995) has pointed out the now-obvious fact that “a variety of phrases can be used to express

any relation type” but does not detail these phrases and the relations to which they apply. Should such

knowledge be comprehensively collected, its use in a KE system would require inspection of those cases

where the same phrase (lexical pattern) was used for several relations. Therefore, the author proposes the

following classification of conceptual relation lexical patterns:

183

Class A If present in text, these always indicate the presence of a specific conceptual relation,

and nothing else. Example: is a type of (hypemymy)

Class B Sometimes indicate the presence of a specific relation, but are sometimes used in ways

which do not indicate the presence of any relation type. Example: is defined by (definition, and

general usage)

Class C Sometimes indicate the presence of a specific relation, but sometimes indicate one or

more other relation types. Example: is composed of (partition, material)

Class D Sometimes indicate the presence of a specific relation, but sometimes indicate one or

more other relation types, or are sometimes used in ways which do not indicate the presence of

any relation type. Example: is a (hyponymy, definition, exemplification, instance, etc plus

general usage - see sentences b through d in section 4.6.7.)

Within this categorisation scheme the classes with letters closer to the end of the alphabet are those

which require more processing in order to decide upon which relation is actually being expressed (if any)

and hence to extract the knowledge if it is there. At present, KEP processes one relation type to

completion before moving on to the next, and does not attempt to discover whether the syntactical

pattern found really does represent an instance of the relation type currently being looked for.

Knowledge of the class of the lexical pattern found in a sentence (as above) would be useful: if the class

were anything other than Class A, a new function might be called to determine the relation (if any)

present, with subsequent processing being dependent on the output of the function. The function would

in effect provide the necessary semantic input. Hahn (1989) has also recognised this situation, stating

that “The problem with syntactic approaches is that they are capable of performing formal recognition

tasks on the syntactical processing level, but significantly lose impact when further semantic processing

is required. ... Syntactic approaches are completely indifferent with respect to this kind of distinction and

require subsequent semantic filtering of some sort”.

Placing lexical patterns into the above framework is important because it should provide not only

linguistically interesting data but also directly useable information for relation extraction. Knowledge of

a specific lexical pattern that always indicates the presence of a specific relation (class A patterns) would

enable us to avoid the need for a more complex (detailed) extraction in that case. If such lexical patterns

exist, they should be discovered, so that KEP may use them without further ado. As has been shown in

the evaluation for BNC text BIG in the previous chapter, there are indeed such patterns (e.g. can be

defined as for the definition relation). Table 20 lists all the forms present in BIG (as detected both by

KEP and by hand), arranged into the ABCD classes as defined above. In this table, bullet points are used

to indicate where a new form starts, since they do not all fit onto a single line.

• i

I

Definition Hypernymy Exemplification Partition i
■ J

Class A • can be defined as _ • An example is • is an essential
• defined the concept • One example is component in i!

*
of • One example of • is a vital element "i

• An example of of i
this would be • second main :|

• A leading component of h
example of • key components

• As a second of i
example of • contains three 1• As a last main modules
example of viz. A:

• e.g. • basic 1
components of ■i.

1
... comprise t

• has the 4
following main 1
elements $¥

!
Class B • was set up and - • For example • three t

labelled • for example components: !
• As an example • contains ■J
• A further modules ?

example • comprises three i
• By way of interrelated ■Jis

example modules -?•

• such as 1t
Class C • essentially use • is the third most • such factors as • include •2

• consists simply of important • such elements as • includes ■ -1
• is one of the • include • is shared by I
• a classification • includes • consisted of i

of • including • major feature of
• for instance f
• For instance s

Class D • is a • is a • is a - I
• is an • is an • (•••)
• can often be • as both a ... and • like

conceptualized as • as well as being
an J

Table 20. Lexical Patterns found in text ‘B IG ’ arranged by Class and Relation

In the table, the lexical forms have been placed according to how the author believes they are used in

British English text as a whole, not by how they have actually been used in the text BIG alone. For this ^

reason, the classifications given in the table are not always clear-cut - it is sometimes difficult to place a f

phrase with certainty into a class because there is always the possibility of a more general usage not : j

brought to mind by the classifier. (Only after an exercise based upon a very large number of texts would |

one be in a position to base the classification on actual occurrence - to do this for text BIG alone would 4

fail to illustrate the classification method being proposed.) Exemplifications proved the most difficult to

classify. One might argue that the phrase for instance always introduces an exemplification, and so 4
' i

should really be classed as Type A. However, there are situations where the phrase seems to be used A
;j

more as a method for smoothing the flow of discourse. j

Ji
1185 4

Class A forms allow the extraction of relation instances without danger of getting the wrong relation type

(definition, exemplification, partition, hypernymy), and these forms can only appear in one of the top-

level boxes. Where the same lexical form occurs in more than one box on any level (which can only

occur in classes C and D) there is the possibility of finding the wrong relation type. Where the lexical

form occurs in classes B or D there is the possibility of finding a relation instance where none actually

occurred (no-relation usages of the forms). This classification scheme is quite complex and might be

simplified by reducing it to only two classes, A and non-A. This simplified scheme would still be very

useful, since it would allow the distinction between lexical forms which identified an instance of a

specific relation with complete certainty, and those cases where there was some doubt about whether a

relation was present, and if so, which one it was.

What is to be done about those forms which are not in Class A ? Leaving aside the is a problem (class

D), which is discussed separately shortly, then there are two tests that a future version of KEP might try.

The first test is to attempt to verify that the relation present is indeed possibly one of those recognised by

KEP (definition, exemplification, partition, hypemymy). Assuming that this test answers ‘yes’> (and

assuming that one could actually build such a tester - which might be done using a fuller version of the

table above) then the second test is to determine which of the relation types it is. This second test makes

the assumption that one class can definitely be picked, but given this assumption one can think of

possible approaches to the test. For example, certain syntaxes might be tied to one relation type in

preference to another, possibly using occurrence counts against each entry in a full version of Table 20.

In the phrase high-level languages, such as PASCAL one could prefer the existence of the

exemplification relation over the hypernym relation, since this syntax makes it more likely that the

subject of the sentence is high-level languages (the reader is referred to the discussion in Chapter 4

regarding how a human reader may spot an exemplification). The sentence does indeed tell us that

PASCAL is a type o/high-level language (see Hearst (1992)) but this is obviously not its main purpose.

Beyond this, things become more difficult. Tests such as Skuce et al.’s definition-presence test rely upon

the semantic knowledge of a human tester. It is difficult to see how such knowledge could be built into a

shallow KE program (i.e. how could one build a KB to ask whether the text answers the question “What

is the meaning of ...” ?). However, the simplest cases of relation indeterminacy might be resolved using

a MR thesaurus or semantic net KB. If a system had available to it the knowledge that dachshund and

corgi were types of dog, then in the phrase dachshunds, poodles and corgis are dogs the existing

knowledge of the hypernym relations dachshund-dog and corgi-dog could be used to infer (a) that the

phrase contains solely hypernym instances (rather than examples etc), and therefore (b) the new

knowledge that a poodle is a type o f dog. This example deals with the most difficult lexical form of all,

the is a form. It demonstrates the usefulness of prior knowledge in recognising the actual relation

present.

186

6.2.2 Resolution of the “is a” Problem

The “is a” problem has been mentioned at several points throughout this thesis. It is the extreme case of

the Class D lexical form, as introduced above. The previous section introduced one possible way of

resolving what type of relation it is being used for (if any), but this is such an important topic that it

should be considered further. Let us consider again the troublesome sentences introduced in Chapter 4:

b A byte is a contiguous group of eight bits,
c A television set is a modern marvel,
d There is a way to do this.

It can be seen immediately that the sentence d presents no problems; the existential form may be rejected

with a simple negative trigger (There is a). The problems relate to the phrases a contiguous group o f

eight bits and a modern marvel in sentences b and c respectively. Why does one of these two phrases

give the meaning of something, and the other not? Part of the answer must lie in the specificity of the

phrases. Many things could be described as a modem marvel, but very few things as a contiguous group

of eight bits. Therefore one way of tackling this problem might be to detect phrases which could be

applied to many concepts. Thus simple generalised AN combinations such as modern marvel, wondrous

thing, important approach might be ruled out. Note that this is essentially the same problem as the

detection of ‘duff terms (see section 5.3.2.2). In addition to the detection of general terms, one could

also search for clues that make a term more specific to the associated concept. For example, in sentence

b there is a semantic hint linking the phrase a contiguous group o f eight bits to the concept byte\ there is

clearly a thesaural relation between bit and byte. Thus a method using a combination of general-phrase

finder and specific-phrase finder may provide the solution to the is a problem as it occurs in the above

samples, and in examples similar in style to these although longer or more complex in their phrase

structure.

Although it is conceivable that a general-phrase finder (akin to the ‘duff-term finder described earlier)

might be constructed without an external KB or thesaurus, this is not conceivable for the specific-phrase

case. Assuming that it is necessary to do both tasks to resolve the situation (so that the phrase may be

labelled as specific, general, or undetermined) it seems inevitable that some form of KB/thesaurus will

be required to solve the is a problem. Thus it can be concluded that KEP will not be able to resolve these

cases properly unless external knowledge resources of some kind are provided.

6.2.3 Dealing with Episodes

In the first chapter the idea of episodic knowledge was introduced. Of concern here is episodic

knowledge of the non-instance type, such as in the phrase the wheel brace was used to remove the wheel

nuts. Here, wheel brace might be a recognised TT and so die elucidation used to remove the w>heel nuts

might be extracted. Clearly this is a historical episode. The knee-jerk solution is to avoid using was as a

token in the pattern matcher. This might work in many cases, but might also result in a drop in recall,

187

due to phrases such as was a tool used to remove wheels. Therefore a better solution would be to engage

a function specifically designed to detect historical episodes.

One approach might be to look for clues which indicate that a specific object within the discourse was

treated (past tense) in some way. Consider the sentence The solution was diluted with 100ml dilute

sulphuric acid , where solution has been marked as a TT. The task here is to avoid an extraction such as:

Concept: solution Definition: diluted with 100ml dilute sulphuric acid. Here, not only does the

participle diluted indicate a past event, but the use of the definite article in The solution indicates that the

sentence is discussing a specific solution which was introduced earlier in the text, and which took part in

some specific historical event. Thus the episode-detector function would use such clues to flag the

sentence as being concerned with a specific instance of the solution concept taking part in a one-off -I

event.

However, the task may not prove as simple as the above would suggest. In a sentence such as In olden
|

days, the anvil was used to make horse-shoes the definite article in “the anvil” indicates “anvils in
$

general” or “the tool called the anvil”. Here, it would be nice to know that an anvil was something used

to make horseshoes. However, note that this is not a full definition of an anvil as tested by Skuce et al. It f

says something about anvils, but it does not answer the question “What is the meaning of anvil?”. The

latter would however be true for the sentence In olden days, the anvil was a tool used to make horse

shoes. In this case the elucidation a tool used to make horseshoes does not start with a past participle.

Thus the function might well function correctly in this case.

Clearly this is a complex area that begs investigation. However it would seem that there may well be sets

of simple syntactic tests that could reduce the false positive extraction rate, and this subject will therefore

be a priority future task.

6.2.4 Possible Effects of Text Type on Performance

The formal evaluations reported in the last chapter do not cover many texts of different types as

discussed in Chapter 3. Despite this, some qualitative observations can be made concerning the effect of

textual genre on extraction performance. The main judgements arising from the two large test texts

‘BIG ’ and Chapters 1 - 4 of this thesis are as follows (ordered in the same way as the relevant sections

in Chapter 3):

(1) Expository vs. Historical text: (Refer to section 3.2.2) Where texts report on historical episodes

(e.g. on experiments with new configurations of GIS in ‘BIG’) there appears to be an increase in

KEP’s tendency to find bad “is a” extractions, both for the present and past tenses. The example for

the concept “range” given on page 160 is such a case. The style of scientific writing which dictates 4

188

that incidents should be reported in the passive voice must shoulder a lot of the blame for this,

because phrases of the formXwere Y are common (e.g. Experiments were carried oat...).

(2) Informational vs. Presentational text: (Refer to section 3.2.3) The exemplification relation seems

particularly useful for presentational aspects of text. This may be related to its use to elucidate

complex concepts, as discussed earlier. Very often the phrase “for instance” is used to introduce a

presentational example, and in many cases one feels that the writer was not clear as to exactly what

was being exemplified - it is almost as if the phrase “for instance” is being used to mean “let me

explain further”.

(3) Generic vs. Specific text: (Refer to section 3.2.4) Where specific objects are people, the extractions

may still prove of interest, despite the non-generic nature of the concept - e.g. Mrs. Thatcher.

However, most specific extractions seem to be associated with singleword technical terms (SWTTs)

such as system, where it is some specific system that is being described. Since a word such as system

might well be a TT in some text (e.g. one discussing the “systems approach”) then clearly this is

going to be a difficult problem to solve. (See also the discussion in the previous section regarding

the problem of generic SWTTs.)

(4) Fact-rich vs. Fact-poor text: (Refer to section 3.2.5) The spread of attempted and successful

extractions by sentence number indicates that even within a single text there are areas particularly

dense in facts. Definitions in particular seem to be concentrated at the beginnings of text

subsections. (BNC text ‘BIG’ is in fact a collation of smaller documents all on the same topic.

Definitions appear mostly at the start of these.)

(5) Declarative vs. Procedural text: (Refer to section 3.2.6) Text ‘BIG’ did contain descriptions of

procedures, often as contiguous multi-sentence sections. These sections gave rise to few extraction

attempts, as expected, since the objects taking part in procedures do not tend to be defined within

them.

A quantative evaluation of the effect of text type on performance must use many separate test texts, and

has been placed on the “future work” list. However, it is already clear that useful techniques might arise

from the above. For example, a text-skimmer looking for definitions would do well to look most closely

at the first paragraph or two of any chapter. Also, any KE program intending to find and extract

procedural information must have the capability to extract from contiguous groups of sentences - it is

very rare to find single-sentence procedures. It would also need to be able to spot numbered lists, since

these seem to be used very often.

189

6.2.5 Multi-Sentence Relation Instances

The extractor described in this thesis processes one sentence at a time. Leaving aside endophoric links

between sentences, there are still cases where a good extraction could have been performed if the

relation had not been spread across several sentences. The BNC text BIG contains instances of partition

and exemplification spread over several sentences. Here, numbered lists were provided following an

initial sentence of the general form “There are three parts to an X.”. Since the knowledge to be extracted

is stated explicitly in the text, it is frustrating that the opportunity to get it is missed. Therefore a priority

area for future research will be the detection of such multi-sentence relation instances. This should detect

numbered lists in both arabic and roman numerals, as well as lists labelled by letters. The roman numeral

case may also be used to aid in the rejection of acronym candidates previously wrongly identified.

Nishida et al. (1986) also proposed doing multi-sentence KE. The intended approach was to look for

small sections of text (up to three contiguous sentences in length) discussing a local topic. This topic was

to be detected automatically, e.g. by term repetition, or clues such as the wording of headings. Facts

about the topic expressed using inter-sentence relations were then to be extracted, using parsing,

anaphora resolution and case-frame filling. The relations to be searched for were similar in flavour to

RST relations but also included definitions and examples. Nishida et al. also intended to search for

causation (see below). However, the paper discussed an ambitious system under construction which was

not described in detail (e.g. the intended extraction methods were not detailed in any depth, and the

methods of detecting the local topics of sections of text were barely described). Indeed, a literature

search indicates that this system has not in fact been built and tested between 1986 and today, since no

further references to it were found. (Although it is possible that it was built, it is highly unlikely that such

an important achievement would have gone unreported in the IE/KE literature.)

Thus a multi-sentence approach to KE for conceptual/intersentence relations does not yet appear to have

been realised. In any case, the Nishida et al. approach would appear to have been a deep one, as

evidenced by the need for full parsing. It is also not clear as to whether the system would have been

domain specific or NDS. Thus the extension of KEP’s pattern-matching approach to multi-sentence units

of text would indeed appear to be a novel method worth pursuing.

6.2.6 Following Simple Anaphoric Links

At present, simple anaphoric links are identified but not followed. This topic has been considered in

some depth in Bowden, Halstead and Rose (1996d), where an algorithm designed to detect simple links

from /Aw-anaphora (and other simple anaphora) to tenns in the preceding sentence is given. However, as

the evaluation in the previous chapter has shown, it is unusual for there to be a simple easily-resolvable

case of /Aw-anaphora. Many of the instances where a concept was extracted as “this” require semantic

processing. Although it is the case that in more cases than not the resolution does indeed lie within the

preceding sentence, it is rare that it can be simply snipped out. This, combined with the relative scarcity

of ^/5-concepts in the extractions performed by KEP (with the possible exception of exemplifications),

has lead to the conclusion that solving simple anaphors should not be accorded high priority. It is indeed

a truly difficult task, which even if it were solved completely, would not result in significant

improvements in KEP’s recall rate.

6.2.7 Subdivision of Relation Types

The four relation types used by KEP are fairly broad-brush categorisations. The partition relation may be

subdivided into several part-whole types (see discussion starting on page 73) and the definition relation

is probably not “pure” since definitions may be couched in terms of the concept’s parts, uses, forms,

history etc. Examples have also been classified in various ways (as discussed from page 74 onwards).

The difficulties with partition in particular lead to the suggestion that this relation should be split into its

distinct sub-types, each of which would be handled separately. This would naturally give rise to shared-

pattem problems similar to those given in Table 20. Once again the problem of deciding which relation

subtype is present would arise, and again it might be that external knowledge would be required. For

example, for a Place/Area partition, such as in The Everglades are part o f Florida, an external KB would

provide the knowledge that Florida is a type o f Place and thereby allow the identification of the correct

relation subtype.

Examples have been classified in various ways but the negative example is nearly always one of the

subtypes suggested. KEP presently attempts to filter these out, but one could argue that a negative

example of a concept is a useful piece of knowledge to put in a glossary. Thus one might look separately

for negative examples, using trigger phrases such as is a poor example or is not a. Clearly, is not a must

raise problems similar to those arising from is a.

The hypernym relation appears to be unusually pure in that there do not appear to be subtypes. By its

very nature, the hypemym/hyponym relation describes objects which are in some way versions of other

objects. The actual relationship will depend upon the objects themselves. One object is either a type of

other object, or it is not. (The exact details of how one object is seen as a version of the other are not

always explained in the elucidatory text.) Thus the hypernym relation is actually a very broad one, and

yet, despite this, a fundamental one. This fundamental nature of the hyponym relation has been remarked

upon by many researchers, such as Hearst (1992), who noticed that it is probably unusually easy to

extract from running text. Thus it is unlikely that this particular relation will need to subdivided.

191

6.2.8 Allowing Terms in Pattern Matching

The evaluation in the previous chapter has shown that there are circumstances in which the pattern-

matching technique employed by KEP cannot extract a concept/elucidation pah in principle. For

example, consider the following sentence section, taken from Hearst (1992):

“...most European countries, especially France, England and Spain.”

Here, although European country might be a TT already found by the term acquisition stage, the pattern

matcher would fail to make an extraction because of the lack of punctuation before the concept.

Although one could conceivably use the word most as a token, this would not be a sensible idea given

the multitude of potential modifiers etc that could be placed here. What is ideally required is a pattern

matcher which allows terms to take part in the pattern matching stage, rather than use them after this

stage for validation of fragments. For the above example, the pattern to match the sentence might then

look like this:

X T , e T , T + T .

Here, the symbol T represents a technical term (in either its plural or singular form) and e represents

especially. This template would allow the desired extraction, although using TTs in the pattern-matcher

itself would require complex changes to the algorithm currently used. This is certainly a feasible solution

to the problem but it does depart from the initial philosophy of having a very simple pattern-match

against any sentence in a non domain specific form (for not only are TTs domain specific, but they are

also in a sense text specific as currently found). This approach would not however make KEP as a whole

any less non domain specific as long as the TT extraction method itself remained NDS.

6.2.9 Parsing of Elucidation Fragments

KEP does not presently parse the elucidation fragment in a concept/elucidation extraction. The

mechanisms described in section 4.6.15 attempt to ensure that this part of an extraction is good, but as

was mentioned at the start of this thesis, one of the ideas behind the pattern-matching approach adopted

was that it might be possible to parse fragments of sentences when necessary.

Taking the example introduced above, then a fragment such as <some text> most European countries

might be parsed using a TT-aware parser. If this parser were able to detect quantifiers such as most, all,

some etc then the TT European country could be extracted from the fragment as the concept being

elucidated before the token most. Thus the need for awareness of all quantifiers, i.e. the need for a MRD

containing part of speech information, would be pushed back into the fragment processing stage. This is

a valid future approach but does take KEP away from the aim of not using “deep” NLP tools. Having

192

said this, it is probable that a sentence-fragment parser is much more simple a device than a whole-

sentence parser, and this viewpoint has been convincingly argued for by McDonald (1992) amongst

others. Thus this suggestion is worthy of future investigation.

It is likely that some conceptual relations will lend themselves more readily to some form of parsing than

others. Definitions, for instance, may be particularly amenable to some form of parsing, or at the very

least sectioning (possibly using a pattern-matching approach). Several researchers have described the

structures typically used for definition (e.g. Selinker, Trimble and Trimble (1976), Darian (1981),

Swales (1981), Flowerdew (1991, 1992a, 1992b), Pearson (1996)). A common semantic pattern

identified by these researchers (in the author’s terminology) is as follows:

Concept = hypernym + distinguishing characteristics

This semantic pattern (see also Section 5.3.6.3) may be realised as many syntactic patterns. Some

examples, using the same bold/italic/underlining as the above so as to identify the semantic sections,

are:

The tiger is a large cat which lives in India.
Tanks are armoured military vehicles designed to rapidly breach enemy defences.
Alpha particles are nuclear fragments comprising two protons plus two neutrons.
A conservative field is one in which there is no change in energy round any closed loop.

Note that the plus sign in the definition semantic template maps to a variety of semantic relationships:

geographical location (“which lives”), puipose (“designed to”), partition or composition (“comprising”),

characteristics (“in which”), and any others as required to make a distinction between the particular

concept being defined and other members of the hypernym class. The hypernym itself is signalled by a

class designation (“large cat” etc) which may be replaced by an anaphoric or null element (“one”).

These forms of definition implicitly follow the object oriented (OO) paradigm, in which a sub-class

(concept’s class) gains (inherits, in OO terminology) most of its characteristics from a parent class

(hypernym) except that the set of characteristics must be slightly different in order to distinguish the

daughter class (see e.g. Parsons (1997) for a readable introduction to the OO philosophy). This fact has

been recognised by researchers attempting to build hierarchical semantic nets from collections of

definitions of the above form. For example, where a dictionary follows this basic pattern for most of its

definitions, it may be possible to parse these into a form which can be integrated with such a structure.

Litkowski and others are attempting to do just this, using the 1913 edition of Webster’s 2nd International

Dictionary14. In the case of KEP, the idea is not so much to cut the definition (i.e. the elucidation part)

into its semantic pieces, but rather to recognise the whole text string as a definition for inclusion in the

14 The Dictionary Parsing Project (DPP) is described at http://www.isi.edu/natural-language/dpp/

193

http://www.isi.edu/natural-language/dpp/

glossary, i.e. for validating the elucidation part. As was discussed in Section 4.6.11, no validation is

currently performed on the cut-out elucidation parts, so this identification of the definition substructure

certainly allows scope for doing this in the future.

6.2.10 Re-wording of Elucidations

The entries in the third column of the glossary produced by KEP comprise snippets of text cut from the

source sentence. In many cases these are acceptable, but in other cases a minor re-wording of the

explanation word improve the readability. Two surface forms may be equivalent but one much better for

a glossary than another. For example, for the concept iteration one might prefer the use o f loops over

using loops as the explanation. However, the latter might be the form which was present in the original

sentence. The question thus arises as to whether it is possible (a) to identify cases where a minor change

to surface form would be desirable, and (b) to make this change.

Although it is possible to envisage shallow transformation methods for commonly occurring phrases

(such as the alteration of the word using to the phrase the use o f if it starts an explanation) it is clear that

a thorough treatment of this requirement will not be possible using this approach. In some cases a

complex syntactical transformation would be required, based upon the meaning of the sentence as a

whole. Shallow rule-based word rearrangements and word-ending changes will not be sufficient, since

the semantics of the sentence will determine the transformation. In addition, syntactical information may

be required. For example, not all verbs may be transformed from an active to a passive form (e.g. stative

verbs).

It remains to be seen whether a purely mechanical transformation process can be applied which does

more good than harm to the glossary third column entries. However it is quite clear that this problem can

never be completely solved using such an approach. The use of syntactical knowledge such as verb

subcategorisation data, possibly collected automatically over many runs of the program on large amounts

of text (see e.g. Manning (1993)) may help, but ultimately an approach which builds a representation of

meaning must be used.

6.2.11 Additional Conceptual Relations

Future enhancements of KEP should consider adding new conceptual relation types, such as instance,

causation, nomination (sometimes called appellation) and the material relation (see e.g. the list in

section 3.3 which starts on page 72). This is a relatively straightforward process involving the addition of

code and external files, the population of the latter being achieved as described earlier. However, the “is

a” problem and other problems arising due to shared syntaxes are likely to worsen. It is already the case

that the same extraction is sometimes made by two different relation types. Code has already been

written to prevent duplicated 3rd-column glossary entries, but this does not solve the original problem (it

merely hides it). Therefore the categorisation A,B,C,D task described above will assume increasing

importance as more and more relation types are added.

A conceptual relation which might prove of particular use, and for which much data is already available,

is that of causation. This relation is used to describe cause and effect descriptions, as well as reason and

result. These sub-categories are subtly different but sufficiently close as to allow them to be treated

together. (The latter type is closer to justification or purpose - see Vander Linden and Martin (1995).)

Furthermore, experimental corpus studies have already been performed in order to obtain lists of

indicator phrases for this relation. Flowerdew (1996) uses a categorisation scheme of three divisions:

reason-result, means-result and grounds-conclusion (personal communication of paper being prepared).

Lists of explicit linguistic devices used to express each of these divisions are provided, arranged by part

of speech (nouns, conjunctions, complex prepositions, prepositions, verbs, adjective phrases and

adverbs). Two corpora were used: a collection of texts from the MicroConcord Academic Corpus

Collection entitled Global Warming: The Greenpeace Report, and a group of 80 student assignments

discussing environmental topics. (The main motivation for this work lay within computer aided language

learning (CALL)).

Xuelan and Kemiedy (1992) have also studied the causation relation, making a study of devices used to

signal causation explicitly in the LOB corpus. Results from this study are presented as two tables:

devices for cause/reason, and devices for result/effect. Xuelan and Kennedy distinguish between implicit

and explicit causation markers. Explicit causatives include phrases such as cause, as in sulphite

preservations can cause rashes and abdominal pain. Implicit causatives may be hidden inside certain

verbs, such as destroy in the earthquake destroyed the building. There is certainly causation hidden in

this sentence, because it is semantically equivalent to the earthquake caused the destruction o f the

building. KEP will only deal with explicit causation since it cannot perform such semantic

transformations, or even detect the need to attempt them. This would require a lexicon of verbs (and

other parts of speech) capable of expressing causation implicitly, together with semantic processing

probably requiring world knowledge. Of the 130 explicit causative devices listed by Xuelan and

Kennedy, about 40% of them are labelled as unambiguous, i.e. they always indicate causation whenever

they are seen. Thus they are Class A markers in the categorisation scheme suggested above. The full list

is given in Figure 21. Note the large number of phrases involving the character string ‘consequent an

obvious positive trigger for this relation. (The phrases in the figure are arranged in decreasing order of

occurrence counts, when read left to right and top to bottom.)

because why therefore effect reason result
because of for (that) reason as a result of consequence
consequently result in bring about result from thanks to
in the light of on account of outcome give rise to
on the ground(s) that thereby by reason of what with accordingly
by virtue of in consequence bring on engender
on the ground(s) of on the strength of with the result that
inasmuch as in consequence of occasion as a consequence of
consequent on/upon corollary underlie as a consequence
for reasons of in consideration of on that account on that score
seeing that upshot with the consequence that by consequence
consequential to cos from reasons mainspring
the whys and wherefores by courtesy of give occasion to seeing as

Figure 21. Explicit unambiguous causation markers, after Xuelan and Kennedy

6.2.12 Use of MRD for Third Column Entries

It has been almost an article of faith in this thesis that the KEP program should not need to access

external knowledge resources. The reasons for this include the desire to maintain KEP’s NDS credentials

and the desire for speed hi certain sub-functions (such as plural noun singularisation). However, the

sparse nature of the third column in the glossary output has been remarked upon (see section 5.3.6.11)

and so one should at least consider ways of improving this situation, even if external knowledge

resources are required to do so.

One solution might be to use a MRD to provide 3rd-column definitions. This could be done just for terms

having no 3rd-column entry, or for all terms including those already having elucidations. Two questions

arise. Firstly, will many of the 2nd-column terms actually have dictionary entries? Secondly, will these

entries prove to be correct for the domain of the text? (If there is more than one entry for the term in the

MRD, what should be done?)

In order to test the first question, the page of the glossary output given as Figure 20 on page 171 has

been processed manually using Chambers English Dictionary (Schwarz et al. (1988)). Since the figure

contains a real page of glossary output, which includes singleword terms, 2-word terms and 3-word

terms, including some bad terms, it is a good test of the idea of using an MRD. This test used only one

dictionary, but any future realisation of the method would need to examine several MRDs to determine if

one were better than most, or if more than one MRD might be needed.

Most dictionaries use single orthographic words as head terms. Thus for 2- and 3-word terms, in a

realised version of this test, extra processing would be required to detect the term. For example, if the

term to be looked up was chain reaction, in the printed version of Chambers this appears under the head

term chain, as chain reaction. Therefore a search operation would be needed within the head term’s

entry, and following this other unwanted data removed, such as pronunciation and etymological

information. (Unlike in some dictionaries, Chambers prints the whole term rather than replace the head

word with a symbol such as a tilde, i.e. as in ~ reaction. However, stress markings would still need to be

removed.) Since multi-word entries do therefore exist in most dictionaries, the worry that it might not be

possible to find 2- and 3-word tenns at all is dismissed. This is not to say, however, that all 2lld-column

entries in KEP’s glossary output will be present in the dictionary.

Of the 2lld-column terms in Figure 20 the following have no entries in Chambers: data source, data

storage, data structure, data uncertainty, data volume, database for hazard, database management

system, database management, database view, decision support system, decision support, deep

repository, defence system, derived polygon. (The italicised terms in this list are bad TTs, wrongly

extracted by the term acquisition stage.) Thus 14 of the 17 glossary entries in Figure 20 would not be

assisted using a machine-readable version of Chambers. Of the 2Ild-column terms in Figure 20 the

following do have entries in Chambers: data, database, design. Thus only 3 of the 17 entries might be

assisted by this approach.

These results indicate that a word dictionary is not the same thing as a term dictionary. It is conceivable

that this is not the case for very large dictionaries, but clearly terms such as derived polygon and deep

repository are tightly domain specific. This returns us full circle to the argument used to justify the NDS

term acquisition method employed by KEP: lists of technical terms are not used to create the 2nd-column

entries because they would be (a) numerous (one lexicon per domain, whenever a new domain was

recognised), (b) huge, and (c) require constant updating. For the same reasons, term dictionaries are not

a practical proposition (for they are merely term lists with added definitions).

The second question raised above concerned the correctness of any definition found from a dictionary. In

the case above, all three definitions were good, although in the case of the term design the entry is long

and general. Similarly, the entry for data is good, but does not mention computers, a major topic of the

source text. The entry for database is just what one would require: a large body o f information stored in

a computer, which can process it and from which particular pieces o f information can be retrieved when

required. It is doubtful whether design is actually a good term to be placed in the glossary for the source

text. Thus the MRD usage has only come up with one really good extra definition for this page of the

glossary output. Note also that the problem of multiple word senses has not arisen in this small test; this

is likely to be more of a problem for single-word terms, where some strategy would be required to find

the most relevant definition.

The test results above indicate that the use of MRDs to assist in 3rd-column filling is not likely to be a

particularly useful strategy. NDS MRDs will not assist much, and DS MRDs are impractical in a NDS

197

system such as KEP. Thus MRDs at first sight do not appear to be the solution to the sparse elucidation

column15. But perhaps this is a little unfair, since a human reader would know that the source text was

about GIS (from the text’s title or its introductory paragraphs) and would naturally reach for a dictionary

of computers/geography/science, all of which are available. Therefore before dismissing MRD use

completely, it is worth exploring this issue a little further.

The use of e.g. a dictionary of science does, of course, represent the use of a domain specific dictionary,

or at least a dictionary which is more domain specific than a word dictionary such as Chambers, for there

are degrees of NDS-ness. (A dictionary of science is DS to science, but a dictionary of physics is more

DS, and a dictionary of particle physics is still more DS.) However, if the numbers of such dictionaries

were low, and if they were available in MRD form (or indeed as term banks16), then their use might

produce better results than the small manual test performed above. With the addition of a topic detector,

the KE system might select the relevant MRD. This might even be done by comparing term lists (terms

from the text vs. terms from each MRD in turn), although there would not be much point in doing this

unless the KE system were required to state the topic of the text, since terms would have to be looked up

in one of the dictionaries in any case (i.e. a simple search of all dictionaries would be just as fast if not

considerably faster). It is almost certainly the case that database management system, data volume, and

data structure occur in most dictionaries of computers. Any dictionary of geology worth its salt will list

deep repository, a term which probably also occurs in any good dictionary of nuclear engineering.

Provided the set of dictionaries can be kept small (so that long search times do not occur), many more

definitions might be found. The problem of neologisms remains, but this might not be critical if one is

able to rely upon regularly-updated dictionaries from the publishers (e.g. by supplements) so that

recently coined terms (not coined within the current document) are defined. This approach to the 3rd-

column sparseness problem is certainly one which should be investigated in the future.

6.3 Future Applications

In this section some future applications of an enhanced KEP are considered. Although they are a diverse

set, they are all based upon KEP’s current abilities. However, they would all require a substantial amount

of design and coding effort, and for this reason have not been attempted within the timescales of the

current research.

15 Bejoint (1988) has considered the intrusion o f technical terms into general dictionaries from the point of the
lexicographer, and discusses how such dictionaries do not begin to contain such terms until they have reached a
certain word-size; this upholds these results.

16 The term term bank is a relatively new one used by terminographers/terminologists to mean computerised,
structured lists of DS terms.

198

6.3.1 Text Summarisation

The KEP term summaries output has already been described in some depth in this thesis (see e.g. section

4.6.6). It is possible that this may be used as the basis for a directed text summary. In a directed

summary, the user asks the system to summarise what the text has to say about a particular topic (term).

Unlike the term summaries output, a text summary should be a readable section of text without evident

gaps - in other words it must flow. This is not at present a feature of the term summaries output, except

by accident, and so exha processing would be required to add connecting sentences or alter the ends of

sentences adjoining “gaps” in the narrative. Thus some natural language generation (NLG) code would

be required.

Term summaries may also provide another method of filling the third column of the glossary. This

method would be to apply text summarisation techniques to the term summary entries, so as to provide a

general statement about the concept. This method would not provide individual relation extractions (as

attempted by KEP currently) and so would not be useful for automatic semantic net building with its

requirement to use individual link types (see section 6.3.5). However, it might prove successful for

automatic dictionary construction, descriptions of concepts in systems such as HyperTutor, and a

smoothly readable column-3 glossary entry.

Whole text summarisation is a different matter. This involves the identification of the important

sentences/paragraphs in the text, where by “important” is meant those that are closely related to the

essential topic(s) of the text. The word processor used to create this thesis (Microsoft Word 7.0)

incorporates a text summarise!- which picks out the most important sentences based upon counts of topic

words made from the entire text17. However, when applied to this thesis the results were disappointing; a

10% summary (about 35 pages long) missed out many important sections, and even presented parts o f

tables and figures, clearly not a useful approach.

It is possible that KEP could identify the most important sentences and paragraphs, using term counts

and local term densities. This is an interesting idea that could be implemented and tested relatively

simply. All sentences in the output would be marked with an importance metric derived from the number

of different TTs within and near it, and from the “quality” of those terms (a TT used many times in the

text as a whole being regarded as of higher quality than one only use a few times). In addition, relation

instance densities could be used. An importance-bargraph would be drawn for the entire text and the

user’s chosen summary length (half the size of the original text, down to a single paragraph, three

sentences etc) used to set an importance threshold. Sentences having importance scores above this

17 Brief details are given in the Help system of the WP; for commercial reasons, full algorithmic details are not
provided by Microsoft.

199

threshold would then be included in the summary. Again, NLG methods might be required to smooth-

over any gaps.

Commercial text summarisers do already exist. The Microsoft Word summariser has already been

mentioned, and BT’s program NetSumm provides text summarisation on a pay-per-text basis over the

Internet. However, as is the case with many commercial products, the methods upon which NetSumm

has been based have not been published, although outlines of its capabilities have been given. There is,

however, a fully described method for creating text “abridgements”. This is the method of Hoey (1991).

The method relies upon identifying central and marginal sentences in a text (all non-central sentences

being marginal). Hoey suggests that the central sentences written in order form an abridgement

(essentially a summary made by picking the most important sentences). Central sentences are identified

as those having more bonds to other sentences than the average. A sentence is regarded as having a bond

to another sentence if it has three or more cohesive links to that other sentence. Since many cohesive link

types are largely lexical, there is the possibility of automating the process. Although not currently

detected as such by KEP, it may be possible to build automatic cohesive link detectors (see e.g. Jobbins

and Evett (1995)) and so automate the abridgement process. Hoey’s method could be used in

conjunction with data extracted by KEP to reinforce the identification of central sentences, or to create a

super-category of “very central” sentences to allow more than one level of text shortening. For example,

Hoey-central sentences which also contained a definition of a concept (as detected by KEP) could be

marked as “very central”. Thus there are exciting prospects for hybrid text summarisers.

6.3.2 Automatic Index Creation

Indexes of the sort found at the back of books are simpler entities than the glossary. They require terms

and page numbers. The terms must however be permuted (e.g. chain reaction and reaction, chain) so

that the user may find the term easily. Since KEP already finds terms, and since it knows which

sentences they occurred in, an automatic index creator could be built with a small amount of design and

coding effort.

The input texts processed by KEP do not necessarily contain page numbers. Where page numbers are

absent, KEP could generate them based upon a standard page size (lines, characters-per-line etc). With

page numbers present (or generated) a mechanism would be required to link sentence numbers to page

numbers (so that TT page numbers could be found). This might however give rise to the odd incorrect

page number, where the tenn existed in a part of die sentence which crossed a page boundary. Thus it

would be preferable to link terms directly to page number.

Term permutation is not a difficult task. The patterns of permuted terms are simple and few. The basic

term patterns of Justeson and Katz (1995) given in Table 14 would each be allowed a set of

permutations, so that e.g. N1 P N2 would become N2 , P N1 (e.g. use o f loops becomes loops, use of).

The permuted terms would be added to the term list and the index creation function would build the

index in a manner similar to that of the glossary maker. The index would simply be another KEP output

file. Thus it would be a relatively simple matter to build a completely automatic index generator into

KEP. This is a feature which even the latest WPs do not appear to have18; the indexer in Microsoft Word

version 7.0 requires the user to manually mark all index terms for inclusion. Thus it would represent a

useful new word processor feature.

6.3.3 Student Assignment Marking

It was mentioned in the introductory chapter that an original motivation for the work described in this

thesis was the desire to automate certain aspects of student assignment and examination marking.

Although this has not in practice been a major goal, it is worth considering how KEP as it currently

exists might be useful in this direction.

Although there is a lot more to an essay than a collection of technical terms, it is possible that there is a

correlation between the set of TTs used in an essay and the quality of that essay. This is speculation, and

the hypothesis would of course require extensive testing. For example, on an essay on

telecommunications satellites one might expect to see the terms GEO, LEO, geosynchronous Earth orbit,

apogee, perigee, Arthur C. Clarke, footprint, launch site etc. Some of these terms might be deemed

essential by the human marker, i.e. thought to be so important that they must be present in any good

essay. Others might be regarded as less than essential but desirable. Thus it is possible that a “term

profile” could assist the human marker in identifying the scope covered by an essay, if not its quality.

As an initial test of this hypothesis, and also to test its efficacy as a potential new IR method, a post

processor program (ir.c) was developed to compare two sets of terms (derived from KEP glossary output

files) using a variety of similarity metrics designed to calculate die degree of Venn-diagram style

overlap. Thirty-one BNC texts were selected, three of which were ostensibly on the same topic (based

upon their BNC subject classification). One of these three texts was taken as the reference text (i.e. as the

“ideal essay” or die “paper of interest”) and the other thirty were taken as search-space texts. KEP was

run for all 31 texts and similarity metrics calculated between the reference text and the odier texts one by

one. The search-space texts were then ranked by similarity. It was found that the two search-space texts

most similar to the reference text were the other two same-topic texts. Furthermore, about 14 of the other

texts were marked as “completely unrelated” to the reference text (as indeed was the case). These

experiments are fully detailed in a paper available from the author (Bowden, in preparation). They

18 This is surprising given that as long ago as 1983 Dillon and Gray (1983) put forward a fully automatic indexer,
and in 1988 Salton (1988) suggested syntactical means of identifying index terms.

201

demonstrate that the method does appear to be able to detect “closeness” of topic/contents based upon

extracted technical terms.

This method is similar in approach to Allott’s APN method (Allott, Fazackerley and Halstead (1994))

which attempts to detect concepts present in a single sentence based upon nodes (phrases) present or

absent. Allott’s activation passing network allows the presence of nodes at one level to “fire” a higher-

level node. The examiner sets up an APN “answer” to a question, and the students’ single-sentence

answers are judged against this. By marking certain technical terms as essential, the flavour of such an

APN could be simulated by KEP, albeit at a whole-text level rather than at the level of a single sentence.

Clearly, any method which marked an essay based solely upon term or acronym lists would be open to

abuse. For example, an essay answer which was just a simple list of domain TTs would get high marks.

Thus it would be advisable to combine this approach with other factors, such as relation instances

extracted by KEP. Where students had been taught a precisely-worded definition, KEP might detect this

in the essay. Similar comments apply to examples of concepts. In addition, the numbers of definitions,

hypernyms, examples etc present would be of interest. One might also combine these KEP-methods with

commercially available programs such as grammar and spelling checkers.

The above represents a whole area of research in its own right and this is not the best place to explore it.

There are many practical problems which would have to be overcome before evaluation could start (for

example, students would have to submit machine-readable work) but it is an interesting area for future

exploration.

6.3.4 Engineering Project Estimation

Many engineering disciplines require design documentation at the early stages which describe the

elements of the finished product. Furthermore, these documents are used by human experts in an attempt

to cost the project, in terms of time, man-years, and pounds sterling. This is a skilled task which requires

both a systematic approach and knowledge of past projects. It is not surprising, therefore, that attempts

have been made to automate this process from the requirements specifications. One of the most obvious

approaches is to look for “abstractions” i.e. terms in the documents which represent objects to be built

and/or used. These abstractions are similar to technical terms in that they are usually represented by

simple noun-adjective combinations. However, they may also exist at higher levels semantically wherein

synonyms are used to identify the same abstraction. For example, “buy materials” and “purchase

materials” are essentially the same abstraction. The AbstFinder program of Goldin and Berry (1994) is

one example of a program which attempts to find abstractions in engineering specifications (see page

137 for previous discussion).

202

Some simple experiments have been performed using KEP’s TT stage to see if this can provide lists of

abstractions from technical specifications. Early results are promising (see Bowden, Hargreaves and

Langensiepen (in preparation) for full details). These initial tests show that the TT lists give good

coverage but omit many singleword TTs (SWTTs). To remedy this, an experimental SWTT extractor

was added to KEP’s TT extractor. This function has not been described in the body of the thesis since it

is a very recent addition which has not yet been fully developed and evaluated. It works in a similar

manner to the existing algorithm except that the patterns searched for are much simpler - i.e. there is

only one pattern, the trivial pattern N for noun. Plural to singular conversion is still required, however,

since individual nouns do occur in either number.

However, a new aspect for this SWTT code is that the count threshold may be varied. The Justeson and

Katz threshold of count = 2 may be used, or some other threshold such as count = 3, or count - (mean

count) + 1. Experiments are underway to determine which threshold produces the best results in tenns

of the balance between recall and precision. For example, a count threshold of (mean count)+l, where

mean count is the average number of times a given noun occurs in the text, gives a list of SWTTs which

are mostly good (i.e. precision is high). Unfortunately, it also appears to miss some other good SWTTs

which occur less than the threshold number of times in the text (i.e. recall is low). This threshold does

however have the advantage of adjusting itself to the length of the text (actually to the number of nouns

used in the text, which approximates to the latter). Other thresholds give different balances between

precision and recall.

Clearly, this method will not combine TTs such as buy material and purchase material into one single

abstraction. For this a dictionary of synonyms would be required. In a DS application this might be

provided by the user, as was the case for AbstFinder. The mechanism would seem to be fairly

straightforward given such a synonym list. However, note also that buy and purchase are in fact verbs,

and so not found by KEP’s TT stage at present. Therefore preliminary studies need to be performed to

see what percentage of the combined abstractions come from actions rather than objects, so that such

patterns may be searched for as necessary. Whatever, this does seem an interesting potential application

for KEP.

6.3.5 Building a Permanent KB

At present, the conceptual extractions made by KEP are not made available to future runs of the program

on new texts. This was a deliberate decision made in keeping with the philosophy of being domain

independent, expounded throughout this thesis. However, there is no reason why KEP should not

maintain a permanent semantic-net KB held on disk file. This KB could be used in one of two ways.

Firstly, it could be used merely as an output store. New facts would be merged into the semantic net in

such a way that repetition would enhance the certainty of a particular fact, or expand knowledge of a

certain class of objects, or introduce an entirely new class. The semantic net need not be a single

interconnected entity; multiple nets might be constructed, by domain.

Semantic nets have already been mentioned in several places in this thesis. They are indeed useful as KB

structures, but their exact forms vary from system to system. For example, in the ‘wit’ system, Reimer

(1989) used a variation having only one link type (is a, used both for both hyponymy and instance) with

complex nodes having slots to effectively hold other conceptual information, these slots being created

dynamically by a KE system (see section 2.4.2.3). In WordNet (Miller et al. (1990)), a large-scale

semantic net project, is a links (hyponyms) and has part links (meronyms) are used to link synsets, i.e.

concepts represented as sets of synonyms. Some semantic nets use only one type of link, e.g. within

composition graphs, which use only has part links (see e.g. Magnan and Oussalah (1995)). In KEP,

although no semantic net is created, the conceptual output is better thought of in terms of a semantic net

having simple concept nodes (i.e. nodes have only a label, the concept name) but with a multitude of link

types (is a type of, has example, has definition, has part, causes etc).

The updating of an existing semantic net is not a simple task, but this has not prevented several

researchers from considering the task. For example, Virkar and Roach (1986) describe a text processor

designed to extract knowledge for the DIE system (an expert system concerned with drug interactions).

The system processes pharmacology abstracts and uses a pattern-matching IE method based on DS “text

grammars”. The difficulties of updating an existing KB are mentioned although not fully detailed. Also

considering the task is Szpakowicz (1990) who describes a potential system for extracting mini semantic

nets from text and integrating them with an existing semantic net KB. The paper describes only

preliminary work on the program, but the broad approach is to generate pieces of semantic net (having

Object or Activity nodes, joined by is_a etc links) from the manual of the ‘Quiz’ software product. These

mini nets are then integrated into the existing KB. Although short on detail, Szpakowicz does propose

trying to generate an extraction from each separate sentence (as with KEP), although he also suggests

paragraph-sized extractions. Garigliano, Morgan and Smith (1993) discuss updating of semantic nets in

the LOLITA system (a large multi-function project which includes NLG, MT, and text summarisation).

Finally, there is Reimer’s ‘wit’ system for extracting and storing data about computer printers (Reimer

(1989)), which was described earlier. Thus it is clear that many researchers are actively considering this

interesting area.

The KEN file (Knowledge Extraction Network) created by KEP as an interface to the HyperTutor

system of Edwards, Powell and Palmer-Brown (1995) is a step in the direction of a write-only permanent

semantic net KB. In this case, the maintenance of the semantic net(s) lies within the remit of HyperTutor

rather than of KEP. The HyperTutor/HypeLab system uses semantic nets as KBs of tutoring knowledge,

termed curriculum graphs within this product. The form of these curriculum graphs is close to that

envisaged for KEP’s potential semantic net storage. However, there are differences. For example, in

204

HypeLab/HyperTutor the partition and exemplification links map well, but the definition of a concept is

held as a description within the concept node.

Link Type Group Forward Link Type Reverse Link Type
Being has a type

has an instance
has an example

is a type of
is an instance of
is an example of

Including has a part
has a procedure

is a part of
is a procedure of

Doing performs
carries out

is performed by
is carried out by

Using requires is required by
Causing produces is produced by
Showing has a picture

has a diagram
has a video clip
has a simulation

is a picture of
is a diagram of
is a video clip of
is a simulation of

Similarity has a reference
has an association

is referred to by
is associated with

Quantifying has a size
has number

is size of
is number of

Qualifying has a characteristic is a characteristic of

Table 21. Link Types in HypeLab/HyperTutor (from Bowden and Edwards (1996))

Furthermore, the set of link types used within HypeLab/HyperTutor is larger than that currently available

to KEP, and each is to be used in a specific way by the curriculum graph creator during the authoring

process. Table 21 shows the HypeLab/HyperTutor link types (from Bowden and Edwards (1996)).

Note that there is a corresponding reverse link type for each forward link. This is so that a learner may

navigate around the curriculum graph using semi-NL phrases as described by Long, Powell and Palmer-

Brown (1995). The specific purposes of some of the link types given in Table 21 can result in situations

where KEP would not produce the same curriculum graph as a human author. For example, consider

again the test text of Figure 8 and the short output file derived from it, Figure 9 on page 84. Assuming

that KEP was able to detect the Sorting concept (by one of the single-word TT extraction methods

discussed in this thesis) then this concept would appear in the output files. Figure 22 represents the

semantic net drawn from the short output file. Here, the Sorting node is not attached to the rest of the

network (it should be connected to Sort Routine via a performs link) and Criterion is attached to Sort

Routine via a hasjajpart link (but a human HypeLab author would be expected to use the

has__a_quality link). Thus a certain amount of human intervention will be required in any combined

KEP/HypeLab system in order to ensure that the curriculum graphs suggested by KEP adhere to the

HypeLab/HyperTutor authoring conventions.

205

h a s a n e x amp I e

has a_parthas_an_example

has_a_part

has_a_part

hasa_part

has an example

SortingSort Routine

Quick Sort input List

Algorithm

Output List

Bubble Sort

CriterionAlphabetical Order

Figure 22. Example o f a KEP-generated Curriculum Graph

The KEP to HypeLab/HyperTutor interface is an ASCII file written to disk by KEP at the end of

processing. An example of this has already been given - see Figure 10. Note that concepts are

distinguished from processes, and that this is illustrated Figure 22 by having the Sorting process drawn

as a rounded box. Whereas KEP does not distinguish between types of concept extracted, in HypeLab

concepts are subdivided into concepts, processes, media, qualities and quantities. Thus for example,

making the tea would be regarded as a process, whereas teapot would be a concept. An example

involving a quality has already been discussed. This leads to a mismatch between KEP’s broad-stroke

output and the node requirements of HypeLab/HyperTutor. In order to minimize the amount of human

intervention required after automatic curriculum graph creation, this mismatch needs to be reduced as far

as possible. The suggested resolution is as follows. KEP concepts will be categorised by an expert

HypeLab author, into the categories as described above. These will then be examined to see if any

obvious tag patterns arise which might signify e.g. a process as opposed to a concept. For example, the

presence of present participles or gerunds might indicate processes (e.g. making the tea). However, it

may be that this simple approach is not capable of distinguishing between certain pairs of concept types.

If this proves to be the case, future studies will need to apply semantic and possibly pragmatic

knowledge to resolve this problem. In the short term, manual intervention would still be required.

The second way in which a pre-existing KB may be used by a future KEP is to aid in the current

extraction run. This need not be as simple as looking up an unknown acronym, say, to see if it is already

known. A more subtle approach may be needed (after all, the acronym STD means quite different things

in an article on telecommunications and one on human reproduction). Thus the KB might first be used to

identify the general subject area (e.g. by counting extraction “hits” over various areas within the net).

This knowledge of the domain could then be used to disambiguate conflicting meanings.

206

Given a mechanism for correcting (or ignoring) errors within the semantic net KB, a closed-loop

learning system would be created. This mechanism might be “fuzzy” in the sense that it is statistical

rather than boolean. The more text processed by KEP, the greater the knowledge stored, and the better

KEP would become at obtaining new knowledge. This positive feedback would allow increasingly good

performance over time, although it would probably become asymptotic to a performance ceiling due to

KEP’s inherent limitations regarding semantics etc.

In such a system, very many KEP processes could all contribute to a single KB. One might envisage

web-crawling versions of KEP, all reporting back to a single huge KB. This is not as fantastical as it

might first appear; the mechanisms for traversing the world wide web (WWW) are already well

established and in use by the large commercial search engines (AltaVista, Yahoo, Infoseek etc). These

companies already extract indexing terms automatically from WWW texts for storage on large central

servers. The extraction of acronyms, technical terms and indeed facts could be regarded merely as a

logical expansion of this process.

6.4 Concluding Discussions

In the introductory paragraph to this chapter a number of questions were posed relating to the maximum

performance which might be extracted from the shallow NDS approach tested by KEP. Let us now

answer these questions one by one. Do the limitations o f shallow systems such as that embodied in KEP

mean that they are doomed to remain below a “glass ceiling” o f achievement? Undoubtedly, yes.

Cutting text as it stands from a document will never achieve 100% recall simply because in some cases

the exact text is not there to extract. Minor rearrangements of text snippets may be possible, but there

will always be cases where only a full understanding could generate a correct concept. Issues relating to

endophors, apposition, the is a problem, and the existence of complex concepts ensure this. Will full

parsing ultimately be required, or can an acceptable level o f performance be achieved without it? Again,

full parsing is probably going to be necessary for many of the functions required in full understanding.

However, the author does believe that an acceptable level of performance has been demonstrated, if the

answer to the question which follows is ‘yes’: Is KEP best used as a “firstpass” system? This is indeed

the intention. It was never thought that a perfect glossary could be produced using the approach detailed

in this thesis. Will it ultimately prove necessary to add modules which access knowledge bases? Yes, for

full text understanding, but if the user is happy to accept less than optimal recall and precision rates, then

a KB is optional. External resources such as DS MRDs might assist as discussed in section 6.2.12, and

indeed are by definition necessary if knowledge from outside the text is to be placed in the glossary.

The answers to these questions might seem a trifle disappointing. They confirm the suspicion that only a

proper deep treatment will do the job fully. But this was not the ultimate question posed at the start of

this thesis. The question posed in the beginning was: How far can a specific set o f shallow techniques go

207

for NDS knowledge extraction? The answer to this question is a surprisingly long way. The usual initial

reaction of those who see the glossary output for the first time is one of puzzlement. They ask: how

could a “dumb system” create such a thing without somehow understanding the text? How does it know

what to “put in”? How does it find what acronyms stand for, especially when the letters in the acronym

“don’t match”? Where does it get the text in the third column from? As with all the best tricks, things do

not seem so amazing once the methods are explained, or once the output is examined in detail.

Nevertheless, the initial puzzlement is an indicator. It indicates that the KEP program appears to be

intelligent at first glance, because glossary creation is assumed to be a task that requires intelligence.

Recalling Rich and Knight’s definition of AI as “the study of how to make computers do things which, at

the moment, people do better”, and the author’s own definition of an AI program as one which is

apparently intelligent, this makes the KEP program a contender for the title of “AI program”.

This thesis started with the premise that shallow NLP systems can often be successful and should always

be used where possible, because deep systems are usually beset with a range of problems arising from

the thorough approach taken. The motivation for attempting a shallow system included the desire to

build a system that actually works, if not perfectly, then at least to a certain degree of usefulness.

Furthermore, it was hoped that taking such a shallow approach would reveal the points at which a deep

approach really becomes necessary, i.e. the places in which the shallow approach fails. These limits of

the shallow approach have indeed been identified, as discussed above. In summary, the evaluation of

KEP has shown that deep approaches do not become necessary until instances of conceptual relations

become implicit or distributed in the text. Fortunately, it is the nature of e.g. definitions that they are

very often not implicit or spread out over several sentences (i.e. they are very often explicit and

contained within a single sentence), and so KEP is able to use its shallow approach in many cases. This

is in itself an interesting linguistic result; by building and evaluating KEP, the nature of e.g. definitions

has been explored and the above linguistic situation discovered.

The shallow/deep theme was developed in the first chapter of this thesis, and backed up by descriptions

of both deep and shallow systems in the second chapter. The evaluations and discussions in chapters 5

and 6 sought to establish whether a shallow approach could be taken to the NDS task of fact extraction

from explanatory text, and if so, how successful this shallow approach could be. The KEP system

embodies one such shallow approach, and although it may not be the only such approach, it does use an

almost-inevitable method for such systems i.e. pattern matching. The KEP system was developed in an

incremental fashion in which problems (such as the need to have a function to give the singular form of a

plural noun) were tackled as they arose, using shallow methods.

The results of the exercise reported in this thesis show that a shallow, NDS approach can make good

progress in the KE task. They also show that the chosen method camrot, even in theory, hope to extract

all facts of the chosen varieties (definitions, examples, parent-class information and lists of the

208

component parts of objects). Evaluations have shown that one of the target relations is used by writers of

explanatory texts in such a way that instances of it are very difficult to extract (examples), whereas

others can be more straightforward (definitions). There appear to be two main reasons for the failure of

the method in some cases. Firstly, it is difficult to detect a definition, example etc in text without a full

understanding of that text. Although in many cases this detection is indeed possible using shallow

triggering methods, there will always be cases where semantic processing is necessary. Secondly, once a

definition, example etc has been detected, it is not always possible to determine exactly what is being

defined etc. This was found to be particularly true for the exemplification relation. Again, semantic

information is needed. It was also suggested that in order to do the job properly the KE system would

have to build a representation of the meaning of the text as it scanned through it, much as a human

reader builds an understanding construct in the mind as the text is read. Detection of relation instances

and determination of what is being elucidated may not in practice be separate processes; both may need

to be performed at the same time during the making of such a mental construct.

Despite this, the study has shown that a practically useful shallow knowledge extractor can be built, and

so this part of the motivation for attempting a shallow approach has been satisfied. The glossary output

format provided by KEP provides a good starting point for the construction of a glossary of terms for a

text not written with one. This glossary contains three components which are each in themselves useful,

in this and other applications:

(1) The acronym extractor is a novel tool that could be used to automate construction of dictionaries of

abbreviations. It could be incorporated in a simple fashion into any text processing program that

needed such a function. With its high recall and precision figures it could make a real contribution to

any such program.

(2) The technical term (TT) extractor finds lists of specialist terms in an explanatory text. Although

partly based on a method first suggested by others, it has been enhanced using hypernym detection

methods to tackle the case of single-word terms, a problem acknowledged by Justeson and Katz

(1995) and others. Furthermore, it incorporates attempts to avoid obviously wrong terms (so-called

‘duff terms), another novel aspect. Unlike other attempts, it also utilises part of speech tags as given

by a tagger program. The result is a new TT extractor with good recall and precision that provides

capabilities which are demonstrably useful.

(3) The conceptual relation extractor is a novel attempt to build a shallow fact extractor. Using its

pattern-matching approach it is able to find concepts and their elucidations where explicitly stated

within single sentences. Since these are frequently used by writers of explanatory texts, the method

has some degree of success. Although others have suggested the use of textual patterns to find

occurrences of definition, exemplification etc (e.g. Ahmad and Fulford (1992)), such methods have

209

not to date been built into an actual computer program for evaluation. KEP appears to be the first

program to do this.

The way in which these three types of knowledge extraction have been combined is also novel. The

author is not aware of any other attempts to create a glossary automatically, i.e. without a writer having

to pre-identify a set of glossary terms. Cross referencing acronyms to automatically-acquired TTs

provides a more comprehensive list of specialist terms than is possible with other automatic current TT

extraction methods. It may also give rise to better ways of doing tasks such as “more of the same”

document IR. The addition of the third glossary column, the pattern-matched definitions etc, adds

another dimension to the endeavour. Glossaries exist to explain terms within the document, and so this

aspect is desirable. Even where the third column entry is not strictly the right sort of phrase for the

specific relation being reported, it often contains knowledge useful enough to be placed there. With the

addition of a modest amount of cross-referencing between glossary entries (so that, for example, a reader

can understand an acronym present in a definition without having to search the glossary for it) the result

is an editable block of text which provides a firm basis for a complete glossary. It is not claimed that

KEP’s glossary is the finished article; it is, however, a good starting point for someone faced with the

huge task of creating a comprehensive glossary for a large extant document.

The research reported upon in this thesis has given rise to several exciting potential applications in

diverse fields, as discussed in the latter part this chapter. In addition, several areas for future KEP

development have been highlighted. Thus there is much interesting research to be done. At the time of

writing the author is engaged in collaborative research with two other groups (automatic IR on the

Internet, automatic abstraction-finding for software project estimation). Thus there is much scope for

both the author and future researchers to follow up, improve and extend the work reported upon in this

thesis.

210

References

References are given in alphabetical order. Where one author (or author combination) has more than one

entry, date of publication order is used. Where more than one such paper occurs in one year, lowercase

letters are appended to the year in order to distinguish the papers. Note that where there are four or more

authors, the author list is referred to in the body of the thesis as first author et al\ the full author list is

always given below.

AGARWAL, R. and TANNIRU, M. R. Knowledge extraction using content analysis Knowledge
Acquisition 3 pp 421 - 444 (1991)

AHMAD, K. Document Management: The role o f terminology Invited talk, 4th day of Document
Conference, Ede, The Netherlands (1995)

AHMAD, K. A Terminology Dynamic and the Growth o f Knowledge: A Case Study in Nuclear Physics
and in the Philosophy o f Science Procs. TKE’96, Vienna (1996)

AHMAD, K. and COLLINGHAM, S. Renewable Terminology Procs. EURALEX’96, Goteborg, Sweden
(1996)

AHMAD, K. and FULFORD, H. Knowledge Processing 4: Semantic Relations and Their Use in
Elaborating Terminology CS Report No. CS-92-07 University of Surrey, Guildford (1992)

AHO, A.V., HOPCROFT, J. E. and ULLMAN, J. D. The Design and Analysis o f Computer Algorithms
Addison-Wesley (1974)

ALLEN, J. Natural Language Understanding 2nd edition, Benjamin/Cummings (1995)

ALLOTT, N., FAZACKERLEY, P. and HALSTEAD, P. Automated Assessment: Evaluating a
Knowledge Architecture for Natural Language Processing Procs EXPERT SYSTEMS ‘94 (Cambridge,
England 12-14 Dec. (1994)

ALSHAWI, H. Processing Dictionary Definitions with Phrasal Pattern Hierarchies Computational
Linguistics 13 3-4 (1987)

ANDERSEN, P. M., HAYES, P. J., HUETTNER, A. K., SCHMANDT, L. M., NIRENBURG, I. B. and
WEINSTEIN, S. P. Automatic Extraction o f Facts from Press Releases to Generate News Stories Procs.
3rd Conf. on Applied Natural Language Processing, Morristown (NJ) (1992)

APPELT, D. E., HOBBS, J. R., BEAR, J. ISRAEL, D. and TYSON, M. FASTUS-. A Finite-State
Processor for Information Extraction from Real-world Text Procs. 13th International Joint conference on
A.I., Chambery, France (1993)

211

BEAR, J. A Morphological Recognizer with Syntactic and Phonological Rules Procs. COLING-86,
Univ. Bonn (1986)

BEJOINT, H. Scientific and Technical Words in General Dictionaries International Journal of
Lexicography 1 4 p. 354 (1988)

BOWDEN, P. R., HALSTEAD, P. and ROSE, T. G. Knowledge Extraction and Text Analysis Using
Conceptual Relation Markers Procs. LEDAR (Language Engineering for Document Analysis and
Recognition), one-day workshop as part of AISB’96 Workshop Series, 2nd April (1996) University of
Sussex, Brighton, England (1996a)

BOWDEN, P. R., HALSTEAD, P. and ROSE, T. G. Extracting Conceptual Knowledge from Text Using
Explicit Relation Markers Procs. 9th European Knowledge Engineering Workshop (EKAW-96), Lecture
Notes in Artificial Intelligence no.1076, Springer Verlag (1996b).

BOWDEN, P. R., HALSTEAD, P. and ROSE, T. G. Dictionaryless English Plural Noun Singularisation
Using A Corpus-Based List o f Irregular Forms In Corpus-based Studies in English - Papers from the
Seventeenth International Conference on English Language Research on Computerized Corpora
(ICAME 17) Stockholm, May 15 - 19 1996 (Rodopi) (1996c)

BOWDEN, P. R., HALSTEAD, P. and ROSE, T. G. Endophor Resolution in a Pattern-Matching
Knowledge Extraction System (paper presented at IndiAna workshop, DAARC’96 conference,
University of Lancaster) (1996d)

BOWDEN, P. R. and EDWARDS, M. A. Knowledge Extraction from Corpora for Pedagogical
Applications (paper presented at TALC’96 conference, University of Lancaster) (1996)

BOWDEN, P. R., EVETT, L. and HALSTEAD, P. Automatic Acronym Acquisition in a Knowledge
Extraction Program Procs. COMPUTERM workshop (ACL-COLING’98), Montreal (1998)

BOWDEN, P. R The Use o f Automatically Generated Technical Terms in a Document Topic Similarity
Metric (in preparation)

BOWDEN, P. R., EVETT, L. and HALSTEAD, P. A Corpus-Based Search for the Forms o f the
Partition Relation (in preparation)

BOWDEN, P. R., HARGREAVES, M. A. and LANGENSIEPEN, C. S. Estimation Support by Lexical
Analysis o f Requirements Documents (in preparation)

BOWKER, L. LSP Corpora in NLP: Some Fundamentals and Approaches in the Discipline o f
Terminology Procs. CSNLP ‘95, Dublin (1995)

BROSS, I. D. J., SHAPIRO, P. A. and ANDERSON, B. B. How Information Is Carried in Scientific Sub-
Languages Science 176 (1972)

BROWN, G. and YULE, G. Discourse Analysis CUP Cambridge Textbooks in Linguistics (1983)

BROWNING, D. C. (ed.) Roget’s Thesaurus The Everyman Edition Pan Books (1978)

212

BURKERT, G. Lexical semantics and terminological knowledge representation In SAINT-DIZIER, P.
and VIEGAS, E. (Eds) Computational Lexical Semantics Cambridge University Press (1995)

BURNARD, L. (ed.) Users Reference Guide for the British National Corpus (Version 1.0) Oxford
University Computing Services (1995)

BURSTEIN, J. and KAPLAN, R. Parsing Sentence Fragments in Computer-Assisted Test Scoring In
WILSON, A. and McENERY, T. (Eds.) Corpora in Language Education and Research: A Selection o f
Papers from Talc94 UCREL, Dept, of Linguistics and Modern English Language, Lancaster
University, England (1994)

CARDIE, C. Empirical Methods in Information Extraction A.I. Magazine Winter (1977 p. 65 (1997)

CARNE, C., FURNEAUX, C. and WHITE, R. Corpora, Genre Analysis and Dissertation Writing: An
Evaluation o f the Potential o f Corpus-Based Techniques in the Study o f Academic Writing Procs.
TALC’96, University of Lancaster (1996)

CHARNIAK, E. Statistical Language Learning Bradford Books (MIT Press) (1996)

CHODOROW, M. Extracting Semantic Hierarchies from a Large On-Line Dictionary Procs.
Association for Computational Linguistics pp.299-304 (1985)

CHOMSKY, N. Syntactic Structures Mouton (1957)

CHURCH, K. and PATIL, R. Coping with Syntactic Ambiguity, or how to put the block on the box on the
table Computational Linguistics 8 pp 139 - 149 (1982)

COHEN, D. I. A. Introduction to Computer Theory John Wiley and Sons (1986)

COLLIER, R. An Historical Overview o f Natural Language Processing Systems that Learn Artificial
Intelligence Review 8 17 - 54 (1994)

‘COMPUTING’ newspaper Notebook Section: The Ratcliff-Obershelp Algorithm Computing p.24 (20th
August 1992)

CREVIER, D. AI - The Tumultuous Histoiy o f the Search for Artificial Intelligence Basic Books
(Harper Collins) (1993)

CROWE, J. Shallow techniques for the segmentation o f news reports. Procs. LEDAR (Language
Engineering for Document Analysis and Recognition), one-day workshop as part of AISB’96 Workshop
Series, 2nd April (1996) University of Sussex, Brighton, England (1996)

CRUSE, D. A. Lexical Semantics CUP (1986)

CRYSTAL, D. The Cambridge Encyclopedia o f Language CUP (1987)

213

DAGAN, I. and ITAI, A. Automatic Processing o f Large Corpora for the Resolution o f Anaphora
References Procs. CO LING ‘90 (Helsinki) (1990)

DAILLE, B. Combined Approach for Terminology Extraction: Lexical Statistics and Linguistic Filtering
UCREL paper no. 5., UCREL, Dept, of Linguistics and Modern English Language, University of
Lancaster (1995)

DAINTITH, J., ILLINGWORTH, V., MARTIN, E. and STIBBS, A. (Eds) The Oxford Dictionary o f
Abbreviations (paperback edition), OUP, (1993)

DARIAN, S. The Role o f Definitions in Scientific and Technical Writing: Forms, Functions and
Properties English Language Research Journal 2 pp 41 - 56 (1981)

DeJONG, G. Prediction and Substantiation: A New Approach to Natural Language Processing
Cognitive Science 3 pp 251 - 273 (1979)

DILLON, M. and GRAY, A. S. FASIT: A fully automatic syntactically based indexing unit JASIS 34:2
pp 99 - 108 (1983)

EDWARDS, M. A., POWELL. H., and PALMER-BROWN, D. A Hypermedia-based Tutoring and
Knowledge Engineering System In Proceedings. ED-MEDIA ‘95 Graz, Austria (1995)

ENGUEHARD, C. Acquisition o f a Terminology from Colloquial Texts Procs. Computational Linguistics
for Speech and Handwriting Recognition, one-day workshop as part of AISB’94 Workshop Series, 12th
April (1994) University of Leeds, England (1994)

FLOWERDEW, J. L. Pragmatic modifications on the “representative" speech act o f defining Journal of
Pragmatics 15 pp 253 - 264 (1991)

FLOWERDEW, J. L. Definitions in Science Lectures Applied Linguistics 13 pp 201 - 221 (1992a)

FLOWERDEW, J. L. Salience in the Performance o f One Speech Act: The Case o f Definitions Discourse
Processes 15 pp 165 - 181 (1992b)

FLOWERDEW, L. CALL Materials Derived from Integrating ‘Expert’ and ‘Interlanguage’ Corpora
Findings Pre-publication paper, Language Centre, Hong Kong University of Science and Technology,
Clearwater Bay Road, Kowloon, Hong Kong. (1996)

FRIEDMAN, C., HRIPCSAK, G., DuMOUCHEL, W , JOHNSON, S. B. and CLAYTON, P.D. Natural
language processing in an operational clinical information system Natural Language Engineering 1 1 pp
83 - 108 (1995)

GARIGLIANO, R., MORGAN, R.G. and SMITH, M.H The LOLITA System as a Contents Scanning
Tool Procs. 13th International Conference on A.I., Expert Systems and Natural Language Processing,
Avignon, France (1993)

GARSIDE, R., LEECH, G. and SAMPSON, G. (Eds) The Computational Analysis o f English Longman
(1987)

214

GOLDIN, L. and BERRY, D. M. AbstFinder, A Prototype Natural Language Text Abstraction Finder
for Use in Requirements Elicitation Procs First Int. Conf. on Requirements Engineering, Colorado
Springs, CO IEEE Computer Society pp 84 - 93 (1994)

GREENRAUM, S. and QUIRK, R. A Student’s Grammar o f the English Language Longman (1990)

GRISHMAN, R. Computational Linguistics An Introduction Cambridge University Press (1986)

GROSS, M. On The Failure O f Generative Grammar Language 55 4 p859 (1979)

GROSZ, B .J. and SIDNER, C.L. Attention, Intentions, and the Structure o f Discourse Computational
Linguistics 12 3 (1986)

HAHN, U. Making Understanders Out o f Parsers. Semantically Driven Parsing as a Key Concept for
Realistic Text Understanding Applications International Journal of Intelligent Systems 4 (1989)

HAHN, U., KLENNER, M. and SCHNATTINGER, K. A Quality-Based Terminological Reasoning
Model for Text Knowledge Acquisition Procs. 9th European Knowledge Engineering Workshop (EKAW-
96), Lecture Notes in Artificial Intelligence no. 1076, Springer Verlag (1996).

HALLIDAY, M. and HASAN, R. Cohesion in English Longman (1976)

HAPESHI, K. Simulating the Development o f the Language Lexicon AISB Quarterly (no. 90) (Winter
1994/95 issue)

HARRE, R. The Philosophies o f Science OUP (1972)

HARTLEY, R. V. The Transmission o f Information Bell System Technical Journal 3 (1928)

HAYES, P. J. and MOURADIAN, G. V. Flexible Parsing American Journal of Computational
Linguistics 7 no. 4 pp232 - 242 (1981)

HAYES, P. J., ANDERSEN, P. M., NIRENBURG, I. B. and SCHMANDT, L. M. TCS: A Shell for
Content-Based Text Categorization. Sixth IEEE AI Applications Conference, Santa Monica (1990)

HEARST, M. A. Automatic Acquisition o f Hyponyms from Large Text Corpora Procs. COLING-92,
Nantes, France (1992)

HEARST, M.A. Multi-Paragraph Segmentation o f Expositoiy Texts Report No. UCB/CSD 94/790
Computer Sciences Division (EECS) University of California, Berkeley, California 94720 (1994)

HOBBS, J.R. Coherence and Coreference Cognitive Science 3 pp 67 - 90 (1979)

HOBBS, J. R., APPELT, D. E., BEAR, J., TYSON, M. and MAGERMAN, D. Robust Processing o f
Real-World Natural Language Texts Systems (In JACOBS, P. S. (ed.) Text-Based Intelligent Systems
Lawrence Erlbaum Associates (1992))

HOEY, M. Patterns o f Lexis in Text OUP (1991)

HULS, C., BOS, E. and CLAASEN, W. Automatic Referent Resolution o f Deictic and Anaphoric
Expressions Computational Linguistics 211 (1995)

JACOBS, P. S. A knowledge framework for natural language analysis Procs. 10th Int. Conf. on Artificial
Intelligence, Milan (1987)

JACOBS, P. S. To Parse or Not to Parse: Relation-Driven Text Skimming Proc. 13th Int. Conf. on
Computational Linguistics (COLING-90) pp 194-198, Helsinki (1990)

JACOBS, P. S. (ed.) Text-Based Intelligent Systems Lawrence Erlbaum Associates (1992)

JENSEN, K. and BINOT, J. Disambiguating Prepositional Phrase Attachments By Using On-Line
Dictionary Definitions Computational Linguistics 13 3-4 pp 251-260 (1987)

JENSEN, K. and BINOT, J. Dictionary Text Entries as a Source o f Knowledge for Syntactic and Other
Disambiguations Proc. 2nd Conf. on Natural Language Processing, Feb. (1988, Austin, Texas, USA.
(1988)

JOBBINS, A. and EVETT, L. J. Automatic Identification o f Cohesion in Texts: Exploiting the Lexical
Organisation ofRoget’s Thesaurus In Proceedings ROCLING V III, Republic of China (Taiwan) (1995)

JOBBINS, A. C. RAZA, G., EVETT, L. J. and SHERKAT, N. Postprocessing for OCR: Correcting
Errors Using Semantic Relations Procs. LEDAR (Language Engineering for Document Analysis and
Recognition), one-day workshop as part of AISB’96 Workshop Series, 2nd April (1996) University of
Sussex, Brighton, England (1996)

JOHANSSON, S., ATWELL, E., GARSIDE R. and LEECH, G. The Tagged LOB Corpus Norwegian
Computer Centre for the Humanities, University of Bergen, Norway (1986)

JUSTESON, J. S. and KATZ, S. M. Technical Terminology: some linguistic properties and an algorithm
for identification in text Natural Language Engineering 1 1 pp 9 - 27 (1995)

KARMILOFF-SMITH, A. Beyond Modularity - A Developmental Perspective on Cognitive Science
MIT Press (1992)

KEENAN, F. Large Vocabulary Syntactic Analysis for Text Recognition Ph.D. thesis, Nottingham Trent
University (1993)

KIERAS, D. E. A model o f reader strategy for abstracting main ideas from simple technical prose Text 2
(1-3) pp 47-81 (1982)

KITA, K., KATO Y., OMOTO T. and YANO Y. Automatically Extracting Collocations from Corpora
for Language Learning In WILSON, A. and McENERY, T. (Eds.) Corpora in Language Education and
Research: A Selection o f Papers from Talc94 UCREL, Dept, of Linguistics and Modem English
Language, Lancaster University, England (1994)

216

KUHN, T. S. The Structure o f Scientific Revolutions 2nd Edn. University of Chicago Press (1970)

KUPIEC, J. M. Robust Part-of-Speech Tagging Using a Hidden Markov Model Computer Speech and
Language 6 pp 225 - 242 (1992)

LAURISTON, A. Automatic Recognition o f Complex Terms: Problems and the TERMINO solution
Terminology 1 1 ppl47 - 170 (1994)

LEECH, G., GARSIDE, R. and BRYANT, M. CLAWS4: The Tagging o f the British National Corpus
Procs. 15th International Conference on Computational Linguistics (COLING 94) Kyoto, Japan pp 622 -
628 (1994)

LEIDNER, J. Evaluating Taggers for English: Some Evidence Technical Report no. CLUE-TR-971101,
Abteilung fur Computerlinguistik, Friedrich-Alexander-Universitat, Erlangen-Nurnberg (1997)

LEHNERT, W., CARDIE, C., FISHER, D., McCARTHY, J., RILOFF, E. and SODERLAND, S.
Description o f the CIRCUS System as used in MUC-4 Procs. Fourth Message Understanding Conference
(MUC-4), San Francisco (1992)

LENAT, D. A Large-Scale Investment in Knowledge Infrastructure Comms. ACM, 38 11 pp.33-38
(1995a)

LENAT, D. Steps to Sharing Knowledge Procs. KB+KS’95 (Knowledge Building and Knowledge
Sharing (1995)), Ed. MARS, N.J.I. (University of Twente, Enschede, The Netherlands) IOS Press
(1995b)

LENAT, D. and GUHA, R. V. Building Large Knowledge-Based Systems Addison-Wesley (1990)

LONG, G., POWELL, H. and PALMER-BROWN, D. A Syntax-free NLP Interface for an Intelligent
Tutoring Environment Procs. CSNLP ‘95 (4th International Conference on the Cognitive Science of
Natural Language Processing, Dublin City University) (1995)

LOU, W. and FOXLEY, E. STAMS - A Simple Text Automatic Marking System Procs. Computational
Linguistics for Speech and Handwriting Recognition, one-day workshop as part of AISB’94 Workshop
Series, 12th April (1994) University of Leeds, England (1994)

LYONS, J. Semantics Cambridge University Press (1977)

LYTINEN, S. L. and GERSHMAN, A. ATRANS: Automatic Processing o f Money Transfer Messages
Procs. 5th Nat. Conf. on AI, Philadelphia (1986)

MAGNAN, M. and OUSSALAH, C. Exceptions in Composition Graphs Procs. KB+KS’95 (Knowledge
Building and Knowledge Sharing (1995), Ed. MARS, N.J.I. (University of Twente, Enschede, The
Netherlands) IOS Press (1995)

MANN, W. C. and THOMPSON, S. A. Rhetorical Structure Theory: Toward a functional theory o f text
organisation Text 8 3 pp. 243 - 281 (1988)

217

MANNING, C. D. Automatic Acquisition o f a Large Subcategorisation Dictionary from Corpora Procs.
31st Annual Meeting of the ACL (1993)

MARKOWITZ, J., AHLSWEDE, T. and EVENS, M. Semantically Significant Patterns In Dictionary
Definitions Procs. 24th Ann. Meeting of the Association for Computational Linguistics, Columbia
University, New York, USA. (1986)

MARTIN, W. Concept-Oriented Parsing o f Definitions Procs.COLING-92, Nantes Aug 23-28 (1992)

McDONALD, D. D. Robust Partial-Parsing Through Incremental, Multi-Algorithm Processing (In
JACOBS, P. S. (ed.) Text-Based Intelligent Systems Lawrence Erlbaum Associates (1992))

McENERY, T. and WILSON, A. Corpus Linguistics Edinburgh University Press (1996)

MEYER, C. F. A corpus-based study o f apposition in English In English Corpus Linguistics (Eds. K.
Aijmer and B. Altenberg) Longman (1991)

MEYER, I. and MACKINTOSH, K. The Corpus from a Terminographer’s Viewpoint International
Journal of Corpus Linguistics, 1 2 pp 257 - 285 (1996)

MICHENER, E. R. Epistemology, Representation, Understanding and Interactive Exploration o f
Mathematical Theories PhD thesis, MIT (1977)

MICHOS, S. E., STAMATATOS, E., FAKOTATIS, N. and KOKKINAKIS, G. Identification o f
Functional Style in Unrestricted Texts Based on a Three-Level Stylistic Description. Procs. LEDAR
(Language Engineering for Document Analysis and Recognition), one-day workshop as part of AISB’96
Workshop Series, 2nd April (1996) University of Sussex, Brighton, England (1996)

MILLER, G.A., BECKWITH, R , FELLBAUM, C., GROSS, D. and MILLER, K. J. Introduction to
WordNet: An online lexical database International Journal of Lexicography 3 4 pp235-244 (1990)

MITTAL, V. O. and PARIS, C. L. Categorizing Example Types in Instructional Texts: the need to
consider context Procs. AI-ED 93 (Edinburgh, 23 - 27 Aug.) (1993)

MOORE, J. D. and POLLACK, M. E. A Problem for RST: The Need for Multi-Level Discourse Analysis
Computational Linguistics 18 4 pp 537-544 (1992)

MORRIS, J. and HIRST, G. Lexical Cohesion Computed by Thesaural Relations as an Indicator o f the
Structure o f Text Computational Linguistics 17 1 (1991)

MYERS, G. K. and MULGAONKAR, P. Automatic Extraction o f Information from Printed Documents
Procs. 4th Ami. Symposium on Document Analysis and Retrieval, UNLV (University of Nevada, Las
Vegas) (1995)

NAKAGAWA, H. Extraction o f Index Words from Manuals Procs RIAO’97, Montreal (1997)

NG, H. T. and ZELLE, J. Corpus-Based Approaches to Semantic Interpretation in Natural language
Processing N.I. Magazine Winter 1997 p. 45 (1997)

NISHIDA, F., TAKAMATSU, S., TANI, T. and KUSAKA, H. Text Analysis and Knowledge Extraction
COLING-86, Univ. Bonn (1986)

NKWENTI-AZEH, B. Positional and combinational characteristics o f terms: Consequences for corpus-
based terminography Terminology 1 1 (1994)

NOBLE, H.M. Natural Language Processing Blackwell Scientific (1988)

NORRIS, J. Compound Nominal Generation for Information Retrieval: The COMMIX System Procs.
LEDAR (Language Engineering for Document Analysis and Recognition), one-day workshop as part of
AISB’96 Workshop Series, 2nd April (1996) University of Sussex, Brighton, England (1996)

OAKES, M. P. and PAICE, C. D. Term Extraction for Automatic Abstracting Procs. COMPUTERM
workshop (ACL-COLING’98), Montreal (1998)

OUESLATI, R., FRATH, P. and ROUSSELOT, F. Tools for Acquistion and Exploitation o f Terms
Procs. LEDAR (Language Engineering for Document Analysis and Recognition), one-day workshop as
part of AISB’96 Workshop Series, 2nd April (1996) University of Sussex, Brighton, England (1996)

PALMER, D. D. and HEARST, M.A. Adaptive Sentence Boundary Disambiguation Report No.
UCB/CSD 94/797 Computer Sciences Division (EECS) University of California, Berkeley, California
94720 (1994)

PARSONS, D. Object Oriented Programming with C++ Letts Educational (1997)

PEARSON, J. The Expression o f Definitions in Specialised Texts: A Corpus-based Analysis Procs.
EURALEX ’96, Goteborg, Sweden (1996)

PINKER, S. The Language Instinct Penguin (1994)

POLYA, G. How To Solve It - A New Aspect o f Mathematical Method Princeton University Press (1945)

POPPER, K. Conjectures and Refutations 4th Edition (revised) Routledge and Kegan Paul (1972)

QIAO, Hong Liang The mapping between the parsing annotation schemes o f the Lancaster Parsed
Corpus and the Susanne Corpus ICAME Journal 19 (1995)

QUIRK, R , GREENBAUM, S , LEECH, G. and SVARTVIK, J. A Comprehensive Grammar o f the
English Language Longman (1985)

RADEMANN, T. Using online electronic newspapers in modern English-Language press corpora:
Benefits and Pitfalls ICAME Journal 22 (1998)

219

RAU, L. F. and JACOBS, P. S. Integrating Top-down and Bottom-up Strategies in a Text Processing
System Proc. 2nd Conf. on Applied Natural language Processing pp 129 - 135 Morristown, NJ, USA
(ACL) (1988)

RAU, L. F., JACOBS, P. S. and ZERNIK, U. Information Extraction and Text Summarization Using
Linguistic Knowledge Acquisition Information Processing and Management 25 4 pp 419 - 428 (1989)

RICH, E. and KNIGHT, K. Artificial Intelligence McGraw-Hill (1991)

RILOFF, E. Automatically Generating Extraction Patterns from Untagged Text Procs. 13th Nat.
Conference on A. I., Menlo Park, California pp 1044 - 1049 (1996)

RISTAD, E. S. The Language Complexity Game MIT Press (1993)

REIMER, U. Automatic Knowledge Acquisition from Texts; Learning terminological Knowledge via Text
Understanding and Inductive Generalization Procs. 5th AAAI-sponsored Knowledge Acquistion for
Knowledge-Based Systems Workshop, Banff, Canada (1989)

ROSE, T.G. and EVETT, L.J. A large vocabulary semantic analyzer for handwriting recognition AISB
Quarterly, No. 80 (1992)

ROSE, T.G. and EVETT, L.J. Text Recognition Using Collocations and Domain Codes Procs. Fust
Annual Workshop on Very Large Corpora, Ohio state University, Columbus, USA (1993a)

ROSE, T.G. and EVETT, L.J. Semantic analysis for large vocabulary cursive script recognition Procs.
2nd Int. Assocn. for Pattern Recognition, IAPR Conference on Document Analysis and Recognition,
Tsukuba Science City, Japan (1993b)

ROUSSELOT, F., BARTHELEMY, T., De BEUVRON, F., FRATH, P., and OUESLATI, R.
Terminological Competence and Knowledge Acquisition from Texts 9th European Knowledge
Engineering Workshop (EKAW-96), Poster Presentation (1996).

SAGER, N., FRIEDMAN, C., LYMAN, M. S. et al. Medical Language Processing: Computer
Management o f Narrative Data Addison-Wesley (1987)

SALTON, G. Syntactic Approaches to Automatic Book Indexing Procs. 26th Ami. Meeting of the ACL,
Buffalo, New York (1988)

SAMPSON, G. Evidence against the "Grammatical” / “Ungrammatical” Distinction in Corpus
Linguistics and Beyond: Procs. 7th Int. Conf. on English Language Research on Computerised Corpora,
ed. W. Meijs (Rodopi, Amsterdam) (1987)

SCHANK, R. Dynamic Memory Cambridge University Press (1982)

SCHANK, R. and ABELSON, R. Scripts Plans Goals and Understanding Lawrence Erlbaum
Associates (1977)

220

—...'..' ■ ' —— - ; - ■ - ‘ LhhLiil - ;

SCHWARZ, C., DAVIDSON, G., SEATON, A. and TEBBIT, V. (eds.) Chambers English Dictionaiy
Chambers/Cambridge University Press (1988)

SELINKER, L., TRIMBLE, R. M. T. and TRIMBLE, L. Presuppositional Rhetorical Information in EST
Discourse TESOL Quarterly 10 3 pp 281 - 290 (1976)

SHANNON, C. E. A Mathematical Theory o f Communication Bell System Technical Journal 27 (1948)

SKUCE, D., MATWIN, S., TAUZOVICH, B., OPPACHER, F. and SZPAKOWICZ, S. A logic-based
knowledge source system for natural language documents Data & Knowledge Engineering 1 pp 201 -
231 (1985)

SMITH, N. and WILSON, D. Modern Linguistics - The Results o f Chomsky’s Revolution Penguin (1990)

SOWA, J. F. Conceptual Structures - Information Processing in Mind and Machine Addison-Wesley
(1984)

SPARCK JONES, K. and WILKS, Y. (Eds) Automatic Natural Language Processing Ellis Horwood
(1983)

SPARCK JONES, K. So what about parsing compound nouns? In SPARCK JONES, K. and WILKS, Y.
(Eds) Automatic Natural Language Processing Ellis Horwood (1983)

STEDE, M. The Search for Robustness in Natural Language Understanding Artificial Intelligence
Review 6 pp 383-414 (1992)

SUMMERS, D. Longman/Lancaster English Language Corpus Criteria and Design (1991)

SUTCLIFFE, R. F. E., BOERSMA, P., BON, A., DONKER, T., FERRIS, M. C., HELLWIG, P.,
HYLAND, P., KOCH, H., MASEREEUW, P., McELLIGOT, A., O’SULLIVAN, D., RELIHAN, L„
SERAIL, I., SCHMIDT, L, SHEAHAN, L., SLATER, B., VISSER, H. and VOSSEN, P. Beyond
Keywords: Accurate Retrieval from Full Text Documents Procs. 2nd Language Engineering Convention,
London 16-18 Oct. (1995)

SWALES, J. Definitions in Science and Law - Evidence for Subject-Specific Course Components
Fachsprache 3 p 106 (1981)

SZPAKOWICZ, S. Semi-Automatic Acquisition o f conceptual structure from technical texts Int. Journal
Man-Machine Studies 33 pp 385 - 397 (1990)

TAYLOR, L., GROVER, C. and BRISCOE, T. The Syntactic Regularity o f English Noun Phrases Procs.
COLING-86, Univ. Bonn (1986)

TUCKER, A., NIRENBURG, S. and RASKIN, V. Discourse and Cohesion in Expository Text Procs.
COLING-86, Univ. Bonn (1986)

221

VANDER LINDEN, K. and MARTIN, J. H. Expressing Rhetorical Relations in Instructional Text: A
Case Study o f the Purpose Relation Computational Linguistics 21 1 (1995)

VIRKAR, R. S. and ROACH, J. W. Direct Assimilation o f Expert-Level Knowledge by Automatically
Parsing Research Paper Abstracts International Journal of Expert Systems 1 4 (1988)

WILKS, Y. An Intelligent Analyzer and Understander o f English Comms. ACM 18 5 pp264-274 (1975)

WILSON, A. and McENERY, T. (Eds.) Corpora in Language Education and Research: A Selection o f
Papers from Talc94 UCREL, Dept, of Linguistics and Modem English Language, Lancaster
University, England. (1994)

WINOGRAD, T. Language as a Cognitive Process: Syntax Addison-Wesley (1983)

WINSTON, M. E., CHAFFIN, R. and HERRMAN, D. A Taxonomy o f Part-Whole Relations Cognitive
Science 11 pp 417-444 (1987)

WOTHKE, K. Machine Learning o f Morphological Rules by Generalization and Analogy Procs.
COLING-86, Univ. Bonn (1986)

XUELAN, F. and KENNEDY, G. Expressing Causation in Written English RELC Journal 23 1 (1992)

YANG HUIZHONG A New Technique for Identifying Scientific/Technical Terms and Describing
Science Texts Literary and Linguistic Computing 1 2 (1986)

YOUNG, S. R. and HAYES, P. J. Automatic Classification and Summarization o f Banking Telexes
Procs. 2nd Conf. on AI Applications, IEEE Computer Society, Dec. (1985)

ZERNIK, U. and JACOBS, P. Tagging for Learning: Collecting Thematic Relations from Corpus Procs.
13th Int. Conf. on Computational Linguistics (COLING-90) (1990)

ZHU, G. and SHADBOLT, N. Mining Knowledge: The Partial Parsing o f Texts WWW Home page, AI
Research Group, Dept, of Psychology, University of Nottingham (1995)

222

Appendix A - Nomenclature of KE-related Fields

Information Retrieval (IR) This is a discipline in which whole documents are retrieved from databases

of documents, e.g. by keyword searching. NLP is of interest to IR researchers who wish to create natural

language search tools, for example. IR is not usually used to mean the extraction of information from

within a single document.

Knowledge Acquisition (KA) The term KA is usually applied by expert systems practitioners to the

stage of representation of knowledge after its elicitation from human experts. Such knowledge must then

be further processed, e.g. by KE systems (see discussion on this subject in Agarwal and Tamiiru (1991)).

Knowledge Extraction (KE) KE is the process of extracting knowledge (facts) from text. This is the

topic of this thesis.

Message Understanding (MU) Reference is often made in the literature to MU applications. Message

Understanding (MU) is a branch of NLP closely related to KE and refers to computerised understanding

of messages such as naval signals, newswire stories etc. The Message Understanding Conferences

(MUC) are regular international competitions designed to foster practical MU progress via public testing

of rival computer programs. MUC applications are discussed in sections 2.3 and 2.4 of this thesis.

Information Extraction (IE) Information extraction is a term often applied in MU applications, to mean

KE. Here, however, the ‘K’ is really information, because of the possibly transient nature of the

information gleaned from the message. (See section 1.1 for a discussion of the relative merits of the

terms ‘knowledge’ and ‘information’.)

Data Mining This is the discovery of interesting data as a result of trawling through large existing

databases. The information uncovered was always ‘there’ in the database, but in an implicit form. Data

mining does not usually apply to textual resources and tends to extract information rather than

knowledge. It is therefore not of direct interest here.

Content Analysis or Topic Analysis or Text Classification This discipline aims at automating the

decision as to which subject area a particular text belongs to, i.e. at identifying the topic of a piece of

text. In the sense that it extracts some kind of information from a text (albeit at a very high level) it may

be regarded as a type of IE. However, it is not an area which is of direct interest in this report.

Text Summarisation This is a fairly new discipline aimed at automatically producing summaries of

texts. Again, this may be regarded as a form of IE, since the “essence” of a text is extracted. However,

this is an area not of direct relevance to the work reported here.

Stylistics A branch of NLP/computational linguistics which examines writing styles, either by genre or

on an individual by individual basis. Although not of direct relevance in this report, stylistics can aid in

KE and content analysis since it finds patterns of surface forms used to express knowledge in text (see

e.g. Michos et al. (1996)).

Terminology Extraction Of direct relevance to this thesis, this field aims to extract words and phrases

from documents which are characteristic of the concepts or abstractions discussed in the text. See e.g.

Justeson and Katz (1996) and the discussions of alternative systems in Chapter 5.

224

Appendix B - Term Summaries Output Sample

The example below of part of a term summaries output was derived from BNC text ‘BIG’. Only a small

percentage of the full term summaries listing has been reproduced, since the full listing is very much

longer than the original text, because several different terms may occur in any one sentence.

KEP VERSION 98
********** TERM SUMMARIES OUTPUT FOR USER-ENTERED IDENTIFIER 'BIG' **********

At present, this file merely shows blocks of sentences which contain each term.
However, these blocks do contain 'gapping' sentences where the gaps are small.

GIS geographical information systems

1 The areal interpolation problem : estimating population using remote sensin
g in a GIS framework Mitchel Langford , David .

2 Maguire and David .
3 Unwin Introduction !
4 Data integration is one of the fundamental GIS operations (Burrough (198 6)

22 A common problem in geographical information systems (GIS) , and one whic
h has been known about for many years in the context of choropleth mapping
, is that of producing maps from population data aggregated over selected a
rbitrary areal units .

43 In a truly integrated GIS framework (Jackson and Mason (1986) it is almost
certain to be the case that other potentially useful information is availa

ble .

47 In this chapter , we develop a method similar to Flowerdew 's in which we u
se GIS techniques to enable areal interpolation to be informed by the distr
ibution of land -cover types , as inferred from a classified Landsat Themat
ic Mapper (TM) image , in both the source ((1981 Census wards) and targe
t (National Grid kilometre squares) units .

98 ERDAS GIS functions were used to overlay the ward boundaries on to the clas
sified image and then count the number of pixels of each recognized land -c
over type within each ward .

172 Given that the remotely sensed data add a great deal of information to thes
e processes this is hardly surprising , but this general approach is relati
vely easy to carry out in a GIS environment .

178 The absence of facilities within GIS software for handling the effects of i
nput data uncertainty and possible error propagation by GIS operations crea
tes a question mark over the safe utilization of many aspects of the techno
logy .

179 The problem arises because it is thought that the positional errors and att
ribute uncertainties which are characteristic of all spatial databases , ma
y be propagated and amplified by GIS operations and thus adversely affect s
ome or all applications .

180 These input data uncertainties are attributable to a number of sources rang

225

ing from errors in the original cartographic map documents through to the e
ffects of the GIS operations themselves .

187 The advent of GIS has significantly changed all this .
188 The ease of use and flexibility of GIS allow the user to perform operations

on map data that were previously impossible on a large scale .
18 9 The typical end -user of GIS output will probably care or know little about

the cartographic and uncertainty characteristics of the map data being use
d , while the GIS itself has no procedures for handling the varying accurac
y and reliability of the digital map data being processed .

(190 A GIS gives the user complete freedom to combine , overlay and analyse data
from many different sources , regardless of scale , accuracy , resolution

and quality of the original map documents and without any regard for the ac
curacy characteristics of the data themselves .

(191 The mixing of geographical information from different map scales and source
s is a key aspect of GIS functionality , but it does raise the question as
to what effects the combination of different levels of data uncertainty has
on both the output maps and on the data derived from spatial query and ana

lysis .
(192 It must be recognized that there are many good reasons for wishing to combi

ne data in these ways , but a major problem arises because GIS packages fai
1 to offer any means of keeping track of the effects of error propagation a
nd how it affects the results .

(196 This chapter is concerned with developing methods able to provide estimates
of the confidence regions around GIS map -based outputs by taking into acc

ount certain selected sources of uncertainty affecting spatial databases .
(197 A Monte Carlo simulation -based approach is used as a general means of esti

mating the effects of input data uncertainty on the map outputs after an ar
bitrary sequence of GIS operations .

(198 The objective is to identify and handle the effects of data uncertainty in
a GIS by defining uncertainty envelopes to create " credibility regions " a
round the results .

(199 This is considered to be the minimum needed to allow a GIS to function in a
mixed data environment .

200 Sources of error in GIS Error and uncertainty are common features of cartog
raphic information , so it is hardly surprising that these aspects are also
present in digital versions of analogue maps .

201 It follows , therefore , that no map -related spatial data exist which are
wholly error -free .

202 There are many different causes of uncertainty and those which are explicit
ly due to GIS -based manipulations of geographic information are merely a m
ore recent problem .

203 However , it is also obvious that the power of GIS has the potential dramat
ically to increase both the magnitude and importance of errors in spatial d
atabases .

214 Digitizing error Despite the availability of hardware for the automated con
version of geographic data from paper maps to digital form (e.g. optical s
canners) much data input to GIS is still done by hand using a digitizing t
able .

215 As a result of human and other complicating factors involved , a high level
of error is often present in digital map data .

216 Manual digitizing is consequently recognized as a significant source of map
error in GIS (Otawa (1987 ; Keefer etalia (1988) .

217 However , error introduced into digital map databases through the digitizin
g process is often ignored because the characteristics of digitizing error
have not been fully defined and because no practical means of handling inpu
t data uncertainty exist within proprietary GIS software .

246 Errors in digital overlay analysis Much of the functionality of GIS lies wi
th their ability to overlay one or more digital maps for the purposes of Bo
olean or network analyses .

247 This kind of map analysis used to be done manually (before the advent of p
ractical GIS) by overlaying transparent map sheets , establishing the requ
ired spatial relationships and drawing the new map on a clean top sheet wit
h felt pens (McHarg (1969) .

252 These questions need to be answered , at least in part , before GIS can rea
lize their full potential .

264 Elimination procedures are available in GIS software to remove sliver polyg
ons on the basis of minimum area (e.g. ARC/INFO , ESRI (1987) .

286 Expanding on this it is possible to identify five major tasks in the study
of error propagation within GIS .

287 These are : 1 .
288 The development of mathematical models to represent the uncertainty charact

eristics of digital map databases ; 2 .
289 The development of procedures for estimating the effects of input data unce

rtainties and their propagation through GIS ; 3 .
290 The application of these models and techniques to a representative range of

case studies to derive empirical estimations of likely error levels in GIS
output ; 4 .

291 The development of techniques to utilize output data uncertainty estimates
; and 5 .

292 The incorporation of the technology as standard GIS tools .

304 Here , a Monte Carlo based simulation procedure for estimating the impact o
f error in GIS is proposed and developed .

312 The randomized input map data are then subject to an arbitrary sequence of
GIS operations .

316 If the GIS output is merely numeric , then the distribution of M results gi
ves some indication of the effects of input data uncertainty .

320 In a vector GIS the set of M different output maps would be rasterized and
a count made of the frequency that each cell appears in the final map .

32 4 This simulation procedure is totally independent of the error models used a
nd the nature and sequence of the GIS operations employed .

325 The GIS component can include all manner of map manipulation , evaluation a
nd statistical procedures .

330 The resulting " error audits " would also provide a platform for illustrati
ng to vendors the importance of installing error estimators in GIS software

331 A practical means of identifying approximate levels of output uncertainty a
Iso requires that some basic recommendations are made about how this variab
ility can be retained , used and passed on to subsequent operations and app
lications using the data .

332 Some US research groups appear to be tackling part of this problem by taggi
ng databases with error information .

333 Attention might be better focused on more technical questions such as how t
his error information may be used in GIS and spatial analysis .

334 For example , development of spatial retrieval techniques and nearest neigh
bour analyses which can operate with fuzzy data .

335 Other issues relate to investigating how this uncertainty information can b
est be presented to the user .

336 Finally , the simulation approach and associated error models should be cap
able of being incorporated into standard GIS software .

340 Some of the terminology , therefore , relates to the ARC/INFO GIS software
(see Table 6.1) .

341 The basic sequence of operations The nature of the simulation methodology i
s outlined in Fig. 6.2 .

342 The simulation of input data uncertainty involves replacing the determinist
ic input data values by those from a probability distribution that reflects
an appropriate error model ,

343 The GIS operations are then performed and the results saved for evaluation
344 The GIS software used in this case study is the widely used ARC/INFO packag

e (ESRI (1987) .

350 Carry out the GIS operations on the perturbed coverage ; 3

372 The GIS overlay operations follow next .

37 6 The object of the final analysis is to create a data set which contains , f
or each raster , the number of times it is simulated to be inside the areas
resulting from the sequence of GIS operations .

381 The GIS operations constitute little more than a sequence of map overlays i
n the form of a Boolean search .

382 This process is re -examined here with particular attention to northern Eng
land to reduce the computational resources required .

383 The object of the overlay exercise is to determine potentially feasible sit
es for the dumping of waste material from the nuclear industry , in particu
lar , low - and intermediate -level radioactive waste .

384 This chapter is not itself concerned with the mechanics or politics of the
matter , the example chosen is merely a convenient one for purposes of illu
strating a very common GIS procedure .

473 This chapter has introduced some of the issues surrounding the propagation
of error in GIS and described the preliminary application of a Monte Carlo
approach to assessing their effects .

478 However , with faster hardware likely to be on the market in the near futur
e and the possibility of the emergence of parallel GIS machines , there is
some justification for believing that extra effort is both worth while and
acceptable .

47 9 The challenge is to resolve the outstanding questions and perfect the techn
ology as soon as possible .

480 Perusal of Fig. 6.5 indicates that it does appear to work , and that it off
ers a pragmatic solution that could probably be developed further into a ge
neral -purpose GIS " error button " .

481 User interfaces Jonathan .
482 Raper Introduction !
483 Geographical information systems { GIS) make considerable demands on the u

ser : the wide variety of data types recorded in digital maps , the complex
data structures used to organize them and the range of operations availabl

e , amount to a formidable obstacle for most users with standard requiremen
ts .

484 As such , the quality of interfaces to GIS has taken on a considerable impo
rtance in terms of awareness , training and usage , both to the providers o
f GIS software and users of GIS alike (Rhind , etalia (1989) .

485 However , there are many aspects to the definition of an interface for syst
ems as complex as GIS , and the solutions to this problem are developing ex
tremely rapidly at the time of writing .

486 Accordingly , this chapter aims to set out the requirements for a fully con
figured GIS interface , and profiles the development of a new GIS user inte
rface system called UGIX .

4 87 This model is also used to define a research agenda for the next 5 years ;
the reader may judge the accuracy of this analysis by the commercial realit
y of available systems during the early and mid -(1990s .

4 88 There is a wide recognition that the problems of poor interfaces are of con
siderable importance to the development of GIS .

489 The UK Government Committee of Enquiry chaired by Lord Chorley (DoE (1987)
on the Handling of Geographic Information suggested in recommendation 59 t

hat GIS technology projects be promoted since the report noted that the exi
sting interfaces to GIS systems were poor .

490 The shortcomings of GIS user environments can be divided into two groups :
1 .

494 The quality of GIS user interfaces is also an important factor in the accep
tance , uptake and efficiency of the integrated GIS which are currently on
the market .

495 In a recent study by Willis and Nutter ((1990) of 136 publicly funded util
ities and municipalities in the UK 57 per cent stated that they were inhibi
ted in their GIS developments by " a lack of staff with the right expertise

496 At a time when there is a national and international shortage of staff skil
led in the computer handling of geographical data { Rhind and Mounsey (1989
) , " ease of use " is a vital criterion for the selection of an appropriat
e GIS .

497 It is generally accepted that a system which is easy to use can help cut re
cruitment and training costs , and help retain staff .

498 Organizations which are in the process of implementing GIS strategies also
appreciate that the " ease of use " factor is a key control over how quickl
y GIS programmes can be implemented , and therefore the speed with which fi
nancial targets for paying off capital costs can be met .

499 It may also be true that " ease of use " can influence the quality of work
done and the effectiveness of a GIS as a decision support system .

500 To illustrate this in the negative , Beard ((1989) for example , showed ho
w " use error " in GIS was an important but neglected aspect of quality con
trol in GIS .

501 In summary , the user interface is a vital element of any GIS .
502 Long ignored as an esoteric aspect of GIS design while GIS development was

driven by the need to extend functionality , the user interface is now begi
nning to attract its due attention .

503 However , the implementation of a GIS user interface involves considerably
more than the improvement of the human -computer interaction (HCI) proces
s .

504 Since GIS are conceptually complex and involve diverse operations ranging f
rom data modelling to geometric transformations , improving the HCI can not
be a complete solution to the improvements of GIS use .

505 Consideration also needs to be given to the embedding of knowledge , task d
efinitions and database view manipulations into such interfaces .

506 A key assumption , therefore , which remains to be tested is whether a GIS
user interface should condition GIS use .

507 While there are many who would argue that a measure of technical knowledge
is desirable in those who use a GIS and a protection against the misuse of
a powerful tool , it must now be established that maximum " achievable " us
e of a software system owes much to the creation of a structured use enviro
nment , with logic controls built into the interface .

518 Work by Smith etalia ((1983) and Sneiderman ((1983) developed the concept
s behind moving and selecting screen representations , which has become imp
ortant to all graphics -oriented applications (such as GIS) .

541 Several GIS have already begun to use GUIs to make their systems more user
friendly using the standard platform interface tools as described above .

545 Hence , the use of a GIS with a GUI can only improve user productivity in "
use " factors , for example by increasing the speed of use and reducing er

rors , and may only help the user with a previously substantial knowledge o
f GIS .

546 Thus , due to the sheer complexity of spatial data and the operations avail
able , this can only be a partial solution to the general problem of user i
nteraction with a GIS (Gould (1989) .

ED enumeration district

9 Hearnshaw etalia ((1989) , for example , highlight the problem in the cont
ext of Leicestershire , a county in the Midlands of England , and show the
difficulties of linking enumeration district (ED) , ward , parish and pos
tcode data .

(19 Where the source zones nest hierarchically into the target zones , for exam
pie UK administrative EDs nest exactly in wards , transfer of data from the
source units to the target units is one of simple aggregation .

35 Martin ((1988 , (1989) describes a simple algorithm that uses the ED centro
ids , with a spreading function to allocate people to neighbouring grid squ
ares , which incorporates Tobler 's idea .

229

408 The population data arc rather more problematic , since they are generated
from the " centroids " of census enumeration districts (EDs) ; the bounda
ries of the census EDs do not conveniently follow a grid , it is assumed th
ey have a similar fuzzy tolerance to the other coverages .

451 These data had to be estimated from census ED information .
452 The aggregation process merely allocates to a grid square the populations o

f the ED whose " centroid " happens to fall in that grid square .
453 In the case where two or more EDs fall in the same grid square , then the g

rid square 's population is the sum of those of the individual EDs .

459 One might buffer the ED centroids , assign populations to the resulting zon
es , then determine the population densities .

4 60 The choice of buffer distance would need to be the subject of some experime
nt .

461 The use of Theissen polygons has been suggested , although the statistical
properties of processes giving rise to such areas are poor surrogates for d
igitized ED boundaries .

4 62 The varying size of EDs in urban and rural areas , and the discontinuous na
ture of the population distribution inside the larger rural EDs is also dif
ficult to parametrize .

1351 Within the public domain in the UK we must rely in general on data from the
most recent Population Census , the lowest level being that for enumeratio

n districts (EDs) .
1352 As is well known (Rhind (1983) these contain on average perhaps 150 househ

olds and 400 people .
1353 The boundaries of EDs have not been widely digitized , unlike the higher -1

evel electoral wards .
1354 However , the centroids of EDs are available as 100 m grid references and a

rtificial ED " polygons " can be created if necessary .
1355 In some instances such data will suffice ; in many cases they will have to

suffice as nothing better is available .
1356 But in some areas EDs are very extensive physical units and the shapes will

be quite distorted .
1357 Furthermore , the scales at which population estimates are often required m

eans that even EDs are too coarse for risk assessments .

1429 This may be quite absurd in some cases , notably where population is spatia
lly clustered within a physically large ED .

TM thematic mapper

47 In this chapter , we develop a method similar to Flowerdew 's in which we u
se GIS techniques to enable areal interpolation to be informed by the distr
ibution of land -cover types , as inferred from a classified Landsat Themat
ic Mapper (TM) image , in both the source ((1981 Census wards) and targe
t (National Grid kilometre squares) units .

62 Obtaining a land -cover classification A Landsat TM image of Leicestershire
recorded on a cloud -free day in July (1984 constitutes the basic data sour

ce .
63 This area was selected for study because of the authors ' familiarity with

it , the adequate rural -urban contrast and the availability of a suitable
image .

64 The ground resolution of a TM image is such that a pixel has about a 30 m s
ide , which seems appropriate for the scale of analysis used .

ERDAS earth resources data analysis system

230

66 The full seven bands of image data were loaded into an ERDAS (Earth Resour
ces Data Analysis System) software system and ground control point informa
tion entered to rectify the image to National Grid coordinates .

97 These data were transferred into ERDAS and rasterized .
98 ERDAS GIS functions were used to overlay the ward boundaries on to the clas

sified image and then count the number of pixels of each recognized land -c
over type within each ward .

1280 Merchant etalia ((1987) for example , use the image processing system ERDA
S to construct an index of vulnerability to groundwater pollution ; this us
es variables such as depth to water table , soil type , slope and so on (s
ee Estes et a .

RGB red-green-blue

79 The third component , despite carrying only 6 per cent of the original vari
ance , revealed intra -urban differentiation with a clarity unseen in any R
GB (red -green -blue (colour)) , composite taken from the original band
s .

83 When these components were displayed as an RGB composite they continued to
show good urban differentiation , closely matching both our local knowledge
of the area and the ground truth data that were collected .

RMS root mean squares

153 Table 5.4 provides a summary of the overall fit in the form of the root mea
n squares (RMS) of the differences for each map .

154 All point to precisely the same problems as were identified when evaluating
the original model fits .

155 The average ward population is 9488 (Table 5.1) and so the RMS errors are
comparatively small (the range of RMS errors is from 815.13 for the Shotg

un ordinary least squares (OLS) to 1035.29 for the Simple Poisson) .
156 There is little difference in the values obtained using OLS and Poisson reg

ression and the Simple models produce only slightly higher errors .
157 Figure 5.12 shows the differences given using the Shotgun model which has t

he lowest RMS value .

OLS ordinary least squares

155 The average ward population is 9488 (Table 5.1) and so the RMS errors are
comparatively small (the range of RMS errors is from 815.13 for the Shotg

un ordinary least squares (OLS) to 1035.29 for the Simple Poisson) .
156 There is little difference in the values obtained using OLS and Poisson reg

ression and the Simple models produce only slightly higher errors .

NCGIA national center for geographic information and analysis

(195 Such is its importance that the National Center for Geographic Information
and Analysis (NCGIA) in the USA , has placed this issue first in its list
of research priorities (NCGIA (1989) .

231

573 The importance of the cognitive structuring of space is expressed by Mark a
nd Frank ((1989) , who set out the research agenda for the " Spatial Langu
ages " Research Initiative of the US National Center for Geographic Informa
tion and Analysis (NCGIA) .

target zone

(19 Where the source zones nest hierarchically into the target zones , for exam
pie UK administrative EDs nest exactly in wards , transfer of data from the
source units to the target units is one of simple aggregation .

33 The target zones are then overlain and the interpolated value is transferre
d into the zones .

geographical information

22 A common problem in geographical information systems (GIS) , and one whic
h has been known about for many years in the context of choropleth mapping
, is that of producing maps from population data aggregated over selected a
rbitrary areal units .

(191 The mixing of geographical information from different map scales and source
s is a key aspect of GIS functionality , but it does raise the question as
to what effects the combination of different levels of data uncertainty has
on both the output maps and on the data derived from spatial query and ana

lysis .

483 Geographical information systems (GIS) make considerable demands on the u
ser : the wide variety of data types recorded in digital maps , the complex
data structures used to organize them and the range of operations availabl

e , amount to a formidable obstacle for most users with standard requiremen
ts .

587 However , attempts to translate the Geographical Information Systems Tutor
(GISTutor) (Raper and Green (198 9) into a number of European languages h
ave encountered two main difficulties : first , the local adoption of Engli
sh for spatial terms (and therefore concepts ?

709 Like Gatrell and Vincent and Shepherd before him , he is concerned with the
lack of detailed geographical information particularly in this case with r

eference to the years between censuses .

information system

22 A common problem in geographical information systems (GIS) , and one whic
h has been known about for many years in the context of choropleth mapping
, is that of producing maps from population data aggregated over selected a
rbitrary areal units .

483 Geographical information systems (GIS) make considerable demands on the u
ser : the wide variety of data types recorded in digital maps , the complex
data structures used to organize them and the range of operations availabl

e , amount to a formidable obstacle for most users with standard requiremen

ts

587 However , attempts to translate the Geographical Information Systems Tutor
(GISTutor) (Raper and Green (198 9) into a number of European languages h
ave encountered two main difficulties : first , the local adoption of Engli
sh for spatial terms (and therefore concepts ?

604 This may indicate that a different approach is required for " public " spat
ial information systems used by " spatial professionals " .

621 (A) containing the screen interfaces , dialogues and spatial command proc
essor ; (B) containing a help and information system for a GIS ; and (C
) an expert system shell or high -level system access module .

842 In addition , plans for regional research centres and for the data and info
rmation systems for IGBP (known as IGBP -DIS) had been announced .

904 It originates from an Italian request to the Council of Ministers in (1973 t
o identify environmentally " balanced " and " unbalanced " areas in the Com
munity ; the first attempts to do this were unsuccessful and , though by (19
81 it was clear that a new approach based on an environmental information s
ystem was the most promising one , funding for this was not secured until 1
985 .

925 This is conceived not as a set of hardware but as a comprehensive informati
on system focused on the needs identified by the ESSC (see above) and ant
icipating somewhat those of IGBP .

1228 They propose a national radiological spatial information system and , in a
pilot project in Cumbria , have integrated several layers of data within AR
C/INFO to show what this might involve (Fig. 10.2) .

1401 Is it , we wonder , possible to contemplate bringing together some of these
data sources to form a National Online Health Information System (NOHIS)
, to parallel that for employment and unemployment (Townsend etalia (1987

) ?

1469 This large system , designed for a SUN workstation has the following main e
lements : an intelligent user interface ; an information system including k
nowledge bases , databases , inference machine and database management syst
em ; a simulation system ; a DSS .

population data

22 A common problem in geographical information systems (GIS) , and one whic
h has been known about for many years in the context of choropleth mapping
, is that of producing maps from population data aggregated over selected a
rbitrary areal units .

23 In the UK , the decennial Census of Population records the number of indivi
dual people and households , but almost all population data are reported as
various aggregations which ensure that data about individuals can not be r

ecovered .

124 Although this Shotgun model gives the best fit to the observed ward populat
ion data , it is logically flawed in at least two respects .

233

I
-v

j

408 The population data arc rather more problematic , since they are generated
from the " centroids " of census enumeration districts (EDs) ; the bounda
ries of the census EDs do not conveniently follow a grid , it is assumed th
ey have a similar fuzzy tolerance to the other coverages .

450 The grid square population data used here are a case in point .

1359 It should be pointed out , however , that the National Radiological Protect
ion Board currently uses 1 km grid square resolution population data from t
he (1971 Census in its radiological protection studies (Hallam etalia (1981
) •

<TERM SUMMARY LISTING TRUNCATED HERE>

Appendix C - Definition Templates, Tokens and Triggers

The full list o f definition templates arising due to the experiments described in this thesis is given below.

This is essentially a copy of the file defpats.txt. The corresponding token file (deftoks.txt) is also given.

Also listed here are the triggers (positive and negative) used to mark sentences as potentially containing

definitions (files deftrigs.txt and defntrigs.txt).

DEFINITION-TEMPLATES.
c ,o ,x .
c-o-x .
c=o.
C(X)= 0 .
X , c-o-x.
x,c=o.
x ,c=o,x .
c=o,x.
X dC ,X : 0 .
0=cC.
0 = c z C .
C=dzO.
CdO.
XCdO .
X ,C dO .
XdCzO.
XCd"0 " .
XCd"0 " , X .
C d " 0 " .
C d " 0 " , X .
X C d : " 0 " .
X C d : " 0 " , X .
C d : " 0 " .
C d : " 0 " , X .
X C d :0 .
C d : 0 .
X d " C " z " 0 " .
X d " C " z " 0 " , X .
d " C " z " 0 " .
d " C " z " 0 " , X .
C=d0 .
C = d = 0 .
C=XdO.
d : C = 0 .
wdCzO.
wXd:C =0 .
dCzO .
wvdC z 0 .
wdC=0.
wdC(X)=0.
wC=0.
wCzO.
" C "= 0 .
X " C " = 0 .
x tc ,x ,= o .
x tc=o .
XnChO.
X,+CnO.
X, hCnO.
X , h C - 0 .
C - 0 .
CnO.
CnO ,X.

235

TOKENS FOR DEFINITION===Adummy header line
define===d
defined=-=d
defined the concept===d
defined the concept of===d
defined the concept of a===d
defined the concept of an===d
defines the concept===d
defines the concept of===d
defines the concept of a===d
defines the concept of an===d
defines as-==d
defined as=-:=d
can be defined as===d
can also be defined as===d
is defined as===d
is defined to be===d
are defined as===d
describes===d
can be described as===d
Definition===d
definition===d
DEFINITION===d
We define===d
we define===d
let us define-==d
Let us define===d
we===w
We=--w
we can===w
We can===w
we may===w
We may=-~w
we might===w
We might=:==w
let us-==w
Let us===w
sometimes— =v
often===v
usually===v
occasionally===v
always==:=v
another— =x
again=— x
good===x
bad===x
useful===x
helpful===x
as the=— z
as a===z
as an— =z
as— =z
is====
are====
is a====
is an====
is simply— —
to be— ==
was====
are====
were====
will be====
ought to be— —
would be====
could be====

236

should be====
may be====
might be====
and=-=+
but===>
not===|
that===t
is called===n
is named===n
is known as===n
is often called==:=n
is often known as===n
which===h
which exhibits==:=h
which exhibit=“ h
in which case===h
where===h

f f

f ~ ’= -v=1 r

IF I f

DEFINITION TRIGGER PHRASES-
N.B. USE SPACES AS NECESSARY!-
define-

define-
Define-
definition-

definition-
Definition-
DEFINITION-
is -
are -
designat-

Designat-
is called-
is named-
regarded as-

Regarded as-
denoted-

Denoted-
elucidat-

Elucidat-
that is-
i.e. -
ie -

or "~
Known as -
known as -

Called a -
Called an -
called a -
called an -

DEFINITION NEGATIVE TRIGGER PHRASES-
N.B. USE SPACES AS NECESSARY!-
well defined-
badly defined-
wrongly defined-
wrong definition-

poor definition~
bad definition-
ill defined-
ill-defined-
not defined-
Not defined-
It is possible-
it is possible-
It is feasible-
it is feasible-
It is certain-
it is certain-
It is even-
it is even-
It is likely-
it is likely-
It is then-
it is then-
is to-
is thus-
is such that-
is due to-
is caused-
There are-
there are-
There is-
there is-
is a type of-

Appendix D - Example KEP Long Output

A full KEP long-format output file (kep.out) is listed here. This corresponds to the short test text given as

Figure 8. (For space reasons this output has been reproduced in a small font size.)

KEP VERSION 091
KEP LONG OUTPUT FILE FOR INPUT FILE 1/research5/pmr/kep/kep.in'
OTHER IDENTIFIER ENTERED BY USER IS '4.4test'
Technical term/acronym detection was selected.
Term look-ahead distance was set to 10 sentences.
Triggering was selected.
Ignore-'is'-triggers was selected.
Extraction was selected.
Only technical term bearing sentences are to be processed.
Input was pre-tagged with as tag attachment.
LINE STRUCTURE OF INPUT TEXT:-
LINE TEXT

0
1 Sorting_VVG is_VBZ the_AT0 action_NNl of_I0 arranging_VVG data_NN0 items_NN2

into_II some_DD specific_AJ0 order_NNl ._.
2 We_PPIS2 can_VM define_VVI a_AT0 sort_NNl routine_NNl (_(SR__FO)_) to_TO be_VBI

a_AT0 function_NNl which_DDQ orders_VVZ a_AT0 list_NNl of_IO items_NN2 according_H21
to_H22 some_DD criterion_NNl ._.

3 Examples_NN2 of_IO SRs_NP0 include_VV0 the_AT0 bubble_NNl sort_NNl and__CC the_AT0
quick_AJ0 sort_NNl ._.

4 Sort_NNl routines_NN2 are_VBR composed_VVN of_IO four_MC elements_NN2
input__NNl list_NNl output_NNl list_NNl , sort_NNl criterion_NNl and_CC sort_NNl
algorithm_NNl

5 An_AT0 example_NNl of_IO a_AT0 sort_NNl criterion_NNl is_VBZ alphabetical_AJO
order_NNl ._.

6 A_AT0 sort_NNl routine_NNl is_VBZ a_AT0 type_NNl of_IO data_NN0 rearrangement_NNl
algorithm_NNl or_CC DRA_NP0

7 In_II these_DD2 data_NN0 elements_NN2 are_VBR not_XX themselves_PPX2
altered__VVN , but_CCB their_APPGE order_NNl of_IO presentation_NNl is_VBZ changed_VVN
to_TO assist_VVI the_AT0 calling_AJ0 application_NNl ._.
Searching for lines containing untagged words...
SENTENCE STRUCTURE OF INPUT TEXT:-
SENT TEXT

0 Sorting is the action of arranging data items into some specific order .
1 We can define a sort routine { SR) to be a function which orders a list of

items according to some criterion .
2 Examples of SRs include the bubble sort and the quick sort .
3 Sort routines are composed of four elements : input list , output list , so

rt criterion and sort algorithm .
4 An example of a sort criterion is alphabetical order .
5 A sort routine is a type of data rearrangement algorithm , or DRA .
6 In these , data elements are not themselves altered , but their order of pr

esentation is changed to assist the calling application .
BLANK SENTENCE COUNT: 0
TOTAL SENTENCE COUNT: 7

LOOKING FOR TECHNICAL TERMS...
Removing old tttest.out file...
Opening new tttest.out file...
Removing old ttnola.out file...
Opening new ttnola.out file...

239

NOTE! compile-time flag use_basic was TRUE, so termtag.txt NOT USED.
Initialising global fixed TT array...
Candidate term 'data_NN0 items_NN2 1 found in sentence 0.
Term 'data item' NOT seen before.
This term occurred only once in sentence 0, so
Sentence look-ahead found no match for 'data_nn0 it'
Therefore candidate term has not been stored in the term array.

Candidate term 'specific_AJ0 order_NNl ' found in sentence 0.
Term 'specific order' NOT seen before.
This term occurred only once in sentence 0, so
Sentence look-ahead found no match for 'specific_aj0 or'
Therefore candidate term has not been stored in the term array.

Candidate term 'sort_NNl routine_NNl ' found in sentence 1.
Term 'sort routine' NOT seen before.
This term occurred only once in sentence 1, so
Look-ahead has detected match for 'sort_nnl ro' in sentence 3
FILLING TERM SLOT 0 with 'sort routine'

Candidate term 'bubble_NNl sort_NNl 1 found in sentence 2.
Term 'bubble sort' NOT seen before.
This term occurred only once in sentence 2, so
Sentence look-ahead found no match for 'bubble_nnl so'
Therefore candidate term has not been stored in the term array.

Candidate term ’quick_AJ0 sort_NNl ' found in sentence 2.
Term 'quick sort' NOT seen before.
This term occurred only once in sentence 2, so
Sentence look-ahead found no match for 'quick_aj0 so'
Therefore candidate term has not been stored in the term array.

Candidate term 'Sort_NNl routines_NN2 ' found in sentence 3.
Term already stored.
Candidate term 'input_NNl list_NNl 1 found in sentence 3.
Term 'input list' NOT seen before.
This term occurred only once in sentence 3, so
Sentence look-ahead found no match for 'input_nnl li'
Therefore candidate term has not been stored in the term array.

Candidate term 'output_NNl list_NNl ’ found in sentence 3.
Term 'output list' NOT seen before.
This term occurred only once in sentence 3, so
Sentence look-ahead found no match for 'output_nnl li'
Therefore candidate term has not been stored in the term array.

Candidate term 'sort_NNl criterion_NNl ' found in sentence 3.
Term 'sort criterion' NOT seen before.
This term occurred only once in sentence 3, so
Look-ahead has detected match for 'sort_nnl cr' in sentence 4
FILLING TERM SLOT 1 with 'sort criterion'

Candidate term 'sort_NNl algorithm_NNl ' found in sentence 3.
Term 'sort algorithm' NOT seen before.
This term occurred only once in sentence 3, so
Sentence look-ahead found no match for 'sort_nnl al1
Therefore candidate term has not been stored in the term array.

Candidate term 'sort_NNl criterion_NNl ' found in sentence 4.
Term already stored.
Candidate term 'alphabetical_AJO order_NNl ' found in sentence 4.
Term 'alphabetical order' NOT seen before.
This term occurred only once in sentence 4, so
Sentence look-ahead found no match for 'alphabetical_aj0 or'
Therefore candidate term has not been stored in the term array.

Candidate term 'sort_NNl routine_NNl ' found in sentence 5.
Term already stored.

Candidate term 'data_NNO rearrangement_NNl ' found in sentence 5.
Term 'data rearrangement* NOT seen before.
This term occurred only once in sentence 5, so
Sentence look-ahead found no match for 'data__nnO re'
Therefore candidate term has not been stored in the term array.

Candidate term 'rearrangement_NNl algorithm_NNl ' found in sentence 5.
Term 'rearrangement algorithm' NOT seen before.
This term occurred only once in sentence 5, so
Sentence look-ahead found no match for 'rearrangement_nnl al'
Therefore candidate term has not been stored in the term array.

Candidate term 'data_NNO rearrangement_NNl algorithm_NNl ' found in sentence 5.
Term 'data rearrangement algorithm' NOT seen before.
This term occurred only once in sentence 5, so
Sentence look-ahead found no match for 'data_nnO rearrangement_nnl al'
Therefore candidate term has not been stored in the term array.

Candidate term 'data_NNO elements_NN2 ' found in sentence 6.
Term 'data element’ NOT seen before.
This term occurred only once in sentence 6, so
Sentence look-ahead found no match for 'data_nnO el'
Therefore candidate term has not been stored in the term array.

Candidate term 'their_APPGE order_NNl ' found in sentence 6.
Term 'their order' NOT seen before.
This term occurred only once in sentence 6, so
Sentence look-ahead found no match for 'their_appge or'
Therefore candidate term has not been stored in the term array.

Candidate term 'calling_AJO application_NNl ' found in sentence 6.
Term 'calling application' NOT seen before.
This term occurred only once in sentence 6, so
Sentence look-ahead found no match for 'calling_ajO ap'
Therefore candidate terra has not been stored in the term array.

Creating hypernym singleword terms from 2-word terms...
********** PROBABLE TECHNICAL TERMS **********

Probable technical term 'sort routine'.
This term occurred 3 times (in sentences 1 3 5).

Probable technical term 'sort criterion'.
This term occurred 2 times (in sentences 3 4).

(Probable terms all occur at least twice.)
********** UNCONFIRMED TECHNICAL TERMS **********

(Unconfirmed TTs are TTs which the look-ahead mechanism thought
occurred twice but which in fact only occurred once. They do NOT
include TTs which only occurred once and which did NOT get stored
by the look-ahead code - for these you have to look
at the output file tttest.out, which contains all the text
fragments of length 2 and 3 words which KEP thought were
candidates for TT-hood. Note that this file does not contain
fragments of length 4 or more, and that it does contain duplicate
entries. However, it is sorted. It also allows you to see the
various morphological forms that a TT occurred in.)

LOOKING FOR PROBABLE DUFF TERMS...
Done.
TERM ACQUISITION PHASE COMPLETED - 2 TERMS FOUND.

- INCLUDING 0 N-P-N TERMS.

241

LOOKING FOR ACRONYMS.

Candidate acronym 'SR' found in sentence
1 We can define a sort routine (SR)

items according to some criterion ,
Acronym 'SR' NOT seen before
FILLING ACRONYM SLOT 0 with 'SR1
Attempting to find expansion for 'SR1...
POSSIBLE ACRO EXPANSIONS

to be a function which orders a list of

Candidate no. 4 (sort_NNl routine_NNl) has score 20
Candidate no. 6 (define_VVI a_AT0 sort_NNl routine_NNl) has score 16
BEST SCORER is 'sort_NNl routine_NNl 1 on 20 points.
This candidate had the following attributes:

The acronym itself was bracketed in some way.
Furthermore, the bracketed acronym immediately followed the candidate expansion.
The acronym was exactly generated from the expansion's word-initial letters.
Stored expansion 'sort routine' in aero slot 0

Attempting to link acronym to a technical term...
Linked acronym 0 (SR - sort routine) to term 0 (sort routine)
Candidate acronym 'SRs' found in sentence 2.

2 Examples of SRs include the bubble sort and the quick sort .
Acronym 'SR' seen before - in slot 0
Candidate acronym 'DRA' found in sentence 5.

5 A sort routine is a type of data rearrangement algorithm
Acronym 'DRA' NOT seen before
FILLING ACRONYM SLOT 1 with 'DRA'
Attempting to find expansion for 'DRA'...
POSSIBLE ACRO EXPANSIONS

or DRA

7 (data_NN0 rearrangement_NNl) has score 8
8 (rearrangement_NNl algorithm_NNl) has score 8
12 (data_NN0 rearrangement_NNl algorithm_NNl) has score 10
16 (data_NN0 rearrangement_NNl algorithm_NNl ,) has score 10
17 (rearrangement_NNl algorithm_NNl , or_CC) has score 8
(19 (type_NNl of_IO data_NN0 rearrangement_NNl algorithm_NNl) has score 7
21 (data_NN0 rearrangement_NNl algorithm_NNl , or_CC) has score 10
24 (type_NNl of_IO data_NN0 rearrangement_NNl algorithm_NNl ,) has score

on 10 points.

Candidate no
Candidate no
Candidate no
Candidate no
Candidate no
Candidate no
Candidate no
Candidate no
7
BEST SCORER is 'data_NN0 rearrangement_NNl algorithm_NNl
This candidate had the following attributes:

The acronym was exactly generated from the expansion's word-initial letters
Stored expansion 'data rearrangement algorithm' in aero slot 1

Attempting to link acronym to a technical term...
No link made.

********** ACRONYMS **********

Probable acronym 'SR'.
This acronym stands for 'sort routine'.
This expansion is also a technical term as found above.
The acronym occurred 2 times (in sentences 1 2) .

Probable acronym 'DRA'.
This acronym stands for 'data rearrangement algorithm'.
The acronym occurred 1 times (in sentences 5).

ADDING UNLINKED ACRONYM EXPANSIONS AS NEW TERMS...
Acronym 'DRA', expansion 'data rearrangement algorithm', has no term link.
Term no. 2, 'data rearrangement algorithm' is now stored.
LOOKING FOR ACRONYMS WITHIN TECHNICAL TERMS (for capital correction)...
...looking for acronym 'sR' in all technical terms...
...looking for acronym 'dRA' in all technical terms...
LOOKING FOR UNKNOWN CAPITALISED WORDS STARTING TERMS (for capital correction)...
LOOKING FOR STRAY CAPITALS (for capital correction)...
LOOKING FOR STRAY LOWERCASE LETTERS IN WORDS (for capital correction)...

***** ACRONYM STATISTICS *****
There were 2 possible acronyms found, 2 with expansions found in the text.

242

2 of the expanded acronyms were 'exact':
SR — > sort routine
DRA — > data rearrangement algorithm

There were 0 expanded acronyms where the expansion was in some way bracketed:
There were 1 expanded acronyms where the acronym was in some way bracketed:

SR — > sort routine
...and 1 of these had the bracketed acronym IMMEDIATELY after the expansion:

SR — > sort routine
0 acronyms had the acronym generated from ALL the capitals in the expansion:
0 acronyms had the acronym generated from the word-initial letters
remaining after all glue-words had been deleted:
0 acronyms had been expanded in the text as hyphenated single words:
0 of the 2 probable acros had no expansion near their FIRST occurrence:
NOTE: The above figures reflect the opinion of the KEP acronym extractor,
rather than that of a human reader - the two may not be exactly the same!
This is because the KEP acronym extractor may fail to find some acronym
expansions, or find one where none actually exists.
Note also that counts given are not exclusive; an acronym
may well be bracketed AND be generated from a candidate which
has had all its glue words deleted etc.

LOOKING FOR HYPERNYMS...
REMINDER! No 'is' triggers will be used in this run!

SENTENCE 0
No hypernym-triggers found, so looking for apposition triggers...
No apposition-type triggers detected either.
Sentence 0 not triggered.
Sentence was:

0 Sorting is the action of arranging data items into some specific order .
SENTENCE 1
No hypernym-triggers found, so looking for apposition triggers...
Just found first part of apposition pattern at position 30
Just found second part of apposition pattern at position2 35
X(X) apposition trigger detected... possible hypernym at sent 1, char 30.
Sentence was:

1 We can define a sort routine (SR) to be a function which orders a list of
items according to some criterion .

Term no. 0 ('sort routine') exists in sentence '1 '
Tokenising sentence...
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 10, end word 11, pattern 'to be', token '='
Instance no. 2, start word 24, end word 24, pattern token
Instance no. 3, start word 7, end word 7, pattern '(', token '('
Instance no. 4, start word 9, end word 9, pattern ')', token ')'
Tokenisation stage 1 complete.

There were 4 token-instances in this sentence.
(Sentence will be cut up in 15 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.
(There were 15 allowed and 0 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 13 did not have a LL element
made for them, because no extraction would have resulted.
So there were 2 LL elements actually made.

Full list of tokenisations made for this sentence:
X=X.

word group 0: We can define a sort routine (SR)
word group 1: =
word group 2: a function which orders a list of items according to some criterion
word group 3: .

X(X)X.
word group 0: We can define a sort routine
word group 1: (
word group 2: SR

word group 3:)
word group 4: to be a function which orders a list of items according to some

criterion
word group 5: ,

Tokenisation attempt complete.
Sentence had some tokenisation(s).
Tokenisation X=X. matched template C=0.
This is template match no. 0 for this tokenisation.
Tokenisation X(X)X. matched template C(0)X.
This is template match no. 0 for this tokenisation.
CANDIDATE EXTRACTION No. 1
Concept being defined: ’We can define a sort routine (SR)'
Hypernym given : 'a function which orders a list of items according to some
criterion'
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
CANDIDATE EXTRACTION No. 2
Concept being defined: 'We can define a sort routine'
Hypernym given : 'SR'
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
AMALGAMATION CANDIDATES ARE AS FOLLOWS:
RELATION AMALGAMATION DONE.
(0 candidate(s) for this amalgamation.)
AMALGAMATED EXTRACTION:
No amalgamated extraction found.
SENTENCE 2 possible hypernym at sent 2, char 17.
Sentence was:

2 Examples of SRs include the bubble sort and the quick sort .
Acronym no. 0 ('SR') exists in sentence '2 '
Tokenising sentence...
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 8, end word 8, pattern 'and', token '+'
Instance no. 2 , start word 12, end word 12, pattern '.', token '.'
Tokenisation stage 1 complete.

There were 2 token-instances in this sentence.
(Sentence will be cut up in 3 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.
(There were 3 allowed and 0 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 3 did not have a LL element
made for them, because no extraction would have resulted.
So there were 0 LL elements actually made.

Full list of tokenisations made for this sentence:
Tokenisation attempt complete.

Sentence had no tokenisations.
Unable to extract this possible hypernym due to no template matches.

SENTENCE 3
No hypernym-triggers found, so looking for apposition triggers...
Just found first part of apposition pattern at position 58
Just found second part of apposition pattern at position2 72
X,X,X apposition trigger detected... possible hypernym at sent 3, char 58.

Sentence was:
3 Sort routines are composed of four elements : input list , output list , so

rt criterion and sort algorithm ,
Term no. 0 ('sort routine') exists in sentence '3 '
Tokenising sentence...
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 3, end word 3, pattern 'are', token ’='
Instance no. 2, start word 17, end word 17, pattern 'and', token '+'
Instance no. 3, start word 20, end word 20, pattern token '.'
Instance no. 4, start word 11, end word 11, pattern ',', token ','
Instance no. 5, start word 14, end word 14, pattern ',', token ',’
Instance no. 6, start word 8, end word 8, pattern token ':'
Tokenisation stage 1 complete.

There were 6 token-instances in this sentence.
(Sentence will be cut up in 63 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.
(There were 63 allowed and 0 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 59 did not have a LL element
made for them, because no extraction would have resulted.
So there were 4 LL elements actually made.

Full list of tokenisations made for this sentence:
X=X.

word group 0: Sort routines

244

•i:
!

word group 1: =
word group 2: composed of four elements : input list , output list

and sort algorithm
word group 3:

X=X,X.
word group 0: Sort routines
word group 1: =
word group 2: composed of four elements : input list
word group 3: i
word group 4: output list , sort criterion and sort algorithm
word group 5:

X=X,X.
word group 0: Sort routines
word group 1: =
word group 2: composed of four elements : input list , output list
word group 3: r
word group 4: sort criterion and sort algorithm
word group 5: .

X,X,X.
word group 0: Sort routines are composed of four elements : input
word group 1: r
word group 2: output list
word group 3: /
word group 4 : sort criterion and sort algorithm
word group 5:

sort criterion

input list , output list , sort

input list , output list , sort

Tokenisation attempt complete.
Sentence had some tokenisation(s).
Tokenisation X=X. matched template C=0.
This is template match no. 0 for this tokenisation.
Tokenisation X=X,X. matched template C=0,X.
This is template match no. 0 for this tokenisation.
Tokenisation X=X,X. matched template C=0,X.
This is template match no. 0 for this tokenisation.
Tokenisation X,X,X. matched template C,0,X.
This is template match no. 0 for this tokenisation.
CANDIDATE EXTRACTION No. 1
Concept being defined: 'Sort routines'
Hypernym given : 'composed of four elements
criterion and sort algorithm'
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation 'composed of four elements
criterion and sort algorithm'
because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 2
Concept being defined: 'Sort routines'
Hypernym given : 'composed of four elements : input list'
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation 'composed of four elements : input list'
because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 3
Concept being defined: 'Sort routines'
Hypernym given : 'composed of four elements
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation 'composed of four elements
because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 4
Concept being defined: 'Sort routines are composed of four elements
Hypernym given : 'output list'
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
AMALGAMATION CANDIDATES ARE AS FOLLOWS:
RELATION AMALGAMATION DONE.
(0 candidate(s) for this amalgamation.)
AMALGAMATED EXTRACTION:
No amalgamated extraction found.

input list , output list’

input list , output list'

input list'

SENTENCE 4
No hypernym-triggers found, so looking for apposition triggers.
No apposition-type triggers detected either.
Sentence 4 not triggered.
Sentence was:

4 An example of a sort criterion is alphabetical order .
SENTENCE 5 possible hypernym at sent 5, char 21.

245

Sentence was:
5 A sort routine is a type of data rearrangement algorithm , or DRA .

Term no. 0 ('sort routine') exists in sentence '5 '
Tokenising sentence...
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 4, end word 7, pattern 'is a type o f , token ’ t '
Instance no. 2, start word 6, end word 7, pattern 'type o f, token 'f
Instance no. 3, start word 4, end word 4, pattern 'is', token '='
Instance no. 4, start word 4, end word 5, pattern 'is a', token 't'
Instance no. 5, start word 14, end word 14, pattern token '.'
Instance no. 6, start word 11, end word 11, pattern token ','
Tokenisation stage 1 complete.

There were 6 token-instances in this sentence.
(Sentence will be cut up in 63 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.
(There were 27 allowed and 36 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 17 did not have a LL element
made for them, because no extraction would have resulted.
So there were 10 LL elements actually made.

Full list of tokenisations made for this sentence:
XtX.

word group 0: A sort routine
word group 1: t
word group 2: data rearrangement algorithm , or DRA
word group 3: .

XtX.
word group 0: A sort routine is a
word group 1: t
word group 2: data rearrangement algorithm , or DRA
word group 3: .

X=X.
word group 0: A sort routine
word group 1: =
word group 2: a type of data rearrangement algorithm , or DRA
word group 3: .

XtX.
word group 0: A sort routine
word group 1: t
word group 2: type of data rearrangement algorithm , or DRA
word group 3: .

XtX.
word group 0: A sort routine
word group 1: t
word group 2: data rearrangement algorithm , or DRA
word group 3: .

XtX,X.
word group 0: A sort routine
word group 1: t
word group 2: data rearrangement algorithm
word group 3: ,
word group 4: or DRA
word group 5: .

XtX,X.
word group 0: A sort routine is a
word group 1: t
word group 2: data rearrangement algorithm
word group 3: ,
word group 4: or DRA
word group 5: .

X=X,X.
word group 0: A sort routine
word group 1: =
word group 2: a type of data rearrangement algorithm
word group 3: ,
word group 4: or DRA
word group 5: .

XtX,X.
word group 0: A sort routine
word group 1: t
word group 2: type of data rearrangement algorithm
word group 3: ,
word group 4: or DRA
word group 5: .

XtX,X.
word group 0: A sort routine
word group 1: t
word group 2: data rearrangement algorithm
word group 3: ,
word group 4: or DRA

246

word group 5: .
Tokenisation attempt complete.

Sentence had some tokenisation(s).
Tokenisation XtX. matched template CtO.
This is template match no. 0 for this tokenisation.
Tokenisation XtX. matched template CtO.
This is template match no. 0 for this tokenisation.
Tokenisation X=X. matched template C=0.
This is template match no. 0 for this tokenisation.
Tokenisation XtX. matched template CtO.
This is template match no. 0 for this tokenisation.
Tokenisation XtX. matched template CtO.
This is template match no. 0 for this tokenisation.
Tokenisation XtX,X. matched template CtO,X.
This is template match no. 0 for this tokenisation.
Tokenisation XtX,X. matched template CtO,X.
This is template match no. 0 for this tokenisation.
Tokenisation X=X,X. matched template C=Q,X.
This is template match no. 0 for this tokenisation.
Tokenisation XtX,X. matched template Ct0,X.
This is template match no. 0 for this tokenisation.
Tokenisation XtX,X. matched template CtO,X.
This is template match no. 0 for this tokenisation.
CANDIDATE EXTRACTION No. 1
Concept being defined: 'sort routine’
Hypernym given : 'data rearrangement algorithm , or DRA'
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX

CANDIDATE EXTRACTION No. 2
Concept being defined: 'sort routine is a'
Hypernym given : 'data rearrangement algorithm , or DRA'
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
CANDIDATE EXTRACTION No. 3
Concept being defined: 'sort routine'
Hypernym given : 'a type of data rearrangement algorithm , or DRA'
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation 'a type of data rearrangement algorithm , or DRA'
because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 4
Concept being defined: 'sort routine'
Hypernym given : 'type of data rearrangement algorithm , or DRA'
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation 'type of data rearrangement algorithm , or DRA'
because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 5
Concept being defined: 'sort routine'
Hypernym given : 'data rearrangement algorithm , or DRA'
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX

CANDIDATE EXTRACTION No. 6
Concept being defined: 'sort routine'
Hypernym given : 'data rearrangement algorithm'
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX

CANDIDATE EXTRACTION No. 7
Concept being defined: 'sort routine is a'
Hypernym given : 'data rearrangement algorithm'
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
CANDIDATE EXTRACTION No. 8
Concept being defined: 'sort routine'
Hypernym given : 'a type of data rearrangement algorithm'
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation 'a type of data rearrangement algorithm'
because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 9
Concept being defined: 'sort routine'
Hypernym given : 'type of data rearrangement algorithm'
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation 'type of data rearrangement algorithm'

247

because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 10
Concept being defined: 'sort routine1
Hypernym given : 'data rearrangement algorithm'
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX

AMALGAMATION CANDIDATES ARE AS FOLLOWS:
Amalgamation candidate 1:

Concept: 'sort routine'
Elucidation: 'data rearrangement algorithm , or DRA'

Amalgamation candidate 2:
Concept: 'sort routine'
Elucidation: 'data rearrangement algorithm , or DRA'

Amalgamation candidate 3:
Concept: 'sort routine’
Elucidation: 'data rearrangement algorithm'

Amalgamation candidate 4:
Concept: 'sort routine'
Elucidation: 'data rearrangement algorithm'

Amalgamation code: >3-amalgamation-candidate case:
CODE STILL BEING WRITTEN - USING FIRST ONE FOR NOW!
RELATION AMALGAMATION DONE.
(4 candidate(s) for this amalgamation.)
AMALGAMATED EXTRACTION:
Concept being defined: sort routine
Hypernym given : data rearrangement algorithm , or DRA
SENTENCE 6
No hypernym-triggers found, so looking for apposition triggers...
Just found first part of apposition pattern at position 10
Just found second part of apposition pattern at position2 53
X,X,X apposition trigger detected... possible hypernym at sent 6, char 10.

Sentence was:
6 In these , data elements are not themselves altered , but their order of

esentation is changed to assist the calling application .
No technical term exists in sentence '6 '
HYPERNYMY TRIGGER STATISTICS
The following positive triggers passed the negative triggering stage:
TRIGGER: '{*)' COUNT: 1
TRIGGER: 'includ' COUNT: 1
TRIGGER: ',*,' COUNT: 2
TRIGGER: 'type of' COUNT: 1
5 hypernym instance(s) passed triggering stages.
2 hypernym instance(s) DID NOT pass triggering stages.
(2 positive trigger(s) and 0 negative trigger(s) (not including appositions))
THESIS:
Apposition trigs=3,
s(all)=4
s(passed)=2
s(blocked)=2
actual pass rate=5Q percent
3 of those had one or more template matches.
And of those 1 had at least one validated extraction.
***** 1 HYPERNYM(S) EXTRACTED *****

LOOKING FOR EXEMPLIFICATIONS...
REMINDER! No 'is' triggers will be used in this run!

SENTENCE 0
No example-triggers found, so looking for apposition triggers...
No apposition-type triggers detected either.
(Triggering: position = 0, nposition = 0)
Sentence 0 not triggered.
Sentence was:

0 Sorting is the action of arranging data items into some specific order .
SENTENCE 1
No example-triggers found, so looking for apposition triggers...
Just found first part of apposition pattern at position 30

Just found second part of apposition pattern at position2 35
X(X) apposition trigger detected... possible exemplification at sent 1, char 30.

Sentence was:
1 We can define a sort routine (SR > to be a function which orders a list of

items according to some criterion .
Term no. 0 ('sort routine1) exists in sentence '1 '
Tokenising sentence...
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 24, end word 24, pattern token
Tokenisation stage 1 complete.

There were 1 token-instances in this sentence.
(Sentence will be cut up in 1 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.
(There were 1 allowed and 0 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 1 did not have a LL element
made for them, because no extraction would have resulted.
So there were 0 LL elements actually made.

Full list of tokenisations made for this sentence:
Tokenisation attempt complete.

Sentence had no tokenisations.
Unable to extract this possible exemplification due to no template matches.

SENTENCE 2 possible exemplification at sent 2, char 1.
Sentence was:

2 Examples of SRs include the bubble sort and the quick sort .
Acronym no. 0 ('SR') exists in sentence '2 '
Tokenising sentence...
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 1, end word 2, pattern 'Examples of', token
Instance no. 2, start word 8, end word 8, pattern 'and', token '+'
Instance no. 3, start word 12, end word 12, pattern '.', token
Instance no. 4, start word 4, end word 4, pattern 'include', token '='
Tokenisation stage 1 complete.

There were 4 token-instances in this sentence.
(Sentence will be cut up in 15 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.
(There were 15 allowed and 0 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 13 did not have a LL element
made for them, because no extraction would have resulted.
So there were 2 LL elements actually made.

Full list of tokenisations made
eX=X.

word group 0: e
word group 1: SRs
word group 2: =
word group 3: the bubble sort
word group 4:

eX=X+X.
word group 0: e
word group 1: SRs
word group 2: =
word group 3: the bubble sort
word group 4: +
word group 5: the quick sort
word group 6: .

Tokenisation attempt complete.
Sentence had some tokenisations.
Tokenisation eX=X. matched template eC=0.
This is template match no. 0 for this tokenisation.
Tokenisation eX=X+X. matched template eC=0+l.
This is template match no. 0 for this tokenisation.
CANDIDATE EXTRACTION No. 1
Concept being exemplified: 'SRs'
Example given : bubble sort and the quick sort
Concept is probable acronym, and so is valid.
NOTE: Concept 'SR' was a probable acronym,

and so has been replaced by 'sort routine' by validation function.
CONCEPT HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX

CANDIDATE EXTRACTION No. 2
Concept being exemplified: 'SRs'
Example given : bubble sort
Example given : quick sort
Concept is probable acronym, and so is valid.
NOTE: Concept 'SR' was a probable acronym,

and so has been replaced by 'sort routine' by validation function.

CONCEPT HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX

AMALGAMATION CANDIDATES ARE AS FOLLOWS:
Amalgamation candidate 1:

Concept: 'sort routine'
Elucidation: 'bubble sort and the quick sort' etc

Amalgamation candidate 2:
Concept: 'sort routine'
Elucidation: 'bubble sort' etc

EXEMP/PART Amalgamation code: 2-amalgamation-candidate case:-
conc_candO is 'sort routine', conc_candl is 'sort routine'
eluc__cand01_0 is
'bubble sort and the quick sort'
eluc_cand01_l is
'bubble sort'
(There may be other elucs in addition to this one.)
2 concept candidates were identical!
2 FIRST eluc candidates were greater than 30 percent similar, so using the LCS's...
LCS? strl was
'bubble sort and the quick sort '
and str2 was
'bubble sort '
- LCS is
'bubble sort'
LCS function was passed a blank string - returning the other one.
RELATION AMALGAMATION DONE.
(2 candidate(s) for this amalgamation.)
AMALGAMATED EXTRACTION:
Concept being exemplified: sort routine
Example given : bubble sort
Example given : quick sort
SENTENCE 3
No example-triggers found, so looking for apposition triggers...
Just found first part of apposition pattern at position 58
Just found second part of apposition pattern at position2 72
X,X,X apposition trigger detected... possible exemplification at sent 3, char 58.

Sentence was:
3 Sort routines are composed of four elements : input list , output list , so

rt criterion and sort algorithm .
Term no. 0 ('sort routine’) exists in sentence '3 '
Tokenising sentence..,
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 17, end word 17, pattern 'and', token '+'
Instance no. 2, start word 20, end word 20, pattern '.', token '.'
Instance no. 3, start word 3, end word 3, pattern 'are', token '='
Tokenisation stage 1 complete.

There were 3 token-instances in this sentence.
(Sentence will be cut up in 7 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.
(There were 7 allowed and 0 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 7 did not have a LL element
made for them, because no extraction would have resulted.
So there were 0 LL elements actually made.

Full list of tokenisations made for this sentence:
Tokenisation attempt complete.

Sentence had no tokenisations.
Unable to extract this possible exemplification due to no template matches.

SENTENCE 4 possible exemplification at sent 4, char 3.
Sentence was:

4 An example of a sort criterion is alphabetical order .
Term no. 1 ('sort criterion') exists in sentence '4 '
Tokenising sentence...
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 2, end word 2, pattern 'example', token 'e'
Instance no. 2, start word 1, end word 3, pattern ’An example of', token 'e'
Instance no. 3, start word 10, end word 10, pattern token '.'
Instance no. 4, start word 7, end word 7, pattern 'is', token '='
Tokenisation stage 1 complete.

There were 4 token-instances in this sentence.
(Sentence will be cut up in 15 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.

250

(There were 11 allowed and 4 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 10 did not have a LL element
made for them, because no extraction would have resulted.
So there were 1 LL elements actually made.

Full list of tokenisations made for this sentence:
eX=X.

word group 0: e
word group 1: a sort criterion
word group 2: =
word group 3: alphabetical order
word group 4: .

Tokenisation attempt complete.
Sentence had some tokenisations.
Tokenisation eX=X. matched template eC=0.
This is template match no. 0 for this tokenisation.
CANDIDATE EXTRACTION No. 1
Concept being exemplified: 'sort criterion'
Example given : alphabetical order
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX

AMALGAMATION CANDIDATES ARE AS FOLLOWS:
Amalgamation candidate 1:

Concept: 'sort criterion'
Elucidation: 'alphabetical order' etc

Amalgamation code: 1 candidate only - so returning it.
RELATION AMALGAMATION DONE.
(1 candidate(s) for this amalgamation.)
AMALGAMATED EXTRACTION:
Concept being exemplified: sort criterion
Example given : alphabetical order
SENTENCE 5
No example-triggers found, so looking for apposition triggers...
Just found first part of apposition pattern at position 58
No apposition-type triggers detected either.
(Triggering: position = 0, nposition = 0)
Sentence 5 not triggered.
Sentence was:

5 A sort routine is a type of data rearrangement algorithm , or DRA .
SENTENCE 6
No example-triggers found, so looking for apposition triggers...
Just found first part of apposition pattern at position 10
Just found second part of apposition pattern at position2 53
X,X,X apposition trigger detected... possible exemplification at sent 6, char 10.
Sentence was:

6 In these , data elements are not themselves altered , but their order of pr
esentation is changed to assist the calling application .

No technical term exists in sentence '6 '
EXEMPLIFICATION TRIGGER STATISTICS
The following positive triggers passed the negative triggering stage:
TRIGGER: '(*)' COUNT: 1
TRIGGER: 'Example' COUNT: 1
TRIGGER: COUNT: 2
TRIGGER: ' example' COUNT: 1
5 exemplification instance(s) passed triggering stages.
2 exemplification instance(s) DID NOT pass triggering stages.
(2 positive trigger(s) and 0 negative trigger(s) (not including appositions))
THESIS:
Apposition trigs=3,
s(all)=4
s(passed)=2
s(blocked)=2
actual pass rate=50 percent
2 of those had one or more template matches.
And of those 2 had at least one validated extraction.
***** 2 EXEMPLIFICATION(S) EXTRACTED *****

LOOKING FOR DEFINITIONS...
REMINDER! No 'is' triggers will be used in this run!

251

-

SENTENCE 0
No definition-triggers found, so looking for apposition triggers...
No apposition-type triggers detected either.
Sentence 0 not triggered.
Sentence was:

0 Sorting is the action of arranging data items into some specific order .
SENTENCE 1 possible definition at sent 1, char 7.
Sentence was:

1 We can define a sort routine (SR) to be a function which orders a list of
items according to some criterion .

Term no. 0 ('sort routine') exists in sentence '1 '
Tokenising sentence...
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 3, end word 3, pattern 'define', token 'd '

2, start word 1, end word 1, pattern 'We', token 'w'
3, start word 1, end word 2, pattern 'We can', token 'w'
4, start word 10, end word 11, pattern 'to be', token '='
5, start word 24, end word 24, pattern token '.'

Instance no
Instance no
Instance no
Instance no
Instance no
Instance no

6, start word 7, end word 7, pattern '(', token '('
7, start word 9, end word 9, pattern token ')'

Tokenisation stage 1 complete.
There were 7 token-instances in this sentence,
(Sentence will be cut up in 127 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.
(There were 95 allowed and 32 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 89 did not have a LL element
made for them, because no extraction would have resulted.
So there were 6 LL elements actually made.

Full list of tokenisations made for this sentence:
XdX.

word group 0: We can
word group 1: d
word group 2: a sort routine (SR) to be a function which orders a list of items

according to some criterion
word group 3:

X=X.
word group 0: We can define a sort routine (SR)
word group 1: =
word group 2. a function which orders a list of items
word group 3

wX=X.
word group 0 w
word group 1 can define a sort routine (SR)
word group 2 =
word group 3 a function which orders a list of items
word group 4

wX=X.
word group 0 w
word group 1 define a sort routine (SR)
word group 2 =
word group 3 a function which orders a list of items
word group 4 .

wdX=X.
word group 0 w
word group 1 d
word group 2 a sort routine (SR)
word group 3 =
word group 4 a function which orders a list of items
word group 5

wdx(X) =X.
word group 0 w
word group 1 d
word group 2 a sort routine
word group 3 (
word group 4 SR
word group 5)
word group 6 =
word group 7 a function which orders a list of items
word group 8 .

Tokenisation attempt complete.
Sentence had some tokenisation(s).
Tokenisation XdX. matched template CdO.
This is template match no. 0 for this tokenisation.
Tokenisation X=X. matched template C=0.
This is template match no. 0 for this tokenisation.

252

Tokenisation wX=X. matched template wC=0.
This is template match no. 0 for this tokenisation.
Tokenisation wX=X. matched template wC=0.
This is template match no. 0 for this tokenisation.
Tokenisation wdX=X. matched template wdC=0.
This is template match no. 0 for this tokenisation.
Tokenisation wdX(X)=X. matched template wdC(X)=0.
This is template match no. 0 for this tokenisation.
CANDIDATE EXTRACTION No. 1
Concept being defined: 'We can’
Definition given : 'a sort routine (SR) to be a function which orders a list of
items according to some criterion*
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
CANDIDATE EXTRACTION No. 2
Concept being defined: 'We can define a sort routine (SR)'
Definition given : 'a function which orders a list of items according to some
criterion'
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
CANDIDATE EXTRACTION No. 3
Concept being defined: 'can define a sort routine (SR)'
Definition given : 'a function which orders a list of items according to some
criterion'
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
CANDIDATE EXTRACTION No. 4
Concept being defined: 'define a sort routine (SR)'
Definition given : 'a function which orders a list of items according to some
criterion1
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
CANDIDATE EXTRACTION No. 5
Concept being defined: 'sort routine (SR)'
Definition given : 'a function which orders a list of items according to some
criterion'
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
CANDIDATE EXTRACTION No. 6
Concept being defined: 'sort routine'
Definition given : 'a function which orders a list of items according to some
criterion'
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX

AMALGAMATION CANDIDATES ARE AS FOLLOWS:
Amalgamation candidate 1:

Concept: 'sort routine'
Elucidation: 'a function which orders a list of items according to some criterion'

Amalgamation code: 1 candidate only - so returning it.
RELATION AMALGAMATION DONE.
(1 candidate(s) for this amalgamation.)
AMALGAMATED EXTRACTION:
Concept being defined: sort routine
Definition given : a function which orders a list of items according to some
criterion
SENTENCE 2
No definition-triggers found, so looking for apposition triggers...
No apposition-type triggers detected either.
Sentence 2 not triggered.
Sentence was:

2 Examples of SRs include the bubble sort and the quick sort .
SENTENCE 3
No definition-triggers found, so looking for apposition triggers...
Just found first part of apposition pattern at position 58
Just found second part of apposition pattern at position2 72
X,X,X apposition trigger detected... possible definition at sent 3, char 58.

Sentence was:
3 Sort routines are composed of four elements : input list , output list , so

rt criterion and sort algorithm .
Term no. 0 ('sort routine1) exists in sentence '3 '
Tokenising sentence...
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 3, end word 3, pattern 'are', token '='
Instance no. 2, start word 17, end word 17 , pattern 'and , token '
Instance no. 3, start word 20, end word 20 , pattern '.', token '.'
Instance no. 4, start word 11, end word 11 , pattern ',', token ','
Instance no. 5, start word 14 end word 14 , pattern ',', token ','

253

Instance no. 6, start word 8, end word 8, pattern token
Tokenisation stage 1 complete.

There were 6 token-instances in this sentence.
(Sentence will be cut up in 63 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.
(There were 63 allowed and 0 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 59 did not have a LL element
made for them, because no extraction would have resulted.
So there were 4 LL elements actually made.

Full list of tokenisations made for this sentence:
X=X.

word group 0:
word group 1:
word group 2:

and sort algori
word group 3:

X==X,X.
word group 0:
word group 1:
word group 2:
word group 3:
word group 4:
word group 5:

X==X,X.
word group 0
word group 1
word group 2
word group 3
word group 4
word group 5

X X, X .
word group 0 .
word group 1:
word group 2
word group 3
word group 4
word group 5

input list , output list , sort criterion

Sort routines
composed of four elements : input list
t

output list , sort criterion and sort algorithm

Sort routines
composed of four elements : input list
r
sort criterion and sort algorithm

output list

input list , output list , sort

input list , output list , sort

Sort routines are composed of four elements : input list
f

output list
sort criterion and sort algorithm

Tokenisation attempt complete.
Sentence had some tokenisation(s).
Tokenisation X=X. matched template C=0.
This is template match no. 0 for this tokenisation.
Tokenisation X=X,X. matched template C=Q,X.
This is template match no. 0 for this tokenisation.
Tokenisation X=X,X. matched template C=0,X.
This is template match no. 0 for this tokenisation.
Tokenisation X,X,X. matched template C,0,X.
This is template match no. 0 for this tokenisation.
CANDIDATE EXTRACTION No. 1
Concept being defined: 'Sort routines'
Definition given : 'composed of four elements
criterion and sort algorithm1
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation 'composed of four elements :
criterion and sort algorithm'
because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 2
Concept being defined: 'Sort routines'
Definition given : 'composed of four elements : input list'
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation 'composed of four elements : input list'
because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 3
Concept being defined: 'Sort routines'
Definition given : 'composed of four elements
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation 'composed of four elements :
because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 4
Concept being defined: 'Sort routines are composed of four elements : input list’
Definition given : 'output list'
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
AMALGAMATION CANDIDATES ARE AS FOLLOWS:

input list , output list'

input list , output list'

254

RELATION AMALGAMATION DONE.
(0 candidate(s) for this amalgamation.)
AMALGAMATED EXTRACTION:
No amalgamated extraction found.
SENTENCE 4
No definition-triggers found, so looking for apposition triggers...
No apposition-type triggers detected either.
Sentence 4 not triggered.
Sentence was:

4 An example of a sort criterion is alphabetical order .
SENTENCE 5
No definition-triggers found, so looking for apposition triggers...
Just found first part of apposition pattern at position 58
No apposition-type triggers detected either.
Sentence 5 not triggered.
Sentence was:

5 A sort routine is a type of data rearrangement algorithm , or DRA .
SENTENCE 6
No definition-triggers found, so looking for apposition triggers...
Just found first part of apposition pattern at position 10
Just found second part of apposition pattern at position2 53
X,X,X apposition trigger detected... possible definition at sent 6, char 10.

Sentence was:
6 In these , data elements are not themselves altered , but their order of pr

esentation is changed to assist the calling application .
No technical term exists in sentence 16 '
DEFINITION TRIGGER STATISTICS
The following positive triggers passed the negative triggering stage:
TRIGGER: 1 define' COUNT: 1
TRIGGER: COUNT: 2
3 definition instance(s) passed triggering stages.
4 definition instance(s) DID NOT pass triggering stages.
(1 positive trigger(s) and 0 negative trigger(s) (not including appositions))
THESIS:
Apposition trigs=2,
s(all)=5
s(passed)=1
s(blocked)=4
actual pass rate=20 percent
2 of those had one or more template matches.
And of those 1 had at least one validated extraction.
***** I DEFINITION(S) EXTRACTED *****

LOOKING FOR PARTITIONS...
REMINDER! No 'is' triggers will be used in this run!

SENTENCE 0
No partition-triggers found, so looking for apposition triggers...
No apposition-type triggers detected either.
Sentence 0 not triggered.
Sentence was:

0 Sorting is the action of arranging data items into some specific order .
SENTENCE 1
No partition-triggers found, so looking for apposition triggers...
Just found first part of apposition pattern at position 30
Just found second part of apposition pattern at position2 35
X(X) apposition trigger detected... possible partition at sent 1, char 30.
Sentence was:

1 We can define a sort routine (SR) to be a function which orders a list of
items according to some criterion .

Term no. 0 ('sort routine') exists in sentence '1 '
Tokenising sentence...
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 14, end word 14, pattern 'which', token 'W'
Instance no. 2, start word 1, end word 2, pattern 'We can', token 'w'

255

Instance no. 3, start word 22, end word 22, pattern
Instance no. 4, start word 10, end word 11, pattern
Instance n o . 5, start word 24, end word 24, pattern
Instance no . 6, start word 7, end word 7, pattern '(
Instance n o . 7, start word 9, end word 9, pattern ')
Tokenisation stage 1 complete.

some', token 'x'
to be 1, token ' = 1
.1, token 1.1
token
token

There were 7 token-instances in this sentence.
(Sentence will be cut up in 127 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.
(There were 127 allowed and 0 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 127 did not have a LL element
made for them, because no extraction would have resulted.
So there were 0 LL elements actually made.

Full list of tokenisations made for this sentence:
Tokenisation attempt complete.

Sentence had no tokenisations.
Unable to extract this possible partition due to no template matches.

SENTENCE 2 possible partition at sent 2, char 16.
Sentence was:

2 Examples of SRs include the bubble sort and the quick sort
Acronym no. 0 ('SR') exists in sentence '2 '
Tokenising sentence...
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 5,
Instance no. 2, start word 9,
Instance no. 3,
Instance no. 4,
Instance no. 5,

end word 5, pattern
end word 9, pattern

start word 8, end word 8, pattern
start word 4, end word 4, pattern 'include', token ’i '
start word 12, end word 12, pattern '.', token '.'

' the'
'the'
' and'

token
token
token

Tokenisation stage 1 complete,
There were 5 token-instances in this sentence.
(Sentence will be cut up in 31 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.
(There were 31 allowed and 0 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 30 did not have a LL element
made for them, because no extraction would have resulted.
So there were 1 LL elements actually made.

Full list of tokenisations made for this sentence:
XiX.

word group 0: Examples of SRs
word group 1: i
word group 2: the bubble sort and the quick sort
word group 3: .

Tokenisation attempt complete.
Sentence had some tokenisations.
Tokenisation XiX. matched template CiO.
This is template match no. 0 for this tokenisation.
CANDIDATE EXTRACTION No. 1
Concept being partitioned: 'Examples of SRs'
Part given : bubble sort and the quick sort
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
AMALGAMATION CANDIDATES ARE AS FOLLOWS:
RELATION AMALGAMATION DONE.
(0 candidate(s) for this amalgamation.)
AMALGAMATED EXTRACTION:
No amalgamated extraction found.
SENTENCE 3 possible partition at sent 3, char 18.
Sentence was:

3 Sort routines are composed of four elements :
rt criterion and sort algorithm .

Term no. 0 ('sort routine') exists in sentence '3
Tokenising sentence...
TOKENS IN THIS SENTENCE ARE:
Instance no. 1, start word 7, end word 7, pattern

2, start word 3, end word 5, pattern
3, start word 4, end word 5, pattern
4, start word 6, end word 6, pattern
5, start word 3, end word 3, pattern
6, start word 3, end word 3, pattern
7, start word 17, end word 17, pattern
8, start word 20, end word 20, pattern

Instance no
Instance no
Instance no
Instance no
Instance no
Instance no
Instance no
Instance no
Instance no
Instance no

input list , output list , so

'elements', token 'p'
'are composed of', token ’k '
'composed of', token 'k '
'four', token '$'
1 are', token 1
'are', token '=

and', token
.', token '.

9, start word 11, end word 11, pattern ',', token '
10, start word 14, end word 14, pattern ',', token
11, start word 8, end word 8, pattern token

256

Tokenisation stage 1 complete.
There were 11 token-instances in this sentence.
(Sentence will be cut up in 2047 different ways.)
Tokenisation stage 2 complete.
Tokenisation stage 3 complete.
(There were 895 allowed and 1152 not-allowed tokenisations,
due to token overlaps.)

Also, of the allowed ones, 886 did not have a LL element
made for them, because no extraction would have resulted.
So there were 9 LL elements actually made.

Full list of tokenisations made for this sentence:
XpX.

word group 0: Sort routines are composed of four
word group 1: p
word group 2: : input list , output list , sort criterion and sort algorithm
word group 3: .

XkX.
word group 0: Sort routines
word group 1: k
word group 2: four elements : input list , output list , sort criterion and sort

algorithm
word group 3: .

XkX.
word group 0: Sort routines are
word group 1: k
word group 2: four elements : input list , output list , sort criterion and sort

algorithm
word group 3:

XpX,X.
word group 0: Sort routines are composed of four
word group 1 : P
word group 2: : input list
word group 3: ,
word group 4: output list , sort criterion and sort algorithm
word group 5:

XpX,X.
word group 0: Sort routines are composed of four
word group 1: P
word group 2: : input list , output list
word group 3: /
word group 4: sort criterion and sort algorithm
word group 5:

X=X,X,X.
word group 0: Sort routines
word group 1: =
word group 2: composed of four elements : input list
word group 3: r
word group 4: output list
word group 5: ,
word group 6: sort criterion and sort algorithm
word group 7:

X=X,X,X.
word group 0: Sort routines
word group 1: =
word group 2: composed of four elements : input list
word group 3: ,
word group 4: output list
word group 5: r
word group 6: sort criterion and sort algorithm
word group 7: .

Xk$p:X,X,X+X,
word group 0: Sort routines
word group 1: k
word group 2 : $
word group 3: P
word group 4 :
word group 5: input list
word group 6: t
word group 7: output list
word group 8: t
word group 9: sort criterion
word group 10 : +
word group 11 : sort algorithm
word group 12

Xk$p:X,,X,X+X
word group 0: Sort routines are
word group 1: k
word group 2: $
word group 3: Pword group 4:
word group 5: input list

word group 6:
word group 7:
word group 8:
word group 9:
word group 10
word group 11
word group 12

output list
f

sort criterion
I ' t '

: sort algorithm
Tokenisation attempt complete.

Sentence had some tokenisations.
Tokenisation XpX. matched template OpC.
This is template match no. 0 for this tokenisation.
Tokenisation XkX. matched template CkO.
This is template match no. 0 for this tokenisation.
Tokenisation XkX. matched template CkO.
This is template match no. 0 for this tokenisation.
Tokenisation XpX,X. matched template OpC,X.
This is template match no. 0 for this tokenisation.
Tokenisation XpX,X. matched template OpC,X.
This is template match no. 0 for this tokenisation.
Tokenisation X=X,X,X. matched template C=0,l,2.
This is template match no. 0 for this tokenisation.
Tokenisation X=X,X,X. matched template C=0,l,2.
This is template match no. 0 for this tokenisation.
Tokenisation Xk$p:X,X,X+X. matched template Ck$p:0,1,2+3.
This is template match no. 0 for this tokenisation.
Tokenisation Xk$p:X,X,X+X. matched template Ck$p:0,1,2+3.
This is template match no. 0 for this tokenisation.
CANDIDATE EXTRACTION No. 1
Concept being partitioned: ’: input list , output list , sort criterion and sort
algorithm’
Part given : Sort routines are composed of four
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
CANDIDATE EXTRACTION No. 2
Concept being partitioned: 'Sort routines’
Part given : four elements : input list , output list , sort criterion and sort
algorithm
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation ’four' elements : input list , output list , sort criterion and sort
algorithm1
because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 3
Concept being partitioned: 'Sort routines are’
Part given : four elements : input list , output list , sort criterion and sort
algorithm
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
CANDIDATE EXTRACTION No. 4
Concept being partitioned: input list'
Part given : Sort routines are composed of four
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
CANDIDATE EXTRACTION No. 5
Concept being partitioned: ': input list , output list'
Part given : Sort routines are composed of four
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
CANDIDATE EXTRACTION No. 6
Concept being partitioned: 'Sort routines'
Part given : composed of four elements : input list
Part given : output list
Part given : sort criterion and sort algorithm
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation 'composed of four elements : input list'
because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 7
Concept being partitioned: 'Sort routines'
Part given : composed of four elements : input list
Part given : output list
Part given : sort criterion and sort algorithm
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
Rejected elucidation 'composed of four elements : input list'
because it was probably a different relation.
ELUCIDATION HAS INVALID SYNTAX - CANDIDATE REJECTED

CANDIDATE EXTRACTION No. 8
Concept being partitioned: 'Sort routines'

258

Part given : input list
Part given : output list
Part given : sort criterion
Part given : sort algorithm
Concept is technical term, and so is valid.

CONCEPT HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX
ELUCIDATION HAS VALID SYNTAX

CANDIDATE EXTRACTION No. 9
Concept being partitioned: 'Sort routines are1
Part given : input list
Part given : output list
Part given : sort criterion
Part given : sort algorithm
Unable to validate the concept in any way.

CONCEPT HAS INVALID SYNTAX - CANDIDATE REJECTED
AMALGAMATION CANDIDATES ARE AS FOLLOWS:
Amalgamation candidate 1:

Concept: 'sort routine'
Elucidation: 'input list’ etc

Amalgamation code: 1 candidate only - so returning it.
RELATION AMALGAMATION DONE.
{1 candidate(s) for this amalgamation.)
AMALGAMATED EXTRACTION:
Concept being partitioned: sort routine
Part given : input list
Part given : output list
Part given : sort criterion
Part given : sort algorithm
SENTENCE 4
No partition-triggers found, so looking for apposition triggers...
No apposition-type triggers detected either.
Sentence 4 not triggered.
Sentence was:

4 An example of a sort criterion is alphabetical order .
SENTENCE 5
No partition-triggers found, so looking for apposition triggers...
Just found first part of apposition pattern at position 58
No apposition-type triggers detected either.
Sentence 5 not triggered.
Sentence was:

5 A sort routine is a type of data rearrangement algorithm , or DRA .
SENTENCE 6 possible partition at sent 6, char 16.
Sentence was:

6 In these , data elements are not themselves altered , but their order of
esentation is changed to assist the calling application .

No technical term exists in sentence 16 '
PARTITION TRIGGER STATISTICS
The following positive triggers passed the negative triggering stage:
TRIGGER: ' (*) ' COUNT: 1
TRIGGER: ' includ' COUNT: 1
TRIGGER: ' compos' COUNT: 1
TRIGGER: ' element' COUNT: 1
4 partition instance(s) passed triggering stages.
3 partition instance(s) DID NOT pass triggering stages.
(3 positive trigger(s) and 0 negative trigger(s) (not including appositions))
THESIS:
Apposition trigs=l,
s (all)=6
s (passed)=3
s (blocked)=3
actual pass rate=50 percent
2 of those had one or more template matches.
And of those 1 had at least one validated extraction.
***** I PARTITION(S) EXTRACTED *****

***** i HYPERNYM(S), 2 EXEMPLIFICATION(S), 1 DEFINITION(S), 1 PARTITION(S) **

THESIS: Amalgamated PRESENTATIONAL counts for all 4 relation types:
There were 13 highlighted sentences, (h)
There were 0 presentational sentences detected (p(I<EP)).
There were 13 non-presentational sentences detected.
Condensing concepts from separate linked lists...
Opening hypernym list...
Concept 'sort routine' is NOT already in condensed LL. Creating new element...
All hypernyms condensed.
Opening definition list...
Concept 'sort routine1 is already in condensed LL. Merging...
All definitions condensed.
Opening exemplification list...
Concept 'sort routine' is already in condensed LL. Merging...
Concept 'sort criterion' is NOT already in condensed LL. Creating new element...
All exemplifications condensed.
Opening partition list...
Concept 'sort routine' is already in condensed LL. Merging...
All partitions condensed.
CONDENSED CONCEPT LIST:-

Concept: sort routine
Definition: a function which orders a list of items according to some criterion
Hypernym: data rearrangement algorithm , or DRA
Example: bubble sort
Example: quick sort
Part: input list
Part: output list
Part: sort criterion
Part: sort algorithm
Concept: sort criterion
Example: alphabetical order
Making glossary file...

Processing acronyms...

Processing remaining TTs...

Processing elucidations...
About to write glossary to file...
GLOSSARY MADE SUCCESSFULLY
TERM SUMMARIES MADE SUCCESSFULLY
END OF KNOWLEDGE EXTRACT

Appendix E - KEP-made Glossary for Chapters 1 to 4 of This
Thesis

This Appendix contains the complete glossary output file made by KEP when passed the first four

chapters of the submitted version of this thesis as input. Refer to section 5.4 for details.

KEP VERSION 103
********** GLOSSARY OUTPUT FOR USER-ENTERED IDENTIFIER 'chapslto4' **********

ACRONYM TERM EXPLANATION

3-char identifier
3G language Definition: technical term

within the text. Examples:
missed, PASCAL, PASCAL, PASCA,
PASCAL and PASCA. SEE ALSO
technical term, text, term

acquisition function
acquisition method
acquisition system
acquisition
acronym acquisition
acronym extraction
acronym extractor
acronyms expansion

APN activation passing network
AVP adverb particles

AI practitioner

AI system

algorithm

alphabetical order
alshawis MRD analyser

alshawis MRD

alternative fragmentation
alternative way
amalgamation process Definition: important area

for future improvement since
the correct extraction is
usually present within the
amalgamation candidate set
when the set is not actually

SEE ALSO artificial
intelligence
SEE ALSO artificial

intelligence
Definition: described as

follows. Parts: looking for
strings using the following
rules. SEE ALSO rule, string

SEE ALSO machine readable
dictionary
SEE ALSO machine readable

dictionary

empty. SEE ALSO correct
extraction, extraction, set,
candidate

AI

ATN

american rodent
amount of domain
amount of memory
amount of processing
amount of text
amount of WK
amount
analyser
analysis rule
analysis
anaphoric link
annotation scheme
anomalous example
apparent failure
application
apposition syntax
appositive phrase

approach

aquatic mammal
area of research
array
artificial intelligence

ASCII text
associated software sale

associated software
atomic nucleus
ATRANS system
augmented transition networks

SEE ALSO world knowledge
Definition: transferred etc.

Definition: , a hypernym , a
description of the components
of the concept , a statement
of the material it is made
from , and so on. SEE ALSO
description, concept
Definition: one which uses

term acquisition techniques (
see also section 4.6.4)
Definition: fully detailed in
Bowden , Halstead and Rose (
1996c) , but the major points
will be outlined below. SEE
ALSO term acquisition,
technique, section, term,
acquisition
Parts: walruses.

Definition: study of how to
make computers do things which
, at the moment , people do
better. SEE ALSO computer

Definition: forecast at 645
million pounds sterling in
1993. SEE ALSO million pound,
pounds sterling, million
pounds sterling

SEE ALSO n is a noun

262

authors addition

BNF

BBC
BNC

BSI

automatic construction
automatic creation
automatic glossary creation

automatic glossary maker

automatic glossary
automatic index creation
automatic index
automatic marking
automatic system
automatic technique

backus-Naur form
bare template

basic unit
basis
black dog
BNC file name

BNC file

BNC text

BNC

body of text
border plant
boundary exception phrase
boundary exception
branch of AI

British broadcasting corpo:
british national corpus

british standards institute
brown corpus

Definition: not a trivial
task. SEE ALSO trivial task,
task
Examples: , than for an

automatic encyclopaedia
constructor.

Parts: that of Crowe { 1996)
in the CONTESS system. SEE
ALSO system

Definition: a pattern of
three heads , such as MAN GIVE
THING. Type of: pattern of
three heads. SEE ALSO pattern

SEE ALSO british national
corpus
SEE ALSO british national

corpus
SEE ALSO british national

corpus
SEE ALSO british national

corpus

SEE ALSO artificial
intelligence

Definition: fully part -of
-speech tagged , an extremely
useful property which will be
referred to in some detail
later (see Chapter 4 for
details of the tagger , CLAWS4
). SEE ALSO part, tagger,
tag

brown dog

bubble sort
c BNC file

C BNC

c token
c vertical-format LOB

CAL system

candidate expansion
candidate extraction
candidate string
candidate
carnegie group
case of terms
case template
categorisation scheme
categorisation
central finding
certainty rating
chain of events
chain reaction
chapter summary
chart parser
chomsky hierarchy
chosen relation
class inclusion
class of items
class of objects
class word

class

CLAWS tagger

CLAWS-tagged input text

CLAWS-tagged input

cleft sentence
clinical information system
clinical information

SEE ALSO british national
corpus
SEE ALSO british national

corpus

SEE ALSO lancaster
oslo/Bergen corpus
SEE ALSO computer aided

learning

Examples: regarded as useful
facts. SEE ALSO useful fact,
fact
SEE ALSO constituent

likelihood automatic word
tagging system
SEE ALSO constituent

likelihood automatic word
tagging system
SEE ALSO constituent

likelihood automatic word
tagging system

264

closed class word

CPMC

CAL

closed class
coherence relation
coherent text
cohesive link
collection of definitions
columbia-Presbyterian medical center
COMMIX system
common sense rule
common sense
common tag
communication channel Definition: restricted to

newswire input (JASPER does
not read newspaper articles
Definition: not restricted (
to e.g. telex messages) ,
because full NL text , as
found in newspaper reports etc
is processed. SEE ALSO telex
message, NL text, newspaper
report, text, input, report,
process, message

communication of information
compact disc market Definition: worth 345 million

pounds sterling. SEE ALSO
million pound, pounds
sterling, million pounds
sterling

compact disc
comparison operation
complete set
complex construct
component part
comprehensive list
computational linguist
computational linguistics
computer aided learning
computer game
computer printer
computer program
computer programming language
computer programming
computer science
computer scientist
computer system
computer
concept formation
concept fragment

265

i

concept node

CLAWS

CFG

concept part
concept sort
concept structure
concept tag pattern
concept tag
concept Definition: the hypernym (

parent class) and the
elaboration is a member of
that class ; this relation is
signalled by phrases such as
include e.g. mammals include
humans Definition: 3G language
and the example of it is
PASCAL. Examples: corporate
takeover concept. SEE ALSO
parent class, 3G language,
language, relation, class,
phrase, example

concepts class
conceptual dependency
conceptual relation
concession relation
conclaws pre-processing
concluding remark
constituent likelihood automatic word tagging system
construction
content
context free grammar Definition: perhaps the

grammar type which has most
often been used to underpin
parsers. SEE ALSO grammar
type, parser, type

context problem
context Definition: important when

assessing the effectiveness of
exemplification in
instructional texts. SEE ALSO
instructional text, text

contiguous group
continuous updating
corpus linguistics
corpus study
corpus
correct extraction
correct order
correct tag
creation
criterion example
curly moustache

266

DRA

DCG

current context
current sentence
curriculum graph
CYC project
data element

data item
data rearrangement algorithm
data rearrangement
data structure
daughter pattern
deep approach
deep method

deep NLP system

deep NLP

deep processing approach

deep processing DS
deep processing

deep system
deep technique

default value

definite clause grammar

Definition: not themselves
altered , but their order of
presentation is changed to
assist the calling
application. Parts: not
themselves altered , but their
order of presentation is
changed to assist the calling
application. SEE ALSO
application, order

Definition: difficult and
time consuming to develop ,
and so it would seem that KE
must also be a difficult goal.
SEE ALSO KE
SEE ALSO natural language

processing
SEE ALSO natural language

processing
Definition: considered with

respect to the problems they
entail. SEE ALSO problem
SEE ALSO domain specific
Parts: use of the full range

of techniques and resources
available to the traditional
natural language processing (
NLP) researcher. SEE ALSO
natural language, language
processing, natural language
processing, language,
processing, technique, NLP,
researcher, process

Definition: the traditional
methods from NLP and
computational linguistics ,
and are aimed at language
understanding. Examples: that
of automatic parsing. SEE ALSO
computational linguistics,
computational linguist,
language, linguistics, NLP,
parsing, method,
understanding
Definition: provided wherever

possible and KEP echoes
responses back to the user.
SEE ALSO KE, response

267

definition relation
definition

degree of success
deliberate non-use
description
detailed description
detection
device within text
disc market
discipline of AI

discipline of linguistics
discourse analysis
discourse structure
discourse tree
dog
domain dependent
domain knowledge
domain pattern recognition
domain pattern
domain specific knowledge
domain specific NLP

domain specific system
DS domain specific

domain specificity

Definition: given to tell the
reader what is meant by a
concept , examples seem to be
given to aid in reaching ap
understanding of complex or
subtle concepts , hypernyms
place a concept into a tree
-like categorisation scheme
and hence allow the
description of a new concept
based upon differences from
existing concepts , and
partitions describe concepts
as aggregates of components (
which might already be
familiar to the reader)
Definition: spread over two
sentences in a similar manner
: The smallest readily
accessible unit of memory
storage is the byte. Parts:
This problem is linked to the
issue of whether historical
facts. SEE ALSO historical
fact, categorisation scheme,
memory storage, part,
categorisation, sentence,
reader, issue, fact,
description, understanding,
problem, tree, example, link,
concept, scheme, storage,
unit

SEE ALSO artificial
intelligence

SEE ALSO natural language
processing

268

domain-specific knowledge
DS knowledge
DS system
early computer
element
ellipted material
elucidation fragment
elucidation part
elucidation tag pattern
elucidation tag
elucidation text fragment
elucidation text
embedded subordinate phrase
end se
end ss
end y
english language
enlarged heart
entire text
entire thought
episodic knowledge
error message
error rate
error triplet

EC European community
evaluation result
event expectation
event structure
examination marking
example categorisation
example glossary output
example glossary
example KEN output

example KEN

example of concepts
example of KE
example of SRs
example of text
example pattern

SEE ALSO domain specific
SEE ALSO domain specific

Parts: (Id) Germany.

SEE ALSO knowledge
extraction, knowledge
extraction network
SEE ALSO knowledge

extraction, knowledge
extraction network

SEE ALSO knowledge extraction
SEE ALSO sort routine

269

example term summary
example term
example

exception list
exception phrase
exception word
exemplification relation

exemplification template
exemplification token
existing LTM
expansion
expectation
expert system
explanatory text

expository text
extended timespan
external file
extra letter
extracted fact
extracted part
extraction candidate
extraction method
extraction of facts
extraction performance
extraction process
extraction program
extraction result
extraction stage
extraction system

Definition: part -whole
descriptions and class
inclusion statements are
clearly useful pieces of
knowledge which help a reader
to understand a new concept
Definition: a valuable tool in
instructional text and their
roles in pedagogical
applications have been much
studied. Parts: recent year ,
old friend , serious error.
SEE ALSO pedagogical
application, class inclusion,
instructional text, text,
knowledge, class, part,
application, reader,
description, concept

Definition: similar to the
instance relation. SEE ALSO
instance relation, relation

SEE ALSO long-term memory

Definition: on the other hand
precisely those texts
designed to convey knowledge
to the reader. SEE ALSO text,
knowledge, reader

270

extraction task

extraction
fact density
fact extraction system
fact extraction
fact

fact-Poor text
factor for domains
factor
factual knowledge
FASTUS system
fat jolly man
feature
fictional text
field of NLP

file name
file

filter phrase
final output
financial institution
finite state automaton
finite state
fleeting event
form
formal definition
format
fragment of sentences
fragment of text
fragment validation
fragment

free text
full description
full evaluation
full list
full parse

Definition: simply as a true
statement about the universe
or its contents. SEE ALSO true
statement, content

SEE ALSO United states

SEE ALSO natural language
processing

Definition: usually very
large { more than twice the
size of the input text). SEE
ALSO input text, text, input,
size

Definition: validated to
confirm that the pattern match
was a useful one. SEE ALSO
pattern match, pattern, match

GIS

full parsing
full stop
full syntactic/semantic parsing
full text understanding
full text
function
functional part
future enhancement
future sentence
game
games industry
general knowledge
general text

generative grammar
generic fact

geographical information system
geographical information systems
geographical information
given relation
glossary creation
glossary entry
glossary maker
glossary output

glossary

good example
good excuse
good extraction
good tokenisation
grammar book
grammar type
grammatical construction
grammatical feature

Definition: whose target
readership is not the closed
class of a specialist group.
SEE ALSO closed class, class,
reader, group

Definition: more knowledge
-like than facts about
specific single objects. SEE
ALSO knowledge, fact, object

Definition: gIS).

Definition: also produced
from the spinal LL but in a
reformatted form that orders
glossary entries
alphabetically on the first
column present (acronym or
term). SEE ALSO glossary,
term, form, order
Parts: lists of terms present

in the text , together with
explanations of those terms.
SEE ALSO text, term, list

272

HMM

grammatical function
grammatical phrase
grammatical sentence
graphical output
group of words
group
handwriting recognition
hardware associated software
hardware sale
head noun
hidden markov model
high success rate
high success
high-energy radiation
high-level language
highest level
historical fact
historical narrative
historical report

historical text

human behaviour
human intelligence
human intervention
human knowledge
human language
human reader

hypelab/Hypertutor system
hypernym relation

hyponym relation

hyponymic relation
identical concept

Definition: not valid input
texts. SEE ALSO input text,
text, input
Definition: which are

descriptions of chains of
events Definition: not
generally of interest to I<E
systems. SEE ALSO KE system,
system, KE, description

Definition: able to perform
KE almost effortlessly , but
the term KE is used in this
thesis to refer to KE by
computer program. SEE ALSO
computer program, program,
term, KE, computer

Definition: the other facet
of the hyponym relation. SEE
ALSO hyponym relation,
relation
Definition: also called class

inclusion. SEE ALSO class
inclusion, class

273

important factor
important topic
incident merging
incident monitoring
indefinite article
index creation
indirect anaphora
individual fact
individual sentence
individual word
industrial complex
information content
information extraction task

IE information extraction
information from text

IR information retrieval
information system
information

initial indefinite article

ink cartridge
input definition

input for KE
input list
input output
input sentence
input text

input

instance of apposition
instance relation

Definition: distinguished
from knowledge in that it is
intended to be used within a
short time after its reception
Definition: conveyed for a
specific purpose. SEE ALSO
specific purpose, knowledge,
purpose
Definition: always stripped

off. Parts: always stripped
off.

Type of: taken and attempts
are made to match patterns
with it. SEE ALSO pattern,
match
SEE ALSO knowledge extraction

Definition: also assumed to
be free from spelling mistakes
and grammatically correct.
Definition: is taken and

attempts are made to match
patterns with it Definition:
short machine readable report
derived from dictated comments
which includes some fixed
fields and some free NL fields
Definition: top -level goal
such as describe list. SEE
ALSO pattern, list, report,
match

274

instruction manual

instructional text
intelligence Definition: , but it is

relatively easy to identify a
system which is apparently
intelligent within its
application domain. Type of:
property possessed by humans.
SEE ALSO system, application

intelligent recognition system
IRSG intelligent recognition systems group

intelligent recognition
intended application
intended meaning
intended readership
interbank money transfer
interbank money
interested reader
internal storage

IUCN international union for conservation of nature
introduction to knowledge
introductory example

IR system

Definition: aimed at novices
who want to learn about the
concept. SEE ALSO concept
SEE ALSO information

retrieval

item
jolly man

JASPER journalists assistant for preparing earnings reports Definition:
DS system aimed at automating
a specific task for a
commercial organisation
Definition: potentially NDS
Definition: a good example of
a very successful , fast ,
shallow IE/KE system , based
on pattern matching. Examples:
very successful , fast ,
shallow IE/KE system , based
on pattern matching. Parts:)
The frame with its slots ,
slot patterns and slot
processing methods make up the
DS. SEE ALSO pattern
matching, DS system, pattern
match, good example,
processing, task, system,
pattern, method, process,
matching, NDS, match, example

just name
KE application
KE approach
KE input

SEE ALSO knowledge extraction
SEE ALSO knowledge extraction
SEE ALSO knowledge extraction

KE program SEE ALSO knowledge extraction

KE system
KE task
KE
KE-Relevant grammatical feature
KEN output

KEP glossary

KEP output

KEP preprocessor program

KEP preprocessor

KEP program

KEP system

KEP tokenisation

KEP user query

KEP user

KEPs pattern

key phrase
key word
knowledge acquisition system
knowledge acquisition

knowledge base
knowledge basis
knowledge categorisation
knowledge engineering
knowledge extraction network
knowledge extraction program

SEE ALSO knowledge extraction

SEE ALSO knowledge extraction

SEE ALSO knowledge extraction

SEE ALSO knowledge extraction
SEE ALSO knowledge

extraction, knowledge
extraction network
SEE ALSO knowledge

extraction, knowledge
extraction program
SEE ALSO knowledge

extraction, knowledge
extraction program
SEE ALSO knowledge

extraction, knowledge
extraction program
SEE ALSO knowledge

extraction, knowledge
extraction program
SEE ALSO knowledge

extraction, knowledge
extraction program
SEE ALSO knowledge

extraction, knowledge
extraction program
SEE ALSO knowledge

extraction, knowledge
extraction program
SEE ALSO knowledge

extraction, knowledge
extraction program
SEE ALSO knowledge

extraction, knowledge
extraction program
SEE ALSO knowledge

extraction, knowledge
extraction program

Type of: This phase is
possible only after the
language learning phase has
reached a certain maturity ,
but it is difficult and
possibly erroneous to separate
these two. SEE ALSO language

Definition: working program
which demonstrates the
usefulness of shallow , NDS
methods , and which has opened

KE

LOB

knowledge extraction

knowledge representation
knowledge type
knowledge

lancaster oslo/Bergen corpus
language acquisition

language processing
language

up the possibilities of
several new research
directions , including
automatic index creation ,
student assignment marking ,
and information retrieval from
the Internet for the
automatic construction of
semantic -net knowledge bases
Definition: not designed to
extract procedural knowledge
Definition: designed only to
consider the first of these
levels Definition: designed to
process texts from various
sources Definition: started
with the minimum of keystrokes
Definition: unconcerned with
such matters Definition:
currently not capable of
finding mixed -case
shortenings (such as DfE for
Department for the Environment
) Definition: more easily
able to remain domain
dependent Definition: designed
to process explanatory texts.
Parts: novel function
developed specially to do this
(the sing () function).
SEE ALSO explanatory text,
research direction, automatic
index, index creation, student
assignment, information
retrieval, automatic
construction, automatic index
creation, knowledge base,
procedural knowledge, domain
dependent, novel function,
text, program, knowledge,
creation, construction,
method, information, process,
function, level, marking, NDS
Definition: the automated

extraction of facts from
machine -readable text
Definition: branch of Natural
Language Processing (NLP)
Definition: the process of
obtaining knowledge from text
Definition: exciting and
challenging new discipline.
SEE ALSO extraction of facts,
extraction, text, knowledge,
NLP, fact, process

Definition: regarded as a
collection of true -for -all
-time facts Definition: for
specific -object facts tend to
look more like information
and generic facts more like
knowledge. Type of: This
thesis is not about such. SEE
ALSO generic fact, fact,
information

Parts: language variation (
geographical) and semantics.
SEE ALSO language

Type of: The central idea in

277

Chomskys work has been that of
innateness , the ability of
humans to learn certain.

large amount
large brown dog
large curly moustache
large number
laser printer
LCS function

leftmost ruleid
letter
level of sugar
level
lexical ambiguity
lexical disambiguation
lexical form
lexical item
lexical pattern
lexico-syntactic pattern
light

likely tag
line of input
line of text
line structure
linear progression
linguistic complexity
linguistic issue

linguistic knowledge
linguistics
link between sentences
link type
link
linked list
list of acronyms
list of exemplification
list of items
list of tag
list of tags
list of templates

SEE ALSO computer science,
longest common substring

Definition: although of
relatively low energy by
comparison.

Examples: problems caused by
anaphoric links between
sentences. SEE ALSO anaphoric
link, sentence, problem, link

list of token/phrase
list of tokenisations

LTM

LCS
LDOCE
MRD
MT

list part
list

LL data structure
LL data
LOB file

local context
long leg
long output file
long output

Examples: By concept they
mean thing. SEE ALSO concept

SEE ALSO lancaster
oslo/Bergen corpus

long-term memory

MED
MEDLEE

Definition: rarely printed.
Parts: same extraction data
plus all processing comments
and error messages { if any)
as well as line and sentence
structures. SEE ALSO sentence
structure, error message,
extraction, processing,
sentence, structure, process,
message
Definition: as a semantic net

comprising only
hyponym/hypernym information.
SEE ALSO semantic net,
information

longest common substring
longman dictionary of contemporary english
machine readable dictionary
machine translation
machine-readable text
main purpose
manual
mark template
market
marking system
marking
mass noun
match
matching approach
matching technique
matching
material relation
meaning
medical entities dictionary
MEDical language extraction and encoding Definition: DS system.

SEE ALSO DS system, system,
medical entities dictionary

279

medical practitioner
MEDLEE system SEE ALSO MEDical language

extraction and encoding,
medical entities dictionary

MU

AN

NLG
NLI
NLP

memory requirement
memory storage
merging function
message clarifier
message content
message understanding
message

method
middle column

million dollar
million pound
million pounds sterling
modern linguistics
money transfer
morphological form
motivating factor
mr. smith

Definition: also displayed as
to the current stage of
processing attained. SEE ALSO
stage of processing,
processing, process, stage

Parts: 3rd -column text
mentions GIS , or if GIS. SEE
ALSO text

MRD analyser

multi-word noun phrase
multi-word noun
multi-word phrase
multiple pattern
n is a noun
name source
name
natural language generation
natural language interfaces to computers
natural language processing
natural language
natural unit
nature of knowledge

Definition: in apposition to
fat jolly man with a large
curly moustache. SEE ALSO
jolly man, curly moustache,
fat jolly man, large curly
moustache
SEE ALSO machine readable

dictionary

280

NDS

nature of language
NDS approach
NDS KE system

NDS KE

NDS system
NDS
need for WK
negative example

negative trigger phrase
negative trigger

net KB
news story
newspaper report
newswire story
NL text
NLP application

NLP community

NLP practitioner

NLP program

NLP researcher

NLP system

NLP task

NLP

non domain specific
non-terminal symbol
nonrelevant phrase
nottingham trent university
nottingham trent
noun group
noun phrase

SEE ALSO non domain specific
SEE ALSO knowledge

extraction, non domain
specific
SEE ALSO knowledge

extraction, non domain
specific
SEE ALSO non domain specific
SEE ALSO non domain specific
SEE ALSO world knowledge
Definition: counter -examples

and as such are deliberate
non -instances of the concept
being described ; they play a
contrastive role. SEE ALSO
concept

Parts: But note that if a
positive trigger is found in a
sentence , and this positive
trigger is subsequently found
to be. SEE ALSO positive
trigger, sentence, trigger
SEE ALSO knowledge base

SEE ALSO natural language
processing
SEE ALSO natural language

processing
SEE ALSO natural language

processing
SEE ALSO natural language

processing
SEE ALSO natural language

processing
SEE ALSO natural language

processing
SEE ALSO natural language

processing
SEE ALSO natural language

processing

281

NP noun phrases
noun
novel acronym extractor
novel acronym
novel function
novel KE
number of rules
number of tokenisations
number
object

00 object-oriented
open class word
open class
order of processing
order
original BNC file

original BNC

original text
orthographic word
output file
output format
output list
output phrase
output

page layout
paper cardie
paragraph of text
parent class
park border
parse tree
parser

SEE ALSO knowledge extraction

SEE ALSO british national
corpus
SEE ALSO british national

corpus

Definition: into a structure
designed to hold clinically
salient information , based on
information formats of the
Linguistic String Project (
Sager , Friedman and Lyman (
1987)) Definition: plan of
the tutorial required. SEE
ALSO structure, form,
information, format

Definition: designed to
handle fragments of sentences
, and not just whole
grammatical sentences
Definition: interactive in
that it will prompt the user
for the syntactical usage of
the verb when it comes across
an unknown verb. SEE ALSO

282

parsing
part of speech
part

part-of-speech tag
part-of-speech tagger
part-of-speech tagging
part-whole description
partial parser
partial parsing
partition relation

passive voice
patch corpus
patch rule template
patch rule
pattern file
pattern from justeson
pattern match
pattern matcher

pattern matching approach

pattern matching technique
pattern matching

pattern recognition stage

pattern recognition

pattern variable
pattern
pattern-matching approach

grammatical sentence,
sentence, fragment

Definition: , however ,
homeomerous (the Everglades
are Florida , as is Florida),
Parts: , however, homeomerous
(the Everglades are Florida
and as is Florida).

1

Definition: signalled by
keyphrases such as is made up
of three parts , comprises ,
has the following components
etc. SEE ALSO part

Definition: built -in.

Definition: sophisticated
enough to recognise different
morphological forms for nouns
and verbs and so removes the
need for the person specifying
the patterns to list all
possible forms. SEE ALSO
morphological form, pattern,
list, form, noun
Definition: used (fifth

point) which relies on part
-of -speech tagging (sixth
point). SEE ALSO part, tag

Definition: then performed on
each of these sentences. SEE
ALSO sentence
Definition: left to make the

decision. Parts: left to make
the decision.
Definition: far more accurate

and efficient than parsing.
SEE ALSO parsing

283

pattern-matching technique
pedagogical application
performance of KEP

personal computer
philosophy department
phrasal analysis
phrase analysis
phrase part
phrase recognition
phrase within sentences
phrase

phrases example
physical object
piece of information
piece of knowledge
piece of text
plain text

plural form
plural noun
point size
positive integer
positive trigger phrase
positive trigger
possible meaning
possible tag
potential term
potential TTs
pounds sterling
practical benefit
practical consideration

practical ground

SEE ALSO knowledge
extraction, knowledge
extraction program

Definition: recognised using
syntactic information and
domain knowledge , and
patterns of those phrases are
then looked for Definition:
was matched to the token = ,
the phrase PASCAL was matched
to the token X , and the
phrase. Parts: punctuation
marks are and allowed. SEE
ALSO punctuation mark, domain
knowledge, syntactic
information, knowledge,
pattern, token, information,
match

Definition: first tagged and
then passed to KEP. SEE ALSO
KE, tag

SEE ALSO technical terms

Definition: not the sole
factors here. SEE ALSO factor,
fact

284

practical problem
practical reason
practitioner
pragmatic knowledge
pragmatic processing
pre-processor program
pre-word tag
preceding word
precision figure
preference semantics
preprocessor program
presentational sentence
prime aim
printed document
printer
problem size
problem

procedural KE
procedural knowledge

procedural text
process
processing approach
processing category
processing DS system
processing DS
processing NDS system
processing NDS
processing stage
processing step
processing system
processing time
processing

Definition: then rejected.

Definition: that the KB needs
to be huge.
SEE ALSO knowledge extraction
Definition: less likely to be

present within a single
sentence. SEE ALSO single
sentence, sentence

Definition: chains of events.

SEE ALSO domain specific
SEE ALSO domain specific
SEE ALSO non domain specific
SEE ALSO non domain specific

Parts: form suitable for
input to the next stage,
parser, also domain specific {
the domain being that of
medical examinations),
message interpreter and to
find all acronyms in the input
text , and if possible , what
they stand for (called by
the author the acronyms
expansion). SEE ALSO input
text, acronyms expansion,
text, parser, input, form,
stage, message, expansion,

285

RIMNET

domain specific

production rule
program name source
program name
program run
program Definition: described here

which really lies in the
content analysis or text
summarisation fields
Definition: domain specific
Definition: still running and
that all is well. SEE ALSO
text summarisation, text,
content, analysis, run, domain
specific

programming language
proper noun
punctuation character
punctuation mark
purpose wheres
purpose
quick sort
radiation incident monitoring NETwork
radiation with wavelengths
radiation
rate
readable dictionary
reader
real term
rearrangement algorithm
recognised phrase Definition: passed onto the

pattern recognition stage ,
which processes them in the
order they occur. SEE ALSO
pattern recognition,
recognition stage, pattern
recognition stage, pattern,
process, recognition, order,
stage

recognition stage
recognition system
recognition systems group
recognition
regular expression
related term
relation definition
relation detection
relation extraction
relation of interest

286

RST

relation present
relation reference
relation type
relation

relative clause
report
required response purpose
required response
research area
research direction
research field
researcher
reserve of WK
response purpose wheres
response purpose
response
restrictive relative clause
result
reuters story
review paper cardie
review paper
rhetorical relation
rhetorical structure theory
rhetorical structure
river bank
role filler
role-filler expectation
routine definition
routine
RST relation definition

RST relation

RST structure

Definition: used as the
functional building blocks.
Type of: elaboration ,
evidence , justification ,
summary , volitional cause ,
and background Type of: The
KEP program represents an
attempt to rectify this
omission , albeit by looking
for specific. SEE ALSO KEP
program, volitional cause,
program, summary, KE,
function

SEE ALSO world knowledge

SEE ALSO rhetorical structure
theory
SEE ALSO rhetorical structure

theory
SEE ALSO rhetorical structure

theory
rule template

rule

run of KEP

run on slot
run
running text
s definition

sale
sample input
sample list
scheme
SCISOR system
script version
search engine
section heading
section of text
section
selected story

selection stage
semantic content

semantic head
semantic knowledge
semantic level
semantic net KB
semantic net
semantic parser
semantic part
semantic processing

Definition: also quite useful
since it can find
abbreviations such as RIMNET
if their expansions are like
Radiation Incident Monitoring
NETwork. Type of: e. Examples:
n -10. SEE ALSO expansion
SEE ALSO knowledge

extraction, knowledge
extraction program

Definition: which are
conceptually very similar. SEE
ALSO concept

Definition: matched against a
frame of slots , the slots
defining both the fact to be
searched for and the method of
processing to achieve this.
Parts: matched against a frame
of slots , the slots defining
both the fact to be searched
for and the method of
processing to achieve this.
SEE ALSO processing, method,
fact, process, match

Definition: in contradiction
to the pragmatic knowledge
that (unless you have painted
them etc) no bananas are
this colour. SEE ALSO
pragmatic knowledge,
knowledge
Definition: cardiomegaly.

SEE ALSO knowledge base

semantic relatedness
semantic relation
sense rule
sentence array

sentence boundary exception
sentence boundary
sentence by sentence
sentence fragment

sentence number

sentence structure
sentence tokenisation
sentence

sentence-by-sentence basis
sentence-end detection
sentence-end detector
separate extraction
separate function
separate manual
separate sentence
set of patch
set of production

Definition: chosen which
makes the processing easier or
faster. SEE ALSO processing,
process

Definition: used in the
relation extraction , as
described in the following
subsection. SEE ALSO relation
extraction, extraction,
relation
Definition: used widely in

screen and file output. SEE
ALSO output, file

Definition: still ambiguous
at the semantic level
Definition: hyponymy
Definition: the basic unit
from which texts are built
Definition: spread across any
number of lines { including
the case where more than one
sentence can be present on a
single line of input) and so
KEP attempts to split the
input into sentences to fill
the sentence storage array
Definition: probably
presentational Definition:
talking about an
exemplification given in
previous text rather than in
the current sentence
Definition: reduced to a
string of single characters by
the replacement of words ,
groups of words , and
punctuation by token
characters. SEE ALSO semantic
level, basic unit, line of
input, current sentence, text,
input, token, KE, word,
number, level, group, storage,
array, unit, string

289

set of questions
set of relations
set of tokenisations
set

shallow approach
shallow method
shallow NDS system
shallow NDS
shallow pattern-matching approach
shallow processing approach

shallow processing category
shallow processing
shallow system
shallow technique

shallow way
short output
simple text
simpsons arm
single phrase
single sentence
single word term
single word
singleword term
singular form
singular noun
size
skuce et
small amount
small set
small south american
small south

Definition: not the same
thing as a collection ; sets
have names which reflect their
membership Definition:
essentially a collection of
individual items , not a whole
thing , such as a forest. SEE
ALSO item, name

SEE ALSO non domain specific
SEE ALSO non domain specific

Definition: the only
practical route given the
timescales involved in this
research.

Definition: as methods which
achieve NLP goals without
recourse to attempts to
understand fully the input
text Definition: used wherever
feasible. SEE ALSO input
text, text, NLP, input,
method

social connection

SR

software sale
sort algorithm
sort criterion example
sort criterion

sort routine definition
sort routine

sort
source of knowledge
source text
south american rodent
south american
sparck jones
specialist term
specific application
specific instance
specific item
specific KE
specific knowledge
specific NLP

specific phrase
specific purpose
specific section
specific set
specific syntax
specific system
specific technique

Examples: alphabetical order
and alphabetical order. SEE
ALSO alphabetical order,
order

Definition: a function which
orders a list of items
according to some criterion
Definition: composed of four
elements : input list , output
list , sort criterion and
sort algorithm. Type of: the
bubble sort and the quick sort
Type of: data rearrangement
algorithm , or DRA Type of:
the bubble sort and the quick
sort. Parts: input list,
output list, sort criterion
and sort algorithm. SEE ALSO
list of items, bubble sort,
quick sort, input list, output
list, sort criterion, sort
algorithm, data rearrangement,
rearrangement algorithm, data
rearrangement algorithm,
input, output, list, item,
function, order, element,
sort, algorithm

SEE ALSO knowledge extraction

SEE ALSO natural language
processing

specific type
Parts: part of speech taggerspeech code

291

speech information
speech tag
speech tagger
spinal 11 data
spinal 11
stage of processing
stage
standard phrase
starting point
state automaton
stepwise refinement
stochastic tagger
stop in reference
stop in title
storage capacity
storage
story
string
structure array
structure for text
structure of text
structure theory
structure
student assignment
student response
subcategorisation information
subject domain
subject matter
subordinate phrase
subsequent processing
success rate
successful extraction
successful KE
summaries output
summary
surface structure

, usually referred to simply
as a tagger , is a program
which accepts a text and
returns that text with each
word tagged with a. SEE ALSO
part of speech, speech tagger,
speech tag, text, program,
part, word, tagger, tag

SEE ALSO knowledge extraction

292

symbol

TEFL

TT

syntactic information
syntactic knowledge
syntactic parser
syntactic processing
syntactic/semantic parsing
syntactical information
syntax
system
systems group
tag error triplet
tag error

Definition: not a parser
Definition: trained by
scanning a large correctly
tagged corpus. SEE ALSO
parser, tag, corpus

Definition: to check that the
presented sentences are
indeed legal. SEE ALSO
sentence

teaching english as a foreign language
technical report
technical term acquisition
technical term Definition: etc in the input

text , and so KEP needs to be
able to identify them
Definition: usually domain
dependent Definition: almost
always multi -word noun
phrases , which consist of
adjectives and nouns and
sometimes prepositions , but
very rarely verbs , adverbs or
conjunctions. Parts: Such
texts also often make use of
abbreviations , which play
the. SEE ALSO input text, noun
phrase, domain dependent,
text, phrase, input, KE, noun,
noun phrases

technical terms Definition: present in legal
documents , medical texts ,
technical reports , scientific
papers , trade journals ,
professional newspapers etc.
SEE ALSO technical report,
text, report

293

tag pattern
tag
tagger

tagging format
tagging process
tagging scheme
target concept
target fact
task

TCS

technical text
technique
television set
telex message
template file
template matching
template pattern
template token
template

term acquisition
term basis
term pattern
term summaries output
term summary

term

terminal symbol
terminating punctuation mark
terminating punctuation
terminology extraction
test sentence
test text

text analyser
text block
text categorization shell
text fragment

text in figure
text into sentences
text processing
text required response

Definition: similar in form
to the tokenisations described
above except that (1) they
always end with a sentence
-terminating punctuation mark
, and (2) instead of
containing X -tokens they
contain the token C and the
tokens 0 , 1 , 2. SEE ALSO
punctuation mark, sentence,
token, tokenisation, form

Definition: not held in the
spinal LL data structure and
are constructed after TTs and
acronyms have been collected.
SEE ALSO data structure, LL
data, LL data structure,
structure
Definition: actually used in

two different ways as follows
Definition: partly has the
intended meaning is partly
made of. SEE ALSO intended
meaning, part, way, meaning

Definition: given as Figure
11.

Definition: , partition ,
hypernym). SEE ALSO part

294

TLA

text stream
text structure
text summarisation
text to text
text understanding
text

textual element
textual form
theoretical interest
three-letter acronym

TIE routine

time context problem
time context
time saving
token file
token phrase
token

Definition: originally
fragmented prior to matching
against the 3 -head bare
templates using an extensive
list of key words to indicate
fragmentation points
Definition: scanned for
apparent events (e.g. rumour
of a takeover) , role
-fillers obtained where
obvious , and event
expectations set up whenever
possible Definition: not just
a set of standalone sentences
(see Halliday and Hasan (
1976)) Definition: not
arbitrary collections of
unrelated sentences ; they are
coherent Definition: chunked
into sentences for the
purposes of this scanning.
Examples: verbless phrases ,
due to the production process
and actor or recipient).
Parts: fact -bearin, Many
sentences exist to smooth the
flow of reading or point the
reader to other, roles played
by and wit system of Reimer {
1989) required a small amount
of domain knowledge to focus
its attention on relevant. SEE
ALSO key word, bare template,
event expectation, domain
knowledge, wit system, small
amount, amount of domain,
system, knowledge, set,
phrase, sentence, list,
template, reader, purpose,
fact, word, amount, process,
fragment, matching,
expectation, match

Definition: feature of modern
technological life. Type of:
three -letter acronym. SEE
ALSO feature
SEE ALSO information

extraction

Definition: single
-characters which are used to
stand in for the phrase. SEE
ALSO phrase

295

token/phrase pair
tokenisation method
tokenisation process
tokenisation string
tokenisation
tokenisation-template match
too-long sentence
toy market
training corpus
transition network
tree

trent university
trigger list
trigger phrase
trigger
trivial task
trivial tokenisation
true statement
true tag
true-for-all-time fact
TRUMP output
txt definition
txt exemplification
txt hyponym
txt partition
type of data
type of fact
type of information
type of knowledge
type of lemur
type of mammal
type of partition
type of relation
type of sentence
type of text
type
ultra-violet radiation
unconfirmed term
understanding process

Examples: given in Table 8.

Parts: absent , because they
were never produced.

Parts: both semantic and
pragmatic aspects.

understanding
unit

UK United kingdom
USA United states of america

US United states
universal widget
unknown word
unseen text
untagged sentence
useful fact
useful feature
useful information
user query
UV light
valid concept

valid filename
validated candidate
vander linden
verb group
vertical-format LOB file

vertical-format LOB

video game
video games industry

visible light
volitional cause
way
well-formed sentence
whole object
whole sentence
whole text
wit parser
wit system

word co-occurrence
WP word processor

Examples: rarely expanded in
text , because probably all
adult English -speaking
readers know what it stands
for). SEE ALSO text, reader

Type of: If it is , then it
is likely that it.

SEE ALSO lancaster
oslo/Bergen corpus
SEE ALSO lancaster

oslo/Bergen corpus

Definition: growing fast and
will dominate the toy market
and become an established part
of home entertainment. SEE
ALSO toy market, part, market

Definition: one example of a
KE as opposed to an IE system.
SEE ALSO system, KE, example

297

WK

word string
word term
word
word-initial letter
work of fiction
working system
world knowledge

WWW world wide web
WP feature
WP package

[1090 GLOSSARY ENTRIES]

Definition: deemed to be
essential for good NLP
programs. SEE ALSO NLP
program, program, NLP

SEE ALSO word processor
SEE ALSO word processor

END OF GLOSSARY **********

