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ABSTRACT  

Background: The absence of a robust risk stratification tool for triple negative breast cancer 

(TNBC) underlies imprecise and non-selective treatment of these patients with cytotoxic 

chemotherapy. This study aimed to interrogate transcriptomes of TNBC resected samples using 

next generation sequencing (NGS) to identify novel biomarkers associated with disease 

outcomes. 

Methods: A subset of cases (n=112) from a large, diverse and well-characterised cohort of 

primary TNBCs (n=333) were subjected to RNA-sequencing (60M total reads/sample) and 

analyzed using the Illumina HiSeq 2500 platform. We identified genes associated with distant 

metastasis-free survival (DMFS) and breast cancer-specific survival (BCSS) by combining the 

application of supervised artificial neuronal network (ANN) analysis with gene selection to the 

RNA-sequencing data. The prognostic ability of these genes was validated using the Breast 

Cancer Gene-Expression Miner v4. 0 and Genotype 2 outcome datasets. Multivariate Cox 

regression analysis identified a prognostic gene signature that was independently associated 

with poor prognosis. Finally, we corroborated our results from the two-gene prognostic 

signature by their protein expression using immunohistochemistry. 

Results: ANN identified two gene panels that strongly predicted DMFS and BCSS. Univariate 

Cox regression analysis of 21 genes common to both panels revealed that the expression level 

of eight genes was independently associated with poor prognosis (p<0.05). Adjusting for 

clinicopathological factors including patient’s age, grade, nodal stage, tumor size, and 

lymphovascular invasion using multivariate Cox regression analysis yielded a two-gene 

prognostic signature (ACSM4 and SPDYC) which was associated with poor prognosis 

(p<0.05) independent of other prognostic variables. We validated the protein expression of 

these two genes, and it was significantly associated with patient outcome in both independent 

and combined manner (p<0.05). 

Conclusion: Our study identifies a prognostic gene signature that can predict prognosis in 

TNBC patients and could potentially be used to guide the clinical management of TNBC 

patients. 
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BACKGROUND 

Breast cancer (BC) is a heterogeneous disease with variations in morphological features, 

molecular profiles, and therapy responses 1. Triple negative breast cancer (TNBC), defined by 

the absence of expression of Estrogen Receptor (ER), Progesterone Receptor (PR) and 

Human Epidermal Growth Factor 2 (HER2), comprises 15%-30% of BC, and presents 

considerable challenges with regard to clinical management due to lack of targeted therapies 

2,3. Moreover, TNBC often has an unfavourable prognosis with increased probability of early 

metastasis, disease recurrence, and shorter overall survival 4,5. Although TNBC generally 

displays aggressive behavior, patient outcomes can vary considerably. Around 23% of early-

diagnosed TNBC patients remain disease free for more than five years  while death within five 

years of diagnosis is inevitable for almost all metastatic TNBC patients 6–8. Therefore, the 

complexity, molecular variability, and unpredictability of TNBC behavior warrants further 

investigation 9. The biological heterogeneity of TNBCs has provided an impetus to develop 

tools for prognostic stratification, however, there are inconsistent results owing to a small 

cohort of patients, gene expression datasets obtained from different gene expression platforms 

and the use of microarray versus quantitative reverse transcriptase polymerase chain reaction 

(RT-PCR), which also makes head-to-head comparison challenging 10,11.  

Various multigene prognostic tests are available for ER-positive tumors for patient risk 

stratification and to guide therapy choice, whereas in ER-negative tumors, and specifically 

TNBC tumors with a higher proliferation rate, these multigene signatures provide no clinical 

value 12. Lehmann et al, used gene expression profiles to classify TNBCs into six molecular 

subtypes: Basal-like 1 and 2, Mesenchymal, Mesenchymal Stem-like, Immunomodulatory, 

and Luminal Androgen Receptor 13. Burstein et al proposed an alternative gene expression 

classification for TNBC  categorizing the tumor into four TNBC molecular subtypes: 

Luminal Androgen Receptor, Mesenchymal, Basal like immune suppressed, and Basal like 
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immune activated 14. However, distant metastasis-free survival (DMFS) analysis showed 

poor prognosis for TNBCs regardless of their molecular profile subtype 15. Therefore, there is 

an urgent unmet need for clinically validated prognostic markers that can predict outcomes 

for TNBC patients 15.  

Unbiased omics technologies, including Next Generation Sequencing (NGS), are expected to 

lead a paradigm shift for precision medicine from a pathological microscopy-based diagnosis 

to gene signature-based diagnosis, prognosis, and treatment approaches 16. NGS enables 

transcriptomic profiling of TNBC and identification of genomic alterations such as copy 

number changes, insertions, deletions and mutations; consequently, studies exploring inter-

tumor heterogeneity in different types of tumors are now possible 17,18. 

For successful NGS analysis, clinical samples must be maintained in conditions that would 

allow for DNA and RNA preservation and subsequent extraction. At present, most clinical 

samples are processed and archived as formalin-fixed, paraffin-embedded (FFPE) tissue 

samples in which the DNA and RNA necessary for NGS analysis is often fragmented 19. 

However, FFPE samples, if processed and stored properly, have been shown to preserve 

sufficient DNA and RNA material for extraction for NGS analysis 20. The present study utilizes 

NGS transcriptomic analysis of a large cohort of TNBC FFPE samples and aims to identify a 

molecular prognostic signature predicting risk for poor outcomes in TNBC.  
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METHODS 

 

Nottingham TNBC Cohort 

A retrospective well-characterised series of primary invasive TNBC (n=333) samples obtained 

from patients presented to Nottingham City Hospital, UK between 1987 to 2006, was included 

in this study. Clinicopathological data, including patient age at diagnosis, tumor size, tumor 

grade, nodal stage, lymphovascular invasion (LVI), and Nottingham Prognostic Index (NPI) 

were collected from patients’ medical records. The mean patient age was 48 years (range 27-

69) and tumor sizes in diameter at the time of presentation ranged from 0.25 – 8.00 cm (1.5-

2.8 cm within the interquartile), with a mean tumor size of 2.2 cm. Patients received a 

combination of treatment options including: surgery, radiation and chemotherapy according to 

standard protocols 21. Outcome data including BC-specific survival (BCSS) and DMFS were 

available and prospectively maintained. BCSS was defined as the time (in months) from the 

primary surgical treatment to the time of death from BC, while DMFS was defined as the 

duration (in months) from the time of primary surgery to the first occurrence of distant 

metastasis. ER, PR, and HER2 status of primary tumors were determined at the time of primary 

diagnosis from full-face sections of resected tumors according to published guidelines 22. (See 

Supplementary (A) for full details) 

Transcriptomic Analysis  

RNA sequencing was performed on representative FFPE tissue of an in house TNBC cohort 

(n=112) which had also been assessed histopathologically for tumor burden. (See 

Supplementary (A) for full details). Artificial Neural Network (ANN) database mining 

approach was used to build a classifier using the RNA-sequence matrices and identify genes 

associated with disease outcomes (DMFS and BCSS). In ANN, learning rates and momentum 
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were set at 0.1 and 0.5, respectively 23. Each tumor sample had 39,684 corresponding genes. 

The input codes were “0” if patients showed neither evidence of metastasis (DMFS) nor death 

from BC (BCSS) within five years, and “1” if metastasis or death due to BC was evident in the 

first five years after diagnosis. Although BCSS is the ultimate endpoint of cancer outcome, 

DMFS was chosen as an end point based on the high likelihood of TNBC patients being 

diagnosed with distant metastases within five years of diagnosis 8. Prior to ANN testing, a 

Monte-Carlo cross validation procedure was applied to avoid data over-fitting and false 

discovery. Documentation of such approach has proven to outperform the commonly used 

leave-one-out cross validation 24. The input data were randomly divided into three subsets; 60% 

for training, 20% for validation to ensure model performance during the training process, and 

20% for blind testing of the original model 25. Genes identification by the forward stepwise 

approach using ANN was performed as described previously 26. Based upon the distribution of 

performance on aforementioned model, ANN generated two panels of genes, representing the 

top 1% of the RNA sequence matrices that significantly predicted DMFS and BCSS, 

respectively. Genes common to both the DMFS and BCSS panels were identified using the 

Venny 2.0 online tool 27. Receiver operating characteristics (ROC) curves were generated to 

assess the predictive value of the differentially expressed gene panel presenting the sensitivity 

and specificity of the tested model (Supplementary (B) Figure 1). 

Pathway Analysis  

The online publicly available web-based gene set analysis tool, Webgestalt, 

(http://www.webgestalt.org/option.php) was used to identify differentially regulated canonical 

pathways using the overrepresentation enrichment analysis (ORA). The pathway analysis was 

based on the top 200 ranked genes predicting DMFS and BCSS. The reference gene list was 

set to the “genome_protein_coding”. The ratio of observed versus expected number of genes 

http://www.webgestalt.org/option.php
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in the category was recorded for each significant category using the enrichment ratio (R) scores 

using Panther pathway database 28. 

Prognostic Gene Signature Score 

In compliance with the Reporting Recommendations for Tumor Marker Prognostic Studies 

criteria (REMARK), the associations between the expression of genes in our 21-gene panel, 

common to both the DMFS and BCSS  gene prediction panels identified by ANN, and  DMFS 

or BCSS were evaluated both individually, as well as after adjusting for standard prognostic 

variables 29,30. Thus, DMFS and BCSS probabilities were individually computed on our gene 

panel using Kaplan-Meier testing model. Additionally, multivariate Cox regression analysis 

was used to calculate the estimate effect size [i.e., Hazard ratio (HR), along with 95% 

confidence interval (CI)] of the genes that were statistically significant in univariate Kaplan-

Meier testing model for both DMFS and BCSS, which included the genes and standard 

prognostic variables, regardless of the statistical significance of standard prognostic variables 

in univariate analysis. The genes which showed significant prognostic impact independently in 

multivariate Cox regression analysis were further examined in a combined multivariate Cox 

regression analysis to identify a signature with a minimum number of genes that showed the 

most significant association with DMFS and BCSS. 

External Validation of Transcriptomic Data 

For independent validation of the results, the prognostic value of the two-gene signature 

predictors of DMFS and BCSS were evaluated using the Breast Cancer Gene-Expression 

Miner v4. 0 (Bc-GenExMiner) database which includes RNA-sequence expression data from 

4713 BC patients, including 254 TNBC patients 31. These genes were also interrogated 

through the Genotype 2 outcome tool (http://www.g-2-o.com), a web-based server utilizing 

NGS and gene chip data of 6,697 breast cancer patients including 612 TNBC patients with 

http://www.g-2-o.com/
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outcome data. Computed ROC values were used to generate the transcriptomic fingerprint for 

mutational status from The Cancer Genome Atlas RNA-sequence and NGS mutation data. The 

average expression of significant genes was designated as a metagene for a given genotype. By 

employing gene chip data, associations between the expression of the metagene and patient 

outcomes were computed by multivariate Cox regression and Kaplan-Meier survival analysis 

32. 

 Immunohistochemistry  

Assessment of the protein expression of the identified two-gene prognostic signature was 

performed using rabbit anti-SPDYC (NBP1-80832, lot # R36476, Novous Biological, UK) and 

rabbit anti-ACSM4 (PA5-62082, lot # R59771, Thermofisher, UK) antibodies on tissue 

microarrays (TMAs) prepared for the IHC cohort. (See Supplementary (A) for full details) 

Statistical Analysis 

IBM SPSS 24.0 (Chicago, IL, USA) software was used for statistical analysis. For 

dichotomization of mRNA expression and protein expression levels of different genes, the X-

tile bioinformatics version 3.6.1 (Yale University, USA) was utilised with DMFS as an 

endpoint. Cox proportional hazard models were used for multivariate analysis model adjusting 

for patients age, tumor grade, nodal stage, tumor size, and LVI status as covariates to adjust for 

potential confounding influence of these variables on associations between the tested genes 

and the outcomes of interest. Spearman’s Rho test was used to evaluate correlations between 

continuous variables of the transcriptomic and protein expression data whereas the chi-

square test was performed to analyze relationships between categorical variables. A p-value of 

<0.05 was deemed significant. (See Supplementary (A) for full details)   

 

 



9 
 

RESULTS 

Gene Selection  

To build a classifier panel for outcome prediction in TNBC, ANN analysis of the RNA-

sequence matrices data of the transcriptomic cohort was performed and genes were ranked 

based on relationships between their expression and clinical outcomes in terms of DMFS and 

BCSS. The top ranked genes predicting DMFS (DMFS genes panel) and those predicting 

BCSS (BCSS genes panel) were investigated to determine the most statistically enriched 

pathways (Supplementary (A) Table 2 & Supplementary (C) for full details) 

Using the Venny tool, we identified a total of 21 genes that were common to both the DMFS 

and BCSS ANN panels. The 21-gene panel predicted patients’ DMFS and BCSS with 92% 

sensitivity and 94% specificity (Supplementary (B) Figure 2). The probability of finding a gene 

by random chance in the top 200 was 0.03, whereas the probability of randomly finding the 21 

genes collectively was 6.2x10-33 (Supplementary (B) Figure 3). 

Univariate Kaplan–Meier survival analysis showed that elevated expression of some genes was 

significantly associated with shorter DMFS and BCSS, whereas elevated expressions of other 

genes showed statistically significant association with longer DMFS and BCSS 

(Supplementary (A) Table 3 & Supplementary (B) Figures 4 A-D). Multivariate Cox regression 

analysis models incorporating patient’s age, tumor grade, nodal stage, tumor size, and LVI 

status revealed that eight of the 21 genes were independent predictors of DMFS and BCSS 

(Supplementary (A) Table 4 A-D). 

 

Prognostic Two-Gene Signature 

The prognostic gene signature was identified after statistically distilling the eight genes in a 

multivariate Cox regression analysis to identify a signature with a minimum number of genes 
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that show most significant association with BCSS and DMFS. The  analysis revealed two 

genes ACSM4 and SPDYC that most significantly and  independently predicted both DMFS 

and BCSS (ACSM4; DMFS: p=0.015, 95% CI=1.21-6.13, HR=2.72 : BCSS: p=0.004, 95% 

CI=1.44-6.83, HR=3.14), and (SPDYC ; DMFS: p=0.012, 95% CI=1.23-5.45, HR=2.59 

:BCSS: p=0.016, 95% CI=1.18-5.09, HR=2.45) (Supplementary (A) Table 5). In addition, a 

weak positive linear association between the mRNA expression of ACSM4 and SPDYC (r = 

0.036, p=0.710) was identified, suggesting that these genes might be collaboratively 

promoting disease progression. To investigate the prognostic value of the two-gene signature, 

a linear prognostic score was generated using the sum of the product of normalized 

expression levels of these two genes and their respective regression coefficients, as follows:  

The prognostic two-gene signature score ∑= (ACSM4 normalized expression * ACSM4 

expression β-value) + (SPDYC normalized expression * SPDYC expression β-value) 

(Table1). 

Using X-tile cut-off generator, patients with higher mRNA expression score of the prognostic 

two-gene signature had worse outcome in terms of shorter DMFS and BCSS when compared 

with those with lower mRNA expression score (Figure 1). Cox regression analysis confirmed 

that the prognostic two-gene signature harbours significant prognostic value in terms of 

predicting shorter DMFS and BCSS independent of patient age, tumor grade, nodal stage, 

tumor size, and LVI status (Table 2). 

External Validation of Genomic Findings 

Using the Bc-GenExMiner tool to analyze publicly available RNA-sequencing data, we 

observed that higher expression of SPDYC was significantly associated with worse prognosis 

in the whole/unselective cohorts of BC (n=4308, p<0.0001) 31. Validating genes expressions 

on the restricted TNBC cohort (n=254), revealed a similar trend of poor prognosis (p=0.006) 
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31. Moreover, the integration of our proposed prognostic two-gene signature in the public 

domain Genotype 2 outcome, using the median of each gene expression in  the 

whole/unselective cohorts of BC (n=4029), indicated that higher expression of ACSM4 and 

SPDYC were associated with worse prognosis (both p<0.001). More importantly in the context 

of this study, the prognostic value of the two-gene signature (ACSM4 and SPDYC) were 

significantly associated with poorer outcome when examined in the TNBC subtype cohort 

alone (n=612, p<0.001) 32 (Figure 2). 

Immunohistochemistry of the Prognostic Two-Gene Signature  

The morphological assessment of the tissue samples revealed cytoplasmic expression for both 

proteins; ACSM4 (H-score range 5-295) and SPDYC (H-score range 5-290) (Supplementary 

(B) Figure 5).  

Univariate survival analysis revealed that higher expression of ACSM4 and SPDYC was 

significantly associated with patients’ poor outcomes (DMFS; p<0.001, BCSS; p=0.009 for 

ACSM4) and (DMFS and BCSS, both p=0.004 for SPDYC) (Figure 3), which is concordant 

with the findings obtained from transcriptomic data.  

Multivariate Cox regression analysis showed that SPDYC protein expression was an 

independent prognostic factor regardless of patient age, tumor grade, nodal stage, tumor size, 

and LVI status for DMFS (p=0.015, 95% CI =1.17 - 4.74, HR=2.365) and BCSS (p=0.015, 

95% CI =1.18- 4.78, HR=2.377). Likewise, multivariate Cox regression analysis showed that 

ACSM4 protein expression was a significant independent prognostic factor for DMFS 

(p=0.002, 95% CI=1.35- 3.89, HR= 2.267), but not in BCSS (p=0.057, 95% CI=0.98- 2.93 , 

HR= 1.698) (Table 3 A & B). 

In a combined multivariate Cox regression analysis, SPDYC protein expression was an 

independent prognostic factor that predicted shorter  DMFS and BCSS ( DMFS: p=0.03, 95% 

CI=1.07-5.86, HR=2.50: BCSS: p=0.03, 95% CI=1.08-5.96 HR=2.54), regardless of patient 
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age, tumor grade, nodal stage, tumor size, and LVI status. ACSM4 protein expression also was 

observed to be an independent prognostic factor, associated with shorter DMFS (p=0.003, 95% 

CI =1.01-3.20, HR=1.83), regardless of patient age, tumor grade, nodal stage, tumor size, and 

LVI status, but not with BCSS (p=0.27, 95% CI=0.76-2.56 , HR=1.40) (Table 4). 

Correspondingly, we observed a significant positive linear association between ACSM4 and 

SPDYC protein expression (r=0.29, p<0.001), signifying that these proteins might be 

synergistically driving TNBC disease progression (Figure 4). Furthermore, using only cases 

that were informative for both biomarkers, a linear prognostic score was generated using Cox 

proportional hazard analysis to test whether dual expression of SPDYC and ACSM4 proteins 

was associated with worse outcome. The equation generated used the sum of the product of the 

quantitative H-score and their respective regression coefficient as follows:  

Protein expression prognostic score: ∑= (ACSM4 H-score * ACSM4 H-score β value) + 

(SPDYC H-score * SPDYC H-score β value) (Table 5).  

This protein expression prognostic score was then dichotomised using X-tile software to 

determine the optimal score to classify patients into high and low risk groups using DMFS as 

an end point. In the 257 investigated cases, the scores ranged from 15.43-365.05 with high 

protein expression risk scores (score > 170) observed in 159/257 (62%) cases. 

When testing the association between the prognostic score and outcome, univariate analysis 

demonstrated that cases with higher protein expression score had a significantly shorter DMFS 

(p=0.02) but not BCSS (p=0.06) (Figure 5). Multivariate Cox regression analysis model 

demonstrated that protein expression prognostic score was an independent prognostic factor 

for DMFS (p=0.03, 95% CI=1.04- 3.32 , HR=1.83) independent of patient age, tumor grade, 

nodal stage, tumor size, and LVI status, but not for BCSS (p=0.07, 95% CI=0.94-2.96, 

HR=1.83) (Table 6). 
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Finally, when we stratified our cohort based on chemotherapy treatment, the 10-year DMFS of 

patients who were not offered chemotherapy (n=83) and showed low expression of ACSM4 

was 84% compared to 44% of those with high expression and the difference was statistically 

significant (p=0.005). However, those with low expression of SPDYC had 83% 10-year DMFS 

compared to 70% in those with high expression but the difference was not statistically 

significant (p=0.209). Similarly, with the prognostic two gene signature, the 10-year DMFS of 

patients with low expression was 84% compared to 69% of those with high expression 

(p=0.309).  

Testing the performance of the prognostic two-gene at the transcriptomic and protein 

Levels:  

The prognostic signature at the mRNA level captured 58% sensitivity, 69% specificity, 54% 

positive predictive value (PPV), 72% negative predictive value (NPV), and 64% accuracy in 

dichotomising distant metastasis outcome of TNBC patients. In comparison, the prognostic 

signature at the protein level showed 73% sensitivity, 42% specificity, 30% PPV, 82% NPV, 

and 50% accuracy in dichotomising distant metastasis outcome of TNBC patients 

(Supplementary (A) Table 6).
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DISCUSSION 

Molecular classification of BC provides opportunities for enhanced personalised therapy 33. In 

TNBC, conventional prognostic factors such as age, tumor size, tumor grade, and lymph node 

status have limited risk-predictive influence as these tumors are mostly of higher grade with 

increased chances of recurrence and metastasis 1. Therefore, deciphering genomic profiles of 

TNBC using advanced techniques is an unmet need. Moreover, the utilization of ANN to mine 

the transcriptomic profile of TNBC in order to identify genes associated with clinical outcome 

is a promising approach to stratify patients for risk prediction 34. 

In the current study, a discovery phase and two validation phases were implemented. The in-

house transcriptomic TNBC cohort was used for the discovery phase for ANN analysis. 

Whereas the protein expression and publicly available external transcriptomic BC data were 

used for the validation phases of findings. More importantly, regardless of the statistical 

differences in the distribution of clinicopathological parameters between transcriptomic and 

IHC cohorts, our gene signature showed statistical association with outcome both at 

transcriptomic and protein expression level. Our study supports the utility of applying ANN to 

integrate distinct clinical and molecular data to find novel prognostic biomarkers associated 

with TNBC poor outcome.  

Our study employed ANN for the analysis of our transcriptomic cohort to discover novel 

prognostic genes associated with outcome in TNBC. ANN is a powerful tool for the analysis 

of complex data, overcoming high background noise, and thus identifying the influence of 

many interacting factors 35. ANN analysis, unlike conventional statistical approaches such as 

hierarchical clustering, linear regression, and principal component analysis, is not limited by 

linear functionality; thus, identification of biological relationships between biomarkers and 

clinical outcomes is improved 24. Furthermore, unlike conventional statistical techniques used 
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in the medical diagnostic and prognostic approaches, ANN can produce greater accuracy model 

than its counterparts 36. Therefore, it is highly suitable for the identification of potential key 

genes driving TNBC outcomes. ANN modelling uses a supervised learning approach, a multi-

layer perception architecture with a sigmoid transfer function, where weights are updated by a 

back propagation algorithm 37. 

In this study, ANN analysis identified the top ranked genes predicting DMFS and BCSS. We 

then employed a web-based tool to identify the signalling pathways significantly enriched in 

the significant top ranked gene panels. For instance, TNBC patients frequently harbour higher 

expression of EGFR; however, studies have failed to establish significant benefit from EGFR-

targeted therapies or tyrosine kinase inhibitors, suggesting the need to therapeutically target 

other pathways in these tumors 38,39. Moreover, the significance and over-activation of 

pathways such as; P38 MAPK , the PDGF, and the RAS pathways in BC metastatic sites and 

their association with DMFS and BCSS in TNBC have been previously documented 40–42. 

Additionally, the 21 gene panel generated by ANN analysis that was strongly associated with 

both DMFS and BCSS in TNBC included several novel and potentially targetable biomarkers 

in TNBC outcome. For instance, higher expression of DOCK10 (also known as dedicator of 

cytokeratin-10/ZIZ3) 43, has been previously identified as an indicator of poor prognosis in 

TNBC patients and as a predictor of distant metastasis 44. In our transcriptomic cohort, 

DOCK10 emerged as a significant prognostic marker of BCSS and DMFS however, it was not 

significantly prognostic in multivariate Cox regression analysis. We also found that high 

expression of BICC1, an RNA binding protein, a negative regulator of  the WNT  signalling 

pathway with potential involvement in regulating gene expression during embryonic 

development 45, was associated with DMFS but not with BCSS; thus, it was not included in the 

final signature.  
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In our study, we distilled the initial 21 gene panel down to eight genes that when tested 

individually for their prognostic value, were significantly associated with both DMFS and 

BCSS using univariate and multivariate analysis after adjusting for the potentially confounding 

variables. These genes are implicated in pro-oncogenic pathways in BC. PPL is a part of the 

cornified envelop in keratinocytes and desmosomes with intermediate filaments. PPL can act 

in the PKB/AKT-mediated signalling pathway 46. In TNBC, silencing PPL decreased cell 

migration and invasion 47. SPDYC is a member of the speedy/Ringo cyclin-dependent kinase 

(CDK) family with known functions in cell cycle transitions and progression 48. SPDYC plays 

an important role in activating both CDK1 and CDK2 expression 49. CDK2 high expression  

has been previously described to be  associated with shorter survival in metastatic melanoma 

cases and endocrine resistance in SKBR3-HER2 positive BC cell lines 50,51. Furthermore, down 

regulation of CDK1 has been found to increase synthetic lethality of TNBC cell lines if 

accompanied with c-Myc over expression 52. However, SPDYC role in BC is still undefined 48. 

ACSM4 encodes a protein with known functions in the conjugation of carboxylic acids and in 

fatty acid beta oxidation. Interestingly, upregulation of metabolic pathways has been found to 

interact with cellular transcriptomic and proteomics of both CD4 and CD8 T cells in HIV 

disease 53. Although ACSM4 has been shown to have a role in AIDS progression, there are no 

reports with its role in BC 54,55. We have previously reported a strong correlation between tumor 

infiltrating lymphocytes (TILs) and TNBC outcome 56. However, our current analysis did not 

identify known inflammation and immune response related genes associated with outcome in 

the TNBC 21 gene panel. Future studies should therefore seek to identify novel mechanisms 

contributing to aberrant inflammatory and immune response pathways involved in TILs in 

TNBC. Furthermore, genes such as AC020931.1, DCTN1-AS1, RP11-29H23.5, PAXBP1-AS1, 

and RPS10P18 require further investigation to decipher their role and function in BC 

progression. 



17 
 

The original hypothesis underpinning this study was that a signature of genes would more 

accurately predict both DMFS and BCSS in TNBC than a single gene. Multivariate Cox 

regression analysis enabled us to further filter the set of eight genes to a prognostic two-gene 

signature (ACSM4 and SPDYC) showing strong association with both DMFS and BCSS. We 

tested whether immunohistochemical assessment of the protein expression of the ACSM4 and 

SPDYC genes could be used to predict patient outcomes. Our study confirmed that protein 

expression had independent prognostic significance in TNBCs and showed strong statistical 

association with worse outcomes (i.e., shorter DMFS and BCSS). These genes when combined 

in a linear score, successfully stratified TNBC patients into high- and low-risk subgroups; in 

the former group, which is at a higher risk of developing distant metastasis, could benefit from 

greater vigilance and more aggressive treatment regimens. We have validated our ANN 

investigation and RNA-sequencing results by studying protein expression which showed that 

a prognostic score derived from the immunohistochemical evaluation of the two biomarkers 

could significantly predict distant metastasis, and thus support personalized prognostic 

evaluation and guiding treatment choices to improve disease outcomes. 

In this study, the prognostic value of the two-gene signature at the mRNA level yielded 58% 

sensitivity, and 64% accuracy in dichotomizing distant metastasis outcome of TNBC patients. 

By contrast, at the protein level, our proposed two-gene signature demonstrated 73% 

sensitivity, and 50% accuracy in dichotomizing distant metastasis outcome of TNBC patients. 

Our proposed two-gene signature showed promising accuracy and sensitivity results in 

predicting the risk of distant metastasis in TNBC patients, which is even more important as 

presently TNBC patients solely rely on chemotherapy treatment. Moreover, those patients who 

are deemed at high risk of distant metastasis may benefit from the stratification for an improved 

treatment decision. 
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Furthermore, our proposed two-gene signature is only based on two genes (ACSM4 and 

SPDYC), unlike other commercially available prognostic assays including those designed for 

ER-positive tumors 57. Our prognostic gene signature may be amenable to the development of 

affordable molecular tests based on quantitative RT-PCR as the sensitivity, specificity, and 

accuracy of our two-gene signature is proved to be much stronger at the mRNA level. The 

prognostic gene signature might be suitable for use in routine clinical practice because the 

proposed two-gene signature has prognostic value in dichotomizing TNBC patients and may 

provide important information for treatment decisions.  

The mainstay of TNBC treatment is cytotoxic chemotherapy 58. However,  chemotherapy 

decision for metastatic TNBC patients are given based on a combination of aspects relates to 

the disease and patient physical characteristics (i.e., tumor burden, patient age, co-morbidities, 

prior treatments received in the adjuvant setting, and patient preference) 59.  Despite the 

interesting finding of this study and the significant difference in the survival of patients who 

were not offered chemotherapy based on the expression of ACSM4 (with worse outcome of 

patients with over expression), the 10-year DMFS of patients with low expression (84%) may 

not justify recommendation for omission of chemotherapy in those patients. However, to make 

such a recommendation, a clinical trial utilizing a sufficiently large number of TNBC patients 

may be warranted to determine whether TNBC patients with low ACSM4 expression can avoid 

chemotherapy without worse outcome. 

A challenge  of the NGS technique in deciphering the molecular characteristics of TNBC 

tumors includes  access to the technology and the integrity of tumor samples to guarantee 

sufficient tumor RNA extraction 60. Variation in sample quality and preparation may negatively 

influence the outputs of NGS analysis and therefore must be carefully controlled. In addition, 

NGS analysis must consider intrinsic tumor heterogeneity between patients. Samples used in 

this study were processed in a strictly standardized procedure implemented in Nottingham 
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University Hospitals with immediate sample fixation following surgery, with standard 

protocols optimized to preserve tissue architecture, subcellular details and importantly the 

integrity of biologic materials including proteins, DNA, and RNA. Nonetheless, our 

retrospective study was limited to a single centre using an in-house transcriptomic and protein 

expression cohort for this investigation. However, the public domain data used in this study 

supports the value of both ACMS4 and SPDYC high expression conferring poor prognosis for 

BC patients, especially those diagnosed with TNBC molecular subtype. Hence, future external 

validation is strongly recommended.  

Conclusion 

Personalised medicine seeks to stratify BC patients ensuring optimal treatment and thus, 

improved patient outcomes. Our study has identified a two-gene signature that stratifies TNBC 

patients into high and low risk groups for developing distant metastasis, which can potentially 

guide clinical decision-making. The robust methods used herein to identify our prognostic gene 

signature followed by validation of the findings at the protein expression level, suggest that 

this promising two-gene signature  provides avenues for further in vitro functional investigation 

and for new drug development for TNBC patients who are in dire need of effective therapeutic 

options.  
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Figure legends: 

Figure 1 legend: Univariate Kaplan Meier survival analyses to test associations between 

prognostic two gene signature at the transcriptomic level and clinical outcomes. 

(Transcriptomic Cohort, n=112) 

Figure 2 legend: To validate our findings, we utilised the Breast Cancer Gene-Expression 

Miner v4.0 (bc-GenExMiner v4.0) datasets which includes 5861 breast cancer patients & 

Genotype 2 outcome public portal, A genome-wide approach to link genotype to clinical 

outcome by utilising next generation sequencing and gene chip data of 6,697 breast cancer 

patients. A) In the Breast Cancer Gene-Expression Miner data portal, high SPDYC mRNA 

expression confers a poor prognosis in the whole (i.e. unselected cohorts) of Breast cancer 

patients (n=4308, p value<0.0001). B) In the Breast Cancer Gene-Expression Miner data 

portal, high SPDYC mRNA expression confers poor prognosis in the Triple Negative Breast 

Cancer patients (n=254, p value=0.006). C) In the Genotype 2 outcome public portal, high 

ACSM4 mRNA expression confers a poor prognosis outcome in the whole (i.e. unselected 

cohorts) of Breast cancer patients (n=4029, p value<0.0001). D) In the Genotype 2 outcome 

public portal, high SPDYC mRNA expression confers a poor prognosis outcome in the whole 

(i.e. unselected cohorts) of Breast cancer patients (n=4029, p value<0.0001). E)  In the 

Genotype 2 outcome public portal, high SPDYC& ACSM4 mRNA expression confers a poor 

prognosis outcome in Triple Negative Breast Cancer patients (n=612, p value<0.0001). 

Figure 3 legend: Univariate Kaplan Meier survival analyses to test associations between the 

ACSM4 and SPDYC protein expression and clinical outcomes (IHC Cohort, n=333) 

Figure 4: Violin plots demonstrating a positive correlation between protein expressions of SPDYC 

and ACSM4 (Correlation Coefficient, r=0.29, P=0.00001) (IHC Cohort, n=333). 
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Figure 5 legend: Univariate Kaplan Meier survival analyses to test associations between the 

two gene prognostic signature protein expression and clinical outcome 
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